Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30
31 /*
32 * monitor mode reception
33 *
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
36 */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
39 {
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
48 }
49 }
50
51 return skb;
52 }
53
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
56 {
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
69 }
70
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
74 {
75 int len;
76
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
79
80 if (status->flag & RX_FLAG_MACTIME_MPDU)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
84
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
87
88 if (status->flag & RX_FLAG_HT) /* HT info */
89 len += 3;
90
91 return len;
92 }
93
94 /*
95 * ieee80211_add_rx_radiotap_header - add radiotap header
96 *
97 * add a radiotap header containing all the fields which the hardware provided.
98 */
99 static void
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
101 struct sk_buff *skb,
102 struct ieee80211_rate *rate,
103 int rtap_len)
104 {
105 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
106 struct ieee80211_radiotap_header *rthdr;
107 unsigned char *pos;
108 u16 rx_flags = 0;
109
110 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
111 memset(rthdr, 0, rtap_len);
112
113 /* radiotap header, set always present flags */
114 rthdr->it_present =
115 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
116 (1 << IEEE80211_RADIOTAP_CHANNEL) |
117 (1 << IEEE80211_RADIOTAP_ANTENNA) |
118 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
119 rthdr->it_len = cpu_to_le16(rtap_len);
120
121 pos = (unsigned char *)(rthdr+1);
122
123 /* the order of the following fields is important */
124
125 /* IEEE80211_RADIOTAP_TSFT */
126 if (status->flag & RX_FLAG_MACTIME_MPDU) {
127 put_unaligned_le64(status->mactime, pos);
128 rthdr->it_present |=
129 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
130 pos += 8;
131 }
132
133 /* IEEE80211_RADIOTAP_FLAGS */
134 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
135 *pos |= IEEE80211_RADIOTAP_F_FCS;
136 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
137 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
138 if (status->flag & RX_FLAG_SHORTPRE)
139 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
140 pos++;
141
142 /* IEEE80211_RADIOTAP_RATE */
143 if (status->flag & RX_FLAG_HT) {
144 /*
145 * MCS information is a separate field in radiotap,
146 * added below. The byte here is needed as padding
147 * for the channel though, so initialise it to 0.
148 */
149 *pos = 0;
150 } else {
151 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
152 *pos = rate->bitrate / 5;
153 }
154 pos++;
155
156 /* IEEE80211_RADIOTAP_CHANNEL */
157 put_unaligned_le16(status->freq, pos);
158 pos += 2;
159 if (status->band == IEEE80211_BAND_5GHZ)
160 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
161 pos);
162 else if (status->flag & RX_FLAG_HT)
163 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
164 pos);
165 else if (rate->flags & IEEE80211_RATE_ERP_G)
166 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
167 pos);
168 else
169 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
170 pos);
171 pos += 2;
172
173 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
174 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
175 *pos = status->signal;
176 rthdr->it_present |=
177 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
178 pos++;
179 }
180
181 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
182
183 /* IEEE80211_RADIOTAP_ANTENNA */
184 *pos = status->antenna;
185 pos++;
186
187 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
188
189 /* IEEE80211_RADIOTAP_RX_FLAGS */
190 /* ensure 2 byte alignment for the 2 byte field as required */
191 if ((pos - (u8 *)rthdr) & 1)
192 pos++;
193 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
194 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
195 put_unaligned_le16(rx_flags, pos);
196 pos += 2;
197
198 if (status->flag & RX_FLAG_HT) {
199 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
200 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
201 IEEE80211_RADIOTAP_MCS_HAVE_GI |
202 IEEE80211_RADIOTAP_MCS_HAVE_BW;
203 *pos = 0;
204 if (status->flag & RX_FLAG_SHORT_GI)
205 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
206 if (status->flag & RX_FLAG_40MHZ)
207 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
208 pos++;
209 *pos++ = status->rate_idx;
210 }
211 }
212
213 /*
214 * This function copies a received frame to all monitor interfaces and
215 * returns a cleaned-up SKB that no longer includes the FCS nor the
216 * radiotap header the driver might have added.
217 */
218 static struct sk_buff *
219 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
220 struct ieee80211_rate *rate)
221 {
222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
223 struct ieee80211_sub_if_data *sdata;
224 int needed_headroom = 0;
225 struct sk_buff *skb, *skb2;
226 struct net_device *prev_dev = NULL;
227 int present_fcs_len = 0;
228
229 /*
230 * First, we may need to make a copy of the skb because
231 * (1) we need to modify it for radiotap (if not present), and
232 * (2) the other RX handlers will modify the skb we got.
233 *
234 * We don't need to, of course, if we aren't going to return
235 * the SKB because it has a bad FCS/PLCP checksum.
236 */
237
238 /* room for the radiotap header based on driver features */
239 needed_headroom = ieee80211_rx_radiotap_len(local, status);
240
241 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
242 present_fcs_len = FCS_LEN;
243
244 /* make sure hdr->frame_control is on the linear part */
245 if (!pskb_may_pull(origskb, 2)) {
246 dev_kfree_skb(origskb);
247 return NULL;
248 }
249
250 if (!local->monitors) {
251 if (should_drop_frame(origskb, present_fcs_len)) {
252 dev_kfree_skb(origskb);
253 return NULL;
254 }
255
256 return remove_monitor_info(local, origskb);
257 }
258
259 if (should_drop_frame(origskb, present_fcs_len)) {
260 /* only need to expand headroom if necessary */
261 skb = origskb;
262 origskb = NULL;
263
264 /*
265 * This shouldn't trigger often because most devices have an
266 * RX header they pull before we get here, and that should
267 * be big enough for our radiotap information. We should
268 * probably export the length to drivers so that we can have
269 * them allocate enough headroom to start with.
270 */
271 if (skb_headroom(skb) < needed_headroom &&
272 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
273 dev_kfree_skb(skb);
274 return NULL;
275 }
276 } else {
277 /*
278 * Need to make a copy and possibly remove radiotap header
279 * and FCS from the original.
280 */
281 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
282
283 origskb = remove_monitor_info(local, origskb);
284
285 if (!skb)
286 return origskb;
287 }
288
289 /* prepend radiotap information */
290 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
291
292 skb_reset_mac_header(skb);
293 skb->ip_summed = CHECKSUM_UNNECESSARY;
294 skb->pkt_type = PACKET_OTHERHOST;
295 skb->protocol = htons(ETH_P_802_2);
296
297 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
298 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
299 continue;
300
301 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
302 continue;
303
304 if (!ieee80211_sdata_running(sdata))
305 continue;
306
307 if (prev_dev) {
308 skb2 = skb_clone(skb, GFP_ATOMIC);
309 if (skb2) {
310 skb2->dev = prev_dev;
311 netif_receive_skb(skb2);
312 }
313 }
314
315 prev_dev = sdata->dev;
316 sdata->dev->stats.rx_packets++;
317 sdata->dev->stats.rx_bytes += skb->len;
318 }
319
320 if (prev_dev) {
321 skb->dev = prev_dev;
322 netif_receive_skb(skb);
323 } else
324 dev_kfree_skb(skb);
325
326 return origskb;
327 }
328
329
330 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
331 {
332 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
333 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
334 int tid;
335
336 /* does the frame have a qos control field? */
337 if (ieee80211_is_data_qos(hdr->frame_control)) {
338 u8 *qc = ieee80211_get_qos_ctl(hdr);
339 /* frame has qos control */
340 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
341 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
342 status->rx_flags |= IEEE80211_RX_AMSDU;
343 } else {
344 /*
345 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
346 *
347 * Sequence numbers for management frames, QoS data
348 * frames with a broadcast/multicast address in the
349 * Address 1 field, and all non-QoS data frames sent
350 * by QoS STAs are assigned using an additional single
351 * modulo-4096 counter, [...]
352 *
353 * We also use that counter for non-QoS STAs.
354 */
355 tid = NUM_RX_DATA_QUEUES - 1;
356 }
357
358 rx->queue = tid;
359 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
360 * For now, set skb->priority to 0 for other cases. */
361 rx->skb->priority = (tid > 7) ? 0 : tid;
362 }
363
364 /**
365 * DOC: Packet alignment
366 *
367 * Drivers always need to pass packets that are aligned to two-byte boundaries
368 * to the stack.
369 *
370 * Additionally, should, if possible, align the payload data in a way that
371 * guarantees that the contained IP header is aligned to a four-byte
372 * boundary. In the case of regular frames, this simply means aligning the
373 * payload to a four-byte boundary (because either the IP header is directly
374 * contained, or IV/RFC1042 headers that have a length divisible by four are
375 * in front of it). If the payload data is not properly aligned and the
376 * architecture doesn't support efficient unaligned operations, mac80211
377 * will align the data.
378 *
379 * With A-MSDU frames, however, the payload data address must yield two modulo
380 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
381 * push the IP header further back to a multiple of four again. Thankfully, the
382 * specs were sane enough this time around to require padding each A-MSDU
383 * subframe to a length that is a multiple of four.
384 *
385 * Padding like Atheros hardware adds which is between the 802.11 header and
386 * the payload is not supported, the driver is required to move the 802.11
387 * header to be directly in front of the payload in that case.
388 */
389 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
390 {
391 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
392 WARN_ONCE((unsigned long)rx->skb->data & 1,
393 "unaligned packet at 0x%p\n", rx->skb->data);
394 #endif
395 }
396
397
398 /* rx handlers */
399
400 static ieee80211_rx_result debug_noinline
401 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
402 {
403 struct ieee80211_local *local = rx->local;
404 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
405 struct sk_buff *skb = rx->skb;
406
407 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
408 !local->sched_scanning))
409 return RX_CONTINUE;
410
411 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
412 test_bit(SCAN_SW_SCANNING, &local->scanning) ||
413 local->sched_scanning)
414 return ieee80211_scan_rx(rx->sdata, skb);
415
416 /* scanning finished during invoking of handlers */
417 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
418 return RX_DROP_UNUSABLE;
419 }
420
421
422 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
423 {
424 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
425
426 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
427 return 0;
428
429 return ieee80211_is_robust_mgmt_frame(hdr);
430 }
431
432
433 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
434 {
435 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
436
437 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
438 return 0;
439
440 return ieee80211_is_robust_mgmt_frame(hdr);
441 }
442
443
444 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
445 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
446 {
447 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
448 struct ieee80211_mmie *mmie;
449
450 if (skb->len < 24 + sizeof(*mmie) ||
451 !is_multicast_ether_addr(hdr->da))
452 return -1;
453
454 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
455 return -1; /* not a robust management frame */
456
457 mmie = (struct ieee80211_mmie *)
458 (skb->data + skb->len - sizeof(*mmie));
459 if (mmie->element_id != WLAN_EID_MMIE ||
460 mmie->length != sizeof(*mmie) - 2)
461 return -1;
462
463 return le16_to_cpu(mmie->key_id);
464 }
465
466
467 static ieee80211_rx_result
468 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
469 {
470 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
471 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
472 char *dev_addr = rx->sdata->vif.addr;
473
474 if (ieee80211_is_data(hdr->frame_control)) {
475 if (is_multicast_ether_addr(hdr->addr1)) {
476 if (ieee80211_has_tods(hdr->frame_control) ||
477 !ieee80211_has_fromds(hdr->frame_control))
478 return RX_DROP_MONITOR;
479 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
480 return RX_DROP_MONITOR;
481 } else {
482 if (!ieee80211_has_a4(hdr->frame_control))
483 return RX_DROP_MONITOR;
484 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
485 return RX_DROP_MONITOR;
486 }
487 }
488
489 /* If there is not an established peer link and this is not a peer link
490 * establisment frame, beacon or probe, drop the frame.
491 */
492
493 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
494 struct ieee80211_mgmt *mgmt;
495
496 if (!ieee80211_is_mgmt(hdr->frame_control))
497 return RX_DROP_MONITOR;
498
499 if (ieee80211_is_action(hdr->frame_control)) {
500 u8 category;
501 mgmt = (struct ieee80211_mgmt *)hdr;
502 category = mgmt->u.action.category;
503 if (category != WLAN_CATEGORY_MESH_ACTION &&
504 category != WLAN_CATEGORY_SELF_PROTECTED)
505 return RX_DROP_MONITOR;
506 return RX_CONTINUE;
507 }
508
509 if (ieee80211_is_probe_req(hdr->frame_control) ||
510 ieee80211_is_probe_resp(hdr->frame_control) ||
511 ieee80211_is_beacon(hdr->frame_control) ||
512 ieee80211_is_auth(hdr->frame_control))
513 return RX_CONTINUE;
514
515 return RX_DROP_MONITOR;
516
517 }
518
519 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
520
521 if (ieee80211_is_data(hdr->frame_control) &&
522 is_multicast_ether_addr(hdr->addr1) &&
523 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
524 return RX_DROP_MONITOR;
525 #undef msh_h_get
526
527 return RX_CONTINUE;
528 }
529
530 #define SEQ_MODULO 0x1000
531 #define SEQ_MASK 0xfff
532
533 static inline int seq_less(u16 sq1, u16 sq2)
534 {
535 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
536 }
537
538 static inline u16 seq_inc(u16 sq)
539 {
540 return (sq + 1) & SEQ_MASK;
541 }
542
543 static inline u16 seq_sub(u16 sq1, u16 sq2)
544 {
545 return (sq1 - sq2) & SEQ_MASK;
546 }
547
548
549 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
550 struct tid_ampdu_rx *tid_agg_rx,
551 int index)
552 {
553 struct ieee80211_local *local = hw_to_local(hw);
554 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
555 struct ieee80211_rx_status *status;
556
557 lockdep_assert_held(&tid_agg_rx->reorder_lock);
558
559 if (!skb)
560 goto no_frame;
561
562 /* release the frame from the reorder ring buffer */
563 tid_agg_rx->stored_mpdu_num--;
564 tid_agg_rx->reorder_buf[index] = NULL;
565 status = IEEE80211_SKB_RXCB(skb);
566 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
567 skb_queue_tail(&local->rx_skb_queue, skb);
568
569 no_frame:
570 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
571 }
572
573 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
574 struct tid_ampdu_rx *tid_agg_rx,
575 u16 head_seq_num)
576 {
577 int index;
578
579 lockdep_assert_held(&tid_agg_rx->reorder_lock);
580
581 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
582 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
583 tid_agg_rx->buf_size;
584 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
585 }
586 }
587
588 /*
589 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
590 * the skb was added to the buffer longer than this time ago, the earlier
591 * frames that have not yet been received are assumed to be lost and the skb
592 * can be released for processing. This may also release other skb's from the
593 * reorder buffer if there are no additional gaps between the frames.
594 *
595 * Callers must hold tid_agg_rx->reorder_lock.
596 */
597 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
598
599 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
600 struct tid_ampdu_rx *tid_agg_rx)
601 {
602 int index, j;
603
604 lockdep_assert_held(&tid_agg_rx->reorder_lock);
605
606 /* release the buffer until next missing frame */
607 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
608 tid_agg_rx->buf_size;
609 if (!tid_agg_rx->reorder_buf[index] &&
610 tid_agg_rx->stored_mpdu_num > 1) {
611 /*
612 * No buffers ready to be released, but check whether any
613 * frames in the reorder buffer have timed out.
614 */
615 int skipped = 1;
616 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
617 j = (j + 1) % tid_agg_rx->buf_size) {
618 if (!tid_agg_rx->reorder_buf[j]) {
619 skipped++;
620 continue;
621 }
622 if (skipped &&
623 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
624 HT_RX_REORDER_BUF_TIMEOUT))
625 goto set_release_timer;
626
627 #ifdef CONFIG_MAC80211_HT_DEBUG
628 if (net_ratelimit())
629 wiphy_debug(hw->wiphy,
630 "release an RX reorder frame due to timeout on earlier frames\n");
631 #endif
632 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
633
634 /*
635 * Increment the head seq# also for the skipped slots.
636 */
637 tid_agg_rx->head_seq_num =
638 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
639 skipped = 0;
640 }
641 } else while (tid_agg_rx->reorder_buf[index]) {
642 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
643 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
644 tid_agg_rx->buf_size;
645 }
646
647 if (tid_agg_rx->stored_mpdu_num) {
648 j = index = seq_sub(tid_agg_rx->head_seq_num,
649 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
650
651 for (; j != (index - 1) % tid_agg_rx->buf_size;
652 j = (j + 1) % tid_agg_rx->buf_size) {
653 if (tid_agg_rx->reorder_buf[j])
654 break;
655 }
656
657 set_release_timer:
658
659 mod_timer(&tid_agg_rx->reorder_timer,
660 tid_agg_rx->reorder_time[j] + 1 +
661 HT_RX_REORDER_BUF_TIMEOUT);
662 } else {
663 del_timer(&tid_agg_rx->reorder_timer);
664 }
665 }
666
667 /*
668 * As this function belongs to the RX path it must be under
669 * rcu_read_lock protection. It returns false if the frame
670 * can be processed immediately, true if it was consumed.
671 */
672 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
673 struct tid_ampdu_rx *tid_agg_rx,
674 struct sk_buff *skb)
675 {
676 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
677 u16 sc = le16_to_cpu(hdr->seq_ctrl);
678 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
679 u16 head_seq_num, buf_size;
680 int index;
681 bool ret = true;
682
683 spin_lock(&tid_agg_rx->reorder_lock);
684
685 buf_size = tid_agg_rx->buf_size;
686 head_seq_num = tid_agg_rx->head_seq_num;
687
688 /* frame with out of date sequence number */
689 if (seq_less(mpdu_seq_num, head_seq_num)) {
690 dev_kfree_skb(skb);
691 goto out;
692 }
693
694 /*
695 * If frame the sequence number exceeds our buffering window
696 * size release some previous frames to make room for this one.
697 */
698 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
699 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
700 /* release stored frames up to new head to stack */
701 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
702 }
703
704 /* Now the new frame is always in the range of the reordering buffer */
705
706 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
707
708 /* check if we already stored this frame */
709 if (tid_agg_rx->reorder_buf[index]) {
710 dev_kfree_skb(skb);
711 goto out;
712 }
713
714 /*
715 * If the current MPDU is in the right order and nothing else
716 * is stored we can process it directly, no need to buffer it.
717 * If it is first but there's something stored, we may be able
718 * to release frames after this one.
719 */
720 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
721 tid_agg_rx->stored_mpdu_num == 0) {
722 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
723 ret = false;
724 goto out;
725 }
726
727 /* put the frame in the reordering buffer */
728 tid_agg_rx->reorder_buf[index] = skb;
729 tid_agg_rx->reorder_time[index] = jiffies;
730 tid_agg_rx->stored_mpdu_num++;
731 ieee80211_sta_reorder_release(hw, tid_agg_rx);
732
733 out:
734 spin_unlock(&tid_agg_rx->reorder_lock);
735 return ret;
736 }
737
738 /*
739 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
740 * true if the MPDU was buffered, false if it should be processed.
741 */
742 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
743 {
744 struct sk_buff *skb = rx->skb;
745 struct ieee80211_local *local = rx->local;
746 struct ieee80211_hw *hw = &local->hw;
747 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
748 struct sta_info *sta = rx->sta;
749 struct tid_ampdu_rx *tid_agg_rx;
750 u16 sc;
751 int tid;
752
753 if (!ieee80211_is_data_qos(hdr->frame_control))
754 goto dont_reorder;
755
756 /*
757 * filter the QoS data rx stream according to
758 * STA/TID and check if this STA/TID is on aggregation
759 */
760
761 if (!sta)
762 goto dont_reorder;
763
764 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
765
766 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
767 if (!tid_agg_rx)
768 goto dont_reorder;
769
770 /* qos null data frames are excluded */
771 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
772 goto dont_reorder;
773
774 /* new, potentially un-ordered, ampdu frame - process it */
775
776 /* reset session timer */
777 if (tid_agg_rx->timeout)
778 mod_timer(&tid_agg_rx->session_timer,
779 TU_TO_EXP_TIME(tid_agg_rx->timeout));
780
781 /* if this mpdu is fragmented - terminate rx aggregation session */
782 sc = le16_to_cpu(hdr->seq_ctrl);
783 if (sc & IEEE80211_SCTL_FRAG) {
784 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
785 skb_queue_tail(&rx->sdata->skb_queue, skb);
786 ieee80211_queue_work(&local->hw, &rx->sdata->work);
787 return;
788 }
789
790 /*
791 * No locking needed -- we will only ever process one
792 * RX packet at a time, and thus own tid_agg_rx. All
793 * other code manipulating it needs to (and does) make
794 * sure that we cannot get to it any more before doing
795 * anything with it.
796 */
797 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
798 return;
799
800 dont_reorder:
801 skb_queue_tail(&local->rx_skb_queue, skb);
802 }
803
804 static ieee80211_rx_result debug_noinline
805 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
806 {
807 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
808 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
809
810 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
811 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
812 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
813 rx->sta->last_seq_ctrl[rx->queue] ==
814 hdr->seq_ctrl)) {
815 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
816 rx->local->dot11FrameDuplicateCount++;
817 rx->sta->num_duplicates++;
818 }
819 return RX_DROP_UNUSABLE;
820 } else
821 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
822 }
823
824 if (unlikely(rx->skb->len < 16)) {
825 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
826 return RX_DROP_MONITOR;
827 }
828
829 /* Drop disallowed frame classes based on STA auth/assoc state;
830 * IEEE 802.11, Chap 5.5.
831 *
832 * mac80211 filters only based on association state, i.e. it drops
833 * Class 3 frames from not associated stations. hostapd sends
834 * deauth/disassoc frames when needed. In addition, hostapd is
835 * responsible for filtering on both auth and assoc states.
836 */
837
838 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
839 return ieee80211_rx_mesh_check(rx);
840
841 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
842 ieee80211_is_pspoll(hdr->frame_control)) &&
843 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
844 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
845 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC))))
846 return RX_DROP_MONITOR;
847
848 return RX_CONTINUE;
849 }
850
851
852 static ieee80211_rx_result debug_noinline
853 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
854 {
855 struct sk_buff *skb = rx->skb;
856 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
857 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
858 int keyidx;
859 int hdrlen;
860 ieee80211_rx_result result = RX_DROP_UNUSABLE;
861 struct ieee80211_key *sta_ptk = NULL;
862 int mmie_keyidx = -1;
863 __le16 fc;
864
865 /*
866 * Key selection 101
867 *
868 * There are four types of keys:
869 * - GTK (group keys)
870 * - IGTK (group keys for management frames)
871 * - PTK (pairwise keys)
872 * - STK (station-to-station pairwise keys)
873 *
874 * When selecting a key, we have to distinguish between multicast
875 * (including broadcast) and unicast frames, the latter can only
876 * use PTKs and STKs while the former always use GTKs and IGTKs.
877 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
878 * unicast frames can also use key indices like GTKs. Hence, if we
879 * don't have a PTK/STK we check the key index for a WEP key.
880 *
881 * Note that in a regular BSS, multicast frames are sent by the
882 * AP only, associated stations unicast the frame to the AP first
883 * which then multicasts it on their behalf.
884 *
885 * There is also a slight problem in IBSS mode: GTKs are negotiated
886 * with each station, that is something we don't currently handle.
887 * The spec seems to expect that one negotiates the same key with
888 * every station but there's no such requirement; VLANs could be
889 * possible.
890 */
891
892 /*
893 * No point in finding a key and decrypting if the frame is neither
894 * addressed to us nor a multicast frame.
895 */
896 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
897 return RX_CONTINUE;
898
899 /* start without a key */
900 rx->key = NULL;
901
902 if (rx->sta)
903 sta_ptk = rcu_dereference(rx->sta->ptk);
904
905 fc = hdr->frame_control;
906
907 if (!ieee80211_has_protected(fc))
908 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
909
910 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
911 rx->key = sta_ptk;
912 if ((status->flag & RX_FLAG_DECRYPTED) &&
913 (status->flag & RX_FLAG_IV_STRIPPED))
914 return RX_CONTINUE;
915 /* Skip decryption if the frame is not protected. */
916 if (!ieee80211_has_protected(fc))
917 return RX_CONTINUE;
918 } else if (mmie_keyidx >= 0) {
919 /* Broadcast/multicast robust management frame / BIP */
920 if ((status->flag & RX_FLAG_DECRYPTED) &&
921 (status->flag & RX_FLAG_IV_STRIPPED))
922 return RX_CONTINUE;
923
924 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
925 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
926 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
927 if (rx->sta)
928 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
929 if (!rx->key)
930 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
931 } else if (!ieee80211_has_protected(fc)) {
932 /*
933 * The frame was not protected, so skip decryption. However, we
934 * need to set rx->key if there is a key that could have been
935 * used so that the frame may be dropped if encryption would
936 * have been expected.
937 */
938 struct ieee80211_key *key = NULL;
939 struct ieee80211_sub_if_data *sdata = rx->sdata;
940 int i;
941
942 if (ieee80211_is_mgmt(fc) &&
943 is_multicast_ether_addr(hdr->addr1) &&
944 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
945 rx->key = key;
946 else {
947 if (rx->sta) {
948 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
949 key = rcu_dereference(rx->sta->gtk[i]);
950 if (key)
951 break;
952 }
953 }
954 if (!key) {
955 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
956 key = rcu_dereference(sdata->keys[i]);
957 if (key)
958 break;
959 }
960 }
961 if (key)
962 rx->key = key;
963 }
964 return RX_CONTINUE;
965 } else {
966 u8 keyid;
967 /*
968 * The device doesn't give us the IV so we won't be
969 * able to look up the key. That's ok though, we
970 * don't need to decrypt the frame, we just won't
971 * be able to keep statistics accurate.
972 * Except for key threshold notifications, should
973 * we somehow allow the driver to tell us which key
974 * the hardware used if this flag is set?
975 */
976 if ((status->flag & RX_FLAG_DECRYPTED) &&
977 (status->flag & RX_FLAG_IV_STRIPPED))
978 return RX_CONTINUE;
979
980 hdrlen = ieee80211_hdrlen(fc);
981
982 if (rx->skb->len < 8 + hdrlen)
983 return RX_DROP_UNUSABLE; /* TODO: count this? */
984
985 /*
986 * no need to call ieee80211_wep_get_keyidx,
987 * it verifies a bunch of things we've done already
988 */
989 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
990 keyidx = keyid >> 6;
991
992 /* check per-station GTK first, if multicast packet */
993 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
994 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
995
996 /* if not found, try default key */
997 if (!rx->key) {
998 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
999
1000 /*
1001 * RSNA-protected unicast frames should always be
1002 * sent with pairwise or station-to-station keys,
1003 * but for WEP we allow using a key index as well.
1004 */
1005 if (rx->key &&
1006 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1007 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1008 !is_multicast_ether_addr(hdr->addr1))
1009 rx->key = NULL;
1010 }
1011 }
1012
1013 if (rx->key) {
1014 rx->key->tx_rx_count++;
1015 /* TODO: add threshold stuff again */
1016 } else {
1017 return RX_DROP_MONITOR;
1018 }
1019
1020 if (skb_linearize(rx->skb))
1021 return RX_DROP_UNUSABLE;
1022 /* the hdr variable is invalid now! */
1023
1024 switch (rx->key->conf.cipher) {
1025 case WLAN_CIPHER_SUITE_WEP40:
1026 case WLAN_CIPHER_SUITE_WEP104:
1027 /* Check for weak IVs if possible */
1028 if (rx->sta && ieee80211_is_data(fc) &&
1029 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1030 !(status->flag & RX_FLAG_DECRYPTED)) &&
1031 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1032 rx->sta->wep_weak_iv_count++;
1033
1034 result = ieee80211_crypto_wep_decrypt(rx);
1035 break;
1036 case WLAN_CIPHER_SUITE_TKIP:
1037 result = ieee80211_crypto_tkip_decrypt(rx);
1038 break;
1039 case WLAN_CIPHER_SUITE_CCMP:
1040 result = ieee80211_crypto_ccmp_decrypt(rx);
1041 break;
1042 case WLAN_CIPHER_SUITE_AES_CMAC:
1043 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1044 break;
1045 default:
1046 /*
1047 * We can reach here only with HW-only algorithms
1048 * but why didn't it decrypt the frame?!
1049 */
1050 return RX_DROP_UNUSABLE;
1051 }
1052
1053 /* either the frame has been decrypted or will be dropped */
1054 status->flag |= RX_FLAG_DECRYPTED;
1055
1056 return result;
1057 }
1058
1059 static ieee80211_rx_result debug_noinline
1060 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1061 {
1062 struct ieee80211_local *local;
1063 struct ieee80211_hdr *hdr;
1064 struct sk_buff *skb;
1065
1066 local = rx->local;
1067 skb = rx->skb;
1068 hdr = (struct ieee80211_hdr *) skb->data;
1069
1070 if (!local->pspolling)
1071 return RX_CONTINUE;
1072
1073 if (!ieee80211_has_fromds(hdr->frame_control))
1074 /* this is not from AP */
1075 return RX_CONTINUE;
1076
1077 if (!ieee80211_is_data(hdr->frame_control))
1078 return RX_CONTINUE;
1079
1080 if (!ieee80211_has_moredata(hdr->frame_control)) {
1081 /* AP has no more frames buffered for us */
1082 local->pspolling = false;
1083 return RX_CONTINUE;
1084 }
1085
1086 /* more data bit is set, let's request a new frame from the AP */
1087 ieee80211_send_pspoll(local, rx->sdata);
1088
1089 return RX_CONTINUE;
1090 }
1091
1092 static void ap_sta_ps_start(struct sta_info *sta)
1093 {
1094 struct ieee80211_sub_if_data *sdata = sta->sdata;
1095 struct ieee80211_local *local = sdata->local;
1096
1097 atomic_inc(&sdata->bss->num_sta_ps);
1098 set_sta_flags(sta, WLAN_STA_PS_STA);
1099 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1100 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1101 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1102 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1103 sdata->name, sta->sta.addr, sta->sta.aid);
1104 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1105 }
1106
1107 static void ap_sta_ps_end(struct sta_info *sta)
1108 {
1109 struct ieee80211_sub_if_data *sdata = sta->sdata;
1110
1111 atomic_dec(&sdata->bss->num_sta_ps);
1112
1113 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1114 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1115 sdata->name, sta->sta.addr, sta->sta.aid);
1116 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1117
1118 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1119 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1120 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1121 sdata->name, sta->sta.addr, sta->sta.aid);
1122 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1123 return;
1124 }
1125
1126 ieee80211_sta_ps_deliver_wakeup(sta);
1127 }
1128
1129 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1130 {
1131 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1132 bool in_ps;
1133
1134 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1135
1136 /* Don't let the same PS state be set twice */
1137 in_ps = test_sta_flags(sta_inf, WLAN_STA_PS_STA);
1138 if ((start && in_ps) || (!start && !in_ps))
1139 return -EINVAL;
1140
1141 if (start)
1142 ap_sta_ps_start(sta_inf);
1143 else
1144 ap_sta_ps_end(sta_inf);
1145
1146 return 0;
1147 }
1148 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1149
1150 static ieee80211_rx_result debug_noinline
1151 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1152 {
1153 struct sta_info *sta = rx->sta;
1154 struct sk_buff *skb = rx->skb;
1155 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1156 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1157
1158 if (!sta)
1159 return RX_CONTINUE;
1160
1161 /*
1162 * Update last_rx only for IBSS packets which are for the current
1163 * BSSID to avoid keeping the current IBSS network alive in cases
1164 * where other STAs start using different BSSID.
1165 */
1166 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1167 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1168 NL80211_IFTYPE_ADHOC);
1169 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1170 sta->last_rx = jiffies;
1171 if (ieee80211_is_data(hdr->frame_control)) {
1172 sta->last_rx_rate_idx = status->rate_idx;
1173 sta->last_rx_rate_flag = status->flag;
1174 }
1175 }
1176 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1177 /*
1178 * Mesh beacons will update last_rx when if they are found to
1179 * match the current local configuration when processed.
1180 */
1181 sta->last_rx = jiffies;
1182 if (ieee80211_is_data(hdr->frame_control)) {
1183 sta->last_rx_rate_idx = status->rate_idx;
1184 sta->last_rx_rate_flag = status->flag;
1185 }
1186 }
1187
1188 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1189 return RX_CONTINUE;
1190
1191 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1192 ieee80211_sta_rx_notify(rx->sdata, hdr);
1193
1194 sta->rx_fragments++;
1195 sta->rx_bytes += rx->skb->len;
1196 sta->last_signal = status->signal;
1197 ewma_add(&sta->avg_signal, -status->signal);
1198
1199 /*
1200 * Change STA power saving mode only at the end of a frame
1201 * exchange sequence.
1202 */
1203 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1204 !ieee80211_has_morefrags(hdr->frame_control) &&
1205 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1206 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1207 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1208 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1209 /*
1210 * Ignore doze->wake transitions that are
1211 * indicated by non-data frames, the standard
1212 * is unclear here, but for example going to
1213 * PS mode and then scanning would cause a
1214 * doze->wake transition for the probe request,
1215 * and that is clearly undesirable.
1216 */
1217 if (ieee80211_is_data(hdr->frame_control) &&
1218 !ieee80211_has_pm(hdr->frame_control))
1219 ap_sta_ps_end(sta);
1220 } else {
1221 if (ieee80211_has_pm(hdr->frame_control))
1222 ap_sta_ps_start(sta);
1223 }
1224 }
1225
1226 /*
1227 * Drop (qos-)data::nullfunc frames silently, since they
1228 * are used only to control station power saving mode.
1229 */
1230 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1231 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1232 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1233
1234 /*
1235 * If we receive a 4-addr nullfunc frame from a STA
1236 * that was not moved to a 4-addr STA vlan yet, drop
1237 * the frame to the monitor interface, to make sure
1238 * that hostapd sees it
1239 */
1240 if (ieee80211_has_a4(hdr->frame_control) &&
1241 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1242 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1243 !rx->sdata->u.vlan.sta)))
1244 return RX_DROP_MONITOR;
1245 /*
1246 * Update counter and free packet here to avoid
1247 * counting this as a dropped packed.
1248 */
1249 sta->rx_packets++;
1250 dev_kfree_skb(rx->skb);
1251 return RX_QUEUED;
1252 }
1253
1254 return RX_CONTINUE;
1255 } /* ieee80211_rx_h_sta_process */
1256
1257 static inline struct ieee80211_fragment_entry *
1258 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1259 unsigned int frag, unsigned int seq, int rx_queue,
1260 struct sk_buff **skb)
1261 {
1262 struct ieee80211_fragment_entry *entry;
1263 int idx;
1264
1265 idx = sdata->fragment_next;
1266 entry = &sdata->fragments[sdata->fragment_next++];
1267 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1268 sdata->fragment_next = 0;
1269
1270 if (!skb_queue_empty(&entry->skb_list)) {
1271 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1272 struct ieee80211_hdr *hdr =
1273 (struct ieee80211_hdr *) entry->skb_list.next->data;
1274 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1275 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1276 "addr1=%pM addr2=%pM\n",
1277 sdata->name, idx,
1278 jiffies - entry->first_frag_time, entry->seq,
1279 entry->last_frag, hdr->addr1, hdr->addr2);
1280 #endif
1281 __skb_queue_purge(&entry->skb_list);
1282 }
1283
1284 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1285 *skb = NULL;
1286 entry->first_frag_time = jiffies;
1287 entry->seq = seq;
1288 entry->rx_queue = rx_queue;
1289 entry->last_frag = frag;
1290 entry->ccmp = 0;
1291 entry->extra_len = 0;
1292
1293 return entry;
1294 }
1295
1296 static inline struct ieee80211_fragment_entry *
1297 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1298 unsigned int frag, unsigned int seq,
1299 int rx_queue, struct ieee80211_hdr *hdr)
1300 {
1301 struct ieee80211_fragment_entry *entry;
1302 int i, idx;
1303
1304 idx = sdata->fragment_next;
1305 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1306 struct ieee80211_hdr *f_hdr;
1307
1308 idx--;
1309 if (idx < 0)
1310 idx = IEEE80211_FRAGMENT_MAX - 1;
1311
1312 entry = &sdata->fragments[idx];
1313 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1314 entry->rx_queue != rx_queue ||
1315 entry->last_frag + 1 != frag)
1316 continue;
1317
1318 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1319
1320 /*
1321 * Check ftype and addresses are equal, else check next fragment
1322 */
1323 if (((hdr->frame_control ^ f_hdr->frame_control) &
1324 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1325 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1326 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1327 continue;
1328
1329 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1330 __skb_queue_purge(&entry->skb_list);
1331 continue;
1332 }
1333 return entry;
1334 }
1335
1336 return NULL;
1337 }
1338
1339 static ieee80211_rx_result debug_noinline
1340 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1341 {
1342 struct ieee80211_hdr *hdr;
1343 u16 sc;
1344 __le16 fc;
1345 unsigned int frag, seq;
1346 struct ieee80211_fragment_entry *entry;
1347 struct sk_buff *skb;
1348 struct ieee80211_rx_status *status;
1349
1350 hdr = (struct ieee80211_hdr *)rx->skb->data;
1351 fc = hdr->frame_control;
1352 sc = le16_to_cpu(hdr->seq_ctrl);
1353 frag = sc & IEEE80211_SCTL_FRAG;
1354
1355 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1356 (rx->skb)->len < 24 ||
1357 is_multicast_ether_addr(hdr->addr1))) {
1358 /* not fragmented */
1359 goto out;
1360 }
1361 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1362
1363 if (skb_linearize(rx->skb))
1364 return RX_DROP_UNUSABLE;
1365
1366 /*
1367 * skb_linearize() might change the skb->data and
1368 * previously cached variables (in this case, hdr) need to
1369 * be refreshed with the new data.
1370 */
1371 hdr = (struct ieee80211_hdr *)rx->skb->data;
1372 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1373
1374 if (frag == 0) {
1375 /* This is the first fragment of a new frame. */
1376 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1377 rx->queue, &(rx->skb));
1378 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1379 ieee80211_has_protected(fc)) {
1380 int queue = ieee80211_is_mgmt(fc) ?
1381 NUM_RX_DATA_QUEUES : rx->queue;
1382 /* Store CCMP PN so that we can verify that the next
1383 * fragment has a sequential PN value. */
1384 entry->ccmp = 1;
1385 memcpy(entry->last_pn,
1386 rx->key->u.ccmp.rx_pn[queue],
1387 CCMP_PN_LEN);
1388 }
1389 return RX_QUEUED;
1390 }
1391
1392 /* This is a fragment for a frame that should already be pending in
1393 * fragment cache. Add this fragment to the end of the pending entry.
1394 */
1395 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1396 if (!entry) {
1397 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1398 return RX_DROP_MONITOR;
1399 }
1400
1401 /* Verify that MPDUs within one MSDU have sequential PN values.
1402 * (IEEE 802.11i, 8.3.3.4.5) */
1403 if (entry->ccmp) {
1404 int i;
1405 u8 pn[CCMP_PN_LEN], *rpn;
1406 int queue;
1407 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1408 return RX_DROP_UNUSABLE;
1409 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1410 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1411 pn[i]++;
1412 if (pn[i])
1413 break;
1414 }
1415 queue = ieee80211_is_mgmt(fc) ?
1416 NUM_RX_DATA_QUEUES : rx->queue;
1417 rpn = rx->key->u.ccmp.rx_pn[queue];
1418 if (memcmp(pn, rpn, CCMP_PN_LEN))
1419 return RX_DROP_UNUSABLE;
1420 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1421 }
1422
1423 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1424 __skb_queue_tail(&entry->skb_list, rx->skb);
1425 entry->last_frag = frag;
1426 entry->extra_len += rx->skb->len;
1427 if (ieee80211_has_morefrags(fc)) {
1428 rx->skb = NULL;
1429 return RX_QUEUED;
1430 }
1431
1432 rx->skb = __skb_dequeue(&entry->skb_list);
1433 if (skb_tailroom(rx->skb) < entry->extra_len) {
1434 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1435 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1436 GFP_ATOMIC))) {
1437 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1438 __skb_queue_purge(&entry->skb_list);
1439 return RX_DROP_UNUSABLE;
1440 }
1441 }
1442 while ((skb = __skb_dequeue(&entry->skb_list))) {
1443 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1444 dev_kfree_skb(skb);
1445 }
1446
1447 /* Complete frame has been reassembled - process it now */
1448 status = IEEE80211_SKB_RXCB(rx->skb);
1449 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1450
1451 out:
1452 if (rx->sta)
1453 rx->sta->rx_packets++;
1454 if (is_multicast_ether_addr(hdr->addr1))
1455 rx->local->dot11MulticastReceivedFrameCount++;
1456 else
1457 ieee80211_led_rx(rx->local);
1458 return RX_CONTINUE;
1459 }
1460
1461 static ieee80211_rx_result debug_noinline
1462 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1463 {
1464 struct ieee80211_sub_if_data *sdata = rx->sdata;
1465 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1466 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1467
1468 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1469 !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1470 return RX_CONTINUE;
1471
1472 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1473 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1474 return RX_DROP_UNUSABLE;
1475
1476 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1477 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1478 else
1479 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1480
1481 /* Free PS Poll skb here instead of returning RX_DROP that would
1482 * count as an dropped frame. */
1483 dev_kfree_skb(rx->skb);
1484
1485 return RX_QUEUED;
1486 }
1487
1488 static ieee80211_rx_result debug_noinline
1489 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1490 {
1491 u8 *data = rx->skb->data;
1492 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1493
1494 if (!ieee80211_is_data_qos(hdr->frame_control))
1495 return RX_CONTINUE;
1496
1497 /* remove the qos control field, update frame type and meta-data */
1498 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1499 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1500 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1501 /* change frame type to non QOS */
1502 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1503
1504 return RX_CONTINUE;
1505 }
1506
1507 static int
1508 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1509 {
1510 if (unlikely(!rx->sta ||
1511 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1512 return -EACCES;
1513
1514 return 0;
1515 }
1516
1517 static int
1518 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1519 {
1520 struct sk_buff *skb = rx->skb;
1521 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1522
1523 /*
1524 * Pass through unencrypted frames if the hardware has
1525 * decrypted them already.
1526 */
1527 if (status->flag & RX_FLAG_DECRYPTED)
1528 return 0;
1529
1530 /* Drop unencrypted frames if key is set. */
1531 if (unlikely(!ieee80211_has_protected(fc) &&
1532 !ieee80211_is_nullfunc(fc) &&
1533 ieee80211_is_data(fc) &&
1534 (rx->key || rx->sdata->drop_unencrypted)))
1535 return -EACCES;
1536
1537 return 0;
1538 }
1539
1540 static int
1541 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1542 {
1543 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1544 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1545 __le16 fc = hdr->frame_control;
1546
1547 /*
1548 * Pass through unencrypted frames if the hardware has
1549 * decrypted them already.
1550 */
1551 if (status->flag & RX_FLAG_DECRYPTED)
1552 return 0;
1553
1554 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1555 if (unlikely(!ieee80211_has_protected(fc) &&
1556 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1557 rx->key)) {
1558 if (ieee80211_is_deauth(fc))
1559 cfg80211_send_unprot_deauth(rx->sdata->dev,
1560 rx->skb->data,
1561 rx->skb->len);
1562 else if (ieee80211_is_disassoc(fc))
1563 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1564 rx->skb->data,
1565 rx->skb->len);
1566 return -EACCES;
1567 }
1568 /* BIP does not use Protected field, so need to check MMIE */
1569 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1570 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1571 if (ieee80211_is_deauth(fc))
1572 cfg80211_send_unprot_deauth(rx->sdata->dev,
1573 rx->skb->data,
1574 rx->skb->len);
1575 else if (ieee80211_is_disassoc(fc))
1576 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1577 rx->skb->data,
1578 rx->skb->len);
1579 return -EACCES;
1580 }
1581 /*
1582 * When using MFP, Action frames are not allowed prior to
1583 * having configured keys.
1584 */
1585 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1586 ieee80211_is_robust_mgmt_frame(
1587 (struct ieee80211_hdr *) rx->skb->data)))
1588 return -EACCES;
1589 }
1590
1591 return 0;
1592 }
1593
1594 static int
1595 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1596 {
1597 struct ieee80211_sub_if_data *sdata = rx->sdata;
1598 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1599 bool check_port_control = false;
1600 struct ethhdr *ehdr;
1601 int ret;
1602
1603 *port_control = false;
1604 if (ieee80211_has_a4(hdr->frame_control) &&
1605 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1606 return -1;
1607
1608 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1609 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1610
1611 if (!sdata->u.mgd.use_4addr)
1612 return -1;
1613 else
1614 check_port_control = true;
1615 }
1616
1617 if (is_multicast_ether_addr(hdr->addr1) &&
1618 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1619 return -1;
1620
1621 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1622 if (ret < 0)
1623 return ret;
1624
1625 ehdr = (struct ethhdr *) rx->skb->data;
1626 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1627 *port_control = true;
1628 else if (check_port_control)
1629 return -1;
1630
1631 return 0;
1632 }
1633
1634 /*
1635 * requires that rx->skb is a frame with ethernet header
1636 */
1637 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1638 {
1639 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1640 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1641 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1642
1643 /*
1644 * Allow EAPOL frames to us/the PAE group address regardless
1645 * of whether the frame was encrypted or not.
1646 */
1647 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1648 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1649 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1650 return true;
1651
1652 if (ieee80211_802_1x_port_control(rx) ||
1653 ieee80211_drop_unencrypted(rx, fc))
1654 return false;
1655
1656 return true;
1657 }
1658
1659 /*
1660 * requires that rx->skb is a frame with ethernet header
1661 */
1662 static void
1663 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1664 {
1665 struct ieee80211_sub_if_data *sdata = rx->sdata;
1666 struct net_device *dev = sdata->dev;
1667 struct sk_buff *skb, *xmit_skb;
1668 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1669 struct sta_info *dsta;
1670 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1671
1672 skb = rx->skb;
1673 xmit_skb = NULL;
1674
1675 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1676 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1677 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1678 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1679 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1680 if (is_multicast_ether_addr(ehdr->h_dest)) {
1681 /*
1682 * send multicast frames both to higher layers in
1683 * local net stack and back to the wireless medium
1684 */
1685 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1686 if (!xmit_skb && net_ratelimit())
1687 printk(KERN_DEBUG "%s: failed to clone "
1688 "multicast frame\n", dev->name);
1689 } else {
1690 dsta = sta_info_get(sdata, skb->data);
1691 if (dsta) {
1692 /*
1693 * The destination station is associated to
1694 * this AP (in this VLAN), so send the frame
1695 * directly to it and do not pass it to local
1696 * net stack.
1697 */
1698 xmit_skb = skb;
1699 skb = NULL;
1700 }
1701 }
1702 }
1703
1704 if (skb) {
1705 int align __maybe_unused;
1706
1707 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1708 /*
1709 * 'align' will only take the values 0 or 2 here
1710 * since all frames are required to be aligned
1711 * to 2-byte boundaries when being passed to
1712 * mac80211. That also explains the __skb_push()
1713 * below.
1714 */
1715 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1716 if (align) {
1717 if (WARN_ON(skb_headroom(skb) < 3)) {
1718 dev_kfree_skb(skb);
1719 skb = NULL;
1720 } else {
1721 u8 *data = skb->data;
1722 size_t len = skb_headlen(skb);
1723 skb->data -= align;
1724 memmove(skb->data, data, len);
1725 skb_set_tail_pointer(skb, len);
1726 }
1727 }
1728 #endif
1729
1730 if (skb) {
1731 /* deliver to local stack */
1732 skb->protocol = eth_type_trans(skb, dev);
1733 memset(skb->cb, 0, sizeof(skb->cb));
1734 netif_receive_skb(skb);
1735 }
1736 }
1737
1738 if (xmit_skb) {
1739 /* send to wireless media */
1740 xmit_skb->protocol = htons(ETH_P_802_3);
1741 skb_reset_network_header(xmit_skb);
1742 skb_reset_mac_header(xmit_skb);
1743 dev_queue_xmit(xmit_skb);
1744 }
1745 }
1746
1747 static ieee80211_rx_result debug_noinline
1748 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1749 {
1750 struct net_device *dev = rx->sdata->dev;
1751 struct sk_buff *skb = rx->skb;
1752 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1753 __le16 fc = hdr->frame_control;
1754 struct sk_buff_head frame_list;
1755 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1756
1757 if (unlikely(!ieee80211_is_data(fc)))
1758 return RX_CONTINUE;
1759
1760 if (unlikely(!ieee80211_is_data_present(fc)))
1761 return RX_DROP_MONITOR;
1762
1763 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1764 return RX_CONTINUE;
1765
1766 if (ieee80211_has_a4(hdr->frame_control) &&
1767 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1768 !rx->sdata->u.vlan.sta)
1769 return RX_DROP_UNUSABLE;
1770
1771 if (is_multicast_ether_addr(hdr->addr1) &&
1772 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1773 rx->sdata->u.vlan.sta) ||
1774 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1775 rx->sdata->u.mgd.use_4addr)))
1776 return RX_DROP_UNUSABLE;
1777
1778 skb->dev = dev;
1779 __skb_queue_head_init(&frame_list);
1780
1781 if (skb_linearize(skb))
1782 return RX_DROP_UNUSABLE;
1783
1784 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1785 rx->sdata->vif.type,
1786 rx->local->hw.extra_tx_headroom, true);
1787
1788 while (!skb_queue_empty(&frame_list)) {
1789 rx->skb = __skb_dequeue(&frame_list);
1790
1791 if (!ieee80211_frame_allowed(rx, fc)) {
1792 dev_kfree_skb(rx->skb);
1793 continue;
1794 }
1795 dev->stats.rx_packets++;
1796 dev->stats.rx_bytes += rx->skb->len;
1797
1798 ieee80211_deliver_skb(rx);
1799 }
1800
1801 return RX_QUEUED;
1802 }
1803
1804 #ifdef CONFIG_MAC80211_MESH
1805 static ieee80211_rx_result
1806 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1807 {
1808 struct ieee80211_hdr *hdr;
1809 struct ieee80211s_hdr *mesh_hdr;
1810 unsigned int hdrlen;
1811 struct sk_buff *skb = rx->skb, *fwd_skb;
1812 struct ieee80211_local *local = rx->local;
1813 struct ieee80211_sub_if_data *sdata = rx->sdata;
1814 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1815
1816 hdr = (struct ieee80211_hdr *) skb->data;
1817 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1818 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1819
1820 if (!ieee80211_is_data(hdr->frame_control))
1821 return RX_CONTINUE;
1822
1823 if (!mesh_hdr->ttl)
1824 /* illegal frame */
1825 return RX_DROP_MONITOR;
1826
1827 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1828 struct mesh_path *mppath;
1829 char *proxied_addr;
1830 char *mpp_addr;
1831
1832 if (is_multicast_ether_addr(hdr->addr1)) {
1833 mpp_addr = hdr->addr3;
1834 proxied_addr = mesh_hdr->eaddr1;
1835 } else {
1836 mpp_addr = hdr->addr4;
1837 proxied_addr = mesh_hdr->eaddr2;
1838 }
1839
1840 rcu_read_lock();
1841 mppath = mpp_path_lookup(proxied_addr, sdata);
1842 if (!mppath) {
1843 mpp_path_add(proxied_addr, mpp_addr, sdata);
1844 } else {
1845 spin_lock_bh(&mppath->state_lock);
1846 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1847 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1848 spin_unlock_bh(&mppath->state_lock);
1849 }
1850 rcu_read_unlock();
1851 }
1852
1853 /* Frame has reached destination. Don't forward */
1854 if (!is_multicast_ether_addr(hdr->addr1) &&
1855 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1856 return RX_CONTINUE;
1857
1858 mesh_hdr->ttl--;
1859
1860 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1861 if (!mesh_hdr->ttl)
1862 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1863 dropped_frames_ttl);
1864 else {
1865 struct ieee80211_hdr *fwd_hdr;
1866 struct ieee80211_tx_info *info;
1867
1868 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1869
1870 if (!fwd_skb && net_ratelimit())
1871 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1872 sdata->name);
1873 if (!fwd_skb)
1874 goto out;
1875
1876 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1877 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1878 info = IEEE80211_SKB_CB(fwd_skb);
1879 memset(info, 0, sizeof(*info));
1880 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1881 info->control.vif = &rx->sdata->vif;
1882 skb_set_queue_mapping(skb,
1883 ieee80211_select_queue(rx->sdata, fwd_skb));
1884 ieee80211_set_qos_hdr(local, skb);
1885 if (is_multicast_ether_addr(fwd_hdr->addr1))
1886 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1887 fwded_mcast);
1888 else {
1889 int err;
1890 /*
1891 * Save TA to addr1 to send TA a path error if a
1892 * suitable next hop is not found
1893 */
1894 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1895 ETH_ALEN);
1896 err = mesh_nexthop_lookup(fwd_skb, sdata);
1897 /* Failed to immediately resolve next hop:
1898 * fwded frame was dropped or will be added
1899 * later to the pending skb queue. */
1900 if (err)
1901 return RX_DROP_MONITOR;
1902
1903 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1904 fwded_unicast);
1905 }
1906 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1907 fwded_frames);
1908 ieee80211_add_pending_skb(local, fwd_skb);
1909 }
1910 }
1911
1912 out:
1913 if (is_multicast_ether_addr(hdr->addr1) ||
1914 sdata->dev->flags & IFF_PROMISC)
1915 return RX_CONTINUE;
1916 else
1917 return RX_DROP_MONITOR;
1918 }
1919 #endif
1920
1921 static ieee80211_rx_result debug_noinline
1922 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1923 {
1924 struct ieee80211_sub_if_data *sdata = rx->sdata;
1925 struct ieee80211_local *local = rx->local;
1926 struct net_device *dev = sdata->dev;
1927 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1928 __le16 fc = hdr->frame_control;
1929 bool port_control;
1930 int err;
1931
1932 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1933 return RX_CONTINUE;
1934
1935 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1936 return RX_DROP_MONITOR;
1937
1938 /*
1939 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1940 * that a 4-addr station can be detected and moved into a separate VLAN
1941 */
1942 if (ieee80211_has_a4(hdr->frame_control) &&
1943 sdata->vif.type == NL80211_IFTYPE_AP)
1944 return RX_DROP_MONITOR;
1945
1946 err = __ieee80211_data_to_8023(rx, &port_control);
1947 if (unlikely(err))
1948 return RX_DROP_UNUSABLE;
1949
1950 if (!ieee80211_frame_allowed(rx, fc))
1951 return RX_DROP_MONITOR;
1952
1953 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1954 unlikely(port_control) && sdata->bss) {
1955 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1956 u.ap);
1957 dev = sdata->dev;
1958 rx->sdata = sdata;
1959 }
1960
1961 rx->skb->dev = dev;
1962
1963 dev->stats.rx_packets++;
1964 dev->stats.rx_bytes += rx->skb->len;
1965
1966 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
1967 !is_multicast_ether_addr(
1968 ((struct ethhdr *)rx->skb->data)->h_dest) &&
1969 (!local->scanning &&
1970 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
1971 mod_timer(&local->dynamic_ps_timer, jiffies +
1972 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1973 }
1974
1975 ieee80211_deliver_skb(rx);
1976
1977 return RX_QUEUED;
1978 }
1979
1980 static ieee80211_rx_result debug_noinline
1981 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1982 {
1983 struct ieee80211_local *local = rx->local;
1984 struct ieee80211_hw *hw = &local->hw;
1985 struct sk_buff *skb = rx->skb;
1986 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1987 struct tid_ampdu_rx *tid_agg_rx;
1988 u16 start_seq_num;
1989 u16 tid;
1990
1991 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1992 return RX_CONTINUE;
1993
1994 if (ieee80211_is_back_req(bar->frame_control)) {
1995 struct {
1996 __le16 control, start_seq_num;
1997 } __packed bar_data;
1998
1999 if (!rx->sta)
2000 return RX_DROP_MONITOR;
2001
2002 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2003 &bar_data, sizeof(bar_data)))
2004 return RX_DROP_MONITOR;
2005
2006 tid = le16_to_cpu(bar_data.control) >> 12;
2007
2008 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2009 if (!tid_agg_rx)
2010 return RX_DROP_MONITOR;
2011
2012 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2013
2014 /* reset session timer */
2015 if (tid_agg_rx->timeout)
2016 mod_timer(&tid_agg_rx->session_timer,
2017 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2018
2019 spin_lock(&tid_agg_rx->reorder_lock);
2020 /* release stored frames up to start of BAR */
2021 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2022 spin_unlock(&tid_agg_rx->reorder_lock);
2023
2024 kfree_skb(skb);
2025 return RX_QUEUED;
2026 }
2027
2028 /*
2029 * After this point, we only want management frames,
2030 * so we can drop all remaining control frames to
2031 * cooked monitor interfaces.
2032 */
2033 return RX_DROP_MONITOR;
2034 }
2035
2036 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2037 struct ieee80211_mgmt *mgmt,
2038 size_t len)
2039 {
2040 struct ieee80211_local *local = sdata->local;
2041 struct sk_buff *skb;
2042 struct ieee80211_mgmt *resp;
2043
2044 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2045 /* Not to own unicast address */
2046 return;
2047 }
2048
2049 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2050 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2051 /* Not from the current AP or not associated yet. */
2052 return;
2053 }
2054
2055 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2056 /* Too short SA Query request frame */
2057 return;
2058 }
2059
2060 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2061 if (skb == NULL)
2062 return;
2063
2064 skb_reserve(skb, local->hw.extra_tx_headroom);
2065 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2066 memset(resp, 0, 24);
2067 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2068 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2069 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2070 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2071 IEEE80211_STYPE_ACTION);
2072 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2073 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2074 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2075 memcpy(resp->u.action.u.sa_query.trans_id,
2076 mgmt->u.action.u.sa_query.trans_id,
2077 WLAN_SA_QUERY_TR_ID_LEN);
2078
2079 ieee80211_tx_skb(sdata, skb);
2080 }
2081
2082 static ieee80211_rx_result debug_noinline
2083 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2084 {
2085 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2086 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2087
2088 /*
2089 * From here on, look only at management frames.
2090 * Data and control frames are already handled,
2091 * and unknown (reserved) frames are useless.
2092 */
2093 if (rx->skb->len < 24)
2094 return RX_DROP_MONITOR;
2095
2096 if (!ieee80211_is_mgmt(mgmt->frame_control))
2097 return RX_DROP_MONITOR;
2098
2099 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2100 return RX_DROP_MONITOR;
2101
2102 if (ieee80211_drop_unencrypted_mgmt(rx))
2103 return RX_DROP_UNUSABLE;
2104
2105 return RX_CONTINUE;
2106 }
2107
2108 static ieee80211_rx_result debug_noinline
2109 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2110 {
2111 struct ieee80211_local *local = rx->local;
2112 struct ieee80211_sub_if_data *sdata = rx->sdata;
2113 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2114 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2115 int len = rx->skb->len;
2116
2117 if (!ieee80211_is_action(mgmt->frame_control))
2118 return RX_CONTINUE;
2119
2120 /* drop too small frames */
2121 if (len < IEEE80211_MIN_ACTION_SIZE)
2122 return RX_DROP_UNUSABLE;
2123
2124 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2125 return RX_DROP_UNUSABLE;
2126
2127 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2128 return RX_DROP_UNUSABLE;
2129
2130 switch (mgmt->u.action.category) {
2131 case WLAN_CATEGORY_BACK:
2132 /*
2133 * The aggregation code is not prepared to handle
2134 * anything but STA/AP due to the BSSID handling;
2135 * IBSS could work in the code but isn't supported
2136 * by drivers or the standard.
2137 */
2138 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2139 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2140 sdata->vif.type != NL80211_IFTYPE_AP)
2141 break;
2142
2143 /* verify action_code is present */
2144 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2145 break;
2146
2147 switch (mgmt->u.action.u.addba_req.action_code) {
2148 case WLAN_ACTION_ADDBA_REQ:
2149 if (len < (IEEE80211_MIN_ACTION_SIZE +
2150 sizeof(mgmt->u.action.u.addba_req)))
2151 goto invalid;
2152 break;
2153 case WLAN_ACTION_ADDBA_RESP:
2154 if (len < (IEEE80211_MIN_ACTION_SIZE +
2155 sizeof(mgmt->u.action.u.addba_resp)))
2156 goto invalid;
2157 break;
2158 case WLAN_ACTION_DELBA:
2159 if (len < (IEEE80211_MIN_ACTION_SIZE +
2160 sizeof(mgmt->u.action.u.delba)))
2161 goto invalid;
2162 break;
2163 default:
2164 goto invalid;
2165 }
2166
2167 goto queue;
2168 case WLAN_CATEGORY_SPECTRUM_MGMT:
2169 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2170 break;
2171
2172 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2173 break;
2174
2175 /* verify action_code is present */
2176 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2177 break;
2178
2179 switch (mgmt->u.action.u.measurement.action_code) {
2180 case WLAN_ACTION_SPCT_MSR_REQ:
2181 if (len < (IEEE80211_MIN_ACTION_SIZE +
2182 sizeof(mgmt->u.action.u.measurement)))
2183 break;
2184 ieee80211_process_measurement_req(sdata, mgmt, len);
2185 goto handled;
2186 case WLAN_ACTION_SPCT_CHL_SWITCH:
2187 if (len < (IEEE80211_MIN_ACTION_SIZE +
2188 sizeof(mgmt->u.action.u.chan_switch)))
2189 break;
2190
2191 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2192 break;
2193
2194 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2195 break;
2196
2197 goto queue;
2198 }
2199 break;
2200 case WLAN_CATEGORY_SA_QUERY:
2201 if (len < (IEEE80211_MIN_ACTION_SIZE +
2202 sizeof(mgmt->u.action.u.sa_query)))
2203 break;
2204
2205 switch (mgmt->u.action.u.sa_query.action) {
2206 case WLAN_ACTION_SA_QUERY_REQUEST:
2207 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2208 break;
2209 ieee80211_process_sa_query_req(sdata, mgmt, len);
2210 goto handled;
2211 }
2212 break;
2213 case WLAN_CATEGORY_MESH_ACTION:
2214 if (!ieee80211_vif_is_mesh(&sdata->vif))
2215 break;
2216 goto queue;
2217 case WLAN_CATEGORY_MESH_PATH_SEL:
2218 if (!mesh_path_sel_is_hwmp(sdata))
2219 break;
2220 goto queue;
2221 }
2222
2223 return RX_CONTINUE;
2224
2225 invalid:
2226 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2227 /* will return in the next handlers */
2228 return RX_CONTINUE;
2229
2230 handled:
2231 if (rx->sta)
2232 rx->sta->rx_packets++;
2233 dev_kfree_skb(rx->skb);
2234 return RX_QUEUED;
2235
2236 queue:
2237 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2238 skb_queue_tail(&sdata->skb_queue, rx->skb);
2239 ieee80211_queue_work(&local->hw, &sdata->work);
2240 if (rx->sta)
2241 rx->sta->rx_packets++;
2242 return RX_QUEUED;
2243 }
2244
2245 static ieee80211_rx_result debug_noinline
2246 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2247 {
2248 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2249
2250 /* skip known-bad action frames and return them in the next handler */
2251 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2252 return RX_CONTINUE;
2253
2254 /*
2255 * Getting here means the kernel doesn't know how to handle
2256 * it, but maybe userspace does ... include returned frames
2257 * so userspace can register for those to know whether ones
2258 * it transmitted were processed or returned.
2259 */
2260
2261 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2262 rx->skb->data, rx->skb->len,
2263 GFP_ATOMIC)) {
2264 if (rx->sta)
2265 rx->sta->rx_packets++;
2266 dev_kfree_skb(rx->skb);
2267 return RX_QUEUED;
2268 }
2269
2270
2271 return RX_CONTINUE;
2272 }
2273
2274 static ieee80211_rx_result debug_noinline
2275 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2276 {
2277 struct ieee80211_local *local = rx->local;
2278 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2279 struct sk_buff *nskb;
2280 struct ieee80211_sub_if_data *sdata = rx->sdata;
2281 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2282
2283 if (!ieee80211_is_action(mgmt->frame_control))
2284 return RX_CONTINUE;
2285
2286 /*
2287 * For AP mode, hostapd is responsible for handling any action
2288 * frames that we didn't handle, including returning unknown
2289 * ones. For all other modes we will return them to the sender,
2290 * setting the 0x80 bit in the action category, as required by
2291 * 802.11-2007 7.3.1.11.
2292 * Newer versions of hostapd shall also use the management frame
2293 * registration mechanisms, but older ones still use cooked
2294 * monitor interfaces so push all frames there.
2295 */
2296 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2297 (sdata->vif.type == NL80211_IFTYPE_AP ||
2298 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2299 return RX_DROP_MONITOR;
2300
2301 /* do not return rejected action frames */
2302 if (mgmt->u.action.category & 0x80)
2303 return RX_DROP_UNUSABLE;
2304
2305 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2306 GFP_ATOMIC);
2307 if (nskb) {
2308 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2309
2310 nmgmt->u.action.category |= 0x80;
2311 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2312 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2313
2314 memset(nskb->cb, 0, sizeof(nskb->cb));
2315
2316 ieee80211_tx_skb(rx->sdata, nskb);
2317 }
2318 dev_kfree_skb(rx->skb);
2319 return RX_QUEUED;
2320 }
2321
2322 static ieee80211_rx_result debug_noinline
2323 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2324 {
2325 struct ieee80211_sub_if_data *sdata = rx->sdata;
2326 ieee80211_rx_result rxs;
2327 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2328 __le16 stype;
2329
2330 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2331 if (rxs != RX_CONTINUE)
2332 return rxs;
2333
2334 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2335
2336 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2337 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2338 sdata->vif.type != NL80211_IFTYPE_STATION)
2339 return RX_DROP_MONITOR;
2340
2341 switch (stype) {
2342 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2343 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2344 /* process for all: mesh, mlme, ibss */
2345 break;
2346 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2347 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2348 if (is_multicast_ether_addr(mgmt->da) &&
2349 !is_broadcast_ether_addr(mgmt->da))
2350 return RX_DROP_MONITOR;
2351
2352 /* process only for station */
2353 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2354 return RX_DROP_MONITOR;
2355 break;
2356 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2357 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2358 /* process only for ibss */
2359 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2360 return RX_DROP_MONITOR;
2361 break;
2362 default:
2363 return RX_DROP_MONITOR;
2364 }
2365
2366 /* queue up frame and kick off work to process it */
2367 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2368 skb_queue_tail(&sdata->skb_queue, rx->skb);
2369 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2370 if (rx->sta)
2371 rx->sta->rx_packets++;
2372
2373 return RX_QUEUED;
2374 }
2375
2376 /* TODO: use IEEE80211_RX_FRAGMENTED */
2377 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2378 struct ieee80211_rate *rate)
2379 {
2380 struct ieee80211_sub_if_data *sdata;
2381 struct ieee80211_local *local = rx->local;
2382 struct ieee80211_rtap_hdr {
2383 struct ieee80211_radiotap_header hdr;
2384 u8 flags;
2385 u8 rate_or_pad;
2386 __le16 chan_freq;
2387 __le16 chan_flags;
2388 } __packed *rthdr;
2389 struct sk_buff *skb = rx->skb, *skb2;
2390 struct net_device *prev_dev = NULL;
2391 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2392
2393 /*
2394 * If cooked monitor has been processed already, then
2395 * don't do it again. If not, set the flag.
2396 */
2397 if (rx->flags & IEEE80211_RX_CMNTR)
2398 goto out_free_skb;
2399 rx->flags |= IEEE80211_RX_CMNTR;
2400
2401 if (skb_headroom(skb) < sizeof(*rthdr) &&
2402 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2403 goto out_free_skb;
2404
2405 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2406 memset(rthdr, 0, sizeof(*rthdr));
2407 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2408 rthdr->hdr.it_present =
2409 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2410 (1 << IEEE80211_RADIOTAP_CHANNEL));
2411
2412 if (rate) {
2413 rthdr->rate_or_pad = rate->bitrate / 5;
2414 rthdr->hdr.it_present |=
2415 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2416 }
2417 rthdr->chan_freq = cpu_to_le16(status->freq);
2418
2419 if (status->band == IEEE80211_BAND_5GHZ)
2420 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2421 IEEE80211_CHAN_5GHZ);
2422 else
2423 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2424 IEEE80211_CHAN_2GHZ);
2425
2426 skb_set_mac_header(skb, 0);
2427 skb->ip_summed = CHECKSUM_UNNECESSARY;
2428 skb->pkt_type = PACKET_OTHERHOST;
2429 skb->protocol = htons(ETH_P_802_2);
2430
2431 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2432 if (!ieee80211_sdata_running(sdata))
2433 continue;
2434
2435 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2436 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2437 continue;
2438
2439 if (prev_dev) {
2440 skb2 = skb_clone(skb, GFP_ATOMIC);
2441 if (skb2) {
2442 skb2->dev = prev_dev;
2443 netif_receive_skb(skb2);
2444 }
2445 }
2446
2447 prev_dev = sdata->dev;
2448 sdata->dev->stats.rx_packets++;
2449 sdata->dev->stats.rx_bytes += skb->len;
2450 }
2451
2452 if (prev_dev) {
2453 skb->dev = prev_dev;
2454 netif_receive_skb(skb);
2455 return;
2456 }
2457
2458 out_free_skb:
2459 dev_kfree_skb(skb);
2460 }
2461
2462 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2463 ieee80211_rx_result res)
2464 {
2465 switch (res) {
2466 case RX_DROP_MONITOR:
2467 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2468 if (rx->sta)
2469 rx->sta->rx_dropped++;
2470 /* fall through */
2471 case RX_CONTINUE: {
2472 struct ieee80211_rate *rate = NULL;
2473 struct ieee80211_supported_band *sband;
2474 struct ieee80211_rx_status *status;
2475
2476 status = IEEE80211_SKB_RXCB((rx->skb));
2477
2478 sband = rx->local->hw.wiphy->bands[status->band];
2479 if (!(status->flag & RX_FLAG_HT))
2480 rate = &sband->bitrates[status->rate_idx];
2481
2482 ieee80211_rx_cooked_monitor(rx, rate);
2483 break;
2484 }
2485 case RX_DROP_UNUSABLE:
2486 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2487 if (rx->sta)
2488 rx->sta->rx_dropped++;
2489 dev_kfree_skb(rx->skb);
2490 break;
2491 case RX_QUEUED:
2492 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2493 break;
2494 }
2495 }
2496
2497 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2498 {
2499 ieee80211_rx_result res = RX_DROP_MONITOR;
2500 struct sk_buff *skb;
2501
2502 #define CALL_RXH(rxh) \
2503 do { \
2504 res = rxh(rx); \
2505 if (res != RX_CONTINUE) \
2506 goto rxh_next; \
2507 } while (0);
2508
2509 spin_lock(&rx->local->rx_skb_queue.lock);
2510 if (rx->local->running_rx_handler)
2511 goto unlock;
2512
2513 rx->local->running_rx_handler = true;
2514
2515 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2516 spin_unlock(&rx->local->rx_skb_queue.lock);
2517
2518 /*
2519 * all the other fields are valid across frames
2520 * that belong to an aMPDU since they are on the
2521 * same TID from the same station
2522 */
2523 rx->skb = skb;
2524
2525 CALL_RXH(ieee80211_rx_h_decrypt)
2526 CALL_RXH(ieee80211_rx_h_check_more_data)
2527 CALL_RXH(ieee80211_rx_h_sta_process)
2528 CALL_RXH(ieee80211_rx_h_defragment)
2529 CALL_RXH(ieee80211_rx_h_ps_poll)
2530 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2531 /* must be after MMIC verify so header is counted in MPDU mic */
2532 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2533 CALL_RXH(ieee80211_rx_h_amsdu)
2534 #ifdef CONFIG_MAC80211_MESH
2535 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2536 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2537 #endif
2538 CALL_RXH(ieee80211_rx_h_data)
2539 CALL_RXH(ieee80211_rx_h_ctrl);
2540 CALL_RXH(ieee80211_rx_h_mgmt_check)
2541 CALL_RXH(ieee80211_rx_h_action)
2542 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2543 CALL_RXH(ieee80211_rx_h_action_return)
2544 CALL_RXH(ieee80211_rx_h_mgmt)
2545
2546 rxh_next:
2547 ieee80211_rx_handlers_result(rx, res);
2548 spin_lock(&rx->local->rx_skb_queue.lock);
2549 #undef CALL_RXH
2550 }
2551
2552 rx->local->running_rx_handler = false;
2553
2554 unlock:
2555 spin_unlock(&rx->local->rx_skb_queue.lock);
2556 }
2557
2558 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2559 {
2560 ieee80211_rx_result res = RX_DROP_MONITOR;
2561
2562 #define CALL_RXH(rxh) \
2563 do { \
2564 res = rxh(rx); \
2565 if (res != RX_CONTINUE) \
2566 goto rxh_next; \
2567 } while (0);
2568
2569 CALL_RXH(ieee80211_rx_h_passive_scan)
2570 CALL_RXH(ieee80211_rx_h_check)
2571
2572 ieee80211_rx_reorder_ampdu(rx);
2573
2574 ieee80211_rx_handlers(rx);
2575 return;
2576
2577 rxh_next:
2578 ieee80211_rx_handlers_result(rx, res);
2579
2580 #undef CALL_RXH
2581 }
2582
2583 /*
2584 * This function makes calls into the RX path, therefore
2585 * it has to be invoked under RCU read lock.
2586 */
2587 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2588 {
2589 struct ieee80211_rx_data rx = {
2590 .sta = sta,
2591 .sdata = sta->sdata,
2592 .local = sta->local,
2593 .queue = tid,
2594 .flags = 0,
2595 };
2596 struct tid_ampdu_rx *tid_agg_rx;
2597
2598 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2599 if (!tid_agg_rx)
2600 return;
2601
2602 spin_lock(&tid_agg_rx->reorder_lock);
2603 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2604 spin_unlock(&tid_agg_rx->reorder_lock);
2605
2606 ieee80211_rx_handlers(&rx);
2607 }
2608
2609 /* main receive path */
2610
2611 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2612 struct ieee80211_hdr *hdr)
2613 {
2614 struct ieee80211_sub_if_data *sdata = rx->sdata;
2615 struct sk_buff *skb = rx->skb;
2616 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2617 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2618 int multicast = is_multicast_ether_addr(hdr->addr1);
2619
2620 switch (sdata->vif.type) {
2621 case NL80211_IFTYPE_STATION:
2622 if (!bssid && !sdata->u.mgd.use_4addr)
2623 return 0;
2624 if (!multicast &&
2625 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2626 if (!(sdata->dev->flags & IFF_PROMISC) ||
2627 sdata->u.mgd.use_4addr)
2628 return 0;
2629 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2630 }
2631 break;
2632 case NL80211_IFTYPE_ADHOC:
2633 if (!bssid)
2634 return 0;
2635 if (ieee80211_is_beacon(hdr->frame_control)) {
2636 return 1;
2637 }
2638 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2639 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2640 return 0;
2641 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2642 } else if (!multicast &&
2643 compare_ether_addr(sdata->vif.addr,
2644 hdr->addr1) != 0) {
2645 if (!(sdata->dev->flags & IFF_PROMISC))
2646 return 0;
2647 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2648 } else if (!rx->sta) {
2649 int rate_idx;
2650 if (status->flag & RX_FLAG_HT)
2651 rate_idx = 0; /* TODO: HT rates */
2652 else
2653 rate_idx = status->rate_idx;
2654 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2655 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2656 }
2657 break;
2658 case NL80211_IFTYPE_MESH_POINT:
2659 if (!multicast &&
2660 compare_ether_addr(sdata->vif.addr,
2661 hdr->addr1) != 0) {
2662 if (!(sdata->dev->flags & IFF_PROMISC))
2663 return 0;
2664
2665 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2666 }
2667 break;
2668 case NL80211_IFTYPE_AP_VLAN:
2669 case NL80211_IFTYPE_AP:
2670 if (!bssid) {
2671 if (compare_ether_addr(sdata->vif.addr,
2672 hdr->addr1))
2673 return 0;
2674 } else if (!ieee80211_bssid_match(bssid,
2675 sdata->vif.addr)) {
2676 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2677 !ieee80211_is_beacon(hdr->frame_control))
2678 return 0;
2679 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2680 }
2681 break;
2682 case NL80211_IFTYPE_WDS:
2683 if (bssid || !ieee80211_is_data(hdr->frame_control))
2684 return 0;
2685 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2686 return 0;
2687 break;
2688 default:
2689 /* should never get here */
2690 WARN_ON(1);
2691 break;
2692 }
2693
2694 return 1;
2695 }
2696
2697 /*
2698 * This function returns whether or not the SKB
2699 * was destined for RX processing or not, which,
2700 * if consume is true, is equivalent to whether
2701 * or not the skb was consumed.
2702 */
2703 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2704 struct sk_buff *skb, bool consume)
2705 {
2706 struct ieee80211_local *local = rx->local;
2707 struct ieee80211_sub_if_data *sdata = rx->sdata;
2708 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2709 struct ieee80211_hdr *hdr = (void *)skb->data;
2710 int prepares;
2711
2712 rx->skb = skb;
2713 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2714 prepares = prepare_for_handlers(rx, hdr);
2715
2716 if (!prepares)
2717 return false;
2718
2719 if (!consume) {
2720 skb = skb_copy(skb, GFP_ATOMIC);
2721 if (!skb) {
2722 if (net_ratelimit())
2723 wiphy_debug(local->hw.wiphy,
2724 "failed to copy skb for %s\n",
2725 sdata->name);
2726 return true;
2727 }
2728
2729 rx->skb = skb;
2730 }
2731
2732 ieee80211_invoke_rx_handlers(rx);
2733 return true;
2734 }
2735
2736 /*
2737 * This is the actual Rx frames handler. as it blongs to Rx path it must
2738 * be called with rcu_read_lock protection.
2739 */
2740 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2741 struct sk_buff *skb)
2742 {
2743 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2744 struct ieee80211_local *local = hw_to_local(hw);
2745 struct ieee80211_sub_if_data *sdata;
2746 struct ieee80211_hdr *hdr;
2747 __le16 fc;
2748 struct ieee80211_rx_data rx;
2749 struct ieee80211_sub_if_data *prev;
2750 struct sta_info *sta, *tmp, *prev_sta;
2751 int err = 0;
2752
2753 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2754 memset(&rx, 0, sizeof(rx));
2755 rx.skb = skb;
2756 rx.local = local;
2757
2758 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2759 local->dot11ReceivedFragmentCount++;
2760
2761 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2762 test_bit(SCAN_SW_SCANNING, &local->scanning)))
2763 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2764
2765 if (ieee80211_is_mgmt(fc))
2766 err = skb_linearize(skb);
2767 else
2768 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2769
2770 if (err) {
2771 dev_kfree_skb(skb);
2772 return;
2773 }
2774
2775 hdr = (struct ieee80211_hdr *)skb->data;
2776 ieee80211_parse_qos(&rx);
2777 ieee80211_verify_alignment(&rx);
2778
2779 if (ieee80211_is_data(fc)) {
2780 prev_sta = NULL;
2781
2782 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2783 if (!prev_sta) {
2784 prev_sta = sta;
2785 continue;
2786 }
2787
2788 rx.sta = prev_sta;
2789 rx.sdata = prev_sta->sdata;
2790 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2791
2792 prev_sta = sta;
2793 }
2794
2795 if (prev_sta) {
2796 rx.sta = prev_sta;
2797 rx.sdata = prev_sta->sdata;
2798
2799 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2800 return;
2801 goto out;
2802 }
2803 }
2804
2805 prev = NULL;
2806
2807 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2808 if (!ieee80211_sdata_running(sdata))
2809 continue;
2810
2811 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2812 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2813 continue;
2814
2815 /*
2816 * frame is destined for this interface, but if it's
2817 * not also for the previous one we handle that after
2818 * the loop to avoid copying the SKB once too much
2819 */
2820
2821 if (!prev) {
2822 prev = sdata;
2823 continue;
2824 }
2825
2826 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2827 rx.sdata = prev;
2828 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2829
2830 prev = sdata;
2831 }
2832
2833 if (prev) {
2834 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2835 rx.sdata = prev;
2836
2837 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2838 return;
2839 }
2840
2841 out:
2842 dev_kfree_skb(skb);
2843 }
2844
2845 /*
2846 * This is the receive path handler. It is called by a low level driver when an
2847 * 802.11 MPDU is received from the hardware.
2848 */
2849 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2850 {
2851 struct ieee80211_local *local = hw_to_local(hw);
2852 struct ieee80211_rate *rate = NULL;
2853 struct ieee80211_supported_band *sband;
2854 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2855
2856 WARN_ON_ONCE(softirq_count() == 0);
2857
2858 if (WARN_ON(status->band < 0 ||
2859 status->band >= IEEE80211_NUM_BANDS))
2860 goto drop;
2861
2862 sband = local->hw.wiphy->bands[status->band];
2863 if (WARN_ON(!sband))
2864 goto drop;
2865
2866 /*
2867 * If we're suspending, it is possible although not too likely
2868 * that we'd be receiving frames after having already partially
2869 * quiesced the stack. We can't process such frames then since
2870 * that might, for example, cause stations to be added or other
2871 * driver callbacks be invoked.
2872 */
2873 if (unlikely(local->quiescing || local->suspended))
2874 goto drop;
2875
2876 /*
2877 * The same happens when we're not even started,
2878 * but that's worth a warning.
2879 */
2880 if (WARN_ON(!local->started))
2881 goto drop;
2882
2883 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2884 /*
2885 * Validate the rate, unless a PLCP error means that
2886 * we probably can't have a valid rate here anyway.
2887 */
2888
2889 if (status->flag & RX_FLAG_HT) {
2890 /*
2891 * rate_idx is MCS index, which can be [0-76]
2892 * as documented on:
2893 *
2894 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2895 *
2896 * Anything else would be some sort of driver or
2897 * hardware error. The driver should catch hardware
2898 * errors.
2899 */
2900 if (WARN((status->rate_idx < 0 ||
2901 status->rate_idx > 76),
2902 "Rate marked as an HT rate but passed "
2903 "status->rate_idx is not "
2904 "an MCS index [0-76]: %d (0x%02x)\n",
2905 status->rate_idx,
2906 status->rate_idx))
2907 goto drop;
2908 } else {
2909 if (WARN_ON(status->rate_idx < 0 ||
2910 status->rate_idx >= sband->n_bitrates))
2911 goto drop;
2912 rate = &sband->bitrates[status->rate_idx];
2913 }
2914 }
2915
2916 status->rx_flags = 0;
2917
2918 /*
2919 * key references and virtual interfaces are protected using RCU
2920 * and this requires that we are in a read-side RCU section during
2921 * receive processing
2922 */
2923 rcu_read_lock();
2924
2925 /*
2926 * Frames with failed FCS/PLCP checksum are not returned,
2927 * all other frames are returned without radiotap header
2928 * if it was previously present.
2929 * Also, frames with less than 16 bytes are dropped.
2930 */
2931 skb = ieee80211_rx_monitor(local, skb, rate);
2932 if (!skb) {
2933 rcu_read_unlock();
2934 return;
2935 }
2936
2937 ieee80211_tpt_led_trig_rx(local,
2938 ((struct ieee80211_hdr *)skb->data)->frame_control,
2939 skb->len);
2940 __ieee80211_rx_handle_packet(hw, skb);
2941
2942 rcu_read_unlock();
2943
2944 return;
2945 drop:
2946 kfree_skb(skb);
2947 }
2948 EXPORT_SYMBOL(ieee80211_rx);
2949
2950 /* This is a version of the rx handler that can be called from hard irq
2951 * context. Post the skb on the queue and schedule the tasklet */
2952 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2953 {
2954 struct ieee80211_local *local = hw_to_local(hw);
2955
2956 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2957
2958 skb->pkt_type = IEEE80211_RX_MSG;
2959 skb_queue_tail(&local->skb_queue, skb);
2960 tasklet_schedule(&local->tasklet);
2961 }
2962 EXPORT_SYMBOL(ieee80211_rx_irqsafe);