Linux-2.6.12-rc2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / irda / ircomm / ircomm_tty.c
1 /*********************************************************************
2 *
3 * Filename: ircomm_tty.c
4 * Version: 1.0
5 * Description: IrCOMM serial TTY driver
6 * Status: Experimental.
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun Jun 6 21:00:56 1999
9 * Modified at: Wed Feb 23 00:09:02 2000
10 * Modified by: Dag Brattli <dagb@cs.uit.no>
11 * Sources: serial.c and previous IrCOMM work by Takahide Higuchi
12 *
13 * Copyright (c) 1999-2000 Dag Brattli, All Rights Reserved.
14 * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
15 *
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License as
18 * published by the Free Software Foundation; either version 2 of
19 * the License, or (at your option) any later version.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29 * MA 02111-1307 USA
30 *
31 ********************************************************************/
32
33 #include <linux/config.h>
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/sched.h>
38 #include <linux/termios.h>
39 #include <linux/tty.h>
40 #include <linux/interrupt.h>
41 #include <linux/device.h> /* for MODULE_ALIAS_CHARDEV_MAJOR */
42
43 #include <asm/uaccess.h>
44
45 #include <net/irda/irda.h>
46 #include <net/irda/irmod.h>
47
48 #include <net/irda/ircomm_core.h>
49 #include <net/irda/ircomm_param.h>
50 #include <net/irda/ircomm_tty_attach.h>
51 #include <net/irda/ircomm_tty.h>
52
53 static int ircomm_tty_open(struct tty_struct *tty, struct file *filp);
54 static void ircomm_tty_close(struct tty_struct * tty, struct file *filp);
55 static int ircomm_tty_write(struct tty_struct * tty,
56 const unsigned char *buf, int count);
57 static int ircomm_tty_write_room(struct tty_struct *tty);
58 static void ircomm_tty_throttle(struct tty_struct *tty);
59 static void ircomm_tty_unthrottle(struct tty_struct *tty);
60 static int ircomm_tty_chars_in_buffer(struct tty_struct *tty);
61 static void ircomm_tty_flush_buffer(struct tty_struct *tty);
62 static void ircomm_tty_send_xchar(struct tty_struct *tty, char ch);
63 static void ircomm_tty_wait_until_sent(struct tty_struct *tty, int timeout);
64 static void ircomm_tty_hangup(struct tty_struct *tty);
65 static void ircomm_tty_do_softint(void *private_);
66 static void ircomm_tty_shutdown(struct ircomm_tty_cb *self);
67 static void ircomm_tty_stop(struct tty_struct *tty);
68
69 static int ircomm_tty_data_indication(void *instance, void *sap,
70 struct sk_buff *skb);
71 static int ircomm_tty_control_indication(void *instance, void *sap,
72 struct sk_buff *skb);
73 static void ircomm_tty_flow_indication(void *instance, void *sap,
74 LOCAL_FLOW cmd);
75 #ifdef CONFIG_PROC_FS
76 static int ircomm_tty_read_proc(char *buf, char **start, off_t offset, int len,
77 int *eof, void *unused);
78 #endif /* CONFIG_PROC_FS */
79 static struct tty_driver *driver;
80
81 hashbin_t *ircomm_tty = NULL;
82
83 static struct tty_operations ops = {
84 .open = ircomm_tty_open,
85 .close = ircomm_tty_close,
86 .write = ircomm_tty_write,
87 .write_room = ircomm_tty_write_room,
88 .chars_in_buffer = ircomm_tty_chars_in_buffer,
89 .flush_buffer = ircomm_tty_flush_buffer,
90 .ioctl = ircomm_tty_ioctl, /* ircomm_tty_ioctl.c */
91 .tiocmget = ircomm_tty_tiocmget, /* ircomm_tty_ioctl.c */
92 .tiocmset = ircomm_tty_tiocmset, /* ircomm_tty_ioctl.c */
93 .throttle = ircomm_tty_throttle,
94 .unthrottle = ircomm_tty_unthrottle,
95 .send_xchar = ircomm_tty_send_xchar,
96 .set_termios = ircomm_tty_set_termios,
97 .stop = ircomm_tty_stop,
98 .start = ircomm_tty_start,
99 .hangup = ircomm_tty_hangup,
100 .wait_until_sent = ircomm_tty_wait_until_sent,
101 #ifdef CONFIG_PROC_FS
102 .read_proc = ircomm_tty_read_proc,
103 #endif /* CONFIG_PROC_FS */
104 };
105
106 /*
107 * Function ircomm_tty_init()
108 *
109 * Init IrCOMM TTY layer/driver
110 *
111 */
112 static int __init ircomm_tty_init(void)
113 {
114 driver = alloc_tty_driver(IRCOMM_TTY_PORTS);
115 if (!driver)
116 return -ENOMEM;
117 ircomm_tty = hashbin_new(HB_LOCK);
118 if (ircomm_tty == NULL) {
119 IRDA_ERROR("%s(), can't allocate hashbin!\n", __FUNCTION__);
120 put_tty_driver(driver);
121 return -ENOMEM;
122 }
123
124 driver->owner = THIS_MODULE;
125 driver->driver_name = "ircomm";
126 driver->name = "ircomm";
127 driver->devfs_name = "ircomm";
128 driver->major = IRCOMM_TTY_MAJOR;
129 driver->minor_start = IRCOMM_TTY_MINOR;
130 driver->type = TTY_DRIVER_TYPE_SERIAL;
131 driver->subtype = SERIAL_TYPE_NORMAL;
132 driver->init_termios = tty_std_termios;
133 driver->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL;
134 driver->flags = TTY_DRIVER_REAL_RAW;
135 tty_set_operations(driver, &ops);
136 if (tty_register_driver(driver)) {
137 IRDA_ERROR("%s(): Couldn't register serial driver\n",
138 __FUNCTION__);
139 put_tty_driver(driver);
140 return -1;
141 }
142 return 0;
143 }
144
145 static void __exit __ircomm_tty_cleanup(struct ircomm_tty_cb *self)
146 {
147 IRDA_DEBUG(0, "%s()\n", __FUNCTION__ );
148
149 IRDA_ASSERT(self != NULL, return;);
150 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
151
152 ircomm_tty_shutdown(self);
153
154 self->magic = 0;
155 kfree(self);
156 }
157
158 /*
159 * Function ircomm_tty_cleanup ()
160 *
161 * Remove IrCOMM TTY layer/driver
162 *
163 */
164 static void __exit ircomm_tty_cleanup(void)
165 {
166 int ret;
167
168 IRDA_DEBUG(4, "%s()\n", __FUNCTION__ );
169
170 ret = tty_unregister_driver(driver);
171 if (ret) {
172 IRDA_ERROR("%s(), failed to unregister driver\n",
173 __FUNCTION__);
174 return;
175 }
176
177 hashbin_delete(ircomm_tty, (FREE_FUNC) __ircomm_tty_cleanup);
178 put_tty_driver(driver);
179 }
180
181 /*
182 * Function ircomm_startup (self)
183 *
184 *
185 *
186 */
187 static int ircomm_tty_startup(struct ircomm_tty_cb *self)
188 {
189 notify_t notify;
190 int ret = -ENODEV;
191
192 IRDA_DEBUG(2, "%s()\n", __FUNCTION__ );
193
194 IRDA_ASSERT(self != NULL, return -1;);
195 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
196
197 /* Check if already open */
198 if (test_and_set_bit(ASYNC_B_INITIALIZED, &self->flags)) {
199 IRDA_DEBUG(2, "%s(), already open so break out!\n", __FUNCTION__ );
200 return 0;
201 }
202
203 /* Register with IrCOMM */
204 irda_notify_init(&notify);
205 /* These callbacks we must handle ourselves */
206 notify.data_indication = ircomm_tty_data_indication;
207 notify.udata_indication = ircomm_tty_control_indication;
208 notify.flow_indication = ircomm_tty_flow_indication;
209
210 /* Use the ircomm_tty interface for these ones */
211 notify.disconnect_indication = ircomm_tty_disconnect_indication;
212 notify.connect_confirm = ircomm_tty_connect_confirm;
213 notify.connect_indication = ircomm_tty_connect_indication;
214 strlcpy(notify.name, "ircomm_tty", sizeof(notify.name));
215 notify.instance = self;
216
217 if (!self->ircomm) {
218 self->ircomm = ircomm_open(&notify, self->service_type,
219 self->line);
220 }
221 if (!self->ircomm)
222 goto err;
223
224 self->slsap_sel = self->ircomm->slsap_sel;
225
226 /* Connect IrCOMM link with remote device */
227 ret = ircomm_tty_attach_cable(self);
228 if (ret < 0) {
229 IRDA_ERROR("%s(), error attaching cable!\n", __FUNCTION__);
230 goto err;
231 }
232
233 return 0;
234 err:
235 clear_bit(ASYNC_B_INITIALIZED, &self->flags);
236 return ret;
237 }
238
239 /*
240 * Function ircomm_block_til_ready (self, filp)
241 *
242 *
243 *
244 */
245 static int ircomm_tty_block_til_ready(struct ircomm_tty_cb *self,
246 struct file *filp)
247 {
248 DECLARE_WAITQUEUE(wait, current);
249 int retval;
250 int do_clocal = 0, extra_count = 0;
251 unsigned long flags;
252 struct tty_struct *tty;
253
254 IRDA_DEBUG(2, "%s()\n", __FUNCTION__ );
255
256 tty = self->tty;
257
258 /*
259 * If non-blocking mode is set, or the port is not enabled,
260 * then make the check up front and then exit.
261 */
262 if (filp->f_flags & O_NONBLOCK || tty->flags & (1 << TTY_IO_ERROR)){
263 /* nonblock mode is set or port is not enabled */
264 self->flags |= ASYNC_NORMAL_ACTIVE;
265 IRDA_DEBUG(1, "%s(), O_NONBLOCK requested!\n", __FUNCTION__ );
266 return 0;
267 }
268
269 if (tty->termios->c_cflag & CLOCAL) {
270 IRDA_DEBUG(1, "%s(), doing CLOCAL!\n", __FUNCTION__ );
271 do_clocal = 1;
272 }
273
274 /* Wait for carrier detect and the line to become
275 * free (i.e., not in use by the callout). While we are in
276 * this loop, self->open_count is dropped by one, so that
277 * mgsl_close() knows when to free things. We restore it upon
278 * exit, either normal or abnormal.
279 */
280
281 retval = 0;
282 add_wait_queue(&self->open_wait, &wait);
283
284 IRDA_DEBUG(2, "%s(%d):block_til_ready before block on %s open_count=%d\n",
285 __FILE__,__LINE__, tty->driver->name, self->open_count );
286
287 /* As far as I can see, we protect open_count - Jean II */
288 spin_lock_irqsave(&self->spinlock, flags);
289 if (!tty_hung_up_p(filp)) {
290 extra_count = 1;
291 self->open_count--;
292 }
293 spin_unlock_irqrestore(&self->spinlock, flags);
294 self->blocked_open++;
295
296 while (1) {
297 if (tty->termios->c_cflag & CBAUD) {
298 /* Here, we use to lock those two guys, but
299 * as ircomm_param_request() does it itself,
300 * I don't see the point (and I see the deadlock).
301 * Jean II */
302 self->settings.dte |= IRCOMM_RTS + IRCOMM_DTR;
303
304 ircomm_param_request(self, IRCOMM_DTE, TRUE);
305 }
306
307 current->state = TASK_INTERRUPTIBLE;
308
309 if (tty_hung_up_p(filp) ||
310 !test_bit(ASYNC_B_INITIALIZED, &self->flags)) {
311 retval = (self->flags & ASYNC_HUP_NOTIFY) ?
312 -EAGAIN : -ERESTARTSYS;
313 break;
314 }
315
316 /*
317 * Check if link is ready now. Even if CLOCAL is
318 * specified, we cannot return before the IrCOMM link is
319 * ready
320 */
321 if (!test_bit(ASYNC_B_CLOSING, &self->flags) &&
322 (do_clocal || (self->settings.dce & IRCOMM_CD)) &&
323 self->state == IRCOMM_TTY_READY)
324 {
325 break;
326 }
327
328 if (signal_pending(current)) {
329 retval = -ERESTARTSYS;
330 break;
331 }
332
333 IRDA_DEBUG(1, "%s(%d):block_til_ready blocking on %s open_count=%d\n",
334 __FILE__,__LINE__, tty->driver->name, self->open_count );
335
336 schedule();
337 }
338
339 __set_current_state(TASK_RUNNING);
340 remove_wait_queue(&self->open_wait, &wait);
341
342 if (extra_count) {
343 /* ++ is not atomic, so this should be protected - Jean II */
344 spin_lock_irqsave(&self->spinlock, flags);
345 self->open_count++;
346 spin_unlock_irqrestore(&self->spinlock, flags);
347 }
348 self->blocked_open--;
349
350 IRDA_DEBUG(1, "%s(%d):block_til_ready after blocking on %s open_count=%d\n",
351 __FILE__,__LINE__, tty->driver->name, self->open_count);
352
353 if (!retval)
354 self->flags |= ASYNC_NORMAL_ACTIVE;
355
356 return retval;
357 }
358
359 /*
360 * Function ircomm_tty_open (tty, filp)
361 *
362 * This routine is called when a particular tty device is opened. This
363 * routine is mandatory; if this routine is not filled in, the attempted
364 * open will fail with ENODEV.
365 */
366 static int ircomm_tty_open(struct tty_struct *tty, struct file *filp)
367 {
368 struct ircomm_tty_cb *self;
369 unsigned int line;
370 unsigned long flags;
371 int ret;
372
373 IRDA_DEBUG(2, "%s()\n", __FUNCTION__ );
374
375 line = tty->index;
376 if ((line < 0) || (line >= IRCOMM_TTY_PORTS)) {
377 return -ENODEV;
378 }
379
380 /* Check if instance already exists */
381 self = hashbin_lock_find(ircomm_tty, line, NULL);
382 if (!self) {
383 /* No, so make new instance */
384 self = kmalloc(sizeof(struct ircomm_tty_cb), GFP_KERNEL);
385 if (self == NULL) {
386 IRDA_ERROR("%s(), kmalloc failed!\n", __FUNCTION__);
387 return -ENOMEM;
388 }
389 memset(self, 0, sizeof(struct ircomm_tty_cb));
390
391 self->magic = IRCOMM_TTY_MAGIC;
392 self->flow = FLOW_STOP;
393
394 self->line = line;
395 INIT_WORK(&self->tqueue, ircomm_tty_do_softint, self);
396 self->max_header_size = IRCOMM_TTY_HDR_UNINITIALISED;
397 self->max_data_size = IRCOMM_TTY_DATA_UNINITIALISED;
398 self->close_delay = 5*HZ/10;
399 self->closing_wait = 30*HZ;
400
401 /* Init some important stuff */
402 init_timer(&self->watchdog_timer);
403 init_waitqueue_head(&self->open_wait);
404 init_waitqueue_head(&self->close_wait);
405 spin_lock_init(&self->spinlock);
406
407 /*
408 * Force TTY into raw mode by default which is usually what
409 * we want for IrCOMM and IrLPT. This way applications will
410 * not have to twiddle with printcap etc.
411 */
412 tty->termios->c_iflag = 0;
413 tty->termios->c_oflag = 0;
414
415 /* Insert into hash */
416 hashbin_insert(ircomm_tty, (irda_queue_t *) self, line, NULL);
417 }
418 /* ++ is not atomic, so this should be protected - Jean II */
419 spin_lock_irqsave(&self->spinlock, flags);
420 self->open_count++;
421
422 tty->driver_data = self;
423 self->tty = tty;
424 spin_unlock_irqrestore(&self->spinlock, flags);
425
426 IRDA_DEBUG(1, "%s(), %s%d, count = %d\n", __FUNCTION__ , tty->driver->name,
427 self->line, self->open_count);
428
429 /* Not really used by us, but lets do it anyway */
430 self->tty->low_latency = (self->flags & ASYNC_LOW_LATENCY) ? 1 : 0;
431
432 /*
433 * If the port is the middle of closing, bail out now
434 */
435 if (tty_hung_up_p(filp) ||
436 test_bit(ASYNC_B_CLOSING, &self->flags)) {
437
438 /* Hm, why are we blocking on ASYNC_CLOSING if we
439 * do return -EAGAIN/-ERESTARTSYS below anyway?
440 * IMHO it's either not needed in the first place
441 * or for some reason we need to make sure the async
442 * closing has been finished - if so, wouldn't we
443 * probably better sleep uninterruptible?
444 */
445
446 if (wait_event_interruptible(self->close_wait, !test_bit(ASYNC_B_CLOSING, &self->flags))) {
447 IRDA_WARNING("%s - got signal while blocking on ASYNC_CLOSING!\n",
448 __FUNCTION__);
449 return -ERESTARTSYS;
450 }
451
452 #ifdef SERIAL_DO_RESTART
453 return ((self->flags & ASYNC_HUP_NOTIFY) ?
454 -EAGAIN : -ERESTARTSYS);
455 #else
456 return -EAGAIN;
457 #endif
458 }
459
460 /* Check if this is a "normal" ircomm device, or an irlpt device */
461 if (line < 0x10) {
462 self->service_type = IRCOMM_3_WIRE | IRCOMM_9_WIRE;
463 self->settings.service_type = IRCOMM_9_WIRE; /* 9 wire as default */
464 /* Jan Kiszka -> add DSR/RI -> Conform to IrCOMM spec */
465 self->settings.dce = IRCOMM_CTS | IRCOMM_CD | IRCOMM_DSR | IRCOMM_RI; /* Default line settings */
466 IRDA_DEBUG(2, "%s(), IrCOMM device\n", __FUNCTION__ );
467 } else {
468 IRDA_DEBUG(2, "%s(), IrLPT device\n", __FUNCTION__ );
469 self->service_type = IRCOMM_3_WIRE_RAW;
470 self->settings.service_type = IRCOMM_3_WIRE_RAW; /* Default */
471 }
472
473 ret = ircomm_tty_startup(self);
474 if (ret)
475 return ret;
476
477 ret = ircomm_tty_block_til_ready(self, filp);
478 if (ret) {
479 IRDA_DEBUG(2,
480 "%s(), returning after block_til_ready with %d\n", __FUNCTION__ ,
481 ret);
482
483 return ret;
484 }
485 return 0;
486 }
487
488 /*
489 * Function ircomm_tty_close (tty, filp)
490 *
491 * This routine is called when a particular tty device is closed.
492 *
493 */
494 static void ircomm_tty_close(struct tty_struct *tty, struct file *filp)
495 {
496 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
497 unsigned long flags;
498
499 IRDA_DEBUG(0, "%s()\n", __FUNCTION__ );
500
501 if (!tty)
502 return;
503
504 IRDA_ASSERT(self != NULL, return;);
505 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
506
507 spin_lock_irqsave(&self->spinlock, flags);
508
509 if (tty_hung_up_p(filp)) {
510 spin_unlock_irqrestore(&self->spinlock, flags);
511
512 IRDA_DEBUG(0, "%s(), returning 1\n", __FUNCTION__ );
513 return;
514 }
515
516 if ((tty->count == 1) && (self->open_count != 1)) {
517 /*
518 * Uh, oh. tty->count is 1, which means that the tty
519 * structure will be freed. state->count should always
520 * be one in these conditions. If it's greater than
521 * one, we've got real problems, since it means the
522 * serial port won't be shutdown.
523 */
524 IRDA_DEBUG(0, "%s(), bad serial port count; "
525 "tty->count is 1, state->count is %d\n", __FUNCTION__ ,
526 self->open_count);
527 self->open_count = 1;
528 }
529
530 if (--self->open_count < 0) {
531 IRDA_ERROR("%s(), bad serial port count for ttys%d: %d\n",
532 __FUNCTION__, self->line, self->open_count);
533 self->open_count = 0;
534 }
535 if (self->open_count) {
536 spin_unlock_irqrestore(&self->spinlock, flags);
537
538 IRDA_DEBUG(0, "%s(), open count > 0\n", __FUNCTION__ );
539 return;
540 }
541
542 /* Hum... Should be test_and_set_bit ??? - Jean II */
543 set_bit(ASYNC_B_CLOSING, &self->flags);
544
545 /* We need to unlock here (we were unlocking at the end of this
546 * function), because tty_wait_until_sent() may schedule.
547 * I don't know if the rest should be protected somehow,
548 * so someone should check. - Jean II */
549 spin_unlock_irqrestore(&self->spinlock, flags);
550
551 /*
552 * Now we wait for the transmit buffer to clear; and we notify
553 * the line discipline to only process XON/XOFF characters.
554 */
555 tty->closing = 1;
556 if (self->closing_wait != ASYNC_CLOSING_WAIT_NONE)
557 tty_wait_until_sent(tty, self->closing_wait);
558
559 ircomm_tty_shutdown(self);
560
561 if (tty->driver->flush_buffer)
562 tty->driver->flush_buffer(tty);
563 if (tty->ldisc.flush_buffer)
564 tty->ldisc.flush_buffer(tty);
565
566 tty->closing = 0;
567 self->tty = NULL;
568
569 if (self->blocked_open) {
570 if (self->close_delay) {
571 current->state = TASK_INTERRUPTIBLE;
572 schedule_timeout(self->close_delay);
573 }
574 wake_up_interruptible(&self->open_wait);
575 }
576
577 self->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
578 wake_up_interruptible(&self->close_wait);
579 }
580
581 /*
582 * Function ircomm_tty_flush_buffer (tty)
583 *
584 *
585 *
586 */
587 static void ircomm_tty_flush_buffer(struct tty_struct *tty)
588 {
589 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
590
591 IRDA_ASSERT(self != NULL, return;);
592 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
593
594 /*
595 * Let do_softint() do this to avoid race condition with
596 * do_softint() ;-)
597 */
598 schedule_work(&self->tqueue);
599 }
600
601 /*
602 * Function ircomm_tty_do_softint (private_)
603 *
604 * We use this routine to give the write wakeup to the user at at a
605 * safe time (as fast as possible after write have completed). This
606 * can be compared to the Tx interrupt.
607 */
608 static void ircomm_tty_do_softint(void *private_)
609 {
610 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) private_;
611 struct tty_struct *tty;
612 unsigned long flags;
613 struct sk_buff *skb, *ctrl_skb;
614
615 IRDA_DEBUG(2, "%s()\n", __FUNCTION__ );
616
617 if (!self || self->magic != IRCOMM_TTY_MAGIC)
618 return;
619
620 tty = self->tty;
621 if (!tty)
622 return;
623
624 /* Unlink control buffer */
625 spin_lock_irqsave(&self->spinlock, flags);
626
627 ctrl_skb = self->ctrl_skb;
628 self->ctrl_skb = NULL;
629
630 spin_unlock_irqrestore(&self->spinlock, flags);
631
632 /* Flush control buffer if any */
633 if(ctrl_skb) {
634 if(self->flow == FLOW_START)
635 ircomm_control_request(self->ircomm, ctrl_skb);
636 /* Drop reference count - see ircomm_ttp_data_request(). */
637 dev_kfree_skb(ctrl_skb);
638 }
639
640 if (tty->hw_stopped)
641 return;
642
643 /* Unlink transmit buffer */
644 spin_lock_irqsave(&self->spinlock, flags);
645
646 skb = self->tx_skb;
647 self->tx_skb = NULL;
648
649 spin_unlock_irqrestore(&self->spinlock, flags);
650
651 /* Flush transmit buffer if any */
652 if (skb) {
653 ircomm_tty_do_event(self, IRCOMM_TTY_DATA_REQUEST, skb, NULL);
654 /* Drop reference count - see ircomm_ttp_data_request(). */
655 dev_kfree_skb(skb);
656 }
657
658 /* Check if user (still) wants to be waken up */
659 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
660 tty->ldisc.write_wakeup)
661 {
662 (tty->ldisc.write_wakeup)(tty);
663 }
664 wake_up_interruptible(&tty->write_wait);
665 }
666
667 /*
668 * Function ircomm_tty_write (tty, buf, count)
669 *
670 * This routine is called by the kernel to write a series of characters
671 * to the tty device. The characters may come from user space or kernel
672 * space. This routine will return the number of characters actually
673 * accepted for writing. This routine is mandatory.
674 */
675 static int ircomm_tty_write(struct tty_struct *tty,
676 const unsigned char *buf, int count)
677 {
678 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
679 unsigned long flags;
680 struct sk_buff *skb;
681 int tailroom = 0;
682 int len = 0;
683 int size;
684
685 IRDA_DEBUG(2, "%s(), count=%d, hw_stopped=%d\n", __FUNCTION__ , count,
686 tty->hw_stopped);
687
688 IRDA_ASSERT(self != NULL, return -1;);
689 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
690
691 /* We may receive packets from the TTY even before we have finished
692 * our setup. Not cool.
693 * The problem is that we don't know the final header and data size
694 * to create the proper skb, so any skb we would create would have
695 * bogus header and data size, so need care.
696 * We use a bogus header size to safely detect this condition.
697 * Another problem is that hw_stopped was set to 0 way before it
698 * should be, so we would drop this skb. It should now be fixed.
699 * One option is to not accept data until we are properly setup.
700 * But, I suspect that when it happens, the ppp line discipline
701 * just "drops" the data, which might screw up connect scripts.
702 * The second option is to create a "safe skb", with large header
703 * and small size (see ircomm_tty_open() for values).
704 * We just need to make sure that when the real values get filled,
705 * we don't mess up the original "safe skb" (see tx_data_size).
706 * Jean II */
707 if (self->max_header_size == IRCOMM_TTY_HDR_UNINITIALISED) {
708 IRDA_DEBUG(1, "%s() : not initialised\n", __FUNCTION__);
709 #ifdef IRCOMM_NO_TX_BEFORE_INIT
710 /* We didn't consume anything, TTY will retry */
711 return 0;
712 #endif
713 }
714
715 if (count < 1)
716 return 0;
717
718 /* Protect our manipulation of self->tx_skb and related */
719 spin_lock_irqsave(&self->spinlock, flags);
720
721 /* Fetch current transmit buffer */
722 skb = self->tx_skb;
723
724 /*
725 * Send out all the data we get, possibly as multiple fragmented
726 * frames, but this will only happen if the data is larger than the
727 * max data size. The normal case however is just the opposite, and
728 * this function may be called multiple times, and will then actually
729 * defragment the data and send it out as one packet as soon as
730 * possible, but at a safer point in time
731 */
732 while (count) {
733 size = count;
734
735 /* Adjust data size to the max data size */
736 if (size > self->max_data_size)
737 size = self->max_data_size;
738
739 /*
740 * Do we already have a buffer ready for transmit, or do
741 * we need to allocate a new frame
742 */
743 if (skb) {
744 /*
745 * Any room for more data at the end of the current
746 * transmit buffer? Cannot use skb_tailroom, since
747 * dev_alloc_skb gives us a larger skb than we
748 * requested
749 * Note : use tx_data_size, because max_data_size
750 * may have changed and we don't want to overwrite
751 * the skb. - Jean II
752 */
753 if ((tailroom = (self->tx_data_size - skb->len)) > 0) {
754 /* Adjust data to tailroom */
755 if (size > tailroom)
756 size = tailroom;
757 } else {
758 /*
759 * Current transmit frame is full, so break
760 * out, so we can send it as soon as possible
761 */
762 break;
763 }
764 } else {
765 /* Prepare a full sized frame */
766 skb = dev_alloc_skb(self->max_data_size+
767 self->max_header_size);
768 if (!skb) {
769 spin_unlock_irqrestore(&self->spinlock, flags);
770 return -ENOBUFS;
771 }
772 skb_reserve(skb, self->max_header_size);
773 self->tx_skb = skb;
774 /* Remember skb size because max_data_size may
775 * change later on - Jean II */
776 self->tx_data_size = self->max_data_size;
777 }
778
779 /* Copy data */
780 memcpy(skb_put(skb,size), buf + len, size);
781
782 count -= size;
783 len += size;
784 }
785
786 spin_unlock_irqrestore(&self->spinlock, flags);
787
788 /*
789 * Schedule a new thread which will transmit the frame as soon
790 * as possible, but at a safe point in time. We do this so the
791 * "user" can give us data multiple times, as PPP does (because of
792 * its 256 byte tx buffer). We will then defragment and send out
793 * all this data as one single packet.
794 */
795 schedule_work(&self->tqueue);
796
797 return len;
798 }
799
800 /*
801 * Function ircomm_tty_write_room (tty)
802 *
803 * This routine returns the numbers of characters the tty driver will
804 * accept for queuing to be written. This number is subject to change as
805 * output buffers get emptied, or if the output flow control is acted.
806 */
807 static int ircomm_tty_write_room(struct tty_struct *tty)
808 {
809 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
810 unsigned long flags;
811 int ret;
812
813 IRDA_ASSERT(self != NULL, return -1;);
814 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
815
816 #ifdef IRCOMM_NO_TX_BEFORE_INIT
817 /* max_header_size tells us if the channel is initialised or not. */
818 if (self->max_header_size == IRCOMM_TTY_HDR_UNINITIALISED)
819 /* Don't bother us yet */
820 return 0;
821 #endif
822
823 /* Check if we are allowed to transmit any data.
824 * hw_stopped is the regular flow control.
825 * Jean II */
826 if (tty->hw_stopped)
827 ret = 0;
828 else {
829 spin_lock_irqsave(&self->spinlock, flags);
830 if (self->tx_skb)
831 ret = self->tx_data_size - self->tx_skb->len;
832 else
833 ret = self->max_data_size;
834 spin_unlock_irqrestore(&self->spinlock, flags);
835 }
836 IRDA_DEBUG(2, "%s(), ret=%d\n", __FUNCTION__ , ret);
837
838 return ret;
839 }
840
841 /*
842 * Function ircomm_tty_wait_until_sent (tty, timeout)
843 *
844 * This routine waits until the device has written out all of the
845 * characters in its transmitter FIFO.
846 */
847 static void ircomm_tty_wait_until_sent(struct tty_struct *tty, int timeout)
848 {
849 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
850 unsigned long orig_jiffies, poll_time;
851 unsigned long flags;
852
853 IRDA_DEBUG(2, "%s()\n", __FUNCTION__ );
854
855 IRDA_ASSERT(self != NULL, return;);
856 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
857
858 orig_jiffies = jiffies;
859
860 /* Set poll time to 200 ms */
861 poll_time = IRDA_MIN(timeout, msecs_to_jiffies(200));
862
863 spin_lock_irqsave(&self->spinlock, flags);
864 while (self->tx_skb && self->tx_skb->len) {
865 spin_unlock_irqrestore(&self->spinlock, flags);
866 current->state = TASK_INTERRUPTIBLE;
867 schedule_timeout(poll_time);
868 spin_lock_irqsave(&self->spinlock, flags);
869 if (signal_pending(current))
870 break;
871 if (timeout && time_after(jiffies, orig_jiffies + timeout))
872 break;
873 }
874 spin_unlock_irqrestore(&self->spinlock, flags);
875 current->state = TASK_RUNNING;
876 }
877
878 /*
879 * Function ircomm_tty_throttle (tty)
880 *
881 * This routine notifies the tty driver that input buffers for the line
882 * discipline are close to full, and it should somehow signal that no
883 * more characters should be sent to the tty.
884 */
885 static void ircomm_tty_throttle(struct tty_struct *tty)
886 {
887 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
888
889 IRDA_DEBUG(2, "%s()\n", __FUNCTION__ );
890
891 IRDA_ASSERT(self != NULL, return;);
892 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
893
894 /* Software flow control? */
895 if (I_IXOFF(tty))
896 ircomm_tty_send_xchar(tty, STOP_CHAR(tty));
897
898 /* Hardware flow control? */
899 if (tty->termios->c_cflag & CRTSCTS) {
900 self->settings.dte &= ~IRCOMM_RTS;
901 self->settings.dte |= IRCOMM_DELTA_RTS;
902
903 ircomm_param_request(self, IRCOMM_DTE, TRUE);
904 }
905
906 ircomm_flow_request(self->ircomm, FLOW_STOP);
907 }
908
909 /*
910 * Function ircomm_tty_unthrottle (tty)
911 *
912 * This routine notifies the tty drivers that it should signals that
913 * characters can now be sent to the tty without fear of overrunning the
914 * input buffers of the line disciplines.
915 */
916 static void ircomm_tty_unthrottle(struct tty_struct *tty)
917 {
918 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
919
920 IRDA_DEBUG(2, "%s()\n", __FUNCTION__ );
921
922 IRDA_ASSERT(self != NULL, return;);
923 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
924
925 /* Using software flow control? */
926 if (I_IXOFF(tty)) {
927 ircomm_tty_send_xchar(tty, START_CHAR(tty));
928 }
929
930 /* Using hardware flow control? */
931 if (tty->termios->c_cflag & CRTSCTS) {
932 self->settings.dte |= (IRCOMM_RTS|IRCOMM_DELTA_RTS);
933
934 ircomm_param_request(self, IRCOMM_DTE, TRUE);
935 IRDA_DEBUG(1, "%s(), FLOW_START\n", __FUNCTION__ );
936 }
937 ircomm_flow_request(self->ircomm, FLOW_START);
938 }
939
940 /*
941 * Function ircomm_tty_chars_in_buffer (tty)
942 *
943 * Indicates if there are any data in the buffer
944 *
945 */
946 static int ircomm_tty_chars_in_buffer(struct tty_struct *tty)
947 {
948 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
949 unsigned long flags;
950 int len = 0;
951
952 IRDA_ASSERT(self != NULL, return -1;);
953 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
954
955 spin_lock_irqsave(&self->spinlock, flags);
956
957 if (self->tx_skb)
958 len = self->tx_skb->len;
959
960 spin_unlock_irqrestore(&self->spinlock, flags);
961
962 return len;
963 }
964
965 static void ircomm_tty_shutdown(struct ircomm_tty_cb *self)
966 {
967 unsigned long flags;
968
969 IRDA_ASSERT(self != NULL, return;);
970 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
971
972 IRDA_DEBUG(0, "%s()\n", __FUNCTION__ );
973
974 if (!test_and_clear_bit(ASYNC_B_INITIALIZED, &self->flags))
975 return;
976
977 ircomm_tty_detach_cable(self);
978
979 spin_lock_irqsave(&self->spinlock, flags);
980
981 del_timer(&self->watchdog_timer);
982
983 /* Free parameter buffer */
984 if (self->ctrl_skb) {
985 dev_kfree_skb(self->ctrl_skb);
986 self->ctrl_skb = NULL;
987 }
988
989 /* Free transmit buffer */
990 if (self->tx_skb) {
991 dev_kfree_skb(self->tx_skb);
992 self->tx_skb = NULL;
993 }
994
995 if (self->ircomm) {
996 ircomm_close(self->ircomm);
997 self->ircomm = NULL;
998 }
999
1000 spin_unlock_irqrestore(&self->spinlock, flags);
1001 }
1002
1003 /*
1004 * Function ircomm_tty_hangup (tty)
1005 *
1006 * This routine notifies the tty driver that it should hangup the tty
1007 * device.
1008 *
1009 */
1010 static void ircomm_tty_hangup(struct tty_struct *tty)
1011 {
1012 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
1013 unsigned long flags;
1014
1015 IRDA_DEBUG(0, "%s()\n", __FUNCTION__ );
1016
1017 IRDA_ASSERT(self != NULL, return;);
1018 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
1019
1020 if (!tty)
1021 return;
1022
1023 /* ircomm_tty_flush_buffer(tty); */
1024 ircomm_tty_shutdown(self);
1025
1026 /* I guess we need to lock here - Jean II */
1027 spin_lock_irqsave(&self->spinlock, flags);
1028 self->flags &= ~ASYNC_NORMAL_ACTIVE;
1029 self->tty = NULL;
1030 self->open_count = 0;
1031 spin_unlock_irqrestore(&self->spinlock, flags);
1032
1033 wake_up_interruptible(&self->open_wait);
1034 }
1035
1036 /*
1037 * Function ircomm_tty_send_xchar (tty, ch)
1038 *
1039 * This routine is used to send a high-priority XON/XOFF character to
1040 * the device.
1041 */
1042 static void ircomm_tty_send_xchar(struct tty_struct *tty, char ch)
1043 {
1044 IRDA_DEBUG(0, "%s(), not impl\n", __FUNCTION__ );
1045 }
1046
1047 /*
1048 * Function ircomm_tty_start (tty)
1049 *
1050 * This routine notifies the tty driver that it resume sending
1051 * characters to the tty device.
1052 */
1053 void ircomm_tty_start(struct tty_struct *tty)
1054 {
1055 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
1056
1057 ircomm_flow_request(self->ircomm, FLOW_START);
1058 }
1059
1060 /*
1061 * Function ircomm_tty_stop (tty)
1062 *
1063 * This routine notifies the tty driver that it should stop outputting
1064 * characters to the tty device.
1065 */
1066 static void ircomm_tty_stop(struct tty_struct *tty)
1067 {
1068 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
1069
1070 IRDA_ASSERT(self != NULL, return;);
1071 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
1072
1073 ircomm_flow_request(self->ircomm, FLOW_STOP);
1074 }
1075
1076 /*
1077 * Function ircomm_check_modem_status (self)
1078 *
1079 * Check for any changes in the DCE's line settings. This function should
1080 * be called whenever the dce parameter settings changes, to update the
1081 * flow control settings and other things
1082 */
1083 void ircomm_tty_check_modem_status(struct ircomm_tty_cb *self)
1084 {
1085 struct tty_struct *tty;
1086 int status;
1087
1088 IRDA_DEBUG(0, "%s()\n", __FUNCTION__ );
1089
1090 IRDA_ASSERT(self != NULL, return;);
1091 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
1092
1093 tty = self->tty;
1094
1095 status = self->settings.dce;
1096
1097 if (status & IRCOMM_DCE_DELTA_ANY) {
1098 /*wake_up_interruptible(&self->delta_msr_wait);*/
1099 }
1100 if ((self->flags & ASYNC_CHECK_CD) && (status & IRCOMM_DELTA_CD)) {
1101 IRDA_DEBUG(2,
1102 "%s(), ircomm%d CD now %s...\n", __FUNCTION__ , self->line,
1103 (status & IRCOMM_CD) ? "on" : "off");
1104
1105 if (status & IRCOMM_CD) {
1106 wake_up_interruptible(&self->open_wait);
1107 } else {
1108 IRDA_DEBUG(2,
1109 "%s(), Doing serial hangup..\n", __FUNCTION__ );
1110 if (tty)
1111 tty_hangup(tty);
1112
1113 /* Hangup will remote the tty, so better break out */
1114 return;
1115 }
1116 }
1117 if (self->flags & ASYNC_CTS_FLOW) {
1118 if (tty->hw_stopped) {
1119 if (status & IRCOMM_CTS) {
1120 IRDA_DEBUG(2,
1121 "%s(), CTS tx start...\n", __FUNCTION__ );
1122 tty->hw_stopped = 0;
1123
1124 /* Wake up processes blocked on open */
1125 wake_up_interruptible(&self->open_wait);
1126
1127 schedule_work(&self->tqueue);
1128 return;
1129 }
1130 } else {
1131 if (!(status & IRCOMM_CTS)) {
1132 IRDA_DEBUG(2,
1133 "%s(), CTS tx stop...\n", __FUNCTION__ );
1134 tty->hw_stopped = 1;
1135 }
1136 }
1137 }
1138 }
1139
1140 /*
1141 * Function ircomm_tty_data_indication (instance, sap, skb)
1142 *
1143 * Handle incoming data, and deliver it to the line discipline
1144 *
1145 */
1146 static int ircomm_tty_data_indication(void *instance, void *sap,
1147 struct sk_buff *skb)
1148 {
1149 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance;
1150
1151 IRDA_DEBUG(2, "%s()\n", __FUNCTION__ );
1152
1153 IRDA_ASSERT(self != NULL, return -1;);
1154 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
1155 IRDA_ASSERT(skb != NULL, return -1;);
1156
1157 if (!self->tty) {
1158 IRDA_DEBUG(0, "%s(), no tty!\n", __FUNCTION__ );
1159 return 0;
1160 }
1161
1162 /*
1163 * If we receive data when hardware is stopped then something is wrong.
1164 * We try to poll the peers line settings to check if we are up todate.
1165 * Devices like WinCE can do this, and since they don't send any
1166 * params, we can just as well declare the hardware for running.
1167 */
1168 if (self->tty->hw_stopped && (self->flow == FLOW_START)) {
1169 IRDA_DEBUG(0, "%s(), polling for line settings!\n", __FUNCTION__ );
1170 ircomm_param_request(self, IRCOMM_POLL, TRUE);
1171
1172 /* We can just as well declare the hardware for running */
1173 ircomm_tty_send_initial_parameters(self);
1174 ircomm_tty_link_established(self);
1175 }
1176
1177 /*
1178 * Just give it over to the line discipline. There is no need to
1179 * involve the flip buffers, since we are not running in an interrupt
1180 * handler
1181 */
1182 self->tty->ldisc.receive_buf(self->tty, skb->data, NULL, skb->len);
1183
1184 /* No need to kfree_skb - see ircomm_ttp_data_indication() */
1185
1186 return 0;
1187 }
1188
1189 /*
1190 * Function ircomm_tty_control_indication (instance, sap, skb)
1191 *
1192 * Parse all incoming parameters (easy!)
1193 *
1194 */
1195 static int ircomm_tty_control_indication(void *instance, void *sap,
1196 struct sk_buff *skb)
1197 {
1198 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance;
1199 int clen;
1200
1201 IRDA_DEBUG(4, "%s()\n", __FUNCTION__ );
1202
1203 IRDA_ASSERT(self != NULL, return -1;);
1204 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
1205 IRDA_ASSERT(skb != NULL, return -1;);
1206
1207 clen = skb->data[0];
1208
1209 irda_param_extract_all(self, skb->data+1, IRDA_MIN(skb->len-1, clen),
1210 &ircomm_param_info);
1211
1212 /* No need to kfree_skb - see ircomm_control_indication() */
1213
1214 return 0;
1215 }
1216
1217 /*
1218 * Function ircomm_tty_flow_indication (instance, sap, cmd)
1219 *
1220 * This function is called by IrTTP when it wants us to slow down the
1221 * transmission of data. We just mark the hardware as stopped, and wait
1222 * for IrTTP to notify us that things are OK again.
1223 */
1224 static void ircomm_tty_flow_indication(void *instance, void *sap,
1225 LOCAL_FLOW cmd)
1226 {
1227 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance;
1228 struct tty_struct *tty;
1229
1230 IRDA_ASSERT(self != NULL, return;);
1231 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
1232
1233 tty = self->tty;
1234
1235 switch (cmd) {
1236 case FLOW_START:
1237 IRDA_DEBUG(2, "%s(), hw start!\n", __FUNCTION__ );
1238 tty->hw_stopped = 0;
1239
1240 /* ircomm_tty_do_softint will take care of the rest */
1241 schedule_work(&self->tqueue);
1242 break;
1243 default: /* If we get here, something is very wrong, better stop */
1244 case FLOW_STOP:
1245 IRDA_DEBUG(2, "%s(), hw stopped!\n", __FUNCTION__ );
1246 tty->hw_stopped = 1;
1247 break;
1248 }
1249 self->flow = cmd;
1250 }
1251
1252 static int ircomm_tty_line_info(struct ircomm_tty_cb *self, char *buf)
1253 {
1254 int ret=0;
1255
1256 ret += sprintf(buf+ret, "State: %s\n", ircomm_tty_state[self->state]);
1257
1258 ret += sprintf(buf+ret, "Service type: ");
1259 if (self->service_type & IRCOMM_9_WIRE)
1260 ret += sprintf(buf+ret, "9_WIRE");
1261 else if (self->service_type & IRCOMM_3_WIRE)
1262 ret += sprintf(buf+ret, "3_WIRE");
1263 else if (self->service_type & IRCOMM_3_WIRE_RAW)
1264 ret += sprintf(buf+ret, "3_WIRE_RAW");
1265 else
1266 ret += sprintf(buf+ret, "No common service type!\n");
1267 ret += sprintf(buf+ret, "\n");
1268
1269 ret += sprintf(buf+ret, "Port name: %s\n", self->settings.port_name);
1270
1271 ret += sprintf(buf+ret, "DTE status: ");
1272 if (self->settings.dte & IRCOMM_RTS)
1273 ret += sprintf(buf+ret, "RTS|");
1274 if (self->settings.dte & IRCOMM_DTR)
1275 ret += sprintf(buf+ret, "DTR|");
1276 if (self->settings.dte)
1277 ret--; /* remove the last | */
1278 ret += sprintf(buf+ret, "\n");
1279
1280 ret += sprintf(buf+ret, "DCE status: ");
1281 if (self->settings.dce & IRCOMM_CTS)
1282 ret += sprintf(buf+ret, "CTS|");
1283 if (self->settings.dce & IRCOMM_DSR)
1284 ret += sprintf(buf+ret, "DSR|");
1285 if (self->settings.dce & IRCOMM_CD)
1286 ret += sprintf(buf+ret, "CD|");
1287 if (self->settings.dce & IRCOMM_RI)
1288 ret += sprintf(buf+ret, "RI|");
1289 if (self->settings.dce)
1290 ret--; /* remove the last | */
1291 ret += sprintf(buf+ret, "\n");
1292
1293 ret += sprintf(buf+ret, "Configuration: ");
1294 if (!self->settings.null_modem)
1295 ret += sprintf(buf+ret, "DTE <-> DCE\n");
1296 else
1297 ret += sprintf(buf+ret,
1298 "DTE <-> DTE (null modem emulation)\n");
1299
1300 ret += sprintf(buf+ret, "Data rate: %d\n", self->settings.data_rate);
1301
1302 ret += sprintf(buf+ret, "Flow control: ");
1303 if (self->settings.flow_control & IRCOMM_XON_XOFF_IN)
1304 ret += sprintf(buf+ret, "XON_XOFF_IN|");
1305 if (self->settings.flow_control & IRCOMM_XON_XOFF_OUT)
1306 ret += sprintf(buf+ret, "XON_XOFF_OUT|");
1307 if (self->settings.flow_control & IRCOMM_RTS_CTS_IN)
1308 ret += sprintf(buf+ret, "RTS_CTS_IN|");
1309 if (self->settings.flow_control & IRCOMM_RTS_CTS_OUT)
1310 ret += sprintf(buf+ret, "RTS_CTS_OUT|");
1311 if (self->settings.flow_control & IRCOMM_DSR_DTR_IN)
1312 ret += sprintf(buf+ret, "DSR_DTR_IN|");
1313 if (self->settings.flow_control & IRCOMM_DSR_DTR_OUT)
1314 ret += sprintf(buf+ret, "DSR_DTR_OUT|");
1315 if (self->settings.flow_control & IRCOMM_ENQ_ACK_IN)
1316 ret += sprintf(buf+ret, "ENQ_ACK_IN|");
1317 if (self->settings.flow_control & IRCOMM_ENQ_ACK_OUT)
1318 ret += sprintf(buf+ret, "ENQ_ACK_OUT|");
1319 if (self->settings.flow_control)
1320 ret--; /* remove the last | */
1321 ret += sprintf(buf+ret, "\n");
1322
1323 ret += sprintf(buf+ret, "Flags: ");
1324 if (self->flags & ASYNC_CTS_FLOW)
1325 ret += sprintf(buf+ret, "ASYNC_CTS_FLOW|");
1326 if (self->flags & ASYNC_CHECK_CD)
1327 ret += sprintf(buf+ret, "ASYNC_CHECK_CD|");
1328 if (self->flags & ASYNC_INITIALIZED)
1329 ret += sprintf(buf+ret, "ASYNC_INITIALIZED|");
1330 if (self->flags & ASYNC_LOW_LATENCY)
1331 ret += sprintf(buf+ret, "ASYNC_LOW_LATENCY|");
1332 if (self->flags & ASYNC_CLOSING)
1333 ret += sprintf(buf+ret, "ASYNC_CLOSING|");
1334 if (self->flags & ASYNC_NORMAL_ACTIVE)
1335 ret += sprintf(buf+ret, "ASYNC_NORMAL_ACTIVE|");
1336 if (self->flags)
1337 ret--; /* remove the last | */
1338 ret += sprintf(buf+ret, "\n");
1339
1340 ret += sprintf(buf+ret, "Role: %s\n", self->client ?
1341 "client" : "server");
1342 ret += sprintf(buf+ret, "Open count: %d\n", self->open_count);
1343 ret += sprintf(buf+ret, "Max data size: %d\n", self->max_data_size);
1344 ret += sprintf(buf+ret, "Max header size: %d\n", self->max_header_size);
1345
1346 if (self->tty)
1347 ret += sprintf(buf+ret, "Hardware: %s\n",
1348 self->tty->hw_stopped ? "Stopped" : "Running");
1349
1350 ret += sprintf(buf+ret, "\n");
1351 return ret;
1352 }
1353
1354
1355 /*
1356 * Function ircomm_tty_read_proc (buf, start, offset, len, eof, unused)
1357 *
1358 *
1359 *
1360 */
1361 #ifdef CONFIG_PROC_FS
1362 static int ircomm_tty_read_proc(char *buf, char **start, off_t offset, int len,
1363 int *eof, void *unused)
1364 {
1365 struct ircomm_tty_cb *self;
1366 int count = 0, l;
1367 off_t begin = 0;
1368 unsigned long flags;
1369
1370 spin_lock_irqsave(&ircomm_tty->hb_spinlock, flags);
1371
1372 self = (struct ircomm_tty_cb *) hashbin_get_first(ircomm_tty);
1373 while ((self != NULL) && (count < 4000)) {
1374 if (self->magic != IRCOMM_TTY_MAGIC)
1375 break;
1376
1377 l = ircomm_tty_line_info(self, buf + count);
1378 count += l;
1379 if (count+begin > offset+len)
1380 goto done;
1381 if (count+begin < offset) {
1382 begin += count;
1383 count = 0;
1384 }
1385
1386 self = (struct ircomm_tty_cb *) hashbin_get_next(ircomm_tty);
1387 }
1388 *eof = 1;
1389 done:
1390 spin_unlock_irqrestore(&ircomm_tty->hb_spinlock, flags);
1391
1392 if (offset >= count+begin)
1393 return 0;
1394 *start = buf + (offset-begin);
1395 return ((len < begin+count-offset) ? len : begin+count-offset);
1396 }
1397 #endif /* CONFIG_PROC_FS */
1398
1399 MODULE_AUTHOR("Dag Brattli <dagb@cs.uit.no>");
1400 MODULE_DESCRIPTION("IrCOMM serial TTY driver");
1401 MODULE_LICENSE("GPL");
1402 MODULE_ALIAS_CHARDEV_MAJOR(IRCOMM_TTY_MAJOR);
1403
1404 module_init(ircomm_tty_init);
1405 module_exit(ircomm_tty_cleanup);