Merge branch 'master' into upstream
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / irda / af_irda.c
1 /*********************************************************************
2 *
3 * Filename: af_irda.c
4 * Version: 0.9
5 * Description: IrDA sockets implementation
6 * Status: Stable
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun May 31 10:12:43 1998
9 * Modified at: Sat Dec 25 21:10:23 1999
10 * Modified by: Dag Brattli <dag@brattli.net>
11 * Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc.
12 *
13 * Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no>
14 * Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com>
15 * All Rights Reserved.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License as
19 * published by the Free Software Foundation; either version 2 of
20 * the License, or (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 *
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, write to the Free Software
29 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
30 * MA 02111-1307 USA
31 *
32 * Linux-IrDA now supports four different types of IrDA sockets:
33 *
34 * o SOCK_STREAM: TinyTP connections with SAR disabled. The
35 * max SDU size is 0 for conn. of this type
36 * o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may
37 * fragment the messages, but will preserve
38 * the message boundaries
39 * o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata
40 * (unreliable) transfers
41 * IRDAPROTO_ULTRA: Connectionless and unreliable data
42 *
43 ********************************************************************/
44
45 #include <linux/capability.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/socket.h>
49 #include <linux/sockios.h>
50 #include <linux/init.h>
51 #include <linux/net.h>
52 #include <linux/irda.h>
53 #include <linux/poll.h>
54
55 #include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */
56 #include <asm/uaccess.h>
57
58 #include <net/sock.h>
59 #include <net/tcp_states.h>
60
61 #include <net/irda/af_irda.h>
62
63 static int irda_create(struct socket *sock, int protocol);
64
65 static const struct proto_ops irda_stream_ops;
66 static const struct proto_ops irda_seqpacket_ops;
67 static const struct proto_ops irda_dgram_ops;
68
69 #ifdef CONFIG_IRDA_ULTRA
70 static const struct proto_ops irda_ultra_ops;
71 #define ULTRA_MAX_DATA 382
72 #endif /* CONFIG_IRDA_ULTRA */
73
74 #define IRDA_MAX_HEADER (TTP_MAX_HEADER)
75
76 /*
77 * Function irda_data_indication (instance, sap, skb)
78 *
79 * Received some data from TinyTP. Just queue it on the receive queue
80 *
81 */
82 static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb)
83 {
84 struct irda_sock *self;
85 struct sock *sk;
86 int err;
87
88 IRDA_DEBUG(3, "%s()\n", __FUNCTION__);
89
90 self = instance;
91 sk = instance;
92 IRDA_ASSERT(sk != NULL, return -1;);
93
94 err = sock_queue_rcv_skb(sk, skb);
95 if (err) {
96 IRDA_DEBUG(1, "%s(), error: no more mem!\n", __FUNCTION__);
97 self->rx_flow = FLOW_STOP;
98
99 /* When we return error, TTP will need to requeue the skb */
100 return err;
101 }
102
103 return 0;
104 }
105
106 /*
107 * Function irda_disconnect_indication (instance, sap, reason, skb)
108 *
109 * Connection has been closed. Check reason to find out why
110 *
111 */
112 static void irda_disconnect_indication(void *instance, void *sap,
113 LM_REASON reason, struct sk_buff *skb)
114 {
115 struct irda_sock *self;
116 struct sock *sk;
117
118 self = instance;
119
120 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
121
122 /* Don't care about it, but let's not leak it */
123 if(skb)
124 dev_kfree_skb(skb);
125
126 sk = instance;
127 if (sk == NULL) {
128 IRDA_DEBUG(0, "%s(%p) : BUG : sk is NULL\n",
129 __FUNCTION__, self);
130 return;
131 }
132
133 /* Prevent race conditions with irda_release() and irda_shutdown() */
134 if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) {
135 sk->sk_state = TCP_CLOSE;
136 sk->sk_err = ECONNRESET;
137 sk->sk_shutdown |= SEND_SHUTDOWN;
138
139 sk->sk_state_change(sk);
140 /* Uh-oh... Should use sock_orphan ? */
141 sock_set_flag(sk, SOCK_DEAD);
142
143 /* Close our TSAP.
144 * If we leave it open, IrLMP put it back into the list of
145 * unconnected LSAPs. The problem is that any incoming request
146 * can then be matched to this socket (and it will be, because
147 * it is at the head of the list). This would prevent any
148 * listening socket waiting on the same TSAP to get those
149 * requests. Some apps forget to close sockets, or hang to it
150 * a bit too long, so we may stay in this dead state long
151 * enough to be noticed...
152 * Note : all socket function do check sk->sk_state, so we are
153 * safe...
154 * Jean II
155 */
156 if (self->tsap) {
157 irttp_close_tsap(self->tsap);
158 self->tsap = NULL;
159 }
160 }
161
162 /* Note : once we are there, there is not much you want to do
163 * with the socket anymore, apart from closing it.
164 * For example, bind() and connect() won't reset sk->sk_err,
165 * sk->sk_shutdown and sk->sk_flags to valid values...
166 * Jean II
167 */
168 }
169
170 /*
171 * Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb)
172 *
173 * Connections has been confirmed by the remote device
174 *
175 */
176 static void irda_connect_confirm(void *instance, void *sap,
177 struct qos_info *qos,
178 __u32 max_sdu_size, __u8 max_header_size,
179 struct sk_buff *skb)
180 {
181 struct irda_sock *self;
182 struct sock *sk;
183
184 self = instance;
185
186 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
187
188 sk = instance;
189 if (sk == NULL) {
190 dev_kfree_skb(skb);
191 return;
192 }
193
194 dev_kfree_skb(skb);
195 // Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb);
196
197 /* How much header space do we need to reserve */
198 self->max_header_size = max_header_size;
199
200 /* IrTTP max SDU size in transmit direction */
201 self->max_sdu_size_tx = max_sdu_size;
202
203 /* Find out what the largest chunk of data that we can transmit is */
204 switch (sk->sk_type) {
205 case SOCK_STREAM:
206 if (max_sdu_size != 0) {
207 IRDA_ERROR("%s: max_sdu_size must be 0\n",
208 __FUNCTION__);
209 return;
210 }
211 self->max_data_size = irttp_get_max_seg_size(self->tsap);
212 break;
213 case SOCK_SEQPACKET:
214 if (max_sdu_size == 0) {
215 IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
216 __FUNCTION__);
217 return;
218 }
219 self->max_data_size = max_sdu_size;
220 break;
221 default:
222 self->max_data_size = irttp_get_max_seg_size(self->tsap);
223 };
224
225 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__,
226 self->max_data_size);
227
228 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
229
230 /* We are now connected! */
231 sk->sk_state = TCP_ESTABLISHED;
232 sk->sk_state_change(sk);
233 }
234
235 /*
236 * Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata)
237 *
238 * Incoming connection
239 *
240 */
241 static void irda_connect_indication(void *instance, void *sap,
242 struct qos_info *qos, __u32 max_sdu_size,
243 __u8 max_header_size, struct sk_buff *skb)
244 {
245 struct irda_sock *self;
246 struct sock *sk;
247
248 self = instance;
249
250 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
251
252 sk = instance;
253 if (sk == NULL) {
254 dev_kfree_skb(skb);
255 return;
256 }
257
258 /* How much header space do we need to reserve */
259 self->max_header_size = max_header_size;
260
261 /* IrTTP max SDU size in transmit direction */
262 self->max_sdu_size_tx = max_sdu_size;
263
264 /* Find out what the largest chunk of data that we can transmit is */
265 switch (sk->sk_type) {
266 case SOCK_STREAM:
267 if (max_sdu_size != 0) {
268 IRDA_ERROR("%s: max_sdu_size must be 0\n",
269 __FUNCTION__);
270 kfree_skb(skb);
271 return;
272 }
273 self->max_data_size = irttp_get_max_seg_size(self->tsap);
274 break;
275 case SOCK_SEQPACKET:
276 if (max_sdu_size == 0) {
277 IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
278 __FUNCTION__);
279 kfree_skb(skb);
280 return;
281 }
282 self->max_data_size = max_sdu_size;
283 break;
284 default:
285 self->max_data_size = irttp_get_max_seg_size(self->tsap);
286 };
287
288 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__,
289 self->max_data_size);
290
291 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
292
293 skb_queue_tail(&sk->sk_receive_queue, skb);
294 sk->sk_state_change(sk);
295 }
296
297 /*
298 * Function irda_connect_response (handle)
299 *
300 * Accept incoming connection
301 *
302 */
303 static void irda_connect_response(struct irda_sock *self)
304 {
305 struct sk_buff *skb;
306
307 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
308
309 IRDA_ASSERT(self != NULL, return;);
310
311 skb = alloc_skb(64, GFP_ATOMIC);
312 if (skb == NULL) {
313 IRDA_DEBUG(0, "%s() Unable to allocate sk_buff!\n",
314 __FUNCTION__);
315 return;
316 }
317
318 /* Reserve space for MUX_CONTROL and LAP header */
319 skb_reserve(skb, IRDA_MAX_HEADER);
320
321 irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb);
322 }
323
324 /*
325 * Function irda_flow_indication (instance, sap, flow)
326 *
327 * Used by TinyTP to tell us if it can accept more data or not
328 *
329 */
330 static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
331 {
332 struct irda_sock *self;
333 struct sock *sk;
334
335 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
336
337 self = instance;
338 sk = instance;
339 IRDA_ASSERT(sk != NULL, return;);
340
341 switch (flow) {
342 case FLOW_STOP:
343 IRDA_DEBUG(1, "%s(), IrTTP wants us to slow down\n",
344 __FUNCTION__);
345 self->tx_flow = flow;
346 break;
347 case FLOW_START:
348 self->tx_flow = flow;
349 IRDA_DEBUG(1, "%s(), IrTTP wants us to start again\n",
350 __FUNCTION__);
351 wake_up_interruptible(sk->sk_sleep);
352 break;
353 default:
354 IRDA_DEBUG(0, "%s(), Unknown flow command!\n", __FUNCTION__);
355 /* Unknown flow command, better stop */
356 self->tx_flow = flow;
357 break;
358 }
359 }
360
361 /*
362 * Function irda_getvalue_confirm (obj_id, value, priv)
363 *
364 * Got answer from remote LM-IAS, just pass object to requester...
365 *
366 * Note : duplicate from above, but we need our own version that
367 * doesn't touch the dtsap_sel and save the full value structure...
368 */
369 static void irda_getvalue_confirm(int result, __u16 obj_id,
370 struct ias_value *value, void *priv)
371 {
372 struct irda_sock *self;
373
374 self = (struct irda_sock *) priv;
375 if (!self) {
376 IRDA_WARNING("%s: lost myself!\n", __FUNCTION__);
377 return;
378 }
379
380 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
381
382 /* We probably don't need to make any more queries */
383 iriap_close(self->iriap);
384 self->iriap = NULL;
385
386 /* Check if request succeeded */
387 if (result != IAS_SUCCESS) {
388 IRDA_DEBUG(1, "%s(), IAS query failed! (%d)\n", __FUNCTION__,
389 result);
390
391 self->errno = result; /* We really need it later */
392
393 /* Wake up any processes waiting for result */
394 wake_up_interruptible(&self->query_wait);
395
396 return;
397 }
398
399 /* Pass the object to the caller (so the caller must delete it) */
400 self->ias_result = value;
401 self->errno = 0;
402
403 /* Wake up any processes waiting for result */
404 wake_up_interruptible(&self->query_wait);
405 }
406
407 /*
408 * Function irda_selective_discovery_indication (discovery)
409 *
410 * Got a selective discovery indication from IrLMP.
411 *
412 * IrLMP is telling us that this node is new and matching our hint bit
413 * filter. Wake up any process waiting for answer...
414 */
415 static void irda_selective_discovery_indication(discinfo_t *discovery,
416 DISCOVERY_MODE mode,
417 void *priv)
418 {
419 struct irda_sock *self;
420
421 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
422
423 self = (struct irda_sock *) priv;
424 if (!self) {
425 IRDA_WARNING("%s: lost myself!\n", __FUNCTION__);
426 return;
427 }
428
429 /* Pass parameter to the caller */
430 self->cachedaddr = discovery->daddr;
431
432 /* Wake up process if its waiting for device to be discovered */
433 wake_up_interruptible(&self->query_wait);
434 }
435
436 /*
437 * Function irda_discovery_timeout (priv)
438 *
439 * Timeout in the selective discovery process
440 *
441 * We were waiting for a node to be discovered, but nothing has come up
442 * so far. Wake up the user and tell him that we failed...
443 */
444 static void irda_discovery_timeout(u_long priv)
445 {
446 struct irda_sock *self;
447
448 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
449
450 self = (struct irda_sock *) priv;
451 IRDA_ASSERT(self != NULL, return;);
452
453 /* Nothing for the caller */
454 self->cachelog = NULL;
455 self->cachedaddr = 0;
456 self->errno = -ETIME;
457
458 /* Wake up process if its still waiting... */
459 wake_up_interruptible(&self->query_wait);
460 }
461
462 /*
463 * Function irda_open_tsap (self)
464 *
465 * Open local Transport Service Access Point (TSAP)
466 *
467 */
468 static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name)
469 {
470 notify_t notify;
471
472 if (self->tsap) {
473 IRDA_WARNING("%s: busy!\n", __FUNCTION__);
474 return -EBUSY;
475 }
476
477 /* Initialize callbacks to be used by the IrDA stack */
478 irda_notify_init(&notify);
479 notify.connect_confirm = irda_connect_confirm;
480 notify.connect_indication = irda_connect_indication;
481 notify.disconnect_indication = irda_disconnect_indication;
482 notify.data_indication = irda_data_indication;
483 notify.udata_indication = irda_data_indication;
484 notify.flow_indication = irda_flow_indication;
485 notify.instance = self;
486 strncpy(notify.name, name, NOTIFY_MAX_NAME);
487
488 self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT,
489 &notify);
490 if (self->tsap == NULL) {
491 IRDA_DEBUG(0, "%s(), Unable to allocate TSAP!\n",
492 __FUNCTION__);
493 return -ENOMEM;
494 }
495 /* Remember which TSAP selector we actually got */
496 self->stsap_sel = self->tsap->stsap_sel;
497
498 return 0;
499 }
500
501 /*
502 * Function irda_open_lsap (self)
503 *
504 * Open local Link Service Access Point (LSAP). Used for opening Ultra
505 * sockets
506 */
507 #ifdef CONFIG_IRDA_ULTRA
508 static int irda_open_lsap(struct irda_sock *self, int pid)
509 {
510 notify_t notify;
511
512 if (self->lsap) {
513 IRDA_WARNING("%s(), busy!\n", __FUNCTION__);
514 return -EBUSY;
515 }
516
517 /* Initialize callbacks to be used by the IrDA stack */
518 irda_notify_init(&notify);
519 notify.udata_indication = irda_data_indication;
520 notify.instance = self;
521 strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME);
522
523 self->lsap = irlmp_open_lsap(LSAP_CONNLESS, &notify, pid);
524 if (self->lsap == NULL) {
525 IRDA_DEBUG( 0, "%s(), Unable to allocate LSAP!\n", __FUNCTION__);
526 return -ENOMEM;
527 }
528
529 return 0;
530 }
531 #endif /* CONFIG_IRDA_ULTRA */
532
533 /*
534 * Function irda_find_lsap_sel (self, name)
535 *
536 * Try to lookup LSAP selector in remote LM-IAS
537 *
538 * Basically, we start a IAP query, and then go to sleep. When the query
539 * return, irda_getvalue_confirm will wake us up, and we can examine the
540 * result of the query...
541 * Note that in some case, the query fail even before we go to sleep,
542 * creating some races...
543 */
544 static int irda_find_lsap_sel(struct irda_sock *self, char *name)
545 {
546 IRDA_DEBUG(2, "%s(%p, %s)\n", __FUNCTION__, self, name);
547
548 IRDA_ASSERT(self != NULL, return -1;);
549
550 if (self->iriap) {
551 IRDA_WARNING("%s(): busy with a previous query\n",
552 __FUNCTION__);
553 return -EBUSY;
554 }
555
556 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
557 irda_getvalue_confirm);
558 if(self->iriap == NULL)
559 return -ENOMEM;
560
561 /* Treat unexpected wakeup as disconnect */
562 self->errno = -EHOSTUNREACH;
563
564 /* Query remote LM-IAS */
565 iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr,
566 name, "IrDA:TinyTP:LsapSel");
567
568 /* Wait for answer, if not yet finished (or failed) */
569 if (wait_event_interruptible(self->query_wait, (self->iriap==NULL)))
570 /* Treat signals as disconnect */
571 return -EHOSTUNREACH;
572
573 /* Check what happened */
574 if (self->errno)
575 {
576 /* Requested object/attribute doesn't exist */
577 if((self->errno == IAS_CLASS_UNKNOWN) ||
578 (self->errno == IAS_ATTRIB_UNKNOWN))
579 return (-EADDRNOTAVAIL);
580 else
581 return (-EHOSTUNREACH);
582 }
583
584 /* Get the remote TSAP selector */
585 switch (self->ias_result->type) {
586 case IAS_INTEGER:
587 IRDA_DEBUG(4, "%s() int=%d\n",
588 __FUNCTION__, self->ias_result->t.integer);
589
590 if (self->ias_result->t.integer != -1)
591 self->dtsap_sel = self->ias_result->t.integer;
592 else
593 self->dtsap_sel = 0;
594 break;
595 default:
596 self->dtsap_sel = 0;
597 IRDA_DEBUG(0, "%s(), bad type!\n", __FUNCTION__);
598 break;
599 }
600 if (self->ias_result)
601 irias_delete_value(self->ias_result);
602
603 if (self->dtsap_sel)
604 return 0;
605
606 return -EADDRNOTAVAIL;
607 }
608
609 /*
610 * Function irda_discover_daddr_and_lsap_sel (self, name)
611 *
612 * This try to find a device with the requested service.
613 *
614 * It basically look into the discovery log. For each address in the list,
615 * it queries the LM-IAS of the device to find if this device offer
616 * the requested service.
617 * If there is more than one node supporting the service, we complain
618 * to the user (it should move devices around).
619 * The, we set both the destination address and the lsap selector to point
620 * on the service on the unique device we have found.
621 *
622 * Note : this function fails if there is more than one device in range,
623 * because IrLMP doesn't disconnect the LAP when the last LSAP is closed.
624 * Moreover, we would need to wait the LAP disconnection...
625 */
626 static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name)
627 {
628 discinfo_t *discoveries; /* Copy of the discovery log */
629 int number; /* Number of nodes in the log */
630 int i;
631 int err = -ENETUNREACH;
632 __u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */
633 __u8 dtsap_sel = 0x0; /* TSAP associated with it */
634
635 IRDA_DEBUG(2, "%s(), name=%s\n", __FUNCTION__, name);
636
637 IRDA_ASSERT(self != NULL, return -1;);
638
639 /* Ask lmp for the current discovery log
640 * Note : we have to use irlmp_get_discoveries(), as opposed
641 * to play with the cachelog directly, because while we are
642 * making our ias query, le log might change... */
643 discoveries = irlmp_get_discoveries(&number, self->mask.word,
644 self->nslots);
645 /* Check if the we got some results */
646 if (discoveries == NULL)
647 return -ENETUNREACH; /* No nodes discovered */
648
649 /*
650 * Now, check all discovered devices (if any), and connect
651 * client only about the services that the client is
652 * interested in...
653 */
654 for(i = 0; i < number; i++) {
655 /* Try the address in the log */
656 self->daddr = discoveries[i].daddr;
657 self->saddr = 0x0;
658 IRDA_DEBUG(1, "%s(), trying daddr = %08x\n",
659 __FUNCTION__, self->daddr);
660
661 /* Query remote LM-IAS for this service */
662 err = irda_find_lsap_sel(self, name);
663 switch (err) {
664 case 0:
665 /* We found the requested service */
666 if(daddr != DEV_ADDR_ANY) {
667 IRDA_DEBUG(1, "%s(), discovered service ''%s'' in two different devices !!!\n",
668 __FUNCTION__, name);
669 self->daddr = DEV_ADDR_ANY;
670 kfree(discoveries);
671 return(-ENOTUNIQ);
672 }
673 /* First time we found that one, save it ! */
674 daddr = self->daddr;
675 dtsap_sel = self->dtsap_sel;
676 break;
677 case -EADDRNOTAVAIL:
678 /* Requested service simply doesn't exist on this node */
679 break;
680 default:
681 /* Something bad did happen :-( */
682 IRDA_DEBUG(0, "%s(), unexpected IAS query failure\n", __FUNCTION__);
683 self->daddr = DEV_ADDR_ANY;
684 kfree(discoveries);
685 return(-EHOSTUNREACH);
686 break;
687 }
688 }
689 /* Cleanup our copy of the discovery log */
690 kfree(discoveries);
691
692 /* Check out what we found */
693 if(daddr == DEV_ADDR_ANY) {
694 IRDA_DEBUG(1, "%s(), cannot discover service ''%s'' in any device !!!\n",
695 __FUNCTION__, name);
696 self->daddr = DEV_ADDR_ANY;
697 return(-EADDRNOTAVAIL);
698 }
699
700 /* Revert back to discovered device & service */
701 self->daddr = daddr;
702 self->saddr = 0x0;
703 self->dtsap_sel = dtsap_sel;
704
705 IRDA_DEBUG(1, "%s(), discovered requested service ''%s'' at address %08x\n",
706 __FUNCTION__, name, self->daddr);
707
708 return 0;
709 }
710
711 /*
712 * Function irda_getname (sock, uaddr, uaddr_len, peer)
713 *
714 * Return the our own, or peers socket address (sockaddr_irda)
715 *
716 */
717 static int irda_getname(struct socket *sock, struct sockaddr *uaddr,
718 int *uaddr_len, int peer)
719 {
720 struct sockaddr_irda saddr;
721 struct sock *sk = sock->sk;
722 struct irda_sock *self = irda_sk(sk);
723
724 if (peer) {
725 if (sk->sk_state != TCP_ESTABLISHED)
726 return -ENOTCONN;
727
728 saddr.sir_family = AF_IRDA;
729 saddr.sir_lsap_sel = self->dtsap_sel;
730 saddr.sir_addr = self->daddr;
731 } else {
732 saddr.sir_family = AF_IRDA;
733 saddr.sir_lsap_sel = self->stsap_sel;
734 saddr.sir_addr = self->saddr;
735 }
736
737 IRDA_DEBUG(1, "%s(), tsap_sel = %#x\n", __FUNCTION__, saddr.sir_lsap_sel);
738 IRDA_DEBUG(1, "%s(), addr = %08x\n", __FUNCTION__, saddr.sir_addr);
739
740 /* uaddr_len come to us uninitialised */
741 *uaddr_len = sizeof (struct sockaddr_irda);
742 memcpy(uaddr, &saddr, *uaddr_len);
743
744 return 0;
745 }
746
747 /*
748 * Function irda_listen (sock, backlog)
749 *
750 * Just move to the listen state
751 *
752 */
753 static int irda_listen(struct socket *sock, int backlog)
754 {
755 struct sock *sk = sock->sk;
756
757 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
758
759 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
760 (sk->sk_type != SOCK_DGRAM))
761 return -EOPNOTSUPP;
762
763 if (sk->sk_state != TCP_LISTEN) {
764 sk->sk_max_ack_backlog = backlog;
765 sk->sk_state = TCP_LISTEN;
766
767 return 0;
768 }
769
770 return -EOPNOTSUPP;
771 }
772
773 /*
774 * Function irda_bind (sock, uaddr, addr_len)
775 *
776 * Used by servers to register their well known TSAP
777 *
778 */
779 static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
780 {
781 struct sock *sk = sock->sk;
782 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
783 struct irda_sock *self = irda_sk(sk);
784 int err;
785
786 IRDA_ASSERT(self != NULL, return -1;);
787
788 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
789
790 if (addr_len != sizeof(struct sockaddr_irda))
791 return -EINVAL;
792
793 #ifdef CONFIG_IRDA_ULTRA
794 /* Special care for Ultra sockets */
795 if ((sk->sk_type == SOCK_DGRAM) &&
796 (sk->sk_protocol == IRDAPROTO_ULTRA)) {
797 self->pid = addr->sir_lsap_sel;
798 if (self->pid & 0x80) {
799 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__);
800 return -EOPNOTSUPP;
801 }
802 err = irda_open_lsap(self, self->pid);
803 if (err < 0)
804 return err;
805
806 /* Pretend we are connected */
807 sock->state = SS_CONNECTED;
808 sk->sk_state = TCP_ESTABLISHED;
809
810 return 0;
811 }
812 #endif /* CONFIG_IRDA_ULTRA */
813
814 err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name);
815 if (err < 0)
816 return err;
817
818 /* Register with LM-IAS */
819 self->ias_obj = irias_new_object(addr->sir_name, jiffies);
820 irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel",
821 self->stsap_sel, IAS_KERNEL_ATTR);
822 irias_insert_object(self->ias_obj);
823
824 return 0;
825 }
826
827 /*
828 * Function irda_accept (sock, newsock, flags)
829 *
830 * Wait for incoming connection
831 *
832 */
833 static int irda_accept(struct socket *sock, struct socket *newsock, int flags)
834 {
835 struct sock *sk = sock->sk;
836 struct irda_sock *new, *self = irda_sk(sk);
837 struct sock *newsk;
838 struct sk_buff *skb;
839 int err;
840
841 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
842
843 IRDA_ASSERT(self != NULL, return -1;);
844
845 err = irda_create(newsock, sk->sk_protocol);
846 if (err)
847 return err;
848
849 if (sock->state != SS_UNCONNECTED)
850 return -EINVAL;
851
852 if ((sk = sock->sk) == NULL)
853 return -EINVAL;
854
855 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
856 (sk->sk_type != SOCK_DGRAM))
857 return -EOPNOTSUPP;
858
859 if (sk->sk_state != TCP_LISTEN)
860 return -EINVAL;
861
862 /*
863 * The read queue this time is holding sockets ready to use
864 * hooked into the SABM we saved
865 */
866
867 /*
868 * We can perform the accept only if there is incoming data
869 * on the listening socket.
870 * So, we will block the caller until we receive any data.
871 * If the caller was waiting on select() or poll() before
872 * calling us, the data is waiting for us ;-)
873 * Jean II
874 */
875 skb = skb_dequeue(&sk->sk_receive_queue);
876 if (skb == NULL) {
877 int ret = 0;
878 DECLARE_WAITQUEUE(waitq, current);
879
880 /* Non blocking operation */
881 if (flags & O_NONBLOCK)
882 return -EWOULDBLOCK;
883
884 /* The following code is a cut'n'paste of the
885 * wait_event_interruptible() macro.
886 * We don't us the macro because the condition has
887 * side effects : we want to make sure that only one
888 * skb get dequeued - Jean II */
889 add_wait_queue(sk->sk_sleep, &waitq);
890 for (;;) {
891 set_current_state(TASK_INTERRUPTIBLE);
892 skb = skb_dequeue(&sk->sk_receive_queue);
893 if (skb != NULL)
894 break;
895 if (!signal_pending(current)) {
896 schedule();
897 continue;
898 }
899 ret = -ERESTARTSYS;
900 break;
901 }
902 current->state = TASK_RUNNING;
903 remove_wait_queue(sk->sk_sleep, &waitq);
904 if(ret)
905 return -ERESTARTSYS;
906 }
907
908 newsk = newsock->sk;
909 newsk->sk_state = TCP_ESTABLISHED;
910
911 new = irda_sk(newsk);
912 IRDA_ASSERT(new != NULL, return -1;);
913
914 /* Now attach up the new socket */
915 new->tsap = irttp_dup(self->tsap, new);
916 if (!new->tsap) {
917 IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__);
918 kfree_skb(skb);
919 return -1;
920 }
921
922 new->stsap_sel = new->tsap->stsap_sel;
923 new->dtsap_sel = new->tsap->dtsap_sel;
924 new->saddr = irttp_get_saddr(new->tsap);
925 new->daddr = irttp_get_daddr(new->tsap);
926
927 new->max_sdu_size_tx = self->max_sdu_size_tx;
928 new->max_sdu_size_rx = self->max_sdu_size_rx;
929 new->max_data_size = self->max_data_size;
930 new->max_header_size = self->max_header_size;
931
932 memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info));
933
934 /* Clean up the original one to keep it in listen state */
935 irttp_listen(self->tsap);
936
937 /* Wow ! What is that ? Jean II */
938 skb->sk = NULL;
939 skb->destructor = NULL;
940 kfree_skb(skb);
941 sk->sk_ack_backlog--;
942
943 newsock->state = SS_CONNECTED;
944
945 irda_connect_response(new);
946
947 return 0;
948 }
949
950 /*
951 * Function irda_connect (sock, uaddr, addr_len, flags)
952 *
953 * Connect to a IrDA device
954 *
955 * The main difference with a "standard" connect is that with IrDA we need
956 * to resolve the service name into a TSAP selector (in TCP, port number
957 * doesn't have to be resolved).
958 * Because of this service name resoltion, we can offer "auto-connect",
959 * where we connect to a service without specifying a destination address.
960 *
961 * Note : by consulting "errno", the user space caller may learn the cause
962 * of the failure. Most of them are visible in the function, others may come
963 * from subroutines called and are listed here :
964 * o EBUSY : already processing a connect
965 * o EHOSTUNREACH : bad addr->sir_addr argument
966 * o EADDRNOTAVAIL : bad addr->sir_name argument
967 * o ENOTUNIQ : more than one node has addr->sir_name (auto-connect)
968 * o ENETUNREACH : no node found on the network (auto-connect)
969 */
970 static int irda_connect(struct socket *sock, struct sockaddr *uaddr,
971 int addr_len, int flags)
972 {
973 struct sock *sk = sock->sk;
974 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
975 struct irda_sock *self = irda_sk(sk);
976 int err;
977
978 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
979
980 /* Don't allow connect for Ultra sockets */
981 if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA))
982 return -ESOCKTNOSUPPORT;
983
984 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
985 sock->state = SS_CONNECTED;
986 return 0; /* Connect completed during a ERESTARTSYS event */
987 }
988
989 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
990 sock->state = SS_UNCONNECTED;
991 return -ECONNREFUSED;
992 }
993
994 if (sk->sk_state == TCP_ESTABLISHED)
995 return -EISCONN; /* No reconnect on a seqpacket socket */
996
997 sk->sk_state = TCP_CLOSE;
998 sock->state = SS_UNCONNECTED;
999
1000 if (addr_len != sizeof(struct sockaddr_irda))
1001 return -EINVAL;
1002
1003 /* Check if user supplied any destination device address */
1004 if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) {
1005 /* Try to find one suitable */
1006 err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name);
1007 if (err) {
1008 IRDA_DEBUG(0, "%s(), auto-connect failed!\n", __FUNCTION__);
1009 return err;
1010 }
1011 } else {
1012 /* Use the one provided by the user */
1013 self->daddr = addr->sir_addr;
1014 IRDA_DEBUG(1, "%s(), daddr = %08x\n", __FUNCTION__, self->daddr);
1015
1016 /* If we don't have a valid service name, we assume the
1017 * user want to connect on a specific LSAP. Prevent
1018 * the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */
1019 if((addr->sir_name[0] != '\0') ||
1020 (addr->sir_lsap_sel >= 0x70)) {
1021 /* Query remote LM-IAS using service name */
1022 err = irda_find_lsap_sel(self, addr->sir_name);
1023 if (err) {
1024 IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__);
1025 return err;
1026 }
1027 } else {
1028 /* Directly connect to the remote LSAP
1029 * specified by the sir_lsap field.
1030 * Please use with caution, in IrDA LSAPs are
1031 * dynamic and there is no "well-known" LSAP. */
1032 self->dtsap_sel = addr->sir_lsap_sel;
1033 }
1034 }
1035
1036 /* Check if we have opened a local TSAP */
1037 if (!self->tsap)
1038 irda_open_tsap(self, LSAP_ANY, addr->sir_name);
1039
1040 /* Move to connecting socket, start sending Connect Requests */
1041 sock->state = SS_CONNECTING;
1042 sk->sk_state = TCP_SYN_SENT;
1043
1044 /* Connect to remote device */
1045 err = irttp_connect_request(self->tsap, self->dtsap_sel,
1046 self->saddr, self->daddr, NULL,
1047 self->max_sdu_size_rx, NULL);
1048 if (err) {
1049 IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__);
1050 return err;
1051 }
1052
1053 /* Now the loop */
1054 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
1055 return -EINPROGRESS;
1056
1057 if (wait_event_interruptible(*(sk->sk_sleep),
1058 (sk->sk_state != TCP_SYN_SENT)))
1059 return -ERESTARTSYS;
1060
1061 if (sk->sk_state != TCP_ESTABLISHED) {
1062 sock->state = SS_UNCONNECTED;
1063 return sock_error(sk); /* Always set at this point */
1064 }
1065
1066 sock->state = SS_CONNECTED;
1067
1068 /* At this point, IrLMP has assigned our source address */
1069 self->saddr = irttp_get_saddr(self->tsap);
1070
1071 return 0;
1072 }
1073
1074 static struct proto irda_proto = {
1075 .name = "IRDA",
1076 .owner = THIS_MODULE,
1077 .obj_size = sizeof(struct irda_sock),
1078 };
1079
1080 /*
1081 * Function irda_create (sock, protocol)
1082 *
1083 * Create IrDA socket
1084 *
1085 */
1086 static int irda_create(struct socket *sock, int protocol)
1087 {
1088 struct sock *sk;
1089 struct irda_sock *self;
1090
1091 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
1092
1093 /* Check for valid socket type */
1094 switch (sock->type) {
1095 case SOCK_STREAM: /* For TTP connections with SAR disabled */
1096 case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */
1097 case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */
1098 break;
1099 default:
1100 return -ESOCKTNOSUPPORT;
1101 }
1102
1103 /* Allocate networking socket */
1104 sk = sk_alloc(PF_IRDA, GFP_ATOMIC, &irda_proto, 1);
1105 if (sk == NULL)
1106 return -ENOMEM;
1107
1108 self = irda_sk(sk);
1109 IRDA_DEBUG(2, "%s() : self is %p\n", __FUNCTION__, self);
1110
1111 init_waitqueue_head(&self->query_wait);
1112
1113 /* Initialise networking socket struct */
1114 sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */
1115 sk->sk_family = PF_IRDA;
1116 sk->sk_protocol = protocol;
1117
1118 switch (sock->type) {
1119 case SOCK_STREAM:
1120 sock->ops = &irda_stream_ops;
1121 self->max_sdu_size_rx = TTP_SAR_DISABLE;
1122 break;
1123 case SOCK_SEQPACKET:
1124 sock->ops = &irda_seqpacket_ops;
1125 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1126 break;
1127 case SOCK_DGRAM:
1128 switch (protocol) {
1129 #ifdef CONFIG_IRDA_ULTRA
1130 case IRDAPROTO_ULTRA:
1131 sock->ops = &irda_ultra_ops;
1132 /* Initialise now, because we may send on unbound
1133 * sockets. Jean II */
1134 self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER;
1135 self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER;
1136 break;
1137 #endif /* CONFIG_IRDA_ULTRA */
1138 case IRDAPROTO_UNITDATA:
1139 sock->ops = &irda_dgram_ops;
1140 /* We let Unitdata conn. be like seqpack conn. */
1141 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1142 break;
1143 default:
1144 IRDA_ERROR("%s: protocol not supported!\n",
1145 __FUNCTION__);
1146 return -ESOCKTNOSUPPORT;
1147 }
1148 break;
1149 default:
1150 return -ESOCKTNOSUPPORT;
1151 }
1152
1153 /* Register as a client with IrLMP */
1154 self->ckey = irlmp_register_client(0, NULL, NULL, NULL);
1155 self->mask.word = 0xffff;
1156 self->rx_flow = self->tx_flow = FLOW_START;
1157 self->nslots = DISCOVERY_DEFAULT_SLOTS;
1158 self->daddr = DEV_ADDR_ANY; /* Until we get connected */
1159 self->saddr = 0x0; /* so IrLMP assign us any link */
1160 return 0;
1161 }
1162
1163 /*
1164 * Function irda_destroy_socket (self)
1165 *
1166 * Destroy socket
1167 *
1168 */
1169 static void irda_destroy_socket(struct irda_sock *self)
1170 {
1171 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
1172
1173 IRDA_ASSERT(self != NULL, return;);
1174
1175 /* Unregister with IrLMP */
1176 irlmp_unregister_client(self->ckey);
1177 irlmp_unregister_service(self->skey);
1178
1179 /* Unregister with LM-IAS */
1180 if (self->ias_obj) {
1181 irias_delete_object(self->ias_obj);
1182 self->ias_obj = NULL;
1183 }
1184
1185 if (self->iriap) {
1186 iriap_close(self->iriap);
1187 self->iriap = NULL;
1188 }
1189
1190 if (self->tsap) {
1191 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1192 irttp_close_tsap(self->tsap);
1193 self->tsap = NULL;
1194 }
1195 #ifdef CONFIG_IRDA_ULTRA
1196 if (self->lsap) {
1197 irlmp_close_lsap(self->lsap);
1198 self->lsap = NULL;
1199 }
1200 #endif /* CONFIG_IRDA_ULTRA */
1201 }
1202
1203 /*
1204 * Function irda_release (sock)
1205 */
1206 static int irda_release(struct socket *sock)
1207 {
1208 struct sock *sk = sock->sk;
1209
1210 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
1211
1212 if (sk == NULL)
1213 return 0;
1214
1215 sk->sk_state = TCP_CLOSE;
1216 sk->sk_shutdown |= SEND_SHUTDOWN;
1217 sk->sk_state_change(sk);
1218
1219 /* Destroy IrDA socket */
1220 irda_destroy_socket(irda_sk(sk));
1221
1222 sock_orphan(sk);
1223 sock->sk = NULL;
1224
1225 /* Purge queues (see sock_init_data()) */
1226 skb_queue_purge(&sk->sk_receive_queue);
1227
1228 /* Destroy networking socket if we are the last reference on it,
1229 * i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */
1230 sock_put(sk);
1231
1232 /* Notes on socket locking and deallocation... - Jean II
1233 * In theory we should put pairs of sock_hold() / sock_put() to
1234 * prevent the socket to be destroyed whenever there is an
1235 * outstanding request or outstanding incoming packet or event.
1236 *
1237 * 1) This may include IAS request, both in connect and getsockopt.
1238 * Unfortunately, the situation is a bit more messy than it looks,
1239 * because we close iriap and kfree(self) above.
1240 *
1241 * 2) This may include selective discovery in getsockopt.
1242 * Same stuff as above, irlmp registration and self are gone.
1243 *
1244 * Probably 1 and 2 may not matter, because it's all triggered
1245 * by a process and the socket layer already prevent the
1246 * socket to go away while a process is holding it, through
1247 * sockfd_put() and fput()...
1248 *
1249 * 3) This may include deferred TSAP closure. In particular,
1250 * we may receive a late irda_disconnect_indication()
1251 * Fortunately, (tsap_cb *)->close_pend should protect us
1252 * from that.
1253 *
1254 * I did some testing on SMP, and it looks solid. And the socket
1255 * memory leak is now gone... - Jean II
1256 */
1257
1258 return 0;
1259 }
1260
1261 /*
1262 * Function irda_sendmsg (iocb, sock, msg, len)
1263 *
1264 * Send message down to TinyTP. This function is used for both STREAM and
1265 * SEQPACK services. This is possible since it forces the client to
1266 * fragment the message if necessary
1267 */
1268 static int irda_sendmsg(struct kiocb *iocb, struct socket *sock,
1269 struct msghdr *msg, size_t len)
1270 {
1271 struct sock *sk = sock->sk;
1272 struct irda_sock *self;
1273 struct sk_buff *skb;
1274 unsigned char *asmptr;
1275 int err;
1276
1277 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1278
1279 /* Note : socket.c set MSG_EOR on SEQPACKET sockets */
1280 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1281 return -EINVAL;
1282
1283 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1284 send_sig(SIGPIPE, current, 0);
1285 return -EPIPE;
1286 }
1287
1288 if (sk->sk_state != TCP_ESTABLISHED)
1289 return -ENOTCONN;
1290
1291 self = irda_sk(sk);
1292 IRDA_ASSERT(self != NULL, return -1;);
1293
1294 /* Check if IrTTP is wants us to slow down */
1295
1296 if (wait_event_interruptible(*(sk->sk_sleep),
1297 (self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED)))
1298 return -ERESTARTSYS;
1299
1300 /* Check if we are still connected */
1301 if (sk->sk_state != TCP_ESTABLISHED)
1302 return -ENOTCONN;
1303
1304 /* Check that we don't send out too big frames */
1305 if (len > self->max_data_size) {
1306 IRDA_DEBUG(2, "%s(), Chopping frame from %zd to %d bytes!\n",
1307 __FUNCTION__, len, self->max_data_size);
1308 len = self->max_data_size;
1309 }
1310
1311 skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16,
1312 msg->msg_flags & MSG_DONTWAIT, &err);
1313 if (!skb)
1314 return -ENOBUFS;
1315
1316 skb_reserve(skb, self->max_header_size + 16);
1317
1318 asmptr = skb->h.raw = skb_put(skb, len);
1319 err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1320 if (err) {
1321 kfree_skb(skb);
1322 return err;
1323 }
1324
1325 /*
1326 * Just send the message to TinyTP, and let it deal with possible
1327 * errors. No need to duplicate all that here
1328 */
1329 err = irttp_data_request(self->tsap, skb);
1330 if (err) {
1331 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1332 return err;
1333 }
1334 /* Tell client how much data we actually sent */
1335 return len;
1336 }
1337
1338 /*
1339 * Function irda_recvmsg_dgram (iocb, sock, msg, size, flags)
1340 *
1341 * Try to receive message and copy it to user. The frame is discarded
1342 * after being read, regardless of how much the user actually read
1343 */
1344 static int irda_recvmsg_dgram(struct kiocb *iocb, struct socket *sock,
1345 struct msghdr *msg, size_t size, int flags)
1346 {
1347 struct sock *sk = sock->sk;
1348 struct irda_sock *self = irda_sk(sk);
1349 struct sk_buff *skb;
1350 size_t copied;
1351 int err;
1352
1353 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1354
1355 IRDA_ASSERT(self != NULL, return -1;);
1356
1357 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1358 flags & MSG_DONTWAIT, &err);
1359 if (!skb)
1360 return err;
1361
1362 skb->h.raw = skb->data;
1363 copied = skb->len;
1364
1365 if (copied > size) {
1366 IRDA_DEBUG(2, "%s(), Received truncated frame (%zd < %zd)!\n",
1367 __FUNCTION__, copied, size);
1368 copied = size;
1369 msg->msg_flags |= MSG_TRUNC;
1370 }
1371 skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1372
1373 skb_free_datagram(sk, skb);
1374
1375 /*
1376 * Check if we have previously stopped IrTTP and we know
1377 * have more free space in our rx_queue. If so tell IrTTP
1378 * to start delivering frames again before our rx_queue gets
1379 * empty
1380 */
1381 if (self->rx_flow == FLOW_STOP) {
1382 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1383 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__);
1384 self->rx_flow = FLOW_START;
1385 irttp_flow_request(self->tsap, FLOW_START);
1386 }
1387 }
1388
1389 return copied;
1390 }
1391
1392 /*
1393 * Function irda_recvmsg_stream (iocb, sock, msg, size, flags)
1394 */
1395 static int irda_recvmsg_stream(struct kiocb *iocb, struct socket *sock,
1396 struct msghdr *msg, size_t size, int flags)
1397 {
1398 struct sock *sk = sock->sk;
1399 struct irda_sock *self = irda_sk(sk);
1400 int noblock = flags & MSG_DONTWAIT;
1401 size_t copied = 0;
1402 int target = 1;
1403 DECLARE_WAITQUEUE(waitq, current);
1404
1405 IRDA_DEBUG(3, "%s()\n", __FUNCTION__);
1406
1407 IRDA_ASSERT(self != NULL, return -1;);
1408
1409 if (sock->flags & __SO_ACCEPTCON)
1410 return(-EINVAL);
1411
1412 if (flags & MSG_OOB)
1413 return -EOPNOTSUPP;
1414
1415 if (flags & MSG_WAITALL)
1416 target = size;
1417
1418 msg->msg_namelen = 0;
1419
1420 do {
1421 int chunk;
1422 struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue);
1423
1424 if (skb==NULL) {
1425 int ret = 0;
1426
1427 if (copied >= target)
1428 break;
1429
1430 /* The following code is a cut'n'paste of the
1431 * wait_event_interruptible() macro.
1432 * We don't us the macro because the test condition
1433 * is messy. - Jean II */
1434 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1435 add_wait_queue(sk->sk_sleep, &waitq);
1436 set_current_state(TASK_INTERRUPTIBLE);
1437
1438 /*
1439 * POSIX 1003.1g mandates this order.
1440 */
1441 ret = sock_error(sk);
1442 if (ret)
1443 break;
1444 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1445 ;
1446 else if (noblock)
1447 ret = -EAGAIN;
1448 else if (signal_pending(current))
1449 ret = -ERESTARTSYS;
1450 else if (skb_peek(&sk->sk_receive_queue) == NULL)
1451 /* Wait process until data arrives */
1452 schedule();
1453
1454 current->state = TASK_RUNNING;
1455 remove_wait_queue(sk->sk_sleep, &waitq);
1456 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1457
1458 if(ret)
1459 return(ret);
1460 if (sk->sk_shutdown & RCV_SHUTDOWN)
1461 break;
1462
1463 continue;
1464 }
1465
1466 chunk = min_t(unsigned int, skb->len, size);
1467 if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) {
1468 skb_queue_head(&sk->sk_receive_queue, skb);
1469 if (copied == 0)
1470 copied = -EFAULT;
1471 break;
1472 }
1473 copied += chunk;
1474 size -= chunk;
1475
1476 /* Mark read part of skb as used */
1477 if (!(flags & MSG_PEEK)) {
1478 skb_pull(skb, chunk);
1479
1480 /* put the skb back if we didn't use it up.. */
1481 if (skb->len) {
1482 IRDA_DEBUG(1, "%s(), back on q!\n",
1483 __FUNCTION__);
1484 skb_queue_head(&sk->sk_receive_queue, skb);
1485 break;
1486 }
1487
1488 kfree_skb(skb);
1489 } else {
1490 IRDA_DEBUG(0, "%s() questionable!?\n", __FUNCTION__);
1491
1492 /* put message back and return */
1493 skb_queue_head(&sk->sk_receive_queue, skb);
1494 break;
1495 }
1496 } while (size);
1497
1498 /*
1499 * Check if we have previously stopped IrTTP and we know
1500 * have more free space in our rx_queue. If so tell IrTTP
1501 * to start delivering frames again before our rx_queue gets
1502 * empty
1503 */
1504 if (self->rx_flow == FLOW_STOP) {
1505 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1506 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__);
1507 self->rx_flow = FLOW_START;
1508 irttp_flow_request(self->tsap, FLOW_START);
1509 }
1510 }
1511
1512 return copied;
1513 }
1514
1515 /*
1516 * Function irda_sendmsg_dgram (iocb, sock, msg, len)
1517 *
1518 * Send message down to TinyTP for the unreliable sequenced
1519 * packet service...
1520 *
1521 */
1522 static int irda_sendmsg_dgram(struct kiocb *iocb, struct socket *sock,
1523 struct msghdr *msg, size_t len)
1524 {
1525 struct sock *sk = sock->sk;
1526 struct irda_sock *self;
1527 struct sk_buff *skb;
1528 unsigned char *asmptr;
1529 int err;
1530
1531 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1532
1533 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1534 return -EINVAL;
1535
1536 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1537 send_sig(SIGPIPE, current, 0);
1538 return -EPIPE;
1539 }
1540
1541 if (sk->sk_state != TCP_ESTABLISHED)
1542 return -ENOTCONN;
1543
1544 self = irda_sk(sk);
1545 IRDA_ASSERT(self != NULL, return -1;);
1546
1547 /*
1548 * Check that we don't send out too big frames. This is an unreliable
1549 * service, so we have no fragmentation and no coalescence
1550 */
1551 if (len > self->max_data_size) {
1552 IRDA_DEBUG(0, "%s(), Warning to much data! "
1553 "Chopping frame from %zd to %d bytes!\n",
1554 __FUNCTION__, len, self->max_data_size);
1555 len = self->max_data_size;
1556 }
1557
1558 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1559 msg->msg_flags & MSG_DONTWAIT, &err);
1560 if (!skb)
1561 return -ENOBUFS;
1562
1563 skb_reserve(skb, self->max_header_size);
1564
1565 IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__);
1566 asmptr = skb->h.raw = skb_put(skb, len);
1567 err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1568 if (err) {
1569 kfree_skb(skb);
1570 return err;
1571 }
1572
1573 /*
1574 * Just send the message to TinyTP, and let it deal with possible
1575 * errors. No need to duplicate all that here
1576 */
1577 err = irttp_udata_request(self->tsap, skb);
1578 if (err) {
1579 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1580 return err;
1581 }
1582 return len;
1583 }
1584
1585 /*
1586 * Function irda_sendmsg_ultra (iocb, sock, msg, len)
1587 *
1588 * Send message down to IrLMP for the unreliable Ultra
1589 * packet service...
1590 */
1591 #ifdef CONFIG_IRDA_ULTRA
1592 static int irda_sendmsg_ultra(struct kiocb *iocb, struct socket *sock,
1593 struct msghdr *msg, size_t len)
1594 {
1595 struct sock *sk = sock->sk;
1596 struct irda_sock *self;
1597 __u8 pid = 0;
1598 int bound = 0;
1599 struct sk_buff *skb;
1600 unsigned char *asmptr;
1601 int err;
1602
1603 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1604
1605 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1606 return -EINVAL;
1607
1608 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1609 send_sig(SIGPIPE, current, 0);
1610 return -EPIPE;
1611 }
1612
1613 self = irda_sk(sk);
1614 IRDA_ASSERT(self != NULL, return -1;);
1615
1616 /* Check if an address was specified with sendto. Jean II */
1617 if (msg->msg_name) {
1618 struct sockaddr_irda *addr = (struct sockaddr_irda *) msg->msg_name;
1619 /* Check address, extract pid. Jean II */
1620 if (msg->msg_namelen < sizeof(*addr))
1621 return -EINVAL;
1622 if (addr->sir_family != AF_IRDA)
1623 return -EINVAL;
1624
1625 pid = addr->sir_lsap_sel;
1626 if (pid & 0x80) {
1627 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__);
1628 return -EOPNOTSUPP;
1629 }
1630 } else {
1631 /* Check that the socket is properly bound to an Ultra
1632 * port. Jean II */
1633 if ((self->lsap == NULL) ||
1634 (sk->sk_state != TCP_ESTABLISHED)) {
1635 IRDA_DEBUG(0, "%s(), socket not bound to Ultra PID.\n",
1636 __FUNCTION__);
1637 return -ENOTCONN;
1638 }
1639 /* Use PID from socket */
1640 bound = 1;
1641 }
1642
1643 /*
1644 * Check that we don't send out too big frames. This is an unreliable
1645 * service, so we have no fragmentation and no coalescence
1646 */
1647 if (len > self->max_data_size) {
1648 IRDA_DEBUG(0, "%s(), Warning to much data! "
1649 "Chopping frame from %zd to %d bytes!\n",
1650 __FUNCTION__, len, self->max_data_size);
1651 len = self->max_data_size;
1652 }
1653
1654 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1655 msg->msg_flags & MSG_DONTWAIT, &err);
1656 if (!skb)
1657 return -ENOBUFS;
1658
1659 skb_reserve(skb, self->max_header_size);
1660
1661 IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__);
1662 asmptr = skb->h.raw = skb_put(skb, len);
1663 err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1664 if (err) {
1665 kfree_skb(skb);
1666 return err;
1667 }
1668
1669 err = irlmp_connless_data_request((bound ? self->lsap : NULL),
1670 skb, pid);
1671 if (err) {
1672 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1673 return err;
1674 }
1675 return len;
1676 }
1677 #endif /* CONFIG_IRDA_ULTRA */
1678
1679 /*
1680 * Function irda_shutdown (sk, how)
1681 */
1682 static int irda_shutdown(struct socket *sock, int how)
1683 {
1684 struct sock *sk = sock->sk;
1685 struct irda_sock *self = irda_sk(sk);
1686
1687 IRDA_ASSERT(self != NULL, return -1;);
1688
1689 IRDA_DEBUG(1, "%s(%p)\n", __FUNCTION__, self);
1690
1691 sk->sk_state = TCP_CLOSE;
1692 sk->sk_shutdown |= SEND_SHUTDOWN;
1693 sk->sk_state_change(sk);
1694
1695 if (self->iriap) {
1696 iriap_close(self->iriap);
1697 self->iriap = NULL;
1698 }
1699
1700 if (self->tsap) {
1701 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1702 irttp_close_tsap(self->tsap);
1703 self->tsap = NULL;
1704 }
1705
1706 /* A few cleanup so the socket look as good as new... */
1707 self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */
1708 self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */
1709 self->saddr = 0x0; /* so IrLMP assign us any link */
1710
1711 return 0;
1712 }
1713
1714 /*
1715 * Function irda_poll (file, sock, wait)
1716 */
1717 static unsigned int irda_poll(struct file * file, struct socket *sock,
1718 poll_table *wait)
1719 {
1720 struct sock *sk = sock->sk;
1721 struct irda_sock *self = irda_sk(sk);
1722 unsigned int mask;
1723
1724 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1725
1726 poll_wait(file, sk->sk_sleep, wait);
1727 mask = 0;
1728
1729 /* Exceptional events? */
1730 if (sk->sk_err)
1731 mask |= POLLERR;
1732 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1733 IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__);
1734 mask |= POLLHUP;
1735 }
1736
1737 /* Readable? */
1738 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1739 IRDA_DEBUG(4, "Socket is readable\n");
1740 mask |= POLLIN | POLLRDNORM;
1741 }
1742
1743 /* Connection-based need to check for termination and startup */
1744 switch (sk->sk_type) {
1745 case SOCK_STREAM:
1746 if (sk->sk_state == TCP_CLOSE) {
1747 IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__);
1748 mask |= POLLHUP;
1749 }
1750
1751 if (sk->sk_state == TCP_ESTABLISHED) {
1752 if ((self->tx_flow == FLOW_START) &&
1753 sock_writeable(sk))
1754 {
1755 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1756 }
1757 }
1758 break;
1759 case SOCK_SEQPACKET:
1760 if ((self->tx_flow == FLOW_START) &&
1761 sock_writeable(sk))
1762 {
1763 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1764 }
1765 break;
1766 case SOCK_DGRAM:
1767 if (sock_writeable(sk))
1768 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1769 break;
1770 default:
1771 break;
1772 }
1773 return mask;
1774 }
1775
1776 /*
1777 * Function irda_ioctl (sock, cmd, arg)
1778 */
1779 static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1780 {
1781 struct sock *sk = sock->sk;
1782
1783 IRDA_DEBUG(4, "%s(), cmd=%#x\n", __FUNCTION__, cmd);
1784
1785 switch (cmd) {
1786 case TIOCOUTQ: {
1787 long amount;
1788 amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1789 if (amount < 0)
1790 amount = 0;
1791 if (put_user(amount, (unsigned int __user *)arg))
1792 return -EFAULT;
1793 return 0;
1794 }
1795
1796 case TIOCINQ: {
1797 struct sk_buff *skb;
1798 long amount = 0L;
1799 /* These two are safe on a single CPU system as only user tasks fiddle here */
1800 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1801 amount = skb->len;
1802 if (put_user(amount, (unsigned int __user *)arg))
1803 return -EFAULT;
1804 return 0;
1805 }
1806
1807 case SIOCGSTAMP:
1808 if (sk != NULL)
1809 return sock_get_timestamp(sk, (struct timeval __user *)arg);
1810 return -EINVAL;
1811
1812 case SIOCGIFADDR:
1813 case SIOCSIFADDR:
1814 case SIOCGIFDSTADDR:
1815 case SIOCSIFDSTADDR:
1816 case SIOCGIFBRDADDR:
1817 case SIOCSIFBRDADDR:
1818 case SIOCGIFNETMASK:
1819 case SIOCSIFNETMASK:
1820 case SIOCGIFMETRIC:
1821 case SIOCSIFMETRIC:
1822 return -EINVAL;
1823 default:
1824 IRDA_DEBUG(1, "%s(), doing device ioctl!\n", __FUNCTION__);
1825 return -ENOIOCTLCMD;
1826 }
1827
1828 /*NOTREACHED*/
1829 return 0;
1830 }
1831
1832 #ifdef CONFIG_COMPAT
1833 /*
1834 * Function irda_ioctl (sock, cmd, arg)
1835 */
1836 static int irda_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1837 {
1838 /*
1839 * All IRDA's ioctl are standard ones.
1840 */
1841 return -ENOIOCTLCMD;
1842 }
1843 #endif
1844
1845 /*
1846 * Function irda_setsockopt (sock, level, optname, optval, optlen)
1847 *
1848 * Set some options for the socket
1849 *
1850 */
1851 static int irda_setsockopt(struct socket *sock, int level, int optname,
1852 char __user *optval, int optlen)
1853 {
1854 struct sock *sk = sock->sk;
1855 struct irda_sock *self = irda_sk(sk);
1856 struct irda_ias_set *ias_opt;
1857 struct ias_object *ias_obj;
1858 struct ias_attrib * ias_attr; /* Attribute in IAS object */
1859 int opt;
1860
1861 IRDA_ASSERT(self != NULL, return -1;);
1862
1863 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
1864
1865 if (level != SOL_IRLMP)
1866 return -ENOPROTOOPT;
1867
1868 switch (optname) {
1869 case IRLMP_IAS_SET:
1870 /* The user want to add an attribute to an existing IAS object
1871 * (in the IAS database) or to create a new object with this
1872 * attribute.
1873 * We first query IAS to know if the object exist, and then
1874 * create the right attribute...
1875 */
1876
1877 if (optlen != sizeof(struct irda_ias_set))
1878 return -EINVAL;
1879
1880 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1881 if (ias_opt == NULL)
1882 return -ENOMEM;
1883
1884 /* Copy query to the driver. */
1885 if (copy_from_user(ias_opt, optval, optlen)) {
1886 kfree(ias_opt);
1887 return -EFAULT;
1888 }
1889
1890 /* Find the object we target.
1891 * If the user gives us an empty string, we use the object
1892 * associated with this socket. This will workaround
1893 * duplicated class name - Jean II */
1894 if(ias_opt->irda_class_name[0] == '\0') {
1895 if(self->ias_obj == NULL) {
1896 kfree(ias_opt);
1897 return -EINVAL;
1898 }
1899 ias_obj = self->ias_obj;
1900 } else
1901 ias_obj = irias_find_object(ias_opt->irda_class_name);
1902
1903 /* Only ROOT can mess with the global IAS database.
1904 * Users can only add attributes to the object associated
1905 * with the socket they own - Jean II */
1906 if((!capable(CAP_NET_ADMIN)) &&
1907 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
1908 kfree(ias_opt);
1909 return -EPERM;
1910 }
1911
1912 /* If the object doesn't exist, create it */
1913 if(ias_obj == (struct ias_object *) NULL) {
1914 /* Create a new object */
1915 ias_obj = irias_new_object(ias_opt->irda_class_name,
1916 jiffies);
1917 }
1918
1919 /* Do we have the attribute already ? */
1920 if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) {
1921 kfree(ias_opt);
1922 return -EINVAL;
1923 }
1924
1925 /* Look at the type */
1926 switch(ias_opt->irda_attrib_type) {
1927 case IAS_INTEGER:
1928 /* Add an integer attribute */
1929 irias_add_integer_attrib(
1930 ias_obj,
1931 ias_opt->irda_attrib_name,
1932 ias_opt->attribute.irda_attrib_int,
1933 IAS_USER_ATTR);
1934 break;
1935 case IAS_OCT_SEQ:
1936 /* Check length */
1937 if(ias_opt->attribute.irda_attrib_octet_seq.len >
1938 IAS_MAX_OCTET_STRING) {
1939 kfree(ias_opt);
1940 return -EINVAL;
1941 }
1942 /* Add an octet sequence attribute */
1943 irias_add_octseq_attrib(
1944 ias_obj,
1945 ias_opt->irda_attrib_name,
1946 ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
1947 ias_opt->attribute.irda_attrib_octet_seq.len,
1948 IAS_USER_ATTR);
1949 break;
1950 case IAS_STRING:
1951 /* Should check charset & co */
1952 /* Check length */
1953 /* The length is encoded in a __u8, and
1954 * IAS_MAX_STRING == 256, so there is no way
1955 * userspace can pass us a string too large.
1956 * Jean II */
1957 /* NULL terminate the string (avoid troubles) */
1958 ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0';
1959 /* Add a string attribute */
1960 irias_add_string_attrib(
1961 ias_obj,
1962 ias_opt->irda_attrib_name,
1963 ias_opt->attribute.irda_attrib_string.string,
1964 IAS_USER_ATTR);
1965 break;
1966 default :
1967 kfree(ias_opt);
1968 return -EINVAL;
1969 }
1970 irias_insert_object(ias_obj);
1971 kfree(ias_opt);
1972 break;
1973 case IRLMP_IAS_DEL:
1974 /* The user want to delete an object from our local IAS
1975 * database. We just need to query the IAS, check is the
1976 * object is not owned by the kernel and delete it.
1977 */
1978
1979 if (optlen != sizeof(struct irda_ias_set))
1980 return -EINVAL;
1981
1982 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1983 if (ias_opt == NULL)
1984 return -ENOMEM;
1985
1986 /* Copy query to the driver. */
1987 if (copy_from_user(ias_opt, optval, optlen)) {
1988 kfree(ias_opt);
1989 return -EFAULT;
1990 }
1991
1992 /* Find the object we target.
1993 * If the user gives us an empty string, we use the object
1994 * associated with this socket. This will workaround
1995 * duplicated class name - Jean II */
1996 if(ias_opt->irda_class_name[0] == '\0')
1997 ias_obj = self->ias_obj;
1998 else
1999 ias_obj = irias_find_object(ias_opt->irda_class_name);
2000 if(ias_obj == (struct ias_object *) NULL) {
2001 kfree(ias_opt);
2002 return -EINVAL;
2003 }
2004
2005 /* Only ROOT can mess with the global IAS database.
2006 * Users can only del attributes from the object associated
2007 * with the socket they own - Jean II */
2008 if((!capable(CAP_NET_ADMIN)) &&
2009 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
2010 kfree(ias_opt);
2011 return -EPERM;
2012 }
2013
2014 /* Find the attribute (in the object) we target */
2015 ias_attr = irias_find_attrib(ias_obj,
2016 ias_opt->irda_attrib_name);
2017 if(ias_attr == (struct ias_attrib *) NULL) {
2018 kfree(ias_opt);
2019 return -EINVAL;
2020 }
2021
2022 /* Check is the user space own the object */
2023 if(ias_attr->value->owner != IAS_USER_ATTR) {
2024 IRDA_DEBUG(1, "%s(), attempting to delete a kernel attribute\n", __FUNCTION__);
2025 kfree(ias_opt);
2026 return -EPERM;
2027 }
2028
2029 /* Remove the attribute (and maybe the object) */
2030 irias_delete_attrib(ias_obj, ias_attr, 1);
2031 kfree(ias_opt);
2032 break;
2033 case IRLMP_MAX_SDU_SIZE:
2034 if (optlen < sizeof(int))
2035 return -EINVAL;
2036
2037 if (get_user(opt, (int __user *)optval))
2038 return -EFAULT;
2039
2040 /* Only possible for a seqpacket service (TTP with SAR) */
2041 if (sk->sk_type != SOCK_SEQPACKET) {
2042 IRDA_DEBUG(2, "%s(), setting max_sdu_size = %d\n",
2043 __FUNCTION__, opt);
2044 self->max_sdu_size_rx = opt;
2045 } else {
2046 IRDA_WARNING("%s: not allowed to set MAXSDUSIZE for this socket type!\n",
2047 __FUNCTION__);
2048 return -ENOPROTOOPT;
2049 }
2050 break;
2051 case IRLMP_HINTS_SET:
2052 if (optlen < sizeof(int))
2053 return -EINVAL;
2054
2055 /* The input is really a (__u8 hints[2]), easier as an int */
2056 if (get_user(opt, (int __user *)optval))
2057 return -EFAULT;
2058
2059 /* Unregister any old registration */
2060 if (self->skey)
2061 irlmp_unregister_service(self->skey);
2062
2063 self->skey = irlmp_register_service((__u16) opt);
2064 break;
2065 case IRLMP_HINT_MASK_SET:
2066 /* As opposed to the previous case which set the hint bits
2067 * that we advertise, this one set the filter we use when
2068 * making a discovery (nodes which don't match any hint
2069 * bit in the mask are not reported).
2070 */
2071 if (optlen < sizeof(int))
2072 return -EINVAL;
2073
2074 /* The input is really a (__u8 hints[2]), easier as an int */
2075 if (get_user(opt, (int __user *)optval))
2076 return -EFAULT;
2077
2078 /* Set the new hint mask */
2079 self->mask.word = (__u16) opt;
2080 /* Mask out extension bits */
2081 self->mask.word &= 0x7f7f;
2082 /* Check if no bits */
2083 if(!self->mask.word)
2084 self->mask.word = 0xFFFF;
2085
2086 break;
2087 default:
2088 return -ENOPROTOOPT;
2089 }
2090 return 0;
2091 }
2092
2093 /*
2094 * Function irda_extract_ias_value(ias_opt, ias_value)
2095 *
2096 * Translate internal IAS value structure to the user space representation
2097 *
2098 * The external representation of IAS values, as we exchange them with
2099 * user space program is quite different from the internal representation,
2100 * as stored in the IAS database (because we need a flat structure for
2101 * crossing kernel boundary).
2102 * This function transform the former in the latter. We also check
2103 * that the value type is valid.
2104 */
2105 static int irda_extract_ias_value(struct irda_ias_set *ias_opt,
2106 struct ias_value *ias_value)
2107 {
2108 /* Look at the type */
2109 switch (ias_value->type) {
2110 case IAS_INTEGER:
2111 /* Copy the integer */
2112 ias_opt->attribute.irda_attrib_int = ias_value->t.integer;
2113 break;
2114 case IAS_OCT_SEQ:
2115 /* Set length */
2116 ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len;
2117 /* Copy over */
2118 memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
2119 ias_value->t.oct_seq, ias_value->len);
2120 break;
2121 case IAS_STRING:
2122 /* Set length */
2123 ias_opt->attribute.irda_attrib_string.len = ias_value->len;
2124 ias_opt->attribute.irda_attrib_string.charset = ias_value->charset;
2125 /* Copy over */
2126 memcpy(ias_opt->attribute.irda_attrib_string.string,
2127 ias_value->t.string, ias_value->len);
2128 /* NULL terminate the string (avoid troubles) */
2129 ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0';
2130 break;
2131 case IAS_MISSING:
2132 default :
2133 return -EINVAL;
2134 }
2135
2136 /* Copy type over */
2137 ias_opt->irda_attrib_type = ias_value->type;
2138
2139 return 0;
2140 }
2141
2142 /*
2143 * Function irda_getsockopt (sock, level, optname, optval, optlen)
2144 */
2145 static int irda_getsockopt(struct socket *sock, int level, int optname,
2146 char __user *optval, int __user *optlen)
2147 {
2148 struct sock *sk = sock->sk;
2149 struct irda_sock *self = irda_sk(sk);
2150 struct irda_device_list list;
2151 struct irda_device_info *discoveries;
2152 struct irda_ias_set * ias_opt; /* IAS get/query params */
2153 struct ias_object * ias_obj; /* Object in IAS */
2154 struct ias_attrib * ias_attr; /* Attribute in IAS object */
2155 int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */
2156 int val = 0;
2157 int len = 0;
2158 int err;
2159 int offset, total;
2160
2161 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
2162
2163 if (level != SOL_IRLMP)
2164 return -ENOPROTOOPT;
2165
2166 if (get_user(len, optlen))
2167 return -EFAULT;
2168
2169 if(len < 0)
2170 return -EINVAL;
2171
2172 switch (optname) {
2173 case IRLMP_ENUMDEVICES:
2174 /* Ask lmp for the current discovery log */
2175 discoveries = irlmp_get_discoveries(&list.len, self->mask.word,
2176 self->nslots);
2177 /* Check if the we got some results */
2178 if (discoveries == NULL)
2179 return -EAGAIN; /* Didn't find any devices */
2180 err = 0;
2181
2182 /* Write total list length back to client */
2183 if (copy_to_user(optval, &list,
2184 sizeof(struct irda_device_list) -
2185 sizeof(struct irda_device_info)))
2186 err = -EFAULT;
2187
2188 /* Offset to first device entry */
2189 offset = sizeof(struct irda_device_list) -
2190 sizeof(struct irda_device_info);
2191
2192 /* Copy the list itself - watch for overflow */
2193 if(list.len > 2048)
2194 {
2195 err = -EINVAL;
2196 goto bed;
2197 }
2198 total = offset + (list.len * sizeof(struct irda_device_info));
2199 if (total > len)
2200 total = len;
2201 if (copy_to_user(optval+offset, discoveries, total - offset))
2202 err = -EFAULT;
2203
2204 /* Write total number of bytes used back to client */
2205 if (put_user(total, optlen))
2206 err = -EFAULT;
2207 bed:
2208 /* Free up our buffer */
2209 kfree(discoveries);
2210 if (err)
2211 return err;
2212 break;
2213 case IRLMP_MAX_SDU_SIZE:
2214 val = self->max_data_size;
2215 len = sizeof(int);
2216 if (put_user(len, optlen))
2217 return -EFAULT;
2218
2219 if (copy_to_user(optval, &val, len))
2220 return -EFAULT;
2221 break;
2222 case IRLMP_IAS_GET:
2223 /* The user want an object from our local IAS database.
2224 * We just need to query the IAS and return the value
2225 * that we found */
2226
2227 /* Check that the user has allocated the right space for us */
2228 if (len != sizeof(struct irda_ias_set))
2229 return -EINVAL;
2230
2231 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2232 if (ias_opt == NULL)
2233 return -ENOMEM;
2234
2235 /* Copy query to the driver. */
2236 if (copy_from_user(ias_opt, optval, len)) {
2237 kfree(ias_opt);
2238 return -EFAULT;
2239 }
2240
2241 /* Find the object we target.
2242 * If the user gives us an empty string, we use the object
2243 * associated with this socket. This will workaround
2244 * duplicated class name - Jean II */
2245 if(ias_opt->irda_class_name[0] == '\0')
2246 ias_obj = self->ias_obj;
2247 else
2248 ias_obj = irias_find_object(ias_opt->irda_class_name);
2249 if(ias_obj == (struct ias_object *) NULL) {
2250 kfree(ias_opt);
2251 return -EINVAL;
2252 }
2253
2254 /* Find the attribute (in the object) we target */
2255 ias_attr = irias_find_attrib(ias_obj,
2256 ias_opt->irda_attrib_name);
2257 if(ias_attr == (struct ias_attrib *) NULL) {
2258 kfree(ias_opt);
2259 return -EINVAL;
2260 }
2261
2262 /* Translate from internal to user structure */
2263 err = irda_extract_ias_value(ias_opt, ias_attr->value);
2264 if(err) {
2265 kfree(ias_opt);
2266 return err;
2267 }
2268
2269 /* Copy reply to the user */
2270 if (copy_to_user(optval, ias_opt,
2271 sizeof(struct irda_ias_set))) {
2272 kfree(ias_opt);
2273 return -EFAULT;
2274 }
2275 /* Note : don't need to put optlen, we checked it */
2276 kfree(ias_opt);
2277 break;
2278 case IRLMP_IAS_QUERY:
2279 /* The user want an object from a remote IAS database.
2280 * We need to use IAP to query the remote database and
2281 * then wait for the answer to come back. */
2282
2283 /* Check that the user has allocated the right space for us */
2284 if (len != sizeof(struct irda_ias_set))
2285 return -EINVAL;
2286
2287 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2288 if (ias_opt == NULL)
2289 return -ENOMEM;
2290
2291 /* Copy query to the driver. */
2292 if (copy_from_user(ias_opt, optval, len)) {
2293 kfree(ias_opt);
2294 return -EFAULT;
2295 }
2296
2297 /* At this point, there are two cases...
2298 * 1) the socket is connected - that's the easy case, we
2299 * just query the device we are connected to...
2300 * 2) the socket is not connected - the user doesn't want
2301 * to connect and/or may not have a valid service name
2302 * (so can't create a fake connection). In this case,
2303 * we assume that the user pass us a valid destination
2304 * address in the requesting structure...
2305 */
2306 if(self->daddr != DEV_ADDR_ANY) {
2307 /* We are connected - reuse known daddr */
2308 daddr = self->daddr;
2309 } else {
2310 /* We are not connected, we must specify a valid
2311 * destination address */
2312 daddr = ias_opt->daddr;
2313 if((!daddr) || (daddr == DEV_ADDR_ANY)) {
2314 kfree(ias_opt);
2315 return -EINVAL;
2316 }
2317 }
2318
2319 /* Check that we can proceed with IAP */
2320 if (self->iriap) {
2321 IRDA_WARNING("%s: busy with a previous query\n",
2322 __FUNCTION__);
2323 kfree(ias_opt);
2324 return -EBUSY;
2325 }
2326
2327 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
2328 irda_getvalue_confirm);
2329
2330 if (self->iriap == NULL) {
2331 kfree(ias_opt);
2332 return -ENOMEM;
2333 }
2334
2335 /* Treat unexpected wakeup as disconnect */
2336 self->errno = -EHOSTUNREACH;
2337
2338 /* Query remote LM-IAS */
2339 iriap_getvaluebyclass_request(self->iriap,
2340 self->saddr, daddr,
2341 ias_opt->irda_class_name,
2342 ias_opt->irda_attrib_name);
2343
2344 /* Wait for answer, if not yet finished (or failed) */
2345 if (wait_event_interruptible(self->query_wait,
2346 (self->iriap == NULL))) {
2347 /* pending request uses copy of ias_opt-content
2348 * we can free it regardless! */
2349 kfree(ias_opt);
2350 /* Treat signals as disconnect */
2351 return -EHOSTUNREACH;
2352 }
2353
2354 /* Check what happened */
2355 if (self->errno)
2356 {
2357 kfree(ias_opt);
2358 /* Requested object/attribute doesn't exist */
2359 if((self->errno == IAS_CLASS_UNKNOWN) ||
2360 (self->errno == IAS_ATTRIB_UNKNOWN))
2361 return (-EADDRNOTAVAIL);
2362 else
2363 return (-EHOSTUNREACH);
2364 }
2365
2366 /* Translate from internal to user structure */
2367 err = irda_extract_ias_value(ias_opt, self->ias_result);
2368 if (self->ias_result)
2369 irias_delete_value(self->ias_result);
2370 if (err) {
2371 kfree(ias_opt);
2372 return err;
2373 }
2374
2375 /* Copy reply to the user */
2376 if (copy_to_user(optval, ias_opt,
2377 sizeof(struct irda_ias_set))) {
2378 kfree(ias_opt);
2379 return -EFAULT;
2380 }
2381 /* Note : don't need to put optlen, we checked it */
2382 kfree(ias_opt);
2383 break;
2384 case IRLMP_WAITDEVICE:
2385 /* This function is just another way of seeing life ;-)
2386 * IRLMP_ENUMDEVICES assumes that you have a static network,
2387 * and that you just want to pick one of the devices present.
2388 * On the other hand, in here we assume that no device is
2389 * present and that at some point in the future a device will
2390 * come into range. When this device arrive, we just wake
2391 * up the caller, so that he has time to connect to it before
2392 * the device goes away...
2393 * Note : once the node has been discovered for more than a
2394 * few second, it won't trigger this function, unless it
2395 * goes away and come back changes its hint bits (so we
2396 * might call it IRLMP_WAITNEWDEVICE).
2397 */
2398
2399 /* Check that the user is passing us an int */
2400 if (len != sizeof(int))
2401 return -EINVAL;
2402 /* Get timeout in ms (max time we block the caller) */
2403 if (get_user(val, (int __user *)optval))
2404 return -EFAULT;
2405
2406 /* Tell IrLMP we want to be notified */
2407 irlmp_update_client(self->ckey, self->mask.word,
2408 irda_selective_discovery_indication,
2409 NULL, (void *) self);
2410
2411 /* Do some discovery (and also return cached results) */
2412 irlmp_discovery_request(self->nslots);
2413
2414 /* Wait until a node is discovered */
2415 if (!self->cachedaddr) {
2416 int ret = 0;
2417
2418 IRDA_DEBUG(1, "%s(), nothing discovered yet, going to sleep...\n", __FUNCTION__);
2419
2420 /* Set watchdog timer to expire in <val> ms. */
2421 self->errno = 0;
2422 init_timer(&self->watchdog);
2423 self->watchdog.function = irda_discovery_timeout;
2424 self->watchdog.data = (unsigned long) self;
2425 self->watchdog.expires = jiffies + (val * HZ/1000);
2426 add_timer(&(self->watchdog));
2427
2428 /* Wait for IR-LMP to call us back */
2429 __wait_event_interruptible(self->query_wait,
2430 (self->cachedaddr != 0 || self->errno == -ETIME),
2431 ret);
2432
2433 /* If watchdog is still activated, kill it! */
2434 if(timer_pending(&(self->watchdog)))
2435 del_timer(&(self->watchdog));
2436
2437 IRDA_DEBUG(1, "%s(), ...waking up !\n", __FUNCTION__);
2438
2439 if (ret != 0)
2440 return ret;
2441 }
2442 else
2443 IRDA_DEBUG(1, "%s(), found immediately !\n",
2444 __FUNCTION__);
2445
2446 /* Tell IrLMP that we have been notified */
2447 irlmp_update_client(self->ckey, self->mask.word,
2448 NULL, NULL, NULL);
2449
2450 /* Check if the we got some results */
2451 if (!self->cachedaddr)
2452 return -EAGAIN; /* Didn't find any devices */
2453 daddr = self->cachedaddr;
2454 /* Cleanup */
2455 self->cachedaddr = 0;
2456
2457 /* We return the daddr of the device that trigger the
2458 * wakeup. As irlmp pass us only the new devices, we
2459 * are sure that it's not an old device.
2460 * If the user want more details, he should query
2461 * the whole discovery log and pick one device...
2462 */
2463 if (put_user(daddr, (int __user *)optval))
2464 return -EFAULT;
2465
2466 break;
2467 default:
2468 return -ENOPROTOOPT;
2469 }
2470
2471 return 0;
2472 }
2473
2474 static struct net_proto_family irda_family_ops = {
2475 .family = PF_IRDA,
2476 .create = irda_create,
2477 .owner = THIS_MODULE,
2478 };
2479
2480 static const struct proto_ops SOCKOPS_WRAPPED(irda_stream_ops) = {
2481 .family = PF_IRDA,
2482 .owner = THIS_MODULE,
2483 .release = irda_release,
2484 .bind = irda_bind,
2485 .connect = irda_connect,
2486 .socketpair = sock_no_socketpair,
2487 .accept = irda_accept,
2488 .getname = irda_getname,
2489 .poll = irda_poll,
2490 .ioctl = irda_ioctl,
2491 #ifdef CONFIG_COMPAT
2492 .compat_ioctl = irda_compat_ioctl,
2493 #endif
2494 .listen = irda_listen,
2495 .shutdown = irda_shutdown,
2496 .setsockopt = irda_setsockopt,
2497 .getsockopt = irda_getsockopt,
2498 .sendmsg = irda_sendmsg,
2499 .recvmsg = irda_recvmsg_stream,
2500 .mmap = sock_no_mmap,
2501 .sendpage = sock_no_sendpage,
2502 };
2503
2504 static const struct proto_ops SOCKOPS_WRAPPED(irda_seqpacket_ops) = {
2505 .family = PF_IRDA,
2506 .owner = THIS_MODULE,
2507 .release = irda_release,
2508 .bind = irda_bind,
2509 .connect = irda_connect,
2510 .socketpair = sock_no_socketpair,
2511 .accept = irda_accept,
2512 .getname = irda_getname,
2513 .poll = datagram_poll,
2514 .ioctl = irda_ioctl,
2515 #ifdef CONFIG_COMPAT
2516 .compat_ioctl = irda_compat_ioctl,
2517 #endif
2518 .listen = irda_listen,
2519 .shutdown = irda_shutdown,
2520 .setsockopt = irda_setsockopt,
2521 .getsockopt = irda_getsockopt,
2522 .sendmsg = irda_sendmsg,
2523 .recvmsg = irda_recvmsg_dgram,
2524 .mmap = sock_no_mmap,
2525 .sendpage = sock_no_sendpage,
2526 };
2527
2528 static const struct proto_ops SOCKOPS_WRAPPED(irda_dgram_ops) = {
2529 .family = PF_IRDA,
2530 .owner = THIS_MODULE,
2531 .release = irda_release,
2532 .bind = irda_bind,
2533 .connect = irda_connect,
2534 .socketpair = sock_no_socketpair,
2535 .accept = irda_accept,
2536 .getname = irda_getname,
2537 .poll = datagram_poll,
2538 .ioctl = irda_ioctl,
2539 #ifdef CONFIG_COMPAT
2540 .compat_ioctl = irda_compat_ioctl,
2541 #endif
2542 .listen = irda_listen,
2543 .shutdown = irda_shutdown,
2544 .setsockopt = irda_setsockopt,
2545 .getsockopt = irda_getsockopt,
2546 .sendmsg = irda_sendmsg_dgram,
2547 .recvmsg = irda_recvmsg_dgram,
2548 .mmap = sock_no_mmap,
2549 .sendpage = sock_no_sendpage,
2550 };
2551
2552 #ifdef CONFIG_IRDA_ULTRA
2553 static const struct proto_ops SOCKOPS_WRAPPED(irda_ultra_ops) = {
2554 .family = PF_IRDA,
2555 .owner = THIS_MODULE,
2556 .release = irda_release,
2557 .bind = irda_bind,
2558 .connect = sock_no_connect,
2559 .socketpair = sock_no_socketpair,
2560 .accept = sock_no_accept,
2561 .getname = irda_getname,
2562 .poll = datagram_poll,
2563 .ioctl = irda_ioctl,
2564 #ifdef CONFIG_COMPAT
2565 .compat_ioctl = irda_compat_ioctl,
2566 #endif
2567 .listen = sock_no_listen,
2568 .shutdown = irda_shutdown,
2569 .setsockopt = irda_setsockopt,
2570 .getsockopt = irda_getsockopt,
2571 .sendmsg = irda_sendmsg_ultra,
2572 .recvmsg = irda_recvmsg_dgram,
2573 .mmap = sock_no_mmap,
2574 .sendpage = sock_no_sendpage,
2575 };
2576 #endif /* CONFIG_IRDA_ULTRA */
2577
2578 #include <linux/smp_lock.h>
2579 SOCKOPS_WRAP(irda_stream, PF_IRDA);
2580 SOCKOPS_WRAP(irda_seqpacket, PF_IRDA);
2581 SOCKOPS_WRAP(irda_dgram, PF_IRDA);
2582 #ifdef CONFIG_IRDA_ULTRA
2583 SOCKOPS_WRAP(irda_ultra, PF_IRDA);
2584 #endif /* CONFIG_IRDA_ULTRA */
2585
2586 /*
2587 * Function irsock_init (pro)
2588 *
2589 * Initialize IrDA protocol
2590 *
2591 */
2592 int __init irsock_init(void)
2593 {
2594 int rc = proto_register(&irda_proto, 0);
2595
2596 if (rc == 0)
2597 rc = sock_register(&irda_family_ops);
2598
2599 return rc;
2600 }
2601
2602 /*
2603 * Function irsock_cleanup (void)
2604 *
2605 * Remove IrDA protocol
2606 *
2607 */
2608 void __exit irsock_cleanup(void)
2609 {
2610 sock_unregister(PF_IRDA);
2611 proto_unregister(&irda_proto);
2612 }