Merge branch 'master' into percpu
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / irda / af_irda.c
1 /*********************************************************************
2 *
3 * Filename: af_irda.c
4 * Version: 0.9
5 * Description: IrDA sockets implementation
6 * Status: Stable
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun May 31 10:12:43 1998
9 * Modified at: Sat Dec 25 21:10:23 1999
10 * Modified by: Dag Brattli <dag@brattli.net>
11 * Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc.
12 *
13 * Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no>
14 * Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com>
15 * All Rights Reserved.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License as
19 * published by the Free Software Foundation; either version 2 of
20 * the License, or (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 *
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, write to the Free Software
29 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
30 * MA 02111-1307 USA
31 *
32 * Linux-IrDA now supports four different types of IrDA sockets:
33 *
34 * o SOCK_STREAM: TinyTP connections with SAR disabled. The
35 * max SDU size is 0 for conn. of this type
36 * o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may
37 * fragment the messages, but will preserve
38 * the message boundaries
39 * o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata
40 * (unreliable) transfers
41 * IRDAPROTO_ULTRA: Connectionless and unreliable data
42 *
43 ********************************************************************/
44
45 #include <linux/capability.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/smp_lock.h>
49 #include <linux/socket.h>
50 #include <linux/sockios.h>
51 #include <linux/init.h>
52 #include <linux/net.h>
53 #include <linux/irda.h>
54 #include <linux/poll.h>
55
56 #include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */
57 #include <asm/uaccess.h>
58
59 #include <net/sock.h>
60 #include <net/tcp_states.h>
61
62 #include <net/irda/af_irda.h>
63
64 static int irda_create(struct net *net, struct socket *sock, int protocol, int kern);
65
66 static const struct proto_ops irda_stream_ops;
67 static const struct proto_ops irda_seqpacket_ops;
68 static const struct proto_ops irda_dgram_ops;
69
70 #ifdef CONFIG_IRDA_ULTRA
71 static const struct proto_ops irda_ultra_ops;
72 #define ULTRA_MAX_DATA 382
73 #endif /* CONFIG_IRDA_ULTRA */
74
75 #define IRDA_MAX_HEADER (TTP_MAX_HEADER)
76
77 /*
78 * Function irda_data_indication (instance, sap, skb)
79 *
80 * Received some data from TinyTP. Just queue it on the receive queue
81 *
82 */
83 static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb)
84 {
85 struct irda_sock *self;
86 struct sock *sk;
87 int err;
88
89 IRDA_DEBUG(3, "%s()\n", __func__);
90
91 self = instance;
92 sk = instance;
93
94 err = sock_queue_rcv_skb(sk, skb);
95 if (err) {
96 IRDA_DEBUG(1, "%s(), error: no more mem!\n", __func__);
97 self->rx_flow = FLOW_STOP;
98
99 /* When we return error, TTP will need to requeue the skb */
100 return err;
101 }
102
103 return 0;
104 }
105
106 /*
107 * Function irda_disconnect_indication (instance, sap, reason, skb)
108 *
109 * Connection has been closed. Check reason to find out why
110 *
111 */
112 static void irda_disconnect_indication(void *instance, void *sap,
113 LM_REASON reason, struct sk_buff *skb)
114 {
115 struct irda_sock *self;
116 struct sock *sk;
117
118 self = instance;
119
120 IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
121
122 /* Don't care about it, but let's not leak it */
123 if(skb)
124 dev_kfree_skb(skb);
125
126 sk = instance;
127 if (sk == NULL) {
128 IRDA_DEBUG(0, "%s(%p) : BUG : sk is NULL\n",
129 __func__, self);
130 return;
131 }
132
133 /* Prevent race conditions with irda_release() and irda_shutdown() */
134 bh_lock_sock(sk);
135 if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) {
136 sk->sk_state = TCP_CLOSE;
137 sk->sk_shutdown |= SEND_SHUTDOWN;
138
139 sk->sk_state_change(sk);
140
141 /* Close our TSAP.
142 * If we leave it open, IrLMP put it back into the list of
143 * unconnected LSAPs. The problem is that any incoming request
144 * can then be matched to this socket (and it will be, because
145 * it is at the head of the list). This would prevent any
146 * listening socket waiting on the same TSAP to get those
147 * requests. Some apps forget to close sockets, or hang to it
148 * a bit too long, so we may stay in this dead state long
149 * enough to be noticed...
150 * Note : all socket function do check sk->sk_state, so we are
151 * safe...
152 * Jean II
153 */
154 if (self->tsap) {
155 irttp_close_tsap(self->tsap);
156 self->tsap = NULL;
157 }
158 }
159 bh_unlock_sock(sk);
160
161 /* Note : once we are there, there is not much you want to do
162 * with the socket anymore, apart from closing it.
163 * For example, bind() and connect() won't reset sk->sk_err,
164 * sk->sk_shutdown and sk->sk_flags to valid values...
165 * Jean II
166 */
167 }
168
169 /*
170 * Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb)
171 *
172 * Connections has been confirmed by the remote device
173 *
174 */
175 static void irda_connect_confirm(void *instance, void *sap,
176 struct qos_info *qos,
177 __u32 max_sdu_size, __u8 max_header_size,
178 struct sk_buff *skb)
179 {
180 struct irda_sock *self;
181 struct sock *sk;
182
183 self = instance;
184
185 IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
186
187 sk = instance;
188 if (sk == NULL) {
189 dev_kfree_skb(skb);
190 return;
191 }
192
193 dev_kfree_skb(skb);
194 // Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb);
195
196 /* How much header space do we need to reserve */
197 self->max_header_size = max_header_size;
198
199 /* IrTTP max SDU size in transmit direction */
200 self->max_sdu_size_tx = max_sdu_size;
201
202 /* Find out what the largest chunk of data that we can transmit is */
203 switch (sk->sk_type) {
204 case SOCK_STREAM:
205 if (max_sdu_size != 0) {
206 IRDA_ERROR("%s: max_sdu_size must be 0\n",
207 __func__);
208 return;
209 }
210 self->max_data_size = irttp_get_max_seg_size(self->tsap);
211 break;
212 case SOCK_SEQPACKET:
213 if (max_sdu_size == 0) {
214 IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
215 __func__);
216 return;
217 }
218 self->max_data_size = max_sdu_size;
219 break;
220 default:
221 self->max_data_size = irttp_get_max_seg_size(self->tsap);
222 }
223
224 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __func__,
225 self->max_data_size);
226
227 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
228
229 /* We are now connected! */
230 sk->sk_state = TCP_ESTABLISHED;
231 sk->sk_state_change(sk);
232 }
233
234 /*
235 * Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata)
236 *
237 * Incoming connection
238 *
239 */
240 static void irda_connect_indication(void *instance, void *sap,
241 struct qos_info *qos, __u32 max_sdu_size,
242 __u8 max_header_size, struct sk_buff *skb)
243 {
244 struct irda_sock *self;
245 struct sock *sk;
246
247 self = instance;
248
249 IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
250
251 sk = instance;
252 if (sk == NULL) {
253 dev_kfree_skb(skb);
254 return;
255 }
256
257 /* How much header space do we need to reserve */
258 self->max_header_size = max_header_size;
259
260 /* IrTTP max SDU size in transmit direction */
261 self->max_sdu_size_tx = max_sdu_size;
262
263 /* Find out what the largest chunk of data that we can transmit is */
264 switch (sk->sk_type) {
265 case SOCK_STREAM:
266 if (max_sdu_size != 0) {
267 IRDA_ERROR("%s: max_sdu_size must be 0\n",
268 __func__);
269 kfree_skb(skb);
270 return;
271 }
272 self->max_data_size = irttp_get_max_seg_size(self->tsap);
273 break;
274 case SOCK_SEQPACKET:
275 if (max_sdu_size == 0) {
276 IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
277 __func__);
278 kfree_skb(skb);
279 return;
280 }
281 self->max_data_size = max_sdu_size;
282 break;
283 default:
284 self->max_data_size = irttp_get_max_seg_size(self->tsap);
285 }
286
287 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __func__,
288 self->max_data_size);
289
290 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
291
292 skb_queue_tail(&sk->sk_receive_queue, skb);
293 sk->sk_state_change(sk);
294 }
295
296 /*
297 * Function irda_connect_response (handle)
298 *
299 * Accept incoming connection
300 *
301 */
302 static void irda_connect_response(struct irda_sock *self)
303 {
304 struct sk_buff *skb;
305
306 IRDA_DEBUG(2, "%s()\n", __func__);
307
308 skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
309 GFP_ATOMIC);
310 if (skb == NULL) {
311 IRDA_DEBUG(0, "%s() Unable to allocate sk_buff!\n",
312 __func__);
313 return;
314 }
315
316 /* Reserve space for MUX_CONTROL and LAP header */
317 skb_reserve(skb, IRDA_MAX_HEADER);
318
319 irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb);
320 }
321
322 /*
323 * Function irda_flow_indication (instance, sap, flow)
324 *
325 * Used by TinyTP to tell us if it can accept more data or not
326 *
327 */
328 static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
329 {
330 struct irda_sock *self;
331 struct sock *sk;
332
333 IRDA_DEBUG(2, "%s()\n", __func__);
334
335 self = instance;
336 sk = instance;
337 BUG_ON(sk == NULL);
338
339 switch (flow) {
340 case FLOW_STOP:
341 IRDA_DEBUG(1, "%s(), IrTTP wants us to slow down\n",
342 __func__);
343 self->tx_flow = flow;
344 break;
345 case FLOW_START:
346 self->tx_flow = flow;
347 IRDA_DEBUG(1, "%s(), IrTTP wants us to start again\n",
348 __func__);
349 wake_up_interruptible(sk->sk_sleep);
350 break;
351 default:
352 IRDA_DEBUG(0, "%s(), Unknown flow command!\n", __func__);
353 /* Unknown flow command, better stop */
354 self->tx_flow = flow;
355 break;
356 }
357 }
358
359 /*
360 * Function irda_getvalue_confirm (obj_id, value, priv)
361 *
362 * Got answer from remote LM-IAS, just pass object to requester...
363 *
364 * Note : duplicate from above, but we need our own version that
365 * doesn't touch the dtsap_sel and save the full value structure...
366 */
367 static void irda_getvalue_confirm(int result, __u16 obj_id,
368 struct ias_value *value, void *priv)
369 {
370 struct irda_sock *self;
371
372 self = (struct irda_sock *) priv;
373 if (!self) {
374 IRDA_WARNING("%s: lost myself!\n", __func__);
375 return;
376 }
377
378 IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
379
380 /* We probably don't need to make any more queries */
381 iriap_close(self->iriap);
382 self->iriap = NULL;
383
384 /* Check if request succeeded */
385 if (result != IAS_SUCCESS) {
386 IRDA_DEBUG(1, "%s(), IAS query failed! (%d)\n", __func__,
387 result);
388
389 self->errno = result; /* We really need it later */
390
391 /* Wake up any processes waiting for result */
392 wake_up_interruptible(&self->query_wait);
393
394 return;
395 }
396
397 /* Pass the object to the caller (so the caller must delete it) */
398 self->ias_result = value;
399 self->errno = 0;
400
401 /* Wake up any processes waiting for result */
402 wake_up_interruptible(&self->query_wait);
403 }
404
405 /*
406 * Function irda_selective_discovery_indication (discovery)
407 *
408 * Got a selective discovery indication from IrLMP.
409 *
410 * IrLMP is telling us that this node is new and matching our hint bit
411 * filter. Wake up any process waiting for answer...
412 */
413 static void irda_selective_discovery_indication(discinfo_t *discovery,
414 DISCOVERY_MODE mode,
415 void *priv)
416 {
417 struct irda_sock *self;
418
419 IRDA_DEBUG(2, "%s()\n", __func__);
420
421 self = (struct irda_sock *) priv;
422 if (!self) {
423 IRDA_WARNING("%s: lost myself!\n", __func__);
424 return;
425 }
426
427 /* Pass parameter to the caller */
428 self->cachedaddr = discovery->daddr;
429
430 /* Wake up process if its waiting for device to be discovered */
431 wake_up_interruptible(&self->query_wait);
432 }
433
434 /*
435 * Function irda_discovery_timeout (priv)
436 *
437 * Timeout in the selective discovery process
438 *
439 * We were waiting for a node to be discovered, but nothing has come up
440 * so far. Wake up the user and tell him that we failed...
441 */
442 static void irda_discovery_timeout(u_long priv)
443 {
444 struct irda_sock *self;
445
446 IRDA_DEBUG(2, "%s()\n", __func__);
447
448 self = (struct irda_sock *) priv;
449 BUG_ON(self == NULL);
450
451 /* Nothing for the caller */
452 self->cachelog = NULL;
453 self->cachedaddr = 0;
454 self->errno = -ETIME;
455
456 /* Wake up process if its still waiting... */
457 wake_up_interruptible(&self->query_wait);
458 }
459
460 /*
461 * Function irda_open_tsap (self)
462 *
463 * Open local Transport Service Access Point (TSAP)
464 *
465 */
466 static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name)
467 {
468 notify_t notify;
469
470 if (self->tsap) {
471 IRDA_WARNING("%s: busy!\n", __func__);
472 return -EBUSY;
473 }
474
475 /* Initialize callbacks to be used by the IrDA stack */
476 irda_notify_init(&notify);
477 notify.connect_confirm = irda_connect_confirm;
478 notify.connect_indication = irda_connect_indication;
479 notify.disconnect_indication = irda_disconnect_indication;
480 notify.data_indication = irda_data_indication;
481 notify.udata_indication = irda_data_indication;
482 notify.flow_indication = irda_flow_indication;
483 notify.instance = self;
484 strncpy(notify.name, name, NOTIFY_MAX_NAME);
485
486 self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT,
487 &notify);
488 if (self->tsap == NULL) {
489 IRDA_DEBUG(0, "%s(), Unable to allocate TSAP!\n",
490 __func__);
491 return -ENOMEM;
492 }
493 /* Remember which TSAP selector we actually got */
494 self->stsap_sel = self->tsap->stsap_sel;
495
496 return 0;
497 }
498
499 /*
500 * Function irda_open_lsap (self)
501 *
502 * Open local Link Service Access Point (LSAP). Used for opening Ultra
503 * sockets
504 */
505 #ifdef CONFIG_IRDA_ULTRA
506 static int irda_open_lsap(struct irda_sock *self, int pid)
507 {
508 notify_t notify;
509
510 if (self->lsap) {
511 IRDA_WARNING("%s(), busy!\n", __func__);
512 return -EBUSY;
513 }
514
515 /* Initialize callbacks to be used by the IrDA stack */
516 irda_notify_init(&notify);
517 notify.udata_indication = irda_data_indication;
518 notify.instance = self;
519 strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME);
520
521 self->lsap = irlmp_open_lsap(LSAP_CONNLESS, &notify, pid);
522 if (self->lsap == NULL) {
523 IRDA_DEBUG( 0, "%s(), Unable to allocate LSAP!\n", __func__);
524 return -ENOMEM;
525 }
526
527 return 0;
528 }
529 #endif /* CONFIG_IRDA_ULTRA */
530
531 /*
532 * Function irda_find_lsap_sel (self, name)
533 *
534 * Try to lookup LSAP selector in remote LM-IAS
535 *
536 * Basically, we start a IAP query, and then go to sleep. When the query
537 * return, irda_getvalue_confirm will wake us up, and we can examine the
538 * result of the query...
539 * Note that in some case, the query fail even before we go to sleep,
540 * creating some races...
541 */
542 static int irda_find_lsap_sel(struct irda_sock *self, char *name)
543 {
544 IRDA_DEBUG(2, "%s(%p, %s)\n", __func__, self, name);
545
546 if (self->iriap) {
547 IRDA_WARNING("%s(): busy with a previous query\n",
548 __func__);
549 return -EBUSY;
550 }
551
552 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
553 irda_getvalue_confirm);
554 if(self->iriap == NULL)
555 return -ENOMEM;
556
557 /* Treat unexpected wakeup as disconnect */
558 self->errno = -EHOSTUNREACH;
559
560 /* Query remote LM-IAS */
561 iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr,
562 name, "IrDA:TinyTP:LsapSel");
563
564 /* Wait for answer, if not yet finished (or failed) */
565 if (wait_event_interruptible(self->query_wait, (self->iriap==NULL)))
566 /* Treat signals as disconnect */
567 return -EHOSTUNREACH;
568
569 /* Check what happened */
570 if (self->errno)
571 {
572 /* Requested object/attribute doesn't exist */
573 if((self->errno == IAS_CLASS_UNKNOWN) ||
574 (self->errno == IAS_ATTRIB_UNKNOWN))
575 return (-EADDRNOTAVAIL);
576 else
577 return (-EHOSTUNREACH);
578 }
579
580 /* Get the remote TSAP selector */
581 switch (self->ias_result->type) {
582 case IAS_INTEGER:
583 IRDA_DEBUG(4, "%s() int=%d\n",
584 __func__, self->ias_result->t.integer);
585
586 if (self->ias_result->t.integer != -1)
587 self->dtsap_sel = self->ias_result->t.integer;
588 else
589 self->dtsap_sel = 0;
590 break;
591 default:
592 self->dtsap_sel = 0;
593 IRDA_DEBUG(0, "%s(), bad type!\n", __func__);
594 break;
595 }
596 if (self->ias_result)
597 irias_delete_value(self->ias_result);
598
599 if (self->dtsap_sel)
600 return 0;
601
602 return -EADDRNOTAVAIL;
603 }
604
605 /*
606 * Function irda_discover_daddr_and_lsap_sel (self, name)
607 *
608 * This try to find a device with the requested service.
609 *
610 * It basically look into the discovery log. For each address in the list,
611 * it queries the LM-IAS of the device to find if this device offer
612 * the requested service.
613 * If there is more than one node supporting the service, we complain
614 * to the user (it should move devices around).
615 * The, we set both the destination address and the lsap selector to point
616 * on the service on the unique device we have found.
617 *
618 * Note : this function fails if there is more than one device in range,
619 * because IrLMP doesn't disconnect the LAP when the last LSAP is closed.
620 * Moreover, we would need to wait the LAP disconnection...
621 */
622 static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name)
623 {
624 discinfo_t *discoveries; /* Copy of the discovery log */
625 int number; /* Number of nodes in the log */
626 int i;
627 int err = -ENETUNREACH;
628 __u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */
629 __u8 dtsap_sel = 0x0; /* TSAP associated with it */
630
631 IRDA_DEBUG(2, "%s(), name=%s\n", __func__, name);
632
633 /* Ask lmp for the current discovery log
634 * Note : we have to use irlmp_get_discoveries(), as opposed
635 * to play with the cachelog directly, because while we are
636 * making our ias query, le log might change... */
637 discoveries = irlmp_get_discoveries(&number, self->mask.word,
638 self->nslots);
639 /* Check if the we got some results */
640 if (discoveries == NULL)
641 return -ENETUNREACH; /* No nodes discovered */
642
643 /*
644 * Now, check all discovered devices (if any), and connect
645 * client only about the services that the client is
646 * interested in...
647 */
648 for(i = 0; i < number; i++) {
649 /* Try the address in the log */
650 self->daddr = discoveries[i].daddr;
651 self->saddr = 0x0;
652 IRDA_DEBUG(1, "%s(), trying daddr = %08x\n",
653 __func__, self->daddr);
654
655 /* Query remote LM-IAS for this service */
656 err = irda_find_lsap_sel(self, name);
657 switch (err) {
658 case 0:
659 /* We found the requested service */
660 if(daddr != DEV_ADDR_ANY) {
661 IRDA_DEBUG(1, "%s(), discovered service ''%s'' in two different devices !!!\n",
662 __func__, name);
663 self->daddr = DEV_ADDR_ANY;
664 kfree(discoveries);
665 return(-ENOTUNIQ);
666 }
667 /* First time we found that one, save it ! */
668 daddr = self->daddr;
669 dtsap_sel = self->dtsap_sel;
670 break;
671 case -EADDRNOTAVAIL:
672 /* Requested service simply doesn't exist on this node */
673 break;
674 default:
675 /* Something bad did happen :-( */
676 IRDA_DEBUG(0, "%s(), unexpected IAS query failure\n", __func__);
677 self->daddr = DEV_ADDR_ANY;
678 kfree(discoveries);
679 return(-EHOSTUNREACH);
680 break;
681 }
682 }
683 /* Cleanup our copy of the discovery log */
684 kfree(discoveries);
685
686 /* Check out what we found */
687 if(daddr == DEV_ADDR_ANY) {
688 IRDA_DEBUG(1, "%s(), cannot discover service ''%s'' in any device !!!\n",
689 __func__, name);
690 self->daddr = DEV_ADDR_ANY;
691 return(-EADDRNOTAVAIL);
692 }
693
694 /* Revert back to discovered device & service */
695 self->daddr = daddr;
696 self->saddr = 0x0;
697 self->dtsap_sel = dtsap_sel;
698
699 IRDA_DEBUG(1, "%s(), discovered requested service ''%s'' at address %08x\n",
700 __func__, name, self->daddr);
701
702 return 0;
703 }
704
705 /*
706 * Function irda_getname (sock, uaddr, uaddr_len, peer)
707 *
708 * Return the our own, or peers socket address (sockaddr_irda)
709 *
710 */
711 static int irda_getname(struct socket *sock, struct sockaddr *uaddr,
712 int *uaddr_len, int peer)
713 {
714 struct sockaddr_irda saddr;
715 struct sock *sk = sock->sk;
716 struct irda_sock *self = irda_sk(sk);
717 int err;
718
719 lock_kernel();
720 memset(&saddr, 0, sizeof(saddr));
721 if (peer) {
722 err = -ENOTCONN;
723 if (sk->sk_state != TCP_ESTABLISHED)
724 goto out;
725
726 saddr.sir_family = AF_IRDA;
727 saddr.sir_lsap_sel = self->dtsap_sel;
728 saddr.sir_addr = self->daddr;
729 } else {
730 saddr.sir_family = AF_IRDA;
731 saddr.sir_lsap_sel = self->stsap_sel;
732 saddr.sir_addr = self->saddr;
733 }
734
735 IRDA_DEBUG(1, "%s(), tsap_sel = %#x\n", __func__, saddr.sir_lsap_sel);
736 IRDA_DEBUG(1, "%s(), addr = %08x\n", __func__, saddr.sir_addr);
737
738 /* uaddr_len come to us uninitialised */
739 *uaddr_len = sizeof (struct sockaddr_irda);
740 memcpy(uaddr, &saddr, *uaddr_len);
741 err = 0;
742 out:
743 unlock_kernel();
744 return err;
745 }
746
747 /*
748 * Function irda_listen (sock, backlog)
749 *
750 * Just move to the listen state
751 *
752 */
753 static int irda_listen(struct socket *sock, int backlog)
754 {
755 struct sock *sk = sock->sk;
756 int err = -EOPNOTSUPP;
757
758 IRDA_DEBUG(2, "%s()\n", __func__);
759
760 lock_kernel();
761 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
762 (sk->sk_type != SOCK_DGRAM))
763 goto out;
764
765 if (sk->sk_state != TCP_LISTEN) {
766 sk->sk_max_ack_backlog = backlog;
767 sk->sk_state = TCP_LISTEN;
768
769 err = 0;
770 }
771 out:
772 unlock_kernel();
773
774 return err;
775 }
776
777 /*
778 * Function irda_bind (sock, uaddr, addr_len)
779 *
780 * Used by servers to register their well known TSAP
781 *
782 */
783 static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
784 {
785 struct sock *sk = sock->sk;
786 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
787 struct irda_sock *self = irda_sk(sk);
788 int err;
789
790 IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
791
792 if (addr_len != sizeof(struct sockaddr_irda))
793 return -EINVAL;
794
795 lock_kernel();
796 #ifdef CONFIG_IRDA_ULTRA
797 /* Special care for Ultra sockets */
798 if ((sk->sk_type == SOCK_DGRAM) &&
799 (sk->sk_protocol == IRDAPROTO_ULTRA)) {
800 self->pid = addr->sir_lsap_sel;
801 err = -EOPNOTSUPP;
802 if (self->pid & 0x80) {
803 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __func__);
804 goto out;
805 }
806 err = irda_open_lsap(self, self->pid);
807 if (err < 0)
808 goto out;
809
810 /* Pretend we are connected */
811 sock->state = SS_CONNECTED;
812 sk->sk_state = TCP_ESTABLISHED;
813 err = 0;
814
815 goto out;
816 }
817 #endif /* CONFIG_IRDA_ULTRA */
818
819 self->ias_obj = irias_new_object(addr->sir_name, jiffies);
820 err = -ENOMEM;
821 if (self->ias_obj == NULL)
822 goto out;
823
824 err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name);
825 if (err < 0) {
826 kfree(self->ias_obj->name);
827 kfree(self->ias_obj);
828 goto out;
829 }
830
831 /* Register with LM-IAS */
832 irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel",
833 self->stsap_sel, IAS_KERNEL_ATTR);
834 irias_insert_object(self->ias_obj);
835
836 err = 0;
837 out:
838 unlock_kernel();
839 return err;
840 }
841
842 /*
843 * Function irda_accept (sock, newsock, flags)
844 *
845 * Wait for incoming connection
846 *
847 */
848 static int irda_accept(struct socket *sock, struct socket *newsock, int flags)
849 {
850 struct sock *sk = sock->sk;
851 struct irda_sock *new, *self = irda_sk(sk);
852 struct sock *newsk;
853 struct sk_buff *skb;
854 int err;
855
856 IRDA_DEBUG(2, "%s()\n", __func__);
857
858 lock_kernel();
859 err = irda_create(sock_net(sk), newsock, sk->sk_protocol, 0);
860 if (err)
861 goto out;
862
863 err = -EINVAL;
864 if (sock->state != SS_UNCONNECTED)
865 goto out;
866
867 if ((sk = sock->sk) == NULL)
868 goto out;
869
870 err = -EOPNOTSUPP;
871 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
872 (sk->sk_type != SOCK_DGRAM))
873 goto out;
874
875 err = -EINVAL;
876 if (sk->sk_state != TCP_LISTEN)
877 goto out;
878
879 /*
880 * The read queue this time is holding sockets ready to use
881 * hooked into the SABM we saved
882 */
883
884 /*
885 * We can perform the accept only if there is incoming data
886 * on the listening socket.
887 * So, we will block the caller until we receive any data.
888 * If the caller was waiting on select() or poll() before
889 * calling us, the data is waiting for us ;-)
890 * Jean II
891 */
892 while (1) {
893 skb = skb_dequeue(&sk->sk_receive_queue);
894 if (skb)
895 break;
896
897 /* Non blocking operation */
898 err = -EWOULDBLOCK;
899 if (flags & O_NONBLOCK)
900 goto out;
901
902 err = wait_event_interruptible(*(sk->sk_sleep),
903 skb_peek(&sk->sk_receive_queue));
904 if (err)
905 goto out;
906 }
907
908 newsk = newsock->sk;
909 err = -EIO;
910 if (newsk == NULL)
911 goto out;
912
913 newsk->sk_state = TCP_ESTABLISHED;
914
915 new = irda_sk(newsk);
916
917 /* Now attach up the new socket */
918 new->tsap = irttp_dup(self->tsap, new);
919 err = -EPERM; /* value does not seem to make sense. -arnd */
920 if (!new->tsap) {
921 IRDA_DEBUG(0, "%s(), dup failed!\n", __func__);
922 kfree_skb(skb);
923 goto out;
924 }
925
926 new->stsap_sel = new->tsap->stsap_sel;
927 new->dtsap_sel = new->tsap->dtsap_sel;
928 new->saddr = irttp_get_saddr(new->tsap);
929 new->daddr = irttp_get_daddr(new->tsap);
930
931 new->max_sdu_size_tx = self->max_sdu_size_tx;
932 new->max_sdu_size_rx = self->max_sdu_size_rx;
933 new->max_data_size = self->max_data_size;
934 new->max_header_size = self->max_header_size;
935
936 memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info));
937
938 /* Clean up the original one to keep it in listen state */
939 irttp_listen(self->tsap);
940
941 kfree_skb(skb);
942 sk->sk_ack_backlog--;
943
944 newsock->state = SS_CONNECTED;
945
946 irda_connect_response(new);
947 err = 0;
948 out:
949 unlock_kernel();
950 return err;
951 }
952
953 /*
954 * Function irda_connect (sock, uaddr, addr_len, flags)
955 *
956 * Connect to a IrDA device
957 *
958 * The main difference with a "standard" connect is that with IrDA we need
959 * to resolve the service name into a TSAP selector (in TCP, port number
960 * doesn't have to be resolved).
961 * Because of this service name resoltion, we can offer "auto-connect",
962 * where we connect to a service without specifying a destination address.
963 *
964 * Note : by consulting "errno", the user space caller may learn the cause
965 * of the failure. Most of them are visible in the function, others may come
966 * from subroutines called and are listed here :
967 * o EBUSY : already processing a connect
968 * o EHOSTUNREACH : bad addr->sir_addr argument
969 * o EADDRNOTAVAIL : bad addr->sir_name argument
970 * o ENOTUNIQ : more than one node has addr->sir_name (auto-connect)
971 * o ENETUNREACH : no node found on the network (auto-connect)
972 */
973 static int irda_connect(struct socket *sock, struct sockaddr *uaddr,
974 int addr_len, int flags)
975 {
976 struct sock *sk = sock->sk;
977 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
978 struct irda_sock *self = irda_sk(sk);
979 int err;
980
981 IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
982
983 lock_kernel();
984 /* Don't allow connect for Ultra sockets */
985 err = -ESOCKTNOSUPPORT;
986 if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA))
987 goto out;
988
989 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
990 sock->state = SS_CONNECTED;
991 err = 0;
992 goto out; /* Connect completed during a ERESTARTSYS event */
993 }
994
995 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
996 sock->state = SS_UNCONNECTED;
997 err = -ECONNREFUSED;
998 goto out;
999 }
1000
1001 err = -EISCONN; /* No reconnect on a seqpacket socket */
1002 if (sk->sk_state == TCP_ESTABLISHED)
1003 goto out;
1004
1005 sk->sk_state = TCP_CLOSE;
1006 sock->state = SS_UNCONNECTED;
1007
1008 err = -EINVAL;
1009 if (addr_len != sizeof(struct sockaddr_irda))
1010 goto out;
1011
1012 /* Check if user supplied any destination device address */
1013 if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) {
1014 /* Try to find one suitable */
1015 err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name);
1016 if (err) {
1017 IRDA_DEBUG(0, "%s(), auto-connect failed!\n", __func__);
1018 goto out;
1019 }
1020 } else {
1021 /* Use the one provided by the user */
1022 self->daddr = addr->sir_addr;
1023 IRDA_DEBUG(1, "%s(), daddr = %08x\n", __func__, self->daddr);
1024
1025 /* If we don't have a valid service name, we assume the
1026 * user want to connect on a specific LSAP. Prevent
1027 * the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */
1028 if((addr->sir_name[0] != '\0') ||
1029 (addr->sir_lsap_sel >= 0x70)) {
1030 /* Query remote LM-IAS using service name */
1031 err = irda_find_lsap_sel(self, addr->sir_name);
1032 if (err) {
1033 IRDA_DEBUG(0, "%s(), connect failed!\n", __func__);
1034 goto out;
1035 }
1036 } else {
1037 /* Directly connect to the remote LSAP
1038 * specified by the sir_lsap field.
1039 * Please use with caution, in IrDA LSAPs are
1040 * dynamic and there is no "well-known" LSAP. */
1041 self->dtsap_sel = addr->sir_lsap_sel;
1042 }
1043 }
1044
1045 /* Check if we have opened a local TSAP */
1046 if (!self->tsap)
1047 irda_open_tsap(self, LSAP_ANY, addr->sir_name);
1048
1049 /* Move to connecting socket, start sending Connect Requests */
1050 sock->state = SS_CONNECTING;
1051 sk->sk_state = TCP_SYN_SENT;
1052
1053 /* Connect to remote device */
1054 err = irttp_connect_request(self->tsap, self->dtsap_sel,
1055 self->saddr, self->daddr, NULL,
1056 self->max_sdu_size_rx, NULL);
1057 if (err) {
1058 IRDA_DEBUG(0, "%s(), connect failed!\n", __func__);
1059 goto out;
1060 }
1061
1062 /* Now the loop */
1063 err = -EINPROGRESS;
1064 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
1065 goto out;
1066
1067 err = -ERESTARTSYS;
1068 if (wait_event_interruptible(*(sk->sk_sleep),
1069 (sk->sk_state != TCP_SYN_SENT)))
1070 goto out;
1071
1072 if (sk->sk_state != TCP_ESTABLISHED) {
1073 sock->state = SS_UNCONNECTED;
1074 err = sock_error(sk);
1075 if (!err)
1076 err = -ECONNRESET;
1077 goto out;
1078 }
1079
1080 sock->state = SS_CONNECTED;
1081
1082 /* At this point, IrLMP has assigned our source address */
1083 self->saddr = irttp_get_saddr(self->tsap);
1084 err = 0;
1085 out:
1086 unlock_kernel();
1087 return err;
1088 }
1089
1090 static struct proto irda_proto = {
1091 .name = "IRDA",
1092 .owner = THIS_MODULE,
1093 .obj_size = sizeof(struct irda_sock),
1094 };
1095
1096 /*
1097 * Function irda_create (sock, protocol)
1098 *
1099 * Create IrDA socket
1100 *
1101 */
1102 static int irda_create(struct net *net, struct socket *sock, int protocol,
1103 int kern)
1104 {
1105 struct sock *sk;
1106 struct irda_sock *self;
1107
1108 IRDA_DEBUG(2, "%s()\n", __func__);
1109
1110 if (net != &init_net)
1111 return -EAFNOSUPPORT;
1112
1113 /* Check for valid socket type */
1114 switch (sock->type) {
1115 case SOCK_STREAM: /* For TTP connections with SAR disabled */
1116 case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */
1117 case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */
1118 break;
1119 default:
1120 return -ESOCKTNOSUPPORT;
1121 }
1122
1123 /* Allocate networking socket */
1124 sk = sk_alloc(net, PF_IRDA, GFP_ATOMIC, &irda_proto);
1125 if (sk == NULL)
1126 return -ENOMEM;
1127
1128 self = irda_sk(sk);
1129 IRDA_DEBUG(2, "%s() : self is %p\n", __func__, self);
1130
1131 init_waitqueue_head(&self->query_wait);
1132
1133 switch (sock->type) {
1134 case SOCK_STREAM:
1135 sock->ops = &irda_stream_ops;
1136 self->max_sdu_size_rx = TTP_SAR_DISABLE;
1137 break;
1138 case SOCK_SEQPACKET:
1139 sock->ops = &irda_seqpacket_ops;
1140 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1141 break;
1142 case SOCK_DGRAM:
1143 switch (protocol) {
1144 #ifdef CONFIG_IRDA_ULTRA
1145 case IRDAPROTO_ULTRA:
1146 sock->ops = &irda_ultra_ops;
1147 /* Initialise now, because we may send on unbound
1148 * sockets. Jean II */
1149 self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER;
1150 self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER;
1151 break;
1152 #endif /* CONFIG_IRDA_ULTRA */
1153 case IRDAPROTO_UNITDATA:
1154 sock->ops = &irda_dgram_ops;
1155 /* We let Unitdata conn. be like seqpack conn. */
1156 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1157 break;
1158 default:
1159 sk_free(sk);
1160 return -ESOCKTNOSUPPORT;
1161 }
1162 break;
1163 default:
1164 sk_free(sk);
1165 return -ESOCKTNOSUPPORT;
1166 }
1167
1168 /* Initialise networking socket struct */
1169 sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */
1170 sk->sk_family = PF_IRDA;
1171 sk->sk_protocol = protocol;
1172
1173 /* Register as a client with IrLMP */
1174 self->ckey = irlmp_register_client(0, NULL, NULL, NULL);
1175 self->mask.word = 0xffff;
1176 self->rx_flow = self->tx_flow = FLOW_START;
1177 self->nslots = DISCOVERY_DEFAULT_SLOTS;
1178 self->daddr = DEV_ADDR_ANY; /* Until we get connected */
1179 self->saddr = 0x0; /* so IrLMP assign us any link */
1180 return 0;
1181 }
1182
1183 /*
1184 * Function irda_destroy_socket (self)
1185 *
1186 * Destroy socket
1187 *
1188 */
1189 static void irda_destroy_socket(struct irda_sock *self)
1190 {
1191 IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
1192
1193 /* Unregister with IrLMP */
1194 irlmp_unregister_client(self->ckey);
1195 irlmp_unregister_service(self->skey);
1196
1197 /* Unregister with LM-IAS */
1198 if (self->ias_obj) {
1199 irias_delete_object(self->ias_obj);
1200 self->ias_obj = NULL;
1201 }
1202
1203 if (self->iriap) {
1204 iriap_close(self->iriap);
1205 self->iriap = NULL;
1206 }
1207
1208 if (self->tsap) {
1209 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1210 irttp_close_tsap(self->tsap);
1211 self->tsap = NULL;
1212 }
1213 #ifdef CONFIG_IRDA_ULTRA
1214 if (self->lsap) {
1215 irlmp_close_lsap(self->lsap);
1216 self->lsap = NULL;
1217 }
1218 #endif /* CONFIG_IRDA_ULTRA */
1219 }
1220
1221 /*
1222 * Function irda_release (sock)
1223 */
1224 static int irda_release(struct socket *sock)
1225 {
1226 struct sock *sk = sock->sk;
1227
1228 IRDA_DEBUG(2, "%s()\n", __func__);
1229
1230 if (sk == NULL)
1231 return 0;
1232
1233 lock_kernel();
1234 lock_sock(sk);
1235 sk->sk_state = TCP_CLOSE;
1236 sk->sk_shutdown |= SEND_SHUTDOWN;
1237 sk->sk_state_change(sk);
1238
1239 /* Destroy IrDA socket */
1240 irda_destroy_socket(irda_sk(sk));
1241
1242 sock_orphan(sk);
1243 sock->sk = NULL;
1244 release_sock(sk);
1245
1246 /* Purge queues (see sock_init_data()) */
1247 skb_queue_purge(&sk->sk_receive_queue);
1248
1249 /* Destroy networking socket if we are the last reference on it,
1250 * i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */
1251 sock_put(sk);
1252 unlock_kernel();
1253
1254 /* Notes on socket locking and deallocation... - Jean II
1255 * In theory we should put pairs of sock_hold() / sock_put() to
1256 * prevent the socket to be destroyed whenever there is an
1257 * outstanding request or outstanding incoming packet or event.
1258 *
1259 * 1) This may include IAS request, both in connect and getsockopt.
1260 * Unfortunately, the situation is a bit more messy than it looks,
1261 * because we close iriap and kfree(self) above.
1262 *
1263 * 2) This may include selective discovery in getsockopt.
1264 * Same stuff as above, irlmp registration and self are gone.
1265 *
1266 * Probably 1 and 2 may not matter, because it's all triggered
1267 * by a process and the socket layer already prevent the
1268 * socket to go away while a process is holding it, through
1269 * sockfd_put() and fput()...
1270 *
1271 * 3) This may include deferred TSAP closure. In particular,
1272 * we may receive a late irda_disconnect_indication()
1273 * Fortunately, (tsap_cb *)->close_pend should protect us
1274 * from that.
1275 *
1276 * I did some testing on SMP, and it looks solid. And the socket
1277 * memory leak is now gone... - Jean II
1278 */
1279
1280 return 0;
1281 }
1282
1283 /*
1284 * Function irda_sendmsg (iocb, sock, msg, len)
1285 *
1286 * Send message down to TinyTP. This function is used for both STREAM and
1287 * SEQPACK services. This is possible since it forces the client to
1288 * fragment the message if necessary
1289 */
1290 static int irda_sendmsg(struct kiocb *iocb, struct socket *sock,
1291 struct msghdr *msg, size_t len)
1292 {
1293 struct sock *sk = sock->sk;
1294 struct irda_sock *self;
1295 struct sk_buff *skb;
1296 int err = -EPIPE;
1297
1298 IRDA_DEBUG(4, "%s(), len=%zd\n", __func__, len);
1299
1300 lock_kernel();
1301 /* Note : socket.c set MSG_EOR on SEQPACKET sockets */
1302 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_EOR | MSG_CMSG_COMPAT |
1303 MSG_NOSIGNAL)) {
1304 err = -EINVAL;
1305 goto out;
1306 }
1307
1308 if (sk->sk_shutdown & SEND_SHUTDOWN)
1309 goto out_err;
1310
1311 if (sk->sk_state != TCP_ESTABLISHED) {
1312 err = -ENOTCONN;
1313 goto out;
1314 }
1315
1316 self = irda_sk(sk);
1317
1318 /* Check if IrTTP is wants us to slow down */
1319
1320 if (wait_event_interruptible(*(sk->sk_sleep),
1321 (self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED))) {
1322 err = -ERESTARTSYS;
1323 goto out;
1324 }
1325
1326 /* Check if we are still connected */
1327 if (sk->sk_state != TCP_ESTABLISHED) {
1328 err = -ENOTCONN;
1329 goto out;
1330 }
1331
1332 /* Check that we don't send out too big frames */
1333 if (len > self->max_data_size) {
1334 IRDA_DEBUG(2, "%s(), Chopping frame from %zd to %d bytes!\n",
1335 __func__, len, self->max_data_size);
1336 len = self->max_data_size;
1337 }
1338
1339 skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16,
1340 msg->msg_flags & MSG_DONTWAIT, &err);
1341 if (!skb)
1342 goto out_err;
1343
1344 skb_reserve(skb, self->max_header_size + 16);
1345 skb_reset_transport_header(skb);
1346 skb_put(skb, len);
1347 err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
1348 if (err) {
1349 kfree_skb(skb);
1350 goto out_err;
1351 }
1352
1353 /*
1354 * Just send the message to TinyTP, and let it deal with possible
1355 * errors. No need to duplicate all that here
1356 */
1357 err = irttp_data_request(self->tsap, skb);
1358 if (err) {
1359 IRDA_DEBUG(0, "%s(), err=%d\n", __func__, err);
1360 goto out_err;
1361 }
1362
1363 unlock_kernel();
1364 /* Tell client how much data we actually sent */
1365 return len;
1366
1367 out_err:
1368 err = sk_stream_error(sk, msg->msg_flags, err);
1369 out:
1370 unlock_kernel();
1371 return err;
1372
1373 }
1374
1375 /*
1376 * Function irda_recvmsg_dgram (iocb, sock, msg, size, flags)
1377 *
1378 * Try to receive message and copy it to user. The frame is discarded
1379 * after being read, regardless of how much the user actually read
1380 */
1381 static int irda_recvmsg_dgram(struct kiocb *iocb, struct socket *sock,
1382 struct msghdr *msg, size_t size, int flags)
1383 {
1384 struct sock *sk = sock->sk;
1385 struct irda_sock *self = irda_sk(sk);
1386 struct sk_buff *skb;
1387 size_t copied;
1388 int err;
1389
1390 IRDA_DEBUG(4, "%s()\n", __func__);
1391
1392 lock_kernel();
1393 if ((err = sock_error(sk)) < 0)
1394 goto out;
1395
1396 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1397 flags & MSG_DONTWAIT, &err);
1398 if (!skb)
1399 goto out;
1400
1401 skb_reset_transport_header(skb);
1402 copied = skb->len;
1403
1404 if (copied > size) {
1405 IRDA_DEBUG(2, "%s(), Received truncated frame (%zd < %zd)!\n",
1406 __func__, copied, size);
1407 copied = size;
1408 msg->msg_flags |= MSG_TRUNC;
1409 }
1410 skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1411
1412 skb_free_datagram(sk, skb);
1413
1414 /*
1415 * Check if we have previously stopped IrTTP and we know
1416 * have more free space in our rx_queue. If so tell IrTTP
1417 * to start delivering frames again before our rx_queue gets
1418 * empty
1419 */
1420 if (self->rx_flow == FLOW_STOP) {
1421 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1422 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __func__);
1423 self->rx_flow = FLOW_START;
1424 irttp_flow_request(self->tsap, FLOW_START);
1425 }
1426 }
1427 unlock_kernel();
1428 return copied;
1429
1430 out:
1431 unlock_kernel();
1432 return err;
1433 }
1434
1435 /*
1436 * Function irda_recvmsg_stream (iocb, sock, msg, size, flags)
1437 */
1438 static int irda_recvmsg_stream(struct kiocb *iocb, struct socket *sock,
1439 struct msghdr *msg, size_t size, int flags)
1440 {
1441 struct sock *sk = sock->sk;
1442 struct irda_sock *self = irda_sk(sk);
1443 int noblock = flags & MSG_DONTWAIT;
1444 size_t copied = 0;
1445 int target, err;
1446 long timeo;
1447
1448 IRDA_DEBUG(3, "%s()\n", __func__);
1449
1450 lock_kernel();
1451 if ((err = sock_error(sk)) < 0)
1452 goto out;
1453
1454 err = -EINVAL;
1455 if (sock->flags & __SO_ACCEPTCON)
1456 goto out;
1457
1458 err =-EOPNOTSUPP;
1459 if (flags & MSG_OOB)
1460 goto out;
1461
1462 err = 0;
1463 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
1464 timeo = sock_rcvtimeo(sk, noblock);
1465
1466 msg->msg_namelen = 0;
1467
1468 do {
1469 int chunk;
1470 struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue);
1471
1472 if (skb == NULL) {
1473 DEFINE_WAIT(wait);
1474 err = 0;
1475
1476 if (copied >= target)
1477 break;
1478
1479 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1480
1481 /*
1482 * POSIX 1003.1g mandates this order.
1483 */
1484 err = sock_error(sk);
1485 if (err)
1486 ;
1487 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1488 ;
1489 else if (noblock)
1490 err = -EAGAIN;
1491 else if (signal_pending(current))
1492 err = sock_intr_errno(timeo);
1493 else if (sk->sk_state != TCP_ESTABLISHED)
1494 err = -ENOTCONN;
1495 else if (skb_peek(&sk->sk_receive_queue) == NULL)
1496 /* Wait process until data arrives */
1497 schedule();
1498
1499 finish_wait(sk->sk_sleep, &wait);
1500
1501 if (err)
1502 goto out;
1503 if (sk->sk_shutdown & RCV_SHUTDOWN)
1504 break;
1505
1506 continue;
1507 }
1508
1509 chunk = min_t(unsigned int, skb->len, size);
1510 if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) {
1511 skb_queue_head(&sk->sk_receive_queue, skb);
1512 if (copied == 0)
1513 copied = -EFAULT;
1514 break;
1515 }
1516 copied += chunk;
1517 size -= chunk;
1518
1519 /* Mark read part of skb as used */
1520 if (!(flags & MSG_PEEK)) {
1521 skb_pull(skb, chunk);
1522
1523 /* put the skb back if we didn't use it up.. */
1524 if (skb->len) {
1525 IRDA_DEBUG(1, "%s(), back on q!\n",
1526 __func__);
1527 skb_queue_head(&sk->sk_receive_queue, skb);
1528 break;
1529 }
1530
1531 kfree_skb(skb);
1532 } else {
1533 IRDA_DEBUG(0, "%s() questionable!?\n", __func__);
1534
1535 /* put message back and return */
1536 skb_queue_head(&sk->sk_receive_queue, skb);
1537 break;
1538 }
1539 } while (size);
1540
1541 /*
1542 * Check if we have previously stopped IrTTP and we know
1543 * have more free space in our rx_queue. If so tell IrTTP
1544 * to start delivering frames again before our rx_queue gets
1545 * empty
1546 */
1547 if (self->rx_flow == FLOW_STOP) {
1548 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1549 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __func__);
1550 self->rx_flow = FLOW_START;
1551 irttp_flow_request(self->tsap, FLOW_START);
1552 }
1553 }
1554
1555 out:
1556 unlock_kernel();
1557 return err ? : copied;
1558 }
1559
1560 /*
1561 * Function irda_sendmsg_dgram (iocb, sock, msg, len)
1562 *
1563 * Send message down to TinyTP for the unreliable sequenced
1564 * packet service...
1565 *
1566 */
1567 static int irda_sendmsg_dgram(struct kiocb *iocb, struct socket *sock,
1568 struct msghdr *msg, size_t len)
1569 {
1570 struct sock *sk = sock->sk;
1571 struct irda_sock *self;
1572 struct sk_buff *skb;
1573 int err;
1574
1575 lock_kernel();
1576
1577 IRDA_DEBUG(4, "%s(), len=%zd\n", __func__, len);
1578
1579 err = -EINVAL;
1580 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1581 goto out;
1582
1583 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1584 send_sig(SIGPIPE, current, 0);
1585 err = -EPIPE;
1586 goto out;
1587 }
1588
1589 err = -ENOTCONN;
1590 if (sk->sk_state != TCP_ESTABLISHED)
1591 goto out;
1592
1593 self = irda_sk(sk);
1594
1595 /*
1596 * Check that we don't send out too big frames. This is an unreliable
1597 * service, so we have no fragmentation and no coalescence
1598 */
1599 if (len > self->max_data_size) {
1600 IRDA_DEBUG(0, "%s(), Warning to much data! "
1601 "Chopping frame from %zd to %d bytes!\n",
1602 __func__, len, self->max_data_size);
1603 len = self->max_data_size;
1604 }
1605
1606 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1607 msg->msg_flags & MSG_DONTWAIT, &err);
1608 err = -ENOBUFS;
1609 if (!skb)
1610 goto out;
1611
1612 skb_reserve(skb, self->max_header_size);
1613 skb_reset_transport_header(skb);
1614
1615 IRDA_DEBUG(4, "%s(), appending user data\n", __func__);
1616 skb_put(skb, len);
1617 err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
1618 if (err) {
1619 kfree_skb(skb);
1620 goto out;
1621 }
1622
1623 /*
1624 * Just send the message to TinyTP, and let it deal with possible
1625 * errors. No need to duplicate all that here
1626 */
1627 err = irttp_udata_request(self->tsap, skb);
1628 if (err) {
1629 IRDA_DEBUG(0, "%s(), err=%d\n", __func__, err);
1630 goto out;
1631 }
1632 unlock_kernel();
1633 return len;
1634 out:
1635 unlock_kernel();
1636 return err;
1637 }
1638
1639 /*
1640 * Function irda_sendmsg_ultra (iocb, sock, msg, len)
1641 *
1642 * Send message down to IrLMP for the unreliable Ultra
1643 * packet service...
1644 */
1645 #ifdef CONFIG_IRDA_ULTRA
1646 static int irda_sendmsg_ultra(struct kiocb *iocb, struct socket *sock,
1647 struct msghdr *msg, size_t len)
1648 {
1649 struct sock *sk = sock->sk;
1650 struct irda_sock *self;
1651 __u8 pid = 0;
1652 int bound = 0;
1653 struct sk_buff *skb;
1654 int err;
1655
1656 IRDA_DEBUG(4, "%s(), len=%zd\n", __func__, len);
1657
1658 lock_kernel();
1659 err = -EINVAL;
1660 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1661 goto out;
1662
1663 err = -EPIPE;
1664 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1665 send_sig(SIGPIPE, current, 0);
1666 goto out;
1667 }
1668
1669 self = irda_sk(sk);
1670
1671 /* Check if an address was specified with sendto. Jean II */
1672 if (msg->msg_name) {
1673 struct sockaddr_irda *addr = (struct sockaddr_irda *) msg->msg_name;
1674 err = -EINVAL;
1675 /* Check address, extract pid. Jean II */
1676 if (msg->msg_namelen < sizeof(*addr))
1677 goto out;
1678 if (addr->sir_family != AF_IRDA)
1679 goto out;
1680
1681 pid = addr->sir_lsap_sel;
1682 if (pid & 0x80) {
1683 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __func__);
1684 err = -EOPNOTSUPP;
1685 goto out;
1686 }
1687 } else {
1688 /* Check that the socket is properly bound to an Ultra
1689 * port. Jean II */
1690 if ((self->lsap == NULL) ||
1691 (sk->sk_state != TCP_ESTABLISHED)) {
1692 IRDA_DEBUG(0, "%s(), socket not bound to Ultra PID.\n",
1693 __func__);
1694 err = -ENOTCONN;
1695 goto out;
1696 }
1697 /* Use PID from socket */
1698 bound = 1;
1699 }
1700
1701 /*
1702 * Check that we don't send out too big frames. This is an unreliable
1703 * service, so we have no fragmentation and no coalescence
1704 */
1705 if (len > self->max_data_size) {
1706 IRDA_DEBUG(0, "%s(), Warning to much data! "
1707 "Chopping frame from %zd to %d bytes!\n",
1708 __func__, len, self->max_data_size);
1709 len = self->max_data_size;
1710 }
1711
1712 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1713 msg->msg_flags & MSG_DONTWAIT, &err);
1714 err = -ENOBUFS;
1715 if (!skb)
1716 goto out;
1717
1718 skb_reserve(skb, self->max_header_size);
1719 skb_reset_transport_header(skb);
1720
1721 IRDA_DEBUG(4, "%s(), appending user data\n", __func__);
1722 skb_put(skb, len);
1723 err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
1724 if (err) {
1725 kfree_skb(skb);
1726 goto out;
1727 }
1728
1729 err = irlmp_connless_data_request((bound ? self->lsap : NULL),
1730 skb, pid);
1731 if (err)
1732 IRDA_DEBUG(0, "%s(), err=%d\n", __func__, err);
1733 out:
1734 unlock_kernel();
1735 return err ? : len;
1736 }
1737 #endif /* CONFIG_IRDA_ULTRA */
1738
1739 /*
1740 * Function irda_shutdown (sk, how)
1741 */
1742 static int irda_shutdown(struct socket *sock, int how)
1743 {
1744 struct sock *sk = sock->sk;
1745 struct irda_sock *self = irda_sk(sk);
1746
1747 IRDA_DEBUG(1, "%s(%p)\n", __func__, self);
1748
1749 lock_kernel();
1750
1751 sk->sk_state = TCP_CLOSE;
1752 sk->sk_shutdown |= SEND_SHUTDOWN;
1753 sk->sk_state_change(sk);
1754
1755 if (self->iriap) {
1756 iriap_close(self->iriap);
1757 self->iriap = NULL;
1758 }
1759
1760 if (self->tsap) {
1761 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1762 irttp_close_tsap(self->tsap);
1763 self->tsap = NULL;
1764 }
1765
1766 /* A few cleanup so the socket look as good as new... */
1767 self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */
1768 self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */
1769 self->saddr = 0x0; /* so IrLMP assign us any link */
1770
1771 unlock_kernel();
1772
1773 return 0;
1774 }
1775
1776 /*
1777 * Function irda_poll (file, sock, wait)
1778 */
1779 static unsigned int irda_poll(struct file * file, struct socket *sock,
1780 poll_table *wait)
1781 {
1782 struct sock *sk = sock->sk;
1783 struct irda_sock *self = irda_sk(sk);
1784 unsigned int mask;
1785
1786 IRDA_DEBUG(4, "%s()\n", __func__);
1787
1788 lock_kernel();
1789 poll_wait(file, sk->sk_sleep, wait);
1790 mask = 0;
1791
1792 /* Exceptional events? */
1793 if (sk->sk_err)
1794 mask |= POLLERR;
1795 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1796 IRDA_DEBUG(0, "%s(), POLLHUP\n", __func__);
1797 mask |= POLLHUP;
1798 }
1799
1800 /* Readable? */
1801 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1802 IRDA_DEBUG(4, "Socket is readable\n");
1803 mask |= POLLIN | POLLRDNORM;
1804 }
1805
1806 /* Connection-based need to check for termination and startup */
1807 switch (sk->sk_type) {
1808 case SOCK_STREAM:
1809 if (sk->sk_state == TCP_CLOSE) {
1810 IRDA_DEBUG(0, "%s(), POLLHUP\n", __func__);
1811 mask |= POLLHUP;
1812 }
1813
1814 if (sk->sk_state == TCP_ESTABLISHED) {
1815 if ((self->tx_flow == FLOW_START) &&
1816 sock_writeable(sk))
1817 {
1818 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1819 }
1820 }
1821 break;
1822 case SOCK_SEQPACKET:
1823 if ((self->tx_flow == FLOW_START) &&
1824 sock_writeable(sk))
1825 {
1826 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1827 }
1828 break;
1829 case SOCK_DGRAM:
1830 if (sock_writeable(sk))
1831 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1832 break;
1833 default:
1834 break;
1835 }
1836 unlock_kernel();
1837 return mask;
1838 }
1839
1840 static unsigned int irda_datagram_poll(struct file *file, struct socket *sock,
1841 poll_table *wait)
1842 {
1843 int err;
1844
1845 lock_kernel();
1846 err = datagram_poll(file, sock, wait);
1847 unlock_kernel();
1848
1849 return err;
1850 }
1851
1852 /*
1853 * Function irda_ioctl (sock, cmd, arg)
1854 */
1855 static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1856 {
1857 struct sock *sk = sock->sk;
1858 int err;
1859
1860 IRDA_DEBUG(4, "%s(), cmd=%#x\n", __func__, cmd);
1861
1862 lock_kernel();
1863 err = -EINVAL;
1864 switch (cmd) {
1865 case TIOCOUTQ: {
1866 long amount;
1867
1868 amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1869 if (amount < 0)
1870 amount = 0;
1871 err = put_user(amount, (unsigned int __user *)arg);
1872 break;
1873 }
1874
1875 case TIOCINQ: {
1876 struct sk_buff *skb;
1877 long amount = 0L;
1878 /* These two are safe on a single CPU system as only user tasks fiddle here */
1879 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1880 amount = skb->len;
1881 err = put_user(amount, (unsigned int __user *)arg);
1882 break;
1883 }
1884
1885 case SIOCGSTAMP:
1886 if (sk != NULL)
1887 err = sock_get_timestamp(sk, (struct timeval __user *)arg);
1888 break;
1889
1890 case SIOCGIFADDR:
1891 case SIOCSIFADDR:
1892 case SIOCGIFDSTADDR:
1893 case SIOCSIFDSTADDR:
1894 case SIOCGIFBRDADDR:
1895 case SIOCSIFBRDADDR:
1896 case SIOCGIFNETMASK:
1897 case SIOCSIFNETMASK:
1898 case SIOCGIFMETRIC:
1899 case SIOCSIFMETRIC:
1900 break;
1901 default:
1902 IRDA_DEBUG(1, "%s(), doing device ioctl!\n", __func__);
1903 err = -ENOIOCTLCMD;
1904 }
1905 unlock_kernel();
1906
1907 return err;
1908 }
1909
1910 #ifdef CONFIG_COMPAT
1911 /*
1912 * Function irda_ioctl (sock, cmd, arg)
1913 */
1914 static int irda_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1915 {
1916 /*
1917 * All IRDA's ioctl are standard ones.
1918 */
1919 return -ENOIOCTLCMD;
1920 }
1921 #endif
1922
1923 /*
1924 * Function irda_setsockopt (sock, level, optname, optval, optlen)
1925 *
1926 * Set some options for the socket
1927 *
1928 */
1929 static int __irda_setsockopt(struct socket *sock, int level, int optname,
1930 char __user *optval, unsigned int optlen)
1931 {
1932 struct sock *sk = sock->sk;
1933 struct irda_sock *self = irda_sk(sk);
1934 struct irda_ias_set *ias_opt;
1935 struct ias_object *ias_obj;
1936 struct ias_attrib * ias_attr; /* Attribute in IAS object */
1937 int opt, free_ias = 0;
1938
1939 IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
1940
1941 if (level != SOL_IRLMP)
1942 return -ENOPROTOOPT;
1943
1944 switch (optname) {
1945 case IRLMP_IAS_SET:
1946 /* The user want to add an attribute to an existing IAS object
1947 * (in the IAS database) or to create a new object with this
1948 * attribute.
1949 * We first query IAS to know if the object exist, and then
1950 * create the right attribute...
1951 */
1952
1953 if (optlen != sizeof(struct irda_ias_set))
1954 return -EINVAL;
1955
1956 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1957 if (ias_opt == NULL)
1958 return -ENOMEM;
1959
1960 /* Copy query to the driver. */
1961 if (copy_from_user(ias_opt, optval, optlen)) {
1962 kfree(ias_opt);
1963 return -EFAULT;
1964 }
1965
1966 /* Find the object we target.
1967 * If the user gives us an empty string, we use the object
1968 * associated with this socket. This will workaround
1969 * duplicated class name - Jean II */
1970 if(ias_opt->irda_class_name[0] == '\0') {
1971 if(self->ias_obj == NULL) {
1972 kfree(ias_opt);
1973 return -EINVAL;
1974 }
1975 ias_obj = self->ias_obj;
1976 } else
1977 ias_obj = irias_find_object(ias_opt->irda_class_name);
1978
1979 /* Only ROOT can mess with the global IAS database.
1980 * Users can only add attributes to the object associated
1981 * with the socket they own - Jean II */
1982 if((!capable(CAP_NET_ADMIN)) &&
1983 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
1984 kfree(ias_opt);
1985 return -EPERM;
1986 }
1987
1988 /* If the object doesn't exist, create it */
1989 if(ias_obj == (struct ias_object *) NULL) {
1990 /* Create a new object */
1991 ias_obj = irias_new_object(ias_opt->irda_class_name,
1992 jiffies);
1993 if (ias_obj == NULL) {
1994 kfree(ias_opt);
1995 return -ENOMEM;
1996 }
1997 free_ias = 1;
1998 }
1999
2000 /* Do we have the attribute already ? */
2001 if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) {
2002 kfree(ias_opt);
2003 if (free_ias) {
2004 kfree(ias_obj->name);
2005 kfree(ias_obj);
2006 }
2007 return -EINVAL;
2008 }
2009
2010 /* Look at the type */
2011 switch(ias_opt->irda_attrib_type) {
2012 case IAS_INTEGER:
2013 /* Add an integer attribute */
2014 irias_add_integer_attrib(
2015 ias_obj,
2016 ias_opt->irda_attrib_name,
2017 ias_opt->attribute.irda_attrib_int,
2018 IAS_USER_ATTR);
2019 break;
2020 case IAS_OCT_SEQ:
2021 /* Check length */
2022 if(ias_opt->attribute.irda_attrib_octet_seq.len >
2023 IAS_MAX_OCTET_STRING) {
2024 kfree(ias_opt);
2025 if (free_ias) {
2026 kfree(ias_obj->name);
2027 kfree(ias_obj);
2028 }
2029
2030 return -EINVAL;
2031 }
2032 /* Add an octet sequence attribute */
2033 irias_add_octseq_attrib(
2034 ias_obj,
2035 ias_opt->irda_attrib_name,
2036 ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
2037 ias_opt->attribute.irda_attrib_octet_seq.len,
2038 IAS_USER_ATTR);
2039 break;
2040 case IAS_STRING:
2041 /* Should check charset & co */
2042 /* Check length */
2043 /* The length is encoded in a __u8, and
2044 * IAS_MAX_STRING == 256, so there is no way
2045 * userspace can pass us a string too large.
2046 * Jean II */
2047 /* NULL terminate the string (avoid troubles) */
2048 ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0';
2049 /* Add a string attribute */
2050 irias_add_string_attrib(
2051 ias_obj,
2052 ias_opt->irda_attrib_name,
2053 ias_opt->attribute.irda_attrib_string.string,
2054 IAS_USER_ATTR);
2055 break;
2056 default :
2057 kfree(ias_opt);
2058 if (free_ias) {
2059 kfree(ias_obj->name);
2060 kfree(ias_obj);
2061 }
2062 return -EINVAL;
2063 }
2064 irias_insert_object(ias_obj);
2065 kfree(ias_opt);
2066 break;
2067 case IRLMP_IAS_DEL:
2068 /* The user want to delete an object from our local IAS
2069 * database. We just need to query the IAS, check is the
2070 * object is not owned by the kernel and delete it.
2071 */
2072
2073 if (optlen != sizeof(struct irda_ias_set))
2074 return -EINVAL;
2075
2076 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2077 if (ias_opt == NULL)
2078 return -ENOMEM;
2079
2080 /* Copy query to the driver. */
2081 if (copy_from_user(ias_opt, optval, optlen)) {
2082 kfree(ias_opt);
2083 return -EFAULT;
2084 }
2085
2086 /* Find the object we target.
2087 * If the user gives us an empty string, we use the object
2088 * associated with this socket. This will workaround
2089 * duplicated class name - Jean II */
2090 if(ias_opt->irda_class_name[0] == '\0')
2091 ias_obj = self->ias_obj;
2092 else
2093 ias_obj = irias_find_object(ias_opt->irda_class_name);
2094 if(ias_obj == (struct ias_object *) NULL) {
2095 kfree(ias_opt);
2096 return -EINVAL;
2097 }
2098
2099 /* Only ROOT can mess with the global IAS database.
2100 * Users can only del attributes from the object associated
2101 * with the socket they own - Jean II */
2102 if((!capable(CAP_NET_ADMIN)) &&
2103 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
2104 kfree(ias_opt);
2105 return -EPERM;
2106 }
2107
2108 /* Find the attribute (in the object) we target */
2109 ias_attr = irias_find_attrib(ias_obj,
2110 ias_opt->irda_attrib_name);
2111 if(ias_attr == (struct ias_attrib *) NULL) {
2112 kfree(ias_opt);
2113 return -EINVAL;
2114 }
2115
2116 /* Check is the user space own the object */
2117 if(ias_attr->value->owner != IAS_USER_ATTR) {
2118 IRDA_DEBUG(1, "%s(), attempting to delete a kernel attribute\n", __func__);
2119 kfree(ias_opt);
2120 return -EPERM;
2121 }
2122
2123 /* Remove the attribute (and maybe the object) */
2124 irias_delete_attrib(ias_obj, ias_attr, 1);
2125 kfree(ias_opt);
2126 break;
2127 case IRLMP_MAX_SDU_SIZE:
2128 if (optlen < sizeof(int))
2129 return -EINVAL;
2130
2131 if (get_user(opt, (int __user *)optval))
2132 return -EFAULT;
2133
2134 /* Only possible for a seqpacket service (TTP with SAR) */
2135 if (sk->sk_type != SOCK_SEQPACKET) {
2136 IRDA_DEBUG(2, "%s(), setting max_sdu_size = %d\n",
2137 __func__, opt);
2138 self->max_sdu_size_rx = opt;
2139 } else {
2140 IRDA_WARNING("%s: not allowed to set MAXSDUSIZE for this socket type!\n",
2141 __func__);
2142 return -ENOPROTOOPT;
2143 }
2144 break;
2145 case IRLMP_HINTS_SET:
2146 if (optlen < sizeof(int))
2147 return -EINVAL;
2148
2149 /* The input is really a (__u8 hints[2]), easier as an int */
2150 if (get_user(opt, (int __user *)optval))
2151 return -EFAULT;
2152
2153 /* Unregister any old registration */
2154 if (self->skey)
2155 irlmp_unregister_service(self->skey);
2156
2157 self->skey = irlmp_register_service((__u16) opt);
2158 break;
2159 case IRLMP_HINT_MASK_SET:
2160 /* As opposed to the previous case which set the hint bits
2161 * that we advertise, this one set the filter we use when
2162 * making a discovery (nodes which don't match any hint
2163 * bit in the mask are not reported).
2164 */
2165 if (optlen < sizeof(int))
2166 return -EINVAL;
2167
2168 /* The input is really a (__u8 hints[2]), easier as an int */
2169 if (get_user(opt, (int __user *)optval))
2170 return -EFAULT;
2171
2172 /* Set the new hint mask */
2173 self->mask.word = (__u16) opt;
2174 /* Mask out extension bits */
2175 self->mask.word &= 0x7f7f;
2176 /* Check if no bits */
2177 if(!self->mask.word)
2178 self->mask.word = 0xFFFF;
2179
2180 break;
2181 default:
2182 return -ENOPROTOOPT;
2183 }
2184 return 0;
2185 }
2186
2187 static int irda_setsockopt(struct socket *sock, int level, int optname,
2188 char __user *optval, unsigned int optlen)
2189 {
2190 int err;
2191
2192 lock_kernel();
2193 err = __irda_setsockopt(sock, level, optname, optval, optlen);
2194 unlock_kernel();
2195
2196 return err;
2197 }
2198
2199 /*
2200 * Function irda_extract_ias_value(ias_opt, ias_value)
2201 *
2202 * Translate internal IAS value structure to the user space representation
2203 *
2204 * The external representation of IAS values, as we exchange them with
2205 * user space program is quite different from the internal representation,
2206 * as stored in the IAS database (because we need a flat structure for
2207 * crossing kernel boundary).
2208 * This function transform the former in the latter. We also check
2209 * that the value type is valid.
2210 */
2211 static int irda_extract_ias_value(struct irda_ias_set *ias_opt,
2212 struct ias_value *ias_value)
2213 {
2214 /* Look at the type */
2215 switch (ias_value->type) {
2216 case IAS_INTEGER:
2217 /* Copy the integer */
2218 ias_opt->attribute.irda_attrib_int = ias_value->t.integer;
2219 break;
2220 case IAS_OCT_SEQ:
2221 /* Set length */
2222 ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len;
2223 /* Copy over */
2224 memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
2225 ias_value->t.oct_seq, ias_value->len);
2226 break;
2227 case IAS_STRING:
2228 /* Set length */
2229 ias_opt->attribute.irda_attrib_string.len = ias_value->len;
2230 ias_opt->attribute.irda_attrib_string.charset = ias_value->charset;
2231 /* Copy over */
2232 memcpy(ias_opt->attribute.irda_attrib_string.string,
2233 ias_value->t.string, ias_value->len);
2234 /* NULL terminate the string (avoid troubles) */
2235 ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0';
2236 break;
2237 case IAS_MISSING:
2238 default :
2239 return -EINVAL;
2240 }
2241
2242 /* Copy type over */
2243 ias_opt->irda_attrib_type = ias_value->type;
2244
2245 return 0;
2246 }
2247
2248 /*
2249 * Function irda_getsockopt (sock, level, optname, optval, optlen)
2250 */
2251 static int __irda_getsockopt(struct socket *sock, int level, int optname,
2252 char __user *optval, int __user *optlen)
2253 {
2254 struct sock *sk = sock->sk;
2255 struct irda_sock *self = irda_sk(sk);
2256 struct irda_device_list list;
2257 struct irda_device_info *discoveries;
2258 struct irda_ias_set * ias_opt; /* IAS get/query params */
2259 struct ias_object * ias_obj; /* Object in IAS */
2260 struct ias_attrib * ias_attr; /* Attribute in IAS object */
2261 int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */
2262 int val = 0;
2263 int len = 0;
2264 int err;
2265 int offset, total;
2266
2267 IRDA_DEBUG(2, "%s(%p)\n", __func__, self);
2268
2269 if (level != SOL_IRLMP)
2270 return -ENOPROTOOPT;
2271
2272 if (get_user(len, optlen))
2273 return -EFAULT;
2274
2275 if(len < 0)
2276 return -EINVAL;
2277
2278 switch (optname) {
2279 case IRLMP_ENUMDEVICES:
2280 /* Ask lmp for the current discovery log */
2281 discoveries = irlmp_get_discoveries(&list.len, self->mask.word,
2282 self->nslots);
2283 /* Check if the we got some results */
2284 if (discoveries == NULL)
2285 return -EAGAIN; /* Didn't find any devices */
2286 err = 0;
2287
2288 /* Write total list length back to client */
2289 if (copy_to_user(optval, &list,
2290 sizeof(struct irda_device_list) -
2291 sizeof(struct irda_device_info)))
2292 err = -EFAULT;
2293
2294 /* Offset to first device entry */
2295 offset = sizeof(struct irda_device_list) -
2296 sizeof(struct irda_device_info);
2297
2298 /* Copy the list itself - watch for overflow */
2299 if(list.len > 2048)
2300 {
2301 err = -EINVAL;
2302 goto bed;
2303 }
2304 total = offset + (list.len * sizeof(struct irda_device_info));
2305 if (total > len)
2306 total = len;
2307 if (copy_to_user(optval+offset, discoveries, total - offset))
2308 err = -EFAULT;
2309
2310 /* Write total number of bytes used back to client */
2311 if (put_user(total, optlen))
2312 err = -EFAULT;
2313 bed:
2314 /* Free up our buffer */
2315 kfree(discoveries);
2316 if (err)
2317 return err;
2318 break;
2319 case IRLMP_MAX_SDU_SIZE:
2320 val = self->max_data_size;
2321 len = sizeof(int);
2322 if (put_user(len, optlen))
2323 return -EFAULT;
2324
2325 if (copy_to_user(optval, &val, len))
2326 return -EFAULT;
2327 break;
2328 case IRLMP_IAS_GET:
2329 /* The user want an object from our local IAS database.
2330 * We just need to query the IAS and return the value
2331 * that we found */
2332
2333 /* Check that the user has allocated the right space for us */
2334 if (len != sizeof(struct irda_ias_set))
2335 return -EINVAL;
2336
2337 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2338 if (ias_opt == NULL)
2339 return -ENOMEM;
2340
2341 /* Copy query to the driver. */
2342 if (copy_from_user(ias_opt, optval, len)) {
2343 kfree(ias_opt);
2344 return -EFAULT;
2345 }
2346
2347 /* Find the object we target.
2348 * If the user gives us an empty string, we use the object
2349 * associated with this socket. This will workaround
2350 * duplicated class name - Jean II */
2351 if(ias_opt->irda_class_name[0] == '\0')
2352 ias_obj = self->ias_obj;
2353 else
2354 ias_obj = irias_find_object(ias_opt->irda_class_name);
2355 if(ias_obj == (struct ias_object *) NULL) {
2356 kfree(ias_opt);
2357 return -EINVAL;
2358 }
2359
2360 /* Find the attribute (in the object) we target */
2361 ias_attr = irias_find_attrib(ias_obj,
2362 ias_opt->irda_attrib_name);
2363 if(ias_attr == (struct ias_attrib *) NULL) {
2364 kfree(ias_opt);
2365 return -EINVAL;
2366 }
2367
2368 /* Translate from internal to user structure */
2369 err = irda_extract_ias_value(ias_opt, ias_attr->value);
2370 if(err) {
2371 kfree(ias_opt);
2372 return err;
2373 }
2374
2375 /* Copy reply to the user */
2376 if (copy_to_user(optval, ias_opt,
2377 sizeof(struct irda_ias_set))) {
2378 kfree(ias_opt);
2379 return -EFAULT;
2380 }
2381 /* Note : don't need to put optlen, we checked it */
2382 kfree(ias_opt);
2383 break;
2384 case IRLMP_IAS_QUERY:
2385 /* The user want an object from a remote IAS database.
2386 * We need to use IAP to query the remote database and
2387 * then wait for the answer to come back. */
2388
2389 /* Check that the user has allocated the right space for us */
2390 if (len != sizeof(struct irda_ias_set))
2391 return -EINVAL;
2392
2393 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2394 if (ias_opt == NULL)
2395 return -ENOMEM;
2396
2397 /* Copy query to the driver. */
2398 if (copy_from_user(ias_opt, optval, len)) {
2399 kfree(ias_opt);
2400 return -EFAULT;
2401 }
2402
2403 /* At this point, there are two cases...
2404 * 1) the socket is connected - that's the easy case, we
2405 * just query the device we are connected to...
2406 * 2) the socket is not connected - the user doesn't want
2407 * to connect and/or may not have a valid service name
2408 * (so can't create a fake connection). In this case,
2409 * we assume that the user pass us a valid destination
2410 * address in the requesting structure...
2411 */
2412 if(self->daddr != DEV_ADDR_ANY) {
2413 /* We are connected - reuse known daddr */
2414 daddr = self->daddr;
2415 } else {
2416 /* We are not connected, we must specify a valid
2417 * destination address */
2418 daddr = ias_opt->daddr;
2419 if((!daddr) || (daddr == DEV_ADDR_ANY)) {
2420 kfree(ias_opt);
2421 return -EINVAL;
2422 }
2423 }
2424
2425 /* Check that we can proceed with IAP */
2426 if (self->iriap) {
2427 IRDA_WARNING("%s: busy with a previous query\n",
2428 __func__);
2429 kfree(ias_opt);
2430 return -EBUSY;
2431 }
2432
2433 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
2434 irda_getvalue_confirm);
2435
2436 if (self->iriap == NULL) {
2437 kfree(ias_opt);
2438 return -ENOMEM;
2439 }
2440
2441 /* Treat unexpected wakeup as disconnect */
2442 self->errno = -EHOSTUNREACH;
2443
2444 /* Query remote LM-IAS */
2445 iriap_getvaluebyclass_request(self->iriap,
2446 self->saddr, daddr,
2447 ias_opt->irda_class_name,
2448 ias_opt->irda_attrib_name);
2449
2450 /* Wait for answer, if not yet finished (or failed) */
2451 if (wait_event_interruptible(self->query_wait,
2452 (self->iriap == NULL))) {
2453 /* pending request uses copy of ias_opt-content
2454 * we can free it regardless! */
2455 kfree(ias_opt);
2456 /* Treat signals as disconnect */
2457 return -EHOSTUNREACH;
2458 }
2459
2460 /* Check what happened */
2461 if (self->errno)
2462 {
2463 kfree(ias_opt);
2464 /* Requested object/attribute doesn't exist */
2465 if((self->errno == IAS_CLASS_UNKNOWN) ||
2466 (self->errno == IAS_ATTRIB_UNKNOWN))
2467 return (-EADDRNOTAVAIL);
2468 else
2469 return (-EHOSTUNREACH);
2470 }
2471
2472 /* Translate from internal to user structure */
2473 err = irda_extract_ias_value(ias_opt, self->ias_result);
2474 if (self->ias_result)
2475 irias_delete_value(self->ias_result);
2476 if (err) {
2477 kfree(ias_opt);
2478 return err;
2479 }
2480
2481 /* Copy reply to the user */
2482 if (copy_to_user(optval, ias_opt,
2483 sizeof(struct irda_ias_set))) {
2484 kfree(ias_opt);
2485 return -EFAULT;
2486 }
2487 /* Note : don't need to put optlen, we checked it */
2488 kfree(ias_opt);
2489 break;
2490 case IRLMP_WAITDEVICE:
2491 /* This function is just another way of seeing life ;-)
2492 * IRLMP_ENUMDEVICES assumes that you have a static network,
2493 * and that you just want to pick one of the devices present.
2494 * On the other hand, in here we assume that no device is
2495 * present and that at some point in the future a device will
2496 * come into range. When this device arrive, we just wake
2497 * up the caller, so that he has time to connect to it before
2498 * the device goes away...
2499 * Note : once the node has been discovered for more than a
2500 * few second, it won't trigger this function, unless it
2501 * goes away and come back changes its hint bits (so we
2502 * might call it IRLMP_WAITNEWDEVICE).
2503 */
2504
2505 /* Check that the user is passing us an int */
2506 if (len != sizeof(int))
2507 return -EINVAL;
2508 /* Get timeout in ms (max time we block the caller) */
2509 if (get_user(val, (int __user *)optval))
2510 return -EFAULT;
2511
2512 /* Tell IrLMP we want to be notified */
2513 irlmp_update_client(self->ckey, self->mask.word,
2514 irda_selective_discovery_indication,
2515 NULL, (void *) self);
2516
2517 /* Do some discovery (and also return cached results) */
2518 irlmp_discovery_request(self->nslots);
2519
2520 /* Wait until a node is discovered */
2521 if (!self->cachedaddr) {
2522 int ret = 0;
2523
2524 IRDA_DEBUG(1, "%s(), nothing discovered yet, going to sleep...\n", __func__);
2525
2526 /* Set watchdog timer to expire in <val> ms. */
2527 self->errno = 0;
2528 setup_timer(&self->watchdog, irda_discovery_timeout,
2529 (unsigned long)self);
2530 self->watchdog.expires = jiffies + (val * HZ/1000);
2531 add_timer(&(self->watchdog));
2532
2533 /* Wait for IR-LMP to call us back */
2534 __wait_event_interruptible(self->query_wait,
2535 (self->cachedaddr != 0 || self->errno == -ETIME),
2536 ret);
2537
2538 /* If watchdog is still activated, kill it! */
2539 if(timer_pending(&(self->watchdog)))
2540 del_timer(&(self->watchdog));
2541
2542 IRDA_DEBUG(1, "%s(), ...waking up !\n", __func__);
2543
2544 if (ret != 0)
2545 return ret;
2546 }
2547 else
2548 IRDA_DEBUG(1, "%s(), found immediately !\n",
2549 __func__);
2550
2551 /* Tell IrLMP that we have been notified */
2552 irlmp_update_client(self->ckey, self->mask.word,
2553 NULL, NULL, NULL);
2554
2555 /* Check if the we got some results */
2556 if (!self->cachedaddr)
2557 return -EAGAIN; /* Didn't find any devices */
2558 daddr = self->cachedaddr;
2559 /* Cleanup */
2560 self->cachedaddr = 0;
2561
2562 /* We return the daddr of the device that trigger the
2563 * wakeup. As irlmp pass us only the new devices, we
2564 * are sure that it's not an old device.
2565 * If the user want more details, he should query
2566 * the whole discovery log and pick one device...
2567 */
2568 if (put_user(daddr, (int __user *)optval))
2569 return -EFAULT;
2570
2571 break;
2572 default:
2573 return -ENOPROTOOPT;
2574 }
2575
2576 return 0;
2577 }
2578
2579 static int irda_getsockopt(struct socket *sock, int level, int optname,
2580 char __user *optval, int __user *optlen)
2581 {
2582 int err;
2583
2584 lock_kernel();
2585 err = __irda_getsockopt(sock, level, optname, optval, optlen);
2586 unlock_kernel();
2587
2588 return err;
2589 }
2590
2591 static const struct net_proto_family irda_family_ops = {
2592 .family = PF_IRDA,
2593 .create = irda_create,
2594 .owner = THIS_MODULE,
2595 };
2596
2597 static const struct proto_ops irda_stream_ops = {
2598 .family = PF_IRDA,
2599 .owner = THIS_MODULE,
2600 .release = irda_release,
2601 .bind = irda_bind,
2602 .connect = irda_connect,
2603 .socketpair = sock_no_socketpair,
2604 .accept = irda_accept,
2605 .getname = irda_getname,
2606 .poll = irda_poll,
2607 .ioctl = irda_ioctl,
2608 #ifdef CONFIG_COMPAT
2609 .compat_ioctl = irda_compat_ioctl,
2610 #endif
2611 .listen = irda_listen,
2612 .shutdown = irda_shutdown,
2613 .setsockopt = irda_setsockopt,
2614 .getsockopt = irda_getsockopt,
2615 .sendmsg = irda_sendmsg,
2616 .recvmsg = irda_recvmsg_stream,
2617 .mmap = sock_no_mmap,
2618 .sendpage = sock_no_sendpage,
2619 };
2620
2621 static const struct proto_ops irda_seqpacket_ops = {
2622 .family = PF_IRDA,
2623 .owner = THIS_MODULE,
2624 .release = irda_release,
2625 .bind = irda_bind,
2626 .connect = irda_connect,
2627 .socketpair = sock_no_socketpair,
2628 .accept = irda_accept,
2629 .getname = irda_getname,
2630 .poll = irda_datagram_poll,
2631 .ioctl = irda_ioctl,
2632 #ifdef CONFIG_COMPAT
2633 .compat_ioctl = irda_compat_ioctl,
2634 #endif
2635 .listen = irda_listen,
2636 .shutdown = irda_shutdown,
2637 .setsockopt = irda_setsockopt,
2638 .getsockopt = irda_getsockopt,
2639 .sendmsg = irda_sendmsg,
2640 .recvmsg = irda_recvmsg_dgram,
2641 .mmap = sock_no_mmap,
2642 .sendpage = sock_no_sendpage,
2643 };
2644
2645 static const struct proto_ops irda_dgram_ops = {
2646 .family = PF_IRDA,
2647 .owner = THIS_MODULE,
2648 .release = irda_release,
2649 .bind = irda_bind,
2650 .connect = irda_connect,
2651 .socketpair = sock_no_socketpair,
2652 .accept = irda_accept,
2653 .getname = irda_getname,
2654 .poll = irda_datagram_poll,
2655 .ioctl = irda_ioctl,
2656 #ifdef CONFIG_COMPAT
2657 .compat_ioctl = irda_compat_ioctl,
2658 #endif
2659 .listen = irda_listen,
2660 .shutdown = irda_shutdown,
2661 .setsockopt = irda_setsockopt,
2662 .getsockopt = irda_getsockopt,
2663 .sendmsg = irda_sendmsg_dgram,
2664 .recvmsg = irda_recvmsg_dgram,
2665 .mmap = sock_no_mmap,
2666 .sendpage = sock_no_sendpage,
2667 };
2668
2669 #ifdef CONFIG_IRDA_ULTRA
2670 static const struct proto_ops irda_ultra_ops = {
2671 .family = PF_IRDA,
2672 .owner = THIS_MODULE,
2673 .release = irda_release,
2674 .bind = irda_bind,
2675 .connect = sock_no_connect,
2676 .socketpair = sock_no_socketpair,
2677 .accept = sock_no_accept,
2678 .getname = irda_getname,
2679 .poll = irda_datagram_poll,
2680 .ioctl = irda_ioctl,
2681 #ifdef CONFIG_COMPAT
2682 .compat_ioctl = irda_compat_ioctl,
2683 #endif
2684 .listen = sock_no_listen,
2685 .shutdown = irda_shutdown,
2686 .setsockopt = irda_setsockopt,
2687 .getsockopt = irda_getsockopt,
2688 .sendmsg = irda_sendmsg_ultra,
2689 .recvmsg = irda_recvmsg_dgram,
2690 .mmap = sock_no_mmap,
2691 .sendpage = sock_no_sendpage,
2692 };
2693 #endif /* CONFIG_IRDA_ULTRA */
2694
2695 /*
2696 * Function irsock_init (pro)
2697 *
2698 * Initialize IrDA protocol
2699 *
2700 */
2701 int __init irsock_init(void)
2702 {
2703 int rc = proto_register(&irda_proto, 0);
2704
2705 if (rc == 0)
2706 rc = sock_register(&irda_family_ops);
2707
2708 return rc;
2709 }
2710
2711 /*
2712 * Function irsock_cleanup (void)
2713 *
2714 * Remove IrDA protocol
2715 *
2716 */
2717 void irsock_cleanup(void)
2718 {
2719 sock_unregister(PF_IRDA);
2720 proto_unregister(&irda_proto);
2721 }