Pull trivial into test branch
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv6 / netfilter / nf_conntrack_reasm.c
1 /*
2 * IPv6 fragment reassembly for connection tracking
3 *
4 * Copyright (C)2004 USAGI/WIDE Project
5 *
6 * Author:
7 * Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
8 *
9 * Based on: net/ipv6/reassembly.c
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/socket.h>
21 #include <linux/sockios.h>
22 #include <linux/jiffies.h>
23 #include <linux/net.h>
24 #include <linux/list.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/ipv6.h>
28 #include <linux/icmpv6.h>
29 #include <linux/random.h>
30 #include <linux/jhash.h>
31
32 #include <net/sock.h>
33 #include <net/snmp.h>
34
35 #include <net/ipv6.h>
36 #include <net/protocol.h>
37 #include <net/transp_v6.h>
38 #include <net/rawv6.h>
39 #include <net/ndisc.h>
40 #include <net/addrconf.h>
41 #include <linux/sysctl.h>
42 #include <linux/netfilter.h>
43 #include <linux/netfilter_ipv6.h>
44 #include <linux/kernel.h>
45 #include <linux/module.h>
46
47 #if 0
48 #define DEBUGP printk
49 #else
50 #define DEBUGP(format, args...)
51 #endif
52
53 #define NF_CT_FRAG6_HIGH_THRESH 262144 /* == 256*1024 */
54 #define NF_CT_FRAG6_LOW_THRESH 196608 /* == 192*1024 */
55 #define NF_CT_FRAG6_TIMEOUT IPV6_FRAG_TIMEOUT
56
57 unsigned int nf_ct_frag6_high_thresh __read_mostly = 256*1024;
58 unsigned int nf_ct_frag6_low_thresh __read_mostly = 192*1024;
59 unsigned long nf_ct_frag6_timeout __read_mostly = IPV6_FRAG_TIMEOUT;
60
61 struct nf_ct_frag6_skb_cb
62 {
63 struct inet6_skb_parm h;
64 int offset;
65 struct sk_buff *orig;
66 };
67
68 #define NFCT_FRAG6_CB(skb) ((struct nf_ct_frag6_skb_cb*)((skb)->cb))
69
70 struct nf_ct_frag6_queue
71 {
72 struct hlist_node list;
73 struct list_head lru_list; /* lru list member */
74
75 __be32 id; /* fragment id */
76 struct in6_addr saddr;
77 struct in6_addr daddr;
78
79 spinlock_t lock;
80 atomic_t refcnt;
81 struct timer_list timer; /* expire timer */
82 struct sk_buff *fragments;
83 int len;
84 int meat;
85 struct timeval stamp;
86 unsigned int csum;
87 __u8 last_in; /* has first/last segment arrived? */
88 #define COMPLETE 4
89 #define FIRST_IN 2
90 #define LAST_IN 1
91 __u16 nhoffset;
92 };
93
94 /* Hash table. */
95
96 #define FRAG6Q_HASHSZ 64
97
98 static struct hlist_head nf_ct_frag6_hash[FRAG6Q_HASHSZ];
99 static DEFINE_RWLOCK(nf_ct_frag6_lock);
100 static u32 nf_ct_frag6_hash_rnd;
101 static LIST_HEAD(nf_ct_frag6_lru_list);
102 int nf_ct_frag6_nqueues = 0;
103
104 static __inline__ void __fq_unlink(struct nf_ct_frag6_queue *fq)
105 {
106 hlist_del(&fq->list);
107 list_del(&fq->lru_list);
108 nf_ct_frag6_nqueues--;
109 }
110
111 static __inline__ void fq_unlink(struct nf_ct_frag6_queue *fq)
112 {
113 write_lock(&nf_ct_frag6_lock);
114 __fq_unlink(fq);
115 write_unlock(&nf_ct_frag6_lock);
116 }
117
118 static unsigned int ip6qhashfn(__be32 id, struct in6_addr *saddr,
119 struct in6_addr *daddr)
120 {
121 u32 a, b, c;
122
123 a = (__force u32)saddr->s6_addr32[0];
124 b = (__force u32)saddr->s6_addr32[1];
125 c = (__force u32)saddr->s6_addr32[2];
126
127 a += JHASH_GOLDEN_RATIO;
128 b += JHASH_GOLDEN_RATIO;
129 c += nf_ct_frag6_hash_rnd;
130 __jhash_mix(a, b, c);
131
132 a += (__force u32)saddr->s6_addr32[3];
133 b += (__force u32)daddr->s6_addr32[0];
134 c += (__force u32)daddr->s6_addr32[1];
135 __jhash_mix(a, b, c);
136
137 a += (__force u32)daddr->s6_addr32[2];
138 b += (__force u32)daddr->s6_addr32[3];
139 c += (__force u32)id;
140 __jhash_mix(a, b, c);
141
142 return c & (FRAG6Q_HASHSZ - 1);
143 }
144
145 static struct timer_list nf_ct_frag6_secret_timer;
146 int nf_ct_frag6_secret_interval = 10 * 60 * HZ;
147
148 static void nf_ct_frag6_secret_rebuild(unsigned long dummy)
149 {
150 unsigned long now = jiffies;
151 int i;
152
153 write_lock(&nf_ct_frag6_lock);
154 get_random_bytes(&nf_ct_frag6_hash_rnd, sizeof(u32));
155 for (i = 0; i < FRAG6Q_HASHSZ; i++) {
156 struct nf_ct_frag6_queue *q;
157 struct hlist_node *p, *n;
158
159 hlist_for_each_entry_safe(q, p, n, &nf_ct_frag6_hash[i], list) {
160 unsigned int hval = ip6qhashfn(q->id,
161 &q->saddr,
162 &q->daddr);
163 if (hval != i) {
164 hlist_del(&q->list);
165 /* Relink to new hash chain. */
166 hlist_add_head(&q->list,
167 &nf_ct_frag6_hash[hval]);
168 }
169 }
170 }
171 write_unlock(&nf_ct_frag6_lock);
172
173 mod_timer(&nf_ct_frag6_secret_timer, now + nf_ct_frag6_secret_interval);
174 }
175
176 atomic_t nf_ct_frag6_mem = ATOMIC_INIT(0);
177
178 /* Memory Tracking Functions. */
179 static inline void frag_kfree_skb(struct sk_buff *skb, unsigned int *work)
180 {
181 if (work)
182 *work -= skb->truesize;
183 atomic_sub(skb->truesize, &nf_ct_frag6_mem);
184 if (NFCT_FRAG6_CB(skb)->orig)
185 kfree_skb(NFCT_FRAG6_CB(skb)->orig);
186
187 kfree_skb(skb);
188 }
189
190 static inline void frag_free_queue(struct nf_ct_frag6_queue *fq,
191 unsigned int *work)
192 {
193 if (work)
194 *work -= sizeof(struct nf_ct_frag6_queue);
195 atomic_sub(sizeof(struct nf_ct_frag6_queue), &nf_ct_frag6_mem);
196 kfree(fq);
197 }
198
199 static inline struct nf_ct_frag6_queue *frag_alloc_queue(void)
200 {
201 struct nf_ct_frag6_queue *fq = kmalloc(sizeof(struct nf_ct_frag6_queue), GFP_ATOMIC);
202
203 if (!fq)
204 return NULL;
205 atomic_add(sizeof(struct nf_ct_frag6_queue), &nf_ct_frag6_mem);
206 return fq;
207 }
208
209 /* Destruction primitives. */
210
211 /* Complete destruction of fq. */
212 static void nf_ct_frag6_destroy(struct nf_ct_frag6_queue *fq,
213 unsigned int *work)
214 {
215 struct sk_buff *fp;
216
217 BUG_TRAP(fq->last_in&COMPLETE);
218 BUG_TRAP(del_timer(&fq->timer) == 0);
219
220 /* Release all fragment data. */
221 fp = fq->fragments;
222 while (fp) {
223 struct sk_buff *xp = fp->next;
224
225 frag_kfree_skb(fp, work);
226 fp = xp;
227 }
228
229 frag_free_queue(fq, work);
230 }
231
232 static __inline__ void fq_put(struct nf_ct_frag6_queue *fq, unsigned int *work)
233 {
234 if (atomic_dec_and_test(&fq->refcnt))
235 nf_ct_frag6_destroy(fq, work);
236 }
237
238 /* Kill fq entry. It is not destroyed immediately,
239 * because caller (and someone more) holds reference count.
240 */
241 static __inline__ void fq_kill(struct nf_ct_frag6_queue *fq)
242 {
243 if (del_timer(&fq->timer))
244 atomic_dec(&fq->refcnt);
245
246 if (!(fq->last_in & COMPLETE)) {
247 fq_unlink(fq);
248 atomic_dec(&fq->refcnt);
249 fq->last_in |= COMPLETE;
250 }
251 }
252
253 static void nf_ct_frag6_evictor(void)
254 {
255 struct nf_ct_frag6_queue *fq;
256 struct list_head *tmp;
257 unsigned int work;
258
259 work = atomic_read(&nf_ct_frag6_mem);
260 if (work <= nf_ct_frag6_low_thresh)
261 return;
262
263 work -= nf_ct_frag6_low_thresh;
264 while (work > 0) {
265 read_lock(&nf_ct_frag6_lock);
266 if (list_empty(&nf_ct_frag6_lru_list)) {
267 read_unlock(&nf_ct_frag6_lock);
268 return;
269 }
270 tmp = nf_ct_frag6_lru_list.next;
271 BUG_ON(tmp == NULL);
272 fq = list_entry(tmp, struct nf_ct_frag6_queue, lru_list);
273 atomic_inc(&fq->refcnt);
274 read_unlock(&nf_ct_frag6_lock);
275
276 spin_lock(&fq->lock);
277 if (!(fq->last_in&COMPLETE))
278 fq_kill(fq);
279 spin_unlock(&fq->lock);
280
281 fq_put(fq, &work);
282 }
283 }
284
285 static void nf_ct_frag6_expire(unsigned long data)
286 {
287 struct nf_ct_frag6_queue *fq = (struct nf_ct_frag6_queue *) data;
288
289 spin_lock(&fq->lock);
290
291 if (fq->last_in & COMPLETE)
292 goto out;
293
294 fq_kill(fq);
295
296 out:
297 spin_unlock(&fq->lock);
298 fq_put(fq, NULL);
299 }
300
301 /* Creation primitives. */
302
303 static struct nf_ct_frag6_queue *nf_ct_frag6_intern(unsigned int hash,
304 struct nf_ct_frag6_queue *fq_in)
305 {
306 struct nf_ct_frag6_queue *fq;
307 #ifdef CONFIG_SMP
308 struct hlist_node *n;
309 #endif
310
311 write_lock(&nf_ct_frag6_lock);
312 #ifdef CONFIG_SMP
313 hlist_for_each_entry(fq, n, &nf_ct_frag6_hash[hash], list) {
314 if (fq->id == fq_in->id &&
315 ipv6_addr_equal(&fq_in->saddr, &fq->saddr) &&
316 ipv6_addr_equal(&fq_in->daddr, &fq->daddr)) {
317 atomic_inc(&fq->refcnt);
318 write_unlock(&nf_ct_frag6_lock);
319 fq_in->last_in |= COMPLETE;
320 fq_put(fq_in, NULL);
321 return fq;
322 }
323 }
324 #endif
325 fq = fq_in;
326
327 if (!mod_timer(&fq->timer, jiffies + nf_ct_frag6_timeout))
328 atomic_inc(&fq->refcnt);
329
330 atomic_inc(&fq->refcnt);
331 hlist_add_head(&fq->list, &nf_ct_frag6_hash[hash]);
332 INIT_LIST_HEAD(&fq->lru_list);
333 list_add_tail(&fq->lru_list, &nf_ct_frag6_lru_list);
334 nf_ct_frag6_nqueues++;
335 write_unlock(&nf_ct_frag6_lock);
336 return fq;
337 }
338
339
340 static struct nf_ct_frag6_queue *
341 nf_ct_frag6_create(unsigned int hash, __be32 id, struct in6_addr *src, struct in6_addr *dst)
342 {
343 struct nf_ct_frag6_queue *fq;
344
345 if ((fq = frag_alloc_queue()) == NULL) {
346 DEBUGP("Can't alloc new queue\n");
347 goto oom;
348 }
349
350 memset(fq, 0, sizeof(struct nf_ct_frag6_queue));
351
352 fq->id = id;
353 ipv6_addr_copy(&fq->saddr, src);
354 ipv6_addr_copy(&fq->daddr, dst);
355
356 init_timer(&fq->timer);
357 fq->timer.function = nf_ct_frag6_expire;
358 fq->timer.data = (long) fq;
359 spin_lock_init(&fq->lock);
360 atomic_set(&fq->refcnt, 1);
361
362 return nf_ct_frag6_intern(hash, fq);
363
364 oom:
365 return NULL;
366 }
367
368 static __inline__ struct nf_ct_frag6_queue *
369 fq_find(__be32 id, struct in6_addr *src, struct in6_addr *dst)
370 {
371 struct nf_ct_frag6_queue *fq;
372 struct hlist_node *n;
373 unsigned int hash = ip6qhashfn(id, src, dst);
374
375 read_lock(&nf_ct_frag6_lock);
376 hlist_for_each_entry(fq, n, &nf_ct_frag6_hash[hash], list) {
377 if (fq->id == id &&
378 ipv6_addr_equal(src, &fq->saddr) &&
379 ipv6_addr_equal(dst, &fq->daddr)) {
380 atomic_inc(&fq->refcnt);
381 read_unlock(&nf_ct_frag6_lock);
382 return fq;
383 }
384 }
385 read_unlock(&nf_ct_frag6_lock);
386
387 return nf_ct_frag6_create(hash, id, src, dst);
388 }
389
390
391 static int nf_ct_frag6_queue(struct nf_ct_frag6_queue *fq, struct sk_buff *skb,
392 struct frag_hdr *fhdr, int nhoff)
393 {
394 struct sk_buff *prev, *next;
395 int offset, end;
396
397 if (fq->last_in & COMPLETE) {
398 DEBUGP("Allready completed\n");
399 goto err;
400 }
401
402 offset = ntohs(fhdr->frag_off) & ~0x7;
403 end = offset + (ntohs(skb->nh.ipv6h->payload_len) -
404 ((u8 *) (fhdr + 1) - (u8 *) (skb->nh.ipv6h + 1)));
405
406 if ((unsigned int)end > IPV6_MAXPLEN) {
407 DEBUGP("offset is too large.\n");
408 return -1;
409 }
410
411 if (skb->ip_summed == CHECKSUM_COMPLETE)
412 skb->csum = csum_sub(skb->csum,
413 csum_partial(skb->nh.raw,
414 (u8*)(fhdr + 1) - skb->nh.raw,
415 0));
416
417 /* Is this the final fragment? */
418 if (!(fhdr->frag_off & htons(IP6_MF))) {
419 /* If we already have some bits beyond end
420 * or have different end, the segment is corrupted.
421 */
422 if (end < fq->len ||
423 ((fq->last_in & LAST_IN) && end != fq->len)) {
424 DEBUGP("already received last fragment\n");
425 goto err;
426 }
427 fq->last_in |= LAST_IN;
428 fq->len = end;
429 } else {
430 /* Check if the fragment is rounded to 8 bytes.
431 * Required by the RFC.
432 */
433 if (end & 0x7) {
434 /* RFC2460 says always send parameter problem in
435 * this case. -DaveM
436 */
437 DEBUGP("the end of this fragment is not rounded to 8 bytes.\n");
438 return -1;
439 }
440 if (end > fq->len) {
441 /* Some bits beyond end -> corruption. */
442 if (fq->last_in & LAST_IN) {
443 DEBUGP("last packet already reached.\n");
444 goto err;
445 }
446 fq->len = end;
447 }
448 }
449
450 if (end == offset)
451 goto err;
452
453 /* Point into the IP datagram 'data' part. */
454 if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data)) {
455 DEBUGP("queue: message is too short.\n");
456 goto err;
457 }
458 if (pskb_trim_rcsum(skb, end - offset)) {
459 DEBUGP("Can't trim\n");
460 goto err;
461 }
462
463 /* Find out which fragments are in front and at the back of us
464 * in the chain of fragments so far. We must know where to put
465 * this fragment, right?
466 */
467 prev = NULL;
468 for (next = fq->fragments; next != NULL; next = next->next) {
469 if (NFCT_FRAG6_CB(next)->offset >= offset)
470 break; /* bingo! */
471 prev = next;
472 }
473
474 /* We found where to put this one. Check for overlap with
475 * preceding fragment, and, if needed, align things so that
476 * any overlaps are eliminated.
477 */
478 if (prev) {
479 int i = (NFCT_FRAG6_CB(prev)->offset + prev->len) - offset;
480
481 if (i > 0) {
482 offset += i;
483 if (end <= offset) {
484 DEBUGP("overlap\n");
485 goto err;
486 }
487 if (!pskb_pull(skb, i)) {
488 DEBUGP("Can't pull\n");
489 goto err;
490 }
491 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
492 skb->ip_summed = CHECKSUM_NONE;
493 }
494 }
495
496 /* Look for overlap with succeeding segments.
497 * If we can merge fragments, do it.
498 */
499 while (next && NFCT_FRAG6_CB(next)->offset < end) {
500 /* overlap is 'i' bytes */
501 int i = end - NFCT_FRAG6_CB(next)->offset;
502
503 if (i < next->len) {
504 /* Eat head of the next overlapped fragment
505 * and leave the loop. The next ones cannot overlap.
506 */
507 DEBUGP("Eat head of the overlapped parts.: %d", i);
508 if (!pskb_pull(next, i))
509 goto err;
510
511 /* next fragment */
512 NFCT_FRAG6_CB(next)->offset += i;
513 fq->meat -= i;
514 if (next->ip_summed != CHECKSUM_UNNECESSARY)
515 next->ip_summed = CHECKSUM_NONE;
516 break;
517 } else {
518 struct sk_buff *free_it = next;
519
520 /* Old fragmnet is completely overridden with
521 * new one drop it.
522 */
523 next = next->next;
524
525 if (prev)
526 prev->next = next;
527 else
528 fq->fragments = next;
529
530 fq->meat -= free_it->len;
531 frag_kfree_skb(free_it, NULL);
532 }
533 }
534
535 NFCT_FRAG6_CB(skb)->offset = offset;
536
537 /* Insert this fragment in the chain of fragments. */
538 skb->next = next;
539 if (prev)
540 prev->next = skb;
541 else
542 fq->fragments = skb;
543
544 skb->dev = NULL;
545 skb_get_timestamp(skb, &fq->stamp);
546 fq->meat += skb->len;
547 atomic_add(skb->truesize, &nf_ct_frag6_mem);
548
549 /* The first fragment.
550 * nhoffset is obtained from the first fragment, of course.
551 */
552 if (offset == 0) {
553 fq->nhoffset = nhoff;
554 fq->last_in |= FIRST_IN;
555 }
556 write_lock(&nf_ct_frag6_lock);
557 list_move_tail(&fq->lru_list, &nf_ct_frag6_lru_list);
558 write_unlock(&nf_ct_frag6_lock);
559 return 0;
560
561 err:
562 return -1;
563 }
564
565 /*
566 * Check if this packet is complete.
567 * Returns NULL on failure by any reason, and pointer
568 * to current nexthdr field in reassembled frame.
569 *
570 * It is called with locked fq, and caller must check that
571 * queue is eligible for reassembly i.e. it is not COMPLETE,
572 * the last and the first frames arrived and all the bits are here.
573 */
574 static struct sk_buff *
575 nf_ct_frag6_reasm(struct nf_ct_frag6_queue *fq, struct net_device *dev)
576 {
577 struct sk_buff *fp, *op, *head = fq->fragments;
578 int payload_len;
579
580 fq_kill(fq);
581
582 BUG_TRAP(head != NULL);
583 BUG_TRAP(NFCT_FRAG6_CB(head)->offset == 0);
584
585 /* Unfragmented part is taken from the first segment. */
586 payload_len = (head->data - head->nh.raw) - sizeof(struct ipv6hdr) + fq->len - sizeof(struct frag_hdr);
587 if (payload_len > IPV6_MAXPLEN) {
588 DEBUGP("payload len is too large.\n");
589 goto out_oversize;
590 }
591
592 /* Head of list must not be cloned. */
593 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) {
594 DEBUGP("skb is cloned but can't expand head");
595 goto out_oom;
596 }
597
598 /* If the first fragment is fragmented itself, we split
599 * it to two chunks: the first with data and paged part
600 * and the second, holding only fragments. */
601 if (skb_shinfo(head)->frag_list) {
602 struct sk_buff *clone;
603 int i, plen = 0;
604
605 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) {
606 DEBUGP("Can't alloc skb\n");
607 goto out_oom;
608 }
609 clone->next = head->next;
610 head->next = clone;
611 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
612 skb_shinfo(head)->frag_list = NULL;
613 for (i=0; i<skb_shinfo(head)->nr_frags; i++)
614 plen += skb_shinfo(head)->frags[i].size;
615 clone->len = clone->data_len = head->data_len - plen;
616 head->data_len -= clone->len;
617 head->len -= clone->len;
618 clone->csum = 0;
619 clone->ip_summed = head->ip_summed;
620
621 NFCT_FRAG6_CB(clone)->orig = NULL;
622 atomic_add(clone->truesize, &nf_ct_frag6_mem);
623 }
624
625 /* We have to remove fragment header from datagram and to relocate
626 * header in order to calculate ICV correctly. */
627 head->nh.raw[fq->nhoffset] = head->h.raw[0];
628 memmove(head->head + sizeof(struct frag_hdr), head->head,
629 (head->data - head->head) - sizeof(struct frag_hdr));
630 head->mac.raw += sizeof(struct frag_hdr);
631 head->nh.raw += sizeof(struct frag_hdr);
632
633 skb_shinfo(head)->frag_list = head->next;
634 head->h.raw = head->data;
635 skb_push(head, head->data - head->nh.raw);
636 atomic_sub(head->truesize, &nf_ct_frag6_mem);
637
638 for (fp=head->next; fp; fp = fp->next) {
639 head->data_len += fp->len;
640 head->len += fp->len;
641 if (head->ip_summed != fp->ip_summed)
642 head->ip_summed = CHECKSUM_NONE;
643 else if (head->ip_summed == CHECKSUM_COMPLETE)
644 head->csum = csum_add(head->csum, fp->csum);
645 head->truesize += fp->truesize;
646 atomic_sub(fp->truesize, &nf_ct_frag6_mem);
647 }
648
649 head->next = NULL;
650 head->dev = dev;
651 skb_set_timestamp(head, &fq->stamp);
652 head->nh.ipv6h->payload_len = htons(payload_len);
653
654 /* Yes, and fold redundant checksum back. 8) */
655 if (head->ip_summed == CHECKSUM_COMPLETE)
656 head->csum = csum_partial(head->nh.raw, head->h.raw-head->nh.raw, head->csum);
657
658 fq->fragments = NULL;
659
660 /* all original skbs are linked into the NFCT_FRAG6_CB(head).orig */
661 fp = skb_shinfo(head)->frag_list;
662 if (NFCT_FRAG6_CB(fp)->orig == NULL)
663 /* at above code, head skb is divided into two skbs. */
664 fp = fp->next;
665
666 op = NFCT_FRAG6_CB(head)->orig;
667 for (; fp; fp = fp->next) {
668 struct sk_buff *orig = NFCT_FRAG6_CB(fp)->orig;
669
670 op->next = orig;
671 op = orig;
672 NFCT_FRAG6_CB(fp)->orig = NULL;
673 }
674
675 return head;
676
677 out_oversize:
678 if (net_ratelimit())
679 printk(KERN_DEBUG "nf_ct_frag6_reasm: payload len = %d\n", payload_len);
680 goto out_fail;
681 out_oom:
682 if (net_ratelimit())
683 printk(KERN_DEBUG "nf_ct_frag6_reasm: no memory for reassembly\n");
684 out_fail:
685 return NULL;
686 }
687
688 /*
689 * find the header just before Fragment Header.
690 *
691 * if success return 0 and set ...
692 * (*prevhdrp): the value of "Next Header Field" in the header
693 * just before Fragment Header.
694 * (*prevhoff): the offset of "Next Header Field" in the header
695 * just before Fragment Header.
696 * (*fhoff) : the offset of Fragment Header.
697 *
698 * Based on ipv6_skip_hdr() in net/ipv6/exthdr.c
699 *
700 */
701 static int
702 find_prev_fhdr(struct sk_buff *skb, u8 *prevhdrp, int *prevhoff, int *fhoff)
703 {
704 u8 nexthdr = skb->nh.ipv6h->nexthdr;
705 u8 prev_nhoff = (u8 *)&skb->nh.ipv6h->nexthdr - skb->data;
706 int start = (u8 *)(skb->nh.ipv6h+1) - skb->data;
707 int len = skb->len - start;
708 u8 prevhdr = NEXTHDR_IPV6;
709
710 while (nexthdr != NEXTHDR_FRAGMENT) {
711 struct ipv6_opt_hdr hdr;
712 int hdrlen;
713
714 if (!ipv6_ext_hdr(nexthdr)) {
715 return -1;
716 }
717 if (len < (int)sizeof(struct ipv6_opt_hdr)) {
718 DEBUGP("too short\n");
719 return -1;
720 }
721 if (nexthdr == NEXTHDR_NONE) {
722 DEBUGP("next header is none\n");
723 return -1;
724 }
725 if (skb_copy_bits(skb, start, &hdr, sizeof(hdr)))
726 BUG();
727 if (nexthdr == NEXTHDR_AUTH)
728 hdrlen = (hdr.hdrlen+2)<<2;
729 else
730 hdrlen = ipv6_optlen(&hdr);
731
732 prevhdr = nexthdr;
733 prev_nhoff = start;
734
735 nexthdr = hdr.nexthdr;
736 len -= hdrlen;
737 start += hdrlen;
738 }
739
740 if (len < 0)
741 return -1;
742
743 *prevhdrp = prevhdr;
744 *prevhoff = prev_nhoff;
745 *fhoff = start;
746
747 return 0;
748 }
749
750 struct sk_buff *nf_ct_frag6_gather(struct sk_buff *skb)
751 {
752 struct sk_buff *clone;
753 struct net_device *dev = skb->dev;
754 struct frag_hdr *fhdr;
755 struct nf_ct_frag6_queue *fq;
756 struct ipv6hdr *hdr;
757 int fhoff, nhoff;
758 u8 prevhdr;
759 struct sk_buff *ret_skb = NULL;
760
761 /* Jumbo payload inhibits frag. header */
762 if (skb->nh.ipv6h->payload_len == 0) {
763 DEBUGP("payload len = 0\n");
764 return skb;
765 }
766
767 if (find_prev_fhdr(skb, &prevhdr, &nhoff, &fhoff) < 0)
768 return skb;
769
770 clone = skb_clone(skb, GFP_ATOMIC);
771 if (clone == NULL) {
772 DEBUGP("Can't clone skb\n");
773 return skb;
774 }
775
776 NFCT_FRAG6_CB(clone)->orig = skb;
777
778 if (!pskb_may_pull(clone, fhoff + sizeof(*fhdr))) {
779 DEBUGP("message is too short.\n");
780 goto ret_orig;
781 }
782
783 clone->h.raw = clone->data + fhoff;
784 hdr = clone->nh.ipv6h;
785 fhdr = (struct frag_hdr *)clone->h.raw;
786
787 if (!(fhdr->frag_off & htons(0xFFF9))) {
788 DEBUGP("Invalid fragment offset\n");
789 /* It is not a fragmented frame */
790 goto ret_orig;
791 }
792
793 if (atomic_read(&nf_ct_frag6_mem) > nf_ct_frag6_high_thresh)
794 nf_ct_frag6_evictor();
795
796 fq = fq_find(fhdr->identification, &hdr->saddr, &hdr->daddr);
797 if (fq == NULL) {
798 DEBUGP("Can't find and can't create new queue\n");
799 goto ret_orig;
800 }
801
802 spin_lock(&fq->lock);
803
804 if (nf_ct_frag6_queue(fq, clone, fhdr, nhoff) < 0) {
805 spin_unlock(&fq->lock);
806 DEBUGP("Can't insert skb to queue\n");
807 fq_put(fq, NULL);
808 goto ret_orig;
809 }
810
811 if (fq->last_in == (FIRST_IN|LAST_IN) && fq->meat == fq->len) {
812 ret_skb = nf_ct_frag6_reasm(fq, dev);
813 if (ret_skb == NULL)
814 DEBUGP("Can't reassemble fragmented packets\n");
815 }
816 spin_unlock(&fq->lock);
817
818 fq_put(fq, NULL);
819 return ret_skb;
820
821 ret_orig:
822 kfree_skb(clone);
823 return skb;
824 }
825
826 void nf_ct_frag6_output(unsigned int hooknum, struct sk_buff *skb,
827 struct net_device *in, struct net_device *out,
828 int (*okfn)(struct sk_buff *))
829 {
830 struct sk_buff *s, *s2;
831
832 for (s = NFCT_FRAG6_CB(skb)->orig; s;) {
833 nf_conntrack_put_reasm(s->nfct_reasm);
834 nf_conntrack_get_reasm(skb);
835 s->nfct_reasm = skb;
836
837 s2 = s->next;
838 NF_HOOK_THRESH(PF_INET6, hooknum, s, in, out, okfn,
839 NF_IP6_PRI_CONNTRACK_DEFRAG + 1);
840 s = s2;
841 }
842 nf_conntrack_put_reasm(skb);
843 }
844
845 int nf_ct_frag6_kfree_frags(struct sk_buff *skb)
846 {
847 struct sk_buff *s, *s2;
848
849 for (s = NFCT_FRAG6_CB(skb)->orig; s; s = s2) {
850
851 s2 = s->next;
852 kfree_skb(s);
853 }
854
855 kfree_skb(skb);
856
857 return 0;
858 }
859
860 int nf_ct_frag6_init(void)
861 {
862 nf_ct_frag6_hash_rnd = (u32) ((num_physpages ^ (num_physpages>>7)) ^
863 (jiffies ^ (jiffies >> 6)));
864
865 init_timer(&nf_ct_frag6_secret_timer);
866 nf_ct_frag6_secret_timer.function = nf_ct_frag6_secret_rebuild;
867 nf_ct_frag6_secret_timer.expires = jiffies
868 + nf_ct_frag6_secret_interval;
869 add_timer(&nf_ct_frag6_secret_timer);
870
871 return 0;
872 }
873
874 void nf_ct_frag6_cleanup(void)
875 {
876 del_timer(&nf_ct_frag6_secret_timer);
877 nf_ct_frag6_low_thresh = 0;
878 nf_ct_frag6_evictor();
879 }