[SK_BUFF]: Introduce skb_reset_transport_header(skb)
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv6 / netfilter / nf_conntrack_reasm.c
1 /*
2 * IPv6 fragment reassembly for connection tracking
3 *
4 * Copyright (C)2004 USAGI/WIDE Project
5 *
6 * Author:
7 * Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
8 *
9 * Based on: net/ipv6/reassembly.c
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/socket.h>
21 #include <linux/sockios.h>
22 #include <linux/jiffies.h>
23 #include <linux/net.h>
24 #include <linux/list.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/ipv6.h>
28 #include <linux/icmpv6.h>
29 #include <linux/random.h>
30 #include <linux/jhash.h>
31
32 #include <net/sock.h>
33 #include <net/snmp.h>
34
35 #include <net/ipv6.h>
36 #include <net/protocol.h>
37 #include <net/transp_v6.h>
38 #include <net/rawv6.h>
39 #include <net/ndisc.h>
40 #include <net/addrconf.h>
41 #include <linux/sysctl.h>
42 #include <linux/netfilter.h>
43 #include <linux/netfilter_ipv6.h>
44 #include <linux/kernel.h>
45 #include <linux/module.h>
46
47 #if 0
48 #define DEBUGP printk
49 #else
50 #define DEBUGP(format, args...)
51 #endif
52
53 #define NF_CT_FRAG6_HIGH_THRESH 262144 /* == 256*1024 */
54 #define NF_CT_FRAG6_LOW_THRESH 196608 /* == 192*1024 */
55 #define NF_CT_FRAG6_TIMEOUT IPV6_FRAG_TIMEOUT
56
57 unsigned int nf_ct_frag6_high_thresh __read_mostly = 256*1024;
58 unsigned int nf_ct_frag6_low_thresh __read_mostly = 192*1024;
59 unsigned long nf_ct_frag6_timeout __read_mostly = IPV6_FRAG_TIMEOUT;
60
61 struct nf_ct_frag6_skb_cb
62 {
63 struct inet6_skb_parm h;
64 int offset;
65 struct sk_buff *orig;
66 };
67
68 #define NFCT_FRAG6_CB(skb) ((struct nf_ct_frag6_skb_cb*)((skb)->cb))
69
70 struct nf_ct_frag6_queue
71 {
72 struct hlist_node list;
73 struct list_head lru_list; /* lru list member */
74
75 __be32 id; /* fragment id */
76 struct in6_addr saddr;
77 struct in6_addr daddr;
78
79 spinlock_t lock;
80 atomic_t refcnt;
81 struct timer_list timer; /* expire timer */
82 struct sk_buff *fragments;
83 int len;
84 int meat;
85 ktime_t stamp;
86 unsigned int csum;
87 __u8 last_in; /* has first/last segment arrived? */
88 #define COMPLETE 4
89 #define FIRST_IN 2
90 #define LAST_IN 1
91 __u16 nhoffset;
92 };
93
94 /* Hash table. */
95
96 #define FRAG6Q_HASHSZ 64
97
98 static struct hlist_head nf_ct_frag6_hash[FRAG6Q_HASHSZ];
99 static DEFINE_RWLOCK(nf_ct_frag6_lock);
100 static u32 nf_ct_frag6_hash_rnd;
101 static LIST_HEAD(nf_ct_frag6_lru_list);
102 int nf_ct_frag6_nqueues = 0;
103
104 static __inline__ void __fq_unlink(struct nf_ct_frag6_queue *fq)
105 {
106 hlist_del(&fq->list);
107 list_del(&fq->lru_list);
108 nf_ct_frag6_nqueues--;
109 }
110
111 static __inline__ void fq_unlink(struct nf_ct_frag6_queue *fq)
112 {
113 write_lock(&nf_ct_frag6_lock);
114 __fq_unlink(fq);
115 write_unlock(&nf_ct_frag6_lock);
116 }
117
118 static unsigned int ip6qhashfn(__be32 id, struct in6_addr *saddr,
119 struct in6_addr *daddr)
120 {
121 u32 a, b, c;
122
123 a = (__force u32)saddr->s6_addr32[0];
124 b = (__force u32)saddr->s6_addr32[1];
125 c = (__force u32)saddr->s6_addr32[2];
126
127 a += JHASH_GOLDEN_RATIO;
128 b += JHASH_GOLDEN_RATIO;
129 c += nf_ct_frag6_hash_rnd;
130 __jhash_mix(a, b, c);
131
132 a += (__force u32)saddr->s6_addr32[3];
133 b += (__force u32)daddr->s6_addr32[0];
134 c += (__force u32)daddr->s6_addr32[1];
135 __jhash_mix(a, b, c);
136
137 a += (__force u32)daddr->s6_addr32[2];
138 b += (__force u32)daddr->s6_addr32[3];
139 c += (__force u32)id;
140 __jhash_mix(a, b, c);
141
142 return c & (FRAG6Q_HASHSZ - 1);
143 }
144
145 static struct timer_list nf_ct_frag6_secret_timer;
146 int nf_ct_frag6_secret_interval = 10 * 60 * HZ;
147
148 static void nf_ct_frag6_secret_rebuild(unsigned long dummy)
149 {
150 unsigned long now = jiffies;
151 int i;
152
153 write_lock(&nf_ct_frag6_lock);
154 get_random_bytes(&nf_ct_frag6_hash_rnd, sizeof(u32));
155 for (i = 0; i < FRAG6Q_HASHSZ; i++) {
156 struct nf_ct_frag6_queue *q;
157 struct hlist_node *p, *n;
158
159 hlist_for_each_entry_safe(q, p, n, &nf_ct_frag6_hash[i], list) {
160 unsigned int hval = ip6qhashfn(q->id,
161 &q->saddr,
162 &q->daddr);
163 if (hval != i) {
164 hlist_del(&q->list);
165 /* Relink to new hash chain. */
166 hlist_add_head(&q->list,
167 &nf_ct_frag6_hash[hval]);
168 }
169 }
170 }
171 write_unlock(&nf_ct_frag6_lock);
172
173 mod_timer(&nf_ct_frag6_secret_timer, now + nf_ct_frag6_secret_interval);
174 }
175
176 atomic_t nf_ct_frag6_mem = ATOMIC_INIT(0);
177
178 /* Memory Tracking Functions. */
179 static inline void frag_kfree_skb(struct sk_buff *skb, unsigned int *work)
180 {
181 if (work)
182 *work -= skb->truesize;
183 atomic_sub(skb->truesize, &nf_ct_frag6_mem);
184 if (NFCT_FRAG6_CB(skb)->orig)
185 kfree_skb(NFCT_FRAG6_CB(skb)->orig);
186
187 kfree_skb(skb);
188 }
189
190 static inline void frag_free_queue(struct nf_ct_frag6_queue *fq,
191 unsigned int *work)
192 {
193 if (work)
194 *work -= sizeof(struct nf_ct_frag6_queue);
195 atomic_sub(sizeof(struct nf_ct_frag6_queue), &nf_ct_frag6_mem);
196 kfree(fq);
197 }
198
199 static inline struct nf_ct_frag6_queue *frag_alloc_queue(void)
200 {
201 struct nf_ct_frag6_queue *fq = kmalloc(sizeof(struct nf_ct_frag6_queue), GFP_ATOMIC);
202
203 if (!fq)
204 return NULL;
205 atomic_add(sizeof(struct nf_ct_frag6_queue), &nf_ct_frag6_mem);
206 return fq;
207 }
208
209 /* Destruction primitives. */
210
211 /* Complete destruction of fq. */
212 static void nf_ct_frag6_destroy(struct nf_ct_frag6_queue *fq,
213 unsigned int *work)
214 {
215 struct sk_buff *fp;
216
217 BUG_TRAP(fq->last_in&COMPLETE);
218 BUG_TRAP(del_timer(&fq->timer) == 0);
219
220 /* Release all fragment data. */
221 fp = fq->fragments;
222 while (fp) {
223 struct sk_buff *xp = fp->next;
224
225 frag_kfree_skb(fp, work);
226 fp = xp;
227 }
228
229 frag_free_queue(fq, work);
230 }
231
232 static __inline__ void fq_put(struct nf_ct_frag6_queue *fq, unsigned int *work)
233 {
234 if (atomic_dec_and_test(&fq->refcnt))
235 nf_ct_frag6_destroy(fq, work);
236 }
237
238 /* Kill fq entry. It is not destroyed immediately,
239 * because caller (and someone more) holds reference count.
240 */
241 static __inline__ void fq_kill(struct nf_ct_frag6_queue *fq)
242 {
243 if (del_timer(&fq->timer))
244 atomic_dec(&fq->refcnt);
245
246 if (!(fq->last_in & COMPLETE)) {
247 fq_unlink(fq);
248 atomic_dec(&fq->refcnt);
249 fq->last_in |= COMPLETE;
250 }
251 }
252
253 static void nf_ct_frag6_evictor(void)
254 {
255 struct nf_ct_frag6_queue *fq;
256 struct list_head *tmp;
257 unsigned int work;
258
259 work = atomic_read(&nf_ct_frag6_mem);
260 if (work <= nf_ct_frag6_low_thresh)
261 return;
262
263 work -= nf_ct_frag6_low_thresh;
264 while (work > 0) {
265 read_lock(&nf_ct_frag6_lock);
266 if (list_empty(&nf_ct_frag6_lru_list)) {
267 read_unlock(&nf_ct_frag6_lock);
268 return;
269 }
270 tmp = nf_ct_frag6_lru_list.next;
271 BUG_ON(tmp == NULL);
272 fq = list_entry(tmp, struct nf_ct_frag6_queue, lru_list);
273 atomic_inc(&fq->refcnt);
274 read_unlock(&nf_ct_frag6_lock);
275
276 spin_lock(&fq->lock);
277 if (!(fq->last_in&COMPLETE))
278 fq_kill(fq);
279 spin_unlock(&fq->lock);
280
281 fq_put(fq, &work);
282 }
283 }
284
285 static void nf_ct_frag6_expire(unsigned long data)
286 {
287 struct nf_ct_frag6_queue *fq = (struct nf_ct_frag6_queue *) data;
288
289 spin_lock(&fq->lock);
290
291 if (fq->last_in & COMPLETE)
292 goto out;
293
294 fq_kill(fq);
295
296 out:
297 spin_unlock(&fq->lock);
298 fq_put(fq, NULL);
299 }
300
301 /* Creation primitives. */
302
303 static struct nf_ct_frag6_queue *nf_ct_frag6_intern(unsigned int hash,
304 struct nf_ct_frag6_queue *fq_in)
305 {
306 struct nf_ct_frag6_queue *fq;
307 #ifdef CONFIG_SMP
308 struct hlist_node *n;
309 #endif
310
311 write_lock(&nf_ct_frag6_lock);
312 #ifdef CONFIG_SMP
313 hlist_for_each_entry(fq, n, &nf_ct_frag6_hash[hash], list) {
314 if (fq->id == fq_in->id &&
315 ipv6_addr_equal(&fq_in->saddr, &fq->saddr) &&
316 ipv6_addr_equal(&fq_in->daddr, &fq->daddr)) {
317 atomic_inc(&fq->refcnt);
318 write_unlock(&nf_ct_frag6_lock);
319 fq_in->last_in |= COMPLETE;
320 fq_put(fq_in, NULL);
321 return fq;
322 }
323 }
324 #endif
325 fq = fq_in;
326
327 if (!mod_timer(&fq->timer, jiffies + nf_ct_frag6_timeout))
328 atomic_inc(&fq->refcnt);
329
330 atomic_inc(&fq->refcnt);
331 hlist_add_head(&fq->list, &nf_ct_frag6_hash[hash]);
332 INIT_LIST_HEAD(&fq->lru_list);
333 list_add_tail(&fq->lru_list, &nf_ct_frag6_lru_list);
334 nf_ct_frag6_nqueues++;
335 write_unlock(&nf_ct_frag6_lock);
336 return fq;
337 }
338
339
340 static struct nf_ct_frag6_queue *
341 nf_ct_frag6_create(unsigned int hash, __be32 id, struct in6_addr *src, struct in6_addr *dst)
342 {
343 struct nf_ct_frag6_queue *fq;
344
345 if ((fq = frag_alloc_queue()) == NULL) {
346 DEBUGP("Can't alloc new queue\n");
347 goto oom;
348 }
349
350 memset(fq, 0, sizeof(struct nf_ct_frag6_queue));
351
352 fq->id = id;
353 ipv6_addr_copy(&fq->saddr, src);
354 ipv6_addr_copy(&fq->daddr, dst);
355
356 init_timer(&fq->timer);
357 fq->timer.function = nf_ct_frag6_expire;
358 fq->timer.data = (long) fq;
359 spin_lock_init(&fq->lock);
360 atomic_set(&fq->refcnt, 1);
361
362 return nf_ct_frag6_intern(hash, fq);
363
364 oom:
365 return NULL;
366 }
367
368 static __inline__ struct nf_ct_frag6_queue *
369 fq_find(__be32 id, struct in6_addr *src, struct in6_addr *dst)
370 {
371 struct nf_ct_frag6_queue *fq;
372 struct hlist_node *n;
373 unsigned int hash = ip6qhashfn(id, src, dst);
374
375 read_lock(&nf_ct_frag6_lock);
376 hlist_for_each_entry(fq, n, &nf_ct_frag6_hash[hash], list) {
377 if (fq->id == id &&
378 ipv6_addr_equal(src, &fq->saddr) &&
379 ipv6_addr_equal(dst, &fq->daddr)) {
380 atomic_inc(&fq->refcnt);
381 read_unlock(&nf_ct_frag6_lock);
382 return fq;
383 }
384 }
385 read_unlock(&nf_ct_frag6_lock);
386
387 return nf_ct_frag6_create(hash, id, src, dst);
388 }
389
390
391 static int nf_ct_frag6_queue(struct nf_ct_frag6_queue *fq, struct sk_buff *skb,
392 struct frag_hdr *fhdr, int nhoff)
393 {
394 struct sk_buff *prev, *next;
395 int offset, end;
396
397 if (fq->last_in & COMPLETE) {
398 DEBUGP("Allready completed\n");
399 goto err;
400 }
401
402 offset = ntohs(fhdr->frag_off) & ~0x7;
403 end = offset + (ntohs(ipv6_hdr(skb)->payload_len) -
404 ((u8 *)(fhdr + 1) - (u8 *)(ipv6_hdr(skb) + 1)));
405
406 if ((unsigned int)end > IPV6_MAXPLEN) {
407 DEBUGP("offset is too large.\n");
408 return -1;
409 }
410
411 if (skb->ip_summed == CHECKSUM_COMPLETE) {
412 const unsigned char *nh = skb_network_header(skb);
413 skb->csum = csum_sub(skb->csum,
414 csum_partial(nh, (u8 *)(fhdr + 1) - nh,
415 0));
416 }
417
418 /* Is this the final fragment? */
419 if (!(fhdr->frag_off & htons(IP6_MF))) {
420 /* If we already have some bits beyond end
421 * or have different end, the segment is corrupted.
422 */
423 if (end < fq->len ||
424 ((fq->last_in & LAST_IN) && end != fq->len)) {
425 DEBUGP("already received last fragment\n");
426 goto err;
427 }
428 fq->last_in |= LAST_IN;
429 fq->len = end;
430 } else {
431 /* Check if the fragment is rounded to 8 bytes.
432 * Required by the RFC.
433 */
434 if (end & 0x7) {
435 /* RFC2460 says always send parameter problem in
436 * this case. -DaveM
437 */
438 DEBUGP("the end of this fragment is not rounded to 8 bytes.\n");
439 return -1;
440 }
441 if (end > fq->len) {
442 /* Some bits beyond end -> corruption. */
443 if (fq->last_in & LAST_IN) {
444 DEBUGP("last packet already reached.\n");
445 goto err;
446 }
447 fq->len = end;
448 }
449 }
450
451 if (end == offset)
452 goto err;
453
454 /* Point into the IP datagram 'data' part. */
455 if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data)) {
456 DEBUGP("queue: message is too short.\n");
457 goto err;
458 }
459 if (pskb_trim_rcsum(skb, end - offset)) {
460 DEBUGP("Can't trim\n");
461 goto err;
462 }
463
464 /* Find out which fragments are in front and at the back of us
465 * in the chain of fragments so far. We must know where to put
466 * this fragment, right?
467 */
468 prev = NULL;
469 for (next = fq->fragments; next != NULL; next = next->next) {
470 if (NFCT_FRAG6_CB(next)->offset >= offset)
471 break; /* bingo! */
472 prev = next;
473 }
474
475 /* We found where to put this one. Check for overlap with
476 * preceding fragment, and, if needed, align things so that
477 * any overlaps are eliminated.
478 */
479 if (prev) {
480 int i = (NFCT_FRAG6_CB(prev)->offset + prev->len) - offset;
481
482 if (i > 0) {
483 offset += i;
484 if (end <= offset) {
485 DEBUGP("overlap\n");
486 goto err;
487 }
488 if (!pskb_pull(skb, i)) {
489 DEBUGP("Can't pull\n");
490 goto err;
491 }
492 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
493 skb->ip_summed = CHECKSUM_NONE;
494 }
495 }
496
497 /* Look for overlap with succeeding segments.
498 * If we can merge fragments, do it.
499 */
500 while (next && NFCT_FRAG6_CB(next)->offset < end) {
501 /* overlap is 'i' bytes */
502 int i = end - NFCT_FRAG6_CB(next)->offset;
503
504 if (i < next->len) {
505 /* Eat head of the next overlapped fragment
506 * and leave the loop. The next ones cannot overlap.
507 */
508 DEBUGP("Eat head of the overlapped parts.: %d", i);
509 if (!pskb_pull(next, i))
510 goto err;
511
512 /* next fragment */
513 NFCT_FRAG6_CB(next)->offset += i;
514 fq->meat -= i;
515 if (next->ip_summed != CHECKSUM_UNNECESSARY)
516 next->ip_summed = CHECKSUM_NONE;
517 break;
518 } else {
519 struct sk_buff *free_it = next;
520
521 /* Old fragmnet is completely overridden with
522 * new one drop it.
523 */
524 next = next->next;
525
526 if (prev)
527 prev->next = next;
528 else
529 fq->fragments = next;
530
531 fq->meat -= free_it->len;
532 frag_kfree_skb(free_it, NULL);
533 }
534 }
535
536 NFCT_FRAG6_CB(skb)->offset = offset;
537
538 /* Insert this fragment in the chain of fragments. */
539 skb->next = next;
540 if (prev)
541 prev->next = skb;
542 else
543 fq->fragments = skb;
544
545 skb->dev = NULL;
546 fq->stamp = skb->tstamp;
547 fq->meat += skb->len;
548 atomic_add(skb->truesize, &nf_ct_frag6_mem);
549
550 /* The first fragment.
551 * nhoffset is obtained from the first fragment, of course.
552 */
553 if (offset == 0) {
554 fq->nhoffset = nhoff;
555 fq->last_in |= FIRST_IN;
556 }
557 write_lock(&nf_ct_frag6_lock);
558 list_move_tail(&fq->lru_list, &nf_ct_frag6_lru_list);
559 write_unlock(&nf_ct_frag6_lock);
560 return 0;
561
562 err:
563 return -1;
564 }
565
566 /*
567 * Check if this packet is complete.
568 * Returns NULL on failure by any reason, and pointer
569 * to current nexthdr field in reassembled frame.
570 *
571 * It is called with locked fq, and caller must check that
572 * queue is eligible for reassembly i.e. it is not COMPLETE,
573 * the last and the first frames arrived and all the bits are here.
574 */
575 static struct sk_buff *
576 nf_ct_frag6_reasm(struct nf_ct_frag6_queue *fq, struct net_device *dev)
577 {
578 struct sk_buff *fp, *op, *head = fq->fragments;
579 int payload_len;
580
581 fq_kill(fq);
582
583 BUG_TRAP(head != NULL);
584 BUG_TRAP(NFCT_FRAG6_CB(head)->offset == 0);
585
586 /* Unfragmented part is taken from the first segment. */
587 payload_len = ((head->data - skb_network_header(head)) -
588 sizeof(struct ipv6hdr) + fq->len -
589 sizeof(struct frag_hdr));
590 if (payload_len > IPV6_MAXPLEN) {
591 DEBUGP("payload len is too large.\n");
592 goto out_oversize;
593 }
594
595 /* Head of list must not be cloned. */
596 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) {
597 DEBUGP("skb is cloned but can't expand head");
598 goto out_oom;
599 }
600
601 /* If the first fragment is fragmented itself, we split
602 * it to two chunks: the first with data and paged part
603 * and the second, holding only fragments. */
604 if (skb_shinfo(head)->frag_list) {
605 struct sk_buff *clone;
606 int i, plen = 0;
607
608 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) {
609 DEBUGP("Can't alloc skb\n");
610 goto out_oom;
611 }
612 clone->next = head->next;
613 head->next = clone;
614 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
615 skb_shinfo(head)->frag_list = NULL;
616 for (i=0; i<skb_shinfo(head)->nr_frags; i++)
617 plen += skb_shinfo(head)->frags[i].size;
618 clone->len = clone->data_len = head->data_len - plen;
619 head->data_len -= clone->len;
620 head->len -= clone->len;
621 clone->csum = 0;
622 clone->ip_summed = head->ip_summed;
623
624 NFCT_FRAG6_CB(clone)->orig = NULL;
625 atomic_add(clone->truesize, &nf_ct_frag6_mem);
626 }
627
628 /* We have to remove fragment header from datagram and to relocate
629 * header in order to calculate ICV correctly. */
630 skb_network_header(head)[fq->nhoffset] = head->h.raw[0];
631 memmove(head->head + sizeof(struct frag_hdr), head->head,
632 (head->data - head->head) - sizeof(struct frag_hdr));
633 head->mac.raw += sizeof(struct frag_hdr);
634 head->nh.raw += sizeof(struct frag_hdr);
635
636 skb_shinfo(head)->frag_list = head->next;
637 skb_reset_transport_header(head);
638 skb_push(head, head->data - skb_network_header(head));
639 atomic_sub(head->truesize, &nf_ct_frag6_mem);
640
641 for (fp=head->next; fp; fp = fp->next) {
642 head->data_len += fp->len;
643 head->len += fp->len;
644 if (head->ip_summed != fp->ip_summed)
645 head->ip_summed = CHECKSUM_NONE;
646 else if (head->ip_summed == CHECKSUM_COMPLETE)
647 head->csum = csum_add(head->csum, fp->csum);
648 head->truesize += fp->truesize;
649 atomic_sub(fp->truesize, &nf_ct_frag6_mem);
650 }
651
652 head->next = NULL;
653 head->dev = dev;
654 head->tstamp = fq->stamp;
655 ipv6_hdr(head)->payload_len = htons(payload_len);
656
657 /* Yes, and fold redundant checksum back. 8) */
658 if (head->ip_summed == CHECKSUM_COMPLETE)
659 head->csum = csum_partial(skb_network_header(head),
660 head->h.raw - head->nh.raw,
661 head->csum);
662
663 fq->fragments = NULL;
664
665 /* all original skbs are linked into the NFCT_FRAG6_CB(head).orig */
666 fp = skb_shinfo(head)->frag_list;
667 if (NFCT_FRAG6_CB(fp)->orig == NULL)
668 /* at above code, head skb is divided into two skbs. */
669 fp = fp->next;
670
671 op = NFCT_FRAG6_CB(head)->orig;
672 for (; fp; fp = fp->next) {
673 struct sk_buff *orig = NFCT_FRAG6_CB(fp)->orig;
674
675 op->next = orig;
676 op = orig;
677 NFCT_FRAG6_CB(fp)->orig = NULL;
678 }
679
680 return head;
681
682 out_oversize:
683 if (net_ratelimit())
684 printk(KERN_DEBUG "nf_ct_frag6_reasm: payload len = %d\n", payload_len);
685 goto out_fail;
686 out_oom:
687 if (net_ratelimit())
688 printk(KERN_DEBUG "nf_ct_frag6_reasm: no memory for reassembly\n");
689 out_fail:
690 return NULL;
691 }
692
693 /*
694 * find the header just before Fragment Header.
695 *
696 * if success return 0 and set ...
697 * (*prevhdrp): the value of "Next Header Field" in the header
698 * just before Fragment Header.
699 * (*prevhoff): the offset of "Next Header Field" in the header
700 * just before Fragment Header.
701 * (*fhoff) : the offset of Fragment Header.
702 *
703 * Based on ipv6_skip_hdr() in net/ipv6/exthdr.c
704 *
705 */
706 static int
707 find_prev_fhdr(struct sk_buff *skb, u8 *prevhdrp, int *prevhoff, int *fhoff)
708 {
709 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
710 u8 prev_nhoff = (u8 *)&ipv6_hdr(skb)->nexthdr - skb->data;
711 int start = (u8 *)(ipv6_hdr(skb) + 1) - skb->data;
712 int len = skb->len - start;
713 u8 prevhdr = NEXTHDR_IPV6;
714
715 while (nexthdr != NEXTHDR_FRAGMENT) {
716 struct ipv6_opt_hdr hdr;
717 int hdrlen;
718
719 if (!ipv6_ext_hdr(nexthdr)) {
720 return -1;
721 }
722 if (len < (int)sizeof(struct ipv6_opt_hdr)) {
723 DEBUGP("too short\n");
724 return -1;
725 }
726 if (nexthdr == NEXTHDR_NONE) {
727 DEBUGP("next header is none\n");
728 return -1;
729 }
730 if (skb_copy_bits(skb, start, &hdr, sizeof(hdr)))
731 BUG();
732 if (nexthdr == NEXTHDR_AUTH)
733 hdrlen = (hdr.hdrlen+2)<<2;
734 else
735 hdrlen = ipv6_optlen(&hdr);
736
737 prevhdr = nexthdr;
738 prev_nhoff = start;
739
740 nexthdr = hdr.nexthdr;
741 len -= hdrlen;
742 start += hdrlen;
743 }
744
745 if (len < 0)
746 return -1;
747
748 *prevhdrp = prevhdr;
749 *prevhoff = prev_nhoff;
750 *fhoff = start;
751
752 return 0;
753 }
754
755 struct sk_buff *nf_ct_frag6_gather(struct sk_buff *skb)
756 {
757 struct sk_buff *clone;
758 struct net_device *dev = skb->dev;
759 struct frag_hdr *fhdr;
760 struct nf_ct_frag6_queue *fq;
761 struct ipv6hdr *hdr;
762 int fhoff, nhoff;
763 u8 prevhdr;
764 struct sk_buff *ret_skb = NULL;
765
766 /* Jumbo payload inhibits frag. header */
767 if (ipv6_hdr(skb)->payload_len == 0) {
768 DEBUGP("payload len = 0\n");
769 return skb;
770 }
771
772 if (find_prev_fhdr(skb, &prevhdr, &nhoff, &fhoff) < 0)
773 return skb;
774
775 clone = skb_clone(skb, GFP_ATOMIC);
776 if (clone == NULL) {
777 DEBUGP("Can't clone skb\n");
778 return skb;
779 }
780
781 NFCT_FRAG6_CB(clone)->orig = skb;
782
783 if (!pskb_may_pull(clone, fhoff + sizeof(*fhdr))) {
784 DEBUGP("message is too short.\n");
785 goto ret_orig;
786 }
787
788 clone->h.raw = clone->data + fhoff;
789 hdr = ipv6_hdr(clone);
790 fhdr = (struct frag_hdr *)clone->h.raw;
791
792 if (!(fhdr->frag_off & htons(0xFFF9))) {
793 DEBUGP("Invalid fragment offset\n");
794 /* It is not a fragmented frame */
795 goto ret_orig;
796 }
797
798 if (atomic_read(&nf_ct_frag6_mem) > nf_ct_frag6_high_thresh)
799 nf_ct_frag6_evictor();
800
801 fq = fq_find(fhdr->identification, &hdr->saddr, &hdr->daddr);
802 if (fq == NULL) {
803 DEBUGP("Can't find and can't create new queue\n");
804 goto ret_orig;
805 }
806
807 spin_lock(&fq->lock);
808
809 if (nf_ct_frag6_queue(fq, clone, fhdr, nhoff) < 0) {
810 spin_unlock(&fq->lock);
811 DEBUGP("Can't insert skb to queue\n");
812 fq_put(fq, NULL);
813 goto ret_orig;
814 }
815
816 if (fq->last_in == (FIRST_IN|LAST_IN) && fq->meat == fq->len) {
817 ret_skb = nf_ct_frag6_reasm(fq, dev);
818 if (ret_skb == NULL)
819 DEBUGP("Can't reassemble fragmented packets\n");
820 }
821 spin_unlock(&fq->lock);
822
823 fq_put(fq, NULL);
824 return ret_skb;
825
826 ret_orig:
827 kfree_skb(clone);
828 return skb;
829 }
830
831 void nf_ct_frag6_output(unsigned int hooknum, struct sk_buff *skb,
832 struct net_device *in, struct net_device *out,
833 int (*okfn)(struct sk_buff *))
834 {
835 struct sk_buff *s, *s2;
836
837 for (s = NFCT_FRAG6_CB(skb)->orig; s;) {
838 nf_conntrack_put_reasm(s->nfct_reasm);
839 nf_conntrack_get_reasm(skb);
840 s->nfct_reasm = skb;
841
842 s2 = s->next;
843 s->next = NULL;
844
845 NF_HOOK_THRESH(PF_INET6, hooknum, s, in, out, okfn,
846 NF_IP6_PRI_CONNTRACK_DEFRAG + 1);
847 s = s2;
848 }
849 nf_conntrack_put_reasm(skb);
850 }
851
852 int nf_ct_frag6_kfree_frags(struct sk_buff *skb)
853 {
854 struct sk_buff *s, *s2;
855
856 for (s = NFCT_FRAG6_CB(skb)->orig; s; s = s2) {
857
858 s2 = s->next;
859 kfree_skb(s);
860 }
861
862 kfree_skb(skb);
863
864 return 0;
865 }
866
867 int nf_ct_frag6_init(void)
868 {
869 nf_ct_frag6_hash_rnd = (u32) ((num_physpages ^ (num_physpages>>7)) ^
870 (jiffies ^ (jiffies >> 6)));
871
872 init_timer(&nf_ct_frag6_secret_timer);
873 nf_ct_frag6_secret_timer.function = nf_ct_frag6_secret_rebuild;
874 nf_ct_frag6_secret_timer.expires = jiffies
875 + nf_ct_frag6_secret_interval;
876 add_timer(&nf_ct_frag6_secret_timer);
877
878 return 0;
879 }
880
881 void nf_ct_frag6_cleanup(void)
882 {
883 del_timer(&nf_ct_frag6_secret_timer);
884 nf_ct_frag6_low_thresh = 0;
885 nf_ct_frag6_evictor();
886 }