Merge tag 'v3.10.70' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 /*
15 * Changes:
16 * Yuji SEKIYA @USAGI: Support default route on router node;
17 * remove ip6_null_entry from the top of
18 * routing table.
19 * Ville Nuorvala: Fixed routing subtrees.
20 */
21
22 #define pr_fmt(fmt) "IPv6: " fmt
23
24 #include <linux/errno.h>
25 #include <linux/types.h>
26 #include <linux/net.h>
27 #include <linux/route.h>
28 #include <linux/netdevice.h>
29 #include <linux/in6.h>
30 #include <linux/init.h>
31 #include <linux/list.h>
32 #include <linux/slab.h>
33
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
37
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40
41 #define RT6_DEBUG 2
42
43 #if RT6_DEBUG >= 3
44 #define RT6_TRACE(x...) pr_debug(x)
45 #else
46 #define RT6_TRACE(x...) do { ; } while (0)
47 #endif
48
49 static struct kmem_cache * fib6_node_kmem __read_mostly;
50
51 enum fib_walk_state_t
52 {
53 #ifdef CONFIG_IPV6_SUBTREES
54 FWS_S,
55 #endif
56 FWS_L,
57 FWS_R,
58 FWS_C,
59 FWS_U
60 };
61
62 struct fib6_cleaner_t
63 {
64 struct fib6_walker_t w;
65 struct net *net;
66 int (*func)(struct rt6_info *, void *arg);
67 void *arg;
68 };
69
70 static DEFINE_RWLOCK(fib6_walker_lock);
71
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
74 #else
75 #define FWS_INIT FWS_L
76 #endif
77
78 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
79 struct rt6_info *rt);
80 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
81 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
82 static int fib6_walk(struct fib6_walker_t *w);
83 static int fib6_walk_continue(struct fib6_walker_t *w);
84
85 /*
86 * A routing update causes an increase of the serial number on the
87 * affected subtree. This allows for cached routes to be asynchronously
88 * tested when modifications are made to the destination cache as a
89 * result of redirects, path MTU changes, etc.
90 */
91
92 static __u32 rt_sernum;
93
94 static void fib6_gc_timer_cb(unsigned long arg);
95
96 static LIST_HEAD(fib6_walkers);
97 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
98
99 static inline void fib6_walker_link(struct fib6_walker_t *w)
100 {
101 write_lock_bh(&fib6_walker_lock);
102 list_add(&w->lh, &fib6_walkers);
103 write_unlock_bh(&fib6_walker_lock);
104 }
105
106 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
107 {
108 write_lock_bh(&fib6_walker_lock);
109 list_del(&w->lh);
110 write_unlock_bh(&fib6_walker_lock);
111 }
112 static __inline__ u32 fib6_new_sernum(void)
113 {
114 u32 n = ++rt_sernum;
115 if ((__s32)n <= 0)
116 rt_sernum = n = 1;
117 return n;
118 }
119
120 /*
121 * Auxiliary address test functions for the radix tree.
122 *
123 * These assume a 32bit processor (although it will work on
124 * 64bit processors)
125 */
126
127 /*
128 * test bit
129 */
130 #if defined(__LITTLE_ENDIAN)
131 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
132 #else
133 # define BITOP_BE32_SWIZZLE 0
134 #endif
135
136 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
137 {
138 const __be32 *addr = token;
139 /*
140 * Here,
141 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
142 * is optimized version of
143 * htonl(1 << ((~fn_bit)&0x1F))
144 * See include/asm-generic/bitops/le.h.
145 */
146 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
147 addr[fn_bit >> 5];
148 }
149
150 static __inline__ struct fib6_node * node_alloc(void)
151 {
152 struct fib6_node *fn;
153
154 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
155
156 return fn;
157 }
158
159 static __inline__ void node_free(struct fib6_node * fn)
160 {
161 kmem_cache_free(fib6_node_kmem, fn);
162 }
163
164 static __inline__ void rt6_release(struct rt6_info *rt)
165 {
166 if (atomic_dec_and_test(&rt->rt6i_ref))
167 dst_free(&rt->dst);
168 }
169
170 static void fib6_link_table(struct net *net, struct fib6_table *tb)
171 {
172 unsigned int h;
173
174 /*
175 * Initialize table lock at a single place to give lockdep a key,
176 * tables aren't visible prior to being linked to the list.
177 */
178 rwlock_init(&tb->tb6_lock);
179
180 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
181
182 /*
183 * No protection necessary, this is the only list mutatation
184 * operation, tables never disappear once they exist.
185 */
186 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
187 }
188
189 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
190
191 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
192 {
193 struct fib6_table *table;
194
195 table = kzalloc(sizeof(*table), GFP_ATOMIC);
196 if (table) {
197 table->tb6_id = id;
198 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
199 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
200 inet_peer_base_init(&table->tb6_peers);
201 }
202
203 return table;
204 }
205
206 struct fib6_table *fib6_new_table(struct net *net, u32 id)
207 {
208 struct fib6_table *tb;
209
210 if (id == 0)
211 id = RT6_TABLE_MAIN;
212 tb = fib6_get_table(net, id);
213 if (tb)
214 return tb;
215
216 tb = fib6_alloc_table(net, id);
217 if (tb)
218 fib6_link_table(net, tb);
219
220 return tb;
221 }
222
223 struct fib6_table *fib6_get_table(struct net *net, u32 id)
224 {
225 struct fib6_table *tb;
226 struct hlist_head *head;
227 unsigned int h;
228
229 if (id == 0)
230 id = RT6_TABLE_MAIN;
231 h = id & (FIB6_TABLE_HASHSZ - 1);
232 rcu_read_lock();
233 head = &net->ipv6.fib_table_hash[h];
234 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
235 if (tb->tb6_id == id) {
236 rcu_read_unlock();
237 return tb;
238 }
239 }
240 rcu_read_unlock();
241
242 return NULL;
243 }
244
245 static void __net_init fib6_tables_init(struct net *net)
246 {
247 fib6_link_table(net, net->ipv6.fib6_main_tbl);
248 fib6_link_table(net, net->ipv6.fib6_local_tbl);
249 }
250 #else
251
252 struct fib6_table *fib6_new_table(struct net *net, u32 id)
253 {
254 return fib6_get_table(net, id);
255 }
256
257 struct fib6_table *fib6_get_table(struct net *net, u32 id)
258 {
259 return net->ipv6.fib6_main_tbl;
260 }
261
262 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
263 int flags, pol_lookup_t lookup)
264 {
265 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
266 }
267
268 static void __net_init fib6_tables_init(struct net *net)
269 {
270 fib6_link_table(net, net->ipv6.fib6_main_tbl);
271 }
272
273 #endif
274
275 static int fib6_dump_node(struct fib6_walker_t *w)
276 {
277 int res;
278 struct rt6_info *rt;
279
280 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
281 res = rt6_dump_route(rt, w->args);
282 if (res < 0) {
283 /* Frame is full, suspend walking */
284 w->leaf = rt;
285 return 1;
286 }
287 WARN_ON(res == 0);
288 }
289 w->leaf = NULL;
290 return 0;
291 }
292
293 static void fib6_dump_end(struct netlink_callback *cb)
294 {
295 struct fib6_walker_t *w = (void*)cb->args[2];
296
297 if (w) {
298 if (cb->args[4]) {
299 cb->args[4] = 0;
300 fib6_walker_unlink(w);
301 }
302 cb->args[2] = 0;
303 kfree(w);
304 }
305 cb->done = (void*)cb->args[3];
306 cb->args[1] = 3;
307 }
308
309 static int fib6_dump_done(struct netlink_callback *cb)
310 {
311 fib6_dump_end(cb);
312 return cb->done ? cb->done(cb) : 0;
313 }
314
315 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
316 struct netlink_callback *cb)
317 {
318 struct fib6_walker_t *w;
319 int res;
320
321 w = (void *)cb->args[2];
322 w->root = &table->tb6_root;
323
324 if (cb->args[4] == 0) {
325 w->count = 0;
326 w->skip = 0;
327
328 read_lock_bh(&table->tb6_lock);
329 res = fib6_walk(w);
330 read_unlock_bh(&table->tb6_lock);
331 if (res > 0) {
332 cb->args[4] = 1;
333 cb->args[5] = w->root->fn_sernum;
334 }
335 } else {
336 if (cb->args[5] != w->root->fn_sernum) {
337 /* Begin at the root if the tree changed */
338 cb->args[5] = w->root->fn_sernum;
339 w->state = FWS_INIT;
340 w->node = w->root;
341 w->skip = w->count;
342 } else
343 w->skip = 0;
344
345 read_lock_bh(&table->tb6_lock);
346 res = fib6_walk_continue(w);
347 read_unlock_bh(&table->tb6_lock);
348 if (res <= 0) {
349 fib6_walker_unlink(w);
350 cb->args[4] = 0;
351 }
352 }
353
354 return res;
355 }
356
357 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
358 {
359 struct net *net = sock_net(skb->sk);
360 unsigned int h, s_h;
361 unsigned int e = 0, s_e;
362 struct rt6_rtnl_dump_arg arg;
363 struct fib6_walker_t *w;
364 struct fib6_table *tb;
365 struct hlist_head *head;
366 int res = 0;
367
368 s_h = cb->args[0];
369 s_e = cb->args[1];
370
371 w = (void *)cb->args[2];
372 if (!w) {
373 /* New dump:
374 *
375 * 1. hook callback destructor.
376 */
377 cb->args[3] = (long)cb->done;
378 cb->done = fib6_dump_done;
379
380 /*
381 * 2. allocate and initialize walker.
382 */
383 w = kzalloc(sizeof(*w), GFP_ATOMIC);
384 if (!w)
385 return -ENOMEM;
386 w->func = fib6_dump_node;
387 cb->args[2] = (long)w;
388 }
389
390 arg.skb = skb;
391 arg.cb = cb;
392 arg.net = net;
393 w->args = &arg;
394
395 rcu_read_lock();
396 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
397 e = 0;
398 head = &net->ipv6.fib_table_hash[h];
399 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
400 if (e < s_e)
401 goto next;
402 res = fib6_dump_table(tb, skb, cb);
403 if (res != 0)
404 goto out;
405 next:
406 e++;
407 }
408 }
409 out:
410 rcu_read_unlock();
411 cb->args[1] = e;
412 cb->args[0] = h;
413
414 res = res < 0 ? res : skb->len;
415 if (res <= 0)
416 fib6_dump_end(cb);
417 return res;
418 }
419
420 /*
421 * Routing Table
422 *
423 * return the appropriate node for a routing tree "add" operation
424 * by either creating and inserting or by returning an existing
425 * node.
426 */
427
428 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
429 int addrlen, int plen,
430 int offset, int allow_create,
431 int replace_required)
432 {
433 struct fib6_node *fn, *in, *ln;
434 struct fib6_node *pn = NULL;
435 struct rt6key *key;
436 int bit;
437 __be32 dir = 0;
438 __u32 sernum = fib6_new_sernum();
439
440 RT6_TRACE("fib6_add_1\n");
441
442 /* insert node in tree */
443
444 fn = root;
445
446 do {
447 key = (struct rt6key *)((u8 *)fn->leaf + offset);
448
449 /*
450 * Prefix match
451 */
452 if (plen < fn->fn_bit ||
453 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
454 if (!allow_create) {
455 if (replace_required) {
456 pr_warn("Can't replace route, no match found\n");
457 return ERR_PTR(-ENOENT);
458 }
459 pr_warn("NLM_F_CREATE should be set when creating new route\n");
460 }
461 goto insert_above;
462 }
463
464 /*
465 * Exact match ?
466 */
467
468 if (plen == fn->fn_bit) {
469 /* clean up an intermediate node */
470 if (!(fn->fn_flags & RTN_RTINFO)) {
471 rt6_release(fn->leaf);
472 fn->leaf = NULL;
473 }
474
475 fn->fn_sernum = sernum;
476
477 return fn;
478 }
479
480 /*
481 * We have more bits to go
482 */
483
484 /* Try to walk down on tree. */
485 fn->fn_sernum = sernum;
486 dir = addr_bit_set(addr, fn->fn_bit);
487 pn = fn;
488 fn = dir ? fn->right: fn->left;
489 } while (fn);
490
491 if (!allow_create) {
492 /* We should not create new node because
493 * NLM_F_REPLACE was specified without NLM_F_CREATE
494 * I assume it is safe to require NLM_F_CREATE when
495 * REPLACE flag is used! Later we may want to remove the
496 * check for replace_required, because according
497 * to netlink specification, NLM_F_CREATE
498 * MUST be specified if new route is created.
499 * That would keep IPv6 consistent with IPv4
500 */
501 if (replace_required) {
502 pr_warn("Can't replace route, no match found\n");
503 return ERR_PTR(-ENOENT);
504 }
505 pr_warn("NLM_F_CREATE should be set when creating new route\n");
506 }
507 /*
508 * We walked to the bottom of tree.
509 * Create new leaf node without children.
510 */
511
512 ln = node_alloc();
513
514 if (!ln)
515 return ERR_PTR(-ENOMEM);
516 ln->fn_bit = plen;
517
518 ln->parent = pn;
519 ln->fn_sernum = sernum;
520
521 if (dir)
522 pn->right = ln;
523 else
524 pn->left = ln;
525
526 return ln;
527
528
529 insert_above:
530 /*
531 * split since we don't have a common prefix anymore or
532 * we have a less significant route.
533 * we've to insert an intermediate node on the list
534 * this new node will point to the one we need to create
535 * and the current
536 */
537
538 pn = fn->parent;
539
540 /* find 1st bit in difference between the 2 addrs.
541
542 See comment in __ipv6_addr_diff: bit may be an invalid value,
543 but if it is >= plen, the value is ignored in any case.
544 */
545
546 bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
547
548 /*
549 * (intermediate)[in]
550 * / \
551 * (new leaf node)[ln] (old node)[fn]
552 */
553 if (plen > bit) {
554 in = node_alloc();
555 ln = node_alloc();
556
557 if (!in || !ln) {
558 if (in)
559 node_free(in);
560 if (ln)
561 node_free(ln);
562 return ERR_PTR(-ENOMEM);
563 }
564
565 /*
566 * new intermediate node.
567 * RTN_RTINFO will
568 * be off since that an address that chooses one of
569 * the branches would not match less specific routes
570 * in the other branch
571 */
572
573 in->fn_bit = bit;
574
575 in->parent = pn;
576 in->leaf = fn->leaf;
577 atomic_inc(&in->leaf->rt6i_ref);
578
579 in->fn_sernum = sernum;
580
581 /* update parent pointer */
582 if (dir)
583 pn->right = in;
584 else
585 pn->left = in;
586
587 ln->fn_bit = plen;
588
589 ln->parent = in;
590 fn->parent = in;
591
592 ln->fn_sernum = sernum;
593
594 if (addr_bit_set(addr, bit)) {
595 in->right = ln;
596 in->left = fn;
597 } else {
598 in->left = ln;
599 in->right = fn;
600 }
601 } else { /* plen <= bit */
602
603 /*
604 * (new leaf node)[ln]
605 * / \
606 * (old node)[fn] NULL
607 */
608
609 ln = node_alloc();
610
611 if (!ln)
612 return ERR_PTR(-ENOMEM);
613
614 ln->fn_bit = plen;
615
616 ln->parent = pn;
617
618 ln->fn_sernum = sernum;
619
620 if (dir)
621 pn->right = ln;
622 else
623 pn->left = ln;
624
625 if (addr_bit_set(&key->addr, plen))
626 ln->right = fn;
627 else
628 ln->left = fn;
629
630 fn->parent = ln;
631 }
632 return ln;
633 }
634
635 static inline bool rt6_qualify_for_ecmp(struct rt6_info *rt)
636 {
637 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
638 RTF_GATEWAY;
639 }
640
641 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
642 struct net *net)
643 {
644 if (atomic_read(&rt->rt6i_ref) != 1) {
645 /* This route is used as dummy address holder in some split
646 * nodes. It is not leaked, but it still holds other resources,
647 * which must be released in time. So, scan ascendant nodes
648 * and replace dummy references to this route with references
649 * to still alive ones.
650 */
651 while (fn) {
652 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
653 fn->leaf = fib6_find_prefix(net, fn);
654 atomic_inc(&fn->leaf->rt6i_ref);
655 rt6_release(rt);
656 }
657 fn = fn->parent;
658 }
659 /* No more references are possible at this point. */
660 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
661 }
662 }
663
664 /*
665 * Insert routing information in a node.
666 */
667
668 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
669 struct nl_info *info)
670 {
671 struct rt6_info *iter = NULL;
672 struct rt6_info **ins;
673 int replace = (info->nlh &&
674 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
675 int add = (!info->nlh ||
676 (info->nlh->nlmsg_flags & NLM_F_CREATE));
677 int found = 0;
678 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
679
680 ins = &fn->leaf;
681
682 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
683 /*
684 * Search for duplicates
685 */
686
687 if (iter->rt6i_metric == rt->rt6i_metric) {
688 /*
689 * Same priority level
690 */
691 if (info->nlh &&
692 (info->nlh->nlmsg_flags & NLM_F_EXCL))
693 return -EEXIST;
694 if (replace) {
695 found++;
696 break;
697 }
698
699 if (iter->dst.dev == rt->dst.dev &&
700 iter->rt6i_idev == rt->rt6i_idev &&
701 ipv6_addr_equal(&iter->rt6i_gateway,
702 &rt->rt6i_gateway)) {
703 if (rt->rt6i_nsiblings)
704 rt->rt6i_nsiblings = 0;
705 if (!(iter->rt6i_flags & RTF_EXPIRES))
706 return -EEXIST;
707 if (!(rt->rt6i_flags & RTF_EXPIRES))
708 rt6_clean_expires(iter);
709 else
710 rt6_set_expires(iter, rt->dst.expires);
711 return -EEXIST;
712 }
713 /* If we have the same destination and the same metric,
714 * but not the same gateway, then the route we try to
715 * add is sibling to this route, increment our counter
716 * of siblings, and later we will add our route to the
717 * list.
718 * Only static routes (which don't have flag
719 * RTF_EXPIRES) are used for ECMPv6.
720 *
721 * To avoid long list, we only had siblings if the
722 * route have a gateway.
723 */
724 if (rt_can_ecmp &&
725 rt6_qualify_for_ecmp(iter))
726 rt->rt6i_nsiblings++;
727 }
728
729 if (iter->rt6i_metric > rt->rt6i_metric)
730 break;
731
732 ins = &iter->dst.rt6_next;
733 }
734
735 /* Reset round-robin state, if necessary */
736 if (ins == &fn->leaf)
737 fn->rr_ptr = NULL;
738
739 /* Link this route to others same route. */
740 if (rt->rt6i_nsiblings) {
741 unsigned int rt6i_nsiblings;
742 struct rt6_info *sibling, *temp_sibling;
743
744 /* Find the first route that have the same metric */
745 sibling = fn->leaf;
746 while (sibling) {
747 if (sibling->rt6i_metric == rt->rt6i_metric &&
748 rt6_qualify_for_ecmp(sibling)) {
749 list_add_tail(&rt->rt6i_siblings,
750 &sibling->rt6i_siblings);
751 break;
752 }
753 sibling = sibling->dst.rt6_next;
754 }
755 /* For each sibling in the list, increment the counter of
756 * siblings. BUG() if counters does not match, list of siblings
757 * is broken!
758 */
759 rt6i_nsiblings = 0;
760 list_for_each_entry_safe(sibling, temp_sibling,
761 &rt->rt6i_siblings, rt6i_siblings) {
762 sibling->rt6i_nsiblings++;
763 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
764 rt6i_nsiblings++;
765 }
766 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
767 }
768
769 /*
770 * insert node
771 */
772 if (!replace) {
773 if (!add)
774 pr_warn("NLM_F_CREATE should be set when creating new route\n");
775
776 add:
777 rt->dst.rt6_next = iter;
778 *ins = rt;
779 rt->rt6i_node = fn;
780 atomic_inc(&rt->rt6i_ref);
781 inet6_rt_notify(RTM_NEWROUTE, rt, info);
782 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
783
784 if (!(fn->fn_flags & RTN_RTINFO)) {
785 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
786 fn->fn_flags |= RTN_RTINFO;
787 }
788
789 } else {
790 if (!found) {
791 if (add)
792 goto add;
793 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
794 return -ENOENT;
795 }
796 *ins = rt;
797 rt->rt6i_node = fn;
798 rt->dst.rt6_next = iter->dst.rt6_next;
799 atomic_inc(&rt->rt6i_ref);
800 inet6_rt_notify(RTM_NEWROUTE, rt, info);
801 if (!(fn->fn_flags & RTN_RTINFO)) {
802 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
803 fn->fn_flags |= RTN_RTINFO;
804 }
805 fib6_purge_rt(iter, fn, info->nl_net);
806 rt6_release(iter);
807 }
808
809 return 0;
810 }
811
812 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
813 {
814 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
815 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
816 mod_timer(&net->ipv6.ip6_fib_timer,
817 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
818 }
819
820 void fib6_force_start_gc(struct net *net)
821 {
822 if (!timer_pending(&net->ipv6.ip6_fib_timer))
823 mod_timer(&net->ipv6.ip6_fib_timer,
824 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
825 }
826
827 /*
828 * Add routing information to the routing tree.
829 * <destination addr>/<source addr>
830 * with source addr info in sub-trees
831 */
832
833 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
834 {
835 struct fib6_node *fn, *pn = NULL;
836 int err = -ENOMEM;
837 int allow_create = 1;
838 int replace_required = 0;
839
840 if (info->nlh) {
841 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
842 allow_create = 0;
843 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
844 replace_required = 1;
845 }
846 if (!allow_create && !replace_required)
847 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
848
849 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
850 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst),
851 allow_create, replace_required);
852 if (IS_ERR(fn)) {
853 err = PTR_ERR(fn);
854 fn = NULL;
855 goto out;
856 }
857
858 pn = fn;
859
860 #ifdef CONFIG_IPV6_SUBTREES
861 if (rt->rt6i_src.plen) {
862 struct fib6_node *sn;
863
864 if (!fn->subtree) {
865 struct fib6_node *sfn;
866
867 /*
868 * Create subtree.
869 *
870 * fn[main tree]
871 * |
872 * sfn[subtree root]
873 * \
874 * sn[new leaf node]
875 */
876
877 /* Create subtree root node */
878 sfn = node_alloc();
879 if (!sfn)
880 goto st_failure;
881
882 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
883 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
884 sfn->fn_flags = RTN_ROOT;
885 sfn->fn_sernum = fib6_new_sernum();
886
887 /* Now add the first leaf node to new subtree */
888
889 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
890 sizeof(struct in6_addr), rt->rt6i_src.plen,
891 offsetof(struct rt6_info, rt6i_src),
892 allow_create, replace_required);
893
894 if (IS_ERR(sn)) {
895 /* If it is failed, discard just allocated
896 root, and then (in st_failure) stale node
897 in main tree.
898 */
899 node_free(sfn);
900 err = PTR_ERR(sn);
901 goto st_failure;
902 }
903
904 /* Now link new subtree to main tree */
905 sfn->parent = fn;
906 fn->subtree = sfn;
907 } else {
908 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
909 sizeof(struct in6_addr), rt->rt6i_src.plen,
910 offsetof(struct rt6_info, rt6i_src),
911 allow_create, replace_required);
912
913 if (IS_ERR(sn)) {
914 err = PTR_ERR(sn);
915 goto st_failure;
916 }
917 }
918
919 if (!fn->leaf) {
920 fn->leaf = rt;
921 atomic_inc(&rt->rt6i_ref);
922 }
923 fn = sn;
924 }
925 #endif
926
927 err = fib6_add_rt2node(fn, rt, info);
928 if (!err) {
929 fib6_start_gc(info->nl_net, rt);
930 if (!(rt->rt6i_flags & RTF_CACHE))
931 fib6_prune_clones(info->nl_net, pn, rt);
932 }
933
934 out:
935 if (err) {
936 #ifdef CONFIG_IPV6_SUBTREES
937 /*
938 * If fib6_add_1 has cleared the old leaf pointer in the
939 * super-tree leaf node we have to find a new one for it.
940 */
941 if (pn != fn && pn->leaf == rt) {
942 pn->leaf = NULL;
943 atomic_dec(&rt->rt6i_ref);
944 }
945 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
946 pn->leaf = fib6_find_prefix(info->nl_net, pn);
947 #if RT6_DEBUG >= 2
948 if (!pn->leaf) {
949 WARN_ON(pn->leaf == NULL);
950 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
951 }
952 #endif
953 atomic_inc(&pn->leaf->rt6i_ref);
954 }
955 #endif
956 dst_free(&rt->dst);
957 }
958 return err;
959
960 #ifdef CONFIG_IPV6_SUBTREES
961 /* Subtree creation failed, probably main tree node
962 is orphan. If it is, shoot it.
963 */
964 st_failure:
965 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
966 fib6_repair_tree(info->nl_net, fn);
967 dst_free(&rt->dst);
968 return err;
969 #endif
970 }
971
972 /*
973 * Routing tree lookup
974 *
975 */
976
977 struct lookup_args {
978 int offset; /* key offset on rt6_info */
979 const struct in6_addr *addr; /* search key */
980 };
981
982 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
983 struct lookup_args *args)
984 {
985 struct fib6_node *fn;
986 __be32 dir;
987
988 if (unlikely(args->offset == 0))
989 return NULL;
990
991 /*
992 * Descend on a tree
993 */
994
995 fn = root;
996
997 for (;;) {
998 struct fib6_node *next;
999
1000 dir = addr_bit_set(args->addr, fn->fn_bit);
1001
1002 next = dir ? fn->right : fn->left;
1003
1004 if (next) {
1005 fn = next;
1006 continue;
1007 }
1008 break;
1009 }
1010
1011 while (fn) {
1012 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1013 struct rt6key *key;
1014
1015 key = (struct rt6key *) ((u8 *) fn->leaf +
1016 args->offset);
1017
1018 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1019 #ifdef CONFIG_IPV6_SUBTREES
1020 if (fn->subtree) {
1021 struct fib6_node *sfn;
1022 sfn = fib6_lookup_1(fn->subtree,
1023 args + 1);
1024 if (!sfn)
1025 goto backtrack;
1026 fn = sfn;
1027 }
1028 #endif
1029 if (fn->fn_flags & RTN_RTINFO)
1030 return fn;
1031 }
1032 }
1033 #ifdef CONFIG_IPV6_SUBTREES
1034 backtrack:
1035 #endif
1036 if (fn->fn_flags & RTN_ROOT)
1037 break;
1038
1039 fn = fn->parent;
1040 }
1041
1042 return NULL;
1043 }
1044
1045 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1046 const struct in6_addr *saddr)
1047 {
1048 struct fib6_node *fn;
1049 struct lookup_args args[] = {
1050 {
1051 .offset = offsetof(struct rt6_info, rt6i_dst),
1052 .addr = daddr,
1053 },
1054 #ifdef CONFIG_IPV6_SUBTREES
1055 {
1056 .offset = offsetof(struct rt6_info, rt6i_src),
1057 .addr = saddr,
1058 },
1059 #endif
1060 {
1061 .offset = 0, /* sentinel */
1062 }
1063 };
1064
1065 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1066 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1067 fn = root;
1068
1069 return fn;
1070 }
1071
1072 /*
1073 * Get node with specified destination prefix (and source prefix,
1074 * if subtrees are used)
1075 */
1076
1077
1078 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
1079 const struct in6_addr *addr,
1080 int plen, int offset)
1081 {
1082 struct fib6_node *fn;
1083
1084 for (fn = root; fn ; ) {
1085 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1086
1087 /*
1088 * Prefix match
1089 */
1090 if (plen < fn->fn_bit ||
1091 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1092 return NULL;
1093
1094 if (plen == fn->fn_bit)
1095 return fn;
1096
1097 /*
1098 * We have more bits to go
1099 */
1100 if (addr_bit_set(addr, fn->fn_bit))
1101 fn = fn->right;
1102 else
1103 fn = fn->left;
1104 }
1105 return NULL;
1106 }
1107
1108 struct fib6_node * fib6_locate(struct fib6_node *root,
1109 const struct in6_addr *daddr, int dst_len,
1110 const struct in6_addr *saddr, int src_len)
1111 {
1112 struct fib6_node *fn;
1113
1114 fn = fib6_locate_1(root, daddr, dst_len,
1115 offsetof(struct rt6_info, rt6i_dst));
1116
1117 #ifdef CONFIG_IPV6_SUBTREES
1118 if (src_len) {
1119 WARN_ON(saddr == NULL);
1120 if (fn && fn->subtree)
1121 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1122 offsetof(struct rt6_info, rt6i_src));
1123 }
1124 #endif
1125
1126 if (fn && fn->fn_flags & RTN_RTINFO)
1127 return fn;
1128
1129 return NULL;
1130 }
1131
1132
1133 /*
1134 * Deletion
1135 *
1136 */
1137
1138 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1139 {
1140 if (fn->fn_flags & RTN_ROOT)
1141 return net->ipv6.ip6_null_entry;
1142
1143 while (fn) {
1144 if (fn->left)
1145 return fn->left->leaf;
1146 if (fn->right)
1147 return fn->right->leaf;
1148
1149 fn = FIB6_SUBTREE(fn);
1150 }
1151 return NULL;
1152 }
1153
1154 /*
1155 * Called to trim the tree of intermediate nodes when possible. "fn"
1156 * is the node we want to try and remove.
1157 */
1158
1159 static struct fib6_node *fib6_repair_tree(struct net *net,
1160 struct fib6_node *fn)
1161 {
1162 int children;
1163 int nstate;
1164 struct fib6_node *child, *pn;
1165 struct fib6_walker_t *w;
1166 int iter = 0;
1167
1168 for (;;) {
1169 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1170 iter++;
1171
1172 WARN_ON(fn->fn_flags & RTN_RTINFO);
1173 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1174 WARN_ON(fn->leaf != NULL);
1175
1176 children = 0;
1177 child = NULL;
1178 if (fn->right) child = fn->right, children |= 1;
1179 if (fn->left) child = fn->left, children |= 2;
1180
1181 if (children == 3 || FIB6_SUBTREE(fn)
1182 #ifdef CONFIG_IPV6_SUBTREES
1183 /* Subtree root (i.e. fn) may have one child */
1184 || (children && fn->fn_flags & RTN_ROOT)
1185 #endif
1186 ) {
1187 fn->leaf = fib6_find_prefix(net, fn);
1188 #if RT6_DEBUG >= 2
1189 if (!fn->leaf) {
1190 WARN_ON(!fn->leaf);
1191 fn->leaf = net->ipv6.ip6_null_entry;
1192 }
1193 #endif
1194 atomic_inc(&fn->leaf->rt6i_ref);
1195 return fn->parent;
1196 }
1197
1198 pn = fn->parent;
1199 #ifdef CONFIG_IPV6_SUBTREES
1200 if (FIB6_SUBTREE(pn) == fn) {
1201 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1202 FIB6_SUBTREE(pn) = NULL;
1203 nstate = FWS_L;
1204 } else {
1205 WARN_ON(fn->fn_flags & RTN_ROOT);
1206 #endif
1207 if (pn->right == fn) pn->right = child;
1208 else if (pn->left == fn) pn->left = child;
1209 #if RT6_DEBUG >= 2
1210 else
1211 WARN_ON(1);
1212 #endif
1213 if (child)
1214 child->parent = pn;
1215 nstate = FWS_R;
1216 #ifdef CONFIG_IPV6_SUBTREES
1217 }
1218 #endif
1219
1220 read_lock(&fib6_walker_lock);
1221 FOR_WALKERS(w) {
1222 if (!child) {
1223 if (w->root == fn) {
1224 w->root = w->node = NULL;
1225 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1226 } else if (w->node == fn) {
1227 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1228 w->node = pn;
1229 w->state = nstate;
1230 }
1231 } else {
1232 if (w->root == fn) {
1233 w->root = child;
1234 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1235 }
1236 if (w->node == fn) {
1237 w->node = child;
1238 if (children&2) {
1239 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1240 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1241 } else {
1242 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1243 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1244 }
1245 }
1246 }
1247 }
1248 read_unlock(&fib6_walker_lock);
1249
1250 node_free(fn);
1251 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1252 return pn;
1253
1254 rt6_release(pn->leaf);
1255 pn->leaf = NULL;
1256 fn = pn;
1257 }
1258 }
1259
1260 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1261 struct nl_info *info)
1262 {
1263 struct fib6_walker_t *w;
1264 struct rt6_info *rt = *rtp;
1265 struct net *net = info->nl_net;
1266
1267 RT6_TRACE("fib6_del_route\n");
1268
1269 /* Unlink it */
1270 *rtp = rt->dst.rt6_next;
1271 rt->rt6i_node = NULL;
1272 net->ipv6.rt6_stats->fib_rt_entries--;
1273 net->ipv6.rt6_stats->fib_discarded_routes++;
1274
1275 /* Reset round-robin state, if necessary */
1276 if (fn->rr_ptr == rt)
1277 fn->rr_ptr = NULL;
1278
1279 /* Remove this entry from other siblings */
1280 if (rt->rt6i_nsiblings) {
1281 struct rt6_info *sibling, *next_sibling;
1282
1283 list_for_each_entry_safe(sibling, next_sibling,
1284 &rt->rt6i_siblings, rt6i_siblings)
1285 sibling->rt6i_nsiblings--;
1286 rt->rt6i_nsiblings = 0;
1287 list_del_init(&rt->rt6i_siblings);
1288 }
1289
1290 /* Adjust walkers */
1291 read_lock(&fib6_walker_lock);
1292 FOR_WALKERS(w) {
1293 if (w->state == FWS_C && w->leaf == rt) {
1294 RT6_TRACE("walker %p adjusted by delroute\n", w);
1295 w->leaf = rt->dst.rt6_next;
1296 if (!w->leaf)
1297 w->state = FWS_U;
1298 }
1299 }
1300 read_unlock(&fib6_walker_lock);
1301
1302 rt->dst.rt6_next = NULL;
1303
1304 /* If it was last route, expunge its radix tree node */
1305 if (!fn->leaf) {
1306 fn->fn_flags &= ~RTN_RTINFO;
1307 net->ipv6.rt6_stats->fib_route_nodes--;
1308 fn = fib6_repair_tree(net, fn);
1309 }
1310
1311 fib6_purge_rt(rt, fn, net);
1312
1313 inet6_rt_notify(RTM_DELROUTE, rt, info);
1314 rt6_release(rt);
1315 }
1316
1317 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1318 {
1319 struct net *net = info->nl_net;
1320 struct fib6_node *fn = rt->rt6i_node;
1321 struct rt6_info **rtp;
1322
1323 #if RT6_DEBUG >= 2
1324 if (rt->dst.obsolete>0) {
1325 WARN_ON(fn != NULL);
1326 return -ENOENT;
1327 }
1328 #endif
1329 if (!fn || rt == net->ipv6.ip6_null_entry)
1330 return -ENOENT;
1331
1332 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1333
1334 if (!(rt->rt6i_flags & RTF_CACHE)) {
1335 struct fib6_node *pn = fn;
1336 #ifdef CONFIG_IPV6_SUBTREES
1337 /* clones of this route might be in another subtree */
1338 if (rt->rt6i_src.plen) {
1339 while (!(pn->fn_flags & RTN_ROOT))
1340 pn = pn->parent;
1341 pn = pn->parent;
1342 }
1343 #endif
1344 fib6_prune_clones(info->nl_net, pn, rt);
1345 }
1346
1347 /*
1348 * Walk the leaf entries looking for ourself
1349 */
1350
1351 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1352 if (*rtp == rt) {
1353 fib6_del_route(fn, rtp, info);
1354 return 0;
1355 }
1356 }
1357 return -ENOENT;
1358 }
1359
1360 /*
1361 * Tree traversal function.
1362 *
1363 * Certainly, it is not interrupt safe.
1364 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1365 * It means, that we can modify tree during walking
1366 * and use this function for garbage collection, clone pruning,
1367 * cleaning tree when a device goes down etc. etc.
1368 *
1369 * It guarantees that every node will be traversed,
1370 * and that it will be traversed only once.
1371 *
1372 * Callback function w->func may return:
1373 * 0 -> continue walking.
1374 * positive value -> walking is suspended (used by tree dumps,
1375 * and probably by gc, if it will be split to several slices)
1376 * negative value -> terminate walking.
1377 *
1378 * The function itself returns:
1379 * 0 -> walk is complete.
1380 * >0 -> walk is incomplete (i.e. suspended)
1381 * <0 -> walk is terminated by an error.
1382 */
1383
1384 static int fib6_walk_continue(struct fib6_walker_t *w)
1385 {
1386 struct fib6_node *fn, *pn;
1387
1388 for (;;) {
1389 fn = w->node;
1390 if (!fn)
1391 return 0;
1392
1393 if (w->prune && fn != w->root &&
1394 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1395 w->state = FWS_C;
1396 w->leaf = fn->leaf;
1397 }
1398 switch (w->state) {
1399 #ifdef CONFIG_IPV6_SUBTREES
1400 case FWS_S:
1401 if (FIB6_SUBTREE(fn)) {
1402 w->node = FIB6_SUBTREE(fn);
1403 continue;
1404 }
1405 w->state = FWS_L;
1406 #endif
1407 case FWS_L:
1408 if (fn->left) {
1409 w->node = fn->left;
1410 w->state = FWS_INIT;
1411 continue;
1412 }
1413 w->state = FWS_R;
1414 case FWS_R:
1415 if (fn->right) {
1416 w->node = fn->right;
1417 w->state = FWS_INIT;
1418 continue;
1419 }
1420 w->state = FWS_C;
1421 w->leaf = fn->leaf;
1422 case FWS_C:
1423 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1424 int err;
1425
1426 if (w->skip) {
1427 w->skip--;
1428 goto skip;
1429 }
1430
1431 err = w->func(w);
1432 if (err)
1433 return err;
1434
1435 w->count++;
1436 continue;
1437 }
1438 skip:
1439 w->state = FWS_U;
1440 case FWS_U:
1441 if (fn == w->root)
1442 return 0;
1443 pn = fn->parent;
1444 w->node = pn;
1445 #ifdef CONFIG_IPV6_SUBTREES
1446 if (FIB6_SUBTREE(pn) == fn) {
1447 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1448 w->state = FWS_L;
1449 continue;
1450 }
1451 #endif
1452 if (pn->left == fn) {
1453 w->state = FWS_R;
1454 continue;
1455 }
1456 if (pn->right == fn) {
1457 w->state = FWS_C;
1458 w->leaf = w->node->leaf;
1459 continue;
1460 }
1461 #if RT6_DEBUG >= 2
1462 WARN_ON(1);
1463 #endif
1464 }
1465 }
1466 }
1467
1468 static int fib6_walk(struct fib6_walker_t *w)
1469 {
1470 int res;
1471
1472 w->state = FWS_INIT;
1473 w->node = w->root;
1474
1475 fib6_walker_link(w);
1476 res = fib6_walk_continue(w);
1477 if (res <= 0)
1478 fib6_walker_unlink(w);
1479 return res;
1480 }
1481
1482 static int fib6_clean_node(struct fib6_walker_t *w)
1483 {
1484 int res;
1485 struct rt6_info *rt;
1486 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1487 struct nl_info info = {
1488 .nl_net = c->net,
1489 };
1490
1491 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1492 res = c->func(rt, c->arg);
1493 if (res < 0) {
1494 w->leaf = rt;
1495 res = fib6_del(rt, &info);
1496 if (res) {
1497 #if RT6_DEBUG >= 2
1498 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1499 __func__, rt, rt->rt6i_node, res);
1500 #endif
1501 continue;
1502 }
1503 return 0;
1504 }
1505 WARN_ON(res != 0);
1506 }
1507 w->leaf = rt;
1508 return 0;
1509 }
1510
1511 /*
1512 * Convenient frontend to tree walker.
1513 *
1514 * func is called on each route.
1515 * It may return -1 -> delete this route.
1516 * 0 -> continue walking
1517 *
1518 * prune==1 -> only immediate children of node (certainly,
1519 * ignoring pure split nodes) will be scanned.
1520 */
1521
1522 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1523 int (*func)(struct rt6_info *, void *arg),
1524 int prune, void *arg)
1525 {
1526 struct fib6_cleaner_t c;
1527
1528 c.w.root = root;
1529 c.w.func = fib6_clean_node;
1530 c.w.prune = prune;
1531 c.w.count = 0;
1532 c.w.skip = 0;
1533 c.func = func;
1534 c.arg = arg;
1535 c.net = net;
1536
1537 fib6_walk(&c.w);
1538 }
1539
1540 void fib6_clean_all_ro(struct net *net, int (*func)(struct rt6_info *, void *arg),
1541 int prune, void *arg)
1542 {
1543 struct fib6_table *table;
1544 struct hlist_head *head;
1545 unsigned int h;
1546
1547 rcu_read_lock();
1548 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1549 head = &net->ipv6.fib_table_hash[h];
1550 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1551 read_lock_bh(&table->tb6_lock);
1552 fib6_clean_tree(net, &table->tb6_root,
1553 func, prune, arg);
1554 read_unlock_bh(&table->tb6_lock);
1555 }
1556 }
1557 rcu_read_unlock();
1558 }
1559 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1560 int prune, void *arg)
1561 {
1562 struct fib6_table *table;
1563 struct hlist_head *head;
1564 unsigned int h;
1565
1566 rcu_read_lock();
1567 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1568 head = &net->ipv6.fib_table_hash[h];
1569 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1570 write_lock_bh(&table->tb6_lock);
1571 fib6_clean_tree(net, &table->tb6_root,
1572 func, prune, arg);
1573 write_unlock_bh(&table->tb6_lock);
1574 }
1575 }
1576 rcu_read_unlock();
1577 }
1578
1579 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1580 {
1581 if (rt->rt6i_flags & RTF_CACHE) {
1582 RT6_TRACE("pruning clone %p\n", rt);
1583 return -1;
1584 }
1585
1586 return 0;
1587 }
1588
1589 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1590 struct rt6_info *rt)
1591 {
1592 fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1593 }
1594
1595 /*
1596 * Garbage collection
1597 */
1598
1599 static struct fib6_gc_args
1600 {
1601 int timeout;
1602 int more;
1603 } gc_args;
1604
1605 static int fib6_age(struct rt6_info *rt, void *arg)
1606 {
1607 unsigned long now = jiffies;
1608
1609 /*
1610 * check addrconf expiration here.
1611 * Routes are expired even if they are in use.
1612 *
1613 * Also age clones. Note, that clones are aged out
1614 * only if they are not in use now.
1615 */
1616
1617 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1618 if (time_after(now, rt->dst.expires)) {
1619 RT6_TRACE("expiring %p\n", rt);
1620 return -1;
1621 }
1622 gc_args.more++;
1623 } else if (rt->rt6i_flags & RTF_CACHE) {
1624 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1625 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1626 RT6_TRACE("aging clone %p\n", rt);
1627 return -1;
1628 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1629 struct neighbour *neigh;
1630 __u8 neigh_flags = 0;
1631
1632 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1633 if (neigh) {
1634 neigh_flags = neigh->flags;
1635 neigh_release(neigh);
1636 }
1637 if (!(neigh_flags & NTF_ROUTER)) {
1638 RT6_TRACE("purging route %p via non-router but gateway\n",
1639 rt);
1640 return -1;
1641 }
1642 }
1643 gc_args.more++;
1644 }
1645
1646 return 0;
1647 }
1648
1649 static DEFINE_SPINLOCK(fib6_gc_lock);
1650
1651 void fib6_run_gc(unsigned long expires, struct net *net)
1652 {
1653 if (expires != ~0UL) {
1654 spin_lock_bh(&fib6_gc_lock);
1655 gc_args.timeout = expires ? (int)expires :
1656 net->ipv6.sysctl.ip6_rt_gc_interval;
1657 } else {
1658 if (!spin_trylock_bh(&fib6_gc_lock)) {
1659 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1660 return;
1661 }
1662 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1663 }
1664
1665 gc_args.more = icmp6_dst_gc();
1666
1667 fib6_clean_all(net, fib6_age, 0, NULL);
1668
1669 if (gc_args.more)
1670 mod_timer(&net->ipv6.ip6_fib_timer,
1671 round_jiffies(jiffies
1672 + net->ipv6.sysctl.ip6_rt_gc_interval));
1673 else
1674 del_timer(&net->ipv6.ip6_fib_timer);
1675 spin_unlock_bh(&fib6_gc_lock);
1676 }
1677
1678 static void fib6_gc_timer_cb(unsigned long arg)
1679 {
1680 fib6_run_gc(0, (struct net *)arg);
1681 }
1682
1683 static int __net_init fib6_net_init(struct net *net)
1684 {
1685 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1686
1687 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1688
1689 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1690 if (!net->ipv6.rt6_stats)
1691 goto out_timer;
1692
1693 /* Avoid false sharing : Use at least a full cache line */
1694 size = max_t(size_t, size, L1_CACHE_BYTES);
1695
1696 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1697 if (!net->ipv6.fib_table_hash)
1698 goto out_rt6_stats;
1699
1700 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1701 GFP_KERNEL);
1702 if (!net->ipv6.fib6_main_tbl)
1703 goto out_fib_table_hash;
1704
1705 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1706 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1707 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1708 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1709 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1710
1711 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1712 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1713 GFP_KERNEL);
1714 if (!net->ipv6.fib6_local_tbl)
1715 goto out_fib6_main_tbl;
1716 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1717 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1718 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1719 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1720 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1721 #endif
1722 fib6_tables_init(net);
1723
1724 return 0;
1725
1726 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1727 out_fib6_main_tbl:
1728 kfree(net->ipv6.fib6_main_tbl);
1729 #endif
1730 out_fib_table_hash:
1731 kfree(net->ipv6.fib_table_hash);
1732 out_rt6_stats:
1733 kfree(net->ipv6.rt6_stats);
1734 out_timer:
1735 return -ENOMEM;
1736 }
1737
1738 static void fib6_net_exit(struct net *net)
1739 {
1740 rt6_ifdown(net, NULL);
1741 del_timer_sync(&net->ipv6.ip6_fib_timer);
1742
1743 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1744 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1745 kfree(net->ipv6.fib6_local_tbl);
1746 #endif
1747 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1748 kfree(net->ipv6.fib6_main_tbl);
1749 kfree(net->ipv6.fib_table_hash);
1750 kfree(net->ipv6.rt6_stats);
1751 }
1752
1753 static struct pernet_operations fib6_net_ops = {
1754 .init = fib6_net_init,
1755 .exit = fib6_net_exit,
1756 };
1757
1758 int __init fib6_init(void)
1759 {
1760 int ret = -ENOMEM;
1761
1762 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1763 sizeof(struct fib6_node),
1764 0, SLAB_HWCACHE_ALIGN,
1765 NULL);
1766 if (!fib6_node_kmem)
1767 goto out;
1768
1769 ret = register_pernet_subsys(&fib6_net_ops);
1770 if (ret)
1771 goto out_kmem_cache_create;
1772
1773 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1774 NULL);
1775 if (ret)
1776 goto out_unregister_subsys;
1777 out:
1778 return ret;
1779
1780 out_unregister_subsys:
1781 unregister_pernet_subsys(&fib6_net_ops);
1782 out_kmem_cache_create:
1783 kmem_cache_destroy(fib6_node_kmem);
1784 goto out;
1785 }
1786
1787 void fib6_gc_cleanup(void)
1788 {
1789 unregister_pernet_subsys(&fib6_net_ops);
1790 kmem_cache_destroy(fib6_node_kmem);
1791 }