tcp: must unclone packets before mangling them
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 int push_one, gfp_t gfp);
70
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 struct inet_connection_sock *icsk = inet_csk(sk);
75 struct tcp_sock *tp = tcp_sk(sk);
76 unsigned int prior_packets = tp->packets_out;
77
78 tcp_advance_send_head(sk, skb);
79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 tcp_rearm_rto(sk);
85 }
86 }
87
88 /* SND.NXT, if window was not shrunk.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
93 */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 const struct tcp_sock *tp = tcp_sk(sk);
97
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 return tp->snd_nxt;
100 else
101 return tcp_wnd_end(tp);
102 }
103
104 /* Calculate mss to advertise in SYN segment.
105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106 *
107 * 1. It is independent of path mtu.
108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110 * attached devices, because some buggy hosts are confused by
111 * large MSS.
112 * 4. We do not make 3, we advertise MSS, calculated from first
113 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
114 * This may be overridden via information stored in routing table.
115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116 * probably even Jumbo".
117 */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 struct tcp_sock *tp = tcp_sk(sk);
121 const struct dst_entry *dst = __sk_dst_get(sk);
122 int mss = tp->advmss;
123
124 if (dst) {
125 unsigned int metric = dst_metric_advmss(dst);
126
127 if (metric < mss) {
128 mss = metric;
129 tp->advmss = mss;
130 }
131 }
132
133 return (__u16)mss;
134 }
135
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137 * This is the first part of cwnd validation mechanism. */
138 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
139 {
140 struct tcp_sock *tp = tcp_sk(sk);
141 s32 delta = tcp_time_stamp - tp->lsndtime;
142 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
143 u32 cwnd = tp->snd_cwnd;
144
145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146
147 tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 restart_cwnd = min(restart_cwnd, cwnd);
149
150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 cwnd >>= 1;
152 tp->snd_cwnd = max(cwnd, restart_cwnd);
153 tp->snd_cwnd_stamp = tcp_time_stamp;
154 tp->snd_cwnd_used = 0;
155 }
156
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 struct sock *sk)
160 {
161 struct inet_connection_sock *icsk = inet_csk(sk);
162 const u32 now = tcp_time_stamp;
163
164 if (sysctl_tcp_slow_start_after_idle &&
165 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
166 tcp_cwnd_restart(sk, __sk_dst_get(sk));
167
168 tp->lsndtime = now;
169
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
172 */
173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 icsk->icsk_ack.pingpong = 1;
175 }
176
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 tcp_dec_quickack_mode(sk, pkts);
181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183
184 /* Determine a window scaling and initial window to offer.
185 * Based on the assumption that the given amount of space
186 * will be offered. Store the results in the tp structure.
187 * NOTE: for smooth operation initial space offering should
188 * be a multiple of mss if possible. We assume here that mss >= 1.
189 * This MUST be enforced by all callers.
190 */
191 void tcp_select_initial_window(int __space, __u32 mss,
192 __u32 *rcv_wnd, __u32 *window_clamp,
193 int wscale_ok, __u8 *rcv_wscale,
194 __u32 init_rcv_wnd)
195 {
196 unsigned int space = (__space < 0 ? 0 : __space);
197
198 /* If no clamp set the clamp to the max possible scaled window */
199 if (*window_clamp == 0)
200 (*window_clamp) = (65535 << 14);
201 space = min(*window_clamp, space);
202
203 /* Quantize space offering to a multiple of mss if possible. */
204 if (space > mss)
205 space = (space / mss) * mss;
206
207 /* NOTE: offering an initial window larger than 32767
208 * will break some buggy TCP stacks. If the admin tells us
209 * it is likely we could be speaking with such a buggy stack
210 * we will truncate our initial window offering to 32K-1
211 * unless the remote has sent us a window scaling option,
212 * which we interpret as a sign the remote TCP is not
213 * misinterpreting the window field as a signed quantity.
214 */
215 if (sysctl_tcp_workaround_signed_windows)
216 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
217 else
218 (*rcv_wnd) = space;
219
220 (*rcv_wscale) = 0;
221 if (wscale_ok) {
222 /* Set window scaling on max possible window
223 * See RFC1323 for an explanation of the limit to 14
224 */
225 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
226 space = min_t(u32, space, *window_clamp);
227 while (space > 65535 && (*rcv_wscale) < 14) {
228 space >>= 1;
229 (*rcv_wscale)++;
230 }
231 }
232
233 /* Set initial window to a value enough for senders starting with
234 * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place
235 * a limit on the initial window when mss is larger than 1460.
236 */
237 if (mss > (1 << *rcv_wscale)) {
238 int init_cwnd = TCP_DEFAULT_INIT_RCVWND;
239 if (mss > 1460)
240 init_cwnd =
241 max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
242 /* when initializing use the value from init_rcv_wnd
243 * rather than the default from above
244 */
245 if (init_rcv_wnd)
246 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
247 else
248 *rcv_wnd = min(*rcv_wnd, init_cwnd * mss);
249 }
250
251 /* Set the clamp no higher than max representable value */
252 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
253 }
254 EXPORT_SYMBOL(tcp_select_initial_window);
255
256 /* Chose a new window to advertise, update state in tcp_sock for the
257 * socket, and return result with RFC1323 scaling applied. The return
258 * value can be stuffed directly into th->window for an outgoing
259 * frame.
260 */
261 static u16 tcp_select_window(struct sock *sk)
262 {
263 struct tcp_sock *tp = tcp_sk(sk);
264 u32 cur_win = tcp_receive_window(tp);
265 u32 new_win = __tcp_select_window(sk);
266
267 /* Never shrink the offered window */
268 if (new_win < cur_win) {
269 /* Danger Will Robinson!
270 * Don't update rcv_wup/rcv_wnd here or else
271 * we will not be able to advertise a zero
272 * window in time. --DaveM
273 *
274 * Relax Will Robinson.
275 */
276 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
277 }
278 tp->rcv_wnd = new_win;
279 tp->rcv_wup = tp->rcv_nxt;
280
281 /* Make sure we do not exceed the maximum possible
282 * scaled window.
283 */
284 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
285 new_win = min(new_win, MAX_TCP_WINDOW);
286 else
287 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
288
289 /* RFC1323 scaling applied */
290 new_win >>= tp->rx_opt.rcv_wscale;
291
292 /* If we advertise zero window, disable fast path. */
293 if (new_win == 0)
294 tp->pred_flags = 0;
295
296 return new_win;
297 }
298
299 /* Packet ECN state for a SYN-ACK */
300 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
301 {
302 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
303 if (!(tp->ecn_flags & TCP_ECN_OK))
304 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
305 }
306
307 /* Packet ECN state for a SYN. */
308 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
309 {
310 struct tcp_sock *tp = tcp_sk(sk);
311
312 tp->ecn_flags = 0;
313 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
314 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
315 tp->ecn_flags = TCP_ECN_OK;
316 }
317 }
318
319 static __inline__ void
320 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
321 {
322 if (inet_rsk(req)->ecn_ok)
323 th->ece = 1;
324 }
325
326 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
327 * be sent.
328 */
329 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
330 int tcp_header_len)
331 {
332 struct tcp_sock *tp = tcp_sk(sk);
333
334 if (tp->ecn_flags & TCP_ECN_OK) {
335 /* Not-retransmitted data segment: set ECT and inject CWR. */
336 if (skb->len != tcp_header_len &&
337 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
338 INET_ECN_xmit(sk);
339 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
340 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
341 tcp_hdr(skb)->cwr = 1;
342 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
343 }
344 } else {
345 /* ACK or retransmitted segment: clear ECT|CE */
346 INET_ECN_dontxmit(sk);
347 }
348 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
349 tcp_hdr(skb)->ece = 1;
350 }
351 }
352
353 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
354 * auto increment end seqno.
355 */
356 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
357 {
358 skb->ip_summed = CHECKSUM_PARTIAL;
359 skb->csum = 0;
360
361 TCP_SKB_CB(skb)->tcp_flags = flags;
362 TCP_SKB_CB(skb)->sacked = 0;
363
364 skb_shinfo(skb)->gso_segs = 1;
365 skb_shinfo(skb)->gso_size = 0;
366 skb_shinfo(skb)->gso_type = 0;
367
368 TCP_SKB_CB(skb)->seq = seq;
369 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
370 seq++;
371 TCP_SKB_CB(skb)->end_seq = seq;
372 }
373
374 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
375 {
376 return tp->snd_una != tp->snd_up;
377 }
378
379 #define OPTION_SACK_ADVERTISE (1 << 0)
380 #define OPTION_TS (1 << 1)
381 #define OPTION_MD5 (1 << 2)
382 #define OPTION_WSCALE (1 << 3)
383 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
384
385 struct tcp_out_options {
386 u16 options; /* bit field of OPTION_* */
387 u16 mss; /* 0 to disable */
388 u8 ws; /* window scale, 0 to disable */
389 u8 num_sack_blocks; /* number of SACK blocks to include */
390 u8 hash_size; /* bytes in hash_location */
391 __u8 *hash_location; /* temporary pointer, overloaded */
392 __u32 tsval, tsecr; /* need to include OPTION_TS */
393 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
394 };
395
396 /* Write previously computed TCP options to the packet.
397 *
398 * Beware: Something in the Internet is very sensitive to the ordering of
399 * TCP options, we learned this through the hard way, so be careful here.
400 * Luckily we can at least blame others for their non-compliance but from
401 * inter-operatibility perspective it seems that we're somewhat stuck with
402 * the ordering which we have been using if we want to keep working with
403 * those broken things (not that it currently hurts anybody as there isn't
404 * particular reason why the ordering would need to be changed).
405 *
406 * At least SACK_PERM as the first option is known to lead to a disaster
407 * (but it may well be that other scenarios fail similarly).
408 */
409 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
410 struct tcp_out_options *opts)
411 {
412 u16 options = opts->options; /* mungable copy */
413
414 if (unlikely(OPTION_MD5 & options)) {
415 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
416 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
417 /* overload cookie hash location */
418 opts->hash_location = (__u8 *)ptr;
419 ptr += 4;
420 }
421
422 if (unlikely(opts->mss)) {
423 *ptr++ = htonl((TCPOPT_MSS << 24) |
424 (TCPOLEN_MSS << 16) |
425 opts->mss);
426 }
427
428 if (likely(OPTION_TS & options)) {
429 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
430 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
431 (TCPOLEN_SACK_PERM << 16) |
432 (TCPOPT_TIMESTAMP << 8) |
433 TCPOLEN_TIMESTAMP);
434 options &= ~OPTION_SACK_ADVERTISE;
435 } else {
436 *ptr++ = htonl((TCPOPT_NOP << 24) |
437 (TCPOPT_NOP << 16) |
438 (TCPOPT_TIMESTAMP << 8) |
439 TCPOLEN_TIMESTAMP);
440 }
441 *ptr++ = htonl(opts->tsval);
442 *ptr++ = htonl(opts->tsecr);
443 }
444
445 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
446 *ptr++ = htonl((TCPOPT_NOP << 24) |
447 (TCPOPT_NOP << 16) |
448 (TCPOPT_SACK_PERM << 8) |
449 TCPOLEN_SACK_PERM);
450 }
451
452 if (unlikely(OPTION_WSCALE & options)) {
453 *ptr++ = htonl((TCPOPT_NOP << 24) |
454 (TCPOPT_WINDOW << 16) |
455 (TCPOLEN_WINDOW << 8) |
456 opts->ws);
457 }
458
459 if (unlikely(opts->num_sack_blocks)) {
460 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
461 tp->duplicate_sack : tp->selective_acks;
462 int this_sack;
463
464 *ptr++ = htonl((TCPOPT_NOP << 24) |
465 (TCPOPT_NOP << 16) |
466 (TCPOPT_SACK << 8) |
467 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
468 TCPOLEN_SACK_PERBLOCK)));
469
470 for (this_sack = 0; this_sack < opts->num_sack_blocks;
471 ++this_sack) {
472 *ptr++ = htonl(sp[this_sack].start_seq);
473 *ptr++ = htonl(sp[this_sack].end_seq);
474 }
475
476 tp->rx_opt.dsack = 0;
477 }
478
479 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
480 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
481
482 *ptr++ = htonl((TCPOPT_EXP << 24) |
483 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
484 TCPOPT_FASTOPEN_MAGIC);
485
486 memcpy(ptr, foc->val, foc->len);
487 if ((foc->len & 3) == 2) {
488 u8 *align = ((u8 *)ptr) + foc->len;
489 align[0] = align[1] = TCPOPT_NOP;
490 }
491 ptr += (foc->len + 3) >> 2;
492 }
493 }
494
495 /* Compute TCP options for SYN packets. This is not the final
496 * network wire format yet.
497 */
498 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
499 struct tcp_out_options *opts,
500 struct tcp_md5sig_key **md5)
501 {
502 struct tcp_sock *tp = tcp_sk(sk);
503 unsigned int remaining = MAX_TCP_OPTION_SPACE;
504 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
505
506 #ifdef CONFIG_TCP_MD5SIG
507 *md5 = tp->af_specific->md5_lookup(sk, sk);
508 if (*md5) {
509 opts->options |= OPTION_MD5;
510 remaining -= TCPOLEN_MD5SIG_ALIGNED;
511 }
512 #else
513 *md5 = NULL;
514 #endif
515
516 /* We always get an MSS option. The option bytes which will be seen in
517 * normal data packets should timestamps be used, must be in the MSS
518 * advertised. But we subtract them from tp->mss_cache so that
519 * calculations in tcp_sendmsg are simpler etc. So account for this
520 * fact here if necessary. If we don't do this correctly, as a
521 * receiver we won't recognize data packets as being full sized when we
522 * should, and thus we won't abide by the delayed ACK rules correctly.
523 * SACKs don't matter, we never delay an ACK when we have any of those
524 * going out. */
525 opts->mss = tcp_advertise_mss(sk);
526 remaining -= TCPOLEN_MSS_ALIGNED;
527
528 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
529 opts->options |= OPTION_TS;
530 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
531 opts->tsecr = tp->rx_opt.ts_recent;
532 remaining -= TCPOLEN_TSTAMP_ALIGNED;
533 }
534 if (likely(sysctl_tcp_window_scaling)) {
535 opts->ws = tp->rx_opt.rcv_wscale;
536 opts->options |= OPTION_WSCALE;
537 remaining -= TCPOLEN_WSCALE_ALIGNED;
538 }
539 if (likely(sysctl_tcp_sack)) {
540 opts->options |= OPTION_SACK_ADVERTISE;
541 if (unlikely(!(OPTION_TS & opts->options)))
542 remaining -= TCPOLEN_SACKPERM_ALIGNED;
543 }
544
545 if (fastopen && fastopen->cookie.len >= 0) {
546 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
547 need = (need + 3) & ~3U; /* Align to 32 bits */
548 if (remaining >= need) {
549 opts->options |= OPTION_FAST_OPEN_COOKIE;
550 opts->fastopen_cookie = &fastopen->cookie;
551 remaining -= need;
552 tp->syn_fastopen = 1;
553 }
554 }
555
556 return MAX_TCP_OPTION_SPACE - remaining;
557 }
558
559 /* Set up TCP options for SYN-ACKs. */
560 static unsigned int tcp_synack_options(struct sock *sk,
561 struct request_sock *req,
562 unsigned int mss, struct sk_buff *skb,
563 struct tcp_out_options *opts,
564 struct tcp_md5sig_key **md5,
565 struct tcp_fastopen_cookie *foc)
566 {
567 struct inet_request_sock *ireq = inet_rsk(req);
568 unsigned int remaining = MAX_TCP_OPTION_SPACE;
569
570 #ifdef CONFIG_TCP_MD5SIG
571 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
572 if (*md5) {
573 opts->options |= OPTION_MD5;
574 remaining -= TCPOLEN_MD5SIG_ALIGNED;
575
576 /* We can't fit any SACK blocks in a packet with MD5 + TS
577 * options. There was discussion about disabling SACK
578 * rather than TS in order to fit in better with old,
579 * buggy kernels, but that was deemed to be unnecessary.
580 */
581 ireq->tstamp_ok &= !ireq->sack_ok;
582 }
583 #else
584 *md5 = NULL;
585 #endif
586
587 /* We always send an MSS option. */
588 opts->mss = mss;
589 remaining -= TCPOLEN_MSS_ALIGNED;
590
591 if (likely(ireq->wscale_ok)) {
592 opts->ws = ireq->rcv_wscale;
593 opts->options |= OPTION_WSCALE;
594 remaining -= TCPOLEN_WSCALE_ALIGNED;
595 }
596 if (likely(ireq->tstamp_ok)) {
597 opts->options |= OPTION_TS;
598 opts->tsval = TCP_SKB_CB(skb)->when;
599 opts->tsecr = req->ts_recent;
600 remaining -= TCPOLEN_TSTAMP_ALIGNED;
601 }
602 if (likely(ireq->sack_ok)) {
603 opts->options |= OPTION_SACK_ADVERTISE;
604 if (unlikely(!ireq->tstamp_ok))
605 remaining -= TCPOLEN_SACKPERM_ALIGNED;
606 }
607 if (foc != NULL) {
608 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
609 need = (need + 3) & ~3U; /* Align to 32 bits */
610 if (remaining >= need) {
611 opts->options |= OPTION_FAST_OPEN_COOKIE;
612 opts->fastopen_cookie = foc;
613 remaining -= need;
614 }
615 }
616
617 return MAX_TCP_OPTION_SPACE - remaining;
618 }
619
620 /* Compute TCP options for ESTABLISHED sockets. This is not the
621 * final wire format yet.
622 */
623 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
624 struct tcp_out_options *opts,
625 struct tcp_md5sig_key **md5)
626 {
627 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
628 struct tcp_sock *tp = tcp_sk(sk);
629 unsigned int size = 0;
630 unsigned int eff_sacks;
631
632 #ifdef CONFIG_TCP_MD5SIG
633 *md5 = tp->af_specific->md5_lookup(sk, sk);
634 if (unlikely(*md5)) {
635 opts->options |= OPTION_MD5;
636 size += TCPOLEN_MD5SIG_ALIGNED;
637 }
638 #else
639 *md5 = NULL;
640 #endif
641
642 if (likely(tp->rx_opt.tstamp_ok)) {
643 opts->options |= OPTION_TS;
644 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
645 opts->tsecr = tp->rx_opt.ts_recent;
646 size += TCPOLEN_TSTAMP_ALIGNED;
647 }
648
649 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
650 if (unlikely(eff_sacks)) {
651 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
652 opts->num_sack_blocks =
653 min_t(unsigned int, eff_sacks,
654 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
655 TCPOLEN_SACK_PERBLOCK);
656 size += TCPOLEN_SACK_BASE_ALIGNED +
657 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
658 }
659
660 return size;
661 }
662
663
664 /* TCP SMALL QUEUES (TSQ)
665 *
666 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
667 * to reduce RTT and bufferbloat.
668 * We do this using a special skb destructor (tcp_wfree).
669 *
670 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
671 * needs to be reallocated in a driver.
672 * The invariant being skb->truesize substracted from sk->sk_wmem_alloc
673 *
674 * Since transmit from skb destructor is forbidden, we use a tasklet
675 * to process all sockets that eventually need to send more skbs.
676 * We use one tasklet per cpu, with its own queue of sockets.
677 */
678 struct tsq_tasklet {
679 struct tasklet_struct tasklet;
680 struct list_head head; /* queue of tcp sockets */
681 };
682 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
683
684 static void tcp_tsq_handler(struct sock *sk)
685 {
686 if ((1 << sk->sk_state) &
687 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
688 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
689 tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC);
690 }
691 /*
692 * One tasklest per cpu tries to send more skbs.
693 * We run in tasklet context but need to disable irqs when
694 * transfering tsq->head because tcp_wfree() might
695 * interrupt us (non NAPI drivers)
696 */
697 static void tcp_tasklet_func(unsigned long data)
698 {
699 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
700 LIST_HEAD(list);
701 unsigned long flags;
702 struct list_head *q, *n;
703 struct tcp_sock *tp;
704 struct sock *sk;
705
706 local_irq_save(flags);
707 list_splice_init(&tsq->head, &list);
708 local_irq_restore(flags);
709
710 list_for_each_safe(q, n, &list) {
711 tp = list_entry(q, struct tcp_sock, tsq_node);
712 list_del(&tp->tsq_node);
713
714 sk = (struct sock *)tp;
715 bh_lock_sock(sk);
716
717 if (!sock_owned_by_user(sk)) {
718 tcp_tsq_handler(sk);
719 } else {
720 /* defer the work to tcp_release_cb() */
721 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
722 }
723 bh_unlock_sock(sk);
724
725 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
726 sk_free(sk);
727 }
728 }
729
730 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
731 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
732 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
733 (1UL << TCP_MTU_REDUCED_DEFERRED))
734 /**
735 * tcp_release_cb - tcp release_sock() callback
736 * @sk: socket
737 *
738 * called from release_sock() to perform protocol dependent
739 * actions before socket release.
740 */
741 void tcp_release_cb(struct sock *sk)
742 {
743 struct tcp_sock *tp = tcp_sk(sk);
744 unsigned long flags, nflags;
745
746 /* perform an atomic operation only if at least one flag is set */
747 do {
748 flags = tp->tsq_flags;
749 if (!(flags & TCP_DEFERRED_ALL))
750 return;
751 nflags = flags & ~TCP_DEFERRED_ALL;
752 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
753
754 if (flags & (1UL << TCP_TSQ_DEFERRED))
755 tcp_tsq_handler(sk);
756
757 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
758 tcp_write_timer_handler(sk);
759 __sock_put(sk);
760 }
761 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
762 tcp_delack_timer_handler(sk);
763 __sock_put(sk);
764 }
765 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
766 sk->sk_prot->mtu_reduced(sk);
767 __sock_put(sk);
768 }
769 }
770 EXPORT_SYMBOL(tcp_release_cb);
771
772 void __init tcp_tasklet_init(void)
773 {
774 int i;
775
776 for_each_possible_cpu(i) {
777 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
778
779 INIT_LIST_HEAD(&tsq->head);
780 tasklet_init(&tsq->tasklet,
781 tcp_tasklet_func,
782 (unsigned long)tsq);
783 }
784 }
785
786 /*
787 * Write buffer destructor automatically called from kfree_skb.
788 * We cant xmit new skbs from this context, as we might already
789 * hold qdisc lock.
790 */
791 void tcp_wfree(struct sk_buff *skb)
792 {
793 struct sock *sk = skb->sk;
794 struct tcp_sock *tp = tcp_sk(sk);
795
796 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
797 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
798 unsigned long flags;
799 struct tsq_tasklet *tsq;
800
801 /* Keep a ref on socket.
802 * This last ref will be released in tcp_tasklet_func()
803 */
804 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
805
806 /* queue this socket to tasklet queue */
807 local_irq_save(flags);
808 tsq = &__get_cpu_var(tsq_tasklet);
809 list_add(&tp->tsq_node, &tsq->head);
810 tasklet_schedule(&tsq->tasklet);
811 local_irq_restore(flags);
812 } else {
813 sock_wfree(skb);
814 }
815 }
816
817 /* This routine actually transmits TCP packets queued in by
818 * tcp_do_sendmsg(). This is used by both the initial
819 * transmission and possible later retransmissions.
820 * All SKB's seen here are completely headerless. It is our
821 * job to build the TCP header, and pass the packet down to
822 * IP so it can do the same plus pass the packet off to the
823 * device.
824 *
825 * We are working here with either a clone of the original
826 * SKB, or a fresh unique copy made by the retransmit engine.
827 */
828 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
829 gfp_t gfp_mask)
830 {
831 const struct inet_connection_sock *icsk = inet_csk(sk);
832 struct inet_sock *inet;
833 struct tcp_sock *tp;
834 struct tcp_skb_cb *tcb;
835 struct tcp_out_options opts;
836 unsigned int tcp_options_size, tcp_header_size;
837 struct tcp_md5sig_key *md5;
838 struct tcphdr *th;
839 int err;
840
841 BUG_ON(!skb || !tcp_skb_pcount(skb));
842
843 /* If congestion control is doing timestamping, we must
844 * take such a timestamp before we potentially clone/copy.
845 */
846 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
847 __net_timestamp(skb);
848
849 if (likely(clone_it)) {
850 const struct sk_buff *fclone = skb + 1;
851
852 if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
853 fclone->fclone == SKB_FCLONE_CLONE))
854 NET_INC_STATS_BH(sock_net(sk),
855 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
856
857 if (unlikely(skb_cloned(skb)))
858 skb = pskb_copy(skb, gfp_mask);
859 else
860 skb = skb_clone(skb, gfp_mask);
861 if (unlikely(!skb))
862 return -ENOBUFS;
863 }
864
865 inet = inet_sk(sk);
866 tp = tcp_sk(sk);
867 tcb = TCP_SKB_CB(skb);
868 memset(&opts, 0, sizeof(opts));
869
870 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
871 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
872 else
873 tcp_options_size = tcp_established_options(sk, skb, &opts,
874 &md5);
875 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
876
877 if (tcp_packets_in_flight(tp) == 0)
878 tcp_ca_event(sk, CA_EVENT_TX_START);
879
880 /* if no packet is in qdisc/device queue, then allow XPS to select
881 * another queue.
882 */
883 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
884
885 skb_push(skb, tcp_header_size);
886 skb_reset_transport_header(skb);
887
888 skb_orphan(skb);
889 skb->sk = sk;
890 skb->destructor = tcp_wfree;
891 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
892
893 /* Build TCP header and checksum it. */
894 th = tcp_hdr(skb);
895 th->source = inet->inet_sport;
896 th->dest = inet->inet_dport;
897 th->seq = htonl(tcb->seq);
898 th->ack_seq = htonl(tp->rcv_nxt);
899 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
900 tcb->tcp_flags);
901
902 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
903 /* RFC1323: The window in SYN & SYN/ACK segments
904 * is never scaled.
905 */
906 th->window = htons(min(tp->rcv_wnd, 65535U));
907 } else {
908 th->window = htons(tcp_select_window(sk));
909 }
910 th->check = 0;
911 th->urg_ptr = 0;
912
913 /* The urg_mode check is necessary during a below snd_una win probe */
914 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
915 if (before(tp->snd_up, tcb->seq + 0x10000)) {
916 th->urg_ptr = htons(tp->snd_up - tcb->seq);
917 th->urg = 1;
918 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
919 th->urg_ptr = htons(0xFFFF);
920 th->urg = 1;
921 }
922 }
923
924 tcp_options_write((__be32 *)(th + 1), tp, &opts);
925 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
926 TCP_ECN_send(sk, skb, tcp_header_size);
927
928 #ifdef CONFIG_TCP_MD5SIG
929 /* Calculate the MD5 hash, as we have all we need now */
930 if (md5) {
931 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
932 tp->af_specific->calc_md5_hash(opts.hash_location,
933 md5, sk, NULL, skb);
934 }
935 #endif
936
937 icsk->icsk_af_ops->send_check(sk, skb);
938
939 if (likely(tcb->tcp_flags & TCPHDR_ACK))
940 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
941
942 if (skb->len != tcp_header_size)
943 tcp_event_data_sent(tp, sk);
944
945 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
946 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
947 tcp_skb_pcount(skb));
948
949 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
950 if (likely(err <= 0))
951 return err;
952
953 tcp_enter_cwr(sk, 1);
954
955 return net_xmit_eval(err);
956 }
957
958 /* This routine just queues the buffer for sending.
959 *
960 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
961 * otherwise socket can stall.
962 */
963 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
964 {
965 struct tcp_sock *tp = tcp_sk(sk);
966
967 /* Advance write_seq and place onto the write_queue. */
968 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
969 skb_header_release(skb);
970 tcp_add_write_queue_tail(sk, skb);
971 sk->sk_wmem_queued += skb->truesize;
972 sk_mem_charge(sk, skb->truesize);
973 }
974
975 /* Initialize TSO segments for a packet. */
976 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
977 unsigned int mss_now)
978 {
979 /* Make sure we own this skb before messing gso_size/gso_segs */
980 WARN_ON_ONCE(skb_cloned(skb));
981
982 if (skb->len <= mss_now || !sk_can_gso(sk) ||
983 skb->ip_summed == CHECKSUM_NONE) {
984 /* Avoid the costly divide in the normal
985 * non-TSO case.
986 */
987 skb_shinfo(skb)->gso_segs = 1;
988 skb_shinfo(skb)->gso_size = 0;
989 skb_shinfo(skb)->gso_type = 0;
990 } else {
991 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
992 skb_shinfo(skb)->gso_size = mss_now;
993 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
994 }
995 }
996
997 /* When a modification to fackets out becomes necessary, we need to check
998 * skb is counted to fackets_out or not.
999 */
1000 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1001 int decr)
1002 {
1003 struct tcp_sock *tp = tcp_sk(sk);
1004
1005 if (!tp->sacked_out || tcp_is_reno(tp))
1006 return;
1007
1008 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1009 tp->fackets_out -= decr;
1010 }
1011
1012 /* Pcount in the middle of the write queue got changed, we need to do various
1013 * tweaks to fix counters
1014 */
1015 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1016 {
1017 struct tcp_sock *tp = tcp_sk(sk);
1018
1019 tp->packets_out -= decr;
1020
1021 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1022 tp->sacked_out -= decr;
1023 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1024 tp->retrans_out -= decr;
1025 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1026 tp->lost_out -= decr;
1027
1028 /* Reno case is special. Sigh... */
1029 if (tcp_is_reno(tp) && decr > 0)
1030 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1031
1032 tcp_adjust_fackets_out(sk, skb, decr);
1033
1034 if (tp->lost_skb_hint &&
1035 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1036 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1037 tp->lost_cnt_hint -= decr;
1038
1039 tcp_verify_left_out(tp);
1040 }
1041
1042 /* Function to create two new TCP segments. Shrinks the given segment
1043 * to the specified size and appends a new segment with the rest of the
1044 * packet to the list. This won't be called frequently, I hope.
1045 * Remember, these are still headerless SKBs at this point.
1046 */
1047 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1048 unsigned int mss_now)
1049 {
1050 struct tcp_sock *tp = tcp_sk(sk);
1051 struct sk_buff *buff;
1052 int nsize, old_factor;
1053 int nlen;
1054 u8 flags;
1055
1056 if (WARN_ON(len > skb->len))
1057 return -EINVAL;
1058
1059 nsize = skb_headlen(skb) - len;
1060 if (nsize < 0)
1061 nsize = 0;
1062
1063 if (skb_unclone(skb, GFP_ATOMIC))
1064 return -ENOMEM;
1065
1066 /* Get a new skb... force flag on. */
1067 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1068 if (buff == NULL)
1069 return -ENOMEM; /* We'll just try again later. */
1070
1071 sk->sk_wmem_queued += buff->truesize;
1072 sk_mem_charge(sk, buff->truesize);
1073 nlen = skb->len - len - nsize;
1074 buff->truesize += nlen;
1075 skb->truesize -= nlen;
1076
1077 /* Correct the sequence numbers. */
1078 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1079 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1080 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1081
1082 /* PSH and FIN should only be set in the second packet. */
1083 flags = TCP_SKB_CB(skb)->tcp_flags;
1084 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1085 TCP_SKB_CB(buff)->tcp_flags = flags;
1086 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1087
1088 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1089 /* Copy and checksum data tail into the new buffer. */
1090 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1091 skb_put(buff, nsize),
1092 nsize, 0);
1093
1094 skb_trim(skb, len);
1095
1096 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1097 } else {
1098 skb->ip_summed = CHECKSUM_PARTIAL;
1099 skb_split(skb, buff, len);
1100 }
1101
1102 buff->ip_summed = skb->ip_summed;
1103
1104 /* Looks stupid, but our code really uses when of
1105 * skbs, which it never sent before. --ANK
1106 */
1107 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1108 buff->tstamp = skb->tstamp;
1109
1110 old_factor = tcp_skb_pcount(skb);
1111
1112 /* Fix up tso_factor for both original and new SKB. */
1113 tcp_set_skb_tso_segs(sk, skb, mss_now);
1114 tcp_set_skb_tso_segs(sk, buff, mss_now);
1115
1116 /* If this packet has been sent out already, we must
1117 * adjust the various packet counters.
1118 */
1119 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1120 int diff = old_factor - tcp_skb_pcount(skb) -
1121 tcp_skb_pcount(buff);
1122
1123 if (diff)
1124 tcp_adjust_pcount(sk, skb, diff);
1125 }
1126
1127 /* Link BUFF into the send queue. */
1128 skb_header_release(buff);
1129 tcp_insert_write_queue_after(skb, buff, sk);
1130
1131 return 0;
1132 }
1133
1134 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1135 * eventually). The difference is that pulled data not copied, but
1136 * immediately discarded.
1137 */
1138 static void __pskb_trim_head(struct sk_buff *skb, int len)
1139 {
1140 int i, k, eat;
1141
1142 eat = min_t(int, len, skb_headlen(skb));
1143 if (eat) {
1144 __skb_pull(skb, eat);
1145 len -= eat;
1146 if (!len)
1147 return;
1148 }
1149 eat = len;
1150 k = 0;
1151 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1152 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1153
1154 if (size <= eat) {
1155 skb_frag_unref(skb, i);
1156 eat -= size;
1157 } else {
1158 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1159 if (eat) {
1160 skb_shinfo(skb)->frags[k].page_offset += eat;
1161 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1162 eat = 0;
1163 }
1164 k++;
1165 }
1166 }
1167 skb_shinfo(skb)->nr_frags = k;
1168
1169 skb_reset_tail_pointer(skb);
1170 skb->data_len -= len;
1171 skb->len = skb->data_len;
1172 }
1173
1174 /* Remove acked data from a packet in the transmit queue. */
1175 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1176 {
1177 if (skb_unclone(skb, GFP_ATOMIC))
1178 return -ENOMEM;
1179
1180 __pskb_trim_head(skb, len);
1181
1182 TCP_SKB_CB(skb)->seq += len;
1183 skb->ip_summed = CHECKSUM_PARTIAL;
1184
1185 skb->truesize -= len;
1186 sk->sk_wmem_queued -= len;
1187 sk_mem_uncharge(sk, len);
1188 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1189
1190 /* Any change of skb->len requires recalculation of tso factor. */
1191 if (tcp_skb_pcount(skb) > 1)
1192 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1193
1194 return 0;
1195 }
1196
1197 /* Calculate MSS not accounting any TCP options. */
1198 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1199 {
1200 const struct tcp_sock *tp = tcp_sk(sk);
1201 const struct inet_connection_sock *icsk = inet_csk(sk);
1202 int mss_now;
1203
1204 /* Calculate base mss without TCP options:
1205 It is MMS_S - sizeof(tcphdr) of rfc1122
1206 */
1207 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1208
1209 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1210 if (icsk->icsk_af_ops->net_frag_header_len) {
1211 const struct dst_entry *dst = __sk_dst_get(sk);
1212
1213 if (dst && dst_allfrag(dst))
1214 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1215 }
1216
1217 /* Clamp it (mss_clamp does not include tcp options) */
1218 if (mss_now > tp->rx_opt.mss_clamp)
1219 mss_now = tp->rx_opt.mss_clamp;
1220
1221 /* Now subtract optional transport overhead */
1222 mss_now -= icsk->icsk_ext_hdr_len;
1223
1224 /* Then reserve room for full set of TCP options and 8 bytes of data */
1225 if (mss_now < 48)
1226 mss_now = 48;
1227 return mss_now;
1228 }
1229
1230 /* Calculate MSS. Not accounting for SACKs here. */
1231 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1232 {
1233 /* Subtract TCP options size, not including SACKs */
1234 return __tcp_mtu_to_mss(sk, pmtu) -
1235 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1236 }
1237
1238 /* Inverse of above */
1239 int tcp_mss_to_mtu(struct sock *sk, int mss)
1240 {
1241 const struct tcp_sock *tp = tcp_sk(sk);
1242 const struct inet_connection_sock *icsk = inet_csk(sk);
1243 int mtu;
1244
1245 mtu = mss +
1246 tp->tcp_header_len +
1247 icsk->icsk_ext_hdr_len +
1248 icsk->icsk_af_ops->net_header_len;
1249
1250 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1251 if (icsk->icsk_af_ops->net_frag_header_len) {
1252 const struct dst_entry *dst = __sk_dst_get(sk);
1253
1254 if (dst && dst_allfrag(dst))
1255 mtu += icsk->icsk_af_ops->net_frag_header_len;
1256 }
1257 return mtu;
1258 }
1259
1260 /* MTU probing init per socket */
1261 void tcp_mtup_init(struct sock *sk)
1262 {
1263 struct tcp_sock *tp = tcp_sk(sk);
1264 struct inet_connection_sock *icsk = inet_csk(sk);
1265
1266 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1267 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1268 icsk->icsk_af_ops->net_header_len;
1269 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1270 icsk->icsk_mtup.probe_size = 0;
1271 }
1272 EXPORT_SYMBOL(tcp_mtup_init);
1273
1274 /* This function synchronize snd mss to current pmtu/exthdr set.
1275
1276 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1277 for TCP options, but includes only bare TCP header.
1278
1279 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1280 It is minimum of user_mss and mss received with SYN.
1281 It also does not include TCP options.
1282
1283 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1284
1285 tp->mss_cache is current effective sending mss, including
1286 all tcp options except for SACKs. It is evaluated,
1287 taking into account current pmtu, but never exceeds
1288 tp->rx_opt.mss_clamp.
1289
1290 NOTE1. rfc1122 clearly states that advertised MSS
1291 DOES NOT include either tcp or ip options.
1292
1293 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1294 are READ ONLY outside this function. --ANK (980731)
1295 */
1296 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1297 {
1298 struct tcp_sock *tp = tcp_sk(sk);
1299 struct inet_connection_sock *icsk = inet_csk(sk);
1300 int mss_now;
1301
1302 if (icsk->icsk_mtup.search_high > pmtu)
1303 icsk->icsk_mtup.search_high = pmtu;
1304
1305 mss_now = tcp_mtu_to_mss(sk, pmtu);
1306 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1307
1308 /* And store cached results */
1309 icsk->icsk_pmtu_cookie = pmtu;
1310 if (icsk->icsk_mtup.enabled)
1311 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1312 tp->mss_cache = mss_now;
1313
1314 return mss_now;
1315 }
1316 EXPORT_SYMBOL(tcp_sync_mss);
1317
1318 /* Compute the current effective MSS, taking SACKs and IP options,
1319 * and even PMTU discovery events into account.
1320 */
1321 unsigned int tcp_current_mss(struct sock *sk)
1322 {
1323 const struct tcp_sock *tp = tcp_sk(sk);
1324 const struct dst_entry *dst = __sk_dst_get(sk);
1325 u32 mss_now;
1326 unsigned int header_len;
1327 struct tcp_out_options opts;
1328 struct tcp_md5sig_key *md5;
1329
1330 mss_now = tp->mss_cache;
1331
1332 if (dst) {
1333 u32 mtu = dst_mtu(dst);
1334 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1335 mss_now = tcp_sync_mss(sk, mtu);
1336 }
1337
1338 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1339 sizeof(struct tcphdr);
1340 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1341 * some common options. If this is an odd packet (because we have SACK
1342 * blocks etc) then our calculated header_len will be different, and
1343 * we have to adjust mss_now correspondingly */
1344 if (header_len != tp->tcp_header_len) {
1345 int delta = (int) header_len - tp->tcp_header_len;
1346 mss_now -= delta;
1347 }
1348
1349 return mss_now;
1350 }
1351
1352 /* Congestion window validation. (RFC2861) */
1353 static void tcp_cwnd_validate(struct sock *sk)
1354 {
1355 struct tcp_sock *tp = tcp_sk(sk);
1356
1357 if (tp->packets_out >= tp->snd_cwnd) {
1358 /* Network is feed fully. */
1359 tp->snd_cwnd_used = 0;
1360 tp->snd_cwnd_stamp = tcp_time_stamp;
1361 } else {
1362 /* Network starves. */
1363 if (tp->packets_out > tp->snd_cwnd_used)
1364 tp->snd_cwnd_used = tp->packets_out;
1365
1366 if (sysctl_tcp_slow_start_after_idle &&
1367 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1368 tcp_cwnd_application_limited(sk);
1369 }
1370 }
1371
1372 /* Returns the portion of skb which can be sent right away without
1373 * introducing MSS oddities to segment boundaries. In rare cases where
1374 * mss_now != mss_cache, we will request caller to create a small skb
1375 * per input skb which could be mostly avoided here (if desired).
1376 *
1377 * We explicitly want to create a request for splitting write queue tail
1378 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1379 * thus all the complexity (cwnd_len is always MSS multiple which we
1380 * return whenever allowed by the other factors). Basically we need the
1381 * modulo only when the receiver window alone is the limiting factor or
1382 * when we would be allowed to send the split-due-to-Nagle skb fully.
1383 */
1384 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1385 unsigned int mss_now, unsigned int max_segs)
1386 {
1387 const struct tcp_sock *tp = tcp_sk(sk);
1388 u32 needed, window, max_len;
1389
1390 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1391 max_len = mss_now * max_segs;
1392
1393 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1394 return max_len;
1395
1396 needed = min(skb->len, window);
1397
1398 if (max_len <= needed)
1399 return max_len;
1400
1401 return needed - needed % mss_now;
1402 }
1403
1404 /* Can at least one segment of SKB be sent right now, according to the
1405 * congestion window rules? If so, return how many segments are allowed.
1406 */
1407 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1408 const struct sk_buff *skb)
1409 {
1410 u32 in_flight, cwnd;
1411
1412 /* Don't be strict about the congestion window for the final FIN. */
1413 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1414 tcp_skb_pcount(skb) == 1)
1415 return 1;
1416
1417 in_flight = tcp_packets_in_flight(tp);
1418 cwnd = tp->snd_cwnd;
1419 if (in_flight < cwnd)
1420 return (cwnd - in_flight);
1421
1422 return 0;
1423 }
1424
1425 /* Initialize TSO state of a skb.
1426 * This must be invoked the first time we consider transmitting
1427 * SKB onto the wire.
1428 */
1429 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1430 unsigned int mss_now)
1431 {
1432 int tso_segs = tcp_skb_pcount(skb);
1433
1434 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1435 tcp_set_skb_tso_segs(sk, skb, mss_now);
1436 tso_segs = tcp_skb_pcount(skb);
1437 }
1438 return tso_segs;
1439 }
1440
1441 /* Minshall's variant of the Nagle send check. */
1442 static inline bool tcp_minshall_check(const struct tcp_sock *tp)
1443 {
1444 return after(tp->snd_sml, tp->snd_una) &&
1445 !after(tp->snd_sml, tp->snd_nxt);
1446 }
1447
1448 /* Return false, if packet can be sent now without violation Nagle's rules:
1449 * 1. It is full sized.
1450 * 2. Or it contains FIN. (already checked by caller)
1451 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1452 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1453 * With Minshall's modification: all sent small packets are ACKed.
1454 */
1455 static inline bool tcp_nagle_check(const struct tcp_sock *tp,
1456 const struct sk_buff *skb,
1457 unsigned int mss_now, int nonagle)
1458 {
1459 return skb->len < mss_now &&
1460 ((nonagle & TCP_NAGLE_CORK) ||
1461 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1462 }
1463
1464 /* Return true if the Nagle test allows this packet to be
1465 * sent now.
1466 */
1467 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1468 unsigned int cur_mss, int nonagle)
1469 {
1470 /* Nagle rule does not apply to frames, which sit in the middle of the
1471 * write_queue (they have no chances to get new data).
1472 *
1473 * This is implemented in the callers, where they modify the 'nonagle'
1474 * argument based upon the location of SKB in the send queue.
1475 */
1476 if (nonagle & TCP_NAGLE_PUSH)
1477 return true;
1478
1479 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1480 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1481 return true;
1482
1483 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1484 return true;
1485
1486 return false;
1487 }
1488
1489 /* Does at least the first segment of SKB fit into the send window? */
1490 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1491 const struct sk_buff *skb,
1492 unsigned int cur_mss)
1493 {
1494 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1495
1496 if (skb->len > cur_mss)
1497 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1498
1499 return !after(end_seq, tcp_wnd_end(tp));
1500 }
1501
1502 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1503 * should be put on the wire right now. If so, it returns the number of
1504 * packets allowed by the congestion window.
1505 */
1506 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1507 unsigned int cur_mss, int nonagle)
1508 {
1509 const struct tcp_sock *tp = tcp_sk(sk);
1510 unsigned int cwnd_quota;
1511
1512 tcp_init_tso_segs(sk, skb, cur_mss);
1513
1514 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1515 return 0;
1516
1517 cwnd_quota = tcp_cwnd_test(tp, skb);
1518 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1519 cwnd_quota = 0;
1520
1521 return cwnd_quota;
1522 }
1523
1524 /* Test if sending is allowed right now. */
1525 bool tcp_may_send_now(struct sock *sk)
1526 {
1527 const struct tcp_sock *tp = tcp_sk(sk);
1528 struct sk_buff *skb = tcp_send_head(sk);
1529
1530 return skb &&
1531 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1532 (tcp_skb_is_last(sk, skb) ?
1533 tp->nonagle : TCP_NAGLE_PUSH));
1534 }
1535
1536 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1537 * which is put after SKB on the list. It is very much like
1538 * tcp_fragment() except that it may make several kinds of assumptions
1539 * in order to speed up the splitting operation. In particular, we
1540 * know that all the data is in scatter-gather pages, and that the
1541 * packet has never been sent out before (and thus is not cloned).
1542 */
1543 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1544 unsigned int mss_now, gfp_t gfp)
1545 {
1546 struct sk_buff *buff;
1547 int nlen = skb->len - len;
1548 u8 flags;
1549
1550 /* All of a TSO frame must be composed of paged data. */
1551 if (skb->len != skb->data_len)
1552 return tcp_fragment(sk, skb, len, mss_now);
1553
1554 buff = sk_stream_alloc_skb(sk, 0, gfp);
1555 if (unlikely(buff == NULL))
1556 return -ENOMEM;
1557
1558 sk->sk_wmem_queued += buff->truesize;
1559 sk_mem_charge(sk, buff->truesize);
1560 buff->truesize += nlen;
1561 skb->truesize -= nlen;
1562
1563 /* Correct the sequence numbers. */
1564 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1565 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1566 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1567
1568 /* PSH and FIN should only be set in the second packet. */
1569 flags = TCP_SKB_CB(skb)->tcp_flags;
1570 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1571 TCP_SKB_CB(buff)->tcp_flags = flags;
1572
1573 /* This packet was never sent out yet, so no SACK bits. */
1574 TCP_SKB_CB(buff)->sacked = 0;
1575
1576 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1577 skb_split(skb, buff, len);
1578
1579 /* Fix up tso_factor for both original and new SKB. */
1580 tcp_set_skb_tso_segs(sk, skb, mss_now);
1581 tcp_set_skb_tso_segs(sk, buff, mss_now);
1582
1583 /* Link BUFF into the send queue. */
1584 skb_header_release(buff);
1585 tcp_insert_write_queue_after(skb, buff, sk);
1586
1587 return 0;
1588 }
1589
1590 /* Try to defer sending, if possible, in order to minimize the amount
1591 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1592 *
1593 * This algorithm is from John Heffner.
1594 */
1595 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1596 {
1597 struct tcp_sock *tp = tcp_sk(sk);
1598 const struct inet_connection_sock *icsk = inet_csk(sk);
1599 u32 send_win, cong_win, limit, in_flight;
1600 int win_divisor;
1601
1602 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1603 goto send_now;
1604
1605 if (icsk->icsk_ca_state != TCP_CA_Open)
1606 goto send_now;
1607
1608 /* Defer for less than two clock ticks. */
1609 if (tp->tso_deferred &&
1610 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1611 goto send_now;
1612
1613 in_flight = tcp_packets_in_flight(tp);
1614
1615 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1616
1617 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1618
1619 /* From in_flight test above, we know that cwnd > in_flight. */
1620 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1621
1622 limit = min(send_win, cong_win);
1623
1624 /* If a full-sized TSO skb can be sent, do it. */
1625 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1626 tp->xmit_size_goal_segs * tp->mss_cache))
1627 goto send_now;
1628
1629 /* Middle in queue won't get any more data, full sendable already? */
1630 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1631 goto send_now;
1632
1633 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1634 if (win_divisor) {
1635 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1636
1637 /* If at least some fraction of a window is available,
1638 * just use it.
1639 */
1640 chunk /= win_divisor;
1641 if (limit >= chunk)
1642 goto send_now;
1643 } else {
1644 /* Different approach, try not to defer past a single
1645 * ACK. Receiver should ACK every other full sized
1646 * frame, so if we have space for more than 3 frames
1647 * then send now.
1648 */
1649 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1650 goto send_now;
1651 }
1652
1653 /* Ok, it looks like it is advisable to defer.
1654 * Do not rearm the timer if already set to not break TCP ACK clocking.
1655 */
1656 if (!tp->tso_deferred)
1657 tp->tso_deferred = 1 | (jiffies << 1);
1658
1659 return true;
1660
1661 send_now:
1662 tp->tso_deferred = 0;
1663 return false;
1664 }
1665
1666 /* Create a new MTU probe if we are ready.
1667 * MTU probe is regularly attempting to increase the path MTU by
1668 * deliberately sending larger packets. This discovers routing
1669 * changes resulting in larger path MTUs.
1670 *
1671 * Returns 0 if we should wait to probe (no cwnd available),
1672 * 1 if a probe was sent,
1673 * -1 otherwise
1674 */
1675 static int tcp_mtu_probe(struct sock *sk)
1676 {
1677 struct tcp_sock *tp = tcp_sk(sk);
1678 struct inet_connection_sock *icsk = inet_csk(sk);
1679 struct sk_buff *skb, *nskb, *next;
1680 int len;
1681 int probe_size;
1682 int size_needed;
1683 int copy;
1684 int mss_now;
1685
1686 /* Not currently probing/verifying,
1687 * not in recovery,
1688 * have enough cwnd, and
1689 * not SACKing (the variable headers throw things off) */
1690 if (!icsk->icsk_mtup.enabled ||
1691 icsk->icsk_mtup.probe_size ||
1692 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1693 tp->snd_cwnd < 11 ||
1694 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1695 return -1;
1696
1697 /* Very simple search strategy: just double the MSS. */
1698 mss_now = tcp_current_mss(sk);
1699 probe_size = 2 * tp->mss_cache;
1700 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1701 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1702 /* TODO: set timer for probe_converge_event */
1703 return -1;
1704 }
1705
1706 /* Have enough data in the send queue to probe? */
1707 if (tp->write_seq - tp->snd_nxt < size_needed)
1708 return -1;
1709
1710 if (tp->snd_wnd < size_needed)
1711 return -1;
1712 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1713 return 0;
1714
1715 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1716 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1717 if (!tcp_packets_in_flight(tp))
1718 return -1;
1719 else
1720 return 0;
1721 }
1722
1723 /* We're allowed to probe. Build it now. */
1724 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1725 return -1;
1726 sk->sk_wmem_queued += nskb->truesize;
1727 sk_mem_charge(sk, nskb->truesize);
1728
1729 skb = tcp_send_head(sk);
1730
1731 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1732 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1733 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1734 TCP_SKB_CB(nskb)->sacked = 0;
1735 nskb->csum = 0;
1736 nskb->ip_summed = skb->ip_summed;
1737
1738 tcp_insert_write_queue_before(nskb, skb, sk);
1739
1740 len = 0;
1741 tcp_for_write_queue_from_safe(skb, next, sk) {
1742 copy = min_t(int, skb->len, probe_size - len);
1743 if (nskb->ip_summed)
1744 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1745 else
1746 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1747 skb_put(nskb, copy),
1748 copy, nskb->csum);
1749
1750 if (skb->len <= copy) {
1751 /* We've eaten all the data from this skb.
1752 * Throw it away. */
1753 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1754 tcp_unlink_write_queue(skb, sk);
1755 sk_wmem_free_skb(sk, skb);
1756 } else {
1757 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1758 ~(TCPHDR_FIN|TCPHDR_PSH);
1759 if (!skb_shinfo(skb)->nr_frags) {
1760 skb_pull(skb, copy);
1761 if (skb->ip_summed != CHECKSUM_PARTIAL)
1762 skb->csum = csum_partial(skb->data,
1763 skb->len, 0);
1764 } else {
1765 __pskb_trim_head(skb, copy);
1766 tcp_set_skb_tso_segs(sk, skb, mss_now);
1767 }
1768 TCP_SKB_CB(skb)->seq += copy;
1769 }
1770
1771 len += copy;
1772
1773 if (len >= probe_size)
1774 break;
1775 }
1776 tcp_init_tso_segs(sk, nskb, nskb->len);
1777
1778 /* We're ready to send. If this fails, the probe will
1779 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1780 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1781 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1782 /* Decrement cwnd here because we are sending
1783 * effectively two packets. */
1784 tp->snd_cwnd--;
1785 tcp_event_new_data_sent(sk, nskb);
1786
1787 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1788 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1789 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1790
1791 return 1;
1792 }
1793
1794 return -1;
1795 }
1796
1797 /* This routine writes packets to the network. It advances the
1798 * send_head. This happens as incoming acks open up the remote
1799 * window for us.
1800 *
1801 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1802 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1803 * account rare use of URG, this is not a big flaw.
1804 *
1805 * Send at most one packet when push_one > 0. Temporarily ignore
1806 * cwnd limit to force at most one packet out when push_one == 2.
1807
1808 * Returns true, if no segments are in flight and we have queued segments,
1809 * but cannot send anything now because of SWS or another problem.
1810 */
1811 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1812 int push_one, gfp_t gfp)
1813 {
1814 struct tcp_sock *tp = tcp_sk(sk);
1815 struct sk_buff *skb;
1816 unsigned int tso_segs, sent_pkts;
1817 int cwnd_quota;
1818 int result;
1819
1820 sent_pkts = 0;
1821
1822 if (!push_one) {
1823 /* Do MTU probing. */
1824 result = tcp_mtu_probe(sk);
1825 if (!result) {
1826 return false;
1827 } else if (result > 0) {
1828 sent_pkts = 1;
1829 }
1830 }
1831
1832 while ((skb = tcp_send_head(sk))) {
1833 unsigned int limit;
1834
1835 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1836 BUG_ON(!tso_segs);
1837
1838 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1839 goto repair; /* Skip network transmission */
1840
1841 cwnd_quota = tcp_cwnd_test(tp, skb);
1842 if (!cwnd_quota) {
1843 if (push_one == 2)
1844 /* Force out a loss probe pkt. */
1845 cwnd_quota = 1;
1846 else
1847 break;
1848 }
1849
1850 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1851 break;
1852
1853 if (tso_segs == 1) {
1854 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1855 (tcp_skb_is_last(sk, skb) ?
1856 nonagle : TCP_NAGLE_PUSH))))
1857 break;
1858 } else {
1859 if (!push_one && tcp_tso_should_defer(sk, skb))
1860 break;
1861 }
1862
1863 /* TCP Small Queues :
1864 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
1865 * This allows for :
1866 * - better RTT estimation and ACK scheduling
1867 * - faster recovery
1868 * - high rates
1869 */
1870 limit = max(skb->truesize, sk->sk_pacing_rate >> 10);
1871
1872 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1873 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1874 break;
1875 }
1876
1877 limit = mss_now;
1878 if (tso_segs > 1 && !tcp_urg_mode(tp))
1879 limit = tcp_mss_split_point(sk, skb, mss_now,
1880 min_t(unsigned int,
1881 cwnd_quota,
1882 sk->sk_gso_max_segs));
1883
1884 if (skb->len > limit &&
1885 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1886 break;
1887
1888 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1889
1890 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1891 break;
1892
1893 repair:
1894 /* Advance the send_head. This one is sent out.
1895 * This call will increment packets_out.
1896 */
1897 tcp_event_new_data_sent(sk, skb);
1898
1899 tcp_minshall_update(tp, mss_now, skb);
1900 sent_pkts += tcp_skb_pcount(skb);
1901
1902 if (push_one)
1903 break;
1904 }
1905
1906 if (likely(sent_pkts)) {
1907 if (tcp_in_cwnd_reduction(sk))
1908 tp->prr_out += sent_pkts;
1909
1910 /* Send one loss probe per tail loss episode. */
1911 if (push_one != 2)
1912 tcp_schedule_loss_probe(sk);
1913 tcp_cwnd_validate(sk);
1914 return false;
1915 }
1916 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
1917 }
1918
1919 bool tcp_schedule_loss_probe(struct sock *sk)
1920 {
1921 struct inet_connection_sock *icsk = inet_csk(sk);
1922 struct tcp_sock *tp = tcp_sk(sk);
1923 u32 timeout, tlp_time_stamp, rto_time_stamp;
1924 u32 rtt = tp->srtt >> 3;
1925
1926 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
1927 return false;
1928 /* No consecutive loss probes. */
1929 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
1930 tcp_rearm_rto(sk);
1931 return false;
1932 }
1933 /* Don't do any loss probe on a Fast Open connection before 3WHS
1934 * finishes.
1935 */
1936 if (sk->sk_state == TCP_SYN_RECV)
1937 return false;
1938
1939 /* TLP is only scheduled when next timer event is RTO. */
1940 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
1941 return false;
1942
1943 /* Schedule a loss probe in 2*RTT for SACK capable connections
1944 * in Open state, that are either limited by cwnd or application.
1945 */
1946 if (sysctl_tcp_early_retrans < 3 || !rtt || !tp->packets_out ||
1947 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
1948 return false;
1949
1950 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
1951 tcp_send_head(sk))
1952 return false;
1953
1954 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
1955 * for delayed ack when there's one outstanding packet.
1956 */
1957 timeout = rtt << 1;
1958 if (tp->packets_out == 1)
1959 timeout = max_t(u32, timeout,
1960 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
1961 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
1962
1963 /* If RTO is shorter, just schedule TLP in its place. */
1964 tlp_time_stamp = tcp_time_stamp + timeout;
1965 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
1966 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
1967 s32 delta = rto_time_stamp - tcp_time_stamp;
1968 if (delta > 0)
1969 timeout = delta;
1970 }
1971
1972 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
1973 TCP_RTO_MAX);
1974 return true;
1975 }
1976
1977 /* When probe timeout (PTO) fires, send a new segment if one exists, else
1978 * retransmit the last segment.
1979 */
1980 void tcp_send_loss_probe(struct sock *sk)
1981 {
1982 struct tcp_sock *tp = tcp_sk(sk);
1983 struct sk_buff *skb;
1984 int pcount;
1985 int mss = tcp_current_mss(sk);
1986 int err = -1;
1987
1988 if (tcp_send_head(sk) != NULL) {
1989 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
1990 goto rearm_timer;
1991 }
1992
1993 /* At most one outstanding TLP retransmission. */
1994 if (tp->tlp_high_seq)
1995 goto rearm_timer;
1996
1997 /* Retransmit last segment. */
1998 skb = tcp_write_queue_tail(sk);
1999 if (WARN_ON(!skb))
2000 goto rearm_timer;
2001
2002 pcount = tcp_skb_pcount(skb);
2003 if (WARN_ON(!pcount))
2004 goto rearm_timer;
2005
2006 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2007 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
2008 goto rearm_timer;
2009 skb = tcp_write_queue_tail(sk);
2010 }
2011
2012 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2013 goto rearm_timer;
2014
2015 /* Probe with zero data doesn't trigger fast recovery. */
2016 if (skb->len > 0)
2017 err = __tcp_retransmit_skb(sk, skb);
2018
2019 /* Record snd_nxt for loss detection. */
2020 if (likely(!err))
2021 tp->tlp_high_seq = tp->snd_nxt;
2022
2023 rearm_timer:
2024 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2025 inet_csk(sk)->icsk_rto,
2026 TCP_RTO_MAX);
2027
2028 if (likely(!err))
2029 NET_INC_STATS_BH(sock_net(sk),
2030 LINUX_MIB_TCPLOSSPROBES);
2031 return;
2032 }
2033
2034 /* Push out any pending frames which were held back due to
2035 * TCP_CORK or attempt at coalescing tiny packets.
2036 * The socket must be locked by the caller.
2037 */
2038 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2039 int nonagle)
2040 {
2041 /* If we are closed, the bytes will have to remain here.
2042 * In time closedown will finish, we empty the write queue and
2043 * all will be happy.
2044 */
2045 if (unlikely(sk->sk_state == TCP_CLOSE))
2046 return;
2047
2048 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2049 sk_gfp_atomic(sk, GFP_ATOMIC)))
2050 tcp_check_probe_timer(sk);
2051 }
2052
2053 /* Send _single_ skb sitting at the send head. This function requires
2054 * true push pending frames to setup probe timer etc.
2055 */
2056 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2057 {
2058 struct sk_buff *skb = tcp_send_head(sk);
2059
2060 BUG_ON(!skb || skb->len < mss_now);
2061
2062 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2063 }
2064
2065 /* This function returns the amount that we can raise the
2066 * usable window based on the following constraints
2067 *
2068 * 1. The window can never be shrunk once it is offered (RFC 793)
2069 * 2. We limit memory per socket
2070 *
2071 * RFC 1122:
2072 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2073 * RECV.NEXT + RCV.WIN fixed until:
2074 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2075 *
2076 * i.e. don't raise the right edge of the window until you can raise
2077 * it at least MSS bytes.
2078 *
2079 * Unfortunately, the recommended algorithm breaks header prediction,
2080 * since header prediction assumes th->window stays fixed.
2081 *
2082 * Strictly speaking, keeping th->window fixed violates the receiver
2083 * side SWS prevention criteria. The problem is that under this rule
2084 * a stream of single byte packets will cause the right side of the
2085 * window to always advance by a single byte.
2086 *
2087 * Of course, if the sender implements sender side SWS prevention
2088 * then this will not be a problem.
2089 *
2090 * BSD seems to make the following compromise:
2091 *
2092 * If the free space is less than the 1/4 of the maximum
2093 * space available and the free space is less than 1/2 mss,
2094 * then set the window to 0.
2095 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2096 * Otherwise, just prevent the window from shrinking
2097 * and from being larger than the largest representable value.
2098 *
2099 * This prevents incremental opening of the window in the regime
2100 * where TCP is limited by the speed of the reader side taking
2101 * data out of the TCP receive queue. It does nothing about
2102 * those cases where the window is constrained on the sender side
2103 * because the pipeline is full.
2104 *
2105 * BSD also seems to "accidentally" limit itself to windows that are a
2106 * multiple of MSS, at least until the free space gets quite small.
2107 * This would appear to be a side effect of the mbuf implementation.
2108 * Combining these two algorithms results in the observed behavior
2109 * of having a fixed window size at almost all times.
2110 *
2111 * Below we obtain similar behavior by forcing the offered window to
2112 * a multiple of the mss when it is feasible to do so.
2113 *
2114 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2115 * Regular options like TIMESTAMP are taken into account.
2116 */
2117 u32 __tcp_select_window(struct sock *sk)
2118 {
2119 struct inet_connection_sock *icsk = inet_csk(sk);
2120 struct tcp_sock *tp = tcp_sk(sk);
2121 /* MSS for the peer's data. Previous versions used mss_clamp
2122 * here. I don't know if the value based on our guesses
2123 * of peer's MSS is better for the performance. It's more correct
2124 * but may be worse for the performance because of rcv_mss
2125 * fluctuations. --SAW 1998/11/1
2126 */
2127 int mss = icsk->icsk_ack.rcv_mss;
2128 int free_space = tcp_space(sk);
2129 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2130 int window;
2131
2132 if (mss > full_space)
2133 mss = full_space;
2134
2135 if (free_space < (full_space >> 1)) {
2136 icsk->icsk_ack.quick = 0;
2137
2138 if (sk_under_memory_pressure(sk))
2139 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2140 4U * tp->advmss);
2141
2142 if (free_space < mss)
2143 return 0;
2144 }
2145
2146 if (free_space > tp->rcv_ssthresh)
2147 free_space = tp->rcv_ssthresh;
2148
2149 /* Don't do rounding if we are using window scaling, since the
2150 * scaled window will not line up with the MSS boundary anyway.
2151 */
2152 window = tp->rcv_wnd;
2153 if (tp->rx_opt.rcv_wscale) {
2154 window = free_space;
2155
2156 /* Advertise enough space so that it won't get scaled away.
2157 * Import case: prevent zero window announcement if
2158 * 1<<rcv_wscale > mss.
2159 */
2160 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2161 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2162 << tp->rx_opt.rcv_wscale);
2163 } else {
2164 /* Get the largest window that is a nice multiple of mss.
2165 * Window clamp already applied above.
2166 * If our current window offering is within 1 mss of the
2167 * free space we just keep it. This prevents the divide
2168 * and multiply from happening most of the time.
2169 * We also don't do any window rounding when the free space
2170 * is too small.
2171 */
2172 if (window <= free_space - mss || window > free_space)
2173 window = (free_space / mss) * mss;
2174 else if (mss == full_space &&
2175 free_space > window + (full_space >> 1))
2176 window = free_space;
2177 }
2178
2179 return window;
2180 }
2181
2182 /* Collapses two adjacent SKB's during retransmission. */
2183 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2184 {
2185 struct tcp_sock *tp = tcp_sk(sk);
2186 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2187 int skb_size, next_skb_size;
2188
2189 skb_size = skb->len;
2190 next_skb_size = next_skb->len;
2191
2192 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2193
2194 tcp_highest_sack_combine(sk, next_skb, skb);
2195
2196 tcp_unlink_write_queue(next_skb, sk);
2197
2198 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2199 next_skb_size);
2200
2201 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2202 skb->ip_summed = CHECKSUM_PARTIAL;
2203
2204 if (skb->ip_summed != CHECKSUM_PARTIAL)
2205 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2206
2207 /* Update sequence range on original skb. */
2208 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2209
2210 /* Merge over control information. This moves PSH/FIN etc. over */
2211 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2212
2213 /* All done, get rid of second SKB and account for it so
2214 * packet counting does not break.
2215 */
2216 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2217
2218 /* changed transmit queue under us so clear hints */
2219 tcp_clear_retrans_hints_partial(tp);
2220 if (next_skb == tp->retransmit_skb_hint)
2221 tp->retransmit_skb_hint = skb;
2222
2223 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2224
2225 sk_wmem_free_skb(sk, next_skb);
2226 }
2227
2228 /* Check if coalescing SKBs is legal. */
2229 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2230 {
2231 if (tcp_skb_pcount(skb) > 1)
2232 return false;
2233 /* TODO: SACK collapsing could be used to remove this condition */
2234 if (skb_shinfo(skb)->nr_frags != 0)
2235 return false;
2236 if (skb_cloned(skb))
2237 return false;
2238 if (skb == tcp_send_head(sk))
2239 return false;
2240 /* Some heurestics for collapsing over SACK'd could be invented */
2241 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2242 return false;
2243
2244 return true;
2245 }
2246
2247 /* Collapse packets in the retransmit queue to make to create
2248 * less packets on the wire. This is only done on retransmission.
2249 */
2250 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2251 int space)
2252 {
2253 struct tcp_sock *tp = tcp_sk(sk);
2254 struct sk_buff *skb = to, *tmp;
2255 bool first = true;
2256
2257 if (!sysctl_tcp_retrans_collapse)
2258 return;
2259 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2260 return;
2261
2262 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2263 if (!tcp_can_collapse(sk, skb))
2264 break;
2265
2266 space -= skb->len;
2267
2268 if (first) {
2269 first = false;
2270 continue;
2271 }
2272
2273 if (space < 0)
2274 break;
2275 /* Punt if not enough space exists in the first SKB for
2276 * the data in the second
2277 */
2278 if (skb->len > skb_availroom(to))
2279 break;
2280
2281 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2282 break;
2283
2284 tcp_collapse_retrans(sk, to);
2285 }
2286 }
2287
2288 /* This retransmits one SKB. Policy decisions and retransmit queue
2289 * state updates are done by the caller. Returns non-zero if an
2290 * error occurred which prevented the send.
2291 */
2292 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2293 {
2294 struct tcp_sock *tp = tcp_sk(sk);
2295 struct inet_connection_sock *icsk = inet_csk(sk);
2296 unsigned int cur_mss;
2297
2298 /* Inconslusive MTU probe */
2299 if (icsk->icsk_mtup.probe_size) {
2300 icsk->icsk_mtup.probe_size = 0;
2301 }
2302
2303 /* Do not sent more than we queued. 1/4 is reserved for possible
2304 * copying overhead: fragmentation, tunneling, mangling etc.
2305 */
2306 if (atomic_read(&sk->sk_wmem_alloc) >
2307 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2308 return -EAGAIN;
2309
2310 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2311 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2312 BUG();
2313 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2314 return -ENOMEM;
2315 }
2316
2317 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2318 return -EHOSTUNREACH; /* Routing failure or similar. */
2319
2320 cur_mss = tcp_current_mss(sk);
2321
2322 /* If receiver has shrunk his window, and skb is out of
2323 * new window, do not retransmit it. The exception is the
2324 * case, when window is shrunk to zero. In this case
2325 * our retransmit serves as a zero window probe.
2326 */
2327 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2328 TCP_SKB_CB(skb)->seq != tp->snd_una)
2329 return -EAGAIN;
2330
2331 if (skb->len > cur_mss) {
2332 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2333 return -ENOMEM; /* We'll try again later. */
2334 } else {
2335 int oldpcount = tcp_skb_pcount(skb);
2336
2337 if (unlikely(oldpcount > 1)) {
2338 if (skb_unclone(skb, GFP_ATOMIC))
2339 return -ENOMEM;
2340 tcp_init_tso_segs(sk, skb, cur_mss);
2341 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2342 }
2343 }
2344
2345 tcp_retrans_try_collapse(sk, skb, cur_mss);
2346
2347 /* Some Solaris stacks overoptimize and ignore the FIN on a
2348 * retransmit when old data is attached. So strip it off
2349 * since it is cheap to do so and saves bytes on the network.
2350 */
2351 if (skb->len > 0 &&
2352 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2353 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
2354 if (!pskb_trim(skb, 0)) {
2355 /* Reuse, even though it does some unnecessary work */
2356 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
2357 TCP_SKB_CB(skb)->tcp_flags);
2358 skb->ip_summed = CHECKSUM_NONE;
2359 }
2360 }
2361
2362 /* Make a copy, if the first transmission SKB clone we made
2363 * is still in somebody's hands, else make a clone.
2364 */
2365 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2366
2367 /* make sure skb->data is aligned on arches that require it
2368 * and check if ack-trimming & collapsing extended the headroom
2369 * beyond what csum_start can cover.
2370 */
2371 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2372 skb_headroom(skb) >= 0xFFFF)) {
2373 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2374 GFP_ATOMIC);
2375 return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2376 -ENOBUFS;
2377 } else {
2378 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2379 }
2380 }
2381
2382 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2383 {
2384 struct tcp_sock *tp = tcp_sk(sk);
2385 int err = __tcp_retransmit_skb(sk, skb);
2386
2387 if (err == 0) {
2388 /* Update global TCP statistics. */
2389 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2390
2391 tp->total_retrans++;
2392
2393 #if FASTRETRANS_DEBUG > 0
2394 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2395 net_dbg_ratelimited("retrans_out leaked\n");
2396 }
2397 #endif
2398 if (!tp->retrans_out)
2399 tp->lost_retrans_low = tp->snd_nxt;
2400 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2401 tp->retrans_out += tcp_skb_pcount(skb);
2402
2403 /* Save stamp of the first retransmit. */
2404 if (!tp->retrans_stamp)
2405 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2406
2407 tp->undo_retrans += tcp_skb_pcount(skb);
2408
2409 /* snd_nxt is stored to detect loss of retransmitted segment,
2410 * see tcp_input.c tcp_sacktag_write_queue().
2411 */
2412 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2413 }
2414 return err;
2415 }
2416
2417 /* Check if we forward retransmits are possible in the current
2418 * window/congestion state.
2419 */
2420 static bool tcp_can_forward_retransmit(struct sock *sk)
2421 {
2422 const struct inet_connection_sock *icsk = inet_csk(sk);
2423 const struct tcp_sock *tp = tcp_sk(sk);
2424
2425 /* Forward retransmissions are possible only during Recovery. */
2426 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2427 return false;
2428
2429 /* No forward retransmissions in Reno are possible. */
2430 if (tcp_is_reno(tp))
2431 return false;
2432
2433 /* Yeah, we have to make difficult choice between forward transmission
2434 * and retransmission... Both ways have their merits...
2435 *
2436 * For now we do not retransmit anything, while we have some new
2437 * segments to send. In the other cases, follow rule 3 for
2438 * NextSeg() specified in RFC3517.
2439 */
2440
2441 if (tcp_may_send_now(sk))
2442 return false;
2443
2444 return true;
2445 }
2446
2447 /* This gets called after a retransmit timeout, and the initially
2448 * retransmitted data is acknowledged. It tries to continue
2449 * resending the rest of the retransmit queue, until either
2450 * we've sent it all or the congestion window limit is reached.
2451 * If doing SACK, the first ACK which comes back for a timeout
2452 * based retransmit packet might feed us FACK information again.
2453 * If so, we use it to avoid unnecessarily retransmissions.
2454 */
2455 void tcp_xmit_retransmit_queue(struct sock *sk)
2456 {
2457 const struct inet_connection_sock *icsk = inet_csk(sk);
2458 struct tcp_sock *tp = tcp_sk(sk);
2459 struct sk_buff *skb;
2460 struct sk_buff *hole = NULL;
2461 u32 last_lost;
2462 int mib_idx;
2463 int fwd_rexmitting = 0;
2464
2465 if (!tp->packets_out)
2466 return;
2467
2468 if (!tp->lost_out)
2469 tp->retransmit_high = tp->snd_una;
2470
2471 if (tp->retransmit_skb_hint) {
2472 skb = tp->retransmit_skb_hint;
2473 last_lost = TCP_SKB_CB(skb)->end_seq;
2474 if (after(last_lost, tp->retransmit_high))
2475 last_lost = tp->retransmit_high;
2476 } else {
2477 skb = tcp_write_queue_head(sk);
2478 last_lost = tp->snd_una;
2479 }
2480
2481 tcp_for_write_queue_from(skb, sk) {
2482 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2483
2484 if (skb == tcp_send_head(sk))
2485 break;
2486 /* we could do better than to assign each time */
2487 if (hole == NULL)
2488 tp->retransmit_skb_hint = skb;
2489
2490 /* Assume this retransmit will generate
2491 * only one packet for congestion window
2492 * calculation purposes. This works because
2493 * tcp_retransmit_skb() will chop up the
2494 * packet to be MSS sized and all the
2495 * packet counting works out.
2496 */
2497 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2498 return;
2499
2500 if (fwd_rexmitting) {
2501 begin_fwd:
2502 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2503 break;
2504 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2505
2506 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2507 tp->retransmit_high = last_lost;
2508 if (!tcp_can_forward_retransmit(sk))
2509 break;
2510 /* Backtrack if necessary to non-L'ed skb */
2511 if (hole != NULL) {
2512 skb = hole;
2513 hole = NULL;
2514 }
2515 fwd_rexmitting = 1;
2516 goto begin_fwd;
2517
2518 } else if (!(sacked & TCPCB_LOST)) {
2519 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2520 hole = skb;
2521 continue;
2522
2523 } else {
2524 last_lost = TCP_SKB_CB(skb)->end_seq;
2525 if (icsk->icsk_ca_state != TCP_CA_Loss)
2526 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2527 else
2528 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2529 }
2530
2531 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2532 continue;
2533
2534 if (tcp_retransmit_skb(sk, skb)) {
2535 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2536 return;
2537 }
2538 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2539
2540 if (tcp_in_cwnd_reduction(sk))
2541 tp->prr_out += tcp_skb_pcount(skb);
2542
2543 if (skb == tcp_write_queue_head(sk))
2544 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2545 inet_csk(sk)->icsk_rto,
2546 TCP_RTO_MAX);
2547 }
2548 }
2549
2550 /* Send a fin. The caller locks the socket for us. This cannot be
2551 * allowed to fail queueing a FIN frame under any circumstances.
2552 */
2553 void tcp_send_fin(struct sock *sk)
2554 {
2555 struct tcp_sock *tp = tcp_sk(sk);
2556 struct sk_buff *skb = tcp_write_queue_tail(sk);
2557 int mss_now;
2558
2559 /* Optimization, tack on the FIN if we have a queue of
2560 * unsent frames. But be careful about outgoing SACKS
2561 * and IP options.
2562 */
2563 mss_now = tcp_current_mss(sk);
2564
2565 if (tcp_send_head(sk) != NULL) {
2566 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2567 TCP_SKB_CB(skb)->end_seq++;
2568 tp->write_seq++;
2569 } else {
2570 /* Socket is locked, keep trying until memory is available. */
2571 for (;;) {
2572 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2573 sk->sk_allocation);
2574 if (skb)
2575 break;
2576 yield();
2577 }
2578
2579 /* Reserve space for headers and prepare control bits. */
2580 skb_reserve(skb, MAX_TCP_HEADER);
2581 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2582 tcp_init_nondata_skb(skb, tp->write_seq,
2583 TCPHDR_ACK | TCPHDR_FIN);
2584 tcp_queue_skb(sk, skb);
2585 }
2586 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2587 }
2588
2589 /* We get here when a process closes a file descriptor (either due to
2590 * an explicit close() or as a byproduct of exit()'ing) and there
2591 * was unread data in the receive queue. This behavior is recommended
2592 * by RFC 2525, section 2.17. -DaveM
2593 */
2594 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2595 {
2596 struct sk_buff *skb;
2597
2598 /* NOTE: No TCP options attached and we never retransmit this. */
2599 skb = alloc_skb(MAX_TCP_HEADER, priority);
2600 if (!skb) {
2601 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2602 return;
2603 }
2604
2605 /* Reserve space for headers and prepare control bits. */
2606 skb_reserve(skb, MAX_TCP_HEADER);
2607 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2608 TCPHDR_ACK | TCPHDR_RST);
2609 /* Send it off. */
2610 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2611 if (tcp_transmit_skb(sk, skb, 0, priority))
2612 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2613
2614 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2615 }
2616
2617 /* Send a crossed SYN-ACK during socket establishment.
2618 * WARNING: This routine must only be called when we have already sent
2619 * a SYN packet that crossed the incoming SYN that caused this routine
2620 * to get called. If this assumption fails then the initial rcv_wnd
2621 * and rcv_wscale values will not be correct.
2622 */
2623 int tcp_send_synack(struct sock *sk)
2624 {
2625 struct sk_buff *skb;
2626
2627 skb = tcp_write_queue_head(sk);
2628 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2629 pr_debug("%s: wrong queue state\n", __func__);
2630 return -EFAULT;
2631 }
2632 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2633 if (skb_cloned(skb)) {
2634 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2635 if (nskb == NULL)
2636 return -ENOMEM;
2637 tcp_unlink_write_queue(skb, sk);
2638 skb_header_release(nskb);
2639 __tcp_add_write_queue_head(sk, nskb);
2640 sk_wmem_free_skb(sk, skb);
2641 sk->sk_wmem_queued += nskb->truesize;
2642 sk_mem_charge(sk, nskb->truesize);
2643 skb = nskb;
2644 }
2645
2646 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2647 TCP_ECN_send_synack(tcp_sk(sk), skb);
2648 }
2649 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2650 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2651 }
2652
2653 /**
2654 * tcp_make_synack - Prepare a SYN-ACK.
2655 * sk: listener socket
2656 * dst: dst entry attached to the SYNACK
2657 * req: request_sock pointer
2658 *
2659 * Allocate one skb and build a SYNACK packet.
2660 * @dst is consumed : Caller should not use it again.
2661 */
2662 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2663 struct request_sock *req,
2664 struct tcp_fastopen_cookie *foc)
2665 {
2666 struct tcp_out_options opts;
2667 struct inet_request_sock *ireq = inet_rsk(req);
2668 struct tcp_sock *tp = tcp_sk(sk);
2669 struct tcphdr *th;
2670 struct sk_buff *skb;
2671 struct tcp_md5sig_key *md5;
2672 int tcp_header_size;
2673 int mss;
2674
2675 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
2676 if (unlikely(!skb)) {
2677 dst_release(dst);
2678 return NULL;
2679 }
2680 /* Reserve space for headers. */
2681 skb_reserve(skb, MAX_TCP_HEADER);
2682
2683 skb_dst_set(skb, dst);
2684 security_skb_owned_by(skb, sk);
2685
2686 mss = dst_metric_advmss(dst);
2687 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2688 mss = tp->rx_opt.user_mss;
2689
2690 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2691 __u8 rcv_wscale;
2692 /* Set this up on the first call only */
2693 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2694
2695 /* limit the window selection if the user enforce a smaller rx buffer */
2696 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2697 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2698 req->window_clamp = tcp_full_space(sk);
2699
2700 /* tcp_full_space because it is guaranteed to be the first packet */
2701 tcp_select_initial_window(tcp_full_space(sk),
2702 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2703 &req->rcv_wnd,
2704 &req->window_clamp,
2705 ireq->wscale_ok,
2706 &rcv_wscale,
2707 dst_metric(dst, RTAX_INITRWND));
2708 ireq->rcv_wscale = rcv_wscale;
2709 }
2710
2711 memset(&opts, 0, sizeof(opts));
2712 #ifdef CONFIG_SYN_COOKIES
2713 if (unlikely(req->cookie_ts))
2714 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2715 else
2716 #endif
2717 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2718 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2719 foc) + sizeof(*th);
2720
2721 skb_push(skb, tcp_header_size);
2722 skb_reset_transport_header(skb);
2723
2724 th = tcp_hdr(skb);
2725 memset(th, 0, sizeof(struct tcphdr));
2726 th->syn = 1;
2727 th->ack = 1;
2728 TCP_ECN_make_synack(req, th);
2729 th->source = ireq->loc_port;
2730 th->dest = ireq->rmt_port;
2731 /* Setting of flags are superfluous here for callers (and ECE is
2732 * not even correctly set)
2733 */
2734 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2735 TCPHDR_SYN | TCPHDR_ACK);
2736
2737 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2738 /* XXX data is queued and acked as is. No buffer/window check */
2739 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2740
2741 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2742 th->window = htons(min(req->rcv_wnd, 65535U));
2743 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2744 th->doff = (tcp_header_size >> 2);
2745 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2746
2747 #ifdef CONFIG_TCP_MD5SIG
2748 /* Okay, we have all we need - do the md5 hash if needed */
2749 if (md5) {
2750 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2751 md5, NULL, req, skb);
2752 }
2753 #endif
2754
2755 return skb;
2756 }
2757 EXPORT_SYMBOL(tcp_make_synack);
2758
2759 /* Do all connect socket setups that can be done AF independent. */
2760 void tcp_connect_init(struct sock *sk)
2761 {
2762 const struct dst_entry *dst = __sk_dst_get(sk);
2763 struct tcp_sock *tp = tcp_sk(sk);
2764 __u8 rcv_wscale;
2765
2766 /* We'll fix this up when we get a response from the other end.
2767 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2768 */
2769 tp->tcp_header_len = sizeof(struct tcphdr) +
2770 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2771
2772 #ifdef CONFIG_TCP_MD5SIG
2773 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2774 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2775 #endif
2776
2777 /* If user gave his TCP_MAXSEG, record it to clamp */
2778 if (tp->rx_opt.user_mss)
2779 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2780 tp->max_window = 0;
2781 tcp_mtup_init(sk);
2782 tcp_sync_mss(sk, dst_mtu(dst));
2783
2784 if (!tp->window_clamp)
2785 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2786 tp->advmss = dst_metric_advmss(dst);
2787 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2788 tp->advmss = tp->rx_opt.user_mss;
2789
2790 tcp_initialize_rcv_mss(sk);
2791
2792 /* limit the window selection if the user enforce a smaller rx buffer */
2793 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2794 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2795 tp->window_clamp = tcp_full_space(sk);
2796
2797 tcp_select_initial_window(tcp_full_space(sk),
2798 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2799 &tp->rcv_wnd,
2800 &tp->window_clamp,
2801 sysctl_tcp_window_scaling,
2802 &rcv_wscale,
2803 dst_metric(dst, RTAX_INITRWND));
2804
2805 tp->rx_opt.rcv_wscale = rcv_wscale;
2806 tp->rcv_ssthresh = tp->rcv_wnd;
2807
2808 sk->sk_err = 0;
2809 sock_reset_flag(sk, SOCK_DONE);
2810 tp->snd_wnd = 0;
2811 tcp_init_wl(tp, 0);
2812 tp->snd_una = tp->write_seq;
2813 tp->snd_sml = tp->write_seq;
2814 tp->snd_up = tp->write_seq;
2815 tp->snd_nxt = tp->write_seq;
2816
2817 if (likely(!tp->repair))
2818 tp->rcv_nxt = 0;
2819 else
2820 tp->rcv_tstamp = tcp_time_stamp;
2821 tp->rcv_wup = tp->rcv_nxt;
2822 tp->copied_seq = tp->rcv_nxt;
2823
2824 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2825 inet_csk(sk)->icsk_retransmits = 0;
2826 tcp_clear_retrans(tp);
2827 }
2828
2829 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2830 {
2831 struct tcp_sock *tp = tcp_sk(sk);
2832 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2833
2834 tcb->end_seq += skb->len;
2835 skb_header_release(skb);
2836 __tcp_add_write_queue_tail(sk, skb);
2837 sk->sk_wmem_queued += skb->truesize;
2838 sk_mem_charge(sk, skb->truesize);
2839 tp->write_seq = tcb->end_seq;
2840 tp->packets_out += tcp_skb_pcount(skb);
2841 }
2842
2843 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2844 * queue a data-only packet after the regular SYN, such that regular SYNs
2845 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2846 * only the SYN sequence, the data are retransmitted in the first ACK.
2847 * If cookie is not cached or other error occurs, falls back to send a
2848 * regular SYN with Fast Open cookie request option.
2849 */
2850 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2851 {
2852 struct tcp_sock *tp = tcp_sk(sk);
2853 struct tcp_fastopen_request *fo = tp->fastopen_req;
2854 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2855 struct sk_buff *syn_data = NULL, *data;
2856 unsigned long last_syn_loss = 0;
2857
2858 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
2859 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2860 &syn_loss, &last_syn_loss);
2861 /* Recurring FO SYN losses: revert to regular handshake temporarily */
2862 if (syn_loss > 1 &&
2863 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2864 fo->cookie.len = -1;
2865 goto fallback;
2866 }
2867
2868 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2869 fo->cookie.len = -1;
2870 else if (fo->cookie.len <= 0)
2871 goto fallback;
2872
2873 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2874 * user-MSS. Reserve maximum option space for middleboxes that add
2875 * private TCP options. The cost is reduced data space in SYN :(
2876 */
2877 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2878 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2879 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2880 MAX_TCP_OPTION_SPACE;
2881
2882 syn_data = skb_copy_expand(syn, skb_headroom(syn), space,
2883 sk->sk_allocation);
2884 if (syn_data == NULL)
2885 goto fallback;
2886
2887 for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2888 struct iovec *iov = &fo->data->msg_iov[i];
2889 unsigned char __user *from = iov->iov_base;
2890 int len = iov->iov_len;
2891
2892 if (syn_data->len + len > space)
2893 len = space - syn_data->len;
2894 else if (i + 1 == iovlen)
2895 /* No more data pending in inet_wait_for_connect() */
2896 fo->data = NULL;
2897
2898 if (skb_add_data(syn_data, from, len))
2899 goto fallback;
2900 }
2901
2902 /* Queue a data-only packet after the regular SYN for retransmission */
2903 data = pskb_copy(syn_data, sk->sk_allocation);
2904 if (data == NULL)
2905 goto fallback;
2906 TCP_SKB_CB(data)->seq++;
2907 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2908 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2909 tcp_connect_queue_skb(sk, data);
2910 fo->copied = data->len;
2911
2912 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2913 tp->syn_data = (fo->copied > 0);
2914 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2915 goto done;
2916 }
2917 syn_data = NULL;
2918
2919 fallback:
2920 /* Send a regular SYN with Fast Open cookie request option */
2921 if (fo->cookie.len > 0)
2922 fo->cookie.len = 0;
2923 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2924 if (err)
2925 tp->syn_fastopen = 0;
2926 kfree_skb(syn_data);
2927 done:
2928 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
2929 return err;
2930 }
2931
2932 /* Build a SYN and send it off. */
2933 int tcp_connect(struct sock *sk)
2934 {
2935 struct tcp_sock *tp = tcp_sk(sk);
2936 struct sk_buff *buff;
2937 int err;
2938
2939 tcp_connect_init(sk);
2940
2941 if (unlikely(tp->repair)) {
2942 tcp_finish_connect(sk, NULL);
2943 return 0;
2944 }
2945
2946 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2947 if (unlikely(buff == NULL))
2948 return -ENOBUFS;
2949
2950 /* Reserve space for headers. */
2951 skb_reserve(buff, MAX_TCP_HEADER);
2952
2953 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
2954 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
2955 tcp_connect_queue_skb(sk, buff);
2956 TCP_ECN_send_syn(sk, buff);
2957
2958 /* Send off SYN; include data in Fast Open. */
2959 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
2960 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
2961 if (err == -ECONNREFUSED)
2962 return err;
2963
2964 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2965 * in order to make this packet get counted in tcpOutSegs.
2966 */
2967 tp->snd_nxt = tp->write_seq;
2968 tp->pushed_seq = tp->write_seq;
2969 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2970
2971 /* Timer for repeating the SYN until an answer. */
2972 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2973 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2974 return 0;
2975 }
2976 EXPORT_SYMBOL(tcp_connect);
2977
2978 /* Send out a delayed ack, the caller does the policy checking
2979 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2980 * for details.
2981 */
2982 void tcp_send_delayed_ack(struct sock *sk)
2983 {
2984 struct inet_connection_sock *icsk = inet_csk(sk);
2985 int ato = icsk->icsk_ack.ato;
2986 unsigned long timeout;
2987
2988 if (ato > TCP_DELACK_MIN) {
2989 const struct tcp_sock *tp = tcp_sk(sk);
2990 int max_ato = HZ / 2;
2991
2992 if (icsk->icsk_ack.pingpong ||
2993 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2994 max_ato = TCP_DELACK_MAX;
2995
2996 /* Slow path, intersegment interval is "high". */
2997
2998 /* If some rtt estimate is known, use it to bound delayed ack.
2999 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3000 * directly.
3001 */
3002 if (tp->srtt) {
3003 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
3004
3005 if (rtt < max_ato)
3006 max_ato = rtt;
3007 }
3008
3009 ato = min(ato, max_ato);
3010 }
3011
3012 /* Stay within the limit we were given */
3013 timeout = jiffies + ato;
3014
3015 /* Use new timeout only if there wasn't a older one earlier. */
3016 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3017 /* If delack timer was blocked or is about to expire,
3018 * send ACK now.
3019 */
3020 if (icsk->icsk_ack.blocked ||
3021 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3022 tcp_send_ack(sk);
3023 return;
3024 }
3025
3026 if (!time_before(timeout, icsk->icsk_ack.timeout))
3027 timeout = icsk->icsk_ack.timeout;
3028 }
3029 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3030 icsk->icsk_ack.timeout = timeout;
3031 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3032 }
3033
3034 /* This routine sends an ack and also updates the window. */
3035 void tcp_send_ack(struct sock *sk)
3036 {
3037 struct sk_buff *buff;
3038
3039 /* If we have been reset, we may not send again. */
3040 if (sk->sk_state == TCP_CLOSE)
3041 return;
3042
3043 /* We are not putting this on the write queue, so
3044 * tcp_transmit_skb() will set the ownership to this
3045 * sock.
3046 */
3047 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3048 if (buff == NULL) {
3049 inet_csk_schedule_ack(sk);
3050 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3051 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3052 TCP_DELACK_MAX, TCP_RTO_MAX);
3053 return;
3054 }
3055
3056 /* Reserve space for headers and prepare control bits. */
3057 skb_reserve(buff, MAX_TCP_HEADER);
3058 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3059
3060 /* Send it off, this clears delayed acks for us. */
3061 TCP_SKB_CB(buff)->when = tcp_time_stamp;
3062 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3063 }
3064
3065 /* This routine sends a packet with an out of date sequence
3066 * number. It assumes the other end will try to ack it.
3067 *
3068 * Question: what should we make while urgent mode?
3069 * 4.4BSD forces sending single byte of data. We cannot send
3070 * out of window data, because we have SND.NXT==SND.MAX...
3071 *
3072 * Current solution: to send TWO zero-length segments in urgent mode:
3073 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3074 * out-of-date with SND.UNA-1 to probe window.
3075 */
3076 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3077 {
3078 struct tcp_sock *tp = tcp_sk(sk);
3079 struct sk_buff *skb;
3080
3081 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3082 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3083 if (skb == NULL)
3084 return -1;
3085
3086 /* Reserve space for headers and set control bits. */
3087 skb_reserve(skb, MAX_TCP_HEADER);
3088 /* Use a previous sequence. This should cause the other
3089 * end to send an ack. Don't queue or clone SKB, just
3090 * send it.
3091 */
3092 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3093 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3094 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3095 }
3096
3097 void tcp_send_window_probe(struct sock *sk)
3098 {
3099 if (sk->sk_state == TCP_ESTABLISHED) {
3100 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3101 tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq;
3102 tcp_xmit_probe_skb(sk, 0);
3103 }
3104 }
3105
3106 /* Initiate keepalive or window probe from timer. */
3107 int tcp_write_wakeup(struct sock *sk)
3108 {
3109 struct tcp_sock *tp = tcp_sk(sk);
3110 struct sk_buff *skb;
3111
3112 if (sk->sk_state == TCP_CLOSE)
3113 return -1;
3114
3115 if ((skb = tcp_send_head(sk)) != NULL &&
3116 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3117 int err;
3118 unsigned int mss = tcp_current_mss(sk);
3119 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3120
3121 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3122 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3123
3124 /* We are probing the opening of a window
3125 * but the window size is != 0
3126 * must have been a result SWS avoidance ( sender )
3127 */
3128 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3129 skb->len > mss) {
3130 seg_size = min(seg_size, mss);
3131 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3132 if (tcp_fragment(sk, skb, seg_size, mss))
3133 return -1;
3134 } else if (!tcp_skb_pcount(skb))
3135 tcp_set_skb_tso_segs(sk, skb, mss);
3136
3137 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3138 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3139 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3140 if (!err)
3141 tcp_event_new_data_sent(sk, skb);
3142 return err;
3143 } else {
3144 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3145 tcp_xmit_probe_skb(sk, 1);
3146 return tcp_xmit_probe_skb(sk, 0);
3147 }
3148 }
3149
3150 /* A window probe timeout has occurred. If window is not closed send
3151 * a partial packet else a zero probe.
3152 */
3153 void tcp_send_probe0(struct sock *sk)
3154 {
3155 struct inet_connection_sock *icsk = inet_csk(sk);
3156 struct tcp_sock *tp = tcp_sk(sk);
3157 int err;
3158
3159 err = tcp_write_wakeup(sk);
3160
3161 if (tp->packets_out || !tcp_send_head(sk)) {
3162 /* Cancel probe timer, if it is not required. */
3163 icsk->icsk_probes_out = 0;
3164 icsk->icsk_backoff = 0;
3165 return;
3166 }
3167
3168 if (err <= 0) {
3169 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3170 icsk->icsk_backoff++;
3171 icsk->icsk_probes_out++;
3172 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3173 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3174 TCP_RTO_MAX);
3175 } else {
3176 /* If packet was not sent due to local congestion,
3177 * do not backoff and do not remember icsk_probes_out.
3178 * Let local senders to fight for local resources.
3179 *
3180 * Use accumulated backoff yet.
3181 */
3182 if (!icsk->icsk_probes_out)
3183 icsk->icsk_probes_out = 1;
3184 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3185 min(icsk->icsk_rto << icsk->icsk_backoff,
3186 TCP_RESOURCE_PROBE_INTERVAL),
3187 TCP_RTO_MAX);
3188 }
3189 }