Merge tag 'mxs-fixes-3.10' of git://git.linaro.org/people/shawnguo/linux-2.6 into...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 int push_one, gfp_t gfp);
70
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 struct inet_connection_sock *icsk = inet_csk(sk);
75 struct tcp_sock *tp = tcp_sk(sk);
76 unsigned int prior_packets = tp->packets_out;
77
78 tcp_advance_send_head(sk, skb);
79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 tcp_rearm_rto(sk);
85 }
86 }
87
88 /* SND.NXT, if window was not shrunk.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
93 */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 const struct tcp_sock *tp = tcp_sk(sk);
97
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 return tp->snd_nxt;
100 else
101 return tcp_wnd_end(tp);
102 }
103
104 /* Calculate mss to advertise in SYN segment.
105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106 *
107 * 1. It is independent of path mtu.
108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110 * attached devices, because some buggy hosts are confused by
111 * large MSS.
112 * 4. We do not make 3, we advertise MSS, calculated from first
113 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
114 * This may be overridden via information stored in routing table.
115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116 * probably even Jumbo".
117 */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 struct tcp_sock *tp = tcp_sk(sk);
121 const struct dst_entry *dst = __sk_dst_get(sk);
122 int mss = tp->advmss;
123
124 if (dst) {
125 unsigned int metric = dst_metric_advmss(dst);
126
127 if (metric < mss) {
128 mss = metric;
129 tp->advmss = mss;
130 }
131 }
132
133 return (__u16)mss;
134 }
135
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137 * This is the first part of cwnd validation mechanism. */
138 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
139 {
140 struct tcp_sock *tp = tcp_sk(sk);
141 s32 delta = tcp_time_stamp - tp->lsndtime;
142 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
143 u32 cwnd = tp->snd_cwnd;
144
145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146
147 tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 restart_cwnd = min(restart_cwnd, cwnd);
149
150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 cwnd >>= 1;
152 tp->snd_cwnd = max(cwnd, restart_cwnd);
153 tp->snd_cwnd_stamp = tcp_time_stamp;
154 tp->snd_cwnd_used = 0;
155 }
156
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 struct sock *sk)
160 {
161 struct inet_connection_sock *icsk = inet_csk(sk);
162 const u32 now = tcp_time_stamp;
163
164 if (sysctl_tcp_slow_start_after_idle &&
165 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
166 tcp_cwnd_restart(sk, __sk_dst_get(sk));
167
168 tp->lsndtime = now;
169
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
172 */
173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 icsk->icsk_ack.pingpong = 1;
175 }
176
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 tcp_dec_quickack_mode(sk, pkts);
181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183
184 /* Determine a window scaling and initial window to offer.
185 * Based on the assumption that the given amount of space
186 * will be offered. Store the results in the tp structure.
187 * NOTE: for smooth operation initial space offering should
188 * be a multiple of mss if possible. We assume here that mss >= 1.
189 * This MUST be enforced by all callers.
190 */
191 void tcp_select_initial_window(int __space, __u32 mss,
192 __u32 *rcv_wnd, __u32 *window_clamp,
193 int wscale_ok, __u8 *rcv_wscale,
194 __u32 init_rcv_wnd)
195 {
196 unsigned int space = (__space < 0 ? 0 : __space);
197
198 /* If no clamp set the clamp to the max possible scaled window */
199 if (*window_clamp == 0)
200 (*window_clamp) = (65535 << 14);
201 space = min(*window_clamp, space);
202
203 /* Quantize space offering to a multiple of mss if possible. */
204 if (space > mss)
205 space = (space / mss) * mss;
206
207 /* NOTE: offering an initial window larger than 32767
208 * will break some buggy TCP stacks. If the admin tells us
209 * it is likely we could be speaking with such a buggy stack
210 * we will truncate our initial window offering to 32K-1
211 * unless the remote has sent us a window scaling option,
212 * which we interpret as a sign the remote TCP is not
213 * misinterpreting the window field as a signed quantity.
214 */
215 if (sysctl_tcp_workaround_signed_windows)
216 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
217 else
218 (*rcv_wnd) = space;
219
220 (*rcv_wscale) = 0;
221 if (wscale_ok) {
222 /* Set window scaling on max possible window
223 * See RFC1323 for an explanation of the limit to 14
224 */
225 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
226 space = min_t(u32, space, *window_clamp);
227 while (space > 65535 && (*rcv_wscale) < 14) {
228 space >>= 1;
229 (*rcv_wscale)++;
230 }
231 }
232
233 /* Set initial window to a value enough for senders starting with
234 * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place
235 * a limit on the initial window when mss is larger than 1460.
236 */
237 if (mss > (1 << *rcv_wscale)) {
238 int init_cwnd = TCP_DEFAULT_INIT_RCVWND;
239 if (mss > 1460)
240 init_cwnd =
241 max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
242 /* when initializing use the value from init_rcv_wnd
243 * rather than the default from above
244 */
245 if (init_rcv_wnd)
246 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
247 else
248 *rcv_wnd = min(*rcv_wnd, init_cwnd * mss);
249 }
250
251 /* Set the clamp no higher than max representable value */
252 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
253 }
254 EXPORT_SYMBOL(tcp_select_initial_window);
255
256 /* Chose a new window to advertise, update state in tcp_sock for the
257 * socket, and return result with RFC1323 scaling applied. The return
258 * value can be stuffed directly into th->window for an outgoing
259 * frame.
260 */
261 static u16 tcp_select_window(struct sock *sk)
262 {
263 struct tcp_sock *tp = tcp_sk(sk);
264 u32 cur_win = tcp_receive_window(tp);
265 u32 new_win = __tcp_select_window(sk);
266
267 /* Never shrink the offered window */
268 if (new_win < cur_win) {
269 /* Danger Will Robinson!
270 * Don't update rcv_wup/rcv_wnd here or else
271 * we will not be able to advertise a zero
272 * window in time. --DaveM
273 *
274 * Relax Will Robinson.
275 */
276 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
277 }
278 tp->rcv_wnd = new_win;
279 tp->rcv_wup = tp->rcv_nxt;
280
281 /* Make sure we do not exceed the maximum possible
282 * scaled window.
283 */
284 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
285 new_win = min(new_win, MAX_TCP_WINDOW);
286 else
287 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
288
289 /* RFC1323 scaling applied */
290 new_win >>= tp->rx_opt.rcv_wscale;
291
292 /* If we advertise zero window, disable fast path. */
293 if (new_win == 0)
294 tp->pred_flags = 0;
295
296 return new_win;
297 }
298
299 /* Packet ECN state for a SYN-ACK */
300 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
301 {
302 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
303 if (!(tp->ecn_flags & TCP_ECN_OK))
304 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
305 }
306
307 /* Packet ECN state for a SYN. */
308 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
309 {
310 struct tcp_sock *tp = tcp_sk(sk);
311
312 tp->ecn_flags = 0;
313 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
314 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
315 tp->ecn_flags = TCP_ECN_OK;
316 }
317 }
318
319 static __inline__ void
320 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
321 {
322 if (inet_rsk(req)->ecn_ok)
323 th->ece = 1;
324 }
325
326 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
327 * be sent.
328 */
329 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
330 int tcp_header_len)
331 {
332 struct tcp_sock *tp = tcp_sk(sk);
333
334 if (tp->ecn_flags & TCP_ECN_OK) {
335 /* Not-retransmitted data segment: set ECT and inject CWR. */
336 if (skb->len != tcp_header_len &&
337 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
338 INET_ECN_xmit(sk);
339 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
340 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
341 tcp_hdr(skb)->cwr = 1;
342 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
343 }
344 } else {
345 /* ACK or retransmitted segment: clear ECT|CE */
346 INET_ECN_dontxmit(sk);
347 }
348 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
349 tcp_hdr(skb)->ece = 1;
350 }
351 }
352
353 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
354 * auto increment end seqno.
355 */
356 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
357 {
358 skb->ip_summed = CHECKSUM_PARTIAL;
359 skb->csum = 0;
360
361 TCP_SKB_CB(skb)->tcp_flags = flags;
362 TCP_SKB_CB(skb)->sacked = 0;
363
364 skb_shinfo(skb)->gso_segs = 1;
365 skb_shinfo(skb)->gso_size = 0;
366 skb_shinfo(skb)->gso_type = 0;
367
368 TCP_SKB_CB(skb)->seq = seq;
369 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
370 seq++;
371 TCP_SKB_CB(skb)->end_seq = seq;
372 }
373
374 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
375 {
376 return tp->snd_una != tp->snd_up;
377 }
378
379 #define OPTION_SACK_ADVERTISE (1 << 0)
380 #define OPTION_TS (1 << 1)
381 #define OPTION_MD5 (1 << 2)
382 #define OPTION_WSCALE (1 << 3)
383 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
384
385 struct tcp_out_options {
386 u16 options; /* bit field of OPTION_* */
387 u16 mss; /* 0 to disable */
388 u8 ws; /* window scale, 0 to disable */
389 u8 num_sack_blocks; /* number of SACK blocks to include */
390 u8 hash_size; /* bytes in hash_location */
391 __u8 *hash_location; /* temporary pointer, overloaded */
392 __u32 tsval, tsecr; /* need to include OPTION_TS */
393 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
394 };
395
396 /* Write previously computed TCP options to the packet.
397 *
398 * Beware: Something in the Internet is very sensitive to the ordering of
399 * TCP options, we learned this through the hard way, so be careful here.
400 * Luckily we can at least blame others for their non-compliance but from
401 * inter-operatibility perspective it seems that we're somewhat stuck with
402 * the ordering which we have been using if we want to keep working with
403 * those broken things (not that it currently hurts anybody as there isn't
404 * particular reason why the ordering would need to be changed).
405 *
406 * At least SACK_PERM as the first option is known to lead to a disaster
407 * (but it may well be that other scenarios fail similarly).
408 */
409 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
410 struct tcp_out_options *opts)
411 {
412 u16 options = opts->options; /* mungable copy */
413
414 if (unlikely(OPTION_MD5 & options)) {
415 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
416 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
417 /* overload cookie hash location */
418 opts->hash_location = (__u8 *)ptr;
419 ptr += 4;
420 }
421
422 if (unlikely(opts->mss)) {
423 *ptr++ = htonl((TCPOPT_MSS << 24) |
424 (TCPOLEN_MSS << 16) |
425 opts->mss);
426 }
427
428 if (likely(OPTION_TS & options)) {
429 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
430 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
431 (TCPOLEN_SACK_PERM << 16) |
432 (TCPOPT_TIMESTAMP << 8) |
433 TCPOLEN_TIMESTAMP);
434 options &= ~OPTION_SACK_ADVERTISE;
435 } else {
436 *ptr++ = htonl((TCPOPT_NOP << 24) |
437 (TCPOPT_NOP << 16) |
438 (TCPOPT_TIMESTAMP << 8) |
439 TCPOLEN_TIMESTAMP);
440 }
441 *ptr++ = htonl(opts->tsval);
442 *ptr++ = htonl(opts->tsecr);
443 }
444
445 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
446 *ptr++ = htonl((TCPOPT_NOP << 24) |
447 (TCPOPT_NOP << 16) |
448 (TCPOPT_SACK_PERM << 8) |
449 TCPOLEN_SACK_PERM);
450 }
451
452 if (unlikely(OPTION_WSCALE & options)) {
453 *ptr++ = htonl((TCPOPT_NOP << 24) |
454 (TCPOPT_WINDOW << 16) |
455 (TCPOLEN_WINDOW << 8) |
456 opts->ws);
457 }
458
459 if (unlikely(opts->num_sack_blocks)) {
460 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
461 tp->duplicate_sack : tp->selective_acks;
462 int this_sack;
463
464 *ptr++ = htonl((TCPOPT_NOP << 24) |
465 (TCPOPT_NOP << 16) |
466 (TCPOPT_SACK << 8) |
467 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
468 TCPOLEN_SACK_PERBLOCK)));
469
470 for (this_sack = 0; this_sack < opts->num_sack_blocks;
471 ++this_sack) {
472 *ptr++ = htonl(sp[this_sack].start_seq);
473 *ptr++ = htonl(sp[this_sack].end_seq);
474 }
475
476 tp->rx_opt.dsack = 0;
477 }
478
479 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
480 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
481
482 *ptr++ = htonl((TCPOPT_EXP << 24) |
483 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
484 TCPOPT_FASTOPEN_MAGIC);
485
486 memcpy(ptr, foc->val, foc->len);
487 if ((foc->len & 3) == 2) {
488 u8 *align = ((u8 *)ptr) + foc->len;
489 align[0] = align[1] = TCPOPT_NOP;
490 }
491 ptr += (foc->len + 3) >> 2;
492 }
493 }
494
495 /* Compute TCP options for SYN packets. This is not the final
496 * network wire format yet.
497 */
498 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
499 struct tcp_out_options *opts,
500 struct tcp_md5sig_key **md5)
501 {
502 struct tcp_sock *tp = tcp_sk(sk);
503 unsigned int remaining = MAX_TCP_OPTION_SPACE;
504 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
505
506 #ifdef CONFIG_TCP_MD5SIG
507 *md5 = tp->af_specific->md5_lookup(sk, sk);
508 if (*md5) {
509 opts->options |= OPTION_MD5;
510 remaining -= TCPOLEN_MD5SIG_ALIGNED;
511 }
512 #else
513 *md5 = NULL;
514 #endif
515
516 /* We always get an MSS option. The option bytes which will be seen in
517 * normal data packets should timestamps be used, must be in the MSS
518 * advertised. But we subtract them from tp->mss_cache so that
519 * calculations in tcp_sendmsg are simpler etc. So account for this
520 * fact here if necessary. If we don't do this correctly, as a
521 * receiver we won't recognize data packets as being full sized when we
522 * should, and thus we won't abide by the delayed ACK rules correctly.
523 * SACKs don't matter, we never delay an ACK when we have any of those
524 * going out. */
525 opts->mss = tcp_advertise_mss(sk);
526 remaining -= TCPOLEN_MSS_ALIGNED;
527
528 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
529 opts->options |= OPTION_TS;
530 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
531 opts->tsecr = tp->rx_opt.ts_recent;
532 remaining -= TCPOLEN_TSTAMP_ALIGNED;
533 }
534 if (likely(sysctl_tcp_window_scaling)) {
535 opts->ws = tp->rx_opt.rcv_wscale;
536 opts->options |= OPTION_WSCALE;
537 remaining -= TCPOLEN_WSCALE_ALIGNED;
538 }
539 if (likely(sysctl_tcp_sack)) {
540 opts->options |= OPTION_SACK_ADVERTISE;
541 if (unlikely(!(OPTION_TS & opts->options)))
542 remaining -= TCPOLEN_SACKPERM_ALIGNED;
543 }
544
545 if (fastopen && fastopen->cookie.len >= 0) {
546 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
547 need = (need + 3) & ~3U; /* Align to 32 bits */
548 if (remaining >= need) {
549 opts->options |= OPTION_FAST_OPEN_COOKIE;
550 opts->fastopen_cookie = &fastopen->cookie;
551 remaining -= need;
552 tp->syn_fastopen = 1;
553 }
554 }
555
556 return MAX_TCP_OPTION_SPACE - remaining;
557 }
558
559 /* Set up TCP options for SYN-ACKs. */
560 static unsigned int tcp_synack_options(struct sock *sk,
561 struct request_sock *req,
562 unsigned int mss, struct sk_buff *skb,
563 struct tcp_out_options *opts,
564 struct tcp_md5sig_key **md5,
565 struct tcp_fastopen_cookie *foc)
566 {
567 struct inet_request_sock *ireq = inet_rsk(req);
568 unsigned int remaining = MAX_TCP_OPTION_SPACE;
569
570 #ifdef CONFIG_TCP_MD5SIG
571 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
572 if (*md5) {
573 opts->options |= OPTION_MD5;
574 remaining -= TCPOLEN_MD5SIG_ALIGNED;
575
576 /* We can't fit any SACK blocks in a packet with MD5 + TS
577 * options. There was discussion about disabling SACK
578 * rather than TS in order to fit in better with old,
579 * buggy kernels, but that was deemed to be unnecessary.
580 */
581 ireq->tstamp_ok &= !ireq->sack_ok;
582 }
583 #else
584 *md5 = NULL;
585 #endif
586
587 /* We always send an MSS option. */
588 opts->mss = mss;
589 remaining -= TCPOLEN_MSS_ALIGNED;
590
591 if (likely(ireq->wscale_ok)) {
592 opts->ws = ireq->rcv_wscale;
593 opts->options |= OPTION_WSCALE;
594 remaining -= TCPOLEN_WSCALE_ALIGNED;
595 }
596 if (likely(ireq->tstamp_ok)) {
597 opts->options |= OPTION_TS;
598 opts->tsval = TCP_SKB_CB(skb)->when;
599 opts->tsecr = req->ts_recent;
600 remaining -= TCPOLEN_TSTAMP_ALIGNED;
601 }
602 if (likely(ireq->sack_ok)) {
603 opts->options |= OPTION_SACK_ADVERTISE;
604 if (unlikely(!ireq->tstamp_ok))
605 remaining -= TCPOLEN_SACKPERM_ALIGNED;
606 }
607 if (foc != NULL) {
608 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
609 need = (need + 3) & ~3U; /* Align to 32 bits */
610 if (remaining >= need) {
611 opts->options |= OPTION_FAST_OPEN_COOKIE;
612 opts->fastopen_cookie = foc;
613 remaining -= need;
614 }
615 }
616
617 return MAX_TCP_OPTION_SPACE - remaining;
618 }
619
620 /* Compute TCP options for ESTABLISHED sockets. This is not the
621 * final wire format yet.
622 */
623 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
624 struct tcp_out_options *opts,
625 struct tcp_md5sig_key **md5)
626 {
627 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
628 struct tcp_sock *tp = tcp_sk(sk);
629 unsigned int size = 0;
630 unsigned int eff_sacks;
631
632 #ifdef CONFIG_TCP_MD5SIG
633 *md5 = tp->af_specific->md5_lookup(sk, sk);
634 if (unlikely(*md5)) {
635 opts->options |= OPTION_MD5;
636 size += TCPOLEN_MD5SIG_ALIGNED;
637 }
638 #else
639 *md5 = NULL;
640 #endif
641
642 if (likely(tp->rx_opt.tstamp_ok)) {
643 opts->options |= OPTION_TS;
644 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
645 opts->tsecr = tp->rx_opt.ts_recent;
646 size += TCPOLEN_TSTAMP_ALIGNED;
647 }
648
649 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
650 if (unlikely(eff_sacks)) {
651 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
652 opts->num_sack_blocks =
653 min_t(unsigned int, eff_sacks,
654 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
655 TCPOLEN_SACK_PERBLOCK);
656 size += TCPOLEN_SACK_BASE_ALIGNED +
657 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
658 }
659
660 return size;
661 }
662
663
664 /* TCP SMALL QUEUES (TSQ)
665 *
666 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
667 * to reduce RTT and bufferbloat.
668 * We do this using a special skb destructor (tcp_wfree).
669 *
670 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
671 * needs to be reallocated in a driver.
672 * The invariant being skb->truesize substracted from sk->sk_wmem_alloc
673 *
674 * Since transmit from skb destructor is forbidden, we use a tasklet
675 * to process all sockets that eventually need to send more skbs.
676 * We use one tasklet per cpu, with its own queue of sockets.
677 */
678 struct tsq_tasklet {
679 struct tasklet_struct tasklet;
680 struct list_head head; /* queue of tcp sockets */
681 };
682 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
683
684 static void tcp_tsq_handler(struct sock *sk)
685 {
686 if ((1 << sk->sk_state) &
687 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
688 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
689 tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC);
690 }
691 /*
692 * One tasklest per cpu tries to send more skbs.
693 * We run in tasklet context but need to disable irqs when
694 * transfering tsq->head because tcp_wfree() might
695 * interrupt us (non NAPI drivers)
696 */
697 static void tcp_tasklet_func(unsigned long data)
698 {
699 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
700 LIST_HEAD(list);
701 unsigned long flags;
702 struct list_head *q, *n;
703 struct tcp_sock *tp;
704 struct sock *sk;
705
706 local_irq_save(flags);
707 list_splice_init(&tsq->head, &list);
708 local_irq_restore(flags);
709
710 list_for_each_safe(q, n, &list) {
711 tp = list_entry(q, struct tcp_sock, tsq_node);
712 list_del(&tp->tsq_node);
713
714 sk = (struct sock *)tp;
715 bh_lock_sock(sk);
716
717 if (!sock_owned_by_user(sk)) {
718 tcp_tsq_handler(sk);
719 } else {
720 /* defer the work to tcp_release_cb() */
721 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
722 }
723 bh_unlock_sock(sk);
724
725 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
726 sk_free(sk);
727 }
728 }
729
730 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
731 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
732 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
733 (1UL << TCP_MTU_REDUCED_DEFERRED))
734 /**
735 * tcp_release_cb - tcp release_sock() callback
736 * @sk: socket
737 *
738 * called from release_sock() to perform protocol dependent
739 * actions before socket release.
740 */
741 void tcp_release_cb(struct sock *sk)
742 {
743 struct tcp_sock *tp = tcp_sk(sk);
744 unsigned long flags, nflags;
745
746 /* perform an atomic operation only if at least one flag is set */
747 do {
748 flags = tp->tsq_flags;
749 if (!(flags & TCP_DEFERRED_ALL))
750 return;
751 nflags = flags & ~TCP_DEFERRED_ALL;
752 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
753
754 if (flags & (1UL << TCP_TSQ_DEFERRED))
755 tcp_tsq_handler(sk);
756
757 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
758 tcp_write_timer_handler(sk);
759 __sock_put(sk);
760 }
761 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
762 tcp_delack_timer_handler(sk);
763 __sock_put(sk);
764 }
765 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
766 sk->sk_prot->mtu_reduced(sk);
767 __sock_put(sk);
768 }
769 }
770 EXPORT_SYMBOL(tcp_release_cb);
771
772 void __init tcp_tasklet_init(void)
773 {
774 int i;
775
776 for_each_possible_cpu(i) {
777 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
778
779 INIT_LIST_HEAD(&tsq->head);
780 tasklet_init(&tsq->tasklet,
781 tcp_tasklet_func,
782 (unsigned long)tsq);
783 }
784 }
785
786 /*
787 * Write buffer destructor automatically called from kfree_skb.
788 * We cant xmit new skbs from this context, as we might already
789 * hold qdisc lock.
790 */
791 void tcp_wfree(struct sk_buff *skb)
792 {
793 struct sock *sk = skb->sk;
794 struct tcp_sock *tp = tcp_sk(sk);
795
796 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
797 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
798 unsigned long flags;
799 struct tsq_tasklet *tsq;
800
801 /* Keep a ref on socket.
802 * This last ref will be released in tcp_tasklet_func()
803 */
804 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
805
806 /* queue this socket to tasklet queue */
807 local_irq_save(flags);
808 tsq = &__get_cpu_var(tsq_tasklet);
809 list_add(&tp->tsq_node, &tsq->head);
810 tasklet_schedule(&tsq->tasklet);
811 local_irq_restore(flags);
812 } else {
813 sock_wfree(skb);
814 }
815 }
816
817 /* This routine actually transmits TCP packets queued in by
818 * tcp_do_sendmsg(). This is used by both the initial
819 * transmission and possible later retransmissions.
820 * All SKB's seen here are completely headerless. It is our
821 * job to build the TCP header, and pass the packet down to
822 * IP so it can do the same plus pass the packet off to the
823 * device.
824 *
825 * We are working here with either a clone of the original
826 * SKB, or a fresh unique copy made by the retransmit engine.
827 */
828 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
829 gfp_t gfp_mask)
830 {
831 const struct inet_connection_sock *icsk = inet_csk(sk);
832 struct inet_sock *inet;
833 struct tcp_sock *tp;
834 struct tcp_skb_cb *tcb;
835 struct tcp_out_options opts;
836 unsigned int tcp_options_size, tcp_header_size;
837 struct tcp_md5sig_key *md5;
838 struct tcphdr *th;
839 int err;
840
841 BUG_ON(!skb || !tcp_skb_pcount(skb));
842
843 /* If congestion control is doing timestamping, we must
844 * take such a timestamp before we potentially clone/copy.
845 */
846 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
847 __net_timestamp(skb);
848
849 if (likely(clone_it)) {
850 const struct sk_buff *fclone = skb + 1;
851
852 if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
853 fclone->fclone == SKB_FCLONE_CLONE))
854 NET_INC_STATS_BH(sock_net(sk),
855 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
856
857 if (unlikely(skb_cloned(skb)))
858 skb = pskb_copy(skb, gfp_mask);
859 else
860 skb = skb_clone(skb, gfp_mask);
861 if (unlikely(!skb))
862 return -ENOBUFS;
863 }
864
865 inet = inet_sk(sk);
866 tp = tcp_sk(sk);
867 tcb = TCP_SKB_CB(skb);
868 memset(&opts, 0, sizeof(opts));
869
870 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
871 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
872 else
873 tcp_options_size = tcp_established_options(sk, skb, &opts,
874 &md5);
875 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
876
877 if (tcp_packets_in_flight(tp) == 0)
878 tcp_ca_event(sk, CA_EVENT_TX_START);
879
880 /* if no packet is in qdisc/device queue, then allow XPS to select
881 * another queue.
882 */
883 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
884
885 skb_push(skb, tcp_header_size);
886 skb_reset_transport_header(skb);
887
888 skb_orphan(skb);
889 skb->sk = sk;
890 skb->destructor = (sysctl_tcp_limit_output_bytes > 0) ?
891 tcp_wfree : sock_wfree;
892 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
893
894 /* Build TCP header and checksum it. */
895 th = tcp_hdr(skb);
896 th->source = inet->inet_sport;
897 th->dest = inet->inet_dport;
898 th->seq = htonl(tcb->seq);
899 th->ack_seq = htonl(tp->rcv_nxt);
900 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
901 tcb->tcp_flags);
902
903 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
904 /* RFC1323: The window in SYN & SYN/ACK segments
905 * is never scaled.
906 */
907 th->window = htons(min(tp->rcv_wnd, 65535U));
908 } else {
909 th->window = htons(tcp_select_window(sk));
910 }
911 th->check = 0;
912 th->urg_ptr = 0;
913
914 /* The urg_mode check is necessary during a below snd_una win probe */
915 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
916 if (before(tp->snd_up, tcb->seq + 0x10000)) {
917 th->urg_ptr = htons(tp->snd_up - tcb->seq);
918 th->urg = 1;
919 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
920 th->urg_ptr = htons(0xFFFF);
921 th->urg = 1;
922 }
923 }
924
925 tcp_options_write((__be32 *)(th + 1), tp, &opts);
926 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
927 TCP_ECN_send(sk, skb, tcp_header_size);
928
929 #ifdef CONFIG_TCP_MD5SIG
930 /* Calculate the MD5 hash, as we have all we need now */
931 if (md5) {
932 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
933 tp->af_specific->calc_md5_hash(opts.hash_location,
934 md5, sk, NULL, skb);
935 }
936 #endif
937
938 icsk->icsk_af_ops->send_check(sk, skb);
939
940 if (likely(tcb->tcp_flags & TCPHDR_ACK))
941 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
942
943 if (skb->len != tcp_header_size)
944 tcp_event_data_sent(tp, sk);
945
946 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
947 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
948 tcp_skb_pcount(skb));
949
950 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
951 if (likely(err <= 0))
952 return err;
953
954 tcp_enter_cwr(sk, 1);
955
956 return net_xmit_eval(err);
957 }
958
959 /* This routine just queues the buffer for sending.
960 *
961 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
962 * otherwise socket can stall.
963 */
964 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
965 {
966 struct tcp_sock *tp = tcp_sk(sk);
967
968 /* Advance write_seq and place onto the write_queue. */
969 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
970 skb_header_release(skb);
971 tcp_add_write_queue_tail(sk, skb);
972 sk->sk_wmem_queued += skb->truesize;
973 sk_mem_charge(sk, skb->truesize);
974 }
975
976 /* Initialize TSO segments for a packet. */
977 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
978 unsigned int mss_now)
979 {
980 if (skb->len <= mss_now || !sk_can_gso(sk) ||
981 skb->ip_summed == CHECKSUM_NONE) {
982 /* Avoid the costly divide in the normal
983 * non-TSO case.
984 */
985 skb_shinfo(skb)->gso_segs = 1;
986 skb_shinfo(skb)->gso_size = 0;
987 skb_shinfo(skb)->gso_type = 0;
988 } else {
989 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
990 skb_shinfo(skb)->gso_size = mss_now;
991 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
992 }
993 }
994
995 /* When a modification to fackets out becomes necessary, we need to check
996 * skb is counted to fackets_out or not.
997 */
998 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
999 int decr)
1000 {
1001 struct tcp_sock *tp = tcp_sk(sk);
1002
1003 if (!tp->sacked_out || tcp_is_reno(tp))
1004 return;
1005
1006 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1007 tp->fackets_out -= decr;
1008 }
1009
1010 /* Pcount in the middle of the write queue got changed, we need to do various
1011 * tweaks to fix counters
1012 */
1013 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1014 {
1015 struct tcp_sock *tp = tcp_sk(sk);
1016
1017 tp->packets_out -= decr;
1018
1019 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1020 tp->sacked_out -= decr;
1021 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1022 tp->retrans_out -= decr;
1023 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1024 tp->lost_out -= decr;
1025
1026 /* Reno case is special. Sigh... */
1027 if (tcp_is_reno(tp) && decr > 0)
1028 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1029
1030 tcp_adjust_fackets_out(sk, skb, decr);
1031
1032 if (tp->lost_skb_hint &&
1033 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1034 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1035 tp->lost_cnt_hint -= decr;
1036
1037 tcp_verify_left_out(tp);
1038 }
1039
1040 /* Function to create two new TCP segments. Shrinks the given segment
1041 * to the specified size and appends a new segment with the rest of the
1042 * packet to the list. This won't be called frequently, I hope.
1043 * Remember, these are still headerless SKBs at this point.
1044 */
1045 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1046 unsigned int mss_now)
1047 {
1048 struct tcp_sock *tp = tcp_sk(sk);
1049 struct sk_buff *buff;
1050 int nsize, old_factor;
1051 int nlen;
1052 u8 flags;
1053
1054 if (WARN_ON(len > skb->len))
1055 return -EINVAL;
1056
1057 nsize = skb_headlen(skb) - len;
1058 if (nsize < 0)
1059 nsize = 0;
1060
1061 if (skb_cloned(skb) &&
1062 skb_is_nonlinear(skb) &&
1063 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1064 return -ENOMEM;
1065
1066 /* Get a new skb... force flag on. */
1067 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1068 if (buff == NULL)
1069 return -ENOMEM; /* We'll just try again later. */
1070
1071 sk->sk_wmem_queued += buff->truesize;
1072 sk_mem_charge(sk, buff->truesize);
1073 nlen = skb->len - len - nsize;
1074 buff->truesize += nlen;
1075 skb->truesize -= nlen;
1076
1077 /* Correct the sequence numbers. */
1078 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1079 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1080 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1081
1082 /* PSH and FIN should only be set in the second packet. */
1083 flags = TCP_SKB_CB(skb)->tcp_flags;
1084 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1085 TCP_SKB_CB(buff)->tcp_flags = flags;
1086 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1087
1088 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1089 /* Copy and checksum data tail into the new buffer. */
1090 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1091 skb_put(buff, nsize),
1092 nsize, 0);
1093
1094 skb_trim(skb, len);
1095
1096 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1097 } else {
1098 skb->ip_summed = CHECKSUM_PARTIAL;
1099 skb_split(skb, buff, len);
1100 }
1101
1102 buff->ip_summed = skb->ip_summed;
1103
1104 /* Looks stupid, but our code really uses when of
1105 * skbs, which it never sent before. --ANK
1106 */
1107 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1108 buff->tstamp = skb->tstamp;
1109
1110 old_factor = tcp_skb_pcount(skb);
1111
1112 /* Fix up tso_factor for both original and new SKB. */
1113 tcp_set_skb_tso_segs(sk, skb, mss_now);
1114 tcp_set_skb_tso_segs(sk, buff, mss_now);
1115
1116 /* If this packet has been sent out already, we must
1117 * adjust the various packet counters.
1118 */
1119 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1120 int diff = old_factor - tcp_skb_pcount(skb) -
1121 tcp_skb_pcount(buff);
1122
1123 if (diff)
1124 tcp_adjust_pcount(sk, skb, diff);
1125 }
1126
1127 /* Link BUFF into the send queue. */
1128 skb_header_release(buff);
1129 tcp_insert_write_queue_after(skb, buff, sk);
1130
1131 return 0;
1132 }
1133
1134 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1135 * eventually). The difference is that pulled data not copied, but
1136 * immediately discarded.
1137 */
1138 static void __pskb_trim_head(struct sk_buff *skb, int len)
1139 {
1140 int i, k, eat;
1141
1142 eat = min_t(int, len, skb_headlen(skb));
1143 if (eat) {
1144 __skb_pull(skb, eat);
1145 len -= eat;
1146 if (!len)
1147 return;
1148 }
1149 eat = len;
1150 k = 0;
1151 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1152 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1153
1154 if (size <= eat) {
1155 skb_frag_unref(skb, i);
1156 eat -= size;
1157 } else {
1158 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1159 if (eat) {
1160 skb_shinfo(skb)->frags[k].page_offset += eat;
1161 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1162 eat = 0;
1163 }
1164 k++;
1165 }
1166 }
1167 skb_shinfo(skb)->nr_frags = k;
1168
1169 skb_reset_tail_pointer(skb);
1170 skb->data_len -= len;
1171 skb->len = skb->data_len;
1172 }
1173
1174 /* Remove acked data from a packet in the transmit queue. */
1175 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1176 {
1177 if (skb_unclone(skb, GFP_ATOMIC))
1178 return -ENOMEM;
1179
1180 __pskb_trim_head(skb, len);
1181
1182 TCP_SKB_CB(skb)->seq += len;
1183 skb->ip_summed = CHECKSUM_PARTIAL;
1184
1185 skb->truesize -= len;
1186 sk->sk_wmem_queued -= len;
1187 sk_mem_uncharge(sk, len);
1188 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1189
1190 /* Any change of skb->len requires recalculation of tso factor. */
1191 if (tcp_skb_pcount(skb) > 1)
1192 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1193
1194 return 0;
1195 }
1196
1197 /* Calculate MSS not accounting any TCP options. */
1198 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1199 {
1200 const struct tcp_sock *tp = tcp_sk(sk);
1201 const struct inet_connection_sock *icsk = inet_csk(sk);
1202 int mss_now;
1203
1204 /* Calculate base mss without TCP options:
1205 It is MMS_S - sizeof(tcphdr) of rfc1122
1206 */
1207 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1208
1209 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1210 if (icsk->icsk_af_ops->net_frag_header_len) {
1211 const struct dst_entry *dst = __sk_dst_get(sk);
1212
1213 if (dst && dst_allfrag(dst))
1214 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1215 }
1216
1217 /* Clamp it (mss_clamp does not include tcp options) */
1218 if (mss_now > tp->rx_opt.mss_clamp)
1219 mss_now = tp->rx_opt.mss_clamp;
1220
1221 /* Now subtract optional transport overhead */
1222 mss_now -= icsk->icsk_ext_hdr_len;
1223
1224 /* Then reserve room for full set of TCP options and 8 bytes of data */
1225 if (mss_now < 48)
1226 mss_now = 48;
1227 return mss_now;
1228 }
1229
1230 /* Calculate MSS. Not accounting for SACKs here. */
1231 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1232 {
1233 /* Subtract TCP options size, not including SACKs */
1234 return __tcp_mtu_to_mss(sk, pmtu) -
1235 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1236 }
1237
1238 /* Inverse of above */
1239 int tcp_mss_to_mtu(struct sock *sk, int mss)
1240 {
1241 const struct tcp_sock *tp = tcp_sk(sk);
1242 const struct inet_connection_sock *icsk = inet_csk(sk);
1243 int mtu;
1244
1245 mtu = mss +
1246 tp->tcp_header_len +
1247 icsk->icsk_ext_hdr_len +
1248 icsk->icsk_af_ops->net_header_len;
1249
1250 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1251 if (icsk->icsk_af_ops->net_frag_header_len) {
1252 const struct dst_entry *dst = __sk_dst_get(sk);
1253
1254 if (dst && dst_allfrag(dst))
1255 mtu += icsk->icsk_af_ops->net_frag_header_len;
1256 }
1257 return mtu;
1258 }
1259
1260 /* MTU probing init per socket */
1261 void tcp_mtup_init(struct sock *sk)
1262 {
1263 struct tcp_sock *tp = tcp_sk(sk);
1264 struct inet_connection_sock *icsk = inet_csk(sk);
1265
1266 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1267 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1268 icsk->icsk_af_ops->net_header_len;
1269 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1270 icsk->icsk_mtup.probe_size = 0;
1271 }
1272 EXPORT_SYMBOL(tcp_mtup_init);
1273
1274 /* This function synchronize snd mss to current pmtu/exthdr set.
1275
1276 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1277 for TCP options, but includes only bare TCP header.
1278
1279 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1280 It is minimum of user_mss and mss received with SYN.
1281 It also does not include TCP options.
1282
1283 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1284
1285 tp->mss_cache is current effective sending mss, including
1286 all tcp options except for SACKs. It is evaluated,
1287 taking into account current pmtu, but never exceeds
1288 tp->rx_opt.mss_clamp.
1289
1290 NOTE1. rfc1122 clearly states that advertised MSS
1291 DOES NOT include either tcp or ip options.
1292
1293 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1294 are READ ONLY outside this function. --ANK (980731)
1295 */
1296 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1297 {
1298 struct tcp_sock *tp = tcp_sk(sk);
1299 struct inet_connection_sock *icsk = inet_csk(sk);
1300 int mss_now;
1301
1302 if (icsk->icsk_mtup.search_high > pmtu)
1303 icsk->icsk_mtup.search_high = pmtu;
1304
1305 mss_now = tcp_mtu_to_mss(sk, pmtu);
1306 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1307
1308 /* And store cached results */
1309 icsk->icsk_pmtu_cookie = pmtu;
1310 if (icsk->icsk_mtup.enabled)
1311 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1312 tp->mss_cache = mss_now;
1313
1314 return mss_now;
1315 }
1316 EXPORT_SYMBOL(tcp_sync_mss);
1317
1318 /* Compute the current effective MSS, taking SACKs and IP options,
1319 * and even PMTU discovery events into account.
1320 */
1321 unsigned int tcp_current_mss(struct sock *sk)
1322 {
1323 const struct tcp_sock *tp = tcp_sk(sk);
1324 const struct dst_entry *dst = __sk_dst_get(sk);
1325 u32 mss_now;
1326 unsigned int header_len;
1327 struct tcp_out_options opts;
1328 struct tcp_md5sig_key *md5;
1329
1330 mss_now = tp->mss_cache;
1331
1332 if (dst) {
1333 u32 mtu = dst_mtu(dst);
1334 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1335 mss_now = tcp_sync_mss(sk, mtu);
1336 }
1337
1338 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1339 sizeof(struct tcphdr);
1340 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1341 * some common options. If this is an odd packet (because we have SACK
1342 * blocks etc) then our calculated header_len will be different, and
1343 * we have to adjust mss_now correspondingly */
1344 if (header_len != tp->tcp_header_len) {
1345 int delta = (int) header_len - tp->tcp_header_len;
1346 mss_now -= delta;
1347 }
1348
1349 return mss_now;
1350 }
1351
1352 /* Congestion window validation. (RFC2861) */
1353 static void tcp_cwnd_validate(struct sock *sk)
1354 {
1355 struct tcp_sock *tp = tcp_sk(sk);
1356
1357 if (tp->packets_out >= tp->snd_cwnd) {
1358 /* Network is feed fully. */
1359 tp->snd_cwnd_used = 0;
1360 tp->snd_cwnd_stamp = tcp_time_stamp;
1361 } else {
1362 /* Network starves. */
1363 if (tp->packets_out > tp->snd_cwnd_used)
1364 tp->snd_cwnd_used = tp->packets_out;
1365
1366 if (sysctl_tcp_slow_start_after_idle &&
1367 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1368 tcp_cwnd_application_limited(sk);
1369 }
1370 }
1371
1372 /* Returns the portion of skb which can be sent right away without
1373 * introducing MSS oddities to segment boundaries. In rare cases where
1374 * mss_now != mss_cache, we will request caller to create a small skb
1375 * per input skb which could be mostly avoided here (if desired).
1376 *
1377 * We explicitly want to create a request for splitting write queue tail
1378 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1379 * thus all the complexity (cwnd_len is always MSS multiple which we
1380 * return whenever allowed by the other factors). Basically we need the
1381 * modulo only when the receiver window alone is the limiting factor or
1382 * when we would be allowed to send the split-due-to-Nagle skb fully.
1383 */
1384 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1385 unsigned int mss_now, unsigned int max_segs)
1386 {
1387 const struct tcp_sock *tp = tcp_sk(sk);
1388 u32 needed, window, max_len;
1389
1390 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1391 max_len = mss_now * max_segs;
1392
1393 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1394 return max_len;
1395
1396 needed = min(skb->len, window);
1397
1398 if (max_len <= needed)
1399 return max_len;
1400
1401 return needed - needed % mss_now;
1402 }
1403
1404 /* Can at least one segment of SKB be sent right now, according to the
1405 * congestion window rules? If so, return how many segments are allowed.
1406 */
1407 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1408 const struct sk_buff *skb)
1409 {
1410 u32 in_flight, cwnd;
1411
1412 /* Don't be strict about the congestion window for the final FIN. */
1413 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1414 tcp_skb_pcount(skb) == 1)
1415 return 1;
1416
1417 in_flight = tcp_packets_in_flight(tp);
1418 cwnd = tp->snd_cwnd;
1419 if (in_flight < cwnd)
1420 return (cwnd - in_flight);
1421
1422 return 0;
1423 }
1424
1425 /* Initialize TSO state of a skb.
1426 * This must be invoked the first time we consider transmitting
1427 * SKB onto the wire.
1428 */
1429 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1430 unsigned int mss_now)
1431 {
1432 int tso_segs = tcp_skb_pcount(skb);
1433
1434 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1435 tcp_set_skb_tso_segs(sk, skb, mss_now);
1436 tso_segs = tcp_skb_pcount(skb);
1437 }
1438 return tso_segs;
1439 }
1440
1441 /* Minshall's variant of the Nagle send check. */
1442 static inline bool tcp_minshall_check(const struct tcp_sock *tp)
1443 {
1444 return after(tp->snd_sml, tp->snd_una) &&
1445 !after(tp->snd_sml, tp->snd_nxt);
1446 }
1447
1448 /* Return false, if packet can be sent now without violation Nagle's rules:
1449 * 1. It is full sized.
1450 * 2. Or it contains FIN. (already checked by caller)
1451 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1452 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1453 * With Minshall's modification: all sent small packets are ACKed.
1454 */
1455 static inline bool tcp_nagle_check(const struct tcp_sock *tp,
1456 const struct sk_buff *skb,
1457 unsigned int mss_now, int nonagle)
1458 {
1459 return skb->len < mss_now &&
1460 ((nonagle & TCP_NAGLE_CORK) ||
1461 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1462 }
1463
1464 /* Return true if the Nagle test allows this packet to be
1465 * sent now.
1466 */
1467 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1468 unsigned int cur_mss, int nonagle)
1469 {
1470 /* Nagle rule does not apply to frames, which sit in the middle of the
1471 * write_queue (they have no chances to get new data).
1472 *
1473 * This is implemented in the callers, where they modify the 'nonagle'
1474 * argument based upon the location of SKB in the send queue.
1475 */
1476 if (nonagle & TCP_NAGLE_PUSH)
1477 return true;
1478
1479 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1480 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1481 return true;
1482
1483 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1484 return true;
1485
1486 return false;
1487 }
1488
1489 /* Does at least the first segment of SKB fit into the send window? */
1490 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1491 const struct sk_buff *skb,
1492 unsigned int cur_mss)
1493 {
1494 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1495
1496 if (skb->len > cur_mss)
1497 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1498
1499 return !after(end_seq, tcp_wnd_end(tp));
1500 }
1501
1502 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1503 * should be put on the wire right now. If so, it returns the number of
1504 * packets allowed by the congestion window.
1505 */
1506 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1507 unsigned int cur_mss, int nonagle)
1508 {
1509 const struct tcp_sock *tp = tcp_sk(sk);
1510 unsigned int cwnd_quota;
1511
1512 tcp_init_tso_segs(sk, skb, cur_mss);
1513
1514 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1515 return 0;
1516
1517 cwnd_quota = tcp_cwnd_test(tp, skb);
1518 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1519 cwnd_quota = 0;
1520
1521 return cwnd_quota;
1522 }
1523
1524 /* Test if sending is allowed right now. */
1525 bool tcp_may_send_now(struct sock *sk)
1526 {
1527 const struct tcp_sock *tp = tcp_sk(sk);
1528 struct sk_buff *skb = tcp_send_head(sk);
1529
1530 return skb &&
1531 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1532 (tcp_skb_is_last(sk, skb) ?
1533 tp->nonagle : TCP_NAGLE_PUSH));
1534 }
1535
1536 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1537 * which is put after SKB on the list. It is very much like
1538 * tcp_fragment() except that it may make several kinds of assumptions
1539 * in order to speed up the splitting operation. In particular, we
1540 * know that all the data is in scatter-gather pages, and that the
1541 * packet has never been sent out before (and thus is not cloned).
1542 */
1543 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1544 unsigned int mss_now, gfp_t gfp)
1545 {
1546 struct sk_buff *buff;
1547 int nlen = skb->len - len;
1548 u8 flags;
1549
1550 /* All of a TSO frame must be composed of paged data. */
1551 if (skb->len != skb->data_len)
1552 return tcp_fragment(sk, skb, len, mss_now);
1553
1554 buff = sk_stream_alloc_skb(sk, 0, gfp);
1555 if (unlikely(buff == NULL))
1556 return -ENOMEM;
1557
1558 sk->sk_wmem_queued += buff->truesize;
1559 sk_mem_charge(sk, buff->truesize);
1560 buff->truesize += nlen;
1561 skb->truesize -= nlen;
1562
1563 /* Correct the sequence numbers. */
1564 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1565 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1566 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1567
1568 /* PSH and FIN should only be set in the second packet. */
1569 flags = TCP_SKB_CB(skb)->tcp_flags;
1570 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1571 TCP_SKB_CB(buff)->tcp_flags = flags;
1572
1573 /* This packet was never sent out yet, so no SACK bits. */
1574 TCP_SKB_CB(buff)->sacked = 0;
1575
1576 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1577 skb_split(skb, buff, len);
1578
1579 /* Fix up tso_factor for both original and new SKB. */
1580 tcp_set_skb_tso_segs(sk, skb, mss_now);
1581 tcp_set_skb_tso_segs(sk, buff, mss_now);
1582
1583 /* Link BUFF into the send queue. */
1584 skb_header_release(buff);
1585 tcp_insert_write_queue_after(skb, buff, sk);
1586
1587 return 0;
1588 }
1589
1590 /* Try to defer sending, if possible, in order to minimize the amount
1591 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1592 *
1593 * This algorithm is from John Heffner.
1594 */
1595 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1596 {
1597 struct tcp_sock *tp = tcp_sk(sk);
1598 const struct inet_connection_sock *icsk = inet_csk(sk);
1599 u32 send_win, cong_win, limit, in_flight;
1600 int win_divisor;
1601
1602 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1603 goto send_now;
1604
1605 if (icsk->icsk_ca_state != TCP_CA_Open)
1606 goto send_now;
1607
1608 /* Defer for less than two clock ticks. */
1609 if (tp->tso_deferred &&
1610 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1611 goto send_now;
1612
1613 in_flight = tcp_packets_in_flight(tp);
1614
1615 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1616
1617 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1618
1619 /* From in_flight test above, we know that cwnd > in_flight. */
1620 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1621
1622 limit = min(send_win, cong_win);
1623
1624 /* If a full-sized TSO skb can be sent, do it. */
1625 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1626 sk->sk_gso_max_segs * tp->mss_cache))
1627 goto send_now;
1628
1629 /* Middle in queue won't get any more data, full sendable already? */
1630 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1631 goto send_now;
1632
1633 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1634 if (win_divisor) {
1635 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1636
1637 /* If at least some fraction of a window is available,
1638 * just use it.
1639 */
1640 chunk /= win_divisor;
1641 if (limit >= chunk)
1642 goto send_now;
1643 } else {
1644 /* Different approach, try not to defer past a single
1645 * ACK. Receiver should ACK every other full sized
1646 * frame, so if we have space for more than 3 frames
1647 * then send now.
1648 */
1649 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1650 goto send_now;
1651 }
1652
1653 /* Ok, it looks like it is advisable to defer.
1654 * Do not rearm the timer if already set to not break TCP ACK clocking.
1655 */
1656 if (!tp->tso_deferred)
1657 tp->tso_deferred = 1 | (jiffies << 1);
1658
1659 return true;
1660
1661 send_now:
1662 tp->tso_deferred = 0;
1663 return false;
1664 }
1665
1666 /* Create a new MTU probe if we are ready.
1667 * MTU probe is regularly attempting to increase the path MTU by
1668 * deliberately sending larger packets. This discovers routing
1669 * changes resulting in larger path MTUs.
1670 *
1671 * Returns 0 if we should wait to probe (no cwnd available),
1672 * 1 if a probe was sent,
1673 * -1 otherwise
1674 */
1675 static int tcp_mtu_probe(struct sock *sk)
1676 {
1677 struct tcp_sock *tp = tcp_sk(sk);
1678 struct inet_connection_sock *icsk = inet_csk(sk);
1679 struct sk_buff *skb, *nskb, *next;
1680 int len;
1681 int probe_size;
1682 int size_needed;
1683 int copy;
1684 int mss_now;
1685
1686 /* Not currently probing/verifying,
1687 * not in recovery,
1688 * have enough cwnd, and
1689 * not SACKing (the variable headers throw things off) */
1690 if (!icsk->icsk_mtup.enabled ||
1691 icsk->icsk_mtup.probe_size ||
1692 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1693 tp->snd_cwnd < 11 ||
1694 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1695 return -1;
1696
1697 /* Very simple search strategy: just double the MSS. */
1698 mss_now = tcp_current_mss(sk);
1699 probe_size = 2 * tp->mss_cache;
1700 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1701 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1702 /* TODO: set timer for probe_converge_event */
1703 return -1;
1704 }
1705
1706 /* Have enough data in the send queue to probe? */
1707 if (tp->write_seq - tp->snd_nxt < size_needed)
1708 return -1;
1709
1710 if (tp->snd_wnd < size_needed)
1711 return -1;
1712 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1713 return 0;
1714
1715 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1716 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1717 if (!tcp_packets_in_flight(tp))
1718 return -1;
1719 else
1720 return 0;
1721 }
1722
1723 /* We're allowed to probe. Build it now. */
1724 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1725 return -1;
1726 sk->sk_wmem_queued += nskb->truesize;
1727 sk_mem_charge(sk, nskb->truesize);
1728
1729 skb = tcp_send_head(sk);
1730
1731 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1732 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1733 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1734 TCP_SKB_CB(nskb)->sacked = 0;
1735 nskb->csum = 0;
1736 nskb->ip_summed = skb->ip_summed;
1737
1738 tcp_insert_write_queue_before(nskb, skb, sk);
1739
1740 len = 0;
1741 tcp_for_write_queue_from_safe(skb, next, sk) {
1742 copy = min_t(int, skb->len, probe_size - len);
1743 if (nskb->ip_summed)
1744 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1745 else
1746 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1747 skb_put(nskb, copy),
1748 copy, nskb->csum);
1749
1750 if (skb->len <= copy) {
1751 /* We've eaten all the data from this skb.
1752 * Throw it away. */
1753 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1754 tcp_unlink_write_queue(skb, sk);
1755 sk_wmem_free_skb(sk, skb);
1756 } else {
1757 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1758 ~(TCPHDR_FIN|TCPHDR_PSH);
1759 if (!skb_shinfo(skb)->nr_frags) {
1760 skb_pull(skb, copy);
1761 if (skb->ip_summed != CHECKSUM_PARTIAL)
1762 skb->csum = csum_partial(skb->data,
1763 skb->len, 0);
1764 } else {
1765 __pskb_trim_head(skb, copy);
1766 tcp_set_skb_tso_segs(sk, skb, mss_now);
1767 }
1768 TCP_SKB_CB(skb)->seq += copy;
1769 }
1770
1771 len += copy;
1772
1773 if (len >= probe_size)
1774 break;
1775 }
1776 tcp_init_tso_segs(sk, nskb, nskb->len);
1777
1778 /* We're ready to send. If this fails, the probe will
1779 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1780 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1781 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1782 /* Decrement cwnd here because we are sending
1783 * effectively two packets. */
1784 tp->snd_cwnd--;
1785 tcp_event_new_data_sent(sk, nskb);
1786
1787 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1788 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1789 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1790
1791 return 1;
1792 }
1793
1794 return -1;
1795 }
1796
1797 /* This routine writes packets to the network. It advances the
1798 * send_head. This happens as incoming acks open up the remote
1799 * window for us.
1800 *
1801 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1802 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1803 * account rare use of URG, this is not a big flaw.
1804 *
1805 * Send at most one packet when push_one > 0. Temporarily ignore
1806 * cwnd limit to force at most one packet out when push_one == 2.
1807
1808 * Returns true, if no segments are in flight and we have queued segments,
1809 * but cannot send anything now because of SWS or another problem.
1810 */
1811 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1812 int push_one, gfp_t gfp)
1813 {
1814 struct tcp_sock *tp = tcp_sk(sk);
1815 struct sk_buff *skb;
1816 unsigned int tso_segs, sent_pkts;
1817 int cwnd_quota;
1818 int result;
1819
1820 sent_pkts = 0;
1821
1822 if (!push_one) {
1823 /* Do MTU probing. */
1824 result = tcp_mtu_probe(sk);
1825 if (!result) {
1826 return false;
1827 } else if (result > 0) {
1828 sent_pkts = 1;
1829 }
1830 }
1831
1832 while ((skb = tcp_send_head(sk))) {
1833 unsigned int limit;
1834
1835
1836 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1837 BUG_ON(!tso_segs);
1838
1839 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1840 goto repair; /* Skip network transmission */
1841
1842 cwnd_quota = tcp_cwnd_test(tp, skb);
1843 if (!cwnd_quota) {
1844 if (push_one == 2)
1845 /* Force out a loss probe pkt. */
1846 cwnd_quota = 1;
1847 else
1848 break;
1849 }
1850
1851 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1852 break;
1853
1854 if (tso_segs == 1) {
1855 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1856 (tcp_skb_is_last(sk, skb) ?
1857 nonagle : TCP_NAGLE_PUSH))))
1858 break;
1859 } else {
1860 if (!push_one && tcp_tso_should_defer(sk, skb))
1861 break;
1862 }
1863
1864 /* TSQ : sk_wmem_alloc accounts skb truesize,
1865 * including skb overhead. But thats OK.
1866 */
1867 if (atomic_read(&sk->sk_wmem_alloc) >= sysctl_tcp_limit_output_bytes) {
1868 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1869 break;
1870 }
1871 limit = mss_now;
1872 if (tso_segs > 1 && !tcp_urg_mode(tp))
1873 limit = tcp_mss_split_point(sk, skb, mss_now,
1874 min_t(unsigned int,
1875 cwnd_quota,
1876 sk->sk_gso_max_segs));
1877
1878 if (skb->len > limit &&
1879 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1880 break;
1881
1882 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1883
1884 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1885 break;
1886
1887 repair:
1888 /* Advance the send_head. This one is sent out.
1889 * This call will increment packets_out.
1890 */
1891 tcp_event_new_data_sent(sk, skb);
1892
1893 tcp_minshall_update(tp, mss_now, skb);
1894 sent_pkts += tcp_skb_pcount(skb);
1895
1896 if (push_one)
1897 break;
1898 }
1899
1900 if (likely(sent_pkts)) {
1901 if (tcp_in_cwnd_reduction(sk))
1902 tp->prr_out += sent_pkts;
1903
1904 /* Send one loss probe per tail loss episode. */
1905 if (push_one != 2)
1906 tcp_schedule_loss_probe(sk);
1907 tcp_cwnd_validate(sk);
1908 return false;
1909 }
1910 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
1911 }
1912
1913 bool tcp_schedule_loss_probe(struct sock *sk)
1914 {
1915 struct inet_connection_sock *icsk = inet_csk(sk);
1916 struct tcp_sock *tp = tcp_sk(sk);
1917 u32 timeout, tlp_time_stamp, rto_time_stamp;
1918 u32 rtt = tp->srtt >> 3;
1919
1920 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
1921 return false;
1922 /* No consecutive loss probes. */
1923 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
1924 tcp_rearm_rto(sk);
1925 return false;
1926 }
1927 /* Don't do any loss probe on a Fast Open connection before 3WHS
1928 * finishes.
1929 */
1930 if (sk->sk_state == TCP_SYN_RECV)
1931 return false;
1932
1933 /* TLP is only scheduled when next timer event is RTO. */
1934 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
1935 return false;
1936
1937 /* Schedule a loss probe in 2*RTT for SACK capable connections
1938 * in Open state, that are either limited by cwnd or application.
1939 */
1940 if (sysctl_tcp_early_retrans < 3 || !rtt || !tp->packets_out ||
1941 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
1942 return false;
1943
1944 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
1945 tcp_send_head(sk))
1946 return false;
1947
1948 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
1949 * for delayed ack when there's one outstanding packet.
1950 */
1951 timeout = rtt << 1;
1952 if (tp->packets_out == 1)
1953 timeout = max_t(u32, timeout,
1954 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
1955 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
1956
1957 /* If RTO is shorter, just schedule TLP in its place. */
1958 tlp_time_stamp = tcp_time_stamp + timeout;
1959 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
1960 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
1961 s32 delta = rto_time_stamp - tcp_time_stamp;
1962 if (delta > 0)
1963 timeout = delta;
1964 }
1965
1966 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
1967 TCP_RTO_MAX);
1968 return true;
1969 }
1970
1971 /* When probe timeout (PTO) fires, send a new segment if one exists, else
1972 * retransmit the last segment.
1973 */
1974 void tcp_send_loss_probe(struct sock *sk)
1975 {
1976 struct tcp_sock *tp = tcp_sk(sk);
1977 struct sk_buff *skb;
1978 int pcount;
1979 int mss = tcp_current_mss(sk);
1980 int err = -1;
1981
1982 if (tcp_send_head(sk) != NULL) {
1983 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
1984 goto rearm_timer;
1985 }
1986
1987 /* At most one outstanding TLP retransmission. */
1988 if (tp->tlp_high_seq)
1989 goto rearm_timer;
1990
1991 /* Retransmit last segment. */
1992 skb = tcp_write_queue_tail(sk);
1993 if (WARN_ON(!skb))
1994 goto rearm_timer;
1995
1996 pcount = tcp_skb_pcount(skb);
1997 if (WARN_ON(!pcount))
1998 goto rearm_timer;
1999
2000 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2001 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
2002 goto rearm_timer;
2003 skb = tcp_write_queue_tail(sk);
2004 }
2005
2006 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2007 goto rearm_timer;
2008
2009 /* Probe with zero data doesn't trigger fast recovery. */
2010 if (skb->len > 0)
2011 err = __tcp_retransmit_skb(sk, skb);
2012
2013 /* Record snd_nxt for loss detection. */
2014 if (likely(!err))
2015 tp->tlp_high_seq = tp->snd_nxt;
2016
2017 rearm_timer:
2018 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2019 inet_csk(sk)->icsk_rto,
2020 TCP_RTO_MAX);
2021
2022 if (likely(!err))
2023 NET_INC_STATS_BH(sock_net(sk),
2024 LINUX_MIB_TCPLOSSPROBES);
2025 return;
2026 }
2027
2028 /* Push out any pending frames which were held back due to
2029 * TCP_CORK or attempt at coalescing tiny packets.
2030 * The socket must be locked by the caller.
2031 */
2032 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2033 int nonagle)
2034 {
2035 /* If we are closed, the bytes will have to remain here.
2036 * In time closedown will finish, we empty the write queue and
2037 * all will be happy.
2038 */
2039 if (unlikely(sk->sk_state == TCP_CLOSE))
2040 return;
2041
2042 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2043 sk_gfp_atomic(sk, GFP_ATOMIC)))
2044 tcp_check_probe_timer(sk);
2045 }
2046
2047 /* Send _single_ skb sitting at the send head. This function requires
2048 * true push pending frames to setup probe timer etc.
2049 */
2050 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2051 {
2052 struct sk_buff *skb = tcp_send_head(sk);
2053
2054 BUG_ON(!skb || skb->len < mss_now);
2055
2056 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2057 }
2058
2059 /* This function returns the amount that we can raise the
2060 * usable window based on the following constraints
2061 *
2062 * 1. The window can never be shrunk once it is offered (RFC 793)
2063 * 2. We limit memory per socket
2064 *
2065 * RFC 1122:
2066 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2067 * RECV.NEXT + RCV.WIN fixed until:
2068 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2069 *
2070 * i.e. don't raise the right edge of the window until you can raise
2071 * it at least MSS bytes.
2072 *
2073 * Unfortunately, the recommended algorithm breaks header prediction,
2074 * since header prediction assumes th->window stays fixed.
2075 *
2076 * Strictly speaking, keeping th->window fixed violates the receiver
2077 * side SWS prevention criteria. The problem is that under this rule
2078 * a stream of single byte packets will cause the right side of the
2079 * window to always advance by a single byte.
2080 *
2081 * Of course, if the sender implements sender side SWS prevention
2082 * then this will not be a problem.
2083 *
2084 * BSD seems to make the following compromise:
2085 *
2086 * If the free space is less than the 1/4 of the maximum
2087 * space available and the free space is less than 1/2 mss,
2088 * then set the window to 0.
2089 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2090 * Otherwise, just prevent the window from shrinking
2091 * and from being larger than the largest representable value.
2092 *
2093 * This prevents incremental opening of the window in the regime
2094 * where TCP is limited by the speed of the reader side taking
2095 * data out of the TCP receive queue. It does nothing about
2096 * those cases where the window is constrained on the sender side
2097 * because the pipeline is full.
2098 *
2099 * BSD also seems to "accidentally" limit itself to windows that are a
2100 * multiple of MSS, at least until the free space gets quite small.
2101 * This would appear to be a side effect of the mbuf implementation.
2102 * Combining these two algorithms results in the observed behavior
2103 * of having a fixed window size at almost all times.
2104 *
2105 * Below we obtain similar behavior by forcing the offered window to
2106 * a multiple of the mss when it is feasible to do so.
2107 *
2108 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2109 * Regular options like TIMESTAMP are taken into account.
2110 */
2111 u32 __tcp_select_window(struct sock *sk)
2112 {
2113 struct inet_connection_sock *icsk = inet_csk(sk);
2114 struct tcp_sock *tp = tcp_sk(sk);
2115 /* MSS for the peer's data. Previous versions used mss_clamp
2116 * here. I don't know if the value based on our guesses
2117 * of peer's MSS is better for the performance. It's more correct
2118 * but may be worse for the performance because of rcv_mss
2119 * fluctuations. --SAW 1998/11/1
2120 */
2121 int mss = icsk->icsk_ack.rcv_mss;
2122 int free_space = tcp_space(sk);
2123 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2124 int window;
2125
2126 if (mss > full_space)
2127 mss = full_space;
2128
2129 if (free_space < (full_space >> 1)) {
2130 icsk->icsk_ack.quick = 0;
2131
2132 if (sk_under_memory_pressure(sk))
2133 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2134 4U * tp->advmss);
2135
2136 if (free_space < mss)
2137 return 0;
2138 }
2139
2140 if (free_space > tp->rcv_ssthresh)
2141 free_space = tp->rcv_ssthresh;
2142
2143 /* Don't do rounding if we are using window scaling, since the
2144 * scaled window will not line up with the MSS boundary anyway.
2145 */
2146 window = tp->rcv_wnd;
2147 if (tp->rx_opt.rcv_wscale) {
2148 window = free_space;
2149
2150 /* Advertise enough space so that it won't get scaled away.
2151 * Import case: prevent zero window announcement if
2152 * 1<<rcv_wscale > mss.
2153 */
2154 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2155 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2156 << tp->rx_opt.rcv_wscale);
2157 } else {
2158 /* Get the largest window that is a nice multiple of mss.
2159 * Window clamp already applied above.
2160 * If our current window offering is within 1 mss of the
2161 * free space we just keep it. This prevents the divide
2162 * and multiply from happening most of the time.
2163 * We also don't do any window rounding when the free space
2164 * is too small.
2165 */
2166 if (window <= free_space - mss || window > free_space)
2167 window = (free_space / mss) * mss;
2168 else if (mss == full_space &&
2169 free_space > window + (full_space >> 1))
2170 window = free_space;
2171 }
2172
2173 return window;
2174 }
2175
2176 /* Collapses two adjacent SKB's during retransmission. */
2177 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2178 {
2179 struct tcp_sock *tp = tcp_sk(sk);
2180 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2181 int skb_size, next_skb_size;
2182
2183 skb_size = skb->len;
2184 next_skb_size = next_skb->len;
2185
2186 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2187
2188 tcp_highest_sack_combine(sk, next_skb, skb);
2189
2190 tcp_unlink_write_queue(next_skb, sk);
2191
2192 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2193 next_skb_size);
2194
2195 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2196 skb->ip_summed = CHECKSUM_PARTIAL;
2197
2198 if (skb->ip_summed != CHECKSUM_PARTIAL)
2199 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2200
2201 /* Update sequence range on original skb. */
2202 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2203
2204 /* Merge over control information. This moves PSH/FIN etc. over */
2205 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2206
2207 /* All done, get rid of second SKB and account for it so
2208 * packet counting does not break.
2209 */
2210 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2211
2212 /* changed transmit queue under us so clear hints */
2213 tcp_clear_retrans_hints_partial(tp);
2214 if (next_skb == tp->retransmit_skb_hint)
2215 tp->retransmit_skb_hint = skb;
2216
2217 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2218
2219 sk_wmem_free_skb(sk, next_skb);
2220 }
2221
2222 /* Check if coalescing SKBs is legal. */
2223 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2224 {
2225 if (tcp_skb_pcount(skb) > 1)
2226 return false;
2227 /* TODO: SACK collapsing could be used to remove this condition */
2228 if (skb_shinfo(skb)->nr_frags != 0)
2229 return false;
2230 if (skb_cloned(skb))
2231 return false;
2232 if (skb == tcp_send_head(sk))
2233 return false;
2234 /* Some heurestics for collapsing over SACK'd could be invented */
2235 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2236 return false;
2237
2238 return true;
2239 }
2240
2241 /* Collapse packets in the retransmit queue to make to create
2242 * less packets on the wire. This is only done on retransmission.
2243 */
2244 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2245 int space)
2246 {
2247 struct tcp_sock *tp = tcp_sk(sk);
2248 struct sk_buff *skb = to, *tmp;
2249 bool first = true;
2250
2251 if (!sysctl_tcp_retrans_collapse)
2252 return;
2253 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2254 return;
2255
2256 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2257 if (!tcp_can_collapse(sk, skb))
2258 break;
2259
2260 space -= skb->len;
2261
2262 if (first) {
2263 first = false;
2264 continue;
2265 }
2266
2267 if (space < 0)
2268 break;
2269 /* Punt if not enough space exists in the first SKB for
2270 * the data in the second
2271 */
2272 if (skb->len > skb_availroom(to))
2273 break;
2274
2275 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2276 break;
2277
2278 tcp_collapse_retrans(sk, to);
2279 }
2280 }
2281
2282 /* This retransmits one SKB. Policy decisions and retransmit queue
2283 * state updates are done by the caller. Returns non-zero if an
2284 * error occurred which prevented the send.
2285 */
2286 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2287 {
2288 struct tcp_sock *tp = tcp_sk(sk);
2289 struct inet_connection_sock *icsk = inet_csk(sk);
2290 unsigned int cur_mss;
2291
2292 /* Inconslusive MTU probe */
2293 if (icsk->icsk_mtup.probe_size) {
2294 icsk->icsk_mtup.probe_size = 0;
2295 }
2296
2297 /* Do not sent more than we queued. 1/4 is reserved for possible
2298 * copying overhead: fragmentation, tunneling, mangling etc.
2299 */
2300 if (atomic_read(&sk->sk_wmem_alloc) >
2301 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2302 return -EAGAIN;
2303
2304 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2305 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2306 BUG();
2307 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2308 return -ENOMEM;
2309 }
2310
2311 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2312 return -EHOSTUNREACH; /* Routing failure or similar. */
2313
2314 cur_mss = tcp_current_mss(sk);
2315
2316 /* If receiver has shrunk his window, and skb is out of
2317 * new window, do not retransmit it. The exception is the
2318 * case, when window is shrunk to zero. In this case
2319 * our retransmit serves as a zero window probe.
2320 */
2321 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2322 TCP_SKB_CB(skb)->seq != tp->snd_una)
2323 return -EAGAIN;
2324
2325 if (skb->len > cur_mss) {
2326 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2327 return -ENOMEM; /* We'll try again later. */
2328 } else {
2329 int oldpcount = tcp_skb_pcount(skb);
2330
2331 if (unlikely(oldpcount > 1)) {
2332 tcp_init_tso_segs(sk, skb, cur_mss);
2333 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2334 }
2335 }
2336
2337 tcp_retrans_try_collapse(sk, skb, cur_mss);
2338
2339 /* Some Solaris stacks overoptimize and ignore the FIN on a
2340 * retransmit when old data is attached. So strip it off
2341 * since it is cheap to do so and saves bytes on the network.
2342 */
2343 if (skb->len > 0 &&
2344 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2345 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
2346 if (!pskb_trim(skb, 0)) {
2347 /* Reuse, even though it does some unnecessary work */
2348 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
2349 TCP_SKB_CB(skb)->tcp_flags);
2350 skb->ip_summed = CHECKSUM_NONE;
2351 }
2352 }
2353
2354 /* Make a copy, if the first transmission SKB clone we made
2355 * is still in somebody's hands, else make a clone.
2356 */
2357 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2358
2359 /* make sure skb->data is aligned on arches that require it
2360 * and check if ack-trimming & collapsing extended the headroom
2361 * beyond what csum_start can cover.
2362 */
2363 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2364 skb_headroom(skb) >= 0xFFFF)) {
2365 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2366 GFP_ATOMIC);
2367 return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2368 -ENOBUFS;
2369 } else {
2370 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2371 }
2372 }
2373
2374 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2375 {
2376 struct tcp_sock *tp = tcp_sk(sk);
2377 int err = __tcp_retransmit_skb(sk, skb);
2378
2379 if (err == 0) {
2380 /* Update global TCP statistics. */
2381 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2382
2383 tp->total_retrans++;
2384
2385 #if FASTRETRANS_DEBUG > 0
2386 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2387 net_dbg_ratelimited("retrans_out leaked\n");
2388 }
2389 #endif
2390 if (!tp->retrans_out)
2391 tp->lost_retrans_low = tp->snd_nxt;
2392 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2393 tp->retrans_out += tcp_skb_pcount(skb);
2394
2395 /* Save stamp of the first retransmit. */
2396 if (!tp->retrans_stamp)
2397 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2398
2399 tp->undo_retrans += tcp_skb_pcount(skb);
2400
2401 /* snd_nxt is stored to detect loss of retransmitted segment,
2402 * see tcp_input.c tcp_sacktag_write_queue().
2403 */
2404 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2405 }
2406 return err;
2407 }
2408
2409 /* Check if we forward retransmits are possible in the current
2410 * window/congestion state.
2411 */
2412 static bool tcp_can_forward_retransmit(struct sock *sk)
2413 {
2414 const struct inet_connection_sock *icsk = inet_csk(sk);
2415 const struct tcp_sock *tp = tcp_sk(sk);
2416
2417 /* Forward retransmissions are possible only during Recovery. */
2418 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2419 return false;
2420
2421 /* No forward retransmissions in Reno are possible. */
2422 if (tcp_is_reno(tp))
2423 return false;
2424
2425 /* Yeah, we have to make difficult choice between forward transmission
2426 * and retransmission... Both ways have their merits...
2427 *
2428 * For now we do not retransmit anything, while we have some new
2429 * segments to send. In the other cases, follow rule 3 for
2430 * NextSeg() specified in RFC3517.
2431 */
2432
2433 if (tcp_may_send_now(sk))
2434 return false;
2435
2436 return true;
2437 }
2438
2439 /* This gets called after a retransmit timeout, and the initially
2440 * retransmitted data is acknowledged. It tries to continue
2441 * resending the rest of the retransmit queue, until either
2442 * we've sent it all or the congestion window limit is reached.
2443 * If doing SACK, the first ACK which comes back for a timeout
2444 * based retransmit packet might feed us FACK information again.
2445 * If so, we use it to avoid unnecessarily retransmissions.
2446 */
2447 void tcp_xmit_retransmit_queue(struct sock *sk)
2448 {
2449 const struct inet_connection_sock *icsk = inet_csk(sk);
2450 struct tcp_sock *tp = tcp_sk(sk);
2451 struct sk_buff *skb;
2452 struct sk_buff *hole = NULL;
2453 u32 last_lost;
2454 int mib_idx;
2455 int fwd_rexmitting = 0;
2456
2457 if (!tp->packets_out)
2458 return;
2459
2460 if (!tp->lost_out)
2461 tp->retransmit_high = tp->snd_una;
2462
2463 if (tp->retransmit_skb_hint) {
2464 skb = tp->retransmit_skb_hint;
2465 last_lost = TCP_SKB_CB(skb)->end_seq;
2466 if (after(last_lost, tp->retransmit_high))
2467 last_lost = tp->retransmit_high;
2468 } else {
2469 skb = tcp_write_queue_head(sk);
2470 last_lost = tp->snd_una;
2471 }
2472
2473 tcp_for_write_queue_from(skb, sk) {
2474 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2475
2476 if (skb == tcp_send_head(sk))
2477 break;
2478 /* we could do better than to assign each time */
2479 if (hole == NULL)
2480 tp->retransmit_skb_hint = skb;
2481
2482 /* Assume this retransmit will generate
2483 * only one packet for congestion window
2484 * calculation purposes. This works because
2485 * tcp_retransmit_skb() will chop up the
2486 * packet to be MSS sized and all the
2487 * packet counting works out.
2488 */
2489 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2490 return;
2491
2492 if (fwd_rexmitting) {
2493 begin_fwd:
2494 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2495 break;
2496 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2497
2498 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2499 tp->retransmit_high = last_lost;
2500 if (!tcp_can_forward_retransmit(sk))
2501 break;
2502 /* Backtrack if necessary to non-L'ed skb */
2503 if (hole != NULL) {
2504 skb = hole;
2505 hole = NULL;
2506 }
2507 fwd_rexmitting = 1;
2508 goto begin_fwd;
2509
2510 } else if (!(sacked & TCPCB_LOST)) {
2511 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2512 hole = skb;
2513 continue;
2514
2515 } else {
2516 last_lost = TCP_SKB_CB(skb)->end_seq;
2517 if (icsk->icsk_ca_state != TCP_CA_Loss)
2518 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2519 else
2520 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2521 }
2522
2523 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2524 continue;
2525
2526 if (tcp_retransmit_skb(sk, skb)) {
2527 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2528 return;
2529 }
2530 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2531
2532 if (tcp_in_cwnd_reduction(sk))
2533 tp->prr_out += tcp_skb_pcount(skb);
2534
2535 if (skb == tcp_write_queue_head(sk))
2536 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2537 inet_csk(sk)->icsk_rto,
2538 TCP_RTO_MAX);
2539 }
2540 }
2541
2542 /* Send a fin. The caller locks the socket for us. This cannot be
2543 * allowed to fail queueing a FIN frame under any circumstances.
2544 */
2545 void tcp_send_fin(struct sock *sk)
2546 {
2547 struct tcp_sock *tp = tcp_sk(sk);
2548 struct sk_buff *skb = tcp_write_queue_tail(sk);
2549 int mss_now;
2550
2551 /* Optimization, tack on the FIN if we have a queue of
2552 * unsent frames. But be careful about outgoing SACKS
2553 * and IP options.
2554 */
2555 mss_now = tcp_current_mss(sk);
2556
2557 if (tcp_send_head(sk) != NULL) {
2558 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2559 TCP_SKB_CB(skb)->end_seq++;
2560 tp->write_seq++;
2561 } else {
2562 /* Socket is locked, keep trying until memory is available. */
2563 for (;;) {
2564 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2565 sk->sk_allocation);
2566 if (skb)
2567 break;
2568 yield();
2569 }
2570
2571 /* Reserve space for headers and prepare control bits. */
2572 skb_reserve(skb, MAX_TCP_HEADER);
2573 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2574 tcp_init_nondata_skb(skb, tp->write_seq,
2575 TCPHDR_ACK | TCPHDR_FIN);
2576 tcp_queue_skb(sk, skb);
2577 }
2578 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2579 }
2580
2581 /* We get here when a process closes a file descriptor (either due to
2582 * an explicit close() or as a byproduct of exit()'ing) and there
2583 * was unread data in the receive queue. This behavior is recommended
2584 * by RFC 2525, section 2.17. -DaveM
2585 */
2586 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2587 {
2588 struct sk_buff *skb;
2589
2590 /* NOTE: No TCP options attached and we never retransmit this. */
2591 skb = alloc_skb(MAX_TCP_HEADER, priority);
2592 if (!skb) {
2593 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2594 return;
2595 }
2596
2597 /* Reserve space for headers and prepare control bits. */
2598 skb_reserve(skb, MAX_TCP_HEADER);
2599 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2600 TCPHDR_ACK | TCPHDR_RST);
2601 /* Send it off. */
2602 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2603 if (tcp_transmit_skb(sk, skb, 0, priority))
2604 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2605
2606 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2607 }
2608
2609 /* Send a crossed SYN-ACK during socket establishment.
2610 * WARNING: This routine must only be called when we have already sent
2611 * a SYN packet that crossed the incoming SYN that caused this routine
2612 * to get called. If this assumption fails then the initial rcv_wnd
2613 * and rcv_wscale values will not be correct.
2614 */
2615 int tcp_send_synack(struct sock *sk)
2616 {
2617 struct sk_buff *skb;
2618
2619 skb = tcp_write_queue_head(sk);
2620 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2621 pr_debug("%s: wrong queue state\n", __func__);
2622 return -EFAULT;
2623 }
2624 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2625 if (skb_cloned(skb)) {
2626 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2627 if (nskb == NULL)
2628 return -ENOMEM;
2629 tcp_unlink_write_queue(skb, sk);
2630 skb_header_release(nskb);
2631 __tcp_add_write_queue_head(sk, nskb);
2632 sk_wmem_free_skb(sk, skb);
2633 sk->sk_wmem_queued += nskb->truesize;
2634 sk_mem_charge(sk, nskb->truesize);
2635 skb = nskb;
2636 }
2637
2638 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2639 TCP_ECN_send_synack(tcp_sk(sk), skb);
2640 }
2641 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2642 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2643 }
2644
2645 /**
2646 * tcp_make_synack - Prepare a SYN-ACK.
2647 * sk: listener socket
2648 * dst: dst entry attached to the SYNACK
2649 * req: request_sock pointer
2650 *
2651 * Allocate one skb and build a SYNACK packet.
2652 * @dst is consumed : Caller should not use it again.
2653 */
2654 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2655 struct request_sock *req,
2656 struct tcp_fastopen_cookie *foc)
2657 {
2658 struct tcp_out_options opts;
2659 struct inet_request_sock *ireq = inet_rsk(req);
2660 struct tcp_sock *tp = tcp_sk(sk);
2661 struct tcphdr *th;
2662 struct sk_buff *skb;
2663 struct tcp_md5sig_key *md5;
2664 int tcp_header_size;
2665 int mss;
2666
2667 skb = alloc_skb(MAX_TCP_HEADER + 15, sk_gfp_atomic(sk, GFP_ATOMIC));
2668 if (unlikely(!skb)) {
2669 dst_release(dst);
2670 return NULL;
2671 }
2672 /* Reserve space for headers. */
2673 skb_reserve(skb, MAX_TCP_HEADER);
2674
2675 skb_dst_set(skb, dst);
2676 security_skb_owned_by(skb, sk);
2677
2678 mss = dst_metric_advmss(dst);
2679 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2680 mss = tp->rx_opt.user_mss;
2681
2682 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2683 __u8 rcv_wscale;
2684 /* Set this up on the first call only */
2685 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2686
2687 /* limit the window selection if the user enforce a smaller rx buffer */
2688 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2689 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2690 req->window_clamp = tcp_full_space(sk);
2691
2692 /* tcp_full_space because it is guaranteed to be the first packet */
2693 tcp_select_initial_window(tcp_full_space(sk),
2694 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2695 &req->rcv_wnd,
2696 &req->window_clamp,
2697 ireq->wscale_ok,
2698 &rcv_wscale,
2699 dst_metric(dst, RTAX_INITRWND));
2700 ireq->rcv_wscale = rcv_wscale;
2701 }
2702
2703 memset(&opts, 0, sizeof(opts));
2704 #ifdef CONFIG_SYN_COOKIES
2705 if (unlikely(req->cookie_ts))
2706 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2707 else
2708 #endif
2709 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2710 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2711 foc) + sizeof(*th);
2712
2713 skb_push(skb, tcp_header_size);
2714 skb_reset_transport_header(skb);
2715
2716 th = tcp_hdr(skb);
2717 memset(th, 0, sizeof(struct tcphdr));
2718 th->syn = 1;
2719 th->ack = 1;
2720 TCP_ECN_make_synack(req, th);
2721 th->source = ireq->loc_port;
2722 th->dest = ireq->rmt_port;
2723 /* Setting of flags are superfluous here for callers (and ECE is
2724 * not even correctly set)
2725 */
2726 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2727 TCPHDR_SYN | TCPHDR_ACK);
2728
2729 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2730 /* XXX data is queued and acked as is. No buffer/window check */
2731 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2732
2733 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2734 th->window = htons(min(req->rcv_wnd, 65535U));
2735 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2736 th->doff = (tcp_header_size >> 2);
2737 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2738
2739 #ifdef CONFIG_TCP_MD5SIG
2740 /* Okay, we have all we need - do the md5 hash if needed */
2741 if (md5) {
2742 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2743 md5, NULL, req, skb);
2744 }
2745 #endif
2746
2747 return skb;
2748 }
2749 EXPORT_SYMBOL(tcp_make_synack);
2750
2751 /* Do all connect socket setups that can be done AF independent. */
2752 void tcp_connect_init(struct sock *sk)
2753 {
2754 const struct dst_entry *dst = __sk_dst_get(sk);
2755 struct tcp_sock *tp = tcp_sk(sk);
2756 __u8 rcv_wscale;
2757
2758 /* We'll fix this up when we get a response from the other end.
2759 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2760 */
2761 tp->tcp_header_len = sizeof(struct tcphdr) +
2762 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2763
2764 #ifdef CONFIG_TCP_MD5SIG
2765 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2766 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2767 #endif
2768
2769 /* If user gave his TCP_MAXSEG, record it to clamp */
2770 if (tp->rx_opt.user_mss)
2771 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2772 tp->max_window = 0;
2773 tcp_mtup_init(sk);
2774 tcp_sync_mss(sk, dst_mtu(dst));
2775
2776 if (!tp->window_clamp)
2777 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2778 tp->advmss = dst_metric_advmss(dst);
2779 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2780 tp->advmss = tp->rx_opt.user_mss;
2781
2782 tcp_initialize_rcv_mss(sk);
2783
2784 /* limit the window selection if the user enforce a smaller rx buffer */
2785 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2786 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2787 tp->window_clamp = tcp_full_space(sk);
2788
2789 tcp_select_initial_window(tcp_full_space(sk),
2790 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2791 &tp->rcv_wnd,
2792 &tp->window_clamp,
2793 sysctl_tcp_window_scaling,
2794 &rcv_wscale,
2795 dst_metric(dst, RTAX_INITRWND));
2796
2797 tp->rx_opt.rcv_wscale = rcv_wscale;
2798 tp->rcv_ssthresh = tp->rcv_wnd;
2799
2800 sk->sk_err = 0;
2801 sock_reset_flag(sk, SOCK_DONE);
2802 tp->snd_wnd = 0;
2803 tcp_init_wl(tp, 0);
2804 tp->snd_una = tp->write_seq;
2805 tp->snd_sml = tp->write_seq;
2806 tp->snd_up = tp->write_seq;
2807 tp->snd_nxt = tp->write_seq;
2808
2809 if (likely(!tp->repair))
2810 tp->rcv_nxt = 0;
2811 tp->rcv_wup = tp->rcv_nxt;
2812 tp->copied_seq = tp->rcv_nxt;
2813
2814 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2815 inet_csk(sk)->icsk_retransmits = 0;
2816 tcp_clear_retrans(tp);
2817 }
2818
2819 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2820 {
2821 struct tcp_sock *tp = tcp_sk(sk);
2822 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2823
2824 tcb->end_seq += skb->len;
2825 skb_header_release(skb);
2826 __tcp_add_write_queue_tail(sk, skb);
2827 sk->sk_wmem_queued += skb->truesize;
2828 sk_mem_charge(sk, skb->truesize);
2829 tp->write_seq = tcb->end_seq;
2830 tp->packets_out += tcp_skb_pcount(skb);
2831 }
2832
2833 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2834 * queue a data-only packet after the regular SYN, such that regular SYNs
2835 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2836 * only the SYN sequence, the data are retransmitted in the first ACK.
2837 * If cookie is not cached or other error occurs, falls back to send a
2838 * regular SYN with Fast Open cookie request option.
2839 */
2840 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2841 {
2842 struct tcp_sock *tp = tcp_sk(sk);
2843 struct tcp_fastopen_request *fo = tp->fastopen_req;
2844 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2845 struct sk_buff *syn_data = NULL, *data;
2846 unsigned long last_syn_loss = 0;
2847
2848 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
2849 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2850 &syn_loss, &last_syn_loss);
2851 /* Recurring FO SYN losses: revert to regular handshake temporarily */
2852 if (syn_loss > 1 &&
2853 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2854 fo->cookie.len = -1;
2855 goto fallback;
2856 }
2857
2858 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2859 fo->cookie.len = -1;
2860 else if (fo->cookie.len <= 0)
2861 goto fallback;
2862
2863 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2864 * user-MSS. Reserve maximum option space for middleboxes that add
2865 * private TCP options. The cost is reduced data space in SYN :(
2866 */
2867 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2868 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2869 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2870 MAX_TCP_OPTION_SPACE;
2871
2872 syn_data = skb_copy_expand(syn, skb_headroom(syn), space,
2873 sk->sk_allocation);
2874 if (syn_data == NULL)
2875 goto fallback;
2876
2877 for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2878 struct iovec *iov = &fo->data->msg_iov[i];
2879 unsigned char __user *from = iov->iov_base;
2880 int len = iov->iov_len;
2881
2882 if (syn_data->len + len > space)
2883 len = space - syn_data->len;
2884 else if (i + 1 == iovlen)
2885 /* No more data pending in inet_wait_for_connect() */
2886 fo->data = NULL;
2887
2888 if (skb_add_data(syn_data, from, len))
2889 goto fallback;
2890 }
2891
2892 /* Queue a data-only packet after the regular SYN for retransmission */
2893 data = pskb_copy(syn_data, sk->sk_allocation);
2894 if (data == NULL)
2895 goto fallback;
2896 TCP_SKB_CB(data)->seq++;
2897 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2898 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2899 tcp_connect_queue_skb(sk, data);
2900 fo->copied = data->len;
2901
2902 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2903 tp->syn_data = (fo->copied > 0);
2904 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2905 goto done;
2906 }
2907 syn_data = NULL;
2908
2909 fallback:
2910 /* Send a regular SYN with Fast Open cookie request option */
2911 if (fo->cookie.len > 0)
2912 fo->cookie.len = 0;
2913 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2914 if (err)
2915 tp->syn_fastopen = 0;
2916 kfree_skb(syn_data);
2917 done:
2918 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
2919 return err;
2920 }
2921
2922 /* Build a SYN and send it off. */
2923 int tcp_connect(struct sock *sk)
2924 {
2925 struct tcp_sock *tp = tcp_sk(sk);
2926 struct sk_buff *buff;
2927 int err;
2928
2929 tcp_connect_init(sk);
2930
2931 if (unlikely(tp->repair)) {
2932 tcp_finish_connect(sk, NULL);
2933 return 0;
2934 }
2935
2936 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2937 if (unlikely(buff == NULL))
2938 return -ENOBUFS;
2939
2940 /* Reserve space for headers. */
2941 skb_reserve(buff, MAX_TCP_HEADER);
2942
2943 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
2944 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
2945 tcp_connect_queue_skb(sk, buff);
2946 TCP_ECN_send_syn(sk, buff);
2947
2948 /* Send off SYN; include data in Fast Open. */
2949 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
2950 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
2951 if (err == -ECONNREFUSED)
2952 return err;
2953
2954 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2955 * in order to make this packet get counted in tcpOutSegs.
2956 */
2957 tp->snd_nxt = tp->write_seq;
2958 tp->pushed_seq = tp->write_seq;
2959 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2960
2961 /* Timer for repeating the SYN until an answer. */
2962 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2963 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2964 return 0;
2965 }
2966 EXPORT_SYMBOL(tcp_connect);
2967
2968 /* Send out a delayed ack, the caller does the policy checking
2969 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2970 * for details.
2971 */
2972 void tcp_send_delayed_ack(struct sock *sk)
2973 {
2974 struct inet_connection_sock *icsk = inet_csk(sk);
2975 int ato = icsk->icsk_ack.ato;
2976 unsigned long timeout;
2977
2978 if (ato > TCP_DELACK_MIN) {
2979 const struct tcp_sock *tp = tcp_sk(sk);
2980 int max_ato = HZ / 2;
2981
2982 if (icsk->icsk_ack.pingpong ||
2983 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2984 max_ato = TCP_DELACK_MAX;
2985
2986 /* Slow path, intersegment interval is "high". */
2987
2988 /* If some rtt estimate is known, use it to bound delayed ack.
2989 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2990 * directly.
2991 */
2992 if (tp->srtt) {
2993 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
2994
2995 if (rtt < max_ato)
2996 max_ato = rtt;
2997 }
2998
2999 ato = min(ato, max_ato);
3000 }
3001
3002 /* Stay within the limit we were given */
3003 timeout = jiffies + ato;
3004
3005 /* Use new timeout only if there wasn't a older one earlier. */
3006 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3007 /* If delack timer was blocked or is about to expire,
3008 * send ACK now.
3009 */
3010 if (icsk->icsk_ack.blocked ||
3011 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3012 tcp_send_ack(sk);
3013 return;
3014 }
3015
3016 if (!time_before(timeout, icsk->icsk_ack.timeout))
3017 timeout = icsk->icsk_ack.timeout;
3018 }
3019 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3020 icsk->icsk_ack.timeout = timeout;
3021 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3022 }
3023
3024 /* This routine sends an ack and also updates the window. */
3025 void tcp_send_ack(struct sock *sk)
3026 {
3027 struct sk_buff *buff;
3028
3029 /* If we have been reset, we may not send again. */
3030 if (sk->sk_state == TCP_CLOSE)
3031 return;
3032
3033 /* We are not putting this on the write queue, so
3034 * tcp_transmit_skb() will set the ownership to this
3035 * sock.
3036 */
3037 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3038 if (buff == NULL) {
3039 inet_csk_schedule_ack(sk);
3040 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3041 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3042 TCP_DELACK_MAX, TCP_RTO_MAX);
3043 return;
3044 }
3045
3046 /* Reserve space for headers and prepare control bits. */
3047 skb_reserve(buff, MAX_TCP_HEADER);
3048 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3049
3050 /* Send it off, this clears delayed acks for us. */
3051 TCP_SKB_CB(buff)->when = tcp_time_stamp;
3052 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3053 }
3054
3055 /* This routine sends a packet with an out of date sequence
3056 * number. It assumes the other end will try to ack it.
3057 *
3058 * Question: what should we make while urgent mode?
3059 * 4.4BSD forces sending single byte of data. We cannot send
3060 * out of window data, because we have SND.NXT==SND.MAX...
3061 *
3062 * Current solution: to send TWO zero-length segments in urgent mode:
3063 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3064 * out-of-date with SND.UNA-1 to probe window.
3065 */
3066 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3067 {
3068 struct tcp_sock *tp = tcp_sk(sk);
3069 struct sk_buff *skb;
3070
3071 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3072 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3073 if (skb == NULL)
3074 return -1;
3075
3076 /* Reserve space for headers and set control bits. */
3077 skb_reserve(skb, MAX_TCP_HEADER);
3078 /* Use a previous sequence. This should cause the other
3079 * end to send an ack. Don't queue or clone SKB, just
3080 * send it.
3081 */
3082 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3083 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3084 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3085 }
3086
3087 void tcp_send_window_probe(struct sock *sk)
3088 {
3089 if (sk->sk_state == TCP_ESTABLISHED) {
3090 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3091 tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq;
3092 tcp_xmit_probe_skb(sk, 0);
3093 }
3094 }
3095
3096 /* Initiate keepalive or window probe from timer. */
3097 int tcp_write_wakeup(struct sock *sk)
3098 {
3099 struct tcp_sock *tp = tcp_sk(sk);
3100 struct sk_buff *skb;
3101
3102 if (sk->sk_state == TCP_CLOSE)
3103 return -1;
3104
3105 if ((skb = tcp_send_head(sk)) != NULL &&
3106 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3107 int err;
3108 unsigned int mss = tcp_current_mss(sk);
3109 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3110
3111 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3112 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3113
3114 /* We are probing the opening of a window
3115 * but the window size is != 0
3116 * must have been a result SWS avoidance ( sender )
3117 */
3118 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3119 skb->len > mss) {
3120 seg_size = min(seg_size, mss);
3121 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3122 if (tcp_fragment(sk, skb, seg_size, mss))
3123 return -1;
3124 } else if (!tcp_skb_pcount(skb))
3125 tcp_set_skb_tso_segs(sk, skb, mss);
3126
3127 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3128 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3129 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3130 if (!err)
3131 tcp_event_new_data_sent(sk, skb);
3132 return err;
3133 } else {
3134 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3135 tcp_xmit_probe_skb(sk, 1);
3136 return tcp_xmit_probe_skb(sk, 0);
3137 }
3138 }
3139
3140 /* A window probe timeout has occurred. If window is not closed send
3141 * a partial packet else a zero probe.
3142 */
3143 void tcp_send_probe0(struct sock *sk)
3144 {
3145 struct inet_connection_sock *icsk = inet_csk(sk);
3146 struct tcp_sock *tp = tcp_sk(sk);
3147 int err;
3148
3149 err = tcp_write_wakeup(sk);
3150
3151 if (tp->packets_out || !tcp_send_head(sk)) {
3152 /* Cancel probe timer, if it is not required. */
3153 icsk->icsk_probes_out = 0;
3154 icsk->icsk_backoff = 0;
3155 return;
3156 }
3157
3158 if (err <= 0) {
3159 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3160 icsk->icsk_backoff++;
3161 icsk->icsk_probes_out++;
3162 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3163 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3164 TCP_RTO_MAX);
3165 } else {
3166 /* If packet was not sent due to local congestion,
3167 * do not backoff and do not remember icsk_probes_out.
3168 * Let local senders to fight for local resources.
3169 *
3170 * Use accumulated backoff yet.
3171 */
3172 if (!icsk->icsk_probes_out)
3173 icsk->icsk_probes_out = 1;
3174 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3175 min(icsk->icsk_rto << icsk->icsk_backoff,
3176 TCP_RESOURCE_PROBE_INTERVAL),
3177 TCP_RTO_MAX);
3178 }
3179 }