tcp: fix 0 divide in __tcp_select_window()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 int push_one, gfp_t gfp);
70
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 struct inet_connection_sock *icsk = inet_csk(sk);
75 struct tcp_sock *tp = tcp_sk(sk);
76 unsigned int prior_packets = tp->packets_out;
77
78 tcp_advance_send_head(sk, skb);
79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 tcp_rearm_rto(sk);
85 }
86 }
87
88 /* SND.NXT, if window was not shrunk.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
93 */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 const struct tcp_sock *tp = tcp_sk(sk);
97
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 return tp->snd_nxt;
100 else
101 return tcp_wnd_end(tp);
102 }
103
104 /* Calculate mss to advertise in SYN segment.
105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106 *
107 * 1. It is independent of path mtu.
108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110 * attached devices, because some buggy hosts are confused by
111 * large MSS.
112 * 4. We do not make 3, we advertise MSS, calculated from first
113 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
114 * This may be overridden via information stored in routing table.
115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116 * probably even Jumbo".
117 */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 struct tcp_sock *tp = tcp_sk(sk);
121 const struct dst_entry *dst = __sk_dst_get(sk);
122 int mss = tp->advmss;
123
124 if (dst) {
125 unsigned int metric = dst_metric_advmss(dst);
126
127 if (metric < mss) {
128 mss = metric;
129 tp->advmss = mss;
130 }
131 }
132
133 return (__u16)mss;
134 }
135
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137 * This is the first part of cwnd validation mechanism. */
138 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
139 {
140 struct tcp_sock *tp = tcp_sk(sk);
141 s32 delta = tcp_time_stamp - tp->lsndtime;
142 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
143 u32 cwnd = tp->snd_cwnd;
144
145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146
147 tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 restart_cwnd = min(restart_cwnd, cwnd);
149
150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 cwnd >>= 1;
152 tp->snd_cwnd = max(cwnd, restart_cwnd);
153 tp->snd_cwnd_stamp = tcp_time_stamp;
154 tp->snd_cwnd_used = 0;
155 }
156
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 struct sock *sk)
160 {
161 struct inet_connection_sock *icsk = inet_csk(sk);
162 const u32 now = tcp_time_stamp;
163
164 if (sysctl_tcp_slow_start_after_idle &&
165 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
166 tcp_cwnd_restart(sk, __sk_dst_get(sk));
167
168 tp->lsndtime = now;
169
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
172 */
173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 icsk->icsk_ack.pingpong = 1;
175 }
176
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 tcp_dec_quickack_mode(sk, pkts);
181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183
184 /* Determine a window scaling and initial window to offer.
185 * Based on the assumption that the given amount of space
186 * will be offered. Store the results in the tp structure.
187 * NOTE: for smooth operation initial space offering should
188 * be a multiple of mss if possible. We assume here that mss >= 1.
189 * This MUST be enforced by all callers.
190 */
191 void tcp_select_initial_window(int __space, __u32 mss,
192 __u32 *rcv_wnd, __u32 *window_clamp,
193 int wscale_ok, __u8 *rcv_wscale,
194 __u32 init_rcv_wnd)
195 {
196 unsigned int space = (__space < 0 ? 0 : __space);
197
198 /* If no clamp set the clamp to the max possible scaled window */
199 if (*window_clamp == 0)
200 (*window_clamp) = (65535 << 14);
201 space = min(*window_clamp, space);
202
203 /* Quantize space offering to a multiple of mss if possible. */
204 if (space > mss)
205 space = (space / mss) * mss;
206
207 /* NOTE: offering an initial window larger than 32767
208 * will break some buggy TCP stacks. If the admin tells us
209 * it is likely we could be speaking with such a buggy stack
210 * we will truncate our initial window offering to 32K-1
211 * unless the remote has sent us a window scaling option,
212 * which we interpret as a sign the remote TCP is not
213 * misinterpreting the window field as a signed quantity.
214 */
215 if (sysctl_tcp_workaround_signed_windows)
216 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
217 else
218 (*rcv_wnd) = space;
219
220 (*rcv_wscale) = 0;
221 if (wscale_ok) {
222 /* Set window scaling on max possible window
223 * See RFC1323 for an explanation of the limit to 14
224 */
225 space = max_t(u32, space, sysctl_tcp_rmem[2]);
226 space = max_t(u32, space, sysctl_rmem_max);
227 space = min_t(u32, space, *window_clamp);
228 while (space > 65535 && (*rcv_wscale) < 14) {
229 space >>= 1;
230 (*rcv_wscale)++;
231 }
232 }
233
234 /* Set initial window to a value enough for senders starting with
235 * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place
236 * a limit on the initial window when mss is larger than 1460.
237 */
238 if (mss > (1 << *rcv_wscale)) {
239 int init_cwnd = TCP_DEFAULT_INIT_RCVWND;
240 if (mss > 1460)
241 init_cwnd =
242 max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
243 /* when initializing use the value from init_rcv_wnd
244 * rather than the default from above
245 */
246 if (init_rcv_wnd)
247 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
248 else
249 *rcv_wnd = min(*rcv_wnd, init_cwnd * mss);
250 }
251
252 /* Set the clamp no higher than max representable value */
253 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
254 }
255 EXPORT_SYMBOL(tcp_select_initial_window);
256
257 /* Chose a new window to advertise, update state in tcp_sock for the
258 * socket, and return result with RFC1323 scaling applied. The return
259 * value can be stuffed directly into th->window for an outgoing
260 * frame.
261 */
262 static u16 tcp_select_window(struct sock *sk)
263 {
264 struct tcp_sock *tp = tcp_sk(sk);
265 u32 cur_win = tcp_receive_window(tp);
266 u32 new_win = __tcp_select_window(sk);
267
268 /* Never shrink the offered window */
269 if (new_win < cur_win) {
270 /* Danger Will Robinson!
271 * Don't update rcv_wup/rcv_wnd here or else
272 * we will not be able to advertise a zero
273 * window in time. --DaveM
274 *
275 * Relax Will Robinson.
276 */
277 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
278 }
279 tp->rcv_wnd = new_win;
280 tp->rcv_wup = tp->rcv_nxt;
281
282 /* Make sure we do not exceed the maximum possible
283 * scaled window.
284 */
285 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
286 new_win = min(new_win, MAX_TCP_WINDOW);
287 else
288 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
289
290 /* RFC1323 scaling applied */
291 new_win >>= tp->rx_opt.rcv_wscale;
292
293 /* If we advertise zero window, disable fast path. */
294 if (new_win == 0)
295 tp->pred_flags = 0;
296
297 return new_win;
298 }
299
300 /* Packet ECN state for a SYN-ACK */
301 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
302 {
303 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
304 if (!(tp->ecn_flags & TCP_ECN_OK))
305 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
306 }
307
308 /* Packet ECN state for a SYN. */
309 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
310 {
311 struct tcp_sock *tp = tcp_sk(sk);
312
313 tp->ecn_flags = 0;
314 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
315 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
316 tp->ecn_flags = TCP_ECN_OK;
317 }
318 }
319
320 static __inline__ void
321 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
322 {
323 if (inet_rsk(req)->ecn_ok)
324 th->ece = 1;
325 }
326
327 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
328 * be sent.
329 */
330 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
331 int tcp_header_len)
332 {
333 struct tcp_sock *tp = tcp_sk(sk);
334
335 if (tp->ecn_flags & TCP_ECN_OK) {
336 /* Not-retransmitted data segment: set ECT and inject CWR. */
337 if (skb->len != tcp_header_len &&
338 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
339 INET_ECN_xmit(sk);
340 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
341 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
342 tcp_hdr(skb)->cwr = 1;
343 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
344 }
345 } else {
346 /* ACK or retransmitted segment: clear ECT|CE */
347 INET_ECN_dontxmit(sk);
348 }
349 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
350 tcp_hdr(skb)->ece = 1;
351 }
352 }
353
354 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
355 * auto increment end seqno.
356 */
357 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
358 {
359 skb->ip_summed = CHECKSUM_PARTIAL;
360 skb->csum = 0;
361
362 TCP_SKB_CB(skb)->tcp_flags = flags;
363 TCP_SKB_CB(skb)->sacked = 0;
364
365 skb_shinfo(skb)->gso_segs = 1;
366 skb_shinfo(skb)->gso_size = 0;
367 skb_shinfo(skb)->gso_type = 0;
368
369 TCP_SKB_CB(skb)->seq = seq;
370 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
371 seq++;
372 TCP_SKB_CB(skb)->end_seq = seq;
373 }
374
375 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
376 {
377 return tp->snd_una != tp->snd_up;
378 }
379
380 #define OPTION_SACK_ADVERTISE (1 << 0)
381 #define OPTION_TS (1 << 1)
382 #define OPTION_MD5 (1 << 2)
383 #define OPTION_WSCALE (1 << 3)
384 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
385
386 struct tcp_out_options {
387 u16 options; /* bit field of OPTION_* */
388 u16 mss; /* 0 to disable */
389 u8 ws; /* window scale, 0 to disable */
390 u8 num_sack_blocks; /* number of SACK blocks to include */
391 u8 hash_size; /* bytes in hash_location */
392 __u8 *hash_location; /* temporary pointer, overloaded */
393 __u32 tsval, tsecr; /* need to include OPTION_TS */
394 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
395 };
396
397 /* Write previously computed TCP options to the packet.
398 *
399 * Beware: Something in the Internet is very sensitive to the ordering of
400 * TCP options, we learned this through the hard way, so be careful here.
401 * Luckily we can at least blame others for their non-compliance but from
402 * inter-operatibility perspective it seems that we're somewhat stuck with
403 * the ordering which we have been using if we want to keep working with
404 * those broken things (not that it currently hurts anybody as there isn't
405 * particular reason why the ordering would need to be changed).
406 *
407 * At least SACK_PERM as the first option is known to lead to a disaster
408 * (but it may well be that other scenarios fail similarly).
409 */
410 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
411 struct tcp_out_options *opts)
412 {
413 u16 options = opts->options; /* mungable copy */
414
415 if (unlikely(OPTION_MD5 & options)) {
416 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
417 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
418 /* overload cookie hash location */
419 opts->hash_location = (__u8 *)ptr;
420 ptr += 4;
421 }
422
423 if (unlikely(opts->mss)) {
424 *ptr++ = htonl((TCPOPT_MSS << 24) |
425 (TCPOLEN_MSS << 16) |
426 opts->mss);
427 }
428
429 if (likely(OPTION_TS & options)) {
430 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
431 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
432 (TCPOLEN_SACK_PERM << 16) |
433 (TCPOPT_TIMESTAMP << 8) |
434 TCPOLEN_TIMESTAMP);
435 options &= ~OPTION_SACK_ADVERTISE;
436 } else {
437 *ptr++ = htonl((TCPOPT_NOP << 24) |
438 (TCPOPT_NOP << 16) |
439 (TCPOPT_TIMESTAMP << 8) |
440 TCPOLEN_TIMESTAMP);
441 }
442 *ptr++ = htonl(opts->tsval);
443 *ptr++ = htonl(opts->tsecr);
444 }
445
446 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
447 *ptr++ = htonl((TCPOPT_NOP << 24) |
448 (TCPOPT_NOP << 16) |
449 (TCPOPT_SACK_PERM << 8) |
450 TCPOLEN_SACK_PERM);
451 }
452
453 if (unlikely(OPTION_WSCALE & options)) {
454 *ptr++ = htonl((TCPOPT_NOP << 24) |
455 (TCPOPT_WINDOW << 16) |
456 (TCPOLEN_WINDOW << 8) |
457 opts->ws);
458 }
459
460 if (unlikely(opts->num_sack_blocks)) {
461 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
462 tp->duplicate_sack : tp->selective_acks;
463 int this_sack;
464
465 *ptr++ = htonl((TCPOPT_NOP << 24) |
466 (TCPOPT_NOP << 16) |
467 (TCPOPT_SACK << 8) |
468 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
469 TCPOLEN_SACK_PERBLOCK)));
470
471 for (this_sack = 0; this_sack < opts->num_sack_blocks;
472 ++this_sack) {
473 *ptr++ = htonl(sp[this_sack].start_seq);
474 *ptr++ = htonl(sp[this_sack].end_seq);
475 }
476
477 tp->rx_opt.dsack = 0;
478 }
479
480 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
481 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
482
483 *ptr++ = htonl((TCPOPT_EXP << 24) |
484 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
485 TCPOPT_FASTOPEN_MAGIC);
486
487 memcpy(ptr, foc->val, foc->len);
488 if ((foc->len & 3) == 2) {
489 u8 *align = ((u8 *)ptr) + foc->len;
490 align[0] = align[1] = TCPOPT_NOP;
491 }
492 ptr += (foc->len + 3) >> 2;
493 }
494 }
495
496 /* Compute TCP options for SYN packets. This is not the final
497 * network wire format yet.
498 */
499 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
500 struct tcp_out_options *opts,
501 struct tcp_md5sig_key **md5)
502 {
503 struct tcp_sock *tp = tcp_sk(sk);
504 unsigned int remaining = MAX_TCP_OPTION_SPACE;
505 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
506
507 #ifdef CONFIG_TCP_MD5SIG
508 *md5 = tp->af_specific->md5_lookup(sk, sk);
509 if (*md5) {
510 opts->options |= OPTION_MD5;
511 remaining -= TCPOLEN_MD5SIG_ALIGNED;
512 }
513 #else
514 *md5 = NULL;
515 #endif
516
517 /* We always get an MSS option. The option bytes which will be seen in
518 * normal data packets should timestamps be used, must be in the MSS
519 * advertised. But we subtract them from tp->mss_cache so that
520 * calculations in tcp_sendmsg are simpler etc. So account for this
521 * fact here if necessary. If we don't do this correctly, as a
522 * receiver we won't recognize data packets as being full sized when we
523 * should, and thus we won't abide by the delayed ACK rules correctly.
524 * SACKs don't matter, we never delay an ACK when we have any of those
525 * going out. */
526 opts->mss = tcp_advertise_mss(sk);
527 remaining -= TCPOLEN_MSS_ALIGNED;
528
529 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
530 opts->options |= OPTION_TS;
531 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
532 opts->tsecr = tp->rx_opt.ts_recent;
533 remaining -= TCPOLEN_TSTAMP_ALIGNED;
534 }
535 if (likely(sysctl_tcp_window_scaling)) {
536 opts->ws = tp->rx_opt.rcv_wscale;
537 opts->options |= OPTION_WSCALE;
538 remaining -= TCPOLEN_WSCALE_ALIGNED;
539 }
540 if (likely(sysctl_tcp_sack)) {
541 opts->options |= OPTION_SACK_ADVERTISE;
542 if (unlikely(!(OPTION_TS & opts->options)))
543 remaining -= TCPOLEN_SACKPERM_ALIGNED;
544 }
545
546 if (fastopen && fastopen->cookie.len >= 0) {
547 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
548 need = (need + 3) & ~3U; /* Align to 32 bits */
549 if (remaining >= need) {
550 opts->options |= OPTION_FAST_OPEN_COOKIE;
551 opts->fastopen_cookie = &fastopen->cookie;
552 remaining -= need;
553 tp->syn_fastopen = 1;
554 }
555 }
556
557 return MAX_TCP_OPTION_SPACE - remaining;
558 }
559
560 /* Set up TCP options for SYN-ACKs. */
561 static unsigned int tcp_synack_options(struct sock *sk,
562 struct request_sock *req,
563 unsigned int mss, struct sk_buff *skb,
564 struct tcp_out_options *opts,
565 struct tcp_md5sig_key **md5,
566 struct tcp_fastopen_cookie *foc)
567 {
568 struct inet_request_sock *ireq = inet_rsk(req);
569 unsigned int remaining = MAX_TCP_OPTION_SPACE;
570
571 #ifdef CONFIG_TCP_MD5SIG
572 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
573 if (*md5) {
574 opts->options |= OPTION_MD5;
575 remaining -= TCPOLEN_MD5SIG_ALIGNED;
576
577 /* We can't fit any SACK blocks in a packet with MD5 + TS
578 * options. There was discussion about disabling SACK
579 * rather than TS in order to fit in better with old,
580 * buggy kernels, but that was deemed to be unnecessary.
581 */
582 ireq->tstamp_ok &= !ireq->sack_ok;
583 }
584 #else
585 *md5 = NULL;
586 #endif
587
588 /* We always send an MSS option. */
589 opts->mss = mss;
590 remaining -= TCPOLEN_MSS_ALIGNED;
591
592 if (likely(ireq->wscale_ok)) {
593 opts->ws = ireq->rcv_wscale;
594 opts->options |= OPTION_WSCALE;
595 remaining -= TCPOLEN_WSCALE_ALIGNED;
596 }
597 if (likely(ireq->tstamp_ok)) {
598 opts->options |= OPTION_TS;
599 opts->tsval = TCP_SKB_CB(skb)->when;
600 opts->tsecr = req->ts_recent;
601 remaining -= TCPOLEN_TSTAMP_ALIGNED;
602 }
603 if (likely(ireq->sack_ok)) {
604 opts->options |= OPTION_SACK_ADVERTISE;
605 if (unlikely(!ireq->tstamp_ok))
606 remaining -= TCPOLEN_SACKPERM_ALIGNED;
607 }
608 if (foc != NULL) {
609 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
610 need = (need + 3) & ~3U; /* Align to 32 bits */
611 if (remaining >= need) {
612 opts->options |= OPTION_FAST_OPEN_COOKIE;
613 opts->fastopen_cookie = foc;
614 remaining -= need;
615 }
616 }
617
618 return MAX_TCP_OPTION_SPACE - remaining;
619 }
620
621 /* Compute TCP options for ESTABLISHED sockets. This is not the
622 * final wire format yet.
623 */
624 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
625 struct tcp_out_options *opts,
626 struct tcp_md5sig_key **md5)
627 {
628 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
629 struct tcp_sock *tp = tcp_sk(sk);
630 unsigned int size = 0;
631 unsigned int eff_sacks;
632
633 #ifdef CONFIG_TCP_MD5SIG
634 *md5 = tp->af_specific->md5_lookup(sk, sk);
635 if (unlikely(*md5)) {
636 opts->options |= OPTION_MD5;
637 size += TCPOLEN_MD5SIG_ALIGNED;
638 }
639 #else
640 *md5 = NULL;
641 #endif
642
643 if (likely(tp->rx_opt.tstamp_ok)) {
644 opts->options |= OPTION_TS;
645 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
646 opts->tsecr = tp->rx_opt.ts_recent;
647 size += TCPOLEN_TSTAMP_ALIGNED;
648 }
649
650 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
651 if (unlikely(eff_sacks)) {
652 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
653 opts->num_sack_blocks =
654 min_t(unsigned int, eff_sacks,
655 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
656 TCPOLEN_SACK_PERBLOCK);
657 size += TCPOLEN_SACK_BASE_ALIGNED +
658 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
659 }
660
661 return size;
662 }
663
664
665 /* TCP SMALL QUEUES (TSQ)
666 *
667 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
668 * to reduce RTT and bufferbloat.
669 * We do this using a special skb destructor (tcp_wfree).
670 *
671 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
672 * needs to be reallocated in a driver.
673 * The invariant being skb->truesize substracted from sk->sk_wmem_alloc
674 *
675 * Since transmit from skb destructor is forbidden, we use a tasklet
676 * to process all sockets that eventually need to send more skbs.
677 * We use one tasklet per cpu, with its own queue of sockets.
678 */
679 struct tsq_tasklet {
680 struct tasklet_struct tasklet;
681 struct list_head head; /* queue of tcp sockets */
682 };
683 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
684
685 static void tcp_tsq_handler(struct sock *sk)
686 {
687 if ((1 << sk->sk_state) &
688 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
689 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
690 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
691 0, GFP_ATOMIC);
692 }
693 /*
694 * One tasklest per cpu tries to send more skbs.
695 * We run in tasklet context but need to disable irqs when
696 * transfering tsq->head because tcp_wfree() might
697 * interrupt us (non NAPI drivers)
698 */
699 static void tcp_tasklet_func(unsigned long data)
700 {
701 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
702 LIST_HEAD(list);
703 unsigned long flags;
704 struct list_head *q, *n;
705 struct tcp_sock *tp;
706 struct sock *sk;
707
708 local_irq_save(flags);
709 list_splice_init(&tsq->head, &list);
710 local_irq_restore(flags);
711
712 list_for_each_safe(q, n, &list) {
713 tp = list_entry(q, struct tcp_sock, tsq_node);
714 list_del(&tp->tsq_node);
715
716 sk = (struct sock *)tp;
717 bh_lock_sock(sk);
718
719 if (!sock_owned_by_user(sk)) {
720 tcp_tsq_handler(sk);
721 } else {
722 /* defer the work to tcp_release_cb() */
723 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
724 }
725 bh_unlock_sock(sk);
726
727 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
728 sk_free(sk);
729 }
730 }
731
732 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
733 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
734 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
735 (1UL << TCP_MTU_REDUCED_DEFERRED))
736 /**
737 * tcp_release_cb - tcp release_sock() callback
738 * @sk: socket
739 *
740 * called from release_sock() to perform protocol dependent
741 * actions before socket release.
742 */
743 void tcp_release_cb(struct sock *sk)
744 {
745 struct tcp_sock *tp = tcp_sk(sk);
746 unsigned long flags, nflags;
747
748 /* perform an atomic operation only if at least one flag is set */
749 do {
750 flags = tp->tsq_flags;
751 if (!(flags & TCP_DEFERRED_ALL))
752 return;
753 nflags = flags & ~TCP_DEFERRED_ALL;
754 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
755
756 if (flags & (1UL << TCP_TSQ_DEFERRED))
757 tcp_tsq_handler(sk);
758
759 /* Here begins the tricky part :
760 * We are called from release_sock() with :
761 * 1) BH disabled
762 * 2) sk_lock.slock spinlock held
763 * 3) socket owned by us (sk->sk_lock.owned == 1)
764 *
765 * But following code is meant to be called from BH handlers,
766 * so we should keep BH disabled, but early release socket ownership
767 */
768 sock_release_ownership(sk);
769
770 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
771 tcp_write_timer_handler(sk);
772 __sock_put(sk);
773 }
774 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
775 tcp_delack_timer_handler(sk);
776 __sock_put(sk);
777 }
778 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
779 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
780 __sock_put(sk);
781 }
782 }
783 EXPORT_SYMBOL(tcp_release_cb);
784
785 void __init tcp_tasklet_init(void)
786 {
787 int i;
788
789 for_each_possible_cpu(i) {
790 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
791
792 INIT_LIST_HEAD(&tsq->head);
793 tasklet_init(&tsq->tasklet,
794 tcp_tasklet_func,
795 (unsigned long)tsq);
796 }
797 }
798
799 /*
800 * Write buffer destructor automatically called from kfree_skb.
801 * We cant xmit new skbs from this context, as we might already
802 * hold qdisc lock.
803 */
804 void tcp_wfree(struct sk_buff *skb)
805 {
806 struct sock *sk = skb->sk;
807 struct tcp_sock *tp = tcp_sk(sk);
808
809 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
810 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
811 unsigned long flags;
812 struct tsq_tasklet *tsq;
813
814 /* Keep a ref on socket.
815 * This last ref will be released in tcp_tasklet_func()
816 */
817 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
818
819 /* queue this socket to tasklet queue */
820 local_irq_save(flags);
821 tsq = &__get_cpu_var(tsq_tasklet);
822 list_add(&tp->tsq_node, &tsq->head);
823 tasklet_schedule(&tsq->tasklet);
824 local_irq_restore(flags);
825 } else {
826 sock_wfree(skb);
827 }
828 }
829
830 /* This routine actually transmits TCP packets queued in by
831 * tcp_do_sendmsg(). This is used by both the initial
832 * transmission and possible later retransmissions.
833 * All SKB's seen here are completely headerless. It is our
834 * job to build the TCP header, and pass the packet down to
835 * IP so it can do the same plus pass the packet off to the
836 * device.
837 *
838 * We are working here with either a clone of the original
839 * SKB, or a fresh unique copy made by the retransmit engine.
840 */
841 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
842 gfp_t gfp_mask)
843 {
844 const struct inet_connection_sock *icsk = inet_csk(sk);
845 struct inet_sock *inet;
846 struct tcp_sock *tp;
847 struct tcp_skb_cb *tcb;
848 struct tcp_out_options opts;
849 unsigned int tcp_options_size, tcp_header_size;
850 struct tcp_md5sig_key *md5;
851 struct tcphdr *th;
852 int err;
853
854 BUG_ON(!skb || !tcp_skb_pcount(skb));
855
856 /* If congestion control is doing timestamping, we must
857 * take such a timestamp before we potentially clone/copy.
858 */
859 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
860 __net_timestamp(skb);
861
862 if (likely(clone_it)) {
863 const struct sk_buff *fclone = skb + 1;
864
865 if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
866 fclone->fclone == SKB_FCLONE_CLONE))
867 NET_INC_STATS_BH(sock_net(sk),
868 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
869
870 if (unlikely(skb_cloned(skb)))
871 skb = pskb_copy(skb, gfp_mask);
872 else
873 skb = skb_clone(skb, gfp_mask);
874 if (unlikely(!skb))
875 return -ENOBUFS;
876 }
877
878 inet = inet_sk(sk);
879 tp = tcp_sk(sk);
880 tcb = TCP_SKB_CB(skb);
881 memset(&opts, 0, sizeof(opts));
882
883 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
884 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
885 else
886 tcp_options_size = tcp_established_options(sk, skb, &opts,
887 &md5);
888 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
889
890 if (tcp_packets_in_flight(tp) == 0)
891 tcp_ca_event(sk, CA_EVENT_TX_START);
892
893 /* if no packet is in qdisc/device queue, then allow XPS to select
894 * another queue.
895 */
896 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
897
898 skb_push(skb, tcp_header_size);
899 skb_reset_transport_header(skb);
900
901 skb_orphan(skb);
902 skb->sk = sk;
903 skb->destructor = tcp_wfree;
904 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
905
906 /* Build TCP header and checksum it. */
907 th = tcp_hdr(skb);
908 th->source = inet->inet_sport;
909 th->dest = inet->inet_dport;
910 th->seq = htonl(tcb->seq);
911 th->ack_seq = htonl(tp->rcv_nxt);
912 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
913 tcb->tcp_flags);
914
915 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
916 /* RFC1323: The window in SYN & SYN/ACK segments
917 * is never scaled.
918 */
919 th->window = htons(min(tp->rcv_wnd, 65535U));
920 } else {
921 th->window = htons(tcp_select_window(sk));
922 }
923 th->check = 0;
924 th->urg_ptr = 0;
925
926 /* The urg_mode check is necessary during a below snd_una win probe */
927 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
928 if (before(tp->snd_up, tcb->seq + 0x10000)) {
929 th->urg_ptr = htons(tp->snd_up - tcb->seq);
930 th->urg = 1;
931 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
932 th->urg_ptr = htons(0xFFFF);
933 th->urg = 1;
934 }
935 }
936
937 tcp_options_write((__be32 *)(th + 1), tp, &opts);
938 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
939 TCP_ECN_send(sk, skb, tcp_header_size);
940
941 #ifdef CONFIG_TCP_MD5SIG
942 /* Calculate the MD5 hash, as we have all we need now */
943 if (md5) {
944 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
945 tp->af_specific->calc_md5_hash(opts.hash_location,
946 md5, sk, NULL, skb);
947 }
948 #endif
949
950 icsk->icsk_af_ops->send_check(sk, skb);
951
952 if (likely(tcb->tcp_flags & TCPHDR_ACK))
953 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
954
955 if (skb->len != tcp_header_size)
956 tcp_event_data_sent(tp, sk);
957
958 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
959 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
960 tcp_skb_pcount(skb));
961
962 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
963 if (likely(err <= 0))
964 return err;
965
966 tcp_enter_cwr(sk, 1);
967
968 return net_xmit_eval(err);
969 }
970
971 /* This routine just queues the buffer for sending.
972 *
973 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
974 * otherwise socket can stall.
975 */
976 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
977 {
978 struct tcp_sock *tp = tcp_sk(sk);
979
980 /* Advance write_seq and place onto the write_queue. */
981 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
982 skb_header_release(skb);
983 tcp_add_write_queue_tail(sk, skb);
984 sk->sk_wmem_queued += skb->truesize;
985 sk_mem_charge(sk, skb->truesize);
986 }
987
988 /* Initialize TSO segments for a packet. */
989 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
990 unsigned int mss_now)
991 {
992 /* Make sure we own this skb before messing gso_size/gso_segs */
993 WARN_ON_ONCE(skb_cloned(skb));
994
995 if (skb->len <= mss_now || !sk_can_gso(sk) ||
996 skb->ip_summed == CHECKSUM_NONE) {
997 /* Avoid the costly divide in the normal
998 * non-TSO case.
999 */
1000 skb_shinfo(skb)->gso_segs = 1;
1001 skb_shinfo(skb)->gso_size = 0;
1002 skb_shinfo(skb)->gso_type = 0;
1003 } else {
1004 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1005 skb_shinfo(skb)->gso_size = mss_now;
1006 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1007 }
1008 }
1009
1010 /* When a modification to fackets out becomes necessary, we need to check
1011 * skb is counted to fackets_out or not.
1012 */
1013 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1014 int decr)
1015 {
1016 struct tcp_sock *tp = tcp_sk(sk);
1017
1018 if (!tp->sacked_out || tcp_is_reno(tp))
1019 return;
1020
1021 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1022 tp->fackets_out -= decr;
1023 }
1024
1025 /* Pcount in the middle of the write queue got changed, we need to do various
1026 * tweaks to fix counters
1027 */
1028 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1029 {
1030 struct tcp_sock *tp = tcp_sk(sk);
1031
1032 tp->packets_out -= decr;
1033
1034 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1035 tp->sacked_out -= decr;
1036 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1037 tp->retrans_out -= decr;
1038 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1039 tp->lost_out -= decr;
1040
1041 /* Reno case is special. Sigh... */
1042 if (tcp_is_reno(tp) && decr > 0)
1043 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1044
1045 tcp_adjust_fackets_out(sk, skb, decr);
1046
1047 if (tp->lost_skb_hint &&
1048 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1049 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1050 tp->lost_cnt_hint -= decr;
1051
1052 tcp_verify_left_out(tp);
1053 }
1054
1055 /* Function to create two new TCP segments. Shrinks the given segment
1056 * to the specified size and appends a new segment with the rest of the
1057 * packet to the list. This won't be called frequently, I hope.
1058 * Remember, these are still headerless SKBs at this point.
1059 */
1060 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1061 unsigned int mss_now)
1062 {
1063 struct tcp_sock *tp = tcp_sk(sk);
1064 struct sk_buff *buff;
1065 int nsize, old_factor;
1066 int nlen;
1067 u8 flags;
1068
1069 if (WARN_ON(len > skb->len))
1070 return -EINVAL;
1071
1072 nsize = skb_headlen(skb) - len;
1073 if (nsize < 0)
1074 nsize = 0;
1075
1076 if (skb_unclone(skb, GFP_ATOMIC))
1077 return -ENOMEM;
1078
1079 /* Get a new skb... force flag on. */
1080 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1081 if (buff == NULL)
1082 return -ENOMEM; /* We'll just try again later. */
1083
1084 sk->sk_wmem_queued += buff->truesize;
1085 sk_mem_charge(sk, buff->truesize);
1086 nlen = skb->len - len - nsize;
1087 buff->truesize += nlen;
1088 skb->truesize -= nlen;
1089
1090 /* Correct the sequence numbers. */
1091 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1092 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1093 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1094
1095 /* PSH and FIN should only be set in the second packet. */
1096 flags = TCP_SKB_CB(skb)->tcp_flags;
1097 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1098 TCP_SKB_CB(buff)->tcp_flags = flags;
1099 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1100
1101 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1102 /* Copy and checksum data tail into the new buffer. */
1103 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1104 skb_put(buff, nsize),
1105 nsize, 0);
1106
1107 skb_trim(skb, len);
1108
1109 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1110 } else {
1111 skb->ip_summed = CHECKSUM_PARTIAL;
1112 skb_split(skb, buff, len);
1113 }
1114
1115 buff->ip_summed = skb->ip_summed;
1116
1117 /* Looks stupid, but our code really uses when of
1118 * skbs, which it never sent before. --ANK
1119 */
1120 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1121 buff->tstamp = skb->tstamp;
1122
1123 old_factor = tcp_skb_pcount(skb);
1124
1125 /* Fix up tso_factor for both original and new SKB. */
1126 tcp_set_skb_tso_segs(sk, skb, mss_now);
1127 tcp_set_skb_tso_segs(sk, buff, mss_now);
1128
1129 /* If this packet has been sent out already, we must
1130 * adjust the various packet counters.
1131 */
1132 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1133 int diff = old_factor - tcp_skb_pcount(skb) -
1134 tcp_skb_pcount(buff);
1135
1136 if (diff)
1137 tcp_adjust_pcount(sk, skb, diff);
1138 }
1139
1140 /* Link BUFF into the send queue. */
1141 skb_header_release(buff);
1142 tcp_insert_write_queue_after(skb, buff, sk);
1143
1144 return 0;
1145 }
1146
1147 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1148 * eventually). The difference is that pulled data not copied, but
1149 * immediately discarded.
1150 */
1151 static void __pskb_trim_head(struct sk_buff *skb, int len)
1152 {
1153 int i, k, eat;
1154
1155 eat = min_t(int, len, skb_headlen(skb));
1156 if (eat) {
1157 __skb_pull(skb, eat);
1158 len -= eat;
1159 if (!len)
1160 return;
1161 }
1162 eat = len;
1163 k = 0;
1164 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1165 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1166
1167 if (size <= eat) {
1168 skb_frag_unref(skb, i);
1169 eat -= size;
1170 } else {
1171 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1172 if (eat) {
1173 skb_shinfo(skb)->frags[k].page_offset += eat;
1174 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1175 eat = 0;
1176 }
1177 k++;
1178 }
1179 }
1180 skb_shinfo(skb)->nr_frags = k;
1181
1182 skb_reset_tail_pointer(skb);
1183 skb->data_len -= len;
1184 skb->len = skb->data_len;
1185 }
1186
1187 /* Remove acked data from a packet in the transmit queue. */
1188 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1189 {
1190 if (skb_unclone(skb, GFP_ATOMIC))
1191 return -ENOMEM;
1192
1193 __pskb_trim_head(skb, len);
1194
1195 TCP_SKB_CB(skb)->seq += len;
1196 skb->ip_summed = CHECKSUM_PARTIAL;
1197
1198 skb->truesize -= len;
1199 sk->sk_wmem_queued -= len;
1200 sk_mem_uncharge(sk, len);
1201 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1202
1203 /* Any change of skb->len requires recalculation of tso factor. */
1204 if (tcp_skb_pcount(skb) > 1)
1205 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1206
1207 return 0;
1208 }
1209
1210 /* Calculate MSS not accounting any TCP options. */
1211 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1212 {
1213 const struct tcp_sock *tp = tcp_sk(sk);
1214 const struct inet_connection_sock *icsk = inet_csk(sk);
1215 int mss_now;
1216
1217 /* Calculate base mss without TCP options:
1218 It is MMS_S - sizeof(tcphdr) of rfc1122
1219 */
1220 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1221
1222 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1223 if (icsk->icsk_af_ops->net_frag_header_len) {
1224 const struct dst_entry *dst = __sk_dst_get(sk);
1225
1226 if (dst && dst_allfrag(dst))
1227 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1228 }
1229
1230 /* Clamp it (mss_clamp does not include tcp options) */
1231 if (mss_now > tp->rx_opt.mss_clamp)
1232 mss_now = tp->rx_opt.mss_clamp;
1233
1234 /* Now subtract optional transport overhead */
1235 mss_now -= icsk->icsk_ext_hdr_len;
1236
1237 /* Then reserve room for full set of TCP options and 8 bytes of data */
1238 if (mss_now < 48)
1239 mss_now = 48;
1240 return mss_now;
1241 }
1242
1243 /* Calculate MSS. Not accounting for SACKs here. */
1244 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1245 {
1246 /* Subtract TCP options size, not including SACKs */
1247 return __tcp_mtu_to_mss(sk, pmtu) -
1248 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1249 }
1250
1251 /* Inverse of above */
1252 int tcp_mss_to_mtu(struct sock *sk, int mss)
1253 {
1254 const struct tcp_sock *tp = tcp_sk(sk);
1255 const struct inet_connection_sock *icsk = inet_csk(sk);
1256 int mtu;
1257
1258 mtu = mss +
1259 tp->tcp_header_len +
1260 icsk->icsk_ext_hdr_len +
1261 icsk->icsk_af_ops->net_header_len;
1262
1263 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1264 if (icsk->icsk_af_ops->net_frag_header_len) {
1265 const struct dst_entry *dst = __sk_dst_get(sk);
1266
1267 if (dst && dst_allfrag(dst))
1268 mtu += icsk->icsk_af_ops->net_frag_header_len;
1269 }
1270 return mtu;
1271 }
1272
1273 /* MTU probing init per socket */
1274 void tcp_mtup_init(struct sock *sk)
1275 {
1276 struct tcp_sock *tp = tcp_sk(sk);
1277 struct inet_connection_sock *icsk = inet_csk(sk);
1278
1279 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1280 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1281 icsk->icsk_af_ops->net_header_len;
1282 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1283 icsk->icsk_mtup.probe_size = 0;
1284 }
1285 EXPORT_SYMBOL(tcp_mtup_init);
1286
1287 /* This function synchronize snd mss to current pmtu/exthdr set.
1288
1289 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1290 for TCP options, but includes only bare TCP header.
1291
1292 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1293 It is minimum of user_mss and mss received with SYN.
1294 It also does not include TCP options.
1295
1296 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1297
1298 tp->mss_cache is current effective sending mss, including
1299 all tcp options except for SACKs. It is evaluated,
1300 taking into account current pmtu, but never exceeds
1301 tp->rx_opt.mss_clamp.
1302
1303 NOTE1. rfc1122 clearly states that advertised MSS
1304 DOES NOT include either tcp or ip options.
1305
1306 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1307 are READ ONLY outside this function. --ANK (980731)
1308 */
1309 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1310 {
1311 struct tcp_sock *tp = tcp_sk(sk);
1312 struct inet_connection_sock *icsk = inet_csk(sk);
1313 int mss_now;
1314
1315 if (icsk->icsk_mtup.search_high > pmtu)
1316 icsk->icsk_mtup.search_high = pmtu;
1317
1318 mss_now = tcp_mtu_to_mss(sk, pmtu);
1319 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1320
1321 /* And store cached results */
1322 icsk->icsk_pmtu_cookie = pmtu;
1323 if (icsk->icsk_mtup.enabled)
1324 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1325 tp->mss_cache = mss_now;
1326
1327 return mss_now;
1328 }
1329 EXPORT_SYMBOL(tcp_sync_mss);
1330
1331 /* Compute the current effective MSS, taking SACKs and IP options,
1332 * and even PMTU discovery events into account.
1333 */
1334 unsigned int tcp_current_mss(struct sock *sk)
1335 {
1336 const struct tcp_sock *tp = tcp_sk(sk);
1337 const struct dst_entry *dst = __sk_dst_get(sk);
1338 u32 mss_now;
1339 unsigned int header_len;
1340 struct tcp_out_options opts;
1341 struct tcp_md5sig_key *md5;
1342
1343 mss_now = tp->mss_cache;
1344
1345 if (dst) {
1346 u32 mtu = dst_mtu(dst);
1347 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1348 mss_now = tcp_sync_mss(sk, mtu);
1349 }
1350
1351 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1352 sizeof(struct tcphdr);
1353 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1354 * some common options. If this is an odd packet (because we have SACK
1355 * blocks etc) then our calculated header_len will be different, and
1356 * we have to adjust mss_now correspondingly */
1357 if (header_len != tp->tcp_header_len) {
1358 int delta = (int) header_len - tp->tcp_header_len;
1359 mss_now -= delta;
1360 }
1361
1362 return mss_now;
1363 }
1364
1365 /* Congestion window validation. (RFC2861) */
1366 static void tcp_cwnd_validate(struct sock *sk)
1367 {
1368 struct tcp_sock *tp = tcp_sk(sk);
1369
1370 if (tp->packets_out >= tp->snd_cwnd) {
1371 /* Network is feed fully. */
1372 tp->snd_cwnd_used = 0;
1373 tp->snd_cwnd_stamp = tcp_time_stamp;
1374 } else {
1375 /* Network starves. */
1376 if (tp->packets_out > tp->snd_cwnd_used)
1377 tp->snd_cwnd_used = tp->packets_out;
1378
1379 if (sysctl_tcp_slow_start_after_idle &&
1380 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1381 tcp_cwnd_application_limited(sk);
1382 }
1383 }
1384
1385 /* Returns the portion of skb which can be sent right away without
1386 * introducing MSS oddities to segment boundaries. In rare cases where
1387 * mss_now != mss_cache, we will request caller to create a small skb
1388 * per input skb which could be mostly avoided here (if desired).
1389 *
1390 * We explicitly want to create a request for splitting write queue tail
1391 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1392 * thus all the complexity (cwnd_len is always MSS multiple which we
1393 * return whenever allowed by the other factors). Basically we need the
1394 * modulo only when the receiver window alone is the limiting factor or
1395 * when we would be allowed to send the split-due-to-Nagle skb fully.
1396 */
1397 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1398 unsigned int mss_now, unsigned int max_segs)
1399 {
1400 const struct tcp_sock *tp = tcp_sk(sk);
1401 u32 needed, window, max_len;
1402
1403 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1404 max_len = mss_now * max_segs;
1405
1406 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1407 return max_len;
1408
1409 needed = min(skb->len, window);
1410
1411 if (max_len <= needed)
1412 return max_len;
1413
1414 return needed - needed % mss_now;
1415 }
1416
1417 /* Can at least one segment of SKB be sent right now, according to the
1418 * congestion window rules? If so, return how many segments are allowed.
1419 */
1420 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1421 const struct sk_buff *skb)
1422 {
1423 u32 in_flight, cwnd;
1424
1425 /* Don't be strict about the congestion window for the final FIN. */
1426 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1427 tcp_skb_pcount(skb) == 1)
1428 return 1;
1429
1430 in_flight = tcp_packets_in_flight(tp);
1431 cwnd = tp->snd_cwnd;
1432 if (in_flight < cwnd)
1433 return (cwnd - in_flight);
1434
1435 return 0;
1436 }
1437
1438 /* Initialize TSO state of a skb.
1439 * This must be invoked the first time we consider transmitting
1440 * SKB onto the wire.
1441 */
1442 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1443 unsigned int mss_now)
1444 {
1445 int tso_segs = tcp_skb_pcount(skb);
1446
1447 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1448 tcp_set_skb_tso_segs(sk, skb, mss_now);
1449 tso_segs = tcp_skb_pcount(skb);
1450 }
1451 return tso_segs;
1452 }
1453
1454 /* Minshall's variant of the Nagle send check. */
1455 static inline bool tcp_minshall_check(const struct tcp_sock *tp)
1456 {
1457 return after(tp->snd_sml, tp->snd_una) &&
1458 !after(tp->snd_sml, tp->snd_nxt);
1459 }
1460
1461 /* Return false, if packet can be sent now without violation Nagle's rules:
1462 * 1. It is full sized.
1463 * 2. Or it contains FIN. (already checked by caller)
1464 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1465 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1466 * With Minshall's modification: all sent small packets are ACKed.
1467 */
1468 static inline bool tcp_nagle_check(const struct tcp_sock *tp,
1469 const struct sk_buff *skb,
1470 unsigned int mss_now, int nonagle)
1471 {
1472 return skb->len < mss_now &&
1473 ((nonagle & TCP_NAGLE_CORK) ||
1474 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1475 }
1476
1477 /* Return true if the Nagle test allows this packet to be
1478 * sent now.
1479 */
1480 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1481 unsigned int cur_mss, int nonagle)
1482 {
1483 /* Nagle rule does not apply to frames, which sit in the middle of the
1484 * write_queue (they have no chances to get new data).
1485 *
1486 * This is implemented in the callers, where they modify the 'nonagle'
1487 * argument based upon the location of SKB in the send queue.
1488 */
1489 if (nonagle & TCP_NAGLE_PUSH)
1490 return true;
1491
1492 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1493 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1494 return true;
1495
1496 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1497 return true;
1498
1499 return false;
1500 }
1501
1502 /* Does at least the first segment of SKB fit into the send window? */
1503 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1504 const struct sk_buff *skb,
1505 unsigned int cur_mss)
1506 {
1507 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1508
1509 if (skb->len > cur_mss)
1510 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1511
1512 return !after(end_seq, tcp_wnd_end(tp));
1513 }
1514
1515 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1516 * should be put on the wire right now. If so, it returns the number of
1517 * packets allowed by the congestion window.
1518 */
1519 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1520 unsigned int cur_mss, int nonagle)
1521 {
1522 const struct tcp_sock *tp = tcp_sk(sk);
1523 unsigned int cwnd_quota;
1524
1525 tcp_init_tso_segs(sk, skb, cur_mss);
1526
1527 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1528 return 0;
1529
1530 cwnd_quota = tcp_cwnd_test(tp, skb);
1531 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1532 cwnd_quota = 0;
1533
1534 return cwnd_quota;
1535 }
1536
1537 /* Test if sending is allowed right now. */
1538 bool tcp_may_send_now(struct sock *sk)
1539 {
1540 const struct tcp_sock *tp = tcp_sk(sk);
1541 struct sk_buff *skb = tcp_send_head(sk);
1542
1543 return skb &&
1544 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1545 (tcp_skb_is_last(sk, skb) ?
1546 tp->nonagle : TCP_NAGLE_PUSH));
1547 }
1548
1549 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1550 * which is put after SKB on the list. It is very much like
1551 * tcp_fragment() except that it may make several kinds of assumptions
1552 * in order to speed up the splitting operation. In particular, we
1553 * know that all the data is in scatter-gather pages, and that the
1554 * packet has never been sent out before (and thus is not cloned).
1555 */
1556 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1557 unsigned int mss_now, gfp_t gfp)
1558 {
1559 struct sk_buff *buff;
1560 int nlen = skb->len - len;
1561 u8 flags;
1562
1563 /* All of a TSO frame must be composed of paged data. */
1564 if (skb->len != skb->data_len)
1565 return tcp_fragment(sk, skb, len, mss_now);
1566
1567 buff = sk_stream_alloc_skb(sk, 0, gfp);
1568 if (unlikely(buff == NULL))
1569 return -ENOMEM;
1570
1571 sk->sk_wmem_queued += buff->truesize;
1572 sk_mem_charge(sk, buff->truesize);
1573 buff->truesize += nlen;
1574 skb->truesize -= nlen;
1575
1576 /* Correct the sequence numbers. */
1577 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1578 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1579 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1580
1581 /* PSH and FIN should only be set in the second packet. */
1582 flags = TCP_SKB_CB(skb)->tcp_flags;
1583 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1584 TCP_SKB_CB(buff)->tcp_flags = flags;
1585
1586 /* This packet was never sent out yet, so no SACK bits. */
1587 TCP_SKB_CB(buff)->sacked = 0;
1588
1589 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1590 skb_split(skb, buff, len);
1591
1592 /* Fix up tso_factor for both original and new SKB. */
1593 tcp_set_skb_tso_segs(sk, skb, mss_now);
1594 tcp_set_skb_tso_segs(sk, buff, mss_now);
1595
1596 /* Link BUFF into the send queue. */
1597 skb_header_release(buff);
1598 tcp_insert_write_queue_after(skb, buff, sk);
1599
1600 return 0;
1601 }
1602
1603 /* Try to defer sending, if possible, in order to minimize the amount
1604 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1605 *
1606 * This algorithm is from John Heffner.
1607 */
1608 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1609 {
1610 struct tcp_sock *tp = tcp_sk(sk);
1611 const struct inet_connection_sock *icsk = inet_csk(sk);
1612 u32 send_win, cong_win, limit, in_flight;
1613 int win_divisor;
1614
1615 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1616 goto send_now;
1617
1618 if (icsk->icsk_ca_state != TCP_CA_Open)
1619 goto send_now;
1620
1621 /* Defer for less than two clock ticks. */
1622 if (tp->tso_deferred &&
1623 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1624 goto send_now;
1625
1626 in_flight = tcp_packets_in_flight(tp);
1627
1628 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1629
1630 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1631
1632 /* From in_flight test above, we know that cwnd > in_flight. */
1633 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1634
1635 limit = min(send_win, cong_win);
1636
1637 /* If a full-sized TSO skb can be sent, do it. */
1638 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1639 tp->xmit_size_goal_segs * tp->mss_cache))
1640 goto send_now;
1641
1642 /* Middle in queue won't get any more data, full sendable already? */
1643 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1644 goto send_now;
1645
1646 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1647 if (win_divisor) {
1648 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1649
1650 /* If at least some fraction of a window is available,
1651 * just use it.
1652 */
1653 chunk /= win_divisor;
1654 if (limit >= chunk)
1655 goto send_now;
1656 } else {
1657 /* Different approach, try not to defer past a single
1658 * ACK. Receiver should ACK every other full sized
1659 * frame, so if we have space for more than 3 frames
1660 * then send now.
1661 */
1662 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1663 goto send_now;
1664 }
1665
1666 /* Ok, it looks like it is advisable to defer.
1667 * Do not rearm the timer if already set to not break TCP ACK clocking.
1668 */
1669 if (!tp->tso_deferred)
1670 tp->tso_deferred = 1 | (jiffies << 1);
1671
1672 return true;
1673
1674 send_now:
1675 tp->tso_deferred = 0;
1676 return false;
1677 }
1678
1679 /* Create a new MTU probe if we are ready.
1680 * MTU probe is regularly attempting to increase the path MTU by
1681 * deliberately sending larger packets. This discovers routing
1682 * changes resulting in larger path MTUs.
1683 *
1684 * Returns 0 if we should wait to probe (no cwnd available),
1685 * 1 if a probe was sent,
1686 * -1 otherwise
1687 */
1688 static int tcp_mtu_probe(struct sock *sk)
1689 {
1690 struct tcp_sock *tp = tcp_sk(sk);
1691 struct inet_connection_sock *icsk = inet_csk(sk);
1692 struct sk_buff *skb, *nskb, *next;
1693 int len;
1694 int probe_size;
1695 int size_needed;
1696 int copy;
1697 int mss_now;
1698
1699 /* Not currently probing/verifying,
1700 * not in recovery,
1701 * have enough cwnd, and
1702 * not SACKing (the variable headers throw things off) */
1703 if (!icsk->icsk_mtup.enabled ||
1704 icsk->icsk_mtup.probe_size ||
1705 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1706 tp->snd_cwnd < 11 ||
1707 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1708 return -1;
1709
1710 /* Very simple search strategy: just double the MSS. */
1711 mss_now = tcp_current_mss(sk);
1712 probe_size = 2 * tp->mss_cache;
1713 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1714 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1715 /* TODO: set timer for probe_converge_event */
1716 return -1;
1717 }
1718
1719 /* Have enough data in the send queue to probe? */
1720 if (tp->write_seq - tp->snd_nxt < size_needed)
1721 return -1;
1722
1723 if (tp->snd_wnd < size_needed)
1724 return -1;
1725 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1726 return 0;
1727
1728 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1729 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1730 if (!tcp_packets_in_flight(tp))
1731 return -1;
1732 else
1733 return 0;
1734 }
1735
1736 /* We're allowed to probe. Build it now. */
1737 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1738 return -1;
1739 sk->sk_wmem_queued += nskb->truesize;
1740 sk_mem_charge(sk, nskb->truesize);
1741
1742 skb = tcp_send_head(sk);
1743
1744 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1745 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1746 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1747 TCP_SKB_CB(nskb)->sacked = 0;
1748 nskb->csum = 0;
1749 nskb->ip_summed = skb->ip_summed;
1750
1751 tcp_insert_write_queue_before(nskb, skb, sk);
1752
1753 len = 0;
1754 tcp_for_write_queue_from_safe(skb, next, sk) {
1755 copy = min_t(int, skb->len, probe_size - len);
1756 if (nskb->ip_summed) {
1757 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1758 } else {
1759 __wsum csum = skb_copy_and_csum_bits(skb, 0,
1760 skb_put(nskb, copy),
1761 copy, 0);
1762 nskb->csum = csum_block_add(nskb->csum, csum, len);
1763 }
1764
1765 if (skb->len <= copy) {
1766 /* We've eaten all the data from this skb.
1767 * Throw it away. */
1768 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1769 tcp_unlink_write_queue(skb, sk);
1770 sk_wmem_free_skb(sk, skb);
1771 } else {
1772 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1773 ~(TCPHDR_FIN|TCPHDR_PSH);
1774 if (!skb_shinfo(skb)->nr_frags) {
1775 skb_pull(skb, copy);
1776 if (skb->ip_summed != CHECKSUM_PARTIAL)
1777 skb->csum = csum_partial(skb->data,
1778 skb->len, 0);
1779 } else {
1780 __pskb_trim_head(skb, copy);
1781 tcp_set_skb_tso_segs(sk, skb, mss_now);
1782 }
1783 TCP_SKB_CB(skb)->seq += copy;
1784 }
1785
1786 len += copy;
1787
1788 if (len >= probe_size)
1789 break;
1790 }
1791 tcp_init_tso_segs(sk, nskb, nskb->len);
1792
1793 /* We're ready to send. If this fails, the probe will
1794 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1795 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1796 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1797 /* Decrement cwnd here because we are sending
1798 * effectively two packets. */
1799 tp->snd_cwnd--;
1800 tcp_event_new_data_sent(sk, nskb);
1801
1802 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1803 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1804 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1805
1806 return 1;
1807 }
1808
1809 return -1;
1810 }
1811
1812 /* This routine writes packets to the network. It advances the
1813 * send_head. This happens as incoming acks open up the remote
1814 * window for us.
1815 *
1816 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1817 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1818 * account rare use of URG, this is not a big flaw.
1819 *
1820 * Send at most one packet when push_one > 0. Temporarily ignore
1821 * cwnd limit to force at most one packet out when push_one == 2.
1822
1823 * Returns true, if no segments are in flight and we have queued segments,
1824 * but cannot send anything now because of SWS or another problem.
1825 */
1826 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1827 int push_one, gfp_t gfp)
1828 {
1829 struct tcp_sock *tp = tcp_sk(sk);
1830 struct sk_buff *skb;
1831 unsigned int tso_segs, sent_pkts;
1832 int cwnd_quota;
1833 int result;
1834
1835 sent_pkts = 0;
1836
1837 if (!push_one) {
1838 /* Do MTU probing. */
1839 result = tcp_mtu_probe(sk);
1840 if (!result) {
1841 return false;
1842 } else if (result > 0) {
1843 sent_pkts = 1;
1844 }
1845 }
1846
1847 while ((skb = tcp_send_head(sk))) {
1848 unsigned int limit;
1849
1850 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1851 BUG_ON(!tso_segs);
1852
1853 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1854 goto repair; /* Skip network transmission */
1855
1856 cwnd_quota = tcp_cwnd_test(tp, skb);
1857 if (!cwnd_quota) {
1858 if (push_one == 2)
1859 /* Force out a loss probe pkt. */
1860 cwnd_quota = 1;
1861 else
1862 break;
1863 }
1864
1865 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1866 break;
1867
1868 if (tso_segs == 1 || !sk->sk_gso_max_segs) {
1869 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1870 (tcp_skb_is_last(sk, skb) ?
1871 nonagle : TCP_NAGLE_PUSH))))
1872 break;
1873 } else {
1874 if (!push_one && tcp_tso_should_defer(sk, skb))
1875 break;
1876 }
1877
1878 /* TCP Small Queues :
1879 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
1880 * This allows for :
1881 * - better RTT estimation and ACK scheduling
1882 * - faster recovery
1883 * - high rates
1884 * Alas, some drivers / subsystems require a fair amount
1885 * of queued bytes to ensure line rate.
1886 * One example is wifi aggregation (802.11 AMPDU)
1887 */
1888 limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
1889 sk->sk_pacing_rate >> 10);
1890
1891 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1892 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1893 /* It is possible TX completion already happened
1894 * before we set TSQ_THROTTLED, so we must
1895 * test again the condition.
1896 * We abuse smp_mb__after_clear_bit() because
1897 * there is no smp_mb__after_set_bit() yet
1898 */
1899 smp_mb__after_clear_bit();
1900 if (atomic_read(&sk->sk_wmem_alloc) > limit)
1901 break;
1902 }
1903
1904 limit = mss_now;
1905 if (tso_segs > 1 && sk->sk_gso_max_segs && !tcp_urg_mode(tp))
1906 limit = tcp_mss_split_point(sk, skb, mss_now,
1907 min_t(unsigned int,
1908 cwnd_quota,
1909 sk->sk_gso_max_segs));
1910
1911 if (skb->len > limit &&
1912 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1913 break;
1914
1915 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1916
1917 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1918 break;
1919
1920 repair:
1921 /* Advance the send_head. This one is sent out.
1922 * This call will increment packets_out.
1923 */
1924 tcp_event_new_data_sent(sk, skb);
1925
1926 tcp_minshall_update(tp, mss_now, skb);
1927 sent_pkts += tcp_skb_pcount(skb);
1928
1929 if (push_one)
1930 break;
1931 }
1932
1933 if (likely(sent_pkts)) {
1934 if (tcp_in_cwnd_reduction(sk))
1935 tp->prr_out += sent_pkts;
1936
1937 /* Send one loss probe per tail loss episode. */
1938 if (push_one != 2)
1939 tcp_schedule_loss_probe(sk);
1940 tcp_cwnd_validate(sk);
1941 return false;
1942 }
1943 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
1944 }
1945
1946 bool tcp_schedule_loss_probe(struct sock *sk)
1947 {
1948 struct inet_connection_sock *icsk = inet_csk(sk);
1949 struct tcp_sock *tp = tcp_sk(sk);
1950 u32 timeout, tlp_time_stamp, rto_time_stamp;
1951 u32 rtt = tp->srtt >> 3;
1952
1953 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
1954 return false;
1955 /* No consecutive loss probes. */
1956 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
1957 tcp_rearm_rto(sk);
1958 return false;
1959 }
1960 /* Don't do any loss probe on a Fast Open connection before 3WHS
1961 * finishes.
1962 */
1963 if (sk->sk_state == TCP_SYN_RECV)
1964 return false;
1965
1966 /* TLP is only scheduled when next timer event is RTO. */
1967 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
1968 return false;
1969
1970 /* Schedule a loss probe in 2*RTT for SACK capable connections
1971 * in Open state, that are either limited by cwnd or application.
1972 */
1973 if (sysctl_tcp_early_retrans < 3 || !rtt || !tp->packets_out ||
1974 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
1975 return false;
1976
1977 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
1978 tcp_send_head(sk))
1979 return false;
1980
1981 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
1982 * for delayed ack when there's one outstanding packet.
1983 */
1984 timeout = rtt << 1;
1985 if (tp->packets_out == 1)
1986 timeout = max_t(u32, timeout,
1987 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
1988 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
1989
1990 /* If RTO is shorter, just schedule TLP in its place. */
1991 tlp_time_stamp = tcp_time_stamp + timeout;
1992 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
1993 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
1994 s32 delta = rto_time_stamp - tcp_time_stamp;
1995 if (delta > 0)
1996 timeout = delta;
1997 }
1998
1999 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2000 TCP_RTO_MAX);
2001 return true;
2002 }
2003
2004 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2005 * retransmit the last segment.
2006 */
2007 void tcp_send_loss_probe(struct sock *sk)
2008 {
2009 struct tcp_sock *tp = tcp_sk(sk);
2010 struct sk_buff *skb;
2011 int pcount;
2012 int mss = tcp_current_mss(sk);
2013 int err = -1;
2014
2015 if (tcp_send_head(sk) != NULL) {
2016 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2017 goto rearm_timer;
2018 }
2019
2020 /* At most one outstanding TLP retransmission. */
2021 if (tp->tlp_high_seq)
2022 goto rearm_timer;
2023
2024 /* Retransmit last segment. */
2025 skb = tcp_write_queue_tail(sk);
2026 if (WARN_ON(!skb))
2027 goto rearm_timer;
2028
2029 pcount = tcp_skb_pcount(skb);
2030 if (WARN_ON(!pcount))
2031 goto rearm_timer;
2032
2033 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2034 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
2035 goto rearm_timer;
2036 skb = tcp_write_queue_tail(sk);
2037 }
2038
2039 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2040 goto rearm_timer;
2041
2042 err = __tcp_retransmit_skb(sk, skb);
2043
2044 /* Record snd_nxt for loss detection. */
2045 if (likely(!err))
2046 tp->tlp_high_seq = tp->snd_nxt;
2047
2048 rearm_timer:
2049 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2050 inet_csk(sk)->icsk_rto,
2051 TCP_RTO_MAX);
2052
2053 if (likely(!err))
2054 NET_INC_STATS_BH(sock_net(sk),
2055 LINUX_MIB_TCPLOSSPROBES);
2056 return;
2057 }
2058
2059 /* Push out any pending frames which were held back due to
2060 * TCP_CORK or attempt at coalescing tiny packets.
2061 * The socket must be locked by the caller.
2062 */
2063 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2064 int nonagle)
2065 {
2066 /* If we are closed, the bytes will have to remain here.
2067 * In time closedown will finish, we empty the write queue and
2068 * all will be happy.
2069 */
2070 if (unlikely(sk->sk_state == TCP_CLOSE))
2071 return;
2072
2073 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2074 sk_gfp_atomic(sk, GFP_ATOMIC)))
2075 tcp_check_probe_timer(sk);
2076 }
2077
2078 /* Send _single_ skb sitting at the send head. This function requires
2079 * true push pending frames to setup probe timer etc.
2080 */
2081 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2082 {
2083 struct sk_buff *skb = tcp_send_head(sk);
2084
2085 BUG_ON(!skb || skb->len < mss_now);
2086
2087 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2088 }
2089
2090 /* This function returns the amount that we can raise the
2091 * usable window based on the following constraints
2092 *
2093 * 1. The window can never be shrunk once it is offered (RFC 793)
2094 * 2. We limit memory per socket
2095 *
2096 * RFC 1122:
2097 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2098 * RECV.NEXT + RCV.WIN fixed until:
2099 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2100 *
2101 * i.e. don't raise the right edge of the window until you can raise
2102 * it at least MSS bytes.
2103 *
2104 * Unfortunately, the recommended algorithm breaks header prediction,
2105 * since header prediction assumes th->window stays fixed.
2106 *
2107 * Strictly speaking, keeping th->window fixed violates the receiver
2108 * side SWS prevention criteria. The problem is that under this rule
2109 * a stream of single byte packets will cause the right side of the
2110 * window to always advance by a single byte.
2111 *
2112 * Of course, if the sender implements sender side SWS prevention
2113 * then this will not be a problem.
2114 *
2115 * BSD seems to make the following compromise:
2116 *
2117 * If the free space is less than the 1/4 of the maximum
2118 * space available and the free space is less than 1/2 mss,
2119 * then set the window to 0.
2120 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2121 * Otherwise, just prevent the window from shrinking
2122 * and from being larger than the largest representable value.
2123 *
2124 * This prevents incremental opening of the window in the regime
2125 * where TCP is limited by the speed of the reader side taking
2126 * data out of the TCP receive queue. It does nothing about
2127 * those cases where the window is constrained on the sender side
2128 * because the pipeline is full.
2129 *
2130 * BSD also seems to "accidentally" limit itself to windows that are a
2131 * multiple of MSS, at least until the free space gets quite small.
2132 * This would appear to be a side effect of the mbuf implementation.
2133 * Combining these two algorithms results in the observed behavior
2134 * of having a fixed window size at almost all times.
2135 *
2136 * Below we obtain similar behavior by forcing the offered window to
2137 * a multiple of the mss when it is feasible to do so.
2138 *
2139 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2140 * Regular options like TIMESTAMP are taken into account.
2141 */
2142 u32 __tcp_select_window(struct sock *sk)
2143 {
2144 struct inet_connection_sock *icsk = inet_csk(sk);
2145 struct tcp_sock *tp = tcp_sk(sk);
2146 /* MSS for the peer's data. Previous versions used mss_clamp
2147 * here. I don't know if the value based on our guesses
2148 * of peer's MSS is better for the performance. It's more correct
2149 * but may be worse for the performance because of rcv_mss
2150 * fluctuations. --SAW 1998/11/1
2151 */
2152 int mss = icsk->icsk_ack.rcv_mss;
2153 int free_space = tcp_space(sk);
2154 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2155 int window;
2156
2157 if (unlikely(mss > full_space)) {
2158 mss = full_space;
2159 if (mss <= 0)
2160 return 0;
2161 }
2162 if (free_space < (full_space >> 1)) {
2163 icsk->icsk_ack.quick = 0;
2164
2165 if (sk_under_memory_pressure(sk))
2166 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2167 4U * tp->advmss);
2168
2169 if (free_space < mss)
2170 return 0;
2171 }
2172
2173 if (free_space > tp->rcv_ssthresh)
2174 free_space = tp->rcv_ssthresh;
2175
2176 /* Don't do rounding if we are using window scaling, since the
2177 * scaled window will not line up with the MSS boundary anyway.
2178 */
2179 window = tp->rcv_wnd;
2180 if (tp->rx_opt.rcv_wscale) {
2181 window = free_space;
2182
2183 /* Advertise enough space so that it won't get scaled away.
2184 * Import case: prevent zero window announcement if
2185 * 1<<rcv_wscale > mss.
2186 */
2187 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2188 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2189 << tp->rx_opt.rcv_wscale);
2190 } else {
2191 /* Get the largest window that is a nice multiple of mss.
2192 * Window clamp already applied above.
2193 * If our current window offering is within 1 mss of the
2194 * free space we just keep it. This prevents the divide
2195 * and multiply from happening most of the time.
2196 * We also don't do any window rounding when the free space
2197 * is too small.
2198 */
2199 if (window <= free_space - mss || window > free_space)
2200 window = (free_space / mss) * mss;
2201 else if (mss == full_space &&
2202 free_space > window + (full_space >> 1))
2203 window = free_space;
2204 }
2205
2206 return window;
2207 }
2208
2209 /* Collapses two adjacent SKB's during retransmission. */
2210 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2211 {
2212 struct tcp_sock *tp = tcp_sk(sk);
2213 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2214 int skb_size, next_skb_size;
2215
2216 skb_size = skb->len;
2217 next_skb_size = next_skb->len;
2218
2219 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2220
2221 tcp_highest_sack_combine(sk, next_skb, skb);
2222
2223 tcp_unlink_write_queue(next_skb, sk);
2224
2225 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2226 next_skb_size);
2227
2228 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2229 skb->ip_summed = CHECKSUM_PARTIAL;
2230
2231 if (skb->ip_summed != CHECKSUM_PARTIAL)
2232 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2233
2234 /* Update sequence range on original skb. */
2235 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2236
2237 /* Merge over control information. This moves PSH/FIN etc. over */
2238 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2239
2240 /* All done, get rid of second SKB and account for it so
2241 * packet counting does not break.
2242 */
2243 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2244
2245 /* changed transmit queue under us so clear hints */
2246 tcp_clear_retrans_hints_partial(tp);
2247 if (next_skb == tp->retransmit_skb_hint)
2248 tp->retransmit_skb_hint = skb;
2249
2250 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2251
2252 sk_wmem_free_skb(sk, next_skb);
2253 }
2254
2255 /* Check if coalescing SKBs is legal. */
2256 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2257 {
2258 if (tcp_skb_pcount(skb) > 1)
2259 return false;
2260 /* TODO: SACK collapsing could be used to remove this condition */
2261 if (skb_shinfo(skb)->nr_frags != 0)
2262 return false;
2263 if (skb_cloned(skb))
2264 return false;
2265 if (skb == tcp_send_head(sk))
2266 return false;
2267 /* Some heurestics for collapsing over SACK'd could be invented */
2268 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2269 return false;
2270
2271 return true;
2272 }
2273
2274 /* Collapse packets in the retransmit queue to make to create
2275 * less packets on the wire. This is only done on retransmission.
2276 */
2277 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2278 int space)
2279 {
2280 struct tcp_sock *tp = tcp_sk(sk);
2281 struct sk_buff *skb = to, *tmp;
2282 bool first = true;
2283
2284 if (!sysctl_tcp_retrans_collapse)
2285 return;
2286 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2287 return;
2288
2289 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2290 if (!tcp_can_collapse(sk, skb))
2291 break;
2292
2293 space -= skb->len;
2294
2295 if (first) {
2296 first = false;
2297 continue;
2298 }
2299
2300 if (space < 0)
2301 break;
2302 /* Punt if not enough space exists in the first SKB for
2303 * the data in the second
2304 */
2305 if (skb->len > skb_availroom(to))
2306 break;
2307
2308 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2309 break;
2310
2311 tcp_collapse_retrans(sk, to);
2312 }
2313 }
2314
2315 /* This retransmits one SKB. Policy decisions and retransmit queue
2316 * state updates are done by the caller. Returns non-zero if an
2317 * error occurred which prevented the send.
2318 */
2319 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2320 {
2321 struct tcp_sock *tp = tcp_sk(sk);
2322 struct inet_connection_sock *icsk = inet_csk(sk);
2323 unsigned int cur_mss;
2324
2325 /* Inconslusive MTU probe */
2326 if (icsk->icsk_mtup.probe_size) {
2327 icsk->icsk_mtup.probe_size = 0;
2328 }
2329
2330 /* Do not sent more than we queued. 1/4 is reserved for possible
2331 * copying overhead: fragmentation, tunneling, mangling etc.
2332 */
2333 if (atomic_read(&sk->sk_wmem_alloc) >
2334 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2335 sk->sk_sndbuf))
2336 return -EAGAIN;
2337
2338 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2339 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2340 BUG();
2341 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2342 return -ENOMEM;
2343 }
2344
2345 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2346 return -EHOSTUNREACH; /* Routing failure or similar. */
2347
2348 cur_mss = tcp_current_mss(sk);
2349
2350 /* If receiver has shrunk his window, and skb is out of
2351 * new window, do not retransmit it. The exception is the
2352 * case, when window is shrunk to zero. In this case
2353 * our retransmit serves as a zero window probe.
2354 */
2355 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2356 TCP_SKB_CB(skb)->seq != tp->snd_una)
2357 return -EAGAIN;
2358
2359 if (skb->len > cur_mss) {
2360 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2361 return -ENOMEM; /* We'll try again later. */
2362 } else {
2363 int oldpcount = tcp_skb_pcount(skb);
2364
2365 if (unlikely(oldpcount > 1)) {
2366 if (skb_unclone(skb, GFP_ATOMIC))
2367 return -ENOMEM;
2368 tcp_init_tso_segs(sk, skb, cur_mss);
2369 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2370 }
2371 }
2372
2373 tcp_retrans_try_collapse(sk, skb, cur_mss);
2374
2375 /* Some Solaris stacks overoptimize and ignore the FIN on a
2376 * retransmit when old data is attached. So strip it off
2377 * since it is cheap to do so and saves bytes on the network.
2378 */
2379 if (skb->len > 0 &&
2380 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2381 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
2382 if (!pskb_trim(skb, 0)) {
2383 /* Reuse, even though it does some unnecessary work */
2384 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
2385 TCP_SKB_CB(skb)->tcp_flags);
2386 skb->ip_summed = CHECKSUM_NONE;
2387 }
2388 }
2389
2390 /* Make a copy, if the first transmission SKB clone we made
2391 * is still in somebody's hands, else make a clone.
2392 */
2393 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2394
2395 /* make sure skb->data is aligned on arches that require it
2396 * and check if ack-trimming & collapsing extended the headroom
2397 * beyond what csum_start can cover.
2398 */
2399 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2400 skb_headroom(skb) >= 0xFFFF)) {
2401 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2402 GFP_ATOMIC);
2403 return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2404 -ENOBUFS;
2405 } else {
2406 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2407 }
2408 }
2409
2410 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2411 {
2412 struct tcp_sock *tp = tcp_sk(sk);
2413 int err = __tcp_retransmit_skb(sk, skb);
2414
2415 if (err == 0) {
2416 /* Update global TCP statistics. */
2417 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2418
2419 tp->total_retrans++;
2420
2421 #if FASTRETRANS_DEBUG > 0
2422 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2423 net_dbg_ratelimited("retrans_out leaked\n");
2424 }
2425 #endif
2426 if (!tp->retrans_out)
2427 tp->lost_retrans_low = tp->snd_nxt;
2428 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2429 tp->retrans_out += tcp_skb_pcount(skb);
2430
2431 /* Save stamp of the first retransmit. */
2432 if (!tp->retrans_stamp)
2433 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2434
2435 /* snd_nxt is stored to detect loss of retransmitted segment,
2436 * see tcp_input.c tcp_sacktag_write_queue().
2437 */
2438 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2439 }
2440
2441 if (tp->undo_retrans < 0)
2442 tp->undo_retrans = 0;
2443 tp->undo_retrans += tcp_skb_pcount(skb);
2444 return err;
2445 }
2446
2447 /* Check if we forward retransmits are possible in the current
2448 * window/congestion state.
2449 */
2450 static bool tcp_can_forward_retransmit(struct sock *sk)
2451 {
2452 const struct inet_connection_sock *icsk = inet_csk(sk);
2453 const struct tcp_sock *tp = tcp_sk(sk);
2454
2455 /* Forward retransmissions are possible only during Recovery. */
2456 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2457 return false;
2458
2459 /* No forward retransmissions in Reno are possible. */
2460 if (tcp_is_reno(tp))
2461 return false;
2462
2463 /* Yeah, we have to make difficult choice between forward transmission
2464 * and retransmission... Both ways have their merits...
2465 *
2466 * For now we do not retransmit anything, while we have some new
2467 * segments to send. In the other cases, follow rule 3 for
2468 * NextSeg() specified in RFC3517.
2469 */
2470
2471 if (tcp_may_send_now(sk))
2472 return false;
2473
2474 return true;
2475 }
2476
2477 /* This gets called after a retransmit timeout, and the initially
2478 * retransmitted data is acknowledged. It tries to continue
2479 * resending the rest of the retransmit queue, until either
2480 * we've sent it all or the congestion window limit is reached.
2481 * If doing SACK, the first ACK which comes back for a timeout
2482 * based retransmit packet might feed us FACK information again.
2483 * If so, we use it to avoid unnecessarily retransmissions.
2484 */
2485 void tcp_xmit_retransmit_queue(struct sock *sk)
2486 {
2487 const struct inet_connection_sock *icsk = inet_csk(sk);
2488 struct tcp_sock *tp = tcp_sk(sk);
2489 struct sk_buff *skb;
2490 struct sk_buff *hole = NULL;
2491 u32 last_lost;
2492 int mib_idx;
2493 int fwd_rexmitting = 0;
2494
2495 if (!tp->packets_out)
2496 return;
2497
2498 if (!tp->lost_out)
2499 tp->retransmit_high = tp->snd_una;
2500
2501 if (tp->retransmit_skb_hint) {
2502 skb = tp->retransmit_skb_hint;
2503 last_lost = TCP_SKB_CB(skb)->end_seq;
2504 if (after(last_lost, tp->retransmit_high))
2505 last_lost = tp->retransmit_high;
2506 } else {
2507 skb = tcp_write_queue_head(sk);
2508 last_lost = tp->snd_una;
2509 }
2510
2511 tcp_for_write_queue_from(skb, sk) {
2512 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2513
2514 if (skb == tcp_send_head(sk))
2515 break;
2516 /* we could do better than to assign each time */
2517 if (hole == NULL)
2518 tp->retransmit_skb_hint = skb;
2519
2520 /* Assume this retransmit will generate
2521 * only one packet for congestion window
2522 * calculation purposes. This works because
2523 * tcp_retransmit_skb() will chop up the
2524 * packet to be MSS sized and all the
2525 * packet counting works out.
2526 */
2527 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2528 return;
2529
2530 if (fwd_rexmitting) {
2531 begin_fwd:
2532 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2533 break;
2534 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2535
2536 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2537 tp->retransmit_high = last_lost;
2538 if (!tcp_can_forward_retransmit(sk))
2539 break;
2540 /* Backtrack if necessary to non-L'ed skb */
2541 if (hole != NULL) {
2542 skb = hole;
2543 hole = NULL;
2544 }
2545 fwd_rexmitting = 1;
2546 goto begin_fwd;
2547
2548 } else if (!(sacked & TCPCB_LOST)) {
2549 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2550 hole = skb;
2551 continue;
2552
2553 } else {
2554 last_lost = TCP_SKB_CB(skb)->end_seq;
2555 if (icsk->icsk_ca_state != TCP_CA_Loss)
2556 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2557 else
2558 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2559 }
2560
2561 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2562 continue;
2563
2564 if (tcp_retransmit_skb(sk, skb)) {
2565 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2566 return;
2567 }
2568 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2569
2570 if (tcp_in_cwnd_reduction(sk))
2571 tp->prr_out += tcp_skb_pcount(skb);
2572
2573 if (skb == tcp_write_queue_head(sk))
2574 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2575 inet_csk(sk)->icsk_rto,
2576 TCP_RTO_MAX);
2577 }
2578 }
2579
2580 /* We allow to exceed memory limits for FIN packets to expedite
2581 * connection tear down and (memory) recovery.
2582 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2583 * or even be forced to close flow without any FIN.
2584 */
2585 static void sk_forced_wmem_schedule(struct sock *sk, int size)
2586 {
2587 int amt, status;
2588
2589 if (size <= sk->sk_forward_alloc)
2590 return;
2591 amt = sk_mem_pages(size);
2592 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2593 sk_memory_allocated_add(sk, amt, &status);
2594 }
2595
2596 /* Send a FIN. The caller locks the socket for us.
2597 * We should try to send a FIN packet really hard, but eventually give up.
2598 */
2599 void tcp_send_fin(struct sock *sk)
2600 {
2601 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2602 struct tcp_sock *tp = tcp_sk(sk);
2603
2604 /* Optimization, tack on the FIN if we have one skb in write queue and
2605 * this skb was not yet sent, or we are under memory pressure.
2606 * Note: in the latter case, FIN packet will be sent after a timeout,
2607 * as TCP stack thinks it has already been transmitted.
2608 */
2609 if (tskb && (tcp_send_head(sk) || sk_under_memory_pressure(sk))) {
2610 coalesce:
2611 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2612 TCP_SKB_CB(tskb)->end_seq++;
2613 tp->write_seq++;
2614 if (!tcp_send_head(sk)) {
2615 /* This means tskb was already sent.
2616 * Pretend we included the FIN on previous transmit.
2617 * We need to set tp->snd_nxt to the value it would have
2618 * if FIN had been sent. This is because retransmit path
2619 * does not change tp->snd_nxt.
2620 */
2621 tp->snd_nxt++;
2622 return;
2623 }
2624 } else {
2625 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2626 if (unlikely(!skb)) {
2627 if (tskb)
2628 goto coalesce;
2629 return;
2630 }
2631 skb_reserve(skb, MAX_TCP_HEADER);
2632 sk_forced_wmem_schedule(sk, skb->truesize);
2633 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2634 tcp_init_nondata_skb(skb, tp->write_seq,
2635 TCPHDR_ACK | TCPHDR_FIN);
2636 tcp_queue_skb(sk, skb);
2637 }
2638 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2639 }
2640
2641 /* We get here when a process closes a file descriptor (either due to
2642 * an explicit close() or as a byproduct of exit()'ing) and there
2643 * was unread data in the receive queue. This behavior is recommended
2644 * by RFC 2525, section 2.17. -DaveM
2645 */
2646 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2647 {
2648 struct sk_buff *skb;
2649
2650 /* NOTE: No TCP options attached and we never retransmit this. */
2651 skb = alloc_skb(MAX_TCP_HEADER, priority);
2652 if (!skb) {
2653 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2654 return;
2655 }
2656
2657 /* Reserve space for headers and prepare control bits. */
2658 skb_reserve(skb, MAX_TCP_HEADER);
2659 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2660 TCPHDR_ACK | TCPHDR_RST);
2661 /* Send it off. */
2662 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2663 if (tcp_transmit_skb(sk, skb, 0, priority))
2664 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2665
2666 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2667 }
2668
2669 /* Send a crossed SYN-ACK during socket establishment.
2670 * WARNING: This routine must only be called when we have already sent
2671 * a SYN packet that crossed the incoming SYN that caused this routine
2672 * to get called. If this assumption fails then the initial rcv_wnd
2673 * and rcv_wscale values will not be correct.
2674 */
2675 int tcp_send_synack(struct sock *sk)
2676 {
2677 struct sk_buff *skb;
2678
2679 skb = tcp_write_queue_head(sk);
2680 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2681 pr_debug("%s: wrong queue state\n", __func__);
2682 return -EFAULT;
2683 }
2684 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2685 if (skb_cloned(skb)) {
2686 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2687 if (nskb == NULL)
2688 return -ENOMEM;
2689 tcp_unlink_write_queue(skb, sk);
2690 skb_header_release(nskb);
2691 __tcp_add_write_queue_head(sk, nskb);
2692 sk_wmem_free_skb(sk, skb);
2693 sk->sk_wmem_queued += nskb->truesize;
2694 sk_mem_charge(sk, nskb->truesize);
2695 skb = nskb;
2696 }
2697
2698 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2699 TCP_ECN_send_synack(tcp_sk(sk), skb);
2700 }
2701 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2702 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2703 }
2704
2705 /**
2706 * tcp_make_synack - Prepare a SYN-ACK.
2707 * sk: listener socket
2708 * dst: dst entry attached to the SYNACK
2709 * req: request_sock pointer
2710 *
2711 * Allocate one skb and build a SYNACK packet.
2712 * @dst is consumed : Caller should not use it again.
2713 */
2714 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2715 struct request_sock *req,
2716 struct tcp_fastopen_cookie *foc)
2717 {
2718 struct tcp_out_options opts;
2719 struct inet_request_sock *ireq = inet_rsk(req);
2720 struct tcp_sock *tp = tcp_sk(sk);
2721 struct tcphdr *th;
2722 struct sk_buff *skb;
2723 struct tcp_md5sig_key *md5;
2724 int tcp_header_size;
2725 int mss;
2726
2727 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
2728 if (unlikely(!skb)) {
2729 dst_release(dst);
2730 return NULL;
2731 }
2732 /* Reserve space for headers. */
2733 skb_reserve(skb, MAX_TCP_HEADER);
2734
2735 skb_dst_set(skb, dst);
2736 security_skb_owned_by(skb, sk);
2737
2738 mss = dst_metric_advmss(dst);
2739 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2740 mss = tp->rx_opt.user_mss;
2741
2742 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2743 __u8 rcv_wscale;
2744 /* Set this up on the first call only */
2745 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2746
2747 /* limit the window selection if the user enforce a smaller rx buffer */
2748 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2749 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2750 req->window_clamp = tcp_full_space(sk);
2751
2752 /* tcp_full_space because it is guaranteed to be the first packet */
2753 tcp_select_initial_window(tcp_full_space(sk),
2754 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2755 &req->rcv_wnd,
2756 &req->window_clamp,
2757 ireq->wscale_ok,
2758 &rcv_wscale,
2759 dst_metric(dst, RTAX_INITRWND));
2760 ireq->rcv_wscale = rcv_wscale;
2761 }
2762
2763 memset(&opts, 0, sizeof(opts));
2764 #ifdef CONFIG_SYN_COOKIES
2765 if (unlikely(req->cookie_ts))
2766 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2767 else
2768 #endif
2769 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2770 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2771 foc) + sizeof(*th);
2772
2773 skb_push(skb, tcp_header_size);
2774 skb_reset_transport_header(skb);
2775
2776 th = tcp_hdr(skb);
2777 memset(th, 0, sizeof(struct tcphdr));
2778 th->syn = 1;
2779 th->ack = 1;
2780 TCP_ECN_make_synack(req, th);
2781 th->source = ireq->loc_port;
2782 th->dest = ireq->rmt_port;
2783 /* Setting of flags are superfluous here for callers (and ECE is
2784 * not even correctly set)
2785 */
2786 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2787 TCPHDR_SYN | TCPHDR_ACK);
2788
2789 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2790 /* XXX data is queued and acked as is. No buffer/window check */
2791 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2792
2793 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2794 th->window = htons(min(req->rcv_wnd, 65535U));
2795 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2796 th->doff = (tcp_header_size >> 2);
2797 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2798
2799 #ifdef CONFIG_TCP_MD5SIG
2800 /* Okay, we have all we need - do the md5 hash if needed */
2801 if (md5) {
2802 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2803 md5, NULL, req, skb);
2804 }
2805 #endif
2806
2807 /* Do not fool tcpdump (if any), clean our debris */
2808 skb->tstamp.tv64 = 0;
2809 return skb;
2810 }
2811 EXPORT_SYMBOL(tcp_make_synack);
2812
2813 /* Do all connect socket setups that can be done AF independent. */
2814 void tcp_connect_init(struct sock *sk)
2815 {
2816 const struct dst_entry *dst = __sk_dst_get(sk);
2817 struct tcp_sock *tp = tcp_sk(sk);
2818 __u8 rcv_wscale;
2819
2820 /* We'll fix this up when we get a response from the other end.
2821 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2822 */
2823 tp->tcp_header_len = sizeof(struct tcphdr) +
2824 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2825
2826 #ifdef CONFIG_TCP_MD5SIG
2827 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2828 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2829 #endif
2830
2831 /* If user gave his TCP_MAXSEG, record it to clamp */
2832 if (tp->rx_opt.user_mss)
2833 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2834 tp->max_window = 0;
2835 tcp_mtup_init(sk);
2836 tcp_sync_mss(sk, dst_mtu(dst));
2837
2838 if (!tp->window_clamp)
2839 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2840 tp->advmss = dst_metric_advmss(dst);
2841 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2842 tp->advmss = tp->rx_opt.user_mss;
2843
2844 tcp_initialize_rcv_mss(sk);
2845
2846 /* limit the window selection if the user enforce a smaller rx buffer */
2847 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2848 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2849 tp->window_clamp = tcp_full_space(sk);
2850
2851 tcp_select_initial_window(tcp_full_space(sk),
2852 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2853 &tp->rcv_wnd,
2854 &tp->window_clamp,
2855 sysctl_tcp_window_scaling,
2856 &rcv_wscale,
2857 dst_metric(dst, RTAX_INITRWND));
2858
2859 tp->rx_opt.rcv_wscale = rcv_wscale;
2860 tp->rcv_ssthresh = tp->rcv_wnd;
2861
2862 sk->sk_err = 0;
2863 sock_reset_flag(sk, SOCK_DONE);
2864 tp->snd_wnd = 0;
2865 tcp_init_wl(tp, 0);
2866 tp->snd_una = tp->write_seq;
2867 tp->snd_sml = tp->write_seq;
2868 tp->snd_up = tp->write_seq;
2869 tp->snd_nxt = tp->write_seq;
2870
2871 if (likely(!tp->repair))
2872 tp->rcv_nxt = 0;
2873 else
2874 tp->rcv_tstamp = tcp_time_stamp;
2875 tp->rcv_wup = tp->rcv_nxt;
2876 tp->copied_seq = tp->rcv_nxt;
2877
2878 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2879 inet_csk(sk)->icsk_retransmits = 0;
2880 tcp_clear_retrans(tp);
2881 }
2882
2883 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2884 {
2885 struct tcp_sock *tp = tcp_sk(sk);
2886 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2887
2888 tcb->end_seq += skb->len;
2889 skb_header_release(skb);
2890 __tcp_add_write_queue_tail(sk, skb);
2891 sk->sk_wmem_queued += skb->truesize;
2892 sk_mem_charge(sk, skb->truesize);
2893 tp->write_seq = tcb->end_seq;
2894 tp->packets_out += tcp_skb_pcount(skb);
2895 }
2896
2897 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2898 * queue a data-only packet after the regular SYN, such that regular SYNs
2899 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2900 * only the SYN sequence, the data are retransmitted in the first ACK.
2901 * If cookie is not cached or other error occurs, falls back to send a
2902 * regular SYN with Fast Open cookie request option.
2903 */
2904 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2905 {
2906 struct tcp_sock *tp = tcp_sk(sk);
2907 struct tcp_fastopen_request *fo = tp->fastopen_req;
2908 int syn_loss = 0, space, err = 0;
2909 unsigned long last_syn_loss = 0;
2910 struct sk_buff *syn_data;
2911
2912 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
2913 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2914 &syn_loss, &last_syn_loss);
2915 /* Recurring FO SYN losses: revert to regular handshake temporarily */
2916 if (syn_loss > 1 &&
2917 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2918 fo->cookie.len = -1;
2919 goto fallback;
2920 }
2921
2922 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2923 fo->cookie.len = -1;
2924 else if (fo->cookie.len <= 0)
2925 goto fallback;
2926
2927 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2928 * user-MSS. Reserve maximum option space for middleboxes that add
2929 * private TCP options. The cost is reduced data space in SYN :(
2930 */
2931 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2932 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2933 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2934 MAX_TCP_OPTION_SPACE;
2935
2936 space = min_t(size_t, space, fo->size);
2937
2938 /* limit to order-0 allocations */
2939 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
2940
2941 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation);
2942 if (!syn_data)
2943 goto fallback;
2944 syn_data->ip_summed = CHECKSUM_PARTIAL;
2945 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
2946 skb_shinfo(syn_data)->gso_segs = 1;
2947 if (unlikely(memcpy_fromiovecend(skb_put(syn_data, space),
2948 fo->data->msg_iov, 0, space))) {
2949 kfree_skb(syn_data);
2950 goto fallback;
2951 }
2952
2953 /* No more data pending in inet_wait_for_connect() */
2954 if (space == fo->size)
2955 fo->data = NULL;
2956 fo->copied = space;
2957
2958 tcp_connect_queue_skb(sk, syn_data);
2959
2960 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
2961
2962 /* Now full SYN+DATA was cloned and sent (or not),
2963 * remove the SYN from the original skb (syn_data)
2964 * we keep in write queue in case of a retransmit, as we
2965 * also have the SYN packet (with no data) in the same queue.
2966 */
2967 TCP_SKB_CB(syn_data)->seq++;
2968 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
2969 if (!err) {
2970 tp->syn_data = (fo->copied > 0);
2971 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2972 goto done;
2973 }
2974
2975 fallback:
2976 /* Send a regular SYN with Fast Open cookie request option */
2977 if (fo->cookie.len > 0)
2978 fo->cookie.len = 0;
2979 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2980 if (err)
2981 tp->syn_fastopen = 0;
2982 done:
2983 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
2984 return err;
2985 }
2986
2987 /* Build a SYN and send it off. */
2988 int tcp_connect(struct sock *sk)
2989 {
2990 struct tcp_sock *tp = tcp_sk(sk);
2991 struct sk_buff *buff;
2992 int err;
2993
2994 tcp_connect_init(sk);
2995
2996 if (unlikely(tp->repair)) {
2997 tcp_finish_connect(sk, NULL);
2998 return 0;
2999 }
3000
3001 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
3002 if (unlikely(!buff))
3003 return -ENOBUFS;
3004
3005 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3006 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
3007 tcp_connect_queue_skb(sk, buff);
3008 TCP_ECN_send_syn(sk, buff);
3009
3010 /* Send off SYN; include data in Fast Open. */
3011 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3012 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3013 if (err == -ECONNREFUSED)
3014 return err;
3015
3016 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3017 * in order to make this packet get counted in tcpOutSegs.
3018 */
3019 tp->snd_nxt = tp->write_seq;
3020 tp->pushed_seq = tp->write_seq;
3021 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3022
3023 /* Timer for repeating the SYN until an answer. */
3024 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3025 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3026 return 0;
3027 }
3028 EXPORT_SYMBOL(tcp_connect);
3029
3030 /* Send out a delayed ack, the caller does the policy checking
3031 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3032 * for details.
3033 */
3034 void tcp_send_delayed_ack(struct sock *sk)
3035 {
3036 struct inet_connection_sock *icsk = inet_csk(sk);
3037 int ato = icsk->icsk_ack.ato;
3038 unsigned long timeout;
3039
3040 if (ato > TCP_DELACK_MIN) {
3041 const struct tcp_sock *tp = tcp_sk(sk);
3042 int max_ato = HZ / 2;
3043
3044 if (icsk->icsk_ack.pingpong ||
3045 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3046 max_ato = TCP_DELACK_MAX;
3047
3048 /* Slow path, intersegment interval is "high". */
3049
3050 /* If some rtt estimate is known, use it to bound delayed ack.
3051 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3052 * directly.
3053 */
3054 if (tp->srtt) {
3055 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
3056
3057 if (rtt < max_ato)
3058 max_ato = rtt;
3059 }
3060
3061 ato = min(ato, max_ato);
3062 }
3063
3064 /* Stay within the limit we were given */
3065 timeout = jiffies + ato;
3066
3067 /* Use new timeout only if there wasn't a older one earlier. */
3068 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3069 /* If delack timer was blocked or is about to expire,
3070 * send ACK now.
3071 */
3072 if (icsk->icsk_ack.blocked ||
3073 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3074 tcp_send_ack(sk);
3075 return;
3076 }
3077
3078 if (!time_before(timeout, icsk->icsk_ack.timeout))
3079 timeout = icsk->icsk_ack.timeout;
3080 }
3081 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3082 icsk->icsk_ack.timeout = timeout;
3083 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3084 }
3085
3086 /* This routine sends an ack and also updates the window. */
3087 void tcp_send_ack(struct sock *sk)
3088 {
3089 struct sk_buff *buff;
3090
3091 /* If we have been reset, we may not send again. */
3092 if (sk->sk_state == TCP_CLOSE)
3093 return;
3094
3095 /* We are not putting this on the write queue, so
3096 * tcp_transmit_skb() will set the ownership to this
3097 * sock.
3098 */
3099 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3100 if (buff == NULL) {
3101 inet_csk_schedule_ack(sk);
3102 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3103 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3104 TCP_DELACK_MAX, TCP_RTO_MAX);
3105 return;
3106 }
3107
3108 /* Reserve space for headers and prepare control bits. */
3109 skb_reserve(buff, MAX_TCP_HEADER);
3110 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3111
3112 /* Send it off, this clears delayed acks for us. */
3113 TCP_SKB_CB(buff)->when = tcp_time_stamp;
3114 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3115 }
3116
3117 /* This routine sends a packet with an out of date sequence
3118 * number. It assumes the other end will try to ack it.
3119 *
3120 * Question: what should we make while urgent mode?
3121 * 4.4BSD forces sending single byte of data. We cannot send
3122 * out of window data, because we have SND.NXT==SND.MAX...
3123 *
3124 * Current solution: to send TWO zero-length segments in urgent mode:
3125 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3126 * out-of-date with SND.UNA-1 to probe window.
3127 */
3128 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3129 {
3130 struct tcp_sock *tp = tcp_sk(sk);
3131 struct sk_buff *skb;
3132
3133 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3134 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3135 if (skb == NULL)
3136 return -1;
3137
3138 /* Reserve space for headers and set control bits. */
3139 skb_reserve(skb, MAX_TCP_HEADER);
3140 /* Use a previous sequence. This should cause the other
3141 * end to send an ack. Don't queue or clone SKB, just
3142 * send it.
3143 */
3144 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3145 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3146 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3147 }
3148
3149 void tcp_send_window_probe(struct sock *sk)
3150 {
3151 if (sk->sk_state == TCP_ESTABLISHED) {
3152 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3153 tcp_xmit_probe_skb(sk, 0);
3154 }
3155 }
3156
3157 /* Initiate keepalive or window probe from timer. */
3158 int tcp_write_wakeup(struct sock *sk)
3159 {
3160 struct tcp_sock *tp = tcp_sk(sk);
3161 struct sk_buff *skb;
3162
3163 if (sk->sk_state == TCP_CLOSE)
3164 return -1;
3165
3166 if ((skb = tcp_send_head(sk)) != NULL &&
3167 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3168 int err;
3169 unsigned int mss = tcp_current_mss(sk);
3170 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3171
3172 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3173 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3174
3175 /* We are probing the opening of a window
3176 * but the window size is != 0
3177 * must have been a result SWS avoidance ( sender )
3178 */
3179 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3180 skb->len > mss) {
3181 seg_size = min(seg_size, mss);
3182 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3183 if (tcp_fragment(sk, skb, seg_size, mss))
3184 return -1;
3185 } else if (!tcp_skb_pcount(skb))
3186 tcp_set_skb_tso_segs(sk, skb, mss);
3187
3188 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3189 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3190 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3191 if (!err)
3192 tcp_event_new_data_sent(sk, skb);
3193 return err;
3194 } else {
3195 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3196 tcp_xmit_probe_skb(sk, 1);
3197 return tcp_xmit_probe_skb(sk, 0);
3198 }
3199 }
3200
3201 /* A window probe timeout has occurred. If window is not closed send
3202 * a partial packet else a zero probe.
3203 */
3204 void tcp_send_probe0(struct sock *sk)
3205 {
3206 struct inet_connection_sock *icsk = inet_csk(sk);
3207 struct tcp_sock *tp = tcp_sk(sk);
3208 int err;
3209
3210 err = tcp_write_wakeup(sk);
3211
3212 if (tp->packets_out || !tcp_send_head(sk)) {
3213 /* Cancel probe timer, if it is not required. */
3214 icsk->icsk_probes_out = 0;
3215 icsk->icsk_backoff = 0;
3216 return;
3217 }
3218
3219 if (err <= 0) {
3220 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3221 icsk->icsk_backoff++;
3222 icsk->icsk_probes_out++;
3223 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3224 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3225 TCP_RTO_MAX);
3226 } else {
3227 /* If packet was not sent due to local congestion,
3228 * do not backoff and do not remember icsk_probes_out.
3229 * Let local senders to fight for local resources.
3230 *
3231 * Use accumulated backoff yet.
3232 */
3233 if (!icsk->icsk_probes_out)
3234 icsk->icsk_probes_out = 1;
3235 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3236 min(icsk->icsk_rto << icsk->icsk_backoff,
3237 TCP_RESOURCE_PROBE_INTERVAL),
3238 TCP_RTO_MAX);
3239 }
3240 }