Merge branch 'bcache-for-upstream' of git://evilpiepirate.org/~kent/linux-bcache...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145 struct inet_sock *inet = inet_sk(sk);
146 struct tcp_sock *tp = tcp_sk(sk);
147 __be16 orig_sport, orig_dport;
148 __be32 daddr, nexthop;
149 struct flowi4 *fl4;
150 struct rtable *rt;
151 int err;
152 struct ip_options_rcu *inet_opt;
153
154 if (addr_len < sizeof(struct sockaddr_in))
155 return -EINVAL;
156
157 if (usin->sin_family != AF_INET)
158 return -EAFNOSUPPORT;
159
160 nexthop = daddr = usin->sin_addr.s_addr;
161 inet_opt = rcu_dereference_protected(inet->inet_opt,
162 sock_owned_by_user(sk));
163 if (inet_opt && inet_opt->opt.srr) {
164 if (!daddr)
165 return -EINVAL;
166 nexthop = inet_opt->opt.faddr;
167 }
168
169 orig_sport = inet->inet_sport;
170 orig_dport = usin->sin_port;
171 fl4 = &inet->cork.fl.u.ip4;
172 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174 IPPROTO_TCP,
175 orig_sport, orig_dport, sk, true);
176 if (IS_ERR(rt)) {
177 err = PTR_ERR(rt);
178 if (err == -ENETUNREACH)
179 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180 return err;
181 }
182
183 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184 ip_rt_put(rt);
185 return -ENETUNREACH;
186 }
187
188 if (!inet_opt || !inet_opt->opt.srr)
189 daddr = fl4->daddr;
190
191 if (!inet->inet_saddr)
192 inet->inet_saddr = fl4->saddr;
193 inet->inet_rcv_saddr = inet->inet_saddr;
194
195 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196 /* Reset inherited state */
197 tp->rx_opt.ts_recent = 0;
198 tp->rx_opt.ts_recent_stamp = 0;
199 if (likely(!tp->repair))
200 tp->write_seq = 0;
201 }
202
203 if (tcp_death_row.sysctl_tw_recycle &&
204 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207 inet->inet_dport = usin->sin_port;
208 inet->inet_daddr = daddr;
209
210 inet_csk(sk)->icsk_ext_hdr_len = 0;
211 if (inet_opt)
212 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216 /* Socket identity is still unknown (sport may be zero).
217 * However we set state to SYN-SENT and not releasing socket
218 * lock select source port, enter ourselves into the hash tables and
219 * complete initialization after this.
220 */
221 tcp_set_state(sk, TCP_SYN_SENT);
222 err = inet_hash_connect(&tcp_death_row, sk);
223 if (err)
224 goto failure;
225
226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 inet->inet_sport, inet->inet_dport, sk);
228 if (IS_ERR(rt)) {
229 err = PTR_ERR(rt);
230 rt = NULL;
231 goto failure;
232 }
233 /* OK, now commit destination to socket. */
234 sk->sk_gso_type = SKB_GSO_TCPV4;
235 sk_setup_caps(sk, &rt->dst);
236
237 if (!tp->write_seq && likely(!tp->repair))
238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 inet->inet_daddr,
240 inet->inet_sport,
241 usin->sin_port);
242
243 inet->inet_id = tp->write_seq ^ jiffies;
244
245 err = tcp_connect(sk);
246
247 rt = NULL;
248 if (err)
249 goto failure;
250
251 return 0;
252
253 failure:
254 /*
255 * This unhashes the socket and releases the local port,
256 * if necessary.
257 */
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
270 */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275 u32 mtu = tcp_sk(sk)->mtu_info;
276
277 dst = inet_csk_update_pmtu(sk, mtu);
278 if (!dst)
279 return;
280
281 /* Something is about to be wrong... Remember soft error
282 * for the case, if this connection will not able to recover.
283 */
284 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
285 sk->sk_err_soft = EMSGSIZE;
286
287 mtu = dst_mtu(dst);
288
289 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
290 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
291 tcp_sync_mss(sk, mtu);
292
293 /* Resend the TCP packet because it's
294 * clear that the old packet has been
295 * dropped. This is the new "fast" path mtu
296 * discovery.
297 */
298 tcp_simple_retransmit(sk);
299 } /* else let the usual retransmit timer handle it */
300 }
301
302 static void do_redirect(struct sk_buff *skb, struct sock *sk)
303 {
304 struct dst_entry *dst = __sk_dst_check(sk, 0);
305
306 if (dst)
307 dst->ops->redirect(dst, sk, skb);
308 }
309
310 /*
311 * This routine is called by the ICMP module when it gets some
312 * sort of error condition. If err < 0 then the socket should
313 * be closed and the error returned to the user. If err > 0
314 * it's just the icmp type << 8 | icmp code. After adjustment
315 * header points to the first 8 bytes of the tcp header. We need
316 * to find the appropriate port.
317 *
318 * The locking strategy used here is very "optimistic". When
319 * someone else accesses the socket the ICMP is just dropped
320 * and for some paths there is no check at all.
321 * A more general error queue to queue errors for later handling
322 * is probably better.
323 *
324 */
325
326 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
327 {
328 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
329 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
330 struct inet_connection_sock *icsk;
331 struct tcp_sock *tp;
332 struct inet_sock *inet;
333 const int type = icmp_hdr(icmp_skb)->type;
334 const int code = icmp_hdr(icmp_skb)->code;
335 struct sock *sk;
336 struct sk_buff *skb;
337 struct request_sock *req;
338 __u32 seq;
339 __u32 remaining;
340 int err;
341 struct net *net = dev_net(icmp_skb->dev);
342
343 if (icmp_skb->len < (iph->ihl << 2) + 8) {
344 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
345 return;
346 }
347
348 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
349 iph->saddr, th->source, inet_iif(icmp_skb));
350 if (!sk) {
351 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352 return;
353 }
354 if (sk->sk_state == TCP_TIME_WAIT) {
355 inet_twsk_put(inet_twsk(sk));
356 return;
357 }
358
359 bh_lock_sock(sk);
360 /* If too many ICMPs get dropped on busy
361 * servers this needs to be solved differently.
362 * We do take care of PMTU discovery (RFC1191) special case :
363 * we can receive locally generated ICMP messages while socket is held.
364 */
365 if (sock_owned_by_user(sk)) {
366 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
367 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
368 }
369 if (sk->sk_state == TCP_CLOSE)
370 goto out;
371
372 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
373 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
374 goto out;
375 }
376
377 icsk = inet_csk(sk);
378 tp = tcp_sk(sk);
379 req = tp->fastopen_rsk;
380 seq = ntohl(th->seq);
381 if (sk->sk_state != TCP_LISTEN &&
382 !between(seq, tp->snd_una, tp->snd_nxt) &&
383 (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
384 /* For a Fast Open socket, allow seq to be snt_isn. */
385 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
386 goto out;
387 }
388
389 switch (type) {
390 case ICMP_REDIRECT:
391 do_redirect(icmp_skb, sk);
392 goto out;
393 case ICMP_SOURCE_QUENCH:
394 /* Just silently ignore these. */
395 goto out;
396 case ICMP_PARAMETERPROB:
397 err = EPROTO;
398 break;
399 case ICMP_DEST_UNREACH:
400 if (code > NR_ICMP_UNREACH)
401 goto out;
402
403 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
404 /* We are not interested in TCP_LISTEN and open_requests
405 * (SYN-ACKs send out by Linux are always <576bytes so
406 * they should go through unfragmented).
407 */
408 if (sk->sk_state == TCP_LISTEN)
409 goto out;
410
411 tp->mtu_info = info;
412 if (!sock_owned_by_user(sk)) {
413 tcp_v4_mtu_reduced(sk);
414 } else {
415 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
416 sock_hold(sk);
417 }
418 goto out;
419 }
420
421 err = icmp_err_convert[code].errno;
422 /* check if icmp_skb allows revert of backoff
423 * (see draft-zimmermann-tcp-lcd) */
424 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
425 break;
426 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
427 !icsk->icsk_backoff)
428 break;
429
430 /* XXX (TFO) - revisit the following logic for TFO */
431
432 if (sock_owned_by_user(sk))
433 break;
434
435 icsk->icsk_backoff--;
436 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
437 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
438 tcp_bound_rto(sk);
439
440 skb = tcp_write_queue_head(sk);
441 BUG_ON(!skb);
442
443 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
444 tcp_time_stamp - TCP_SKB_CB(skb)->when);
445
446 if (remaining) {
447 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
448 remaining, TCP_RTO_MAX);
449 } else {
450 /* RTO revert clocked out retransmission.
451 * Will retransmit now */
452 tcp_retransmit_timer(sk);
453 }
454
455 break;
456 case ICMP_TIME_EXCEEDED:
457 err = EHOSTUNREACH;
458 break;
459 default:
460 goto out;
461 }
462
463 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
464 * than following the TCP_SYN_RECV case and closing the socket,
465 * we ignore the ICMP error and keep trying like a fully established
466 * socket. Is this the right thing to do?
467 */
468 if (req && req->sk == NULL)
469 goto out;
470
471 switch (sk->sk_state) {
472 struct request_sock *req, **prev;
473 case TCP_LISTEN:
474 if (sock_owned_by_user(sk))
475 goto out;
476
477 req = inet_csk_search_req(sk, &prev, th->dest,
478 iph->daddr, iph->saddr);
479 if (!req)
480 goto out;
481
482 /* ICMPs are not backlogged, hence we cannot get
483 an established socket here.
484 */
485 WARN_ON(req->sk);
486
487 if (seq != tcp_rsk(req)->snt_isn) {
488 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
489 goto out;
490 }
491
492 /*
493 * Still in SYN_RECV, just remove it silently.
494 * There is no good way to pass the error to the newly
495 * created socket, and POSIX does not want network
496 * errors returned from accept().
497 */
498 inet_csk_reqsk_queue_drop(sk, req, prev);
499 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
500 goto out;
501
502 case TCP_SYN_SENT:
503 case TCP_SYN_RECV: /* Cannot happen.
504 It can f.e. if SYNs crossed,
505 or Fast Open.
506 */
507 if (!sock_owned_by_user(sk)) {
508 sk->sk_err = err;
509
510 sk->sk_error_report(sk);
511
512 tcp_done(sk);
513 } else {
514 sk->sk_err_soft = err;
515 }
516 goto out;
517 }
518
519 /* If we've already connected we will keep trying
520 * until we time out, or the user gives up.
521 *
522 * rfc1122 4.2.3.9 allows to consider as hard errors
523 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524 * but it is obsoleted by pmtu discovery).
525 *
526 * Note, that in modern internet, where routing is unreliable
527 * and in each dark corner broken firewalls sit, sending random
528 * errors ordered by their masters even this two messages finally lose
529 * their original sense (even Linux sends invalid PORT_UNREACHs)
530 *
531 * Now we are in compliance with RFCs.
532 * --ANK (980905)
533 */
534
535 inet = inet_sk(sk);
536 if (!sock_owned_by_user(sk) && inet->recverr) {
537 sk->sk_err = err;
538 sk->sk_error_report(sk);
539 } else { /* Only an error on timeout */
540 sk->sk_err_soft = err;
541 }
542
543 out:
544 bh_unlock_sock(sk);
545 sock_put(sk);
546 }
547
548 static void __tcp_v4_send_check(struct sk_buff *skb,
549 __be32 saddr, __be32 daddr)
550 {
551 struct tcphdr *th = tcp_hdr(skb);
552
553 if (skb->ip_summed == CHECKSUM_PARTIAL) {
554 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555 skb->csum_start = skb_transport_header(skb) - skb->head;
556 skb->csum_offset = offsetof(struct tcphdr, check);
557 } else {
558 th->check = tcp_v4_check(skb->len, saddr, daddr,
559 csum_partial(th,
560 th->doff << 2,
561 skb->csum));
562 }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568 const struct inet_sock *inet = inet_sk(sk);
569
570 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 int tcp_v4_gso_send_check(struct sk_buff *skb)
575 {
576 const struct iphdr *iph;
577 struct tcphdr *th;
578
579 if (!pskb_may_pull(skb, sizeof(*th)))
580 return -EINVAL;
581
582 iph = ip_hdr(skb);
583 th = tcp_hdr(skb);
584
585 th->check = 0;
586 skb->ip_summed = CHECKSUM_PARTIAL;
587 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
588 return 0;
589 }
590
591 /*
592 * This routine will send an RST to the other tcp.
593 *
594 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
595 * for reset.
596 * Answer: if a packet caused RST, it is not for a socket
597 * existing in our system, if it is matched to a socket,
598 * it is just duplicate segment or bug in other side's TCP.
599 * So that we build reply only basing on parameters
600 * arrived with segment.
601 * Exception: precedence violation. We do not implement it in any case.
602 */
603
604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
605 {
606 const struct tcphdr *th = tcp_hdr(skb);
607 struct {
608 struct tcphdr th;
609 #ifdef CONFIG_TCP_MD5SIG
610 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
611 #endif
612 } rep;
613 struct ip_reply_arg arg;
614 #ifdef CONFIG_TCP_MD5SIG
615 struct tcp_md5sig_key *key;
616 const __u8 *hash_location = NULL;
617 unsigned char newhash[16];
618 int genhash;
619 struct sock *sk1 = NULL;
620 #endif
621 struct net *net;
622
623 /* Never send a reset in response to a reset. */
624 if (th->rst)
625 return;
626
627 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
628 return;
629
630 /* Swap the send and the receive. */
631 memset(&rep, 0, sizeof(rep));
632 rep.th.dest = th->source;
633 rep.th.source = th->dest;
634 rep.th.doff = sizeof(struct tcphdr) / 4;
635 rep.th.rst = 1;
636
637 if (th->ack) {
638 rep.th.seq = th->ack_seq;
639 } else {
640 rep.th.ack = 1;
641 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
642 skb->len - (th->doff << 2));
643 }
644
645 memset(&arg, 0, sizeof(arg));
646 arg.iov[0].iov_base = (unsigned char *)&rep;
647 arg.iov[0].iov_len = sizeof(rep.th);
648
649 #ifdef CONFIG_TCP_MD5SIG
650 hash_location = tcp_parse_md5sig_option(th);
651 if (!sk && hash_location) {
652 /*
653 * active side is lost. Try to find listening socket through
654 * source port, and then find md5 key through listening socket.
655 * we are not loose security here:
656 * Incoming packet is checked with md5 hash with finding key,
657 * no RST generated if md5 hash doesn't match.
658 */
659 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
660 &tcp_hashinfo, ip_hdr(skb)->saddr,
661 th->source, ip_hdr(skb)->daddr,
662 ntohs(th->source), inet_iif(skb));
663 /* don't send rst if it can't find key */
664 if (!sk1)
665 return;
666 rcu_read_lock();
667 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
668 &ip_hdr(skb)->saddr, AF_INET);
669 if (!key)
670 goto release_sk1;
671
672 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
673 if (genhash || memcmp(hash_location, newhash, 16) != 0)
674 goto release_sk1;
675 } else {
676 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
677 &ip_hdr(skb)->saddr,
678 AF_INET) : NULL;
679 }
680
681 if (key) {
682 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
683 (TCPOPT_NOP << 16) |
684 (TCPOPT_MD5SIG << 8) |
685 TCPOLEN_MD5SIG);
686 /* Update length and the length the header thinks exists */
687 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
688 rep.th.doff = arg.iov[0].iov_len / 4;
689
690 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
691 key, ip_hdr(skb)->saddr,
692 ip_hdr(skb)->daddr, &rep.th);
693 }
694 #endif
695 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
696 ip_hdr(skb)->saddr, /* XXX */
697 arg.iov[0].iov_len, IPPROTO_TCP, 0);
698 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
699 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
700 /* When socket is gone, all binding information is lost.
701 * routing might fail in this case. No choice here, if we choose to force
702 * input interface, we will misroute in case of asymmetric route.
703 */
704 if (sk)
705 arg.bound_dev_if = sk->sk_bound_dev_if;
706
707 net = dev_net(skb_dst(skb)->dev);
708 arg.tos = ip_hdr(skb)->tos;
709 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
710 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
711
712 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
713 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
714
715 #ifdef CONFIG_TCP_MD5SIG
716 release_sk1:
717 if (sk1) {
718 rcu_read_unlock();
719 sock_put(sk1);
720 }
721 #endif
722 }
723
724 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
725 outside socket context is ugly, certainly. What can I do?
726 */
727
728 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
729 u32 win, u32 tsval, u32 tsecr, int oif,
730 struct tcp_md5sig_key *key,
731 int reply_flags, u8 tos)
732 {
733 const struct tcphdr *th = tcp_hdr(skb);
734 struct {
735 struct tcphdr th;
736 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
737 #ifdef CONFIG_TCP_MD5SIG
738 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
739 #endif
740 ];
741 } rep;
742 struct ip_reply_arg arg;
743 struct net *net = dev_net(skb_dst(skb)->dev);
744
745 memset(&rep.th, 0, sizeof(struct tcphdr));
746 memset(&arg, 0, sizeof(arg));
747
748 arg.iov[0].iov_base = (unsigned char *)&rep;
749 arg.iov[0].iov_len = sizeof(rep.th);
750 if (tsecr) {
751 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
752 (TCPOPT_TIMESTAMP << 8) |
753 TCPOLEN_TIMESTAMP);
754 rep.opt[1] = htonl(tsval);
755 rep.opt[2] = htonl(tsecr);
756 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
757 }
758
759 /* Swap the send and the receive. */
760 rep.th.dest = th->source;
761 rep.th.source = th->dest;
762 rep.th.doff = arg.iov[0].iov_len / 4;
763 rep.th.seq = htonl(seq);
764 rep.th.ack_seq = htonl(ack);
765 rep.th.ack = 1;
766 rep.th.window = htons(win);
767
768 #ifdef CONFIG_TCP_MD5SIG
769 if (key) {
770 int offset = (tsecr) ? 3 : 0;
771
772 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
773 (TCPOPT_NOP << 16) |
774 (TCPOPT_MD5SIG << 8) |
775 TCPOLEN_MD5SIG);
776 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
777 rep.th.doff = arg.iov[0].iov_len/4;
778
779 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
780 key, ip_hdr(skb)->saddr,
781 ip_hdr(skb)->daddr, &rep.th);
782 }
783 #endif
784 arg.flags = reply_flags;
785 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
786 ip_hdr(skb)->saddr, /* XXX */
787 arg.iov[0].iov_len, IPPROTO_TCP, 0);
788 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
789 if (oif)
790 arg.bound_dev_if = oif;
791 arg.tos = tos;
792 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
793 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
794
795 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
796 }
797
798 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
799 {
800 struct inet_timewait_sock *tw = inet_twsk(sk);
801 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
802
803 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
804 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
805 tcp_time_stamp + tcptw->tw_ts_offset,
806 tcptw->tw_ts_recent,
807 tw->tw_bound_dev_if,
808 tcp_twsk_md5_key(tcptw),
809 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
810 tw->tw_tos
811 );
812
813 inet_twsk_put(tw);
814 }
815
816 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
817 struct request_sock *req)
818 {
819 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
820 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
821 */
822 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
823 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
824 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
825 tcp_time_stamp,
826 req->ts_recent,
827 0,
828 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
829 AF_INET),
830 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
831 ip_hdr(skb)->tos);
832 }
833
834 /*
835 * Send a SYN-ACK after having received a SYN.
836 * This still operates on a request_sock only, not on a big
837 * socket.
838 */
839 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
840 struct request_sock *req,
841 u16 queue_mapping,
842 bool nocache)
843 {
844 const struct inet_request_sock *ireq = inet_rsk(req);
845 struct flowi4 fl4;
846 int err = -1;
847 struct sk_buff * skb;
848
849 /* First, grab a route. */
850 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
851 return -1;
852
853 skb = tcp_make_synack(sk, dst, req, NULL);
854
855 if (skb) {
856 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
857
858 skb_set_queue_mapping(skb, queue_mapping);
859 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
860 ireq->rmt_addr,
861 ireq->opt);
862 err = net_xmit_eval(err);
863 if (!tcp_rsk(req)->snt_synack && !err)
864 tcp_rsk(req)->snt_synack = tcp_time_stamp;
865 }
866
867 return err;
868 }
869
870 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req)
871 {
872 int res = tcp_v4_send_synack(sk, NULL, req, 0, false);
873
874 if (!res)
875 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
876 return res;
877 }
878
879 /*
880 * IPv4 request_sock destructor.
881 */
882 static void tcp_v4_reqsk_destructor(struct request_sock *req)
883 {
884 kfree(inet_rsk(req)->opt);
885 }
886
887 /*
888 * Return true if a syncookie should be sent
889 */
890 bool tcp_syn_flood_action(struct sock *sk,
891 const struct sk_buff *skb,
892 const char *proto)
893 {
894 const char *msg = "Dropping request";
895 bool want_cookie = false;
896 struct listen_sock *lopt;
897
898
899
900 #ifdef CONFIG_SYN_COOKIES
901 if (sysctl_tcp_syncookies) {
902 msg = "Sending cookies";
903 want_cookie = true;
904 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
905 } else
906 #endif
907 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
908
909 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
910 if (!lopt->synflood_warned) {
911 lopt->synflood_warned = 1;
912 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
913 proto, ntohs(tcp_hdr(skb)->dest), msg);
914 }
915 return want_cookie;
916 }
917 EXPORT_SYMBOL(tcp_syn_flood_action);
918
919 /*
920 * Save and compile IPv4 options into the request_sock if needed.
921 */
922 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
923 {
924 const struct ip_options *opt = &(IPCB(skb)->opt);
925 struct ip_options_rcu *dopt = NULL;
926
927 if (opt && opt->optlen) {
928 int opt_size = sizeof(*dopt) + opt->optlen;
929
930 dopt = kmalloc(opt_size, GFP_ATOMIC);
931 if (dopt) {
932 if (ip_options_echo(&dopt->opt, skb)) {
933 kfree(dopt);
934 dopt = NULL;
935 }
936 }
937 }
938 return dopt;
939 }
940
941 #ifdef CONFIG_TCP_MD5SIG
942 /*
943 * RFC2385 MD5 checksumming requires a mapping of
944 * IP address->MD5 Key.
945 * We need to maintain these in the sk structure.
946 */
947
948 /* Find the Key structure for an address. */
949 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
950 const union tcp_md5_addr *addr,
951 int family)
952 {
953 struct tcp_sock *tp = tcp_sk(sk);
954 struct tcp_md5sig_key *key;
955 unsigned int size = sizeof(struct in_addr);
956 struct tcp_md5sig_info *md5sig;
957
958 /* caller either holds rcu_read_lock() or socket lock */
959 md5sig = rcu_dereference_check(tp->md5sig_info,
960 sock_owned_by_user(sk) ||
961 lockdep_is_held(&sk->sk_lock.slock));
962 if (!md5sig)
963 return NULL;
964 #if IS_ENABLED(CONFIG_IPV6)
965 if (family == AF_INET6)
966 size = sizeof(struct in6_addr);
967 #endif
968 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
969 if (key->family != family)
970 continue;
971 if (!memcmp(&key->addr, addr, size))
972 return key;
973 }
974 return NULL;
975 }
976 EXPORT_SYMBOL(tcp_md5_do_lookup);
977
978 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
979 struct sock *addr_sk)
980 {
981 union tcp_md5_addr *addr;
982
983 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
984 return tcp_md5_do_lookup(sk, addr, AF_INET);
985 }
986 EXPORT_SYMBOL(tcp_v4_md5_lookup);
987
988 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
989 struct request_sock *req)
990 {
991 union tcp_md5_addr *addr;
992
993 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
994 return tcp_md5_do_lookup(sk, addr, AF_INET);
995 }
996
997 /* This can be called on a newly created socket, from other files */
998 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
999 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1000 {
1001 /* Add Key to the list */
1002 struct tcp_md5sig_key *key;
1003 struct tcp_sock *tp = tcp_sk(sk);
1004 struct tcp_md5sig_info *md5sig;
1005
1006 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1007 if (key) {
1008 /* Pre-existing entry - just update that one. */
1009 memcpy(key->key, newkey, newkeylen);
1010 key->keylen = newkeylen;
1011 return 0;
1012 }
1013
1014 md5sig = rcu_dereference_protected(tp->md5sig_info,
1015 sock_owned_by_user(sk));
1016 if (!md5sig) {
1017 md5sig = kmalloc(sizeof(*md5sig), gfp);
1018 if (!md5sig)
1019 return -ENOMEM;
1020
1021 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1022 INIT_HLIST_HEAD(&md5sig->head);
1023 rcu_assign_pointer(tp->md5sig_info, md5sig);
1024 }
1025
1026 key = sock_kmalloc(sk, sizeof(*key), gfp);
1027 if (!key)
1028 return -ENOMEM;
1029 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1030 sock_kfree_s(sk, key, sizeof(*key));
1031 return -ENOMEM;
1032 }
1033
1034 memcpy(key->key, newkey, newkeylen);
1035 key->keylen = newkeylen;
1036 key->family = family;
1037 memcpy(&key->addr, addr,
1038 (family == AF_INET6) ? sizeof(struct in6_addr) :
1039 sizeof(struct in_addr));
1040 hlist_add_head_rcu(&key->node, &md5sig->head);
1041 return 0;
1042 }
1043 EXPORT_SYMBOL(tcp_md5_do_add);
1044
1045 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1046 {
1047 struct tcp_sock *tp = tcp_sk(sk);
1048 struct tcp_md5sig_key *key;
1049 struct tcp_md5sig_info *md5sig;
1050
1051 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1052 if (!key)
1053 return -ENOENT;
1054 hlist_del_rcu(&key->node);
1055 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1056 kfree_rcu(key, rcu);
1057 md5sig = rcu_dereference_protected(tp->md5sig_info,
1058 sock_owned_by_user(sk));
1059 if (hlist_empty(&md5sig->head))
1060 tcp_free_md5sig_pool();
1061 return 0;
1062 }
1063 EXPORT_SYMBOL(tcp_md5_do_del);
1064
1065 static void tcp_clear_md5_list(struct sock *sk)
1066 {
1067 struct tcp_sock *tp = tcp_sk(sk);
1068 struct tcp_md5sig_key *key;
1069 struct hlist_node *n;
1070 struct tcp_md5sig_info *md5sig;
1071
1072 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1073
1074 if (!hlist_empty(&md5sig->head))
1075 tcp_free_md5sig_pool();
1076 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1077 hlist_del_rcu(&key->node);
1078 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1079 kfree_rcu(key, rcu);
1080 }
1081 }
1082
1083 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1084 int optlen)
1085 {
1086 struct tcp_md5sig cmd;
1087 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1088
1089 if (optlen < sizeof(cmd))
1090 return -EINVAL;
1091
1092 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1093 return -EFAULT;
1094
1095 if (sin->sin_family != AF_INET)
1096 return -EINVAL;
1097
1098 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1099 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1100 AF_INET);
1101
1102 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1103 return -EINVAL;
1104
1105 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1106 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1107 GFP_KERNEL);
1108 }
1109
1110 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1111 __be32 daddr, __be32 saddr, int nbytes)
1112 {
1113 struct tcp4_pseudohdr *bp;
1114 struct scatterlist sg;
1115
1116 bp = &hp->md5_blk.ip4;
1117
1118 /*
1119 * 1. the TCP pseudo-header (in the order: source IP address,
1120 * destination IP address, zero-padded protocol number, and
1121 * segment length)
1122 */
1123 bp->saddr = saddr;
1124 bp->daddr = daddr;
1125 bp->pad = 0;
1126 bp->protocol = IPPROTO_TCP;
1127 bp->len = cpu_to_be16(nbytes);
1128
1129 sg_init_one(&sg, bp, sizeof(*bp));
1130 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1131 }
1132
1133 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1134 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1135 {
1136 struct tcp_md5sig_pool *hp;
1137 struct hash_desc *desc;
1138
1139 hp = tcp_get_md5sig_pool();
1140 if (!hp)
1141 goto clear_hash_noput;
1142 desc = &hp->md5_desc;
1143
1144 if (crypto_hash_init(desc))
1145 goto clear_hash;
1146 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1147 goto clear_hash;
1148 if (tcp_md5_hash_header(hp, th))
1149 goto clear_hash;
1150 if (tcp_md5_hash_key(hp, key))
1151 goto clear_hash;
1152 if (crypto_hash_final(desc, md5_hash))
1153 goto clear_hash;
1154
1155 tcp_put_md5sig_pool();
1156 return 0;
1157
1158 clear_hash:
1159 tcp_put_md5sig_pool();
1160 clear_hash_noput:
1161 memset(md5_hash, 0, 16);
1162 return 1;
1163 }
1164
1165 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1166 const struct sock *sk, const struct request_sock *req,
1167 const struct sk_buff *skb)
1168 {
1169 struct tcp_md5sig_pool *hp;
1170 struct hash_desc *desc;
1171 const struct tcphdr *th = tcp_hdr(skb);
1172 __be32 saddr, daddr;
1173
1174 if (sk) {
1175 saddr = inet_sk(sk)->inet_saddr;
1176 daddr = inet_sk(sk)->inet_daddr;
1177 } else if (req) {
1178 saddr = inet_rsk(req)->loc_addr;
1179 daddr = inet_rsk(req)->rmt_addr;
1180 } else {
1181 const struct iphdr *iph = ip_hdr(skb);
1182 saddr = iph->saddr;
1183 daddr = iph->daddr;
1184 }
1185
1186 hp = tcp_get_md5sig_pool();
1187 if (!hp)
1188 goto clear_hash_noput;
1189 desc = &hp->md5_desc;
1190
1191 if (crypto_hash_init(desc))
1192 goto clear_hash;
1193
1194 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1195 goto clear_hash;
1196 if (tcp_md5_hash_header(hp, th))
1197 goto clear_hash;
1198 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1199 goto clear_hash;
1200 if (tcp_md5_hash_key(hp, key))
1201 goto clear_hash;
1202 if (crypto_hash_final(desc, md5_hash))
1203 goto clear_hash;
1204
1205 tcp_put_md5sig_pool();
1206 return 0;
1207
1208 clear_hash:
1209 tcp_put_md5sig_pool();
1210 clear_hash_noput:
1211 memset(md5_hash, 0, 16);
1212 return 1;
1213 }
1214 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1215
1216 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1217 {
1218 /*
1219 * This gets called for each TCP segment that arrives
1220 * so we want to be efficient.
1221 * We have 3 drop cases:
1222 * o No MD5 hash and one expected.
1223 * o MD5 hash and we're not expecting one.
1224 * o MD5 hash and its wrong.
1225 */
1226 const __u8 *hash_location = NULL;
1227 struct tcp_md5sig_key *hash_expected;
1228 const struct iphdr *iph = ip_hdr(skb);
1229 const struct tcphdr *th = tcp_hdr(skb);
1230 int genhash;
1231 unsigned char newhash[16];
1232
1233 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1234 AF_INET);
1235 hash_location = tcp_parse_md5sig_option(th);
1236
1237 /* We've parsed the options - do we have a hash? */
1238 if (!hash_expected && !hash_location)
1239 return false;
1240
1241 if (hash_expected && !hash_location) {
1242 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1243 return true;
1244 }
1245
1246 if (!hash_expected && hash_location) {
1247 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1248 return true;
1249 }
1250
1251 /* Okay, so this is hash_expected and hash_location -
1252 * so we need to calculate the checksum.
1253 */
1254 genhash = tcp_v4_md5_hash_skb(newhash,
1255 hash_expected,
1256 NULL, NULL, skb);
1257
1258 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1259 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1260 &iph->saddr, ntohs(th->source),
1261 &iph->daddr, ntohs(th->dest),
1262 genhash ? " tcp_v4_calc_md5_hash failed"
1263 : "");
1264 return true;
1265 }
1266 return false;
1267 }
1268
1269 #endif
1270
1271 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1272 .family = PF_INET,
1273 .obj_size = sizeof(struct tcp_request_sock),
1274 .rtx_syn_ack = tcp_v4_rtx_synack,
1275 .send_ack = tcp_v4_reqsk_send_ack,
1276 .destructor = tcp_v4_reqsk_destructor,
1277 .send_reset = tcp_v4_send_reset,
1278 .syn_ack_timeout = tcp_syn_ack_timeout,
1279 };
1280
1281 #ifdef CONFIG_TCP_MD5SIG
1282 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1283 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1284 .calc_md5_hash = tcp_v4_md5_hash_skb,
1285 };
1286 #endif
1287
1288 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1289 struct request_sock *req,
1290 struct tcp_fastopen_cookie *foc,
1291 struct tcp_fastopen_cookie *valid_foc)
1292 {
1293 bool skip_cookie = false;
1294 struct fastopen_queue *fastopenq;
1295
1296 if (likely(!fastopen_cookie_present(foc))) {
1297 /* See include/net/tcp.h for the meaning of these knobs */
1298 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1299 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1300 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1301 skip_cookie = true; /* no cookie to validate */
1302 else
1303 return false;
1304 }
1305 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1306 /* A FO option is present; bump the counter. */
1307 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1308
1309 /* Make sure the listener has enabled fastopen, and we don't
1310 * exceed the max # of pending TFO requests allowed before trying
1311 * to validating the cookie in order to avoid burning CPU cycles
1312 * unnecessarily.
1313 *
1314 * XXX (TFO) - The implication of checking the max_qlen before
1315 * processing a cookie request is that clients can't differentiate
1316 * between qlen overflow causing Fast Open to be disabled
1317 * temporarily vs a server not supporting Fast Open at all.
1318 */
1319 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1320 fastopenq == NULL || fastopenq->max_qlen == 0)
1321 return false;
1322
1323 if (fastopenq->qlen >= fastopenq->max_qlen) {
1324 struct request_sock *req1;
1325 spin_lock(&fastopenq->lock);
1326 req1 = fastopenq->rskq_rst_head;
1327 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1328 spin_unlock(&fastopenq->lock);
1329 NET_INC_STATS_BH(sock_net(sk),
1330 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1331 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1332 foc->len = -1;
1333 return false;
1334 }
1335 fastopenq->rskq_rst_head = req1->dl_next;
1336 fastopenq->qlen--;
1337 spin_unlock(&fastopenq->lock);
1338 reqsk_free(req1);
1339 }
1340 if (skip_cookie) {
1341 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1342 return true;
1343 }
1344 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1345 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1346 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1347 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1348 memcmp(&foc->val[0], &valid_foc->val[0],
1349 TCP_FASTOPEN_COOKIE_SIZE) != 0)
1350 return false;
1351 valid_foc->len = -1;
1352 }
1353 /* Acknowledge the data received from the peer. */
1354 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1355 return true;
1356 } else if (foc->len == 0) { /* Client requesting a cookie */
1357 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1358 NET_INC_STATS_BH(sock_net(sk),
1359 LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1360 } else {
1361 /* Client sent a cookie with wrong size. Treat it
1362 * the same as invalid and return a valid one.
1363 */
1364 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1365 }
1366 return false;
1367 }
1368
1369 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1370 struct sk_buff *skb,
1371 struct sk_buff *skb_synack,
1372 struct request_sock *req)
1373 {
1374 struct tcp_sock *tp = tcp_sk(sk);
1375 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1376 const struct inet_request_sock *ireq = inet_rsk(req);
1377 struct sock *child;
1378 int err;
1379
1380 req->num_retrans = 0;
1381 req->num_timeout = 0;
1382 req->sk = NULL;
1383
1384 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1385 if (child == NULL) {
1386 NET_INC_STATS_BH(sock_net(sk),
1387 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1388 kfree_skb(skb_synack);
1389 return -1;
1390 }
1391 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1392 ireq->rmt_addr, ireq->opt);
1393 err = net_xmit_eval(err);
1394 if (!err)
1395 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1396 /* XXX (TFO) - is it ok to ignore error and continue? */
1397
1398 spin_lock(&queue->fastopenq->lock);
1399 queue->fastopenq->qlen++;
1400 spin_unlock(&queue->fastopenq->lock);
1401
1402 /* Initialize the child socket. Have to fix some values to take
1403 * into account the child is a Fast Open socket and is created
1404 * only out of the bits carried in the SYN packet.
1405 */
1406 tp = tcp_sk(child);
1407
1408 tp->fastopen_rsk = req;
1409 /* Do a hold on the listner sk so that if the listener is being
1410 * closed, the child that has been accepted can live on and still
1411 * access listen_lock.
1412 */
1413 sock_hold(sk);
1414 tcp_rsk(req)->listener = sk;
1415
1416 /* RFC1323: The window in SYN & SYN/ACK segments is never
1417 * scaled. So correct it appropriately.
1418 */
1419 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1420
1421 /* Activate the retrans timer so that SYNACK can be retransmitted.
1422 * The request socket is not added to the SYN table of the parent
1423 * because it's been added to the accept queue directly.
1424 */
1425 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1426 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1427
1428 /* Add the child socket directly into the accept queue */
1429 inet_csk_reqsk_queue_add(sk, req, child);
1430
1431 /* Now finish processing the fastopen child socket. */
1432 inet_csk(child)->icsk_af_ops->rebuild_header(child);
1433 tcp_init_congestion_control(child);
1434 tcp_mtup_init(child);
1435 tcp_init_buffer_space(child);
1436 tcp_init_metrics(child);
1437
1438 /* Queue the data carried in the SYN packet. We need to first
1439 * bump skb's refcnt because the caller will attempt to free it.
1440 *
1441 * XXX (TFO) - we honor a zero-payload TFO request for now.
1442 * (Any reason not to?)
1443 */
1444 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1445 /* Don't queue the skb if there is no payload in SYN.
1446 * XXX (TFO) - How about SYN+FIN?
1447 */
1448 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1449 } else {
1450 skb = skb_get(skb);
1451 skb_dst_drop(skb);
1452 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1453 skb_set_owner_r(skb, child);
1454 __skb_queue_tail(&child->sk_receive_queue, skb);
1455 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1456 tp->syn_data_acked = 1;
1457 }
1458 sk->sk_data_ready(sk, 0);
1459 bh_unlock_sock(child);
1460 sock_put(child);
1461 WARN_ON(req->sk == NULL);
1462 return 0;
1463 }
1464
1465 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1466 {
1467 struct tcp_options_received tmp_opt;
1468 struct request_sock *req;
1469 struct inet_request_sock *ireq;
1470 struct tcp_sock *tp = tcp_sk(sk);
1471 struct dst_entry *dst = NULL;
1472 __be32 saddr = ip_hdr(skb)->saddr;
1473 __be32 daddr = ip_hdr(skb)->daddr;
1474 __u32 isn = TCP_SKB_CB(skb)->when;
1475 bool want_cookie = false;
1476 struct flowi4 fl4;
1477 struct tcp_fastopen_cookie foc = { .len = -1 };
1478 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1479 struct sk_buff *skb_synack;
1480 int do_fastopen;
1481
1482 /* Never answer to SYNs send to broadcast or multicast */
1483 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1484 goto drop;
1485
1486 /* TW buckets are converted to open requests without
1487 * limitations, they conserve resources and peer is
1488 * evidently real one.
1489 */
1490 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1491 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1492 if (!want_cookie)
1493 goto drop;
1494 }
1495
1496 /* Accept backlog is full. If we have already queued enough
1497 * of warm entries in syn queue, drop request. It is better than
1498 * clogging syn queue with openreqs with exponentially increasing
1499 * timeout.
1500 */
1501 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1502 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1503 goto drop;
1504 }
1505
1506 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1507 if (!req)
1508 goto drop;
1509
1510 #ifdef CONFIG_TCP_MD5SIG
1511 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1512 #endif
1513
1514 tcp_clear_options(&tmp_opt);
1515 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1516 tmp_opt.user_mss = tp->rx_opt.user_mss;
1517 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
1518
1519 if (want_cookie && !tmp_opt.saw_tstamp)
1520 tcp_clear_options(&tmp_opt);
1521
1522 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1523 tcp_openreq_init(req, &tmp_opt, skb);
1524
1525 ireq = inet_rsk(req);
1526 ireq->loc_addr = daddr;
1527 ireq->rmt_addr = saddr;
1528 ireq->no_srccheck = inet_sk(sk)->transparent;
1529 ireq->opt = tcp_v4_save_options(skb);
1530
1531 if (security_inet_conn_request(sk, skb, req))
1532 goto drop_and_free;
1533
1534 if (!want_cookie || tmp_opt.tstamp_ok)
1535 TCP_ECN_create_request(req, skb, sock_net(sk));
1536
1537 if (want_cookie) {
1538 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1539 req->cookie_ts = tmp_opt.tstamp_ok;
1540 } else if (!isn) {
1541 /* VJ's idea. We save last timestamp seen
1542 * from the destination in peer table, when entering
1543 * state TIME-WAIT, and check against it before
1544 * accepting new connection request.
1545 *
1546 * If "isn" is not zero, this request hit alive
1547 * timewait bucket, so that all the necessary checks
1548 * are made in the function processing timewait state.
1549 */
1550 if (tmp_opt.saw_tstamp &&
1551 tcp_death_row.sysctl_tw_recycle &&
1552 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1553 fl4.daddr == saddr) {
1554 if (!tcp_peer_is_proven(req, dst, true)) {
1555 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1556 goto drop_and_release;
1557 }
1558 }
1559 /* Kill the following clause, if you dislike this way. */
1560 else if (!sysctl_tcp_syncookies &&
1561 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1562 (sysctl_max_syn_backlog >> 2)) &&
1563 !tcp_peer_is_proven(req, dst, false)) {
1564 /* Without syncookies last quarter of
1565 * backlog is filled with destinations,
1566 * proven to be alive.
1567 * It means that we continue to communicate
1568 * to destinations, already remembered
1569 * to the moment of synflood.
1570 */
1571 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1572 &saddr, ntohs(tcp_hdr(skb)->source));
1573 goto drop_and_release;
1574 }
1575
1576 isn = tcp_v4_init_sequence(skb);
1577 }
1578 tcp_rsk(req)->snt_isn = isn;
1579
1580 if (dst == NULL) {
1581 dst = inet_csk_route_req(sk, &fl4, req);
1582 if (dst == NULL)
1583 goto drop_and_free;
1584 }
1585 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1586
1587 /* We don't call tcp_v4_send_synack() directly because we need
1588 * to make sure a child socket can be created successfully before
1589 * sending back synack!
1590 *
1591 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1592 * (or better yet, call tcp_send_synack() in the child context
1593 * directly, but will have to fix bunch of other code first)
1594 * after syn_recv_sock() except one will need to first fix the
1595 * latter to remove its dependency on the current implementation
1596 * of tcp_v4_send_synack()->tcp_select_initial_window().
1597 */
1598 skb_synack = tcp_make_synack(sk, dst, req,
1599 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1600
1601 if (skb_synack) {
1602 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1603 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1604 } else
1605 goto drop_and_free;
1606
1607 if (likely(!do_fastopen)) {
1608 int err;
1609 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1610 ireq->rmt_addr, ireq->opt);
1611 err = net_xmit_eval(err);
1612 if (err || want_cookie)
1613 goto drop_and_free;
1614
1615 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1616 tcp_rsk(req)->listener = NULL;
1617 /* Add the request_sock to the SYN table */
1618 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1619 if (fastopen_cookie_present(&foc) && foc.len != 0)
1620 NET_INC_STATS_BH(sock_net(sk),
1621 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1622 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req))
1623 goto drop_and_free;
1624
1625 return 0;
1626
1627 drop_and_release:
1628 dst_release(dst);
1629 drop_and_free:
1630 reqsk_free(req);
1631 drop:
1632 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1633 return 0;
1634 }
1635 EXPORT_SYMBOL(tcp_v4_conn_request);
1636
1637
1638 /*
1639 * The three way handshake has completed - we got a valid synack -
1640 * now create the new socket.
1641 */
1642 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1643 struct request_sock *req,
1644 struct dst_entry *dst)
1645 {
1646 struct inet_request_sock *ireq;
1647 struct inet_sock *newinet;
1648 struct tcp_sock *newtp;
1649 struct sock *newsk;
1650 #ifdef CONFIG_TCP_MD5SIG
1651 struct tcp_md5sig_key *key;
1652 #endif
1653 struct ip_options_rcu *inet_opt;
1654
1655 if (sk_acceptq_is_full(sk))
1656 goto exit_overflow;
1657
1658 newsk = tcp_create_openreq_child(sk, req, skb);
1659 if (!newsk)
1660 goto exit_nonewsk;
1661
1662 newsk->sk_gso_type = SKB_GSO_TCPV4;
1663 inet_sk_rx_dst_set(newsk, skb);
1664
1665 newtp = tcp_sk(newsk);
1666 newinet = inet_sk(newsk);
1667 ireq = inet_rsk(req);
1668 newinet->inet_daddr = ireq->rmt_addr;
1669 newinet->inet_rcv_saddr = ireq->loc_addr;
1670 newinet->inet_saddr = ireq->loc_addr;
1671 inet_opt = ireq->opt;
1672 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1673 ireq->opt = NULL;
1674 newinet->mc_index = inet_iif(skb);
1675 newinet->mc_ttl = ip_hdr(skb)->ttl;
1676 newinet->rcv_tos = ip_hdr(skb)->tos;
1677 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1678 if (inet_opt)
1679 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1680 newinet->inet_id = newtp->write_seq ^ jiffies;
1681
1682 if (!dst) {
1683 dst = inet_csk_route_child_sock(sk, newsk, req);
1684 if (!dst)
1685 goto put_and_exit;
1686 } else {
1687 /* syncookie case : see end of cookie_v4_check() */
1688 }
1689 sk_setup_caps(newsk, dst);
1690
1691 tcp_mtup_init(newsk);
1692 tcp_sync_mss(newsk, dst_mtu(dst));
1693 newtp->advmss = dst_metric_advmss(dst);
1694 if (tcp_sk(sk)->rx_opt.user_mss &&
1695 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1696 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1697
1698 tcp_initialize_rcv_mss(newsk);
1699 tcp_synack_rtt_meas(newsk, req);
1700 newtp->total_retrans = req->num_retrans;
1701
1702 #ifdef CONFIG_TCP_MD5SIG
1703 /* Copy over the MD5 key from the original socket */
1704 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1705 AF_INET);
1706 if (key != NULL) {
1707 /*
1708 * We're using one, so create a matching key
1709 * on the newsk structure. If we fail to get
1710 * memory, then we end up not copying the key
1711 * across. Shucks.
1712 */
1713 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1714 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1715 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1716 }
1717 #endif
1718
1719 if (__inet_inherit_port(sk, newsk) < 0)
1720 goto put_and_exit;
1721 __inet_hash_nolisten(newsk, NULL);
1722
1723 return newsk;
1724
1725 exit_overflow:
1726 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1727 exit_nonewsk:
1728 dst_release(dst);
1729 exit:
1730 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1731 return NULL;
1732 put_and_exit:
1733 inet_csk_prepare_forced_close(newsk);
1734 tcp_done(newsk);
1735 goto exit;
1736 }
1737 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1738
1739 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1740 {
1741 struct tcphdr *th = tcp_hdr(skb);
1742 const struct iphdr *iph = ip_hdr(skb);
1743 struct sock *nsk;
1744 struct request_sock **prev;
1745 /* Find possible connection requests. */
1746 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1747 iph->saddr, iph->daddr);
1748 if (req)
1749 return tcp_check_req(sk, skb, req, prev, false);
1750
1751 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1752 th->source, iph->daddr, th->dest, inet_iif(skb));
1753
1754 if (nsk) {
1755 if (nsk->sk_state != TCP_TIME_WAIT) {
1756 bh_lock_sock(nsk);
1757 return nsk;
1758 }
1759 inet_twsk_put(inet_twsk(nsk));
1760 return NULL;
1761 }
1762
1763 #ifdef CONFIG_SYN_COOKIES
1764 if (!th->syn)
1765 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1766 #endif
1767 return sk;
1768 }
1769
1770 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1771 {
1772 const struct iphdr *iph = ip_hdr(skb);
1773
1774 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1775 if (!tcp_v4_check(skb->len, iph->saddr,
1776 iph->daddr, skb->csum)) {
1777 skb->ip_summed = CHECKSUM_UNNECESSARY;
1778 return 0;
1779 }
1780 }
1781
1782 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1783 skb->len, IPPROTO_TCP, 0);
1784
1785 if (skb->len <= 76) {
1786 return __skb_checksum_complete(skb);
1787 }
1788 return 0;
1789 }
1790
1791
1792 /* The socket must have it's spinlock held when we get
1793 * here.
1794 *
1795 * We have a potential double-lock case here, so even when
1796 * doing backlog processing we use the BH locking scheme.
1797 * This is because we cannot sleep with the original spinlock
1798 * held.
1799 */
1800 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1801 {
1802 struct sock *rsk;
1803 #ifdef CONFIG_TCP_MD5SIG
1804 /*
1805 * We really want to reject the packet as early as possible
1806 * if:
1807 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1808 * o There is an MD5 option and we're not expecting one
1809 */
1810 if (tcp_v4_inbound_md5_hash(sk, skb))
1811 goto discard;
1812 #endif
1813
1814 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1815 struct dst_entry *dst = sk->sk_rx_dst;
1816
1817 sock_rps_save_rxhash(sk, skb);
1818 if (dst) {
1819 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1820 dst->ops->check(dst, 0) == NULL) {
1821 dst_release(dst);
1822 sk->sk_rx_dst = NULL;
1823 }
1824 }
1825 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1826 rsk = sk;
1827 goto reset;
1828 }
1829 return 0;
1830 }
1831
1832 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1833 goto csum_err;
1834
1835 if (sk->sk_state == TCP_LISTEN) {
1836 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1837 if (!nsk)
1838 goto discard;
1839
1840 if (nsk != sk) {
1841 sock_rps_save_rxhash(nsk, skb);
1842 if (tcp_child_process(sk, nsk, skb)) {
1843 rsk = nsk;
1844 goto reset;
1845 }
1846 return 0;
1847 }
1848 } else
1849 sock_rps_save_rxhash(sk, skb);
1850
1851 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1852 rsk = sk;
1853 goto reset;
1854 }
1855 return 0;
1856
1857 reset:
1858 tcp_v4_send_reset(rsk, skb);
1859 discard:
1860 kfree_skb(skb);
1861 /* Be careful here. If this function gets more complicated and
1862 * gcc suffers from register pressure on the x86, sk (in %ebx)
1863 * might be destroyed here. This current version compiles correctly,
1864 * but you have been warned.
1865 */
1866 return 0;
1867
1868 csum_err:
1869 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1870 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1871 goto discard;
1872 }
1873 EXPORT_SYMBOL(tcp_v4_do_rcv);
1874
1875 void tcp_v4_early_demux(struct sk_buff *skb)
1876 {
1877 const struct iphdr *iph;
1878 const struct tcphdr *th;
1879 struct sock *sk;
1880
1881 if (skb->pkt_type != PACKET_HOST)
1882 return;
1883
1884 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1885 return;
1886
1887 iph = ip_hdr(skb);
1888 th = tcp_hdr(skb);
1889
1890 if (th->doff < sizeof(struct tcphdr) / 4)
1891 return;
1892
1893 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1894 iph->saddr, th->source,
1895 iph->daddr, ntohs(th->dest),
1896 skb->skb_iif);
1897 if (sk) {
1898 skb->sk = sk;
1899 skb->destructor = sock_edemux;
1900 if (sk->sk_state != TCP_TIME_WAIT) {
1901 struct dst_entry *dst = sk->sk_rx_dst;
1902
1903 if (dst)
1904 dst = dst_check(dst, 0);
1905 if (dst &&
1906 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1907 skb_dst_set_noref(skb, dst);
1908 }
1909 }
1910 }
1911
1912 /* Packet is added to VJ-style prequeue for processing in process
1913 * context, if a reader task is waiting. Apparently, this exciting
1914 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1915 * failed somewhere. Latency? Burstiness? Well, at least now we will
1916 * see, why it failed. 8)8) --ANK
1917 *
1918 */
1919 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1920 {
1921 struct tcp_sock *tp = tcp_sk(sk);
1922
1923 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1924 return false;
1925
1926 if (skb->len <= tcp_hdrlen(skb) &&
1927 skb_queue_len(&tp->ucopy.prequeue) == 0)
1928 return false;
1929
1930 skb_dst_force(skb);
1931 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1932 tp->ucopy.memory += skb->truesize;
1933 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1934 struct sk_buff *skb1;
1935
1936 BUG_ON(sock_owned_by_user(sk));
1937
1938 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1939 sk_backlog_rcv(sk, skb1);
1940 NET_INC_STATS_BH(sock_net(sk),
1941 LINUX_MIB_TCPPREQUEUEDROPPED);
1942 }
1943
1944 tp->ucopy.memory = 0;
1945 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1946 wake_up_interruptible_sync_poll(sk_sleep(sk),
1947 POLLIN | POLLRDNORM | POLLRDBAND);
1948 if (!inet_csk_ack_scheduled(sk))
1949 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1950 (3 * tcp_rto_min(sk)) / 4,
1951 TCP_RTO_MAX);
1952 }
1953 return true;
1954 }
1955 EXPORT_SYMBOL(tcp_prequeue);
1956
1957 /*
1958 * From tcp_input.c
1959 */
1960
1961 int tcp_v4_rcv(struct sk_buff *skb)
1962 {
1963 const struct iphdr *iph;
1964 const struct tcphdr *th;
1965 struct sock *sk;
1966 int ret;
1967 struct net *net = dev_net(skb->dev);
1968
1969 if (skb->pkt_type != PACKET_HOST)
1970 goto discard_it;
1971
1972 /* Count it even if it's bad */
1973 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1974
1975 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1976 goto discard_it;
1977
1978 th = tcp_hdr(skb);
1979
1980 if (th->doff < sizeof(struct tcphdr) / 4)
1981 goto bad_packet;
1982 if (!pskb_may_pull(skb, th->doff * 4))
1983 goto discard_it;
1984
1985 /* An explanation is required here, I think.
1986 * Packet length and doff are validated by header prediction,
1987 * provided case of th->doff==0 is eliminated.
1988 * So, we defer the checks. */
1989 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1990 goto csum_error;
1991
1992 th = tcp_hdr(skb);
1993 iph = ip_hdr(skb);
1994 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1995 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1996 skb->len - th->doff * 4);
1997 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1998 TCP_SKB_CB(skb)->when = 0;
1999 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2000 TCP_SKB_CB(skb)->sacked = 0;
2001
2002 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
2003 if (!sk)
2004 goto no_tcp_socket;
2005
2006 process:
2007 if (sk->sk_state == TCP_TIME_WAIT)
2008 goto do_time_wait;
2009
2010 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2011 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2012 goto discard_and_relse;
2013 }
2014
2015 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2016 goto discard_and_relse;
2017 nf_reset(skb);
2018
2019 if (sk_filter(sk, skb))
2020 goto discard_and_relse;
2021
2022 skb->dev = NULL;
2023
2024 bh_lock_sock_nested(sk);
2025 ret = 0;
2026 if (!sock_owned_by_user(sk)) {
2027 #ifdef CONFIG_NET_DMA
2028 struct tcp_sock *tp = tcp_sk(sk);
2029 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2030 tp->ucopy.dma_chan = net_dma_find_channel();
2031 if (tp->ucopy.dma_chan)
2032 ret = tcp_v4_do_rcv(sk, skb);
2033 else
2034 #endif
2035 {
2036 if (!tcp_prequeue(sk, skb))
2037 ret = tcp_v4_do_rcv(sk, skb);
2038 }
2039 } else if (unlikely(sk_add_backlog(sk, skb,
2040 sk->sk_rcvbuf + sk->sk_sndbuf))) {
2041 bh_unlock_sock(sk);
2042 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2043 goto discard_and_relse;
2044 }
2045 bh_unlock_sock(sk);
2046
2047 sock_put(sk);
2048
2049 return ret;
2050
2051 no_tcp_socket:
2052 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2053 goto discard_it;
2054
2055 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2056 csum_error:
2057 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
2058 bad_packet:
2059 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2060 } else {
2061 tcp_v4_send_reset(NULL, skb);
2062 }
2063
2064 discard_it:
2065 /* Discard frame. */
2066 kfree_skb(skb);
2067 return 0;
2068
2069 discard_and_relse:
2070 sock_put(sk);
2071 goto discard_it;
2072
2073 do_time_wait:
2074 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2075 inet_twsk_put(inet_twsk(sk));
2076 goto discard_it;
2077 }
2078
2079 if (skb->len < (th->doff << 2)) {
2080 inet_twsk_put(inet_twsk(sk));
2081 goto bad_packet;
2082 }
2083 if (tcp_checksum_complete(skb)) {
2084 inet_twsk_put(inet_twsk(sk));
2085 goto csum_error;
2086 }
2087 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2088 case TCP_TW_SYN: {
2089 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2090 &tcp_hashinfo,
2091 iph->saddr, th->source,
2092 iph->daddr, th->dest,
2093 inet_iif(skb));
2094 if (sk2) {
2095 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2096 inet_twsk_put(inet_twsk(sk));
2097 sk = sk2;
2098 goto process;
2099 }
2100 /* Fall through to ACK */
2101 }
2102 case TCP_TW_ACK:
2103 tcp_v4_timewait_ack(sk, skb);
2104 break;
2105 case TCP_TW_RST:
2106 goto no_tcp_socket;
2107 case TCP_TW_SUCCESS:;
2108 }
2109 goto discard_it;
2110 }
2111
2112 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2113 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2114 .twsk_unique = tcp_twsk_unique,
2115 .twsk_destructor= tcp_twsk_destructor,
2116 };
2117
2118 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2119 {
2120 struct dst_entry *dst = skb_dst(skb);
2121
2122 dst_hold(dst);
2123 sk->sk_rx_dst = dst;
2124 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2125 }
2126 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2127
2128 const struct inet_connection_sock_af_ops ipv4_specific = {
2129 .queue_xmit = ip_queue_xmit,
2130 .send_check = tcp_v4_send_check,
2131 .rebuild_header = inet_sk_rebuild_header,
2132 .sk_rx_dst_set = inet_sk_rx_dst_set,
2133 .conn_request = tcp_v4_conn_request,
2134 .syn_recv_sock = tcp_v4_syn_recv_sock,
2135 .net_header_len = sizeof(struct iphdr),
2136 .setsockopt = ip_setsockopt,
2137 .getsockopt = ip_getsockopt,
2138 .addr2sockaddr = inet_csk_addr2sockaddr,
2139 .sockaddr_len = sizeof(struct sockaddr_in),
2140 .bind_conflict = inet_csk_bind_conflict,
2141 #ifdef CONFIG_COMPAT
2142 .compat_setsockopt = compat_ip_setsockopt,
2143 .compat_getsockopt = compat_ip_getsockopt,
2144 #endif
2145 };
2146 EXPORT_SYMBOL(ipv4_specific);
2147
2148 #ifdef CONFIG_TCP_MD5SIG
2149 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2150 .md5_lookup = tcp_v4_md5_lookup,
2151 .calc_md5_hash = tcp_v4_md5_hash_skb,
2152 .md5_parse = tcp_v4_parse_md5_keys,
2153 };
2154 #endif
2155
2156 /* NOTE: A lot of things set to zero explicitly by call to
2157 * sk_alloc() so need not be done here.
2158 */
2159 static int tcp_v4_init_sock(struct sock *sk)
2160 {
2161 struct inet_connection_sock *icsk = inet_csk(sk);
2162
2163 tcp_init_sock(sk);
2164
2165 icsk->icsk_af_ops = &ipv4_specific;
2166
2167 #ifdef CONFIG_TCP_MD5SIG
2168 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2169 #endif
2170
2171 return 0;
2172 }
2173
2174 void tcp_v4_destroy_sock(struct sock *sk)
2175 {
2176 struct tcp_sock *tp = tcp_sk(sk);
2177
2178 tcp_clear_xmit_timers(sk);
2179
2180 tcp_cleanup_congestion_control(sk);
2181
2182 /* Cleanup up the write buffer. */
2183 tcp_write_queue_purge(sk);
2184
2185 /* Cleans up our, hopefully empty, out_of_order_queue. */
2186 __skb_queue_purge(&tp->out_of_order_queue);
2187
2188 #ifdef CONFIG_TCP_MD5SIG
2189 /* Clean up the MD5 key list, if any */
2190 if (tp->md5sig_info) {
2191 tcp_clear_md5_list(sk);
2192 kfree_rcu(tp->md5sig_info, rcu);
2193 tp->md5sig_info = NULL;
2194 }
2195 #endif
2196
2197 #ifdef CONFIG_NET_DMA
2198 /* Cleans up our sk_async_wait_queue */
2199 __skb_queue_purge(&sk->sk_async_wait_queue);
2200 #endif
2201
2202 /* Clean prequeue, it must be empty really */
2203 __skb_queue_purge(&tp->ucopy.prequeue);
2204
2205 /* Clean up a referenced TCP bind bucket. */
2206 if (inet_csk(sk)->icsk_bind_hash)
2207 inet_put_port(sk);
2208
2209 BUG_ON(tp->fastopen_rsk != NULL);
2210
2211 /* If socket is aborted during connect operation */
2212 tcp_free_fastopen_req(tp);
2213
2214 sk_sockets_allocated_dec(sk);
2215 sock_release_memcg(sk);
2216 }
2217 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2218
2219 #ifdef CONFIG_PROC_FS
2220 /* Proc filesystem TCP sock list dumping. */
2221
2222 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2223 {
2224 return hlist_nulls_empty(head) ? NULL :
2225 list_entry(head->first, struct inet_timewait_sock, tw_node);
2226 }
2227
2228 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2229 {
2230 return !is_a_nulls(tw->tw_node.next) ?
2231 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2232 }
2233
2234 /*
2235 * Get next listener socket follow cur. If cur is NULL, get first socket
2236 * starting from bucket given in st->bucket; when st->bucket is zero the
2237 * very first socket in the hash table is returned.
2238 */
2239 static void *listening_get_next(struct seq_file *seq, void *cur)
2240 {
2241 struct inet_connection_sock *icsk;
2242 struct hlist_nulls_node *node;
2243 struct sock *sk = cur;
2244 struct inet_listen_hashbucket *ilb;
2245 struct tcp_iter_state *st = seq->private;
2246 struct net *net = seq_file_net(seq);
2247
2248 if (!sk) {
2249 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2250 spin_lock_bh(&ilb->lock);
2251 sk = sk_nulls_head(&ilb->head);
2252 st->offset = 0;
2253 goto get_sk;
2254 }
2255 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2256 ++st->num;
2257 ++st->offset;
2258
2259 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2260 struct request_sock *req = cur;
2261
2262 icsk = inet_csk(st->syn_wait_sk);
2263 req = req->dl_next;
2264 while (1) {
2265 while (req) {
2266 if (req->rsk_ops->family == st->family) {
2267 cur = req;
2268 goto out;
2269 }
2270 req = req->dl_next;
2271 }
2272 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2273 break;
2274 get_req:
2275 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2276 }
2277 sk = sk_nulls_next(st->syn_wait_sk);
2278 st->state = TCP_SEQ_STATE_LISTENING;
2279 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2280 } else {
2281 icsk = inet_csk(sk);
2282 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2283 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2284 goto start_req;
2285 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2286 sk = sk_nulls_next(sk);
2287 }
2288 get_sk:
2289 sk_nulls_for_each_from(sk, node) {
2290 if (!net_eq(sock_net(sk), net))
2291 continue;
2292 if (sk->sk_family == st->family) {
2293 cur = sk;
2294 goto out;
2295 }
2296 icsk = inet_csk(sk);
2297 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2298 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2299 start_req:
2300 st->uid = sock_i_uid(sk);
2301 st->syn_wait_sk = sk;
2302 st->state = TCP_SEQ_STATE_OPENREQ;
2303 st->sbucket = 0;
2304 goto get_req;
2305 }
2306 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2307 }
2308 spin_unlock_bh(&ilb->lock);
2309 st->offset = 0;
2310 if (++st->bucket < INET_LHTABLE_SIZE) {
2311 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2312 spin_lock_bh(&ilb->lock);
2313 sk = sk_nulls_head(&ilb->head);
2314 goto get_sk;
2315 }
2316 cur = NULL;
2317 out:
2318 return cur;
2319 }
2320
2321 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2322 {
2323 struct tcp_iter_state *st = seq->private;
2324 void *rc;
2325
2326 st->bucket = 0;
2327 st->offset = 0;
2328 rc = listening_get_next(seq, NULL);
2329
2330 while (rc && *pos) {
2331 rc = listening_get_next(seq, rc);
2332 --*pos;
2333 }
2334 return rc;
2335 }
2336
2337 static inline bool empty_bucket(struct tcp_iter_state *st)
2338 {
2339 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2340 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2341 }
2342
2343 /*
2344 * Get first established socket starting from bucket given in st->bucket.
2345 * If st->bucket is zero, the very first socket in the hash is returned.
2346 */
2347 static void *established_get_first(struct seq_file *seq)
2348 {
2349 struct tcp_iter_state *st = seq->private;
2350 struct net *net = seq_file_net(seq);
2351 void *rc = NULL;
2352
2353 st->offset = 0;
2354 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2355 struct sock *sk;
2356 struct hlist_nulls_node *node;
2357 struct inet_timewait_sock *tw;
2358 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2359
2360 /* Lockless fast path for the common case of empty buckets */
2361 if (empty_bucket(st))
2362 continue;
2363
2364 spin_lock_bh(lock);
2365 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2366 if (sk->sk_family != st->family ||
2367 !net_eq(sock_net(sk), net)) {
2368 continue;
2369 }
2370 rc = sk;
2371 goto out;
2372 }
2373 st->state = TCP_SEQ_STATE_TIME_WAIT;
2374 inet_twsk_for_each(tw, node,
2375 &tcp_hashinfo.ehash[st->bucket].twchain) {
2376 if (tw->tw_family != st->family ||
2377 !net_eq(twsk_net(tw), net)) {
2378 continue;
2379 }
2380 rc = tw;
2381 goto out;
2382 }
2383 spin_unlock_bh(lock);
2384 st->state = TCP_SEQ_STATE_ESTABLISHED;
2385 }
2386 out:
2387 return rc;
2388 }
2389
2390 static void *established_get_next(struct seq_file *seq, void *cur)
2391 {
2392 struct sock *sk = cur;
2393 struct inet_timewait_sock *tw;
2394 struct hlist_nulls_node *node;
2395 struct tcp_iter_state *st = seq->private;
2396 struct net *net = seq_file_net(seq);
2397
2398 ++st->num;
2399 ++st->offset;
2400
2401 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2402 tw = cur;
2403 tw = tw_next(tw);
2404 get_tw:
2405 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2406 tw = tw_next(tw);
2407 }
2408 if (tw) {
2409 cur = tw;
2410 goto out;
2411 }
2412 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2413 st->state = TCP_SEQ_STATE_ESTABLISHED;
2414
2415 /* Look for next non empty bucket */
2416 st->offset = 0;
2417 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2418 empty_bucket(st))
2419 ;
2420 if (st->bucket > tcp_hashinfo.ehash_mask)
2421 return NULL;
2422
2423 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2424 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2425 } else
2426 sk = sk_nulls_next(sk);
2427
2428 sk_nulls_for_each_from(sk, node) {
2429 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2430 goto found;
2431 }
2432
2433 st->state = TCP_SEQ_STATE_TIME_WAIT;
2434 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2435 goto get_tw;
2436 found:
2437 cur = sk;
2438 out:
2439 return cur;
2440 }
2441
2442 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2443 {
2444 struct tcp_iter_state *st = seq->private;
2445 void *rc;
2446
2447 st->bucket = 0;
2448 rc = established_get_first(seq);
2449
2450 while (rc && pos) {
2451 rc = established_get_next(seq, rc);
2452 --pos;
2453 }
2454 return rc;
2455 }
2456
2457 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2458 {
2459 void *rc;
2460 struct tcp_iter_state *st = seq->private;
2461
2462 st->state = TCP_SEQ_STATE_LISTENING;
2463 rc = listening_get_idx(seq, &pos);
2464
2465 if (!rc) {
2466 st->state = TCP_SEQ_STATE_ESTABLISHED;
2467 rc = established_get_idx(seq, pos);
2468 }
2469
2470 return rc;
2471 }
2472
2473 static void *tcp_seek_last_pos(struct seq_file *seq)
2474 {
2475 struct tcp_iter_state *st = seq->private;
2476 int offset = st->offset;
2477 int orig_num = st->num;
2478 void *rc = NULL;
2479
2480 switch (st->state) {
2481 case TCP_SEQ_STATE_OPENREQ:
2482 case TCP_SEQ_STATE_LISTENING:
2483 if (st->bucket >= INET_LHTABLE_SIZE)
2484 break;
2485 st->state = TCP_SEQ_STATE_LISTENING;
2486 rc = listening_get_next(seq, NULL);
2487 while (offset-- && rc)
2488 rc = listening_get_next(seq, rc);
2489 if (rc)
2490 break;
2491 st->bucket = 0;
2492 /* Fallthrough */
2493 case TCP_SEQ_STATE_ESTABLISHED:
2494 case TCP_SEQ_STATE_TIME_WAIT:
2495 st->state = TCP_SEQ_STATE_ESTABLISHED;
2496 if (st->bucket > tcp_hashinfo.ehash_mask)
2497 break;
2498 rc = established_get_first(seq);
2499 while (offset-- && rc)
2500 rc = established_get_next(seq, rc);
2501 }
2502
2503 st->num = orig_num;
2504
2505 return rc;
2506 }
2507
2508 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2509 {
2510 struct tcp_iter_state *st = seq->private;
2511 void *rc;
2512
2513 if (*pos && *pos == st->last_pos) {
2514 rc = tcp_seek_last_pos(seq);
2515 if (rc)
2516 goto out;
2517 }
2518
2519 st->state = TCP_SEQ_STATE_LISTENING;
2520 st->num = 0;
2521 st->bucket = 0;
2522 st->offset = 0;
2523 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2524
2525 out:
2526 st->last_pos = *pos;
2527 return rc;
2528 }
2529
2530 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2531 {
2532 struct tcp_iter_state *st = seq->private;
2533 void *rc = NULL;
2534
2535 if (v == SEQ_START_TOKEN) {
2536 rc = tcp_get_idx(seq, 0);
2537 goto out;
2538 }
2539
2540 switch (st->state) {
2541 case TCP_SEQ_STATE_OPENREQ:
2542 case TCP_SEQ_STATE_LISTENING:
2543 rc = listening_get_next(seq, v);
2544 if (!rc) {
2545 st->state = TCP_SEQ_STATE_ESTABLISHED;
2546 st->bucket = 0;
2547 st->offset = 0;
2548 rc = established_get_first(seq);
2549 }
2550 break;
2551 case TCP_SEQ_STATE_ESTABLISHED:
2552 case TCP_SEQ_STATE_TIME_WAIT:
2553 rc = established_get_next(seq, v);
2554 break;
2555 }
2556 out:
2557 ++*pos;
2558 st->last_pos = *pos;
2559 return rc;
2560 }
2561
2562 static void tcp_seq_stop(struct seq_file *seq, void *v)
2563 {
2564 struct tcp_iter_state *st = seq->private;
2565
2566 switch (st->state) {
2567 case TCP_SEQ_STATE_OPENREQ:
2568 if (v) {
2569 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2570 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2571 }
2572 case TCP_SEQ_STATE_LISTENING:
2573 if (v != SEQ_START_TOKEN)
2574 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2575 break;
2576 case TCP_SEQ_STATE_TIME_WAIT:
2577 case TCP_SEQ_STATE_ESTABLISHED:
2578 if (v)
2579 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2580 break;
2581 }
2582 }
2583
2584 int tcp_seq_open(struct inode *inode, struct file *file)
2585 {
2586 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2587 struct tcp_iter_state *s;
2588 int err;
2589
2590 err = seq_open_net(inode, file, &afinfo->seq_ops,
2591 sizeof(struct tcp_iter_state));
2592 if (err < 0)
2593 return err;
2594
2595 s = ((struct seq_file *)file->private_data)->private;
2596 s->family = afinfo->family;
2597 s->last_pos = 0;
2598 return 0;
2599 }
2600 EXPORT_SYMBOL(tcp_seq_open);
2601
2602 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2603 {
2604 int rc = 0;
2605 struct proc_dir_entry *p;
2606
2607 afinfo->seq_ops.start = tcp_seq_start;
2608 afinfo->seq_ops.next = tcp_seq_next;
2609 afinfo->seq_ops.stop = tcp_seq_stop;
2610
2611 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2612 afinfo->seq_fops, afinfo);
2613 if (!p)
2614 rc = -ENOMEM;
2615 return rc;
2616 }
2617 EXPORT_SYMBOL(tcp_proc_register);
2618
2619 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2620 {
2621 remove_proc_entry(afinfo->name, net->proc_net);
2622 }
2623 EXPORT_SYMBOL(tcp_proc_unregister);
2624
2625 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2626 struct seq_file *f, int i, kuid_t uid, int *len)
2627 {
2628 const struct inet_request_sock *ireq = inet_rsk(req);
2629 long delta = req->expires - jiffies;
2630
2631 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2632 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2633 i,
2634 ireq->loc_addr,
2635 ntohs(inet_sk(sk)->inet_sport),
2636 ireq->rmt_addr,
2637 ntohs(ireq->rmt_port),
2638 TCP_SYN_RECV,
2639 0, 0, /* could print option size, but that is af dependent. */
2640 1, /* timers active (only the expire timer) */
2641 jiffies_delta_to_clock_t(delta),
2642 req->num_timeout,
2643 from_kuid_munged(seq_user_ns(f), uid),
2644 0, /* non standard timer */
2645 0, /* open_requests have no inode */
2646 atomic_read(&sk->sk_refcnt),
2647 req,
2648 len);
2649 }
2650
2651 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2652 {
2653 int timer_active;
2654 unsigned long timer_expires;
2655 const struct tcp_sock *tp = tcp_sk(sk);
2656 const struct inet_connection_sock *icsk = inet_csk(sk);
2657 const struct inet_sock *inet = inet_sk(sk);
2658 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2659 __be32 dest = inet->inet_daddr;
2660 __be32 src = inet->inet_rcv_saddr;
2661 __u16 destp = ntohs(inet->inet_dport);
2662 __u16 srcp = ntohs(inet->inet_sport);
2663 int rx_queue;
2664
2665 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2666 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2667 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2668 timer_active = 1;
2669 timer_expires = icsk->icsk_timeout;
2670 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2671 timer_active = 4;
2672 timer_expires = icsk->icsk_timeout;
2673 } else if (timer_pending(&sk->sk_timer)) {
2674 timer_active = 2;
2675 timer_expires = sk->sk_timer.expires;
2676 } else {
2677 timer_active = 0;
2678 timer_expires = jiffies;
2679 }
2680
2681 if (sk->sk_state == TCP_LISTEN)
2682 rx_queue = sk->sk_ack_backlog;
2683 else
2684 /*
2685 * because we dont lock socket, we might find a transient negative value
2686 */
2687 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2688
2689 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2690 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2691 i, src, srcp, dest, destp, sk->sk_state,
2692 tp->write_seq - tp->snd_una,
2693 rx_queue,
2694 timer_active,
2695 jiffies_delta_to_clock_t(timer_expires - jiffies),
2696 icsk->icsk_retransmits,
2697 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2698 icsk->icsk_probes_out,
2699 sock_i_ino(sk),
2700 atomic_read(&sk->sk_refcnt), sk,
2701 jiffies_to_clock_t(icsk->icsk_rto),
2702 jiffies_to_clock_t(icsk->icsk_ack.ato),
2703 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2704 tp->snd_cwnd,
2705 sk->sk_state == TCP_LISTEN ?
2706 (fastopenq ? fastopenq->max_qlen : 0) :
2707 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2708 len);
2709 }
2710
2711 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2712 struct seq_file *f, int i, int *len)
2713 {
2714 __be32 dest, src;
2715 __u16 destp, srcp;
2716 long delta = tw->tw_ttd - jiffies;
2717
2718 dest = tw->tw_daddr;
2719 src = tw->tw_rcv_saddr;
2720 destp = ntohs(tw->tw_dport);
2721 srcp = ntohs(tw->tw_sport);
2722
2723 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2724 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2725 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2726 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2727 atomic_read(&tw->tw_refcnt), tw, len);
2728 }
2729
2730 #define TMPSZ 150
2731
2732 static int tcp4_seq_show(struct seq_file *seq, void *v)
2733 {
2734 struct tcp_iter_state *st;
2735 int len;
2736
2737 if (v == SEQ_START_TOKEN) {
2738 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2739 " sl local_address rem_address st tx_queue "
2740 "rx_queue tr tm->when retrnsmt uid timeout "
2741 "inode");
2742 goto out;
2743 }
2744 st = seq->private;
2745
2746 switch (st->state) {
2747 case TCP_SEQ_STATE_LISTENING:
2748 case TCP_SEQ_STATE_ESTABLISHED:
2749 get_tcp4_sock(v, seq, st->num, &len);
2750 break;
2751 case TCP_SEQ_STATE_OPENREQ:
2752 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2753 break;
2754 case TCP_SEQ_STATE_TIME_WAIT:
2755 get_timewait4_sock(v, seq, st->num, &len);
2756 break;
2757 }
2758 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2759 out:
2760 return 0;
2761 }
2762
2763 static const struct file_operations tcp_afinfo_seq_fops = {
2764 .owner = THIS_MODULE,
2765 .open = tcp_seq_open,
2766 .read = seq_read,
2767 .llseek = seq_lseek,
2768 .release = seq_release_net
2769 };
2770
2771 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2772 .name = "tcp",
2773 .family = AF_INET,
2774 .seq_fops = &tcp_afinfo_seq_fops,
2775 .seq_ops = {
2776 .show = tcp4_seq_show,
2777 },
2778 };
2779
2780 static int __net_init tcp4_proc_init_net(struct net *net)
2781 {
2782 return tcp_proc_register(net, &tcp4_seq_afinfo);
2783 }
2784
2785 static void __net_exit tcp4_proc_exit_net(struct net *net)
2786 {
2787 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2788 }
2789
2790 static struct pernet_operations tcp4_net_ops = {
2791 .init = tcp4_proc_init_net,
2792 .exit = tcp4_proc_exit_net,
2793 };
2794
2795 int __init tcp4_proc_init(void)
2796 {
2797 return register_pernet_subsys(&tcp4_net_ops);
2798 }
2799
2800 void tcp4_proc_exit(void)
2801 {
2802 unregister_pernet_subsys(&tcp4_net_ops);
2803 }
2804 #endif /* CONFIG_PROC_FS */
2805
2806 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2807 {
2808 const struct iphdr *iph = skb_gro_network_header(skb);
2809 __wsum wsum;
2810 __sum16 sum;
2811
2812 switch (skb->ip_summed) {
2813 case CHECKSUM_COMPLETE:
2814 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2815 skb->csum)) {
2816 skb->ip_summed = CHECKSUM_UNNECESSARY;
2817 break;
2818 }
2819 flush:
2820 NAPI_GRO_CB(skb)->flush = 1;
2821 return NULL;
2822
2823 case CHECKSUM_NONE:
2824 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2825 skb_gro_len(skb), IPPROTO_TCP, 0);
2826 sum = csum_fold(skb_checksum(skb,
2827 skb_gro_offset(skb),
2828 skb_gro_len(skb),
2829 wsum));
2830 if (sum)
2831 goto flush;
2832
2833 skb->ip_summed = CHECKSUM_UNNECESSARY;
2834 break;
2835 }
2836
2837 return tcp_gro_receive(head, skb);
2838 }
2839
2840 int tcp4_gro_complete(struct sk_buff *skb)
2841 {
2842 const struct iphdr *iph = ip_hdr(skb);
2843 struct tcphdr *th = tcp_hdr(skb);
2844
2845 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2846 iph->saddr, iph->daddr, 0);
2847 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2848
2849 return tcp_gro_complete(skb);
2850 }
2851
2852 struct proto tcp_prot = {
2853 .name = "TCP",
2854 .owner = THIS_MODULE,
2855 .close = tcp_close,
2856 .connect = tcp_v4_connect,
2857 .disconnect = tcp_disconnect,
2858 .accept = inet_csk_accept,
2859 .ioctl = tcp_ioctl,
2860 .init = tcp_v4_init_sock,
2861 .destroy = tcp_v4_destroy_sock,
2862 .shutdown = tcp_shutdown,
2863 .setsockopt = tcp_setsockopt,
2864 .getsockopt = tcp_getsockopt,
2865 .recvmsg = tcp_recvmsg,
2866 .sendmsg = tcp_sendmsg,
2867 .sendpage = tcp_sendpage,
2868 .backlog_rcv = tcp_v4_do_rcv,
2869 .release_cb = tcp_release_cb,
2870 .mtu_reduced = tcp_v4_mtu_reduced,
2871 .hash = inet_hash,
2872 .unhash = inet_unhash,
2873 .get_port = inet_csk_get_port,
2874 .enter_memory_pressure = tcp_enter_memory_pressure,
2875 .sockets_allocated = &tcp_sockets_allocated,
2876 .orphan_count = &tcp_orphan_count,
2877 .memory_allocated = &tcp_memory_allocated,
2878 .memory_pressure = &tcp_memory_pressure,
2879 .sysctl_wmem = sysctl_tcp_wmem,
2880 .sysctl_rmem = sysctl_tcp_rmem,
2881 .max_header = MAX_TCP_HEADER,
2882 .obj_size = sizeof(struct tcp_sock),
2883 .slab_flags = SLAB_DESTROY_BY_RCU,
2884 .twsk_prot = &tcp_timewait_sock_ops,
2885 .rsk_prot = &tcp_request_sock_ops,
2886 .h.hashinfo = &tcp_hashinfo,
2887 .no_autobind = true,
2888 #ifdef CONFIG_COMPAT
2889 .compat_setsockopt = compat_tcp_setsockopt,
2890 .compat_getsockopt = compat_tcp_getsockopt,
2891 #endif
2892 #ifdef CONFIG_MEMCG_KMEM
2893 .init_cgroup = tcp_init_cgroup,
2894 .destroy_cgroup = tcp_destroy_cgroup,
2895 .proto_cgroup = tcp_proto_cgroup,
2896 #endif
2897 };
2898 EXPORT_SYMBOL(tcp_prot);
2899
2900 static int __net_init tcp_sk_init(struct net *net)
2901 {
2902 net->ipv4.sysctl_tcp_ecn = 2;
2903 return 0;
2904 }
2905
2906 static void __net_exit tcp_sk_exit(struct net *net)
2907 {
2908 }
2909
2910 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2911 {
2912 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2913 }
2914
2915 static struct pernet_operations __net_initdata tcp_sk_ops = {
2916 .init = tcp_sk_init,
2917 .exit = tcp_sk_exit,
2918 .exit_batch = tcp_sk_exit_batch,
2919 };
2920
2921 void __init tcp_v4_init(void)
2922 {
2923 inet_hashinfo_init(&tcp_hashinfo);
2924 if (register_pernet_subsys(&tcp_sk_ops))
2925 panic("Failed to create the TCP control socket.\n");
2926 }