Merge branch 'mips-next-3.10' of git://git.linux-mips.org/pub/scm/john/linux-john...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145 struct inet_sock *inet = inet_sk(sk);
146 struct tcp_sock *tp = tcp_sk(sk);
147 __be16 orig_sport, orig_dport;
148 __be32 daddr, nexthop;
149 struct flowi4 *fl4;
150 struct rtable *rt;
151 int err;
152 struct ip_options_rcu *inet_opt;
153
154 if (addr_len < sizeof(struct sockaddr_in))
155 return -EINVAL;
156
157 if (usin->sin_family != AF_INET)
158 return -EAFNOSUPPORT;
159
160 nexthop = daddr = usin->sin_addr.s_addr;
161 inet_opt = rcu_dereference_protected(inet->inet_opt,
162 sock_owned_by_user(sk));
163 if (inet_opt && inet_opt->opt.srr) {
164 if (!daddr)
165 return -EINVAL;
166 nexthop = inet_opt->opt.faddr;
167 }
168
169 orig_sport = inet->inet_sport;
170 orig_dport = usin->sin_port;
171 fl4 = &inet->cork.fl.u.ip4;
172 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174 IPPROTO_TCP,
175 orig_sport, orig_dport, sk, true);
176 if (IS_ERR(rt)) {
177 err = PTR_ERR(rt);
178 if (err == -ENETUNREACH)
179 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180 return err;
181 }
182
183 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184 ip_rt_put(rt);
185 return -ENETUNREACH;
186 }
187
188 if (!inet_opt || !inet_opt->opt.srr)
189 daddr = fl4->daddr;
190
191 if (!inet->inet_saddr)
192 inet->inet_saddr = fl4->saddr;
193 inet->inet_rcv_saddr = inet->inet_saddr;
194
195 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196 /* Reset inherited state */
197 tp->rx_opt.ts_recent = 0;
198 tp->rx_opt.ts_recent_stamp = 0;
199 if (likely(!tp->repair))
200 tp->write_seq = 0;
201 }
202
203 if (tcp_death_row.sysctl_tw_recycle &&
204 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207 inet->inet_dport = usin->sin_port;
208 inet->inet_daddr = daddr;
209
210 inet_csk(sk)->icsk_ext_hdr_len = 0;
211 if (inet_opt)
212 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216 /* Socket identity is still unknown (sport may be zero).
217 * However we set state to SYN-SENT and not releasing socket
218 * lock select source port, enter ourselves into the hash tables and
219 * complete initialization after this.
220 */
221 tcp_set_state(sk, TCP_SYN_SENT);
222 err = inet_hash_connect(&tcp_death_row, sk);
223 if (err)
224 goto failure;
225
226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 inet->inet_sport, inet->inet_dport, sk);
228 if (IS_ERR(rt)) {
229 err = PTR_ERR(rt);
230 rt = NULL;
231 goto failure;
232 }
233 /* OK, now commit destination to socket. */
234 sk->sk_gso_type = SKB_GSO_TCPV4;
235 sk_setup_caps(sk, &rt->dst);
236
237 if (!tp->write_seq && likely(!tp->repair))
238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 inet->inet_daddr,
240 inet->inet_sport,
241 usin->sin_port);
242
243 inet->inet_id = tp->write_seq ^ jiffies;
244
245 err = tcp_connect(sk);
246
247 rt = NULL;
248 if (err)
249 goto failure;
250
251 return 0;
252
253 failure:
254 /*
255 * This unhashes the socket and releases the local port,
256 * if necessary.
257 */
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
270 */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275 u32 mtu = tcp_sk(sk)->mtu_info;
276
277 dst = inet_csk_update_pmtu(sk, mtu);
278 if (!dst)
279 return;
280
281 /* Something is about to be wrong... Remember soft error
282 * for the case, if this connection will not able to recover.
283 */
284 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
285 sk->sk_err_soft = EMSGSIZE;
286
287 mtu = dst_mtu(dst);
288
289 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
290 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
291 tcp_sync_mss(sk, mtu);
292
293 /* Resend the TCP packet because it's
294 * clear that the old packet has been
295 * dropped. This is the new "fast" path mtu
296 * discovery.
297 */
298 tcp_simple_retransmit(sk);
299 } /* else let the usual retransmit timer handle it */
300 }
301
302 static void do_redirect(struct sk_buff *skb, struct sock *sk)
303 {
304 struct dst_entry *dst = __sk_dst_check(sk, 0);
305
306 if (dst)
307 dst->ops->redirect(dst, sk, skb);
308 }
309
310 /*
311 * This routine is called by the ICMP module when it gets some
312 * sort of error condition. If err < 0 then the socket should
313 * be closed and the error returned to the user. If err > 0
314 * it's just the icmp type << 8 | icmp code. After adjustment
315 * header points to the first 8 bytes of the tcp header. We need
316 * to find the appropriate port.
317 *
318 * The locking strategy used here is very "optimistic". When
319 * someone else accesses the socket the ICMP is just dropped
320 * and for some paths there is no check at all.
321 * A more general error queue to queue errors for later handling
322 * is probably better.
323 *
324 */
325
326 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
327 {
328 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
329 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
330 struct inet_connection_sock *icsk;
331 struct tcp_sock *tp;
332 struct inet_sock *inet;
333 const int type = icmp_hdr(icmp_skb)->type;
334 const int code = icmp_hdr(icmp_skb)->code;
335 struct sock *sk;
336 struct sk_buff *skb;
337 struct request_sock *req;
338 __u32 seq;
339 __u32 remaining;
340 int err;
341 struct net *net = dev_net(icmp_skb->dev);
342
343 if (icmp_skb->len < (iph->ihl << 2) + 8) {
344 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
345 return;
346 }
347
348 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
349 iph->saddr, th->source, inet_iif(icmp_skb));
350 if (!sk) {
351 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352 return;
353 }
354 if (sk->sk_state == TCP_TIME_WAIT) {
355 inet_twsk_put(inet_twsk(sk));
356 return;
357 }
358
359 bh_lock_sock(sk);
360 /* If too many ICMPs get dropped on busy
361 * servers this needs to be solved differently.
362 * We do take care of PMTU discovery (RFC1191) special case :
363 * we can receive locally generated ICMP messages while socket is held.
364 */
365 if (sock_owned_by_user(sk)) {
366 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
367 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
368 }
369 if (sk->sk_state == TCP_CLOSE)
370 goto out;
371
372 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
373 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
374 goto out;
375 }
376
377 icsk = inet_csk(sk);
378 tp = tcp_sk(sk);
379 req = tp->fastopen_rsk;
380 seq = ntohl(th->seq);
381 if (sk->sk_state != TCP_LISTEN &&
382 !between(seq, tp->snd_una, tp->snd_nxt) &&
383 (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
384 /* For a Fast Open socket, allow seq to be snt_isn. */
385 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
386 goto out;
387 }
388
389 switch (type) {
390 case ICMP_REDIRECT:
391 do_redirect(icmp_skb, sk);
392 goto out;
393 case ICMP_SOURCE_QUENCH:
394 /* Just silently ignore these. */
395 goto out;
396 case ICMP_PARAMETERPROB:
397 err = EPROTO;
398 break;
399 case ICMP_DEST_UNREACH:
400 if (code > NR_ICMP_UNREACH)
401 goto out;
402
403 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
404 /* We are not interested in TCP_LISTEN and open_requests
405 * (SYN-ACKs send out by Linux are always <576bytes so
406 * they should go through unfragmented).
407 */
408 if (sk->sk_state == TCP_LISTEN)
409 goto out;
410
411 tp->mtu_info = info;
412 if (!sock_owned_by_user(sk)) {
413 tcp_v4_mtu_reduced(sk);
414 } else {
415 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
416 sock_hold(sk);
417 }
418 goto out;
419 }
420
421 err = icmp_err_convert[code].errno;
422 /* check if icmp_skb allows revert of backoff
423 * (see draft-zimmermann-tcp-lcd) */
424 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
425 break;
426 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
427 !icsk->icsk_backoff)
428 break;
429
430 /* XXX (TFO) - revisit the following logic for TFO */
431
432 if (sock_owned_by_user(sk))
433 break;
434
435 icsk->icsk_backoff--;
436 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
437 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
438 tcp_bound_rto(sk);
439
440 skb = tcp_write_queue_head(sk);
441 BUG_ON(!skb);
442
443 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
444 tcp_time_stamp - TCP_SKB_CB(skb)->when);
445
446 if (remaining) {
447 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
448 remaining, TCP_RTO_MAX);
449 } else {
450 /* RTO revert clocked out retransmission.
451 * Will retransmit now */
452 tcp_retransmit_timer(sk);
453 }
454
455 break;
456 case ICMP_TIME_EXCEEDED:
457 err = EHOSTUNREACH;
458 break;
459 default:
460 goto out;
461 }
462
463 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
464 * than following the TCP_SYN_RECV case and closing the socket,
465 * we ignore the ICMP error and keep trying like a fully established
466 * socket. Is this the right thing to do?
467 */
468 if (req && req->sk == NULL)
469 goto out;
470
471 switch (sk->sk_state) {
472 struct request_sock *req, **prev;
473 case TCP_LISTEN:
474 if (sock_owned_by_user(sk))
475 goto out;
476
477 req = inet_csk_search_req(sk, &prev, th->dest,
478 iph->daddr, iph->saddr);
479 if (!req)
480 goto out;
481
482 /* ICMPs are not backlogged, hence we cannot get
483 an established socket here.
484 */
485 WARN_ON(req->sk);
486
487 if (seq != tcp_rsk(req)->snt_isn) {
488 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
489 goto out;
490 }
491
492 /*
493 * Still in SYN_RECV, just remove it silently.
494 * There is no good way to pass the error to the newly
495 * created socket, and POSIX does not want network
496 * errors returned from accept().
497 */
498 inet_csk_reqsk_queue_drop(sk, req, prev);
499 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
500 goto out;
501
502 case TCP_SYN_SENT:
503 case TCP_SYN_RECV: /* Cannot happen.
504 It can f.e. if SYNs crossed,
505 or Fast Open.
506 */
507 if (!sock_owned_by_user(sk)) {
508 sk->sk_err = err;
509
510 sk->sk_error_report(sk);
511
512 tcp_done(sk);
513 } else {
514 sk->sk_err_soft = err;
515 }
516 goto out;
517 }
518
519 /* If we've already connected we will keep trying
520 * until we time out, or the user gives up.
521 *
522 * rfc1122 4.2.3.9 allows to consider as hard errors
523 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524 * but it is obsoleted by pmtu discovery).
525 *
526 * Note, that in modern internet, where routing is unreliable
527 * and in each dark corner broken firewalls sit, sending random
528 * errors ordered by their masters even this two messages finally lose
529 * their original sense (even Linux sends invalid PORT_UNREACHs)
530 *
531 * Now we are in compliance with RFCs.
532 * --ANK (980905)
533 */
534
535 inet = inet_sk(sk);
536 if (!sock_owned_by_user(sk) && inet->recverr) {
537 sk->sk_err = err;
538 sk->sk_error_report(sk);
539 } else { /* Only an error on timeout */
540 sk->sk_err_soft = err;
541 }
542
543 out:
544 bh_unlock_sock(sk);
545 sock_put(sk);
546 }
547
548 static void __tcp_v4_send_check(struct sk_buff *skb,
549 __be32 saddr, __be32 daddr)
550 {
551 struct tcphdr *th = tcp_hdr(skb);
552
553 if (skb->ip_summed == CHECKSUM_PARTIAL) {
554 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555 skb->csum_start = skb_transport_header(skb) - skb->head;
556 skb->csum_offset = offsetof(struct tcphdr, check);
557 } else {
558 th->check = tcp_v4_check(skb->len, saddr, daddr,
559 csum_partial(th,
560 th->doff << 2,
561 skb->csum));
562 }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568 const struct inet_sock *inet = inet_sk(sk);
569
570 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 int tcp_v4_gso_send_check(struct sk_buff *skb)
575 {
576 const struct iphdr *iph;
577 struct tcphdr *th;
578
579 if (!pskb_may_pull(skb, sizeof(*th)))
580 return -EINVAL;
581
582 iph = ip_hdr(skb);
583 th = tcp_hdr(skb);
584
585 th->check = 0;
586 skb->ip_summed = CHECKSUM_PARTIAL;
587 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
588 return 0;
589 }
590
591 /*
592 * This routine will send an RST to the other tcp.
593 *
594 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
595 * for reset.
596 * Answer: if a packet caused RST, it is not for a socket
597 * existing in our system, if it is matched to a socket,
598 * it is just duplicate segment or bug in other side's TCP.
599 * So that we build reply only basing on parameters
600 * arrived with segment.
601 * Exception: precedence violation. We do not implement it in any case.
602 */
603
604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
605 {
606 const struct tcphdr *th = tcp_hdr(skb);
607 struct {
608 struct tcphdr th;
609 #ifdef CONFIG_TCP_MD5SIG
610 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
611 #endif
612 } rep;
613 struct ip_reply_arg arg;
614 #ifdef CONFIG_TCP_MD5SIG
615 struct tcp_md5sig_key *key;
616 const __u8 *hash_location = NULL;
617 unsigned char newhash[16];
618 int genhash;
619 struct sock *sk1 = NULL;
620 #endif
621 struct net *net;
622
623 /* Never send a reset in response to a reset. */
624 if (th->rst)
625 return;
626
627 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
628 return;
629
630 /* Swap the send and the receive. */
631 memset(&rep, 0, sizeof(rep));
632 rep.th.dest = th->source;
633 rep.th.source = th->dest;
634 rep.th.doff = sizeof(struct tcphdr) / 4;
635 rep.th.rst = 1;
636
637 if (th->ack) {
638 rep.th.seq = th->ack_seq;
639 } else {
640 rep.th.ack = 1;
641 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
642 skb->len - (th->doff << 2));
643 }
644
645 memset(&arg, 0, sizeof(arg));
646 arg.iov[0].iov_base = (unsigned char *)&rep;
647 arg.iov[0].iov_len = sizeof(rep.th);
648
649 #ifdef CONFIG_TCP_MD5SIG
650 hash_location = tcp_parse_md5sig_option(th);
651 if (!sk && hash_location) {
652 /*
653 * active side is lost. Try to find listening socket through
654 * source port, and then find md5 key through listening socket.
655 * we are not loose security here:
656 * Incoming packet is checked with md5 hash with finding key,
657 * no RST generated if md5 hash doesn't match.
658 */
659 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
660 &tcp_hashinfo, ip_hdr(skb)->saddr,
661 th->source, ip_hdr(skb)->daddr,
662 ntohs(th->source), inet_iif(skb));
663 /* don't send rst if it can't find key */
664 if (!sk1)
665 return;
666 rcu_read_lock();
667 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
668 &ip_hdr(skb)->saddr, AF_INET);
669 if (!key)
670 goto release_sk1;
671
672 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
673 if (genhash || memcmp(hash_location, newhash, 16) != 0)
674 goto release_sk1;
675 } else {
676 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
677 &ip_hdr(skb)->saddr,
678 AF_INET) : NULL;
679 }
680
681 if (key) {
682 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
683 (TCPOPT_NOP << 16) |
684 (TCPOPT_MD5SIG << 8) |
685 TCPOLEN_MD5SIG);
686 /* Update length and the length the header thinks exists */
687 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
688 rep.th.doff = arg.iov[0].iov_len / 4;
689
690 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
691 key, ip_hdr(skb)->saddr,
692 ip_hdr(skb)->daddr, &rep.th);
693 }
694 #endif
695 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
696 ip_hdr(skb)->saddr, /* XXX */
697 arg.iov[0].iov_len, IPPROTO_TCP, 0);
698 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
699 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
700 /* When socket is gone, all binding information is lost.
701 * routing might fail in this case. No choice here, if we choose to force
702 * input interface, we will misroute in case of asymmetric route.
703 */
704 if (sk)
705 arg.bound_dev_if = sk->sk_bound_dev_if;
706
707 net = dev_net(skb_dst(skb)->dev);
708 arg.tos = ip_hdr(skb)->tos;
709 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
710 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
711
712 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
713 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
714
715 #ifdef CONFIG_TCP_MD5SIG
716 release_sk1:
717 if (sk1) {
718 rcu_read_unlock();
719 sock_put(sk1);
720 }
721 #endif
722 }
723
724 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
725 outside socket context is ugly, certainly. What can I do?
726 */
727
728 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
729 u32 win, u32 tsval, u32 tsecr, int oif,
730 struct tcp_md5sig_key *key,
731 int reply_flags, u8 tos)
732 {
733 const struct tcphdr *th = tcp_hdr(skb);
734 struct {
735 struct tcphdr th;
736 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
737 #ifdef CONFIG_TCP_MD5SIG
738 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
739 #endif
740 ];
741 } rep;
742 struct ip_reply_arg arg;
743 struct net *net = dev_net(skb_dst(skb)->dev);
744
745 memset(&rep.th, 0, sizeof(struct tcphdr));
746 memset(&arg, 0, sizeof(arg));
747
748 arg.iov[0].iov_base = (unsigned char *)&rep;
749 arg.iov[0].iov_len = sizeof(rep.th);
750 if (tsecr) {
751 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
752 (TCPOPT_TIMESTAMP << 8) |
753 TCPOLEN_TIMESTAMP);
754 rep.opt[1] = htonl(tsval);
755 rep.opt[2] = htonl(tsecr);
756 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
757 }
758
759 /* Swap the send and the receive. */
760 rep.th.dest = th->source;
761 rep.th.source = th->dest;
762 rep.th.doff = arg.iov[0].iov_len / 4;
763 rep.th.seq = htonl(seq);
764 rep.th.ack_seq = htonl(ack);
765 rep.th.ack = 1;
766 rep.th.window = htons(win);
767
768 #ifdef CONFIG_TCP_MD5SIG
769 if (key) {
770 int offset = (tsecr) ? 3 : 0;
771
772 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
773 (TCPOPT_NOP << 16) |
774 (TCPOPT_MD5SIG << 8) |
775 TCPOLEN_MD5SIG);
776 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
777 rep.th.doff = arg.iov[0].iov_len/4;
778
779 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
780 key, ip_hdr(skb)->saddr,
781 ip_hdr(skb)->daddr, &rep.th);
782 }
783 #endif
784 arg.flags = reply_flags;
785 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
786 ip_hdr(skb)->saddr, /* XXX */
787 arg.iov[0].iov_len, IPPROTO_TCP, 0);
788 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
789 if (oif)
790 arg.bound_dev_if = oif;
791 arg.tos = tos;
792 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
793 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
794
795 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
796 }
797
798 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
799 {
800 struct inet_timewait_sock *tw = inet_twsk(sk);
801 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
802
803 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
804 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
805 tcp_time_stamp + tcptw->tw_ts_offset,
806 tcptw->tw_ts_recent,
807 tw->tw_bound_dev_if,
808 tcp_twsk_md5_key(tcptw),
809 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
810 tw->tw_tos
811 );
812
813 inet_twsk_put(tw);
814 }
815
816 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
817 struct request_sock *req)
818 {
819 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
820 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
821 */
822 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
823 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
824 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
825 tcp_time_stamp,
826 req->ts_recent,
827 0,
828 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
829 AF_INET),
830 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
831 ip_hdr(skb)->tos);
832 }
833
834 /*
835 * Send a SYN-ACK after having received a SYN.
836 * This still operates on a request_sock only, not on a big
837 * socket.
838 */
839 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
840 struct request_sock *req,
841 struct request_values *rvp,
842 u16 queue_mapping,
843 bool nocache)
844 {
845 const struct inet_request_sock *ireq = inet_rsk(req);
846 struct flowi4 fl4;
847 int err = -1;
848 struct sk_buff * skb;
849
850 /* First, grab a route. */
851 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
852 return -1;
853
854 skb = tcp_make_synack(sk, dst, req, rvp, NULL);
855
856 if (skb) {
857 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
858
859 skb_set_queue_mapping(skb, queue_mapping);
860 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
861 ireq->rmt_addr,
862 ireq->opt);
863 err = net_xmit_eval(err);
864 if (!tcp_rsk(req)->snt_synack && !err)
865 tcp_rsk(req)->snt_synack = tcp_time_stamp;
866 }
867
868 return err;
869 }
870
871 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
872 struct request_values *rvp)
873 {
874 int res = tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
875
876 if (!res)
877 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
878 return res;
879 }
880
881 /*
882 * IPv4 request_sock destructor.
883 */
884 static void tcp_v4_reqsk_destructor(struct request_sock *req)
885 {
886 kfree(inet_rsk(req)->opt);
887 }
888
889 /*
890 * Return true if a syncookie should be sent
891 */
892 bool tcp_syn_flood_action(struct sock *sk,
893 const struct sk_buff *skb,
894 const char *proto)
895 {
896 const char *msg = "Dropping request";
897 bool want_cookie = false;
898 struct listen_sock *lopt;
899
900
901
902 #ifdef CONFIG_SYN_COOKIES
903 if (sysctl_tcp_syncookies) {
904 msg = "Sending cookies";
905 want_cookie = true;
906 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
907 } else
908 #endif
909 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
910
911 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
912 if (!lopt->synflood_warned) {
913 lopt->synflood_warned = 1;
914 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
915 proto, ntohs(tcp_hdr(skb)->dest), msg);
916 }
917 return want_cookie;
918 }
919 EXPORT_SYMBOL(tcp_syn_flood_action);
920
921 /*
922 * Save and compile IPv4 options into the request_sock if needed.
923 */
924 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
925 {
926 const struct ip_options *opt = &(IPCB(skb)->opt);
927 struct ip_options_rcu *dopt = NULL;
928
929 if (opt && opt->optlen) {
930 int opt_size = sizeof(*dopt) + opt->optlen;
931
932 dopt = kmalloc(opt_size, GFP_ATOMIC);
933 if (dopt) {
934 if (ip_options_echo(&dopt->opt, skb)) {
935 kfree(dopt);
936 dopt = NULL;
937 }
938 }
939 }
940 return dopt;
941 }
942
943 #ifdef CONFIG_TCP_MD5SIG
944 /*
945 * RFC2385 MD5 checksumming requires a mapping of
946 * IP address->MD5 Key.
947 * We need to maintain these in the sk structure.
948 */
949
950 /* Find the Key structure for an address. */
951 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
952 const union tcp_md5_addr *addr,
953 int family)
954 {
955 struct tcp_sock *tp = tcp_sk(sk);
956 struct tcp_md5sig_key *key;
957 unsigned int size = sizeof(struct in_addr);
958 struct tcp_md5sig_info *md5sig;
959
960 /* caller either holds rcu_read_lock() or socket lock */
961 md5sig = rcu_dereference_check(tp->md5sig_info,
962 sock_owned_by_user(sk) ||
963 lockdep_is_held(&sk->sk_lock.slock));
964 if (!md5sig)
965 return NULL;
966 #if IS_ENABLED(CONFIG_IPV6)
967 if (family == AF_INET6)
968 size = sizeof(struct in6_addr);
969 #endif
970 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
971 if (key->family != family)
972 continue;
973 if (!memcmp(&key->addr, addr, size))
974 return key;
975 }
976 return NULL;
977 }
978 EXPORT_SYMBOL(tcp_md5_do_lookup);
979
980 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
981 struct sock *addr_sk)
982 {
983 union tcp_md5_addr *addr;
984
985 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
986 return tcp_md5_do_lookup(sk, addr, AF_INET);
987 }
988 EXPORT_SYMBOL(tcp_v4_md5_lookup);
989
990 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
991 struct request_sock *req)
992 {
993 union tcp_md5_addr *addr;
994
995 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
996 return tcp_md5_do_lookup(sk, addr, AF_INET);
997 }
998
999 /* This can be called on a newly created socket, from other files */
1000 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1001 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1002 {
1003 /* Add Key to the list */
1004 struct tcp_md5sig_key *key;
1005 struct tcp_sock *tp = tcp_sk(sk);
1006 struct tcp_md5sig_info *md5sig;
1007
1008 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1009 if (key) {
1010 /* Pre-existing entry - just update that one. */
1011 memcpy(key->key, newkey, newkeylen);
1012 key->keylen = newkeylen;
1013 return 0;
1014 }
1015
1016 md5sig = rcu_dereference_protected(tp->md5sig_info,
1017 sock_owned_by_user(sk));
1018 if (!md5sig) {
1019 md5sig = kmalloc(sizeof(*md5sig), gfp);
1020 if (!md5sig)
1021 return -ENOMEM;
1022
1023 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1024 INIT_HLIST_HEAD(&md5sig->head);
1025 rcu_assign_pointer(tp->md5sig_info, md5sig);
1026 }
1027
1028 key = sock_kmalloc(sk, sizeof(*key), gfp);
1029 if (!key)
1030 return -ENOMEM;
1031 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1032 sock_kfree_s(sk, key, sizeof(*key));
1033 return -ENOMEM;
1034 }
1035
1036 memcpy(key->key, newkey, newkeylen);
1037 key->keylen = newkeylen;
1038 key->family = family;
1039 memcpy(&key->addr, addr,
1040 (family == AF_INET6) ? sizeof(struct in6_addr) :
1041 sizeof(struct in_addr));
1042 hlist_add_head_rcu(&key->node, &md5sig->head);
1043 return 0;
1044 }
1045 EXPORT_SYMBOL(tcp_md5_do_add);
1046
1047 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1048 {
1049 struct tcp_sock *tp = tcp_sk(sk);
1050 struct tcp_md5sig_key *key;
1051 struct tcp_md5sig_info *md5sig;
1052
1053 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1054 if (!key)
1055 return -ENOENT;
1056 hlist_del_rcu(&key->node);
1057 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1058 kfree_rcu(key, rcu);
1059 md5sig = rcu_dereference_protected(tp->md5sig_info,
1060 sock_owned_by_user(sk));
1061 if (hlist_empty(&md5sig->head))
1062 tcp_free_md5sig_pool();
1063 return 0;
1064 }
1065 EXPORT_SYMBOL(tcp_md5_do_del);
1066
1067 static void tcp_clear_md5_list(struct sock *sk)
1068 {
1069 struct tcp_sock *tp = tcp_sk(sk);
1070 struct tcp_md5sig_key *key;
1071 struct hlist_node *n;
1072 struct tcp_md5sig_info *md5sig;
1073
1074 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1075
1076 if (!hlist_empty(&md5sig->head))
1077 tcp_free_md5sig_pool();
1078 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1079 hlist_del_rcu(&key->node);
1080 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1081 kfree_rcu(key, rcu);
1082 }
1083 }
1084
1085 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1086 int optlen)
1087 {
1088 struct tcp_md5sig cmd;
1089 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1090
1091 if (optlen < sizeof(cmd))
1092 return -EINVAL;
1093
1094 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1095 return -EFAULT;
1096
1097 if (sin->sin_family != AF_INET)
1098 return -EINVAL;
1099
1100 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1101 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1102 AF_INET);
1103
1104 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1105 return -EINVAL;
1106
1107 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1108 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1109 GFP_KERNEL);
1110 }
1111
1112 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1113 __be32 daddr, __be32 saddr, int nbytes)
1114 {
1115 struct tcp4_pseudohdr *bp;
1116 struct scatterlist sg;
1117
1118 bp = &hp->md5_blk.ip4;
1119
1120 /*
1121 * 1. the TCP pseudo-header (in the order: source IP address,
1122 * destination IP address, zero-padded protocol number, and
1123 * segment length)
1124 */
1125 bp->saddr = saddr;
1126 bp->daddr = daddr;
1127 bp->pad = 0;
1128 bp->protocol = IPPROTO_TCP;
1129 bp->len = cpu_to_be16(nbytes);
1130
1131 sg_init_one(&sg, bp, sizeof(*bp));
1132 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1133 }
1134
1135 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1136 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1137 {
1138 struct tcp_md5sig_pool *hp;
1139 struct hash_desc *desc;
1140
1141 hp = tcp_get_md5sig_pool();
1142 if (!hp)
1143 goto clear_hash_noput;
1144 desc = &hp->md5_desc;
1145
1146 if (crypto_hash_init(desc))
1147 goto clear_hash;
1148 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1149 goto clear_hash;
1150 if (tcp_md5_hash_header(hp, th))
1151 goto clear_hash;
1152 if (tcp_md5_hash_key(hp, key))
1153 goto clear_hash;
1154 if (crypto_hash_final(desc, md5_hash))
1155 goto clear_hash;
1156
1157 tcp_put_md5sig_pool();
1158 return 0;
1159
1160 clear_hash:
1161 tcp_put_md5sig_pool();
1162 clear_hash_noput:
1163 memset(md5_hash, 0, 16);
1164 return 1;
1165 }
1166
1167 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1168 const struct sock *sk, const struct request_sock *req,
1169 const struct sk_buff *skb)
1170 {
1171 struct tcp_md5sig_pool *hp;
1172 struct hash_desc *desc;
1173 const struct tcphdr *th = tcp_hdr(skb);
1174 __be32 saddr, daddr;
1175
1176 if (sk) {
1177 saddr = inet_sk(sk)->inet_saddr;
1178 daddr = inet_sk(sk)->inet_daddr;
1179 } else if (req) {
1180 saddr = inet_rsk(req)->loc_addr;
1181 daddr = inet_rsk(req)->rmt_addr;
1182 } else {
1183 const struct iphdr *iph = ip_hdr(skb);
1184 saddr = iph->saddr;
1185 daddr = iph->daddr;
1186 }
1187
1188 hp = tcp_get_md5sig_pool();
1189 if (!hp)
1190 goto clear_hash_noput;
1191 desc = &hp->md5_desc;
1192
1193 if (crypto_hash_init(desc))
1194 goto clear_hash;
1195
1196 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1197 goto clear_hash;
1198 if (tcp_md5_hash_header(hp, th))
1199 goto clear_hash;
1200 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1201 goto clear_hash;
1202 if (tcp_md5_hash_key(hp, key))
1203 goto clear_hash;
1204 if (crypto_hash_final(desc, md5_hash))
1205 goto clear_hash;
1206
1207 tcp_put_md5sig_pool();
1208 return 0;
1209
1210 clear_hash:
1211 tcp_put_md5sig_pool();
1212 clear_hash_noput:
1213 memset(md5_hash, 0, 16);
1214 return 1;
1215 }
1216 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1217
1218 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1219 {
1220 /*
1221 * This gets called for each TCP segment that arrives
1222 * so we want to be efficient.
1223 * We have 3 drop cases:
1224 * o No MD5 hash and one expected.
1225 * o MD5 hash and we're not expecting one.
1226 * o MD5 hash and its wrong.
1227 */
1228 const __u8 *hash_location = NULL;
1229 struct tcp_md5sig_key *hash_expected;
1230 const struct iphdr *iph = ip_hdr(skb);
1231 const struct tcphdr *th = tcp_hdr(skb);
1232 int genhash;
1233 unsigned char newhash[16];
1234
1235 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1236 AF_INET);
1237 hash_location = tcp_parse_md5sig_option(th);
1238
1239 /* We've parsed the options - do we have a hash? */
1240 if (!hash_expected && !hash_location)
1241 return false;
1242
1243 if (hash_expected && !hash_location) {
1244 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1245 return true;
1246 }
1247
1248 if (!hash_expected && hash_location) {
1249 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1250 return true;
1251 }
1252
1253 /* Okay, so this is hash_expected and hash_location -
1254 * so we need to calculate the checksum.
1255 */
1256 genhash = tcp_v4_md5_hash_skb(newhash,
1257 hash_expected,
1258 NULL, NULL, skb);
1259
1260 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1261 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1262 &iph->saddr, ntohs(th->source),
1263 &iph->daddr, ntohs(th->dest),
1264 genhash ? " tcp_v4_calc_md5_hash failed"
1265 : "");
1266 return true;
1267 }
1268 return false;
1269 }
1270
1271 #endif
1272
1273 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1274 .family = PF_INET,
1275 .obj_size = sizeof(struct tcp_request_sock),
1276 .rtx_syn_ack = tcp_v4_rtx_synack,
1277 .send_ack = tcp_v4_reqsk_send_ack,
1278 .destructor = tcp_v4_reqsk_destructor,
1279 .send_reset = tcp_v4_send_reset,
1280 .syn_ack_timeout = tcp_syn_ack_timeout,
1281 };
1282
1283 #ifdef CONFIG_TCP_MD5SIG
1284 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1285 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1286 .calc_md5_hash = tcp_v4_md5_hash_skb,
1287 };
1288 #endif
1289
1290 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1291 struct request_sock *req,
1292 struct tcp_fastopen_cookie *foc,
1293 struct tcp_fastopen_cookie *valid_foc)
1294 {
1295 bool skip_cookie = false;
1296 struct fastopen_queue *fastopenq;
1297
1298 if (likely(!fastopen_cookie_present(foc))) {
1299 /* See include/net/tcp.h for the meaning of these knobs */
1300 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1301 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1302 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1303 skip_cookie = true; /* no cookie to validate */
1304 else
1305 return false;
1306 }
1307 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1308 /* A FO option is present; bump the counter. */
1309 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1310
1311 /* Make sure the listener has enabled fastopen, and we don't
1312 * exceed the max # of pending TFO requests allowed before trying
1313 * to validating the cookie in order to avoid burning CPU cycles
1314 * unnecessarily.
1315 *
1316 * XXX (TFO) - The implication of checking the max_qlen before
1317 * processing a cookie request is that clients can't differentiate
1318 * between qlen overflow causing Fast Open to be disabled
1319 * temporarily vs a server not supporting Fast Open at all.
1320 */
1321 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1322 fastopenq == NULL || fastopenq->max_qlen == 0)
1323 return false;
1324
1325 if (fastopenq->qlen >= fastopenq->max_qlen) {
1326 struct request_sock *req1;
1327 spin_lock(&fastopenq->lock);
1328 req1 = fastopenq->rskq_rst_head;
1329 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1330 spin_unlock(&fastopenq->lock);
1331 NET_INC_STATS_BH(sock_net(sk),
1332 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1333 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1334 foc->len = -1;
1335 return false;
1336 }
1337 fastopenq->rskq_rst_head = req1->dl_next;
1338 fastopenq->qlen--;
1339 spin_unlock(&fastopenq->lock);
1340 reqsk_free(req1);
1341 }
1342 if (skip_cookie) {
1343 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1344 return true;
1345 }
1346 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1347 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1348 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1349 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1350 memcmp(&foc->val[0], &valid_foc->val[0],
1351 TCP_FASTOPEN_COOKIE_SIZE) != 0)
1352 return false;
1353 valid_foc->len = -1;
1354 }
1355 /* Acknowledge the data received from the peer. */
1356 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1357 return true;
1358 } else if (foc->len == 0) { /* Client requesting a cookie */
1359 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1360 NET_INC_STATS_BH(sock_net(sk),
1361 LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1362 } else {
1363 /* Client sent a cookie with wrong size. Treat it
1364 * the same as invalid and return a valid one.
1365 */
1366 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1367 }
1368 return false;
1369 }
1370
1371 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1372 struct sk_buff *skb,
1373 struct sk_buff *skb_synack,
1374 struct request_sock *req,
1375 struct request_values *rvp)
1376 {
1377 struct tcp_sock *tp = tcp_sk(sk);
1378 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1379 const struct inet_request_sock *ireq = inet_rsk(req);
1380 struct sock *child;
1381 int err;
1382
1383 req->num_retrans = 0;
1384 req->num_timeout = 0;
1385 req->sk = NULL;
1386
1387 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1388 if (child == NULL) {
1389 NET_INC_STATS_BH(sock_net(sk),
1390 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1391 kfree_skb(skb_synack);
1392 return -1;
1393 }
1394 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1395 ireq->rmt_addr, ireq->opt);
1396 err = net_xmit_eval(err);
1397 if (!err)
1398 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1399 /* XXX (TFO) - is it ok to ignore error and continue? */
1400
1401 spin_lock(&queue->fastopenq->lock);
1402 queue->fastopenq->qlen++;
1403 spin_unlock(&queue->fastopenq->lock);
1404
1405 /* Initialize the child socket. Have to fix some values to take
1406 * into account the child is a Fast Open socket and is created
1407 * only out of the bits carried in the SYN packet.
1408 */
1409 tp = tcp_sk(child);
1410
1411 tp->fastopen_rsk = req;
1412 /* Do a hold on the listner sk so that if the listener is being
1413 * closed, the child that has been accepted can live on and still
1414 * access listen_lock.
1415 */
1416 sock_hold(sk);
1417 tcp_rsk(req)->listener = sk;
1418
1419 /* RFC1323: The window in SYN & SYN/ACK segments is never
1420 * scaled. So correct it appropriately.
1421 */
1422 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1423
1424 /* Activate the retrans timer so that SYNACK can be retransmitted.
1425 * The request socket is not added to the SYN table of the parent
1426 * because it's been added to the accept queue directly.
1427 */
1428 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1429 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1430
1431 /* Add the child socket directly into the accept queue */
1432 inet_csk_reqsk_queue_add(sk, req, child);
1433
1434 /* Now finish processing the fastopen child socket. */
1435 inet_csk(child)->icsk_af_ops->rebuild_header(child);
1436 tcp_init_congestion_control(child);
1437 tcp_mtup_init(child);
1438 tcp_init_buffer_space(child);
1439 tcp_init_metrics(child);
1440
1441 /* Queue the data carried in the SYN packet. We need to first
1442 * bump skb's refcnt because the caller will attempt to free it.
1443 *
1444 * XXX (TFO) - we honor a zero-payload TFO request for now.
1445 * (Any reason not to?)
1446 */
1447 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1448 /* Don't queue the skb if there is no payload in SYN.
1449 * XXX (TFO) - How about SYN+FIN?
1450 */
1451 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1452 } else {
1453 skb = skb_get(skb);
1454 skb_dst_drop(skb);
1455 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1456 skb_set_owner_r(skb, child);
1457 __skb_queue_tail(&child->sk_receive_queue, skb);
1458 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1459 tp->syn_data_acked = 1;
1460 }
1461 sk->sk_data_ready(sk, 0);
1462 bh_unlock_sock(child);
1463 sock_put(child);
1464 WARN_ON(req->sk == NULL);
1465 return 0;
1466 }
1467
1468 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1469 {
1470 struct tcp_extend_values tmp_ext;
1471 struct tcp_options_received tmp_opt;
1472 const u8 *hash_location;
1473 struct request_sock *req;
1474 struct inet_request_sock *ireq;
1475 struct tcp_sock *tp = tcp_sk(sk);
1476 struct dst_entry *dst = NULL;
1477 __be32 saddr = ip_hdr(skb)->saddr;
1478 __be32 daddr = ip_hdr(skb)->daddr;
1479 __u32 isn = TCP_SKB_CB(skb)->when;
1480 bool want_cookie = false;
1481 struct flowi4 fl4;
1482 struct tcp_fastopen_cookie foc = { .len = -1 };
1483 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1484 struct sk_buff *skb_synack;
1485 int do_fastopen;
1486
1487 /* Never answer to SYNs send to broadcast or multicast */
1488 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1489 goto drop;
1490
1491 /* TW buckets are converted to open requests without
1492 * limitations, they conserve resources and peer is
1493 * evidently real one.
1494 */
1495 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1496 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1497 if (!want_cookie)
1498 goto drop;
1499 }
1500
1501 /* Accept backlog is full. If we have already queued enough
1502 * of warm entries in syn queue, drop request. It is better than
1503 * clogging syn queue with openreqs with exponentially increasing
1504 * timeout.
1505 */
1506 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1507 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1508 goto drop;
1509 }
1510
1511 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1512 if (!req)
1513 goto drop;
1514
1515 #ifdef CONFIG_TCP_MD5SIG
1516 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1517 #endif
1518
1519 tcp_clear_options(&tmp_opt);
1520 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1521 tmp_opt.user_mss = tp->rx_opt.user_mss;
1522 tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1523 want_cookie ? NULL : &foc);
1524
1525 if (tmp_opt.cookie_plus > 0 &&
1526 tmp_opt.saw_tstamp &&
1527 !tp->rx_opt.cookie_out_never &&
1528 (sysctl_tcp_cookie_size > 0 ||
1529 (tp->cookie_values != NULL &&
1530 tp->cookie_values->cookie_desired > 0))) {
1531 u8 *c;
1532 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1533 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1534
1535 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1536 goto drop_and_release;
1537
1538 /* Secret recipe starts with IP addresses */
1539 *mess++ ^= (__force u32)daddr;
1540 *mess++ ^= (__force u32)saddr;
1541
1542 /* plus variable length Initiator Cookie */
1543 c = (u8 *)mess;
1544 while (l-- > 0)
1545 *c++ ^= *hash_location++;
1546
1547 want_cookie = false; /* not our kind of cookie */
1548 tmp_ext.cookie_out_never = 0; /* false */
1549 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1550 } else if (!tp->rx_opt.cookie_in_always) {
1551 /* redundant indications, but ensure initialization. */
1552 tmp_ext.cookie_out_never = 1; /* true */
1553 tmp_ext.cookie_plus = 0;
1554 } else {
1555 goto drop_and_release;
1556 }
1557 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1558
1559 if (want_cookie && !tmp_opt.saw_tstamp)
1560 tcp_clear_options(&tmp_opt);
1561
1562 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1563 tcp_openreq_init(req, &tmp_opt, skb);
1564
1565 ireq = inet_rsk(req);
1566 ireq->loc_addr = daddr;
1567 ireq->rmt_addr = saddr;
1568 ireq->no_srccheck = inet_sk(sk)->transparent;
1569 ireq->opt = tcp_v4_save_options(skb);
1570
1571 if (security_inet_conn_request(sk, skb, req))
1572 goto drop_and_free;
1573
1574 if (!want_cookie || tmp_opt.tstamp_ok)
1575 TCP_ECN_create_request(req, skb, sock_net(sk));
1576
1577 if (want_cookie) {
1578 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1579 req->cookie_ts = tmp_opt.tstamp_ok;
1580 } else if (!isn) {
1581 /* VJ's idea. We save last timestamp seen
1582 * from the destination in peer table, when entering
1583 * state TIME-WAIT, and check against it before
1584 * accepting new connection request.
1585 *
1586 * If "isn" is not zero, this request hit alive
1587 * timewait bucket, so that all the necessary checks
1588 * are made in the function processing timewait state.
1589 */
1590 if (tmp_opt.saw_tstamp &&
1591 tcp_death_row.sysctl_tw_recycle &&
1592 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1593 fl4.daddr == saddr) {
1594 if (!tcp_peer_is_proven(req, dst, true)) {
1595 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1596 goto drop_and_release;
1597 }
1598 }
1599 /* Kill the following clause, if you dislike this way. */
1600 else if (!sysctl_tcp_syncookies &&
1601 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1602 (sysctl_max_syn_backlog >> 2)) &&
1603 !tcp_peer_is_proven(req, dst, false)) {
1604 /* Without syncookies last quarter of
1605 * backlog is filled with destinations,
1606 * proven to be alive.
1607 * It means that we continue to communicate
1608 * to destinations, already remembered
1609 * to the moment of synflood.
1610 */
1611 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1612 &saddr, ntohs(tcp_hdr(skb)->source));
1613 goto drop_and_release;
1614 }
1615
1616 isn = tcp_v4_init_sequence(skb);
1617 }
1618 tcp_rsk(req)->snt_isn = isn;
1619
1620 if (dst == NULL) {
1621 dst = inet_csk_route_req(sk, &fl4, req);
1622 if (dst == NULL)
1623 goto drop_and_free;
1624 }
1625 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1626
1627 /* We don't call tcp_v4_send_synack() directly because we need
1628 * to make sure a child socket can be created successfully before
1629 * sending back synack!
1630 *
1631 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1632 * (or better yet, call tcp_send_synack() in the child context
1633 * directly, but will have to fix bunch of other code first)
1634 * after syn_recv_sock() except one will need to first fix the
1635 * latter to remove its dependency on the current implementation
1636 * of tcp_v4_send_synack()->tcp_select_initial_window().
1637 */
1638 skb_synack = tcp_make_synack(sk, dst, req,
1639 (struct request_values *)&tmp_ext,
1640 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1641
1642 if (skb_synack) {
1643 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1644 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1645 } else
1646 goto drop_and_free;
1647
1648 if (likely(!do_fastopen)) {
1649 int err;
1650 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1651 ireq->rmt_addr, ireq->opt);
1652 err = net_xmit_eval(err);
1653 if (err || want_cookie)
1654 goto drop_and_free;
1655
1656 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1657 tcp_rsk(req)->listener = NULL;
1658 /* Add the request_sock to the SYN table */
1659 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1660 if (fastopen_cookie_present(&foc) && foc.len != 0)
1661 NET_INC_STATS_BH(sock_net(sk),
1662 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1663 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1664 (struct request_values *)&tmp_ext))
1665 goto drop_and_free;
1666
1667 return 0;
1668
1669 drop_and_release:
1670 dst_release(dst);
1671 drop_and_free:
1672 reqsk_free(req);
1673 drop:
1674 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1675 return 0;
1676 }
1677 EXPORT_SYMBOL(tcp_v4_conn_request);
1678
1679
1680 /*
1681 * The three way handshake has completed - we got a valid synack -
1682 * now create the new socket.
1683 */
1684 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1685 struct request_sock *req,
1686 struct dst_entry *dst)
1687 {
1688 struct inet_request_sock *ireq;
1689 struct inet_sock *newinet;
1690 struct tcp_sock *newtp;
1691 struct sock *newsk;
1692 #ifdef CONFIG_TCP_MD5SIG
1693 struct tcp_md5sig_key *key;
1694 #endif
1695 struct ip_options_rcu *inet_opt;
1696
1697 if (sk_acceptq_is_full(sk))
1698 goto exit_overflow;
1699
1700 newsk = tcp_create_openreq_child(sk, req, skb);
1701 if (!newsk)
1702 goto exit_nonewsk;
1703
1704 newsk->sk_gso_type = SKB_GSO_TCPV4;
1705 inet_sk_rx_dst_set(newsk, skb);
1706
1707 newtp = tcp_sk(newsk);
1708 newinet = inet_sk(newsk);
1709 ireq = inet_rsk(req);
1710 newinet->inet_daddr = ireq->rmt_addr;
1711 newinet->inet_rcv_saddr = ireq->loc_addr;
1712 newinet->inet_saddr = ireq->loc_addr;
1713 inet_opt = ireq->opt;
1714 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1715 ireq->opt = NULL;
1716 newinet->mc_index = inet_iif(skb);
1717 newinet->mc_ttl = ip_hdr(skb)->ttl;
1718 newinet->rcv_tos = ip_hdr(skb)->tos;
1719 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1720 if (inet_opt)
1721 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1722 newinet->inet_id = newtp->write_seq ^ jiffies;
1723
1724 if (!dst) {
1725 dst = inet_csk_route_child_sock(sk, newsk, req);
1726 if (!dst)
1727 goto put_and_exit;
1728 } else {
1729 /* syncookie case : see end of cookie_v4_check() */
1730 }
1731 sk_setup_caps(newsk, dst);
1732
1733 tcp_mtup_init(newsk);
1734 tcp_sync_mss(newsk, dst_mtu(dst));
1735 newtp->advmss = dst_metric_advmss(dst);
1736 if (tcp_sk(sk)->rx_opt.user_mss &&
1737 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1738 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1739
1740 tcp_initialize_rcv_mss(newsk);
1741 tcp_synack_rtt_meas(newsk, req);
1742 newtp->total_retrans = req->num_retrans;
1743
1744 #ifdef CONFIG_TCP_MD5SIG
1745 /* Copy over the MD5 key from the original socket */
1746 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1747 AF_INET);
1748 if (key != NULL) {
1749 /*
1750 * We're using one, so create a matching key
1751 * on the newsk structure. If we fail to get
1752 * memory, then we end up not copying the key
1753 * across. Shucks.
1754 */
1755 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1756 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1757 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1758 }
1759 #endif
1760
1761 if (__inet_inherit_port(sk, newsk) < 0)
1762 goto put_and_exit;
1763 __inet_hash_nolisten(newsk, NULL);
1764
1765 return newsk;
1766
1767 exit_overflow:
1768 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1769 exit_nonewsk:
1770 dst_release(dst);
1771 exit:
1772 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1773 return NULL;
1774 put_and_exit:
1775 inet_csk_prepare_forced_close(newsk);
1776 tcp_done(newsk);
1777 goto exit;
1778 }
1779 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1780
1781 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1782 {
1783 struct tcphdr *th = tcp_hdr(skb);
1784 const struct iphdr *iph = ip_hdr(skb);
1785 struct sock *nsk;
1786 struct request_sock **prev;
1787 /* Find possible connection requests. */
1788 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1789 iph->saddr, iph->daddr);
1790 if (req)
1791 return tcp_check_req(sk, skb, req, prev, false);
1792
1793 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1794 th->source, iph->daddr, th->dest, inet_iif(skb));
1795
1796 if (nsk) {
1797 if (nsk->sk_state != TCP_TIME_WAIT) {
1798 bh_lock_sock(nsk);
1799 return nsk;
1800 }
1801 inet_twsk_put(inet_twsk(nsk));
1802 return NULL;
1803 }
1804
1805 #ifdef CONFIG_SYN_COOKIES
1806 if (!th->syn)
1807 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1808 #endif
1809 return sk;
1810 }
1811
1812 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1813 {
1814 const struct iphdr *iph = ip_hdr(skb);
1815
1816 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1817 if (!tcp_v4_check(skb->len, iph->saddr,
1818 iph->daddr, skb->csum)) {
1819 skb->ip_summed = CHECKSUM_UNNECESSARY;
1820 return 0;
1821 }
1822 }
1823
1824 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1825 skb->len, IPPROTO_TCP, 0);
1826
1827 if (skb->len <= 76) {
1828 return __skb_checksum_complete(skb);
1829 }
1830 return 0;
1831 }
1832
1833
1834 /* The socket must have it's spinlock held when we get
1835 * here.
1836 *
1837 * We have a potential double-lock case here, so even when
1838 * doing backlog processing we use the BH locking scheme.
1839 * This is because we cannot sleep with the original spinlock
1840 * held.
1841 */
1842 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1843 {
1844 struct sock *rsk;
1845 #ifdef CONFIG_TCP_MD5SIG
1846 /*
1847 * We really want to reject the packet as early as possible
1848 * if:
1849 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1850 * o There is an MD5 option and we're not expecting one
1851 */
1852 if (tcp_v4_inbound_md5_hash(sk, skb))
1853 goto discard;
1854 #endif
1855
1856 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1857 struct dst_entry *dst = sk->sk_rx_dst;
1858
1859 sock_rps_save_rxhash(sk, skb);
1860 if (dst) {
1861 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1862 dst->ops->check(dst, 0) == NULL) {
1863 dst_release(dst);
1864 sk->sk_rx_dst = NULL;
1865 }
1866 }
1867 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1868 rsk = sk;
1869 goto reset;
1870 }
1871 return 0;
1872 }
1873
1874 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1875 goto csum_err;
1876
1877 if (sk->sk_state == TCP_LISTEN) {
1878 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1879 if (!nsk)
1880 goto discard;
1881
1882 if (nsk != sk) {
1883 sock_rps_save_rxhash(nsk, skb);
1884 if (tcp_child_process(sk, nsk, skb)) {
1885 rsk = nsk;
1886 goto reset;
1887 }
1888 return 0;
1889 }
1890 } else
1891 sock_rps_save_rxhash(sk, skb);
1892
1893 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1894 rsk = sk;
1895 goto reset;
1896 }
1897 return 0;
1898
1899 reset:
1900 tcp_v4_send_reset(rsk, skb);
1901 discard:
1902 kfree_skb(skb);
1903 /* Be careful here. If this function gets more complicated and
1904 * gcc suffers from register pressure on the x86, sk (in %ebx)
1905 * might be destroyed here. This current version compiles correctly,
1906 * but you have been warned.
1907 */
1908 return 0;
1909
1910 csum_err:
1911 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1912 goto discard;
1913 }
1914 EXPORT_SYMBOL(tcp_v4_do_rcv);
1915
1916 void tcp_v4_early_demux(struct sk_buff *skb)
1917 {
1918 const struct iphdr *iph;
1919 const struct tcphdr *th;
1920 struct sock *sk;
1921
1922 if (skb->pkt_type != PACKET_HOST)
1923 return;
1924
1925 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1926 return;
1927
1928 iph = ip_hdr(skb);
1929 th = tcp_hdr(skb);
1930
1931 if (th->doff < sizeof(struct tcphdr) / 4)
1932 return;
1933
1934 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1935 iph->saddr, th->source,
1936 iph->daddr, ntohs(th->dest),
1937 skb->skb_iif);
1938 if (sk) {
1939 skb->sk = sk;
1940 skb->destructor = sock_edemux;
1941 if (sk->sk_state != TCP_TIME_WAIT) {
1942 struct dst_entry *dst = sk->sk_rx_dst;
1943
1944 if (dst)
1945 dst = dst_check(dst, 0);
1946 if (dst &&
1947 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1948 skb_dst_set_noref(skb, dst);
1949 }
1950 }
1951 }
1952
1953 /*
1954 * From tcp_input.c
1955 */
1956
1957 int tcp_v4_rcv(struct sk_buff *skb)
1958 {
1959 const struct iphdr *iph;
1960 const struct tcphdr *th;
1961 struct sock *sk;
1962 int ret;
1963 struct net *net = dev_net(skb->dev);
1964
1965 if (skb->pkt_type != PACKET_HOST)
1966 goto discard_it;
1967
1968 /* Count it even if it's bad */
1969 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1970
1971 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1972 goto discard_it;
1973
1974 th = tcp_hdr(skb);
1975
1976 if (th->doff < sizeof(struct tcphdr) / 4)
1977 goto bad_packet;
1978 if (!pskb_may_pull(skb, th->doff * 4))
1979 goto discard_it;
1980
1981 /* An explanation is required here, I think.
1982 * Packet length and doff are validated by header prediction,
1983 * provided case of th->doff==0 is eliminated.
1984 * So, we defer the checks. */
1985 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1986 goto bad_packet;
1987
1988 th = tcp_hdr(skb);
1989 iph = ip_hdr(skb);
1990 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1991 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1992 skb->len - th->doff * 4);
1993 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1994 TCP_SKB_CB(skb)->when = 0;
1995 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1996 TCP_SKB_CB(skb)->sacked = 0;
1997
1998 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1999 if (!sk)
2000 goto no_tcp_socket;
2001
2002 process:
2003 if (sk->sk_state == TCP_TIME_WAIT)
2004 goto do_time_wait;
2005
2006 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2007 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2008 goto discard_and_relse;
2009 }
2010
2011 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2012 goto discard_and_relse;
2013 nf_reset(skb);
2014
2015 if (sk_filter(sk, skb))
2016 goto discard_and_relse;
2017
2018 skb->dev = NULL;
2019
2020 bh_lock_sock_nested(sk);
2021 ret = 0;
2022 if (!sock_owned_by_user(sk)) {
2023 #ifdef CONFIG_NET_DMA
2024 struct tcp_sock *tp = tcp_sk(sk);
2025 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2026 tp->ucopy.dma_chan = net_dma_find_channel();
2027 if (tp->ucopy.dma_chan)
2028 ret = tcp_v4_do_rcv(sk, skb);
2029 else
2030 #endif
2031 {
2032 if (!tcp_prequeue(sk, skb))
2033 ret = tcp_v4_do_rcv(sk, skb);
2034 }
2035 } else if (unlikely(sk_add_backlog(sk, skb,
2036 sk->sk_rcvbuf + sk->sk_sndbuf))) {
2037 bh_unlock_sock(sk);
2038 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2039 goto discard_and_relse;
2040 }
2041 bh_unlock_sock(sk);
2042
2043 sock_put(sk);
2044
2045 return ret;
2046
2047 no_tcp_socket:
2048 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2049 goto discard_it;
2050
2051 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2052 bad_packet:
2053 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2054 } else {
2055 tcp_v4_send_reset(NULL, skb);
2056 }
2057
2058 discard_it:
2059 /* Discard frame. */
2060 kfree_skb(skb);
2061 return 0;
2062
2063 discard_and_relse:
2064 sock_put(sk);
2065 goto discard_it;
2066
2067 do_time_wait:
2068 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2069 inet_twsk_put(inet_twsk(sk));
2070 goto discard_it;
2071 }
2072
2073 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2074 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2075 inet_twsk_put(inet_twsk(sk));
2076 goto discard_it;
2077 }
2078 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2079 case TCP_TW_SYN: {
2080 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2081 &tcp_hashinfo,
2082 iph->saddr, th->source,
2083 iph->daddr, th->dest,
2084 inet_iif(skb));
2085 if (sk2) {
2086 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2087 inet_twsk_put(inet_twsk(sk));
2088 sk = sk2;
2089 goto process;
2090 }
2091 /* Fall through to ACK */
2092 }
2093 case TCP_TW_ACK:
2094 tcp_v4_timewait_ack(sk, skb);
2095 break;
2096 case TCP_TW_RST:
2097 goto no_tcp_socket;
2098 case TCP_TW_SUCCESS:;
2099 }
2100 goto discard_it;
2101 }
2102
2103 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2104 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2105 .twsk_unique = tcp_twsk_unique,
2106 .twsk_destructor= tcp_twsk_destructor,
2107 };
2108
2109 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2110 {
2111 struct dst_entry *dst = skb_dst(skb);
2112
2113 dst_hold(dst);
2114 sk->sk_rx_dst = dst;
2115 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2116 }
2117 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2118
2119 const struct inet_connection_sock_af_ops ipv4_specific = {
2120 .queue_xmit = ip_queue_xmit,
2121 .send_check = tcp_v4_send_check,
2122 .rebuild_header = inet_sk_rebuild_header,
2123 .sk_rx_dst_set = inet_sk_rx_dst_set,
2124 .conn_request = tcp_v4_conn_request,
2125 .syn_recv_sock = tcp_v4_syn_recv_sock,
2126 .net_header_len = sizeof(struct iphdr),
2127 .setsockopt = ip_setsockopt,
2128 .getsockopt = ip_getsockopt,
2129 .addr2sockaddr = inet_csk_addr2sockaddr,
2130 .sockaddr_len = sizeof(struct sockaddr_in),
2131 .bind_conflict = inet_csk_bind_conflict,
2132 #ifdef CONFIG_COMPAT
2133 .compat_setsockopt = compat_ip_setsockopt,
2134 .compat_getsockopt = compat_ip_getsockopt,
2135 #endif
2136 };
2137 EXPORT_SYMBOL(ipv4_specific);
2138
2139 #ifdef CONFIG_TCP_MD5SIG
2140 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2141 .md5_lookup = tcp_v4_md5_lookup,
2142 .calc_md5_hash = tcp_v4_md5_hash_skb,
2143 .md5_parse = tcp_v4_parse_md5_keys,
2144 };
2145 #endif
2146
2147 /* NOTE: A lot of things set to zero explicitly by call to
2148 * sk_alloc() so need not be done here.
2149 */
2150 static int tcp_v4_init_sock(struct sock *sk)
2151 {
2152 struct inet_connection_sock *icsk = inet_csk(sk);
2153
2154 tcp_init_sock(sk);
2155
2156 icsk->icsk_af_ops = &ipv4_specific;
2157
2158 #ifdef CONFIG_TCP_MD5SIG
2159 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2160 #endif
2161
2162 return 0;
2163 }
2164
2165 void tcp_v4_destroy_sock(struct sock *sk)
2166 {
2167 struct tcp_sock *tp = tcp_sk(sk);
2168
2169 tcp_clear_xmit_timers(sk);
2170
2171 tcp_cleanup_congestion_control(sk);
2172
2173 /* Cleanup up the write buffer. */
2174 tcp_write_queue_purge(sk);
2175
2176 /* Cleans up our, hopefully empty, out_of_order_queue. */
2177 __skb_queue_purge(&tp->out_of_order_queue);
2178
2179 #ifdef CONFIG_TCP_MD5SIG
2180 /* Clean up the MD5 key list, if any */
2181 if (tp->md5sig_info) {
2182 tcp_clear_md5_list(sk);
2183 kfree_rcu(tp->md5sig_info, rcu);
2184 tp->md5sig_info = NULL;
2185 }
2186 #endif
2187
2188 #ifdef CONFIG_NET_DMA
2189 /* Cleans up our sk_async_wait_queue */
2190 __skb_queue_purge(&sk->sk_async_wait_queue);
2191 #endif
2192
2193 /* Clean prequeue, it must be empty really */
2194 __skb_queue_purge(&tp->ucopy.prequeue);
2195
2196 /* Clean up a referenced TCP bind bucket. */
2197 if (inet_csk(sk)->icsk_bind_hash)
2198 inet_put_port(sk);
2199
2200 /* TCP Cookie Transactions */
2201 if (tp->cookie_values != NULL) {
2202 kref_put(&tp->cookie_values->kref,
2203 tcp_cookie_values_release);
2204 tp->cookie_values = NULL;
2205 }
2206 BUG_ON(tp->fastopen_rsk != NULL);
2207
2208 /* If socket is aborted during connect operation */
2209 tcp_free_fastopen_req(tp);
2210
2211 sk_sockets_allocated_dec(sk);
2212 sock_release_memcg(sk);
2213 }
2214 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2215
2216 #ifdef CONFIG_PROC_FS
2217 /* Proc filesystem TCP sock list dumping. */
2218
2219 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2220 {
2221 return hlist_nulls_empty(head) ? NULL :
2222 list_entry(head->first, struct inet_timewait_sock, tw_node);
2223 }
2224
2225 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2226 {
2227 return !is_a_nulls(tw->tw_node.next) ?
2228 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2229 }
2230
2231 /*
2232 * Get next listener socket follow cur. If cur is NULL, get first socket
2233 * starting from bucket given in st->bucket; when st->bucket is zero the
2234 * very first socket in the hash table is returned.
2235 */
2236 static void *listening_get_next(struct seq_file *seq, void *cur)
2237 {
2238 struct inet_connection_sock *icsk;
2239 struct hlist_nulls_node *node;
2240 struct sock *sk = cur;
2241 struct inet_listen_hashbucket *ilb;
2242 struct tcp_iter_state *st = seq->private;
2243 struct net *net = seq_file_net(seq);
2244
2245 if (!sk) {
2246 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2247 spin_lock_bh(&ilb->lock);
2248 sk = sk_nulls_head(&ilb->head);
2249 st->offset = 0;
2250 goto get_sk;
2251 }
2252 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2253 ++st->num;
2254 ++st->offset;
2255
2256 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2257 struct request_sock *req = cur;
2258
2259 icsk = inet_csk(st->syn_wait_sk);
2260 req = req->dl_next;
2261 while (1) {
2262 while (req) {
2263 if (req->rsk_ops->family == st->family) {
2264 cur = req;
2265 goto out;
2266 }
2267 req = req->dl_next;
2268 }
2269 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2270 break;
2271 get_req:
2272 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2273 }
2274 sk = sk_nulls_next(st->syn_wait_sk);
2275 st->state = TCP_SEQ_STATE_LISTENING;
2276 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2277 } else {
2278 icsk = inet_csk(sk);
2279 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2280 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2281 goto start_req;
2282 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2283 sk = sk_nulls_next(sk);
2284 }
2285 get_sk:
2286 sk_nulls_for_each_from(sk, node) {
2287 if (!net_eq(sock_net(sk), net))
2288 continue;
2289 if (sk->sk_family == st->family) {
2290 cur = sk;
2291 goto out;
2292 }
2293 icsk = inet_csk(sk);
2294 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2295 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2296 start_req:
2297 st->uid = sock_i_uid(sk);
2298 st->syn_wait_sk = sk;
2299 st->state = TCP_SEQ_STATE_OPENREQ;
2300 st->sbucket = 0;
2301 goto get_req;
2302 }
2303 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2304 }
2305 spin_unlock_bh(&ilb->lock);
2306 st->offset = 0;
2307 if (++st->bucket < INET_LHTABLE_SIZE) {
2308 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2309 spin_lock_bh(&ilb->lock);
2310 sk = sk_nulls_head(&ilb->head);
2311 goto get_sk;
2312 }
2313 cur = NULL;
2314 out:
2315 return cur;
2316 }
2317
2318 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2319 {
2320 struct tcp_iter_state *st = seq->private;
2321 void *rc;
2322
2323 st->bucket = 0;
2324 st->offset = 0;
2325 rc = listening_get_next(seq, NULL);
2326
2327 while (rc && *pos) {
2328 rc = listening_get_next(seq, rc);
2329 --*pos;
2330 }
2331 return rc;
2332 }
2333
2334 static inline bool empty_bucket(struct tcp_iter_state *st)
2335 {
2336 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2337 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2338 }
2339
2340 /*
2341 * Get first established socket starting from bucket given in st->bucket.
2342 * If st->bucket is zero, the very first socket in the hash is returned.
2343 */
2344 static void *established_get_first(struct seq_file *seq)
2345 {
2346 struct tcp_iter_state *st = seq->private;
2347 struct net *net = seq_file_net(seq);
2348 void *rc = NULL;
2349
2350 st->offset = 0;
2351 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2352 struct sock *sk;
2353 struct hlist_nulls_node *node;
2354 struct inet_timewait_sock *tw;
2355 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2356
2357 /* Lockless fast path for the common case of empty buckets */
2358 if (empty_bucket(st))
2359 continue;
2360
2361 spin_lock_bh(lock);
2362 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2363 if (sk->sk_family != st->family ||
2364 !net_eq(sock_net(sk), net)) {
2365 continue;
2366 }
2367 rc = sk;
2368 goto out;
2369 }
2370 st->state = TCP_SEQ_STATE_TIME_WAIT;
2371 inet_twsk_for_each(tw, node,
2372 &tcp_hashinfo.ehash[st->bucket].twchain) {
2373 if (tw->tw_family != st->family ||
2374 !net_eq(twsk_net(tw), net)) {
2375 continue;
2376 }
2377 rc = tw;
2378 goto out;
2379 }
2380 spin_unlock_bh(lock);
2381 st->state = TCP_SEQ_STATE_ESTABLISHED;
2382 }
2383 out:
2384 return rc;
2385 }
2386
2387 static void *established_get_next(struct seq_file *seq, void *cur)
2388 {
2389 struct sock *sk = cur;
2390 struct inet_timewait_sock *tw;
2391 struct hlist_nulls_node *node;
2392 struct tcp_iter_state *st = seq->private;
2393 struct net *net = seq_file_net(seq);
2394
2395 ++st->num;
2396 ++st->offset;
2397
2398 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2399 tw = cur;
2400 tw = tw_next(tw);
2401 get_tw:
2402 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2403 tw = tw_next(tw);
2404 }
2405 if (tw) {
2406 cur = tw;
2407 goto out;
2408 }
2409 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2410 st->state = TCP_SEQ_STATE_ESTABLISHED;
2411
2412 /* Look for next non empty bucket */
2413 st->offset = 0;
2414 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2415 empty_bucket(st))
2416 ;
2417 if (st->bucket > tcp_hashinfo.ehash_mask)
2418 return NULL;
2419
2420 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2421 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2422 } else
2423 sk = sk_nulls_next(sk);
2424
2425 sk_nulls_for_each_from(sk, node) {
2426 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2427 goto found;
2428 }
2429
2430 st->state = TCP_SEQ_STATE_TIME_WAIT;
2431 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2432 goto get_tw;
2433 found:
2434 cur = sk;
2435 out:
2436 return cur;
2437 }
2438
2439 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2440 {
2441 struct tcp_iter_state *st = seq->private;
2442 void *rc;
2443
2444 st->bucket = 0;
2445 rc = established_get_first(seq);
2446
2447 while (rc && pos) {
2448 rc = established_get_next(seq, rc);
2449 --pos;
2450 }
2451 return rc;
2452 }
2453
2454 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2455 {
2456 void *rc;
2457 struct tcp_iter_state *st = seq->private;
2458
2459 st->state = TCP_SEQ_STATE_LISTENING;
2460 rc = listening_get_idx(seq, &pos);
2461
2462 if (!rc) {
2463 st->state = TCP_SEQ_STATE_ESTABLISHED;
2464 rc = established_get_idx(seq, pos);
2465 }
2466
2467 return rc;
2468 }
2469
2470 static void *tcp_seek_last_pos(struct seq_file *seq)
2471 {
2472 struct tcp_iter_state *st = seq->private;
2473 int offset = st->offset;
2474 int orig_num = st->num;
2475 void *rc = NULL;
2476
2477 switch (st->state) {
2478 case TCP_SEQ_STATE_OPENREQ:
2479 case TCP_SEQ_STATE_LISTENING:
2480 if (st->bucket >= INET_LHTABLE_SIZE)
2481 break;
2482 st->state = TCP_SEQ_STATE_LISTENING;
2483 rc = listening_get_next(seq, NULL);
2484 while (offset-- && rc)
2485 rc = listening_get_next(seq, rc);
2486 if (rc)
2487 break;
2488 st->bucket = 0;
2489 /* Fallthrough */
2490 case TCP_SEQ_STATE_ESTABLISHED:
2491 case TCP_SEQ_STATE_TIME_WAIT:
2492 st->state = TCP_SEQ_STATE_ESTABLISHED;
2493 if (st->bucket > tcp_hashinfo.ehash_mask)
2494 break;
2495 rc = established_get_first(seq);
2496 while (offset-- && rc)
2497 rc = established_get_next(seq, rc);
2498 }
2499
2500 st->num = orig_num;
2501
2502 return rc;
2503 }
2504
2505 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2506 {
2507 struct tcp_iter_state *st = seq->private;
2508 void *rc;
2509
2510 if (*pos && *pos == st->last_pos) {
2511 rc = tcp_seek_last_pos(seq);
2512 if (rc)
2513 goto out;
2514 }
2515
2516 st->state = TCP_SEQ_STATE_LISTENING;
2517 st->num = 0;
2518 st->bucket = 0;
2519 st->offset = 0;
2520 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2521
2522 out:
2523 st->last_pos = *pos;
2524 return rc;
2525 }
2526
2527 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2528 {
2529 struct tcp_iter_state *st = seq->private;
2530 void *rc = NULL;
2531
2532 if (v == SEQ_START_TOKEN) {
2533 rc = tcp_get_idx(seq, 0);
2534 goto out;
2535 }
2536
2537 switch (st->state) {
2538 case TCP_SEQ_STATE_OPENREQ:
2539 case TCP_SEQ_STATE_LISTENING:
2540 rc = listening_get_next(seq, v);
2541 if (!rc) {
2542 st->state = TCP_SEQ_STATE_ESTABLISHED;
2543 st->bucket = 0;
2544 st->offset = 0;
2545 rc = established_get_first(seq);
2546 }
2547 break;
2548 case TCP_SEQ_STATE_ESTABLISHED:
2549 case TCP_SEQ_STATE_TIME_WAIT:
2550 rc = established_get_next(seq, v);
2551 break;
2552 }
2553 out:
2554 ++*pos;
2555 st->last_pos = *pos;
2556 return rc;
2557 }
2558
2559 static void tcp_seq_stop(struct seq_file *seq, void *v)
2560 {
2561 struct tcp_iter_state *st = seq->private;
2562
2563 switch (st->state) {
2564 case TCP_SEQ_STATE_OPENREQ:
2565 if (v) {
2566 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2567 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2568 }
2569 case TCP_SEQ_STATE_LISTENING:
2570 if (v != SEQ_START_TOKEN)
2571 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2572 break;
2573 case TCP_SEQ_STATE_TIME_WAIT:
2574 case TCP_SEQ_STATE_ESTABLISHED:
2575 if (v)
2576 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2577 break;
2578 }
2579 }
2580
2581 int tcp_seq_open(struct inode *inode, struct file *file)
2582 {
2583 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2584 struct tcp_iter_state *s;
2585 int err;
2586
2587 err = seq_open_net(inode, file, &afinfo->seq_ops,
2588 sizeof(struct tcp_iter_state));
2589 if (err < 0)
2590 return err;
2591
2592 s = ((struct seq_file *)file->private_data)->private;
2593 s->family = afinfo->family;
2594 s->last_pos = 0;
2595 return 0;
2596 }
2597 EXPORT_SYMBOL(tcp_seq_open);
2598
2599 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2600 {
2601 int rc = 0;
2602 struct proc_dir_entry *p;
2603
2604 afinfo->seq_ops.start = tcp_seq_start;
2605 afinfo->seq_ops.next = tcp_seq_next;
2606 afinfo->seq_ops.stop = tcp_seq_stop;
2607
2608 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2609 afinfo->seq_fops, afinfo);
2610 if (!p)
2611 rc = -ENOMEM;
2612 return rc;
2613 }
2614 EXPORT_SYMBOL(tcp_proc_register);
2615
2616 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2617 {
2618 remove_proc_entry(afinfo->name, net->proc_net);
2619 }
2620 EXPORT_SYMBOL(tcp_proc_unregister);
2621
2622 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2623 struct seq_file *f, int i, kuid_t uid, int *len)
2624 {
2625 const struct inet_request_sock *ireq = inet_rsk(req);
2626 long delta = req->expires - jiffies;
2627
2628 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2629 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2630 i,
2631 ireq->loc_addr,
2632 ntohs(inet_sk(sk)->inet_sport),
2633 ireq->rmt_addr,
2634 ntohs(ireq->rmt_port),
2635 TCP_SYN_RECV,
2636 0, 0, /* could print option size, but that is af dependent. */
2637 1, /* timers active (only the expire timer) */
2638 jiffies_delta_to_clock_t(delta),
2639 req->num_timeout,
2640 from_kuid_munged(seq_user_ns(f), uid),
2641 0, /* non standard timer */
2642 0, /* open_requests have no inode */
2643 atomic_read(&sk->sk_refcnt),
2644 req,
2645 len);
2646 }
2647
2648 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2649 {
2650 int timer_active;
2651 unsigned long timer_expires;
2652 const struct tcp_sock *tp = tcp_sk(sk);
2653 const struct inet_connection_sock *icsk = inet_csk(sk);
2654 const struct inet_sock *inet = inet_sk(sk);
2655 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2656 __be32 dest = inet->inet_daddr;
2657 __be32 src = inet->inet_rcv_saddr;
2658 __u16 destp = ntohs(inet->inet_dport);
2659 __u16 srcp = ntohs(inet->inet_sport);
2660 int rx_queue;
2661
2662 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2663 timer_active = 1;
2664 timer_expires = icsk->icsk_timeout;
2665 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2666 timer_active = 4;
2667 timer_expires = icsk->icsk_timeout;
2668 } else if (timer_pending(&sk->sk_timer)) {
2669 timer_active = 2;
2670 timer_expires = sk->sk_timer.expires;
2671 } else {
2672 timer_active = 0;
2673 timer_expires = jiffies;
2674 }
2675
2676 if (sk->sk_state == TCP_LISTEN)
2677 rx_queue = sk->sk_ack_backlog;
2678 else
2679 /*
2680 * because we dont lock socket, we might find a transient negative value
2681 */
2682 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2683
2684 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2685 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2686 i, src, srcp, dest, destp, sk->sk_state,
2687 tp->write_seq - tp->snd_una,
2688 rx_queue,
2689 timer_active,
2690 jiffies_delta_to_clock_t(timer_expires - jiffies),
2691 icsk->icsk_retransmits,
2692 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2693 icsk->icsk_probes_out,
2694 sock_i_ino(sk),
2695 atomic_read(&sk->sk_refcnt), sk,
2696 jiffies_to_clock_t(icsk->icsk_rto),
2697 jiffies_to_clock_t(icsk->icsk_ack.ato),
2698 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2699 tp->snd_cwnd,
2700 sk->sk_state == TCP_LISTEN ?
2701 (fastopenq ? fastopenq->max_qlen : 0) :
2702 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2703 len);
2704 }
2705
2706 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2707 struct seq_file *f, int i, int *len)
2708 {
2709 __be32 dest, src;
2710 __u16 destp, srcp;
2711 long delta = tw->tw_ttd - jiffies;
2712
2713 dest = tw->tw_daddr;
2714 src = tw->tw_rcv_saddr;
2715 destp = ntohs(tw->tw_dport);
2716 srcp = ntohs(tw->tw_sport);
2717
2718 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2719 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2720 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2721 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2722 atomic_read(&tw->tw_refcnt), tw, len);
2723 }
2724
2725 #define TMPSZ 150
2726
2727 static int tcp4_seq_show(struct seq_file *seq, void *v)
2728 {
2729 struct tcp_iter_state *st;
2730 int len;
2731
2732 if (v == SEQ_START_TOKEN) {
2733 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2734 " sl local_address rem_address st tx_queue "
2735 "rx_queue tr tm->when retrnsmt uid timeout "
2736 "inode");
2737 goto out;
2738 }
2739 st = seq->private;
2740
2741 switch (st->state) {
2742 case TCP_SEQ_STATE_LISTENING:
2743 case TCP_SEQ_STATE_ESTABLISHED:
2744 get_tcp4_sock(v, seq, st->num, &len);
2745 break;
2746 case TCP_SEQ_STATE_OPENREQ:
2747 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2748 break;
2749 case TCP_SEQ_STATE_TIME_WAIT:
2750 get_timewait4_sock(v, seq, st->num, &len);
2751 break;
2752 }
2753 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2754 out:
2755 return 0;
2756 }
2757
2758 static const struct file_operations tcp_afinfo_seq_fops = {
2759 .owner = THIS_MODULE,
2760 .open = tcp_seq_open,
2761 .read = seq_read,
2762 .llseek = seq_lseek,
2763 .release = seq_release_net
2764 };
2765
2766 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2767 .name = "tcp",
2768 .family = AF_INET,
2769 .seq_fops = &tcp_afinfo_seq_fops,
2770 .seq_ops = {
2771 .show = tcp4_seq_show,
2772 },
2773 };
2774
2775 static int __net_init tcp4_proc_init_net(struct net *net)
2776 {
2777 return tcp_proc_register(net, &tcp4_seq_afinfo);
2778 }
2779
2780 static void __net_exit tcp4_proc_exit_net(struct net *net)
2781 {
2782 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2783 }
2784
2785 static struct pernet_operations tcp4_net_ops = {
2786 .init = tcp4_proc_init_net,
2787 .exit = tcp4_proc_exit_net,
2788 };
2789
2790 int __init tcp4_proc_init(void)
2791 {
2792 return register_pernet_subsys(&tcp4_net_ops);
2793 }
2794
2795 void tcp4_proc_exit(void)
2796 {
2797 unregister_pernet_subsys(&tcp4_net_ops);
2798 }
2799 #endif /* CONFIG_PROC_FS */
2800
2801 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2802 {
2803 const struct iphdr *iph = skb_gro_network_header(skb);
2804 __wsum wsum;
2805 __sum16 sum;
2806
2807 switch (skb->ip_summed) {
2808 case CHECKSUM_COMPLETE:
2809 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2810 skb->csum)) {
2811 skb->ip_summed = CHECKSUM_UNNECESSARY;
2812 break;
2813 }
2814 flush:
2815 NAPI_GRO_CB(skb)->flush = 1;
2816 return NULL;
2817
2818 case CHECKSUM_NONE:
2819 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2820 skb_gro_len(skb), IPPROTO_TCP, 0);
2821 sum = csum_fold(skb_checksum(skb,
2822 skb_gro_offset(skb),
2823 skb_gro_len(skb),
2824 wsum));
2825 if (sum)
2826 goto flush;
2827
2828 skb->ip_summed = CHECKSUM_UNNECESSARY;
2829 break;
2830 }
2831
2832 return tcp_gro_receive(head, skb);
2833 }
2834
2835 int tcp4_gro_complete(struct sk_buff *skb)
2836 {
2837 const struct iphdr *iph = ip_hdr(skb);
2838 struct tcphdr *th = tcp_hdr(skb);
2839
2840 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2841 iph->saddr, iph->daddr, 0);
2842 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2843
2844 return tcp_gro_complete(skb);
2845 }
2846
2847 struct proto tcp_prot = {
2848 .name = "TCP",
2849 .owner = THIS_MODULE,
2850 .close = tcp_close,
2851 .connect = tcp_v4_connect,
2852 .disconnect = tcp_disconnect,
2853 .accept = inet_csk_accept,
2854 .ioctl = tcp_ioctl,
2855 .init = tcp_v4_init_sock,
2856 .destroy = tcp_v4_destroy_sock,
2857 .shutdown = tcp_shutdown,
2858 .setsockopt = tcp_setsockopt,
2859 .getsockopt = tcp_getsockopt,
2860 .recvmsg = tcp_recvmsg,
2861 .sendmsg = tcp_sendmsg,
2862 .sendpage = tcp_sendpage,
2863 .backlog_rcv = tcp_v4_do_rcv,
2864 .release_cb = tcp_release_cb,
2865 .mtu_reduced = tcp_v4_mtu_reduced,
2866 .hash = inet_hash,
2867 .unhash = inet_unhash,
2868 .get_port = inet_csk_get_port,
2869 .enter_memory_pressure = tcp_enter_memory_pressure,
2870 .sockets_allocated = &tcp_sockets_allocated,
2871 .orphan_count = &tcp_orphan_count,
2872 .memory_allocated = &tcp_memory_allocated,
2873 .memory_pressure = &tcp_memory_pressure,
2874 .sysctl_wmem = sysctl_tcp_wmem,
2875 .sysctl_rmem = sysctl_tcp_rmem,
2876 .max_header = MAX_TCP_HEADER,
2877 .obj_size = sizeof(struct tcp_sock),
2878 .slab_flags = SLAB_DESTROY_BY_RCU,
2879 .twsk_prot = &tcp_timewait_sock_ops,
2880 .rsk_prot = &tcp_request_sock_ops,
2881 .h.hashinfo = &tcp_hashinfo,
2882 .no_autobind = true,
2883 #ifdef CONFIG_COMPAT
2884 .compat_setsockopt = compat_tcp_setsockopt,
2885 .compat_getsockopt = compat_tcp_getsockopt,
2886 #endif
2887 #ifdef CONFIG_MEMCG_KMEM
2888 .init_cgroup = tcp_init_cgroup,
2889 .destroy_cgroup = tcp_destroy_cgroup,
2890 .proto_cgroup = tcp_proto_cgroup,
2891 #endif
2892 };
2893 EXPORT_SYMBOL(tcp_prot);
2894
2895 static int __net_init tcp_sk_init(struct net *net)
2896 {
2897 net->ipv4.sysctl_tcp_ecn = 2;
2898 return 0;
2899 }
2900
2901 static void __net_exit tcp_sk_exit(struct net *net)
2902 {
2903 }
2904
2905 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2906 {
2907 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2908 }
2909
2910 static struct pernet_operations __net_initdata tcp_sk_ops = {
2911 .init = tcp_sk_init,
2912 .exit = tcp_sk_exit,
2913 .exit_batch = tcp_sk_exit_batch,
2914 };
2915
2916 void __init tcp_v4_init(void)
2917 {
2918 inet_hashinfo_init(&tcp_hashinfo);
2919 if (register_pernet_subsys(&tcp_sk_ops))
2920 panic("Failed to create the TCP control socket.\n");
2921 }