fb244f4a38b523b4939d1a3cd4e69ae59cc69cbb
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145 struct inet_sock *inet = inet_sk(sk);
146 struct tcp_sock *tp = tcp_sk(sk);
147 __be16 orig_sport, orig_dport;
148 __be32 daddr, nexthop;
149 struct flowi4 *fl4;
150 struct rtable *rt;
151 int err;
152 struct ip_options_rcu *inet_opt;
153
154 if (addr_len < sizeof(struct sockaddr_in))
155 return -EINVAL;
156
157 if (usin->sin_family != AF_INET)
158 return -EAFNOSUPPORT;
159
160 nexthop = daddr = usin->sin_addr.s_addr;
161 inet_opt = rcu_dereference_protected(inet->inet_opt,
162 sock_owned_by_user(sk));
163 if (inet_opt && inet_opt->opt.srr) {
164 if (!daddr)
165 return -EINVAL;
166 nexthop = inet_opt->opt.faddr;
167 }
168
169 orig_sport = inet->inet_sport;
170 orig_dport = usin->sin_port;
171 fl4 = &inet->cork.fl.u.ip4;
172 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174 IPPROTO_TCP,
175 orig_sport, orig_dport, sk, true);
176 if (IS_ERR(rt)) {
177 err = PTR_ERR(rt);
178 if (err == -ENETUNREACH)
179 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180 return err;
181 }
182
183 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184 ip_rt_put(rt);
185 return -ENETUNREACH;
186 }
187
188 if (!inet_opt || !inet_opt->opt.srr)
189 daddr = fl4->daddr;
190
191 if (!inet->inet_saddr)
192 inet->inet_saddr = fl4->saddr;
193 inet->inet_rcv_saddr = inet->inet_saddr;
194
195 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196 /* Reset inherited state */
197 tp->rx_opt.ts_recent = 0;
198 tp->rx_opt.ts_recent_stamp = 0;
199 if (likely(!tp->repair))
200 tp->write_seq = 0;
201 }
202
203 if (tcp_death_row.sysctl_tw_recycle &&
204 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207 inet->inet_dport = usin->sin_port;
208 inet->inet_daddr = daddr;
209
210 inet_csk(sk)->icsk_ext_hdr_len = 0;
211 if (inet_opt)
212 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216 /* Socket identity is still unknown (sport may be zero).
217 * However we set state to SYN-SENT and not releasing socket
218 * lock select source port, enter ourselves into the hash tables and
219 * complete initialization after this.
220 */
221 tcp_set_state(sk, TCP_SYN_SENT);
222 err = inet_hash_connect(&tcp_death_row, sk);
223 if (err)
224 goto failure;
225
226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 inet->inet_sport, inet->inet_dport, sk);
228 if (IS_ERR(rt)) {
229 err = PTR_ERR(rt);
230 rt = NULL;
231 goto failure;
232 }
233 /* OK, now commit destination to socket. */
234 sk->sk_gso_type = SKB_GSO_TCPV4;
235 sk_setup_caps(sk, &rt->dst);
236 printk(KERN_INFO "[socket_conn]IPV4 socket[%lu] sport:%u \n", SOCK_INODE(sk->sk_socket)->i_ino, ntohs(inet->inet_sport));
237 if (!tp->write_seq && likely(!tp->repair))
238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 inet->inet_daddr,
240 inet->inet_sport,
241 usin->sin_port);
242
243 inet->inet_id = tp->write_seq ^ jiffies;
244
245 err = tcp_connect(sk);
246
247 rt = NULL;
248 if (err)
249 goto failure;
250
251 return 0;
252
253 failure:
254 /*
255 * This unhashes the socket and releases the local port,
256 * if necessary.
257 */
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
270 */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275 u32 mtu = tcp_sk(sk)->mtu_info;
276
277 dst = inet_csk_update_pmtu(sk, mtu);
278 if (!dst)
279 return;
280
281 /* Something is about to be wrong... Remember soft error
282 * for the case, if this connection will not able to recover.
283 */
284 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
285 sk->sk_err_soft = EMSGSIZE;
286
287 mtu = dst_mtu(dst);
288
289 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
290 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
291 tcp_sync_mss(sk, mtu);
292
293 /* Resend the TCP packet because it's
294 * clear that the old packet has been
295 * dropped. This is the new "fast" path mtu
296 * discovery.
297 */
298 tcp_simple_retransmit(sk);
299 } /* else let the usual retransmit timer handle it */
300 }
301
302 static void do_redirect(struct sk_buff *skb, struct sock *sk)
303 {
304 struct dst_entry *dst = __sk_dst_check(sk, 0);
305
306 if (dst)
307 dst->ops->redirect(dst, sk, skb);
308 }
309
310 /*
311 * This routine is called by the ICMP module when it gets some
312 * sort of error condition. If err < 0 then the socket should
313 * be closed and the error returned to the user. If err > 0
314 * it's just the icmp type << 8 | icmp code. After adjustment
315 * header points to the first 8 bytes of the tcp header. We need
316 * to find the appropriate port.
317 *
318 * The locking strategy used here is very "optimistic". When
319 * someone else accesses the socket the ICMP is just dropped
320 * and for some paths there is no check at all.
321 * A more general error queue to queue errors for later handling
322 * is probably better.
323 *
324 */
325
326 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
327 {
328 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
329 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
330 struct inet_connection_sock *icsk;
331 struct tcp_sock *tp;
332 struct inet_sock *inet;
333 const int type = icmp_hdr(icmp_skb)->type;
334 const int code = icmp_hdr(icmp_skb)->code;
335 struct sock *sk;
336 struct sk_buff *skb;
337 struct request_sock *req;
338 __u32 seq;
339 __u32 remaining;
340 int err;
341 struct net *net = dev_net(icmp_skb->dev);
342
343 if (icmp_skb->len < (iph->ihl << 2) + 8) {
344 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
345 return;
346 }
347
348 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
349 iph->saddr, th->source, inet_iif(icmp_skb));
350 if (!sk) {
351 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352 return;
353 }
354 if (sk->sk_state == TCP_TIME_WAIT) {
355 inet_twsk_put(inet_twsk(sk));
356 return;
357 }
358
359 bh_lock_sock(sk);
360 /* If too many ICMPs get dropped on busy
361 * servers this needs to be solved differently.
362 * We do take care of PMTU discovery (RFC1191) special case :
363 * we can receive locally generated ICMP messages while socket is held.
364 */
365 if (sock_owned_by_user(sk)) {
366 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
367 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
368 }
369 if (sk->sk_state == TCP_CLOSE)
370 goto out;
371
372 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
373 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
374 goto out;
375 }
376
377 icsk = inet_csk(sk);
378 tp = tcp_sk(sk);
379 req = tp->fastopen_rsk;
380 seq = ntohl(th->seq);
381 if (sk->sk_state != TCP_LISTEN &&
382 !between(seq, tp->snd_una, tp->snd_nxt) &&
383 (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
384 /* For a Fast Open socket, allow seq to be snt_isn. */
385 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
386 goto out;
387 }
388
389 switch (type) {
390 case ICMP_REDIRECT:
391 do_redirect(icmp_skb, sk);
392 goto out;
393 case ICMP_SOURCE_QUENCH:
394 /* Just silently ignore these. */
395 goto out;
396 case ICMP_PARAMETERPROB:
397 err = EPROTO;
398 break;
399 case ICMP_DEST_UNREACH:
400 if (code > NR_ICMP_UNREACH)
401 goto out;
402
403 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
404 /* We are not interested in TCP_LISTEN and open_requests
405 * (SYN-ACKs send out by Linux are always <576bytes so
406 * they should go through unfragmented).
407 */
408 if (sk->sk_state == TCP_LISTEN)
409 goto out;
410
411 tp->mtu_info = info;
412 if (!sock_owned_by_user(sk)) {
413 tcp_v4_mtu_reduced(sk);
414 } else {
415 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
416 sock_hold(sk);
417 }
418 goto out;
419 }
420
421 err = icmp_err_convert[code].errno;
422 /* check if icmp_skb allows revert of backoff
423 * (see draft-zimmermann-tcp-lcd) */
424 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
425 break;
426 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
427 !icsk->icsk_backoff)
428 break;
429
430 /* XXX (TFO) - revisit the following logic for TFO */
431
432 if (sock_owned_by_user(sk))
433 break;
434
435 icsk->icsk_backoff--;
436 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
437 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
438 tcp_bound_rto(sk);
439
440 skb = tcp_write_queue_head(sk);
441 BUG_ON(!skb);
442
443 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
444 tcp_time_stamp - TCP_SKB_CB(skb)->when);
445
446 if (remaining) {
447 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
448 remaining, sysctl_tcp_rto_max);
449 } else {
450 /* RTO revert clocked out retransmission.
451 * Will retransmit now */
452 tcp_retransmit_timer(sk);
453 }
454
455 break;
456 case ICMP_TIME_EXCEEDED:
457 err = EHOSTUNREACH;
458 break;
459 default:
460 goto out;
461 }
462
463 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
464 * than following the TCP_SYN_RECV case and closing the socket,
465 * we ignore the ICMP error and keep trying like a fully established
466 * socket. Is this the right thing to do?
467 */
468 if (req && req->sk == NULL)
469 goto out;
470
471 switch (sk->sk_state) {
472 struct request_sock *req, **prev;
473 case TCP_LISTEN:
474 if (sock_owned_by_user(sk))
475 goto out;
476
477 req = inet_csk_search_req(sk, &prev, th->dest,
478 iph->daddr, iph->saddr);
479 if (!req)
480 goto out;
481
482 /* ICMPs are not backlogged, hence we cannot get
483 an established socket here.
484 */
485 WARN_ON(req->sk);
486
487 if (seq != tcp_rsk(req)->snt_isn) {
488 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
489 goto out;
490 }
491
492 /*
493 * Still in SYN_RECV, just remove it silently.
494 * There is no good way to pass the error to the newly
495 * created socket, and POSIX does not want network
496 * errors returned from accept().
497 */
498 inet_csk_reqsk_queue_drop(sk, req, prev);
499 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
500 goto out;
501
502 case TCP_SYN_SENT:
503 case TCP_SYN_RECV: /* Cannot happen.
504 It can f.e. if SYNs crossed,
505 or Fast Open.
506 */
507 if (!sock_owned_by_user(sk)) {
508 sk->sk_err = err;
509
510 sk->sk_error_report(sk);
511
512 tcp_done(sk);
513 } else {
514 sk->sk_err_soft = err;
515 }
516 goto out;
517 }
518
519 /* If we've already connected we will keep trying
520 * until we time out, or the user gives up.
521 *
522 * rfc1122 4.2.3.9 allows to consider as hard errors
523 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524 * but it is obsoleted by pmtu discovery).
525 *
526 * Note, that in modern internet, where routing is unreliable
527 * and in each dark corner broken firewalls sit, sending random
528 * errors ordered by their masters even this two messages finally lose
529 * their original sense (even Linux sends invalid PORT_UNREACHs)
530 *
531 * Now we are in compliance with RFCs.
532 * --ANK (980905)
533 */
534
535 inet = inet_sk(sk);
536 if (!sock_owned_by_user(sk) && inet->recverr) {
537 sk->sk_err = err;
538 sk->sk_error_report(sk);
539 } else { /* Only an error on timeout */
540 sk->sk_err_soft = err;
541 }
542
543 out:
544 bh_unlock_sock(sk);
545 sock_put(sk);
546 }
547
548 static void __tcp_v4_send_check(struct sk_buff *skb,
549 __be32 saddr, __be32 daddr)
550 {
551 struct tcphdr *th = tcp_hdr(skb);
552
553 if (skb->ip_summed == CHECKSUM_PARTIAL) {
554 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555 skb->csum_start = skb_transport_header(skb) - skb->head;
556 skb->csum_offset = offsetof(struct tcphdr, check);
557 } else {
558 th->check = tcp_v4_check(skb->len, saddr, daddr,
559 csum_partial(th,
560 th->doff << 2,
561 skb->csum));
562 }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568 const struct inet_sock *inet = inet_sk(sk);
569
570 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 int tcp_v4_gso_send_check(struct sk_buff *skb)
575 {
576 const struct iphdr *iph;
577 struct tcphdr *th;
578
579 if (!pskb_may_pull(skb, sizeof(*th)))
580 return -EINVAL;
581
582 iph = ip_hdr(skb);
583 th = tcp_hdr(skb);
584
585 th->check = 0;
586 skb->ip_summed = CHECKSUM_PARTIAL;
587 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
588 return 0;
589 }
590
591 /*
592 * This routine will send an RST to the other tcp.
593 *
594 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
595 * for reset.
596 * Answer: if a packet caused RST, it is not for a socket
597 * existing in our system, if it is matched to a socket,
598 * it is just duplicate segment or bug in other side's TCP.
599 * So that we build reply only basing on parameters
600 * arrived with segment.
601 * Exception: precedence violation. We do not implement it in any case.
602 */
603
604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
605 {
606 const struct tcphdr *th = tcp_hdr(skb);
607 struct {
608 struct tcphdr th;
609 #ifdef CONFIG_TCP_MD5SIG
610 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
611 #endif
612 } rep;
613 struct ip_reply_arg arg;
614 #ifdef CONFIG_TCP_MD5SIG
615 struct tcp_md5sig_key *key;
616 const __u8 *hash_location = NULL;
617 unsigned char newhash[16];
618 int genhash;
619 struct sock *sk1 = NULL;
620 #endif
621 struct net *net;
622
623 /* Never send a reset in response to a reset. */
624 if (th->rst)
625 return;
626
627 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
628 return;
629
630 /* Swap the send and the receive. */
631 memset(&rep, 0, sizeof(rep));
632 rep.th.dest = th->source;
633 rep.th.source = th->dest;
634 rep.th.doff = sizeof(struct tcphdr) / 4;
635 rep.th.rst = 1;
636
637 if (th->ack) {
638 rep.th.seq = th->ack_seq;
639 } else {
640 rep.th.ack = 1;
641 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
642 skb->len - (th->doff << 2));
643 }
644
645 memset(&arg, 0, sizeof(arg));
646 arg.iov[0].iov_base = (unsigned char *)&rep;
647 arg.iov[0].iov_len = sizeof(rep.th);
648
649 #ifdef CONFIG_TCP_MD5SIG
650 hash_location = tcp_parse_md5sig_option(th);
651 if (!sk && hash_location) {
652 /*
653 * active side is lost. Try to find listening socket through
654 * source port, and then find md5 key through listening socket.
655 * we are not loose security here:
656 * Incoming packet is checked with md5 hash with finding key,
657 * no RST generated if md5 hash doesn't match.
658 */
659 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
660 &tcp_hashinfo, ip_hdr(skb)->saddr,
661 th->source, ip_hdr(skb)->daddr,
662 ntohs(th->source), inet_iif(skb));
663 /* don't send rst if it can't find key */
664 if (!sk1)
665 return;
666 rcu_read_lock();
667 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
668 &ip_hdr(skb)->saddr, AF_INET);
669 if (!key)
670 goto release_sk1;
671
672 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
673 if (genhash || memcmp(hash_location, newhash, 16) != 0)
674 goto release_sk1;
675 } else {
676 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
677 &ip_hdr(skb)->saddr,
678 AF_INET) : NULL;
679 }
680
681 if (key) {
682 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
683 (TCPOPT_NOP << 16) |
684 (TCPOPT_MD5SIG << 8) |
685 TCPOLEN_MD5SIG);
686 /* Update length and the length the header thinks exists */
687 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
688 rep.th.doff = arg.iov[0].iov_len / 4;
689
690 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
691 key, ip_hdr(skb)->saddr,
692 ip_hdr(skb)->daddr, &rep.th);
693 }
694 #endif
695 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
696 ip_hdr(skb)->saddr, /* XXX */
697 arg.iov[0].iov_len, IPPROTO_TCP, 0);
698 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
699 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
700 /* When socket is gone, all binding information is lost.
701 * routing might fail in this case. No choice here, if we choose to force
702 * input interface, we will misroute in case of asymmetric route.
703 */
704 if (sk)
705 arg.bound_dev_if = sk->sk_bound_dev_if;
706
707 net = dev_net(skb_dst(skb)->dev);
708 arg.tos = ip_hdr(skb)->tos;
709 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
710 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
711
712 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
713 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
714
715 #ifdef CONFIG_TCP_MD5SIG
716 release_sk1:
717 if (sk1) {
718 rcu_read_unlock();
719 sock_put(sk1);
720 }
721 #endif
722 }
723
724 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
725 outside socket context is ugly, certainly. What can I do?
726 */
727
728 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
729 u32 win, u32 tsval, u32 tsecr, int oif,
730 struct tcp_md5sig_key *key,
731 int reply_flags, u8 tos)
732 {
733 const struct tcphdr *th = tcp_hdr(skb);
734 struct {
735 struct tcphdr th;
736 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
737 #ifdef CONFIG_TCP_MD5SIG
738 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
739 #endif
740 ];
741 } rep;
742 struct ip_reply_arg arg;
743 struct net *net = dev_net(skb_dst(skb)->dev);
744
745 memset(&rep.th, 0, sizeof(struct tcphdr));
746 memset(&arg, 0, sizeof(arg));
747
748 arg.iov[0].iov_base = (unsigned char *)&rep;
749 arg.iov[0].iov_len = sizeof(rep.th);
750 if (tsecr) {
751 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
752 (TCPOPT_TIMESTAMP << 8) |
753 TCPOLEN_TIMESTAMP);
754 rep.opt[1] = htonl(tsval);
755 rep.opt[2] = htonl(tsecr);
756 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
757 }
758
759 /* Swap the send and the receive. */
760 rep.th.dest = th->source;
761 rep.th.source = th->dest;
762 rep.th.doff = arg.iov[0].iov_len / 4;
763 rep.th.seq = htonl(seq);
764 rep.th.ack_seq = htonl(ack);
765 rep.th.ack = 1;
766 rep.th.window = htons(win);
767
768 #ifdef CONFIG_TCP_MD5SIG
769 if (key) {
770 int offset = (tsecr) ? 3 : 0;
771
772 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
773 (TCPOPT_NOP << 16) |
774 (TCPOPT_MD5SIG << 8) |
775 TCPOLEN_MD5SIG);
776 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
777 rep.th.doff = arg.iov[0].iov_len/4;
778
779 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
780 key, ip_hdr(skb)->saddr,
781 ip_hdr(skb)->daddr, &rep.th);
782 }
783 #endif
784 arg.flags = reply_flags;
785 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
786 ip_hdr(skb)->saddr, /* XXX */
787 arg.iov[0].iov_len, IPPROTO_TCP, 0);
788 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
789 if (oif)
790 arg.bound_dev_if = oif;
791 arg.tos = tos;
792 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
793 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
794
795 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
796 }
797
798 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
799 {
800 struct inet_timewait_sock *tw = inet_twsk(sk);
801 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
802
803 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
804 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
805 tcp_time_stamp + tcptw->tw_ts_offset,
806 tcptw->tw_ts_recent,
807 tw->tw_bound_dev_if,
808 tcp_twsk_md5_key(tcptw),
809 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
810 tw->tw_tos
811 );
812
813 inet_twsk_put(tw);
814 }
815
816 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
817 struct request_sock *req)
818 {
819 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
820 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
821 */
822 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
823 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
824 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
825 tcp_time_stamp,
826 req->ts_recent,
827 0,
828 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
829 AF_INET),
830 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
831 ip_hdr(skb)->tos);
832 }
833
834 /*
835 * Send a SYN-ACK after having received a SYN.
836 * This still operates on a request_sock only, not on a big
837 * socket.
838 */
839 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
840 struct request_sock *req,
841 u16 queue_mapping,
842 bool nocache)
843 {
844 const struct inet_request_sock *ireq = inet_rsk(req);
845 struct flowi4 fl4;
846 int err = -1;
847 struct sk_buff * skb;
848
849 /* First, grab a route. */
850 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
851 return -1;
852
853 skb = tcp_make_synack(sk, dst, req, NULL);
854
855 if (skb) {
856 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
857
858 skb_set_queue_mapping(skb, queue_mapping);
859 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
860 ireq->rmt_addr,
861 ireq->opt);
862 err = net_xmit_eval(err);
863 if (!tcp_rsk(req)->snt_synack && !err)
864 tcp_rsk(req)->snt_synack = tcp_time_stamp;
865 }
866
867 return err;
868 }
869
870 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req)
871 {
872 int res = tcp_v4_send_synack(sk, NULL, req, 0, false);
873
874 if (!res)
875 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
876 return res;
877 }
878
879 /*
880 * IPv4 request_sock destructor.
881 */
882 static void tcp_v4_reqsk_destructor(struct request_sock *req)
883 {
884 kfree(inet_rsk(req)->opt);
885 }
886
887 /*
888 * Return true if a syncookie should be sent
889 */
890 bool tcp_syn_flood_action(struct sock *sk,
891 const struct sk_buff *skb,
892 const char *proto)
893 {
894 const char *msg = "Dropping request";
895 bool want_cookie = false;
896 struct listen_sock *lopt;
897
898
899
900 #ifdef CONFIG_SYN_COOKIES
901 if (sysctl_tcp_syncookies) {
902 msg = "Sending cookies";
903 want_cookie = true;
904 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
905 } else
906 #endif
907 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
908
909 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
910 if (!lopt->synflood_warned) {
911 lopt->synflood_warned = 1;
912 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
913 proto, ntohs(tcp_hdr(skb)->dest), msg);
914 }
915 return want_cookie;
916 }
917 EXPORT_SYMBOL(tcp_syn_flood_action);
918
919 /*
920 * Save and compile IPv4 options into the request_sock if needed.
921 */
922 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
923 {
924 const struct ip_options *opt = &(IPCB(skb)->opt);
925 struct ip_options_rcu *dopt = NULL;
926
927 if (opt && opt->optlen) {
928 int opt_size = sizeof(*dopt) + opt->optlen;
929
930 dopt = kmalloc(opt_size, GFP_ATOMIC);
931 if (dopt) {
932 if (ip_options_echo(&dopt->opt, skb)) {
933 kfree(dopt);
934 dopt = NULL;
935 }
936 }
937 }
938 return dopt;
939 }
940
941 #ifdef CONFIG_TCP_MD5SIG
942 /*
943 * RFC2385 MD5 checksumming requires a mapping of
944 * IP address->MD5 Key.
945 * We need to maintain these in the sk structure.
946 */
947
948 /* Find the Key structure for an address. */
949 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
950 const union tcp_md5_addr *addr,
951 int family)
952 {
953 struct tcp_sock *tp = tcp_sk(sk);
954 struct tcp_md5sig_key *key;
955 unsigned int size = sizeof(struct in_addr);
956 struct tcp_md5sig_info *md5sig;
957
958 /* caller either holds rcu_read_lock() or socket lock */
959 md5sig = rcu_dereference_check(tp->md5sig_info,
960 sock_owned_by_user(sk) ||
961 lockdep_is_held(&sk->sk_lock.slock));
962 if (!md5sig)
963 return NULL;
964 #if IS_ENABLED(CONFIG_IPV6)
965 if (family == AF_INET6)
966 size = sizeof(struct in6_addr);
967 #endif
968 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
969 if (key->family != family)
970 continue;
971 if (!memcmp(&key->addr, addr, size))
972 return key;
973 }
974 return NULL;
975 }
976 EXPORT_SYMBOL(tcp_md5_do_lookup);
977
978 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
979 struct sock *addr_sk)
980 {
981 union tcp_md5_addr *addr;
982
983 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
984 return tcp_md5_do_lookup(sk, addr, AF_INET);
985 }
986 EXPORT_SYMBOL(tcp_v4_md5_lookup);
987
988 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
989 struct request_sock *req)
990 {
991 union tcp_md5_addr *addr;
992
993 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
994 return tcp_md5_do_lookup(sk, addr, AF_INET);
995 }
996
997 /* This can be called on a newly created socket, from other files */
998 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
999 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1000 {
1001 /* Add Key to the list */
1002 struct tcp_md5sig_key *key;
1003 struct tcp_sock *tp = tcp_sk(sk);
1004 struct tcp_md5sig_info *md5sig;
1005
1006 key = tcp_md5_do_lookup(sk, addr, family);
1007 if (key) {
1008 /* Pre-existing entry - just update that one. */
1009 memcpy(key->key, newkey, newkeylen);
1010 key->keylen = newkeylen;
1011 return 0;
1012 }
1013
1014 md5sig = rcu_dereference_protected(tp->md5sig_info,
1015 sock_owned_by_user(sk));
1016 if (!md5sig) {
1017 md5sig = kmalloc(sizeof(*md5sig), gfp);
1018 if (!md5sig)
1019 return -ENOMEM;
1020
1021 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1022 INIT_HLIST_HEAD(&md5sig->head);
1023 rcu_assign_pointer(tp->md5sig_info, md5sig);
1024 }
1025
1026 key = sock_kmalloc(sk, sizeof(*key), gfp);
1027 if (!key)
1028 return -ENOMEM;
1029 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1030 sock_kfree_s(sk, key, sizeof(*key));
1031 return -ENOMEM;
1032 }
1033
1034 memcpy(key->key, newkey, newkeylen);
1035 key->keylen = newkeylen;
1036 key->family = family;
1037 memcpy(&key->addr, addr,
1038 (family == AF_INET6) ? sizeof(struct in6_addr) :
1039 sizeof(struct in_addr));
1040 hlist_add_head_rcu(&key->node, &md5sig->head);
1041 return 0;
1042 }
1043 EXPORT_SYMBOL(tcp_md5_do_add);
1044
1045 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1046 {
1047 struct tcp_sock *tp = tcp_sk(sk);
1048 struct tcp_md5sig_key *key;
1049 struct tcp_md5sig_info *md5sig;
1050
1051 key = tcp_md5_do_lookup(sk, addr, family);
1052 if (!key)
1053 return -ENOENT;
1054 hlist_del_rcu(&key->node);
1055 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1056 kfree_rcu(key, rcu);
1057 md5sig = rcu_dereference_protected(tp->md5sig_info,
1058 sock_owned_by_user(sk));
1059 if (hlist_empty(&md5sig->head))
1060 tcp_free_md5sig_pool();
1061 return 0;
1062 }
1063 EXPORT_SYMBOL(tcp_md5_do_del);
1064
1065 static void tcp_clear_md5_list(struct sock *sk)
1066 {
1067 struct tcp_sock *tp = tcp_sk(sk);
1068 struct tcp_md5sig_key *key;
1069 struct hlist_node *n;
1070 struct tcp_md5sig_info *md5sig;
1071
1072 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1073
1074 if (!hlist_empty(&md5sig->head))
1075 tcp_free_md5sig_pool();
1076 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1077 hlist_del_rcu(&key->node);
1078 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1079 kfree_rcu(key, rcu);
1080 }
1081 }
1082
1083 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1084 int optlen)
1085 {
1086 struct tcp_md5sig cmd;
1087 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1088
1089 if (optlen < sizeof(cmd))
1090 return -EINVAL;
1091
1092 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1093 return -EFAULT;
1094
1095 if (sin->sin_family != AF_INET)
1096 return -EINVAL;
1097
1098 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1099 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1100 AF_INET);
1101
1102 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1103 return -EINVAL;
1104
1105 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1106 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1107 GFP_KERNEL);
1108 }
1109
1110 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1111 __be32 daddr, __be32 saddr, int nbytes)
1112 {
1113 struct tcp4_pseudohdr *bp;
1114 struct scatterlist sg;
1115
1116 bp = &hp->md5_blk.ip4;
1117
1118 /*
1119 * 1. the TCP pseudo-header (in the order: source IP address,
1120 * destination IP address, zero-padded protocol number, and
1121 * segment length)
1122 */
1123 bp->saddr = saddr;
1124 bp->daddr = daddr;
1125 bp->pad = 0;
1126 bp->protocol = IPPROTO_TCP;
1127 bp->len = cpu_to_be16(nbytes);
1128
1129 sg_init_one(&sg, bp, sizeof(*bp));
1130 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1131 }
1132
1133 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1134 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1135 {
1136 struct tcp_md5sig_pool *hp;
1137 struct hash_desc *desc;
1138
1139 hp = tcp_get_md5sig_pool();
1140 if (!hp)
1141 goto clear_hash_noput;
1142 desc = &hp->md5_desc;
1143
1144 if (crypto_hash_init(desc))
1145 goto clear_hash;
1146 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1147 goto clear_hash;
1148 if (tcp_md5_hash_header(hp, th))
1149 goto clear_hash;
1150 if (tcp_md5_hash_key(hp, key))
1151 goto clear_hash;
1152 if (crypto_hash_final(desc, md5_hash))
1153 goto clear_hash;
1154
1155 tcp_put_md5sig_pool();
1156 return 0;
1157
1158 clear_hash:
1159 tcp_put_md5sig_pool();
1160 clear_hash_noput:
1161 memset(md5_hash, 0, 16);
1162 return 1;
1163 }
1164
1165 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1166 const struct sock *sk, const struct request_sock *req,
1167 const struct sk_buff *skb)
1168 {
1169 struct tcp_md5sig_pool *hp;
1170 struct hash_desc *desc;
1171 const struct tcphdr *th = tcp_hdr(skb);
1172 __be32 saddr, daddr;
1173
1174 if (sk) {
1175 saddr = inet_sk(sk)->inet_saddr;
1176 daddr = inet_sk(sk)->inet_daddr;
1177 } else if (req) {
1178 saddr = inet_rsk(req)->loc_addr;
1179 daddr = inet_rsk(req)->rmt_addr;
1180 } else {
1181 const struct iphdr *iph = ip_hdr(skb);
1182 saddr = iph->saddr;
1183 daddr = iph->daddr;
1184 }
1185
1186 hp = tcp_get_md5sig_pool();
1187 if (!hp)
1188 goto clear_hash_noput;
1189 desc = &hp->md5_desc;
1190
1191 if (crypto_hash_init(desc))
1192 goto clear_hash;
1193
1194 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1195 goto clear_hash;
1196 if (tcp_md5_hash_header(hp, th))
1197 goto clear_hash;
1198 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1199 goto clear_hash;
1200 if (tcp_md5_hash_key(hp, key))
1201 goto clear_hash;
1202 if (crypto_hash_final(desc, md5_hash))
1203 goto clear_hash;
1204
1205 tcp_put_md5sig_pool();
1206 return 0;
1207
1208 clear_hash:
1209 tcp_put_md5sig_pool();
1210 clear_hash_noput:
1211 memset(md5_hash, 0, 16);
1212 return 1;
1213 }
1214 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1215
1216 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1217 {
1218 /*
1219 * This gets called for each TCP segment that arrives
1220 * so we want to be efficient.
1221 * We have 3 drop cases:
1222 * o No MD5 hash and one expected.
1223 * o MD5 hash and we're not expecting one.
1224 * o MD5 hash and its wrong.
1225 */
1226 const __u8 *hash_location = NULL;
1227 struct tcp_md5sig_key *hash_expected;
1228 const struct iphdr *iph = ip_hdr(skb);
1229 const struct tcphdr *th = tcp_hdr(skb);
1230 int genhash;
1231 unsigned char newhash[16];
1232
1233 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1234 AF_INET);
1235 hash_location = tcp_parse_md5sig_option(th);
1236
1237 /* We've parsed the options - do we have a hash? */
1238 if (!hash_expected && !hash_location)
1239 return false;
1240
1241 if (hash_expected && !hash_location) {
1242 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1243 return true;
1244 }
1245
1246 if (!hash_expected && hash_location) {
1247 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1248 return true;
1249 }
1250
1251 /* Okay, so this is hash_expected and hash_location -
1252 * so we need to calculate the checksum.
1253 */
1254 genhash = tcp_v4_md5_hash_skb(newhash,
1255 hash_expected,
1256 NULL, NULL, skb);
1257
1258 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1259 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1260 &iph->saddr, ntohs(th->source),
1261 &iph->daddr, ntohs(th->dest),
1262 genhash ? " tcp_v4_calc_md5_hash failed"
1263 : "");
1264 return true;
1265 }
1266 return false;
1267 }
1268
1269 #endif
1270
1271 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1272 .family = PF_INET,
1273 .obj_size = sizeof(struct tcp_request_sock),
1274 .rtx_syn_ack = tcp_v4_rtx_synack,
1275 .send_ack = tcp_v4_reqsk_send_ack,
1276 .destructor = tcp_v4_reqsk_destructor,
1277 .send_reset = tcp_v4_send_reset,
1278 .syn_ack_timeout = tcp_syn_ack_timeout,
1279 };
1280
1281 #ifdef CONFIG_TCP_MD5SIG
1282 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1283 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1284 .calc_md5_hash = tcp_v4_md5_hash_skb,
1285 };
1286 #endif
1287
1288 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1289 struct request_sock *req,
1290 struct tcp_fastopen_cookie *foc,
1291 struct tcp_fastopen_cookie *valid_foc)
1292 {
1293 bool skip_cookie = false;
1294 struct fastopen_queue *fastopenq;
1295
1296 if (likely(!fastopen_cookie_present(foc))) {
1297 /* See include/net/tcp.h for the meaning of these knobs */
1298 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1299 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1300 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1301 skip_cookie = true; /* no cookie to validate */
1302 else
1303 return false;
1304 }
1305 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1306 /* A FO option is present; bump the counter. */
1307 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1308
1309 /* Make sure the listener has enabled fastopen, and we don't
1310 * exceed the max # of pending TFO requests allowed before trying
1311 * to validating the cookie in order to avoid burning CPU cycles
1312 * unnecessarily.
1313 *
1314 * XXX (TFO) - The implication of checking the max_qlen before
1315 * processing a cookie request is that clients can't differentiate
1316 * between qlen overflow causing Fast Open to be disabled
1317 * temporarily vs a server not supporting Fast Open at all.
1318 */
1319 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1320 fastopenq == NULL || fastopenq->max_qlen == 0)
1321 return false;
1322
1323 if (fastopenq->qlen >= fastopenq->max_qlen) {
1324 struct request_sock *req1;
1325 spin_lock(&fastopenq->lock);
1326 req1 = fastopenq->rskq_rst_head;
1327 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1328 spin_unlock(&fastopenq->lock);
1329 NET_INC_STATS_BH(sock_net(sk),
1330 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1331 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1332 foc->len = -1;
1333 return false;
1334 }
1335 fastopenq->rskq_rst_head = req1->dl_next;
1336 fastopenq->qlen--;
1337 spin_unlock(&fastopenq->lock);
1338 reqsk_free(req1);
1339 }
1340 if (skip_cookie) {
1341 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1342 return true;
1343 }
1344 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1345 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1346 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1347 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1348 memcmp(&foc->val[0], &valid_foc->val[0],
1349 TCP_FASTOPEN_COOKIE_SIZE) != 0)
1350 return false;
1351 valid_foc->len = -1;
1352 }
1353 /* Acknowledge the data received from the peer. */
1354 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1355 return true;
1356 } else if (foc->len == 0) { /* Client requesting a cookie */
1357 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1358 NET_INC_STATS_BH(sock_net(sk),
1359 LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1360 } else {
1361 /* Client sent a cookie with wrong size. Treat it
1362 * the same as invalid and return a valid one.
1363 */
1364 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1365 }
1366 return false;
1367 }
1368
1369 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1370 struct sk_buff *skb,
1371 struct sk_buff *skb_synack,
1372 struct request_sock *req)
1373 {
1374 struct tcp_sock *tp = tcp_sk(sk);
1375 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1376 const struct inet_request_sock *ireq = inet_rsk(req);
1377 struct sock *child;
1378 int err;
1379
1380 req->num_retrans = 0;
1381 req->num_timeout = 0;
1382 req->sk = NULL;
1383
1384 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1385 if (child == NULL) {
1386 NET_INC_STATS_BH(sock_net(sk),
1387 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1388 kfree_skb(skb_synack);
1389 return -1;
1390 }
1391 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1392 ireq->rmt_addr, ireq->opt);
1393 err = net_xmit_eval(err);
1394 if (!err)
1395 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1396 /* XXX (TFO) - is it ok to ignore error and continue? */
1397
1398 spin_lock(&queue->fastopenq->lock);
1399 queue->fastopenq->qlen++;
1400 spin_unlock(&queue->fastopenq->lock);
1401
1402 /* Initialize the child socket. Have to fix some values to take
1403 * into account the child is a Fast Open socket and is created
1404 * only out of the bits carried in the SYN packet.
1405 */
1406 tp = tcp_sk(child);
1407
1408 tp->fastopen_rsk = req;
1409 /* Do a hold on the listner sk so that if the listener is being
1410 * closed, the child that has been accepted can live on and still
1411 * access listen_lock.
1412 */
1413 sock_hold(sk);
1414 tcp_rsk(req)->listener = sk;
1415
1416 /* RFC1323: The window in SYN & SYN/ACK segments is never
1417 * scaled. So correct it appropriately.
1418 */
1419 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1420
1421 /* Activate the retrans timer so that SYNACK can be retransmitted.
1422 * The request socket is not added to the SYN table of the parent
1423 * because it's been added to the accept queue directly.
1424 */
1425 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1426 TCP_TIMEOUT_INIT, sysctl_tcp_rto_max);
1427
1428 /* Add the child socket directly into the accept queue */
1429 inet_csk_reqsk_queue_add(sk, req, child);
1430
1431 /* Now finish processing the fastopen child socket. */
1432 inet_csk(child)->icsk_af_ops->rebuild_header(child);
1433 tcp_init_congestion_control(child);
1434 tcp_mtup_init(child);
1435 tcp_init_buffer_space(child);
1436 tcp_init_metrics(child);
1437
1438 /* Queue the data carried in the SYN packet. We need to first
1439 * bump skb's refcnt because the caller will attempt to free it.
1440 *
1441 * XXX (TFO) - we honor a zero-payload TFO request for now.
1442 * (Any reason not to?)
1443 */
1444 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1445 /* Don't queue the skb if there is no payload in SYN.
1446 * XXX (TFO) - How about SYN+FIN?
1447 */
1448 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1449 } else {
1450 skb = skb_get(skb);
1451 skb_dst_drop(skb);
1452 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1453 skb_set_owner_r(skb, child);
1454 __skb_queue_tail(&child->sk_receive_queue, skb);
1455 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1456 tp->syn_data_acked = 1;
1457 }
1458 sk->sk_data_ready(sk, 0);
1459 bh_unlock_sock(child);
1460 sock_put(child);
1461 WARN_ON(req->sk == NULL);
1462 return 0;
1463 }
1464
1465 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1466 {
1467 struct tcp_options_received tmp_opt;
1468 struct request_sock *req;
1469 struct inet_request_sock *ireq;
1470 struct tcp_sock *tp = tcp_sk(sk);
1471 struct dst_entry *dst = NULL;
1472 __be32 saddr = ip_hdr(skb)->saddr;
1473 __be32 daddr = ip_hdr(skb)->daddr;
1474 __u32 isn = TCP_SKB_CB(skb)->when;
1475 bool want_cookie = false;
1476 struct flowi4 fl4;
1477 struct tcp_fastopen_cookie foc = { .len = -1 };
1478 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1479 struct sk_buff *skb_synack;
1480 int do_fastopen;
1481
1482 /* Never answer to SYNs send to broadcast or multicast */
1483 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1484 goto drop;
1485
1486 /* TW buckets are converted to open requests without
1487 * limitations, they conserve resources and peer is
1488 * evidently real one.
1489 */
1490 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1491 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1492 if (!want_cookie)
1493 goto drop;
1494 }
1495
1496 /* Accept backlog is full. If we have already queued enough
1497 * of warm entries in syn queue, drop request. It is better than
1498 * clogging syn queue with openreqs with exponentially increasing
1499 * timeout.
1500 */
1501 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1502 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1503 goto drop;
1504 }
1505
1506 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1507 if (!req)
1508 goto drop;
1509
1510 #ifdef CONFIG_TCP_MD5SIG
1511 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1512 #endif
1513
1514 tcp_clear_options(&tmp_opt);
1515 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1516 tmp_opt.user_mss = tp->rx_opt.user_mss;
1517 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
1518
1519 if (want_cookie && !tmp_opt.saw_tstamp)
1520 tcp_clear_options(&tmp_opt);
1521
1522 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1523 tcp_openreq_init(req, &tmp_opt, skb);
1524
1525 ireq = inet_rsk(req);
1526 ireq->loc_addr = daddr;
1527 ireq->rmt_addr = saddr;
1528 ireq->no_srccheck = inet_sk(sk)->transparent;
1529 ireq->opt = tcp_v4_save_options(skb);
1530 ireq->ir_mark = inet_request_mark(sk, skb);
1531
1532 if (security_inet_conn_request(sk, skb, req))
1533 goto drop_and_free;
1534
1535 if (!want_cookie || tmp_opt.tstamp_ok)
1536 TCP_ECN_create_request(req, skb, sock_net(sk));
1537
1538 if (want_cookie) {
1539 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1540 req->cookie_ts = tmp_opt.tstamp_ok;
1541 } else if (!isn) {
1542 /* VJ's idea. We save last timestamp seen
1543 * from the destination in peer table, when entering
1544 * state TIME-WAIT, and check against it before
1545 * accepting new connection request.
1546 *
1547 * If "isn" is not zero, this request hit alive
1548 * timewait bucket, so that all the necessary checks
1549 * are made in the function processing timewait state.
1550 */
1551 if (tmp_opt.saw_tstamp &&
1552 tcp_death_row.sysctl_tw_recycle &&
1553 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1554 fl4.daddr == saddr) {
1555 if (!tcp_peer_is_proven(req, dst, true)) {
1556 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1557 goto drop_and_release;
1558 }
1559 }
1560 /* Kill the following clause, if you dislike this way. */
1561 else if (!sysctl_tcp_syncookies &&
1562 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1563 (sysctl_max_syn_backlog >> 2)) &&
1564 !tcp_peer_is_proven(req, dst, false)) {
1565 /* Without syncookies last quarter of
1566 * backlog is filled with destinations,
1567 * proven to be alive.
1568 * It means that we continue to communicate
1569 * to destinations, already remembered
1570 * to the moment of synflood.
1571 */
1572 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1573 &saddr, ntohs(tcp_hdr(skb)->source));
1574 goto drop_and_release;
1575 }
1576
1577 isn = tcp_v4_init_sequence(skb);
1578 }
1579 tcp_rsk(req)->snt_isn = isn;
1580
1581 if (dst == NULL) {
1582 dst = inet_csk_route_req(sk, &fl4, req);
1583 if (dst == NULL)
1584 goto drop_and_free;
1585 }
1586 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1587
1588 /* We don't call tcp_v4_send_synack() directly because we need
1589 * to make sure a child socket can be created successfully before
1590 * sending back synack!
1591 *
1592 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1593 * (or better yet, call tcp_send_synack() in the child context
1594 * directly, but will have to fix bunch of other code first)
1595 * after syn_recv_sock() except one will need to first fix the
1596 * latter to remove its dependency on the current implementation
1597 * of tcp_v4_send_synack()->tcp_select_initial_window().
1598 */
1599 skb_synack = tcp_make_synack(sk, dst, req,
1600 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1601
1602 if (skb_synack) {
1603 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1604 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1605 } else
1606 goto drop_and_free;
1607
1608 if (likely(!do_fastopen)) {
1609 int err;
1610 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1611 ireq->rmt_addr, ireq->opt);
1612 err = net_xmit_eval(err);
1613 if (err || want_cookie)
1614 goto drop_and_free;
1615
1616 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1617 tcp_rsk(req)->listener = NULL;
1618 /* Add the request_sock to the SYN table */
1619 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1620 if (fastopen_cookie_present(&foc) && foc.len != 0)
1621 NET_INC_STATS_BH(sock_net(sk),
1622 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1623 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req))
1624 goto drop_and_free;
1625
1626 return 0;
1627
1628 drop_and_release:
1629 dst_release(dst);
1630 drop_and_free:
1631 reqsk_free(req);
1632 drop:
1633 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1634 return 0;
1635 }
1636 EXPORT_SYMBOL(tcp_v4_conn_request);
1637
1638
1639 /*
1640 * The three way handshake has completed - we got a valid synack -
1641 * now create the new socket.
1642 */
1643 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1644 struct request_sock *req,
1645 struct dst_entry *dst)
1646 {
1647 struct inet_request_sock *ireq;
1648 struct inet_sock *newinet;
1649 struct tcp_sock *newtp;
1650 struct sock *newsk;
1651 #ifdef CONFIG_TCP_MD5SIG
1652 struct tcp_md5sig_key *key;
1653 #endif
1654 struct ip_options_rcu *inet_opt;
1655
1656 if (sk_acceptq_is_full(sk))
1657 goto exit_overflow;
1658
1659 newsk = tcp_create_openreq_child(sk, req, skb);
1660 if (!newsk)
1661 goto exit_nonewsk;
1662
1663 newsk->sk_gso_type = SKB_GSO_TCPV4;
1664 inet_sk_rx_dst_set(newsk, skb);
1665
1666 newtp = tcp_sk(newsk);
1667 newinet = inet_sk(newsk);
1668 ireq = inet_rsk(req);
1669 newinet->inet_daddr = ireq->rmt_addr;
1670 newinet->inet_rcv_saddr = ireq->loc_addr;
1671 newinet->inet_saddr = ireq->loc_addr;
1672 inet_opt = ireq->opt;
1673 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1674 ireq->opt = NULL;
1675 newinet->mc_index = inet_iif(skb);
1676 newinet->mc_ttl = ip_hdr(skb)->ttl;
1677 newinet->rcv_tos = ip_hdr(skb)->tos;
1678 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1679 if (inet_opt)
1680 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1681 newinet->inet_id = newtp->write_seq ^ jiffies;
1682
1683 if (!dst) {
1684 dst = inet_csk_route_child_sock(sk, newsk, req);
1685 if (!dst)
1686 goto put_and_exit;
1687 } else {
1688 /* syncookie case : see end of cookie_v4_check() */
1689 }
1690 sk_setup_caps(newsk, dst);
1691
1692 tcp_mtup_init(newsk);
1693 tcp_sync_mss(newsk, dst_mtu(dst));
1694 newtp->advmss = dst_metric_advmss(dst);
1695 if (tcp_sk(sk)->rx_opt.user_mss &&
1696 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1697 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1698
1699 tcp_initialize_rcv_mss(newsk);
1700 tcp_synack_rtt_meas(newsk, req);
1701 newtp->total_retrans = req->num_retrans;
1702
1703 #ifdef CONFIG_TCP_MD5SIG
1704 /* Copy over the MD5 key from the original socket */
1705 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1706 AF_INET);
1707 if (key != NULL) {
1708 /*
1709 * We're using one, so create a matching key
1710 * on the newsk structure. If we fail to get
1711 * memory, then we end up not copying the key
1712 * across. Shucks.
1713 */
1714 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1715 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1716 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1717 }
1718 #endif
1719
1720 if (__inet_inherit_port(sk, newsk) < 0)
1721 goto put_and_exit;
1722 __inet_hash_nolisten(newsk, NULL);
1723
1724 return newsk;
1725
1726 exit_overflow:
1727 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1728 exit_nonewsk:
1729 dst_release(dst);
1730 exit:
1731 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1732 return NULL;
1733 put_and_exit:
1734 inet_csk_prepare_forced_close(newsk);
1735 tcp_done(newsk);
1736 goto exit;
1737 }
1738 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1739
1740 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1741 {
1742 struct tcphdr *th = tcp_hdr(skb);
1743 const struct iphdr *iph = ip_hdr(skb);
1744 struct sock *nsk;
1745 struct request_sock **prev;
1746 /* Find possible connection requests. */
1747 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1748 iph->saddr, iph->daddr);
1749 if (req)
1750 return tcp_check_req(sk, skb, req, prev, false);
1751
1752 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1753 th->source, iph->daddr, th->dest, inet_iif(skb));
1754
1755 if (nsk) {
1756 if (nsk->sk_state != TCP_TIME_WAIT) {
1757 bh_lock_sock(nsk);
1758 return nsk;
1759 }
1760 inet_twsk_put(inet_twsk(nsk));
1761 return NULL;
1762 }
1763
1764 #ifdef CONFIG_SYN_COOKIES
1765 if (!th->syn)
1766 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1767 #endif
1768 return sk;
1769 }
1770
1771 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1772 {
1773 const struct iphdr *iph = ip_hdr(skb);
1774
1775 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1776 if (!tcp_v4_check(skb->len, iph->saddr,
1777 iph->daddr, skb->csum)) {
1778 skb->ip_summed = CHECKSUM_UNNECESSARY;
1779 return 0;
1780 }
1781 }
1782
1783 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1784 skb->len, IPPROTO_TCP, 0);
1785
1786 if (skb->len <= 76) {
1787 return __skb_checksum_complete(skb);
1788 }
1789 return 0;
1790 }
1791
1792
1793 /* The socket must have it's spinlock held when we get
1794 * here.
1795 *
1796 * We have a potential double-lock case here, so even when
1797 * doing backlog processing we use the BH locking scheme.
1798 * This is because we cannot sleep with the original spinlock
1799 * held.
1800 */
1801 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1802 {
1803 struct sock *rsk;
1804 #ifdef CONFIG_TCP_MD5SIG
1805 /*
1806 * We really want to reject the packet as early as possible
1807 * if:
1808 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1809 * o There is an MD5 option and we're not expecting one
1810 */
1811 if (tcp_v4_inbound_md5_hash(sk, skb))
1812 goto discard;
1813 #endif
1814
1815 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1816 struct dst_entry *dst = sk->sk_rx_dst;
1817
1818 sock_rps_save_rxhash(sk, skb);
1819 if (dst) {
1820 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1821 dst->ops->check(dst, 0) == NULL) {
1822 dst_release(dst);
1823 sk->sk_rx_dst = NULL;
1824 }
1825 }
1826 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1827 rsk = sk;
1828 goto reset;
1829 }
1830 return 0;
1831 }
1832
1833 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1834 goto csum_err;
1835
1836 if (sk->sk_state == TCP_LISTEN) {
1837 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1838 if (!nsk)
1839 goto discard;
1840
1841 if (nsk != sk) {
1842 sock_rps_save_rxhash(nsk, skb);
1843 if (tcp_child_process(sk, nsk, skb)) {
1844 rsk = nsk;
1845 goto reset;
1846 }
1847 return 0;
1848 }
1849 } else
1850 sock_rps_save_rxhash(sk, skb);
1851
1852 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1853 rsk = sk;
1854 goto reset;
1855 }
1856 return 0;
1857
1858 reset:
1859 tcp_v4_send_reset(rsk, skb);
1860 discard:
1861 kfree_skb(skb);
1862 /* Be careful here. If this function gets more complicated and
1863 * gcc suffers from register pressure on the x86, sk (in %ebx)
1864 * might be destroyed here. This current version compiles correctly,
1865 * but you have been warned.
1866 */
1867 return 0;
1868
1869 csum_err:
1870 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1871 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1872 goto discard;
1873 }
1874 EXPORT_SYMBOL(tcp_v4_do_rcv);
1875
1876 void tcp_v4_early_demux(struct sk_buff *skb)
1877 {
1878 const struct iphdr *iph;
1879 const struct tcphdr *th;
1880 struct sock *sk;
1881
1882 if (skb->pkt_type != PACKET_HOST)
1883 return;
1884
1885 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1886 return;
1887
1888 iph = ip_hdr(skb);
1889 th = tcp_hdr(skb);
1890
1891 if (th->doff < sizeof(struct tcphdr) / 4)
1892 return;
1893
1894 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1895 iph->saddr, th->source,
1896 iph->daddr, ntohs(th->dest),
1897 skb->skb_iif);
1898 if (sk) {
1899 skb->sk = sk;
1900 skb->destructor = sock_edemux;
1901 if (sk->sk_state != TCP_TIME_WAIT) {
1902 struct dst_entry *dst = sk->sk_rx_dst;
1903
1904 if (dst)
1905 dst = dst_check(dst, 0);
1906 if (dst &&
1907 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1908 skb_dst_set_noref(skb, dst);
1909 }
1910 }
1911 }
1912
1913 /* Packet is added to VJ-style prequeue for processing in process
1914 * context, if a reader task is waiting. Apparently, this exciting
1915 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1916 * failed somewhere. Latency? Burstiness? Well, at least now we will
1917 * see, why it failed. 8)8) --ANK
1918 *
1919 */
1920 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1921 {
1922 struct tcp_sock *tp = tcp_sk(sk);
1923
1924 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1925 return false;
1926
1927 if (skb->len <= tcp_hdrlen(skb) &&
1928 skb_queue_len(&tp->ucopy.prequeue) == 0)
1929 return false;
1930
1931 skb_dst_force(skb);
1932 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1933 tp->ucopy.memory += skb->truesize;
1934 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1935 struct sk_buff *skb1;
1936
1937 BUG_ON(sock_owned_by_user(sk));
1938
1939 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1940 sk_backlog_rcv(sk, skb1);
1941 NET_INC_STATS_BH(sock_net(sk),
1942 LINUX_MIB_TCPPREQUEUEDROPPED);
1943 }
1944
1945 tp->ucopy.memory = 0;
1946 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1947 wake_up_interruptible_sync_poll(sk_sleep(sk),
1948 POLLIN | POLLRDNORM | POLLRDBAND);
1949 if (!inet_csk_ack_scheduled(sk))
1950 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1951 (3 * tcp_rto_min(sk)) / 4,
1952 sysctl_tcp_rto_max);
1953 }
1954 return true;
1955 }
1956 EXPORT_SYMBOL(tcp_prequeue);
1957
1958 /*
1959 * From tcp_input.c
1960 */
1961
1962 int tcp_v4_rcv(struct sk_buff *skb)
1963 {
1964 const struct iphdr *iph;
1965 const struct tcphdr *th;
1966 struct sock *sk;
1967 int ret;
1968 struct net *net = dev_net(skb->dev);
1969
1970 if (skb->pkt_type != PACKET_HOST)
1971 goto discard_it;
1972
1973 /* Count it even if it's bad */
1974 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1975
1976 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1977 goto discard_it;
1978
1979 th = tcp_hdr(skb);
1980
1981 if (th->doff < sizeof(struct tcphdr) / 4)
1982 goto bad_packet;
1983 if (!pskb_may_pull(skb, th->doff * 4))
1984 goto discard_it;
1985
1986 /* An explanation is required here, I think.
1987 * Packet length and doff are validated by header prediction,
1988 * provided case of th->doff==0 is eliminated.
1989 * So, we defer the checks. */
1990 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1991 goto csum_error;
1992
1993 th = tcp_hdr(skb);
1994 iph = ip_hdr(skb);
1995 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1996 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1997 skb->len - th->doff * 4);
1998 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1999 TCP_SKB_CB(skb)->when = 0;
2000 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2001 TCP_SKB_CB(skb)->sacked = 0;
2002
2003 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
2004 if (!sk)
2005 goto no_tcp_socket;
2006
2007 process:
2008 if (sk->sk_state == TCP_TIME_WAIT)
2009 goto do_time_wait;
2010
2011 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2012 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2013 goto discard_and_relse;
2014 }
2015
2016 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2017 goto discard_and_relse;
2018 nf_reset(skb);
2019
2020 if (sk_filter(sk, skb))
2021 goto discard_and_relse;
2022
2023 skb->dev = NULL;
2024
2025 bh_lock_sock_nested(sk);
2026 ret = 0;
2027 if (!sock_owned_by_user(sk)) {
2028 #ifdef CONFIG_NET_DMA
2029 struct tcp_sock *tp = tcp_sk(sk);
2030 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2031 tp->ucopy.dma_chan = net_dma_find_channel();
2032 if (tp->ucopy.dma_chan)
2033 ret = tcp_v4_do_rcv(sk, skb);
2034 else
2035 #endif
2036 {
2037 if (!tcp_prequeue(sk, skb))
2038 ret = tcp_v4_do_rcv(sk, skb);
2039 }
2040 } else if (unlikely(sk_add_backlog(sk, skb,
2041 sk->sk_rcvbuf + sk->sk_sndbuf))) {
2042 bh_unlock_sock(sk);
2043 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2044 goto discard_and_relse;
2045 }
2046 bh_unlock_sock(sk);
2047
2048 sock_put(sk);
2049
2050 return ret;
2051
2052 no_tcp_socket:
2053 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2054 goto discard_it;
2055
2056 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2057 csum_error:
2058 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
2059 bad_packet:
2060 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2061 } else {
2062 tcp_v4_send_reset(NULL, skb);
2063 }
2064
2065 discard_it:
2066 /* Discard frame. */
2067 kfree_skb(skb);
2068 return 0;
2069
2070 discard_and_relse:
2071 sock_put(sk);
2072 goto discard_it;
2073
2074 do_time_wait:
2075 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2076 inet_twsk_put(inet_twsk(sk));
2077 goto discard_it;
2078 }
2079
2080 if (skb->len < (th->doff << 2)) {
2081 inet_twsk_put(inet_twsk(sk));
2082 goto bad_packet;
2083 }
2084 if (tcp_checksum_complete(skb)) {
2085 inet_twsk_put(inet_twsk(sk));
2086 goto csum_error;
2087 }
2088 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2089 case TCP_TW_SYN: {
2090 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2091 &tcp_hashinfo,
2092 iph->saddr, th->source,
2093 iph->daddr, th->dest,
2094 inet_iif(skb));
2095 if (sk2) {
2096 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2097 inet_twsk_put(inet_twsk(sk));
2098 sk = sk2;
2099 goto process;
2100 }
2101 /* Fall through to ACK */
2102 }
2103 case TCP_TW_ACK:
2104 tcp_v4_timewait_ack(sk, skb);
2105 break;
2106 case TCP_TW_RST:
2107 goto no_tcp_socket;
2108 case TCP_TW_SUCCESS:;
2109 }
2110 goto discard_it;
2111 }
2112
2113 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2114 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2115 .twsk_unique = tcp_twsk_unique,
2116 .twsk_destructor= tcp_twsk_destructor,
2117 };
2118
2119 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2120 {
2121 struct dst_entry *dst = skb_dst(skb);
2122
2123 dst_hold(dst);
2124 sk->sk_rx_dst = dst;
2125 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2126 }
2127 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2128
2129 const struct inet_connection_sock_af_ops ipv4_specific = {
2130 .queue_xmit = ip_queue_xmit,
2131 .send_check = tcp_v4_send_check,
2132 .rebuild_header = inet_sk_rebuild_header,
2133 .sk_rx_dst_set = inet_sk_rx_dst_set,
2134 .conn_request = tcp_v4_conn_request,
2135 .syn_recv_sock = tcp_v4_syn_recv_sock,
2136 .net_header_len = sizeof(struct iphdr),
2137 .setsockopt = ip_setsockopt,
2138 .getsockopt = ip_getsockopt,
2139 .addr2sockaddr = inet_csk_addr2sockaddr,
2140 .sockaddr_len = sizeof(struct sockaddr_in),
2141 .bind_conflict = inet_csk_bind_conflict,
2142 #ifdef CONFIG_COMPAT
2143 .compat_setsockopt = compat_ip_setsockopt,
2144 .compat_getsockopt = compat_ip_getsockopt,
2145 #endif
2146 };
2147 EXPORT_SYMBOL(ipv4_specific);
2148
2149 #ifdef CONFIG_TCP_MD5SIG
2150 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2151 .md5_lookup = tcp_v4_md5_lookup,
2152 .calc_md5_hash = tcp_v4_md5_hash_skb,
2153 .md5_parse = tcp_v4_parse_md5_keys,
2154 };
2155 #endif
2156
2157 /* NOTE: A lot of things set to zero explicitly by call to
2158 * sk_alloc() so need not be done here.
2159 */
2160 static int tcp_v4_init_sock(struct sock *sk)
2161 {
2162 struct inet_connection_sock *icsk = inet_csk(sk);
2163
2164 tcp_init_sock(sk);
2165 icsk->icsk_MMSRB = 0;
2166
2167 icsk->icsk_af_ops = &ipv4_specific;
2168
2169 #ifdef CONFIG_TCP_MD5SIG
2170 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2171 #endif
2172
2173 return 0;
2174 }
2175
2176 void tcp_v4_destroy_sock(struct sock *sk)
2177 {
2178 struct tcp_sock *tp = tcp_sk(sk);
2179
2180 tcp_clear_xmit_timers(sk);
2181
2182 tcp_cleanup_congestion_control(sk);
2183
2184 /* Cleanup up the write buffer. */
2185 tcp_write_queue_purge(sk);
2186
2187 /* Cleans up our, hopefully empty, out_of_order_queue. */
2188 __skb_queue_purge(&tp->out_of_order_queue);
2189
2190 #ifdef CONFIG_TCP_MD5SIG
2191 /* Clean up the MD5 key list, if any */
2192 if (tp->md5sig_info) {
2193 tcp_clear_md5_list(sk);
2194 kfree_rcu(tp->md5sig_info, rcu);
2195 tp->md5sig_info = NULL;
2196 }
2197 #endif
2198
2199 #ifdef CONFIG_NET_DMA
2200 /* Cleans up our sk_async_wait_queue */
2201 __skb_queue_purge(&sk->sk_async_wait_queue);
2202 #endif
2203
2204 /* Clean prequeue, it must be empty really */
2205 __skb_queue_purge(&tp->ucopy.prequeue);
2206
2207 /* Clean up a referenced TCP bind bucket. */
2208 if (inet_csk(sk)->icsk_bind_hash)
2209 inet_put_port(sk);
2210
2211 BUG_ON(tp->fastopen_rsk != NULL);
2212
2213 /* If socket is aborted during connect operation */
2214 tcp_free_fastopen_req(tp);
2215
2216 sk_sockets_allocated_dec(sk);
2217 sock_release_memcg(sk);
2218 }
2219 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2220
2221 void tcp_v4_handle_retrans_time_by_uid(struct uid_err uid_e)
2222 {
2223 unsigned int bucket;
2224 uid_t skuid = (uid_t)(uid_e.appuid);
2225 struct inet_connection_sock *icsk = NULL;//inet_csk(sk);
2226
2227
2228 for (bucket = 0; bucket < tcp_hashinfo.ehash_mask; bucket++) {
2229 struct hlist_nulls_node *node;
2230 struct sock *sk;
2231 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, bucket);
2232
2233 spin_lock_bh(lock);
2234 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[bucket].chain) {
2235
2236 if (sysctl_ip_dynaddr && sk->sk_state == TCP_SYN_SENT)
2237 continue;
2238 if (sock_flag(sk, SOCK_DEAD))
2239 continue;
2240
2241 if(sk->sk_socket){
2242 if(SOCK_INODE(sk->sk_socket)->i_uid != skuid)
2243 continue;
2244 else
2245 printk("[mmspb] tcp_v4_handle_retrans_time_by_uid socket uid(%d) match!",
2246 SOCK_INODE(sk->sk_socket)->i_uid);
2247 } else{
2248 continue;
2249 }
2250
2251 sock_hold(sk);
2252 spin_unlock_bh(lock);
2253
2254 local_bh_disable();
2255 bh_lock_sock(sk);
2256
2257 // update sk time out value
2258 icsk = inet_csk(sk);
2259 printk("[mmspb] tcp_v4_handle_retrans_time_by_uid update timer\n");
2260
2261 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + 2);
2262 icsk->icsk_rto = sysctl_tcp_rto_min * 30;
2263 icsk->icsk_MMSRB = 1;
2264
2265 bh_unlock_sock(sk);
2266 local_bh_enable();
2267 spin_lock_bh(lock);
2268 sock_put(sk);
2269
2270 }
2271 spin_unlock_bh(lock);
2272 }
2273
2274 }
2275
2276
2277 /*
2278 * tcp_v4_nuke_addr_by_uid - destroy all sockets of spcial uid
2279 */
2280 void tcp_v4_reset_connections_by_uid(struct uid_err uid_e)
2281 {
2282 unsigned int bucket;
2283 uid_t skuid = (uid_t)(uid_e.appuid);
2284
2285 for (bucket = 0; bucket < tcp_hashinfo.ehash_mask; bucket++) {
2286 struct hlist_nulls_node *node;
2287 struct sock *sk;
2288 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, bucket);
2289
2290 restart:
2291 spin_lock_bh(lock);
2292 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[bucket].chain) {
2293
2294 if (sysctl_ip_dynaddr && sk->sk_state == TCP_SYN_SENT)
2295 continue;
2296 if (sock_flag(sk, SOCK_DEAD))
2297 continue;
2298
2299 if(sk->sk_socket){
2300 if(SOCK_INODE(sk->sk_socket)->i_uid != skuid)
2301 continue;
2302 else
2303 printk(KERN_INFO "SIOCKILLSOCK socket uid(%d) match!",
2304 SOCK_INODE(sk->sk_socket)->i_uid);
2305 } else{
2306 continue;
2307 }
2308
2309 sock_hold(sk);
2310 spin_unlock_bh(lock);
2311
2312 local_bh_disable();
2313 bh_lock_sock(sk);
2314 sk->sk_err = uid_e.errNum;
2315 printk(KERN_INFO "SIOCKILLSOCK set sk err == %d!! \n", sk->sk_err);
2316 sk->sk_error_report(sk);
2317
2318 tcp_done(sk);
2319 bh_unlock_sock(sk);
2320 local_bh_enable();
2321 sock_put(sk);
2322
2323 goto restart;
2324 }
2325 spin_unlock_bh(lock);
2326 }
2327 }
2328
2329
2330 #ifdef CONFIG_PROC_FS
2331 /* Proc filesystem TCP sock list dumping. */
2332
2333 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2334 {
2335 return hlist_nulls_empty(head) ? NULL :
2336 list_entry(head->first, struct inet_timewait_sock, tw_node);
2337 }
2338
2339 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2340 {
2341 return !is_a_nulls(tw->tw_node.next) ?
2342 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2343 }
2344
2345 /*
2346 * Get next listener socket follow cur. If cur is NULL, get first socket
2347 * starting from bucket given in st->bucket; when st->bucket is zero the
2348 * very first socket in the hash table is returned.
2349 */
2350 static void *listening_get_next(struct seq_file *seq, void *cur)
2351 {
2352 struct inet_connection_sock *icsk;
2353 struct hlist_nulls_node *node;
2354 struct sock *sk = cur;
2355 struct inet_listen_hashbucket *ilb;
2356 struct tcp_iter_state *st = seq->private;
2357 struct net *net = seq_file_net(seq);
2358
2359 if (!sk) {
2360 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2361 spin_lock_bh(&ilb->lock);
2362 sk = sk_nulls_head(&ilb->head);
2363 st->offset = 0;
2364 goto get_sk;
2365 }
2366 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2367 ++st->num;
2368 ++st->offset;
2369
2370 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2371 struct request_sock *req = cur;
2372
2373 icsk = inet_csk(st->syn_wait_sk);
2374 req = req->dl_next;
2375 while (1) {
2376 while (req) {
2377 if (req->rsk_ops->family == st->family) {
2378 cur = req;
2379 goto out;
2380 }
2381 req = req->dl_next;
2382 }
2383 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2384 break;
2385 get_req:
2386 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2387 }
2388 sk = sk_nulls_next(st->syn_wait_sk);
2389 st->state = TCP_SEQ_STATE_LISTENING;
2390 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2391 } else {
2392 icsk = inet_csk(sk);
2393 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2394 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2395 goto start_req;
2396 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2397 sk = sk_nulls_next(sk);
2398 }
2399 get_sk:
2400 sk_nulls_for_each_from(sk, node) {
2401 if (!net_eq(sock_net(sk), net))
2402 continue;
2403 if (sk->sk_family == st->family) {
2404 cur = sk;
2405 goto out;
2406 }
2407 icsk = inet_csk(sk);
2408 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2409 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2410 start_req:
2411 st->uid = sock_i_uid(sk);
2412 st->syn_wait_sk = sk;
2413 st->state = TCP_SEQ_STATE_OPENREQ;
2414 st->sbucket = 0;
2415 goto get_req;
2416 }
2417 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2418 }
2419 spin_unlock_bh(&ilb->lock);
2420 st->offset = 0;
2421 if (++st->bucket < INET_LHTABLE_SIZE) {
2422 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2423 spin_lock_bh(&ilb->lock);
2424 sk = sk_nulls_head(&ilb->head);
2425 goto get_sk;
2426 }
2427 cur = NULL;
2428 out:
2429 return cur;
2430 }
2431
2432 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2433 {
2434 struct tcp_iter_state *st = seq->private;
2435 void *rc;
2436
2437 st->bucket = 0;
2438 st->offset = 0;
2439 rc = listening_get_next(seq, NULL);
2440
2441 while (rc && *pos) {
2442 rc = listening_get_next(seq, rc);
2443 --*pos;
2444 }
2445 return rc;
2446 }
2447
2448 static inline bool empty_bucket(struct tcp_iter_state *st)
2449 {
2450 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2451 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2452 }
2453
2454 /*
2455 * Get first established socket starting from bucket given in st->bucket.
2456 * If st->bucket is zero, the very first socket in the hash is returned.
2457 */
2458 static void *established_get_first(struct seq_file *seq)
2459 {
2460 struct tcp_iter_state *st = seq->private;
2461 struct net *net = seq_file_net(seq);
2462 void *rc = NULL;
2463
2464 st->offset = 0;
2465 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2466 struct sock *sk;
2467 struct hlist_nulls_node *node;
2468 struct inet_timewait_sock *tw;
2469 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2470
2471 /* Lockless fast path for the common case of empty buckets */
2472 if (empty_bucket(st))
2473 continue;
2474
2475 spin_lock_bh(lock);
2476 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2477 if (sk->sk_family != st->family ||
2478 !net_eq(sock_net(sk), net)) {
2479 continue;
2480 }
2481 rc = sk;
2482 goto out;
2483 }
2484 st->state = TCP_SEQ_STATE_TIME_WAIT;
2485 inet_twsk_for_each(tw, node,
2486 &tcp_hashinfo.ehash[st->bucket].twchain) {
2487 if (tw->tw_family != st->family ||
2488 !net_eq(twsk_net(tw), net)) {
2489 continue;
2490 }
2491 rc = tw;
2492 goto out;
2493 }
2494 spin_unlock_bh(lock);
2495 st->state = TCP_SEQ_STATE_ESTABLISHED;
2496 }
2497 out:
2498 return rc;
2499 }
2500
2501 static void *established_get_next(struct seq_file *seq, void *cur)
2502 {
2503 struct sock *sk = cur;
2504 struct inet_timewait_sock *tw;
2505 struct hlist_nulls_node *node;
2506 struct tcp_iter_state *st = seq->private;
2507 struct net *net = seq_file_net(seq);
2508
2509 ++st->num;
2510 ++st->offset;
2511
2512 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2513 tw = cur;
2514 tw = tw_next(tw);
2515 get_tw:
2516 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2517 tw = tw_next(tw);
2518 }
2519 if (tw) {
2520 cur = tw;
2521 goto out;
2522 }
2523 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2524 st->state = TCP_SEQ_STATE_ESTABLISHED;
2525
2526 /* Look for next non empty bucket */
2527 st->offset = 0;
2528 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2529 empty_bucket(st))
2530 ;
2531 if (st->bucket > tcp_hashinfo.ehash_mask)
2532 return NULL;
2533
2534 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2535 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2536 } else
2537 sk = sk_nulls_next(sk);
2538
2539 sk_nulls_for_each_from(sk, node) {
2540 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2541 goto found;
2542 }
2543
2544 st->state = TCP_SEQ_STATE_TIME_WAIT;
2545 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2546 goto get_tw;
2547 found:
2548 cur = sk;
2549 out:
2550 return cur;
2551 }
2552
2553 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2554 {
2555 struct tcp_iter_state *st = seq->private;
2556 void *rc;
2557
2558 st->bucket = 0;
2559 rc = established_get_first(seq);
2560
2561 while (rc && pos) {
2562 rc = established_get_next(seq, rc);
2563 --pos;
2564 }
2565 return rc;
2566 }
2567
2568 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2569 {
2570 void *rc;
2571 struct tcp_iter_state *st = seq->private;
2572
2573 st->state = TCP_SEQ_STATE_LISTENING;
2574 rc = listening_get_idx(seq, &pos);
2575
2576 if (!rc) {
2577 st->state = TCP_SEQ_STATE_ESTABLISHED;
2578 rc = established_get_idx(seq, pos);
2579 }
2580
2581 return rc;
2582 }
2583
2584 static void *tcp_seek_last_pos(struct seq_file *seq)
2585 {
2586 struct tcp_iter_state *st = seq->private;
2587 int offset = st->offset;
2588 int orig_num = st->num;
2589 void *rc = NULL;
2590
2591 switch (st->state) {
2592 case TCP_SEQ_STATE_OPENREQ:
2593 case TCP_SEQ_STATE_LISTENING:
2594 if (st->bucket >= INET_LHTABLE_SIZE)
2595 break;
2596 st->state = TCP_SEQ_STATE_LISTENING;
2597 rc = listening_get_next(seq, NULL);
2598 while (offset-- && rc)
2599 rc = listening_get_next(seq, rc);
2600 if (rc)
2601 break;
2602 st->bucket = 0;
2603 /* Fallthrough */
2604 case TCP_SEQ_STATE_ESTABLISHED:
2605 case TCP_SEQ_STATE_TIME_WAIT:
2606 st->state = TCP_SEQ_STATE_ESTABLISHED;
2607 if (st->bucket > tcp_hashinfo.ehash_mask)
2608 break;
2609 rc = established_get_first(seq);
2610 while (offset-- && rc)
2611 rc = established_get_next(seq, rc);
2612 }
2613
2614 st->num = orig_num;
2615
2616 return rc;
2617 }
2618
2619 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2620 {
2621 struct tcp_iter_state *st = seq->private;
2622 void *rc;
2623
2624 if (*pos && *pos == st->last_pos) {
2625 rc = tcp_seek_last_pos(seq);
2626 if (rc)
2627 goto out;
2628 }
2629
2630 st->state = TCP_SEQ_STATE_LISTENING;
2631 st->num = 0;
2632 st->bucket = 0;
2633 st->offset = 0;
2634 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2635
2636 out:
2637 st->last_pos = *pos;
2638 return rc;
2639 }
2640
2641 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2642 {
2643 struct tcp_iter_state *st = seq->private;
2644 void *rc = NULL;
2645
2646 if (v == SEQ_START_TOKEN) {
2647 rc = tcp_get_idx(seq, 0);
2648 goto out;
2649 }
2650
2651 switch (st->state) {
2652 case TCP_SEQ_STATE_OPENREQ:
2653 case TCP_SEQ_STATE_LISTENING:
2654 rc = listening_get_next(seq, v);
2655 if (!rc) {
2656 st->state = TCP_SEQ_STATE_ESTABLISHED;
2657 st->bucket = 0;
2658 st->offset = 0;
2659 rc = established_get_first(seq);
2660 }
2661 break;
2662 case TCP_SEQ_STATE_ESTABLISHED:
2663 case TCP_SEQ_STATE_TIME_WAIT:
2664 rc = established_get_next(seq, v);
2665 break;
2666 }
2667 out:
2668 ++*pos;
2669 st->last_pos = *pos;
2670 return rc;
2671 }
2672
2673 static void tcp_seq_stop(struct seq_file *seq, void *v)
2674 {
2675 struct tcp_iter_state *st = seq->private;
2676
2677 switch (st->state) {
2678 case TCP_SEQ_STATE_OPENREQ:
2679 if (v) {
2680 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2681 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2682 }
2683 case TCP_SEQ_STATE_LISTENING:
2684 if (v != SEQ_START_TOKEN)
2685 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2686 break;
2687 case TCP_SEQ_STATE_TIME_WAIT:
2688 case TCP_SEQ_STATE_ESTABLISHED:
2689 if (v)
2690 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2691 break;
2692 }
2693 }
2694
2695 int tcp_seq_open(struct inode *inode, struct file *file)
2696 {
2697 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2698 struct tcp_iter_state *s;
2699 int err;
2700
2701 err = seq_open_net(inode, file, &afinfo->seq_ops,
2702 sizeof(struct tcp_iter_state));
2703 if (err < 0)
2704 return err;
2705
2706 s = ((struct seq_file *)file->private_data)->private;
2707 s->family = afinfo->family;
2708 s->last_pos = 0;
2709 return 0;
2710 }
2711 EXPORT_SYMBOL(tcp_seq_open);
2712
2713 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2714 {
2715 int rc = 0;
2716 struct proc_dir_entry *p;
2717
2718 afinfo->seq_ops.start = tcp_seq_start;
2719 afinfo->seq_ops.next = tcp_seq_next;
2720 afinfo->seq_ops.stop = tcp_seq_stop;
2721
2722 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2723 afinfo->seq_fops, afinfo);
2724 if (!p)
2725 rc = -ENOMEM;
2726 return rc;
2727 }
2728 EXPORT_SYMBOL(tcp_proc_register);
2729
2730 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2731 {
2732 remove_proc_entry(afinfo->name, net->proc_net);
2733 }
2734 EXPORT_SYMBOL(tcp_proc_unregister);
2735
2736 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2737 struct seq_file *f, int i, kuid_t uid, int *len)
2738 {
2739 const struct inet_request_sock *ireq = inet_rsk(req);
2740 long delta = req->expires - jiffies;
2741
2742 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2743 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2744 i,
2745 ireq->loc_addr,
2746 ntohs(inet_sk(sk)->inet_sport),
2747 ireq->rmt_addr,
2748 ntohs(ireq->rmt_port),
2749 TCP_SYN_RECV,
2750 0, 0, /* could print option size, but that is af dependent. */
2751 1, /* timers active (only the expire timer) */
2752 jiffies_delta_to_clock_t(delta),
2753 req->num_timeout,
2754 from_kuid_munged(seq_user_ns(f), uid),
2755 0, /* non standard timer */
2756 0, /* open_requests have no inode */
2757 atomic_read(&sk->sk_refcnt),
2758 req,
2759 len);
2760 }
2761
2762 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2763 {
2764 int timer_active;
2765 unsigned long timer_expires;
2766 const struct tcp_sock *tp = tcp_sk(sk);
2767 const struct inet_connection_sock *icsk = inet_csk(sk);
2768 const struct inet_sock *inet = inet_sk(sk);
2769 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2770 __be32 dest = inet->inet_daddr;
2771 __be32 src = inet->inet_rcv_saddr;
2772 __u16 destp = ntohs(inet->inet_dport);
2773 __u16 srcp = ntohs(inet->inet_sport);
2774 int rx_queue;
2775
2776 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2777 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2778 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2779 timer_active = 1;
2780 timer_expires = icsk->icsk_timeout;
2781 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2782 timer_active = 4;
2783 timer_expires = icsk->icsk_timeout;
2784 } else if (timer_pending(&sk->sk_timer)) {
2785 timer_active = 2;
2786 timer_expires = sk->sk_timer.expires;
2787 } else {
2788 timer_active = 0;
2789 timer_expires = jiffies;
2790 }
2791
2792 if (sk->sk_state == TCP_LISTEN)
2793 rx_queue = sk->sk_ack_backlog;
2794 else
2795 /*
2796 * because we dont lock socket, we might find a transient negative value
2797 */
2798 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2799
2800 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2801 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2802 i, src, srcp, dest, destp, sk->sk_state,
2803 tp->write_seq - tp->snd_una,
2804 rx_queue,
2805 timer_active,
2806 jiffies_delta_to_clock_t(timer_expires - jiffies),
2807 icsk->icsk_retransmits,
2808 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2809 icsk->icsk_probes_out,
2810 sock_i_ino(sk),
2811 atomic_read(&sk->sk_refcnt), sk,
2812 jiffies_to_clock_t(icsk->icsk_rto),
2813 jiffies_to_clock_t(icsk->icsk_ack.ato),
2814 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2815 tp->snd_cwnd,
2816 sk->sk_state == TCP_LISTEN ?
2817 (fastopenq ? fastopenq->max_qlen : 0) :
2818 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2819 len);
2820 }
2821
2822 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2823 struct seq_file *f, int i, int *len)
2824 {
2825 __be32 dest, src;
2826 __u16 destp, srcp;
2827 long delta = tw->tw_ttd - jiffies;
2828
2829 dest = tw->tw_daddr;
2830 src = tw->tw_rcv_saddr;
2831 destp = ntohs(tw->tw_dport);
2832 srcp = ntohs(tw->tw_sport);
2833
2834 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2835 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2836 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2837 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2838 atomic_read(&tw->tw_refcnt), tw, len);
2839 }
2840
2841 #define TMPSZ 150
2842
2843 static int tcp4_seq_show(struct seq_file *seq, void *v)
2844 {
2845 struct tcp_iter_state *st;
2846 int len;
2847
2848 if (v == SEQ_START_TOKEN) {
2849 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2850 " sl local_address rem_address st tx_queue "
2851 "rx_queue tr tm->when retrnsmt uid timeout "
2852 "inode");
2853 goto out;
2854 }
2855 st = seq->private;
2856
2857 switch (st->state) {
2858 case TCP_SEQ_STATE_LISTENING:
2859 case TCP_SEQ_STATE_ESTABLISHED:
2860 get_tcp4_sock(v, seq, st->num, &len);
2861 break;
2862 case TCP_SEQ_STATE_OPENREQ:
2863 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2864 break;
2865 case TCP_SEQ_STATE_TIME_WAIT:
2866 get_timewait4_sock(v, seq, st->num, &len);
2867 break;
2868 }
2869 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2870 out:
2871 return 0;
2872 }
2873
2874 static const struct file_operations tcp_afinfo_seq_fops = {
2875 .owner = THIS_MODULE,
2876 .open = tcp_seq_open,
2877 .read = seq_read,
2878 .llseek = seq_lseek,
2879 .release = seq_release_net
2880 };
2881
2882 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2883 .name = "tcp",
2884 .family = AF_INET,
2885 .seq_fops = &tcp_afinfo_seq_fops,
2886 .seq_ops = {
2887 .show = tcp4_seq_show,
2888 },
2889 };
2890
2891 static int __net_init tcp4_proc_init_net(struct net *net)
2892 {
2893 return tcp_proc_register(net, &tcp4_seq_afinfo);
2894 }
2895
2896 static void __net_exit tcp4_proc_exit_net(struct net *net)
2897 {
2898 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2899 }
2900
2901 static struct pernet_operations tcp4_net_ops = {
2902 .init = tcp4_proc_init_net,
2903 .exit = tcp4_proc_exit_net,
2904 };
2905
2906 int __init tcp4_proc_init(void)
2907 {
2908 return register_pernet_subsys(&tcp4_net_ops);
2909 }
2910
2911 void tcp4_proc_exit(void)
2912 {
2913 unregister_pernet_subsys(&tcp4_net_ops);
2914 }
2915 #endif /* CONFIG_PROC_FS */
2916
2917 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2918 {
2919 const struct iphdr *iph = skb_gro_network_header(skb);
2920 __wsum wsum;
2921 __sum16 sum;
2922
2923 switch (skb->ip_summed) {
2924 case CHECKSUM_COMPLETE:
2925 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2926 skb->csum)) {
2927 skb->ip_summed = CHECKSUM_UNNECESSARY;
2928 break;
2929 }
2930 flush:
2931 NAPI_GRO_CB(skb)->flush = 1;
2932 return NULL;
2933
2934 case CHECKSUM_NONE:
2935 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2936 skb_gro_len(skb), IPPROTO_TCP, 0);
2937 sum = csum_fold(skb_checksum(skb,
2938 skb_gro_offset(skb),
2939 skb_gro_len(skb),
2940 wsum));
2941 if (sum)
2942 goto flush;
2943
2944 skb->ip_summed = CHECKSUM_UNNECESSARY;
2945 break;
2946 }
2947
2948 return tcp_gro_receive(head, skb);
2949 }
2950
2951 int tcp4_gro_complete(struct sk_buff *skb)
2952 {
2953 const struct iphdr *iph = ip_hdr(skb);
2954 struct tcphdr *th = tcp_hdr(skb);
2955
2956 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2957 iph->saddr, iph->daddr, 0);
2958 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2959
2960 return tcp_gro_complete(skb);
2961 }
2962
2963 struct proto tcp_prot = {
2964 .name = "TCP",
2965 .owner = THIS_MODULE,
2966 .close = tcp_close,
2967 .connect = tcp_v4_connect,
2968 .disconnect = tcp_disconnect,
2969 .accept = inet_csk_accept,
2970 .ioctl = tcp_ioctl,
2971 .init = tcp_v4_init_sock,
2972 .destroy = tcp_v4_destroy_sock,
2973 .shutdown = tcp_shutdown,
2974 .setsockopt = tcp_setsockopt,
2975 .getsockopt = tcp_getsockopt,
2976 .recvmsg = tcp_recvmsg,
2977 .sendmsg = tcp_sendmsg,
2978 .sendpage = tcp_sendpage,
2979 .backlog_rcv = tcp_v4_do_rcv,
2980 .release_cb = tcp_release_cb,
2981 .mtu_reduced = tcp_v4_mtu_reduced,
2982 .hash = inet_hash,
2983 .unhash = inet_unhash,
2984 .get_port = inet_csk_get_port,
2985 .enter_memory_pressure = tcp_enter_memory_pressure,
2986 .sockets_allocated = &tcp_sockets_allocated,
2987 .orphan_count = &tcp_orphan_count,
2988 .memory_allocated = &tcp_memory_allocated,
2989 .memory_pressure = &tcp_memory_pressure,
2990 .sysctl_wmem = sysctl_tcp_wmem,
2991 .sysctl_rmem = sysctl_tcp_rmem,
2992 .max_header = MAX_TCP_HEADER,
2993 .obj_size = sizeof(struct tcp_sock),
2994 .slab_flags = SLAB_DESTROY_BY_RCU,
2995 .twsk_prot = &tcp_timewait_sock_ops,
2996 .rsk_prot = &tcp_request_sock_ops,
2997 .h.hashinfo = &tcp_hashinfo,
2998 .no_autobind = true,
2999 #ifdef CONFIG_COMPAT
3000 .compat_setsockopt = compat_tcp_setsockopt,
3001 .compat_getsockopt = compat_tcp_getsockopt,
3002 #endif
3003 #ifdef CONFIG_MEMCG_KMEM
3004 .init_cgroup = tcp_init_cgroup,
3005 .destroy_cgroup = tcp_destroy_cgroup,
3006 .proto_cgroup = tcp_proto_cgroup,
3007 #endif
3008 };
3009 EXPORT_SYMBOL(tcp_prot);
3010
3011 static int __net_init tcp_sk_init(struct net *net)
3012 {
3013 net->ipv4.sysctl_tcp_ecn = 2;
3014 return 0;
3015 }
3016
3017 static void __net_exit tcp_sk_exit(struct net *net)
3018 {
3019 }
3020
3021 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3022 {
3023 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
3024 }
3025
3026 static struct pernet_operations __net_initdata tcp_sk_ops = {
3027 .init = tcp_sk_init,
3028 .exit = tcp_sk_exit,
3029 .exit_batch = tcp_sk_exit_batch,
3030 };
3031
3032 void __init tcp_v4_init(void)
3033 {
3034 inet_hashinfo_init(&tcp_hashinfo);
3035 if (register_pernet_subsys(&tcp_sk_ops))
3036 panic("Failed to create the TCP control socket.\n");
3037 }