net: Abstract default ADVMSS behind an accessor.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
84
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
87 EXPORT_SYMBOL(sysctl_tcp_low_latency);
88
89
90 #ifdef CONFIG_TCP_MD5SIG
91 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
92 __be32 addr);
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
94 __be32 daddr, __be32 saddr, struct tcphdr *th);
95 #else
96 static inline
97 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
98 {
99 return NULL;
100 }
101 #endif
102
103 struct inet_hashinfo tcp_hashinfo;
104 EXPORT_SYMBOL(tcp_hashinfo);
105
106 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
107 {
108 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
109 ip_hdr(skb)->saddr,
110 tcp_hdr(skb)->dest,
111 tcp_hdr(skb)->source);
112 }
113
114 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
115 {
116 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
117 struct tcp_sock *tp = tcp_sk(sk);
118
119 /* With PAWS, it is safe from the viewpoint
120 of data integrity. Even without PAWS it is safe provided sequence
121 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
122
123 Actually, the idea is close to VJ's one, only timestamp cache is
124 held not per host, but per port pair and TW bucket is used as state
125 holder.
126
127 If TW bucket has been already destroyed we fall back to VJ's scheme
128 and use initial timestamp retrieved from peer table.
129 */
130 if (tcptw->tw_ts_recent_stamp &&
131 (twp == NULL || (sysctl_tcp_tw_reuse &&
132 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
133 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
134 if (tp->write_seq == 0)
135 tp->write_seq = 1;
136 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
137 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
138 sock_hold(sktw);
139 return 1;
140 }
141
142 return 0;
143 }
144 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
145
146 /* This will initiate an outgoing connection. */
147 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
148 {
149 struct inet_sock *inet = inet_sk(sk);
150 struct tcp_sock *tp = tcp_sk(sk);
151 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
152 struct rtable *rt;
153 __be32 daddr, nexthop;
154 int tmp;
155 int err;
156
157 if (addr_len < sizeof(struct sockaddr_in))
158 return -EINVAL;
159
160 if (usin->sin_family != AF_INET)
161 return -EAFNOSUPPORT;
162
163 nexthop = daddr = usin->sin_addr.s_addr;
164 if (inet->opt && inet->opt->srr) {
165 if (!daddr)
166 return -EINVAL;
167 nexthop = inet->opt->faddr;
168 }
169
170 tmp = ip_route_connect(&rt, nexthop, inet->inet_saddr,
171 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
172 IPPROTO_TCP,
173 inet->inet_sport, usin->sin_port, sk, 1);
174 if (tmp < 0) {
175 if (tmp == -ENETUNREACH)
176 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
177 return tmp;
178 }
179
180 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
181 ip_rt_put(rt);
182 return -ENETUNREACH;
183 }
184
185 if (!inet->opt || !inet->opt->srr)
186 daddr = rt->rt_dst;
187
188 if (!inet->inet_saddr)
189 inet->inet_saddr = rt->rt_src;
190 inet->inet_rcv_saddr = inet->inet_saddr;
191
192 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
193 /* Reset inherited state */
194 tp->rx_opt.ts_recent = 0;
195 tp->rx_opt.ts_recent_stamp = 0;
196 tp->write_seq = 0;
197 }
198
199 if (tcp_death_row.sysctl_tw_recycle &&
200 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
201 struct inet_peer *peer = rt_get_peer(rt);
202 /*
203 * VJ's idea. We save last timestamp seen from
204 * the destination in peer table, when entering state
205 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
206 * when trying new connection.
207 */
208 if (peer) {
209 inet_peer_refcheck(peer);
210 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
211 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
212 tp->rx_opt.ts_recent = peer->tcp_ts;
213 }
214 }
215 }
216
217 inet->inet_dport = usin->sin_port;
218 inet->inet_daddr = daddr;
219
220 inet_csk(sk)->icsk_ext_hdr_len = 0;
221 if (inet->opt)
222 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
223
224 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
225
226 /* Socket identity is still unknown (sport may be zero).
227 * However we set state to SYN-SENT and not releasing socket
228 * lock select source port, enter ourselves into the hash tables and
229 * complete initialization after this.
230 */
231 tcp_set_state(sk, TCP_SYN_SENT);
232 err = inet_hash_connect(&tcp_death_row, sk);
233 if (err)
234 goto failure;
235
236 err = ip_route_newports(&rt, IPPROTO_TCP,
237 inet->inet_sport, inet->inet_dport, sk);
238 if (err)
239 goto failure;
240
241 /* OK, now commit destination to socket. */
242 sk->sk_gso_type = SKB_GSO_TCPV4;
243 sk_setup_caps(sk, &rt->dst);
244
245 if (!tp->write_seq)
246 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
247 inet->inet_daddr,
248 inet->inet_sport,
249 usin->sin_port);
250
251 inet->inet_id = tp->write_seq ^ jiffies;
252
253 err = tcp_connect(sk);
254 rt = NULL;
255 if (err)
256 goto failure;
257
258 return 0;
259
260 failure:
261 /*
262 * This unhashes the socket and releases the local port,
263 * if necessary.
264 */
265 tcp_set_state(sk, TCP_CLOSE);
266 ip_rt_put(rt);
267 sk->sk_route_caps = 0;
268 inet->inet_dport = 0;
269 return err;
270 }
271 EXPORT_SYMBOL(tcp_v4_connect);
272
273 /*
274 * This routine does path mtu discovery as defined in RFC1191.
275 */
276 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
277 {
278 struct dst_entry *dst;
279 struct inet_sock *inet = inet_sk(sk);
280
281 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
282 * send out by Linux are always <576bytes so they should go through
283 * unfragmented).
284 */
285 if (sk->sk_state == TCP_LISTEN)
286 return;
287
288 /* We don't check in the destentry if pmtu discovery is forbidden
289 * on this route. We just assume that no packet_to_big packets
290 * are send back when pmtu discovery is not active.
291 * There is a small race when the user changes this flag in the
292 * route, but I think that's acceptable.
293 */
294 if ((dst = __sk_dst_check(sk, 0)) == NULL)
295 return;
296
297 dst->ops->update_pmtu(dst, mtu);
298
299 /* Something is about to be wrong... Remember soft error
300 * for the case, if this connection will not able to recover.
301 */
302 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
303 sk->sk_err_soft = EMSGSIZE;
304
305 mtu = dst_mtu(dst);
306
307 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
308 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
309 tcp_sync_mss(sk, mtu);
310
311 /* Resend the TCP packet because it's
312 * clear that the old packet has been
313 * dropped. This is the new "fast" path mtu
314 * discovery.
315 */
316 tcp_simple_retransmit(sk);
317 } /* else let the usual retransmit timer handle it */
318 }
319
320 /*
321 * This routine is called by the ICMP module when it gets some
322 * sort of error condition. If err < 0 then the socket should
323 * be closed and the error returned to the user. If err > 0
324 * it's just the icmp type << 8 | icmp code. After adjustment
325 * header points to the first 8 bytes of the tcp header. We need
326 * to find the appropriate port.
327 *
328 * The locking strategy used here is very "optimistic". When
329 * someone else accesses the socket the ICMP is just dropped
330 * and for some paths there is no check at all.
331 * A more general error queue to queue errors for later handling
332 * is probably better.
333 *
334 */
335
336 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
337 {
338 struct iphdr *iph = (struct iphdr *)icmp_skb->data;
339 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
340 struct inet_connection_sock *icsk;
341 struct tcp_sock *tp;
342 struct inet_sock *inet;
343 const int type = icmp_hdr(icmp_skb)->type;
344 const int code = icmp_hdr(icmp_skb)->code;
345 struct sock *sk;
346 struct sk_buff *skb;
347 __u32 seq;
348 __u32 remaining;
349 int err;
350 struct net *net = dev_net(icmp_skb->dev);
351
352 if (icmp_skb->len < (iph->ihl << 2) + 8) {
353 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
354 return;
355 }
356
357 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
358 iph->saddr, th->source, inet_iif(icmp_skb));
359 if (!sk) {
360 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
361 return;
362 }
363 if (sk->sk_state == TCP_TIME_WAIT) {
364 inet_twsk_put(inet_twsk(sk));
365 return;
366 }
367
368 bh_lock_sock(sk);
369 /* If too many ICMPs get dropped on busy
370 * servers this needs to be solved differently.
371 */
372 if (sock_owned_by_user(sk))
373 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
374
375 if (sk->sk_state == TCP_CLOSE)
376 goto out;
377
378 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
379 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
380 goto out;
381 }
382
383 icsk = inet_csk(sk);
384 tp = tcp_sk(sk);
385 seq = ntohl(th->seq);
386 if (sk->sk_state != TCP_LISTEN &&
387 !between(seq, tp->snd_una, tp->snd_nxt)) {
388 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
389 goto out;
390 }
391
392 switch (type) {
393 case ICMP_SOURCE_QUENCH:
394 /* Just silently ignore these. */
395 goto out;
396 case ICMP_PARAMETERPROB:
397 err = EPROTO;
398 break;
399 case ICMP_DEST_UNREACH:
400 if (code > NR_ICMP_UNREACH)
401 goto out;
402
403 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
404 if (!sock_owned_by_user(sk))
405 do_pmtu_discovery(sk, iph, info);
406 goto out;
407 }
408
409 err = icmp_err_convert[code].errno;
410 /* check if icmp_skb allows revert of backoff
411 * (see draft-zimmermann-tcp-lcd) */
412 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
413 break;
414 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
415 !icsk->icsk_backoff)
416 break;
417
418 if (sock_owned_by_user(sk))
419 break;
420
421 icsk->icsk_backoff--;
422 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
423 icsk->icsk_backoff;
424 tcp_bound_rto(sk);
425
426 skb = tcp_write_queue_head(sk);
427 BUG_ON(!skb);
428
429 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
430 tcp_time_stamp - TCP_SKB_CB(skb)->when);
431
432 if (remaining) {
433 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
434 remaining, TCP_RTO_MAX);
435 } else {
436 /* RTO revert clocked out retransmission.
437 * Will retransmit now */
438 tcp_retransmit_timer(sk);
439 }
440
441 break;
442 case ICMP_TIME_EXCEEDED:
443 err = EHOSTUNREACH;
444 break;
445 default:
446 goto out;
447 }
448
449 switch (sk->sk_state) {
450 struct request_sock *req, **prev;
451 case TCP_LISTEN:
452 if (sock_owned_by_user(sk))
453 goto out;
454
455 req = inet_csk_search_req(sk, &prev, th->dest,
456 iph->daddr, iph->saddr);
457 if (!req)
458 goto out;
459
460 /* ICMPs are not backlogged, hence we cannot get
461 an established socket here.
462 */
463 WARN_ON(req->sk);
464
465 if (seq != tcp_rsk(req)->snt_isn) {
466 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
467 goto out;
468 }
469
470 /*
471 * Still in SYN_RECV, just remove it silently.
472 * There is no good way to pass the error to the newly
473 * created socket, and POSIX does not want network
474 * errors returned from accept().
475 */
476 inet_csk_reqsk_queue_drop(sk, req, prev);
477 goto out;
478
479 case TCP_SYN_SENT:
480 case TCP_SYN_RECV: /* Cannot happen.
481 It can f.e. if SYNs crossed.
482 */
483 if (!sock_owned_by_user(sk)) {
484 sk->sk_err = err;
485
486 sk->sk_error_report(sk);
487
488 tcp_done(sk);
489 } else {
490 sk->sk_err_soft = err;
491 }
492 goto out;
493 }
494
495 /* If we've already connected we will keep trying
496 * until we time out, or the user gives up.
497 *
498 * rfc1122 4.2.3.9 allows to consider as hard errors
499 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
500 * but it is obsoleted by pmtu discovery).
501 *
502 * Note, that in modern internet, where routing is unreliable
503 * and in each dark corner broken firewalls sit, sending random
504 * errors ordered by their masters even this two messages finally lose
505 * their original sense (even Linux sends invalid PORT_UNREACHs)
506 *
507 * Now we are in compliance with RFCs.
508 * --ANK (980905)
509 */
510
511 inet = inet_sk(sk);
512 if (!sock_owned_by_user(sk) && inet->recverr) {
513 sk->sk_err = err;
514 sk->sk_error_report(sk);
515 } else { /* Only an error on timeout */
516 sk->sk_err_soft = err;
517 }
518
519 out:
520 bh_unlock_sock(sk);
521 sock_put(sk);
522 }
523
524 static void __tcp_v4_send_check(struct sk_buff *skb,
525 __be32 saddr, __be32 daddr)
526 {
527 struct tcphdr *th = tcp_hdr(skb);
528
529 if (skb->ip_summed == CHECKSUM_PARTIAL) {
530 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
531 skb->csum_start = skb_transport_header(skb) - skb->head;
532 skb->csum_offset = offsetof(struct tcphdr, check);
533 } else {
534 th->check = tcp_v4_check(skb->len, saddr, daddr,
535 csum_partial(th,
536 th->doff << 2,
537 skb->csum));
538 }
539 }
540
541 /* This routine computes an IPv4 TCP checksum. */
542 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
543 {
544 struct inet_sock *inet = inet_sk(sk);
545
546 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
547 }
548 EXPORT_SYMBOL(tcp_v4_send_check);
549
550 int tcp_v4_gso_send_check(struct sk_buff *skb)
551 {
552 const struct iphdr *iph;
553 struct tcphdr *th;
554
555 if (!pskb_may_pull(skb, sizeof(*th)))
556 return -EINVAL;
557
558 iph = ip_hdr(skb);
559 th = tcp_hdr(skb);
560
561 th->check = 0;
562 skb->ip_summed = CHECKSUM_PARTIAL;
563 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
564 return 0;
565 }
566
567 /*
568 * This routine will send an RST to the other tcp.
569 *
570 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
571 * for reset.
572 * Answer: if a packet caused RST, it is not for a socket
573 * existing in our system, if it is matched to a socket,
574 * it is just duplicate segment or bug in other side's TCP.
575 * So that we build reply only basing on parameters
576 * arrived with segment.
577 * Exception: precedence violation. We do not implement it in any case.
578 */
579
580 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
581 {
582 struct tcphdr *th = tcp_hdr(skb);
583 struct {
584 struct tcphdr th;
585 #ifdef CONFIG_TCP_MD5SIG
586 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
587 #endif
588 } rep;
589 struct ip_reply_arg arg;
590 #ifdef CONFIG_TCP_MD5SIG
591 struct tcp_md5sig_key *key;
592 #endif
593 struct net *net;
594
595 /* Never send a reset in response to a reset. */
596 if (th->rst)
597 return;
598
599 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
600 return;
601
602 /* Swap the send and the receive. */
603 memset(&rep, 0, sizeof(rep));
604 rep.th.dest = th->source;
605 rep.th.source = th->dest;
606 rep.th.doff = sizeof(struct tcphdr) / 4;
607 rep.th.rst = 1;
608
609 if (th->ack) {
610 rep.th.seq = th->ack_seq;
611 } else {
612 rep.th.ack = 1;
613 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
614 skb->len - (th->doff << 2));
615 }
616
617 memset(&arg, 0, sizeof(arg));
618 arg.iov[0].iov_base = (unsigned char *)&rep;
619 arg.iov[0].iov_len = sizeof(rep.th);
620
621 #ifdef CONFIG_TCP_MD5SIG
622 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
623 if (key) {
624 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
625 (TCPOPT_NOP << 16) |
626 (TCPOPT_MD5SIG << 8) |
627 TCPOLEN_MD5SIG);
628 /* Update length and the length the header thinks exists */
629 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
630 rep.th.doff = arg.iov[0].iov_len / 4;
631
632 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
633 key, ip_hdr(skb)->saddr,
634 ip_hdr(skb)->daddr, &rep.th);
635 }
636 #endif
637 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
638 ip_hdr(skb)->saddr, /* XXX */
639 arg.iov[0].iov_len, IPPROTO_TCP, 0);
640 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
641 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
642
643 net = dev_net(skb_dst(skb)->dev);
644 ip_send_reply(net->ipv4.tcp_sock, skb,
645 &arg, arg.iov[0].iov_len);
646
647 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
648 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
649 }
650
651 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
652 outside socket context is ugly, certainly. What can I do?
653 */
654
655 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
656 u32 win, u32 ts, int oif,
657 struct tcp_md5sig_key *key,
658 int reply_flags)
659 {
660 struct tcphdr *th = tcp_hdr(skb);
661 struct {
662 struct tcphdr th;
663 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
664 #ifdef CONFIG_TCP_MD5SIG
665 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
666 #endif
667 ];
668 } rep;
669 struct ip_reply_arg arg;
670 struct net *net = dev_net(skb_dst(skb)->dev);
671
672 memset(&rep.th, 0, sizeof(struct tcphdr));
673 memset(&arg, 0, sizeof(arg));
674
675 arg.iov[0].iov_base = (unsigned char *)&rep;
676 arg.iov[0].iov_len = sizeof(rep.th);
677 if (ts) {
678 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
679 (TCPOPT_TIMESTAMP << 8) |
680 TCPOLEN_TIMESTAMP);
681 rep.opt[1] = htonl(tcp_time_stamp);
682 rep.opt[2] = htonl(ts);
683 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
684 }
685
686 /* Swap the send and the receive. */
687 rep.th.dest = th->source;
688 rep.th.source = th->dest;
689 rep.th.doff = arg.iov[0].iov_len / 4;
690 rep.th.seq = htonl(seq);
691 rep.th.ack_seq = htonl(ack);
692 rep.th.ack = 1;
693 rep.th.window = htons(win);
694
695 #ifdef CONFIG_TCP_MD5SIG
696 if (key) {
697 int offset = (ts) ? 3 : 0;
698
699 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
700 (TCPOPT_NOP << 16) |
701 (TCPOPT_MD5SIG << 8) |
702 TCPOLEN_MD5SIG);
703 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
704 rep.th.doff = arg.iov[0].iov_len/4;
705
706 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
707 key, ip_hdr(skb)->saddr,
708 ip_hdr(skb)->daddr, &rep.th);
709 }
710 #endif
711 arg.flags = reply_flags;
712 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
713 ip_hdr(skb)->saddr, /* XXX */
714 arg.iov[0].iov_len, IPPROTO_TCP, 0);
715 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
716 if (oif)
717 arg.bound_dev_if = oif;
718
719 ip_send_reply(net->ipv4.tcp_sock, skb,
720 &arg, arg.iov[0].iov_len);
721
722 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
723 }
724
725 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
726 {
727 struct inet_timewait_sock *tw = inet_twsk(sk);
728 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
729
730 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
731 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
732 tcptw->tw_ts_recent,
733 tw->tw_bound_dev_if,
734 tcp_twsk_md5_key(tcptw),
735 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
736 );
737
738 inet_twsk_put(tw);
739 }
740
741 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
742 struct request_sock *req)
743 {
744 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
745 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
746 req->ts_recent,
747 0,
748 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
749 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
750 }
751
752 /*
753 * Send a SYN-ACK after having received a SYN.
754 * This still operates on a request_sock only, not on a big
755 * socket.
756 */
757 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
758 struct request_sock *req,
759 struct request_values *rvp)
760 {
761 const struct inet_request_sock *ireq = inet_rsk(req);
762 int err = -1;
763 struct sk_buff * skb;
764
765 /* First, grab a route. */
766 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
767 return -1;
768
769 skb = tcp_make_synack(sk, dst, req, rvp);
770
771 if (skb) {
772 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
773
774 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
775 ireq->rmt_addr,
776 ireq->opt);
777 err = net_xmit_eval(err);
778 }
779
780 dst_release(dst);
781 return err;
782 }
783
784 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
785 struct request_values *rvp)
786 {
787 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
788 return tcp_v4_send_synack(sk, NULL, req, rvp);
789 }
790
791 /*
792 * IPv4 request_sock destructor.
793 */
794 static void tcp_v4_reqsk_destructor(struct request_sock *req)
795 {
796 kfree(inet_rsk(req)->opt);
797 }
798
799 static void syn_flood_warning(const struct sk_buff *skb)
800 {
801 const char *msg;
802
803 #ifdef CONFIG_SYN_COOKIES
804 if (sysctl_tcp_syncookies)
805 msg = "Sending cookies";
806 else
807 #endif
808 msg = "Dropping request";
809
810 pr_info("TCP: Possible SYN flooding on port %d. %s.\n",
811 ntohs(tcp_hdr(skb)->dest), msg);
812 }
813
814 /*
815 * Save and compile IPv4 options into the request_sock if needed.
816 */
817 static struct ip_options *tcp_v4_save_options(struct sock *sk,
818 struct sk_buff *skb)
819 {
820 struct ip_options *opt = &(IPCB(skb)->opt);
821 struct ip_options *dopt = NULL;
822
823 if (opt && opt->optlen) {
824 int opt_size = optlength(opt);
825 dopt = kmalloc(opt_size, GFP_ATOMIC);
826 if (dopt) {
827 if (ip_options_echo(dopt, skb)) {
828 kfree(dopt);
829 dopt = NULL;
830 }
831 }
832 }
833 return dopt;
834 }
835
836 #ifdef CONFIG_TCP_MD5SIG
837 /*
838 * RFC2385 MD5 checksumming requires a mapping of
839 * IP address->MD5 Key.
840 * We need to maintain these in the sk structure.
841 */
842
843 /* Find the Key structure for an address. */
844 static struct tcp_md5sig_key *
845 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
846 {
847 struct tcp_sock *tp = tcp_sk(sk);
848 int i;
849
850 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
851 return NULL;
852 for (i = 0; i < tp->md5sig_info->entries4; i++) {
853 if (tp->md5sig_info->keys4[i].addr == addr)
854 return &tp->md5sig_info->keys4[i].base;
855 }
856 return NULL;
857 }
858
859 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
860 struct sock *addr_sk)
861 {
862 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
863 }
864 EXPORT_SYMBOL(tcp_v4_md5_lookup);
865
866 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
867 struct request_sock *req)
868 {
869 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
870 }
871
872 /* This can be called on a newly created socket, from other files */
873 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
874 u8 *newkey, u8 newkeylen)
875 {
876 /* Add Key to the list */
877 struct tcp_md5sig_key *key;
878 struct tcp_sock *tp = tcp_sk(sk);
879 struct tcp4_md5sig_key *keys;
880
881 key = tcp_v4_md5_do_lookup(sk, addr);
882 if (key) {
883 /* Pre-existing entry - just update that one. */
884 kfree(key->key);
885 key->key = newkey;
886 key->keylen = newkeylen;
887 } else {
888 struct tcp_md5sig_info *md5sig;
889
890 if (!tp->md5sig_info) {
891 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
892 GFP_ATOMIC);
893 if (!tp->md5sig_info) {
894 kfree(newkey);
895 return -ENOMEM;
896 }
897 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
898 }
899 if (tcp_alloc_md5sig_pool(sk) == NULL) {
900 kfree(newkey);
901 return -ENOMEM;
902 }
903 md5sig = tp->md5sig_info;
904
905 if (md5sig->alloced4 == md5sig->entries4) {
906 keys = kmalloc((sizeof(*keys) *
907 (md5sig->entries4 + 1)), GFP_ATOMIC);
908 if (!keys) {
909 kfree(newkey);
910 tcp_free_md5sig_pool();
911 return -ENOMEM;
912 }
913
914 if (md5sig->entries4)
915 memcpy(keys, md5sig->keys4,
916 sizeof(*keys) * md5sig->entries4);
917
918 /* Free old key list, and reference new one */
919 kfree(md5sig->keys4);
920 md5sig->keys4 = keys;
921 md5sig->alloced4++;
922 }
923 md5sig->entries4++;
924 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
925 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
926 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
927 }
928 return 0;
929 }
930 EXPORT_SYMBOL(tcp_v4_md5_do_add);
931
932 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
933 u8 *newkey, u8 newkeylen)
934 {
935 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
936 newkey, newkeylen);
937 }
938
939 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
940 {
941 struct tcp_sock *tp = tcp_sk(sk);
942 int i;
943
944 for (i = 0; i < tp->md5sig_info->entries4; i++) {
945 if (tp->md5sig_info->keys4[i].addr == addr) {
946 /* Free the key */
947 kfree(tp->md5sig_info->keys4[i].base.key);
948 tp->md5sig_info->entries4--;
949
950 if (tp->md5sig_info->entries4 == 0) {
951 kfree(tp->md5sig_info->keys4);
952 tp->md5sig_info->keys4 = NULL;
953 tp->md5sig_info->alloced4 = 0;
954 } else if (tp->md5sig_info->entries4 != i) {
955 /* Need to do some manipulation */
956 memmove(&tp->md5sig_info->keys4[i],
957 &tp->md5sig_info->keys4[i+1],
958 (tp->md5sig_info->entries4 - i) *
959 sizeof(struct tcp4_md5sig_key));
960 }
961 tcp_free_md5sig_pool();
962 return 0;
963 }
964 }
965 return -ENOENT;
966 }
967 EXPORT_SYMBOL(tcp_v4_md5_do_del);
968
969 static void tcp_v4_clear_md5_list(struct sock *sk)
970 {
971 struct tcp_sock *tp = tcp_sk(sk);
972
973 /* Free each key, then the set of key keys,
974 * the crypto element, and then decrement our
975 * hold on the last resort crypto.
976 */
977 if (tp->md5sig_info->entries4) {
978 int i;
979 for (i = 0; i < tp->md5sig_info->entries4; i++)
980 kfree(tp->md5sig_info->keys4[i].base.key);
981 tp->md5sig_info->entries4 = 0;
982 tcp_free_md5sig_pool();
983 }
984 if (tp->md5sig_info->keys4) {
985 kfree(tp->md5sig_info->keys4);
986 tp->md5sig_info->keys4 = NULL;
987 tp->md5sig_info->alloced4 = 0;
988 }
989 }
990
991 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
992 int optlen)
993 {
994 struct tcp_md5sig cmd;
995 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
996 u8 *newkey;
997
998 if (optlen < sizeof(cmd))
999 return -EINVAL;
1000
1001 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1002 return -EFAULT;
1003
1004 if (sin->sin_family != AF_INET)
1005 return -EINVAL;
1006
1007 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1008 if (!tcp_sk(sk)->md5sig_info)
1009 return -ENOENT;
1010 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1011 }
1012
1013 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1014 return -EINVAL;
1015
1016 if (!tcp_sk(sk)->md5sig_info) {
1017 struct tcp_sock *tp = tcp_sk(sk);
1018 struct tcp_md5sig_info *p;
1019
1020 p = kzalloc(sizeof(*p), sk->sk_allocation);
1021 if (!p)
1022 return -EINVAL;
1023
1024 tp->md5sig_info = p;
1025 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1026 }
1027
1028 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1029 if (!newkey)
1030 return -ENOMEM;
1031 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1032 newkey, cmd.tcpm_keylen);
1033 }
1034
1035 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1036 __be32 daddr, __be32 saddr, int nbytes)
1037 {
1038 struct tcp4_pseudohdr *bp;
1039 struct scatterlist sg;
1040
1041 bp = &hp->md5_blk.ip4;
1042
1043 /*
1044 * 1. the TCP pseudo-header (in the order: source IP address,
1045 * destination IP address, zero-padded protocol number, and
1046 * segment length)
1047 */
1048 bp->saddr = saddr;
1049 bp->daddr = daddr;
1050 bp->pad = 0;
1051 bp->protocol = IPPROTO_TCP;
1052 bp->len = cpu_to_be16(nbytes);
1053
1054 sg_init_one(&sg, bp, sizeof(*bp));
1055 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1056 }
1057
1058 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1059 __be32 daddr, __be32 saddr, struct tcphdr *th)
1060 {
1061 struct tcp_md5sig_pool *hp;
1062 struct hash_desc *desc;
1063
1064 hp = tcp_get_md5sig_pool();
1065 if (!hp)
1066 goto clear_hash_noput;
1067 desc = &hp->md5_desc;
1068
1069 if (crypto_hash_init(desc))
1070 goto clear_hash;
1071 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1072 goto clear_hash;
1073 if (tcp_md5_hash_header(hp, th))
1074 goto clear_hash;
1075 if (tcp_md5_hash_key(hp, key))
1076 goto clear_hash;
1077 if (crypto_hash_final(desc, md5_hash))
1078 goto clear_hash;
1079
1080 tcp_put_md5sig_pool();
1081 return 0;
1082
1083 clear_hash:
1084 tcp_put_md5sig_pool();
1085 clear_hash_noput:
1086 memset(md5_hash, 0, 16);
1087 return 1;
1088 }
1089
1090 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1091 struct sock *sk, struct request_sock *req,
1092 struct sk_buff *skb)
1093 {
1094 struct tcp_md5sig_pool *hp;
1095 struct hash_desc *desc;
1096 struct tcphdr *th = tcp_hdr(skb);
1097 __be32 saddr, daddr;
1098
1099 if (sk) {
1100 saddr = inet_sk(sk)->inet_saddr;
1101 daddr = inet_sk(sk)->inet_daddr;
1102 } else if (req) {
1103 saddr = inet_rsk(req)->loc_addr;
1104 daddr = inet_rsk(req)->rmt_addr;
1105 } else {
1106 const struct iphdr *iph = ip_hdr(skb);
1107 saddr = iph->saddr;
1108 daddr = iph->daddr;
1109 }
1110
1111 hp = tcp_get_md5sig_pool();
1112 if (!hp)
1113 goto clear_hash_noput;
1114 desc = &hp->md5_desc;
1115
1116 if (crypto_hash_init(desc))
1117 goto clear_hash;
1118
1119 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1120 goto clear_hash;
1121 if (tcp_md5_hash_header(hp, th))
1122 goto clear_hash;
1123 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1124 goto clear_hash;
1125 if (tcp_md5_hash_key(hp, key))
1126 goto clear_hash;
1127 if (crypto_hash_final(desc, md5_hash))
1128 goto clear_hash;
1129
1130 tcp_put_md5sig_pool();
1131 return 0;
1132
1133 clear_hash:
1134 tcp_put_md5sig_pool();
1135 clear_hash_noput:
1136 memset(md5_hash, 0, 16);
1137 return 1;
1138 }
1139 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1140
1141 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1142 {
1143 /*
1144 * This gets called for each TCP segment that arrives
1145 * so we want to be efficient.
1146 * We have 3 drop cases:
1147 * o No MD5 hash and one expected.
1148 * o MD5 hash and we're not expecting one.
1149 * o MD5 hash and its wrong.
1150 */
1151 __u8 *hash_location = NULL;
1152 struct tcp_md5sig_key *hash_expected;
1153 const struct iphdr *iph = ip_hdr(skb);
1154 struct tcphdr *th = tcp_hdr(skb);
1155 int genhash;
1156 unsigned char newhash[16];
1157
1158 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1159 hash_location = tcp_parse_md5sig_option(th);
1160
1161 /* We've parsed the options - do we have a hash? */
1162 if (!hash_expected && !hash_location)
1163 return 0;
1164
1165 if (hash_expected && !hash_location) {
1166 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1167 return 1;
1168 }
1169
1170 if (!hash_expected && hash_location) {
1171 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1172 return 1;
1173 }
1174
1175 /* Okay, so this is hash_expected and hash_location -
1176 * so we need to calculate the checksum.
1177 */
1178 genhash = tcp_v4_md5_hash_skb(newhash,
1179 hash_expected,
1180 NULL, NULL, skb);
1181
1182 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1183 if (net_ratelimit()) {
1184 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1185 &iph->saddr, ntohs(th->source),
1186 &iph->daddr, ntohs(th->dest),
1187 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1188 }
1189 return 1;
1190 }
1191 return 0;
1192 }
1193
1194 #endif
1195
1196 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1197 .family = PF_INET,
1198 .obj_size = sizeof(struct tcp_request_sock),
1199 .rtx_syn_ack = tcp_v4_rtx_synack,
1200 .send_ack = tcp_v4_reqsk_send_ack,
1201 .destructor = tcp_v4_reqsk_destructor,
1202 .send_reset = tcp_v4_send_reset,
1203 .syn_ack_timeout = tcp_syn_ack_timeout,
1204 };
1205
1206 #ifdef CONFIG_TCP_MD5SIG
1207 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1208 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1209 .calc_md5_hash = tcp_v4_md5_hash_skb,
1210 };
1211 #endif
1212
1213 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1214 {
1215 struct tcp_extend_values tmp_ext;
1216 struct tcp_options_received tmp_opt;
1217 u8 *hash_location;
1218 struct request_sock *req;
1219 struct inet_request_sock *ireq;
1220 struct tcp_sock *tp = tcp_sk(sk);
1221 struct dst_entry *dst = NULL;
1222 __be32 saddr = ip_hdr(skb)->saddr;
1223 __be32 daddr = ip_hdr(skb)->daddr;
1224 __u32 isn = TCP_SKB_CB(skb)->when;
1225 #ifdef CONFIG_SYN_COOKIES
1226 int want_cookie = 0;
1227 #else
1228 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1229 #endif
1230
1231 /* Never answer to SYNs send to broadcast or multicast */
1232 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1233 goto drop;
1234
1235 /* TW buckets are converted to open requests without
1236 * limitations, they conserve resources and peer is
1237 * evidently real one.
1238 */
1239 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1240 if (net_ratelimit())
1241 syn_flood_warning(skb);
1242 #ifdef CONFIG_SYN_COOKIES
1243 if (sysctl_tcp_syncookies) {
1244 want_cookie = 1;
1245 } else
1246 #endif
1247 goto drop;
1248 }
1249
1250 /* Accept backlog is full. If we have already queued enough
1251 * of warm entries in syn queue, drop request. It is better than
1252 * clogging syn queue with openreqs with exponentially increasing
1253 * timeout.
1254 */
1255 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1256 goto drop;
1257
1258 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1259 if (!req)
1260 goto drop;
1261
1262 #ifdef CONFIG_TCP_MD5SIG
1263 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1264 #endif
1265
1266 tcp_clear_options(&tmp_opt);
1267 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1268 tmp_opt.user_mss = tp->rx_opt.user_mss;
1269 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1270
1271 if (tmp_opt.cookie_plus > 0 &&
1272 tmp_opt.saw_tstamp &&
1273 !tp->rx_opt.cookie_out_never &&
1274 (sysctl_tcp_cookie_size > 0 ||
1275 (tp->cookie_values != NULL &&
1276 tp->cookie_values->cookie_desired > 0))) {
1277 u8 *c;
1278 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1279 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1280
1281 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1282 goto drop_and_release;
1283
1284 /* Secret recipe starts with IP addresses */
1285 *mess++ ^= (__force u32)daddr;
1286 *mess++ ^= (__force u32)saddr;
1287
1288 /* plus variable length Initiator Cookie */
1289 c = (u8 *)mess;
1290 while (l-- > 0)
1291 *c++ ^= *hash_location++;
1292
1293 #ifdef CONFIG_SYN_COOKIES
1294 want_cookie = 0; /* not our kind of cookie */
1295 #endif
1296 tmp_ext.cookie_out_never = 0; /* false */
1297 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1298 } else if (!tp->rx_opt.cookie_in_always) {
1299 /* redundant indications, but ensure initialization. */
1300 tmp_ext.cookie_out_never = 1; /* true */
1301 tmp_ext.cookie_plus = 0;
1302 } else {
1303 goto drop_and_release;
1304 }
1305 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1306
1307 if (want_cookie && !tmp_opt.saw_tstamp)
1308 tcp_clear_options(&tmp_opt);
1309
1310 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1311 tcp_openreq_init(req, &tmp_opt, skb);
1312
1313 ireq = inet_rsk(req);
1314 ireq->loc_addr = daddr;
1315 ireq->rmt_addr = saddr;
1316 ireq->no_srccheck = inet_sk(sk)->transparent;
1317 ireq->opt = tcp_v4_save_options(sk, skb);
1318
1319 if (security_inet_conn_request(sk, skb, req))
1320 goto drop_and_free;
1321
1322 if (!want_cookie || tmp_opt.tstamp_ok)
1323 TCP_ECN_create_request(req, tcp_hdr(skb));
1324
1325 if (want_cookie) {
1326 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1327 req->cookie_ts = tmp_opt.tstamp_ok;
1328 } else if (!isn) {
1329 struct inet_peer *peer = NULL;
1330
1331 /* VJ's idea. We save last timestamp seen
1332 * from the destination in peer table, when entering
1333 * state TIME-WAIT, and check against it before
1334 * accepting new connection request.
1335 *
1336 * If "isn" is not zero, this request hit alive
1337 * timewait bucket, so that all the necessary checks
1338 * are made in the function processing timewait state.
1339 */
1340 if (tmp_opt.saw_tstamp &&
1341 tcp_death_row.sysctl_tw_recycle &&
1342 (dst = inet_csk_route_req(sk, req)) != NULL &&
1343 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1344 peer->daddr.a4 == saddr) {
1345 inet_peer_refcheck(peer);
1346 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1347 (s32)(peer->tcp_ts - req->ts_recent) >
1348 TCP_PAWS_WINDOW) {
1349 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1350 goto drop_and_release;
1351 }
1352 }
1353 /* Kill the following clause, if you dislike this way. */
1354 else if (!sysctl_tcp_syncookies &&
1355 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1356 (sysctl_max_syn_backlog >> 2)) &&
1357 (!peer || !peer->tcp_ts_stamp) &&
1358 (!dst || !dst_metric(dst, RTAX_RTT))) {
1359 /* Without syncookies last quarter of
1360 * backlog is filled with destinations,
1361 * proven to be alive.
1362 * It means that we continue to communicate
1363 * to destinations, already remembered
1364 * to the moment of synflood.
1365 */
1366 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1367 &saddr, ntohs(tcp_hdr(skb)->source));
1368 goto drop_and_release;
1369 }
1370
1371 isn = tcp_v4_init_sequence(skb);
1372 }
1373 tcp_rsk(req)->snt_isn = isn;
1374
1375 if (tcp_v4_send_synack(sk, dst, req,
1376 (struct request_values *)&tmp_ext) ||
1377 want_cookie)
1378 goto drop_and_free;
1379
1380 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1381 return 0;
1382
1383 drop_and_release:
1384 dst_release(dst);
1385 drop_and_free:
1386 reqsk_free(req);
1387 drop:
1388 return 0;
1389 }
1390 EXPORT_SYMBOL(tcp_v4_conn_request);
1391
1392
1393 /*
1394 * The three way handshake has completed - we got a valid synack -
1395 * now create the new socket.
1396 */
1397 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1398 struct request_sock *req,
1399 struct dst_entry *dst)
1400 {
1401 struct inet_request_sock *ireq;
1402 struct inet_sock *newinet;
1403 struct tcp_sock *newtp;
1404 struct sock *newsk;
1405 #ifdef CONFIG_TCP_MD5SIG
1406 struct tcp_md5sig_key *key;
1407 #endif
1408
1409 if (sk_acceptq_is_full(sk))
1410 goto exit_overflow;
1411
1412 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1413 goto exit;
1414
1415 newsk = tcp_create_openreq_child(sk, req, skb);
1416 if (!newsk)
1417 goto exit_nonewsk;
1418
1419 newsk->sk_gso_type = SKB_GSO_TCPV4;
1420 sk_setup_caps(newsk, dst);
1421
1422 newtp = tcp_sk(newsk);
1423 newinet = inet_sk(newsk);
1424 ireq = inet_rsk(req);
1425 newinet->inet_daddr = ireq->rmt_addr;
1426 newinet->inet_rcv_saddr = ireq->loc_addr;
1427 newinet->inet_saddr = ireq->loc_addr;
1428 newinet->opt = ireq->opt;
1429 ireq->opt = NULL;
1430 newinet->mc_index = inet_iif(skb);
1431 newinet->mc_ttl = ip_hdr(skb)->ttl;
1432 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1433 if (newinet->opt)
1434 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1435 newinet->inet_id = newtp->write_seq ^ jiffies;
1436
1437 tcp_mtup_init(newsk);
1438 tcp_sync_mss(newsk, dst_mtu(dst));
1439 newtp->advmss = dst_metric_advmss(dst);
1440 if (tcp_sk(sk)->rx_opt.user_mss &&
1441 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1442 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1443
1444 tcp_initialize_rcv_mss(newsk);
1445
1446 #ifdef CONFIG_TCP_MD5SIG
1447 /* Copy over the MD5 key from the original socket */
1448 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1449 if (key != NULL) {
1450 /*
1451 * We're using one, so create a matching key
1452 * on the newsk structure. If we fail to get
1453 * memory, then we end up not copying the key
1454 * across. Shucks.
1455 */
1456 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1457 if (newkey != NULL)
1458 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1459 newkey, key->keylen);
1460 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1461 }
1462 #endif
1463
1464 if (__inet_inherit_port(sk, newsk) < 0) {
1465 sock_put(newsk);
1466 goto exit;
1467 }
1468 __inet_hash_nolisten(newsk, NULL);
1469
1470 return newsk;
1471
1472 exit_overflow:
1473 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1474 exit_nonewsk:
1475 dst_release(dst);
1476 exit:
1477 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1478 return NULL;
1479 }
1480 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1481
1482 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1483 {
1484 struct tcphdr *th = tcp_hdr(skb);
1485 const struct iphdr *iph = ip_hdr(skb);
1486 struct sock *nsk;
1487 struct request_sock **prev;
1488 /* Find possible connection requests. */
1489 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1490 iph->saddr, iph->daddr);
1491 if (req)
1492 return tcp_check_req(sk, skb, req, prev);
1493
1494 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1495 th->source, iph->daddr, th->dest, inet_iif(skb));
1496
1497 if (nsk) {
1498 if (nsk->sk_state != TCP_TIME_WAIT) {
1499 bh_lock_sock(nsk);
1500 return nsk;
1501 }
1502 inet_twsk_put(inet_twsk(nsk));
1503 return NULL;
1504 }
1505
1506 #ifdef CONFIG_SYN_COOKIES
1507 if (!th->syn)
1508 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1509 #endif
1510 return sk;
1511 }
1512
1513 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1514 {
1515 const struct iphdr *iph = ip_hdr(skb);
1516
1517 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1518 if (!tcp_v4_check(skb->len, iph->saddr,
1519 iph->daddr, skb->csum)) {
1520 skb->ip_summed = CHECKSUM_UNNECESSARY;
1521 return 0;
1522 }
1523 }
1524
1525 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1526 skb->len, IPPROTO_TCP, 0);
1527
1528 if (skb->len <= 76) {
1529 return __skb_checksum_complete(skb);
1530 }
1531 return 0;
1532 }
1533
1534
1535 /* The socket must have it's spinlock held when we get
1536 * here.
1537 *
1538 * We have a potential double-lock case here, so even when
1539 * doing backlog processing we use the BH locking scheme.
1540 * This is because we cannot sleep with the original spinlock
1541 * held.
1542 */
1543 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1544 {
1545 struct sock *rsk;
1546 #ifdef CONFIG_TCP_MD5SIG
1547 /*
1548 * We really want to reject the packet as early as possible
1549 * if:
1550 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1551 * o There is an MD5 option and we're not expecting one
1552 */
1553 if (tcp_v4_inbound_md5_hash(sk, skb))
1554 goto discard;
1555 #endif
1556
1557 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1558 sock_rps_save_rxhash(sk, skb->rxhash);
1559 TCP_CHECK_TIMER(sk);
1560 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1561 rsk = sk;
1562 goto reset;
1563 }
1564 TCP_CHECK_TIMER(sk);
1565 return 0;
1566 }
1567
1568 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1569 goto csum_err;
1570
1571 if (sk->sk_state == TCP_LISTEN) {
1572 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1573 if (!nsk)
1574 goto discard;
1575
1576 if (nsk != sk) {
1577 if (tcp_child_process(sk, nsk, skb)) {
1578 rsk = nsk;
1579 goto reset;
1580 }
1581 return 0;
1582 }
1583 } else
1584 sock_rps_save_rxhash(sk, skb->rxhash);
1585
1586
1587 TCP_CHECK_TIMER(sk);
1588 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1589 rsk = sk;
1590 goto reset;
1591 }
1592 TCP_CHECK_TIMER(sk);
1593 return 0;
1594
1595 reset:
1596 tcp_v4_send_reset(rsk, skb);
1597 discard:
1598 kfree_skb(skb);
1599 /* Be careful here. If this function gets more complicated and
1600 * gcc suffers from register pressure on the x86, sk (in %ebx)
1601 * might be destroyed here. This current version compiles correctly,
1602 * but you have been warned.
1603 */
1604 return 0;
1605
1606 csum_err:
1607 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1608 goto discard;
1609 }
1610 EXPORT_SYMBOL(tcp_v4_do_rcv);
1611
1612 /*
1613 * From tcp_input.c
1614 */
1615
1616 int tcp_v4_rcv(struct sk_buff *skb)
1617 {
1618 const struct iphdr *iph;
1619 struct tcphdr *th;
1620 struct sock *sk;
1621 int ret;
1622 struct net *net = dev_net(skb->dev);
1623
1624 if (skb->pkt_type != PACKET_HOST)
1625 goto discard_it;
1626
1627 /* Count it even if it's bad */
1628 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1629
1630 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1631 goto discard_it;
1632
1633 th = tcp_hdr(skb);
1634
1635 if (th->doff < sizeof(struct tcphdr) / 4)
1636 goto bad_packet;
1637 if (!pskb_may_pull(skb, th->doff * 4))
1638 goto discard_it;
1639
1640 /* An explanation is required here, I think.
1641 * Packet length and doff are validated by header prediction,
1642 * provided case of th->doff==0 is eliminated.
1643 * So, we defer the checks. */
1644 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1645 goto bad_packet;
1646
1647 th = tcp_hdr(skb);
1648 iph = ip_hdr(skb);
1649 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1650 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1651 skb->len - th->doff * 4);
1652 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1653 TCP_SKB_CB(skb)->when = 0;
1654 TCP_SKB_CB(skb)->flags = iph->tos;
1655 TCP_SKB_CB(skb)->sacked = 0;
1656
1657 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1658 if (!sk)
1659 goto no_tcp_socket;
1660
1661 process:
1662 if (sk->sk_state == TCP_TIME_WAIT)
1663 goto do_time_wait;
1664
1665 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1666 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1667 goto discard_and_relse;
1668 }
1669
1670 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1671 goto discard_and_relse;
1672 nf_reset(skb);
1673
1674 if (sk_filter(sk, skb))
1675 goto discard_and_relse;
1676
1677 skb->dev = NULL;
1678
1679 bh_lock_sock_nested(sk);
1680 ret = 0;
1681 if (!sock_owned_by_user(sk)) {
1682 #ifdef CONFIG_NET_DMA
1683 struct tcp_sock *tp = tcp_sk(sk);
1684 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1685 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1686 if (tp->ucopy.dma_chan)
1687 ret = tcp_v4_do_rcv(sk, skb);
1688 else
1689 #endif
1690 {
1691 if (!tcp_prequeue(sk, skb))
1692 ret = tcp_v4_do_rcv(sk, skb);
1693 }
1694 } else if (unlikely(sk_add_backlog(sk, skb))) {
1695 bh_unlock_sock(sk);
1696 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1697 goto discard_and_relse;
1698 }
1699 bh_unlock_sock(sk);
1700
1701 sock_put(sk);
1702
1703 return ret;
1704
1705 no_tcp_socket:
1706 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1707 goto discard_it;
1708
1709 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1710 bad_packet:
1711 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1712 } else {
1713 tcp_v4_send_reset(NULL, skb);
1714 }
1715
1716 discard_it:
1717 /* Discard frame. */
1718 kfree_skb(skb);
1719 return 0;
1720
1721 discard_and_relse:
1722 sock_put(sk);
1723 goto discard_it;
1724
1725 do_time_wait:
1726 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1727 inet_twsk_put(inet_twsk(sk));
1728 goto discard_it;
1729 }
1730
1731 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1732 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1733 inet_twsk_put(inet_twsk(sk));
1734 goto discard_it;
1735 }
1736 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1737 case TCP_TW_SYN: {
1738 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1739 &tcp_hashinfo,
1740 iph->daddr, th->dest,
1741 inet_iif(skb));
1742 if (sk2) {
1743 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1744 inet_twsk_put(inet_twsk(sk));
1745 sk = sk2;
1746 goto process;
1747 }
1748 /* Fall through to ACK */
1749 }
1750 case TCP_TW_ACK:
1751 tcp_v4_timewait_ack(sk, skb);
1752 break;
1753 case TCP_TW_RST:
1754 goto no_tcp_socket;
1755 case TCP_TW_SUCCESS:;
1756 }
1757 goto discard_it;
1758 }
1759
1760 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1761 {
1762 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1763 struct inet_sock *inet = inet_sk(sk);
1764 struct inet_peer *peer;
1765
1766 if (!rt || rt->rt_dst != inet->inet_daddr) {
1767 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1768 *release_it = true;
1769 } else {
1770 if (!rt->peer)
1771 rt_bind_peer(rt, 1);
1772 peer = rt->peer;
1773 *release_it = false;
1774 }
1775
1776 return peer;
1777 }
1778 EXPORT_SYMBOL(tcp_v4_get_peer);
1779
1780 void *tcp_v4_tw_get_peer(struct sock *sk)
1781 {
1782 struct inet_timewait_sock *tw = inet_twsk(sk);
1783
1784 return inet_getpeer_v4(tw->tw_daddr, 1);
1785 }
1786 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1787
1788 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1789 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1790 .twsk_unique = tcp_twsk_unique,
1791 .twsk_destructor= tcp_twsk_destructor,
1792 .twsk_getpeer = tcp_v4_tw_get_peer,
1793 };
1794
1795 const struct inet_connection_sock_af_ops ipv4_specific = {
1796 .queue_xmit = ip_queue_xmit,
1797 .send_check = tcp_v4_send_check,
1798 .rebuild_header = inet_sk_rebuild_header,
1799 .conn_request = tcp_v4_conn_request,
1800 .syn_recv_sock = tcp_v4_syn_recv_sock,
1801 .get_peer = tcp_v4_get_peer,
1802 .net_header_len = sizeof(struct iphdr),
1803 .setsockopt = ip_setsockopt,
1804 .getsockopt = ip_getsockopt,
1805 .addr2sockaddr = inet_csk_addr2sockaddr,
1806 .sockaddr_len = sizeof(struct sockaddr_in),
1807 .bind_conflict = inet_csk_bind_conflict,
1808 #ifdef CONFIG_COMPAT
1809 .compat_setsockopt = compat_ip_setsockopt,
1810 .compat_getsockopt = compat_ip_getsockopt,
1811 #endif
1812 };
1813 EXPORT_SYMBOL(ipv4_specific);
1814
1815 #ifdef CONFIG_TCP_MD5SIG
1816 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1817 .md5_lookup = tcp_v4_md5_lookup,
1818 .calc_md5_hash = tcp_v4_md5_hash_skb,
1819 .md5_add = tcp_v4_md5_add_func,
1820 .md5_parse = tcp_v4_parse_md5_keys,
1821 };
1822 #endif
1823
1824 /* NOTE: A lot of things set to zero explicitly by call to
1825 * sk_alloc() so need not be done here.
1826 */
1827 static int tcp_v4_init_sock(struct sock *sk)
1828 {
1829 struct inet_connection_sock *icsk = inet_csk(sk);
1830 struct tcp_sock *tp = tcp_sk(sk);
1831
1832 skb_queue_head_init(&tp->out_of_order_queue);
1833 tcp_init_xmit_timers(sk);
1834 tcp_prequeue_init(tp);
1835
1836 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1837 tp->mdev = TCP_TIMEOUT_INIT;
1838
1839 /* So many TCP implementations out there (incorrectly) count the
1840 * initial SYN frame in their delayed-ACK and congestion control
1841 * algorithms that we must have the following bandaid to talk
1842 * efficiently to them. -DaveM
1843 */
1844 tp->snd_cwnd = 2;
1845
1846 /* See draft-stevens-tcpca-spec-01 for discussion of the
1847 * initialization of these values.
1848 */
1849 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1850 tp->snd_cwnd_clamp = ~0;
1851 tp->mss_cache = TCP_MSS_DEFAULT;
1852
1853 tp->reordering = sysctl_tcp_reordering;
1854 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1855
1856 sk->sk_state = TCP_CLOSE;
1857
1858 sk->sk_write_space = sk_stream_write_space;
1859 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1860
1861 icsk->icsk_af_ops = &ipv4_specific;
1862 icsk->icsk_sync_mss = tcp_sync_mss;
1863 #ifdef CONFIG_TCP_MD5SIG
1864 tp->af_specific = &tcp_sock_ipv4_specific;
1865 #endif
1866
1867 /* TCP Cookie Transactions */
1868 if (sysctl_tcp_cookie_size > 0) {
1869 /* Default, cookies without s_data_payload. */
1870 tp->cookie_values =
1871 kzalloc(sizeof(*tp->cookie_values),
1872 sk->sk_allocation);
1873 if (tp->cookie_values != NULL)
1874 kref_init(&tp->cookie_values->kref);
1875 }
1876 /* Presumed zeroed, in order of appearance:
1877 * cookie_in_always, cookie_out_never,
1878 * s_data_constant, s_data_in, s_data_out
1879 */
1880 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1881 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1882
1883 local_bh_disable();
1884 percpu_counter_inc(&tcp_sockets_allocated);
1885 local_bh_enable();
1886
1887 return 0;
1888 }
1889
1890 void tcp_v4_destroy_sock(struct sock *sk)
1891 {
1892 struct tcp_sock *tp = tcp_sk(sk);
1893
1894 tcp_clear_xmit_timers(sk);
1895
1896 tcp_cleanup_congestion_control(sk);
1897
1898 /* Cleanup up the write buffer. */
1899 tcp_write_queue_purge(sk);
1900
1901 /* Cleans up our, hopefully empty, out_of_order_queue. */
1902 __skb_queue_purge(&tp->out_of_order_queue);
1903
1904 #ifdef CONFIG_TCP_MD5SIG
1905 /* Clean up the MD5 key list, if any */
1906 if (tp->md5sig_info) {
1907 tcp_v4_clear_md5_list(sk);
1908 kfree(tp->md5sig_info);
1909 tp->md5sig_info = NULL;
1910 }
1911 #endif
1912
1913 #ifdef CONFIG_NET_DMA
1914 /* Cleans up our sk_async_wait_queue */
1915 __skb_queue_purge(&sk->sk_async_wait_queue);
1916 #endif
1917
1918 /* Clean prequeue, it must be empty really */
1919 __skb_queue_purge(&tp->ucopy.prequeue);
1920
1921 /* Clean up a referenced TCP bind bucket. */
1922 if (inet_csk(sk)->icsk_bind_hash)
1923 inet_put_port(sk);
1924
1925 /*
1926 * If sendmsg cached page exists, toss it.
1927 */
1928 if (sk->sk_sndmsg_page) {
1929 __free_page(sk->sk_sndmsg_page);
1930 sk->sk_sndmsg_page = NULL;
1931 }
1932
1933 /* TCP Cookie Transactions */
1934 if (tp->cookie_values != NULL) {
1935 kref_put(&tp->cookie_values->kref,
1936 tcp_cookie_values_release);
1937 tp->cookie_values = NULL;
1938 }
1939
1940 percpu_counter_dec(&tcp_sockets_allocated);
1941 }
1942 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1943
1944 #ifdef CONFIG_PROC_FS
1945 /* Proc filesystem TCP sock list dumping. */
1946
1947 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1948 {
1949 return hlist_nulls_empty(head) ? NULL :
1950 list_entry(head->first, struct inet_timewait_sock, tw_node);
1951 }
1952
1953 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1954 {
1955 return !is_a_nulls(tw->tw_node.next) ?
1956 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1957 }
1958
1959 /*
1960 * Get next listener socket follow cur. If cur is NULL, get first socket
1961 * starting from bucket given in st->bucket; when st->bucket is zero the
1962 * very first socket in the hash table is returned.
1963 */
1964 static void *listening_get_next(struct seq_file *seq, void *cur)
1965 {
1966 struct inet_connection_sock *icsk;
1967 struct hlist_nulls_node *node;
1968 struct sock *sk = cur;
1969 struct inet_listen_hashbucket *ilb;
1970 struct tcp_iter_state *st = seq->private;
1971 struct net *net = seq_file_net(seq);
1972
1973 if (!sk) {
1974 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1975 spin_lock_bh(&ilb->lock);
1976 sk = sk_nulls_head(&ilb->head);
1977 st->offset = 0;
1978 goto get_sk;
1979 }
1980 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1981 ++st->num;
1982 ++st->offset;
1983
1984 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1985 struct request_sock *req = cur;
1986
1987 icsk = inet_csk(st->syn_wait_sk);
1988 req = req->dl_next;
1989 while (1) {
1990 while (req) {
1991 if (req->rsk_ops->family == st->family) {
1992 cur = req;
1993 goto out;
1994 }
1995 req = req->dl_next;
1996 }
1997 st->offset = 0;
1998 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1999 break;
2000 get_req:
2001 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2002 }
2003 sk = sk_next(st->syn_wait_sk);
2004 st->state = TCP_SEQ_STATE_LISTENING;
2005 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2006 } else {
2007 icsk = inet_csk(sk);
2008 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2009 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2010 goto start_req;
2011 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2012 sk = sk_next(sk);
2013 }
2014 get_sk:
2015 sk_nulls_for_each_from(sk, node) {
2016 if (!net_eq(sock_net(sk), net))
2017 continue;
2018 if (sk->sk_family == st->family) {
2019 cur = sk;
2020 goto out;
2021 }
2022 icsk = inet_csk(sk);
2023 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2024 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2025 start_req:
2026 st->uid = sock_i_uid(sk);
2027 st->syn_wait_sk = sk;
2028 st->state = TCP_SEQ_STATE_OPENREQ;
2029 st->sbucket = 0;
2030 goto get_req;
2031 }
2032 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2033 }
2034 spin_unlock_bh(&ilb->lock);
2035 st->offset = 0;
2036 if (++st->bucket < INET_LHTABLE_SIZE) {
2037 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2038 spin_lock_bh(&ilb->lock);
2039 sk = sk_nulls_head(&ilb->head);
2040 goto get_sk;
2041 }
2042 cur = NULL;
2043 out:
2044 return cur;
2045 }
2046
2047 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2048 {
2049 struct tcp_iter_state *st = seq->private;
2050 void *rc;
2051
2052 st->bucket = 0;
2053 st->offset = 0;
2054 rc = listening_get_next(seq, NULL);
2055
2056 while (rc && *pos) {
2057 rc = listening_get_next(seq, rc);
2058 --*pos;
2059 }
2060 return rc;
2061 }
2062
2063 static inline int empty_bucket(struct tcp_iter_state *st)
2064 {
2065 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2066 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2067 }
2068
2069 /*
2070 * Get first established socket starting from bucket given in st->bucket.
2071 * If st->bucket is zero, the very first socket in the hash is returned.
2072 */
2073 static void *established_get_first(struct seq_file *seq)
2074 {
2075 struct tcp_iter_state *st = seq->private;
2076 struct net *net = seq_file_net(seq);
2077 void *rc = NULL;
2078
2079 st->offset = 0;
2080 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2081 struct sock *sk;
2082 struct hlist_nulls_node *node;
2083 struct inet_timewait_sock *tw;
2084 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2085
2086 /* Lockless fast path for the common case of empty buckets */
2087 if (empty_bucket(st))
2088 continue;
2089
2090 spin_lock_bh(lock);
2091 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2092 if (sk->sk_family != st->family ||
2093 !net_eq(sock_net(sk), net)) {
2094 continue;
2095 }
2096 rc = sk;
2097 goto out;
2098 }
2099 st->state = TCP_SEQ_STATE_TIME_WAIT;
2100 inet_twsk_for_each(tw, node,
2101 &tcp_hashinfo.ehash[st->bucket].twchain) {
2102 if (tw->tw_family != st->family ||
2103 !net_eq(twsk_net(tw), net)) {
2104 continue;
2105 }
2106 rc = tw;
2107 goto out;
2108 }
2109 spin_unlock_bh(lock);
2110 st->state = TCP_SEQ_STATE_ESTABLISHED;
2111 }
2112 out:
2113 return rc;
2114 }
2115
2116 static void *established_get_next(struct seq_file *seq, void *cur)
2117 {
2118 struct sock *sk = cur;
2119 struct inet_timewait_sock *tw;
2120 struct hlist_nulls_node *node;
2121 struct tcp_iter_state *st = seq->private;
2122 struct net *net = seq_file_net(seq);
2123
2124 ++st->num;
2125 ++st->offset;
2126
2127 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2128 tw = cur;
2129 tw = tw_next(tw);
2130 get_tw:
2131 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2132 tw = tw_next(tw);
2133 }
2134 if (tw) {
2135 cur = tw;
2136 goto out;
2137 }
2138 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2139 st->state = TCP_SEQ_STATE_ESTABLISHED;
2140
2141 /* Look for next non empty bucket */
2142 st->offset = 0;
2143 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2144 empty_bucket(st))
2145 ;
2146 if (st->bucket > tcp_hashinfo.ehash_mask)
2147 return NULL;
2148
2149 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2150 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2151 } else
2152 sk = sk_nulls_next(sk);
2153
2154 sk_nulls_for_each_from(sk, node) {
2155 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2156 goto found;
2157 }
2158
2159 st->state = TCP_SEQ_STATE_TIME_WAIT;
2160 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2161 goto get_tw;
2162 found:
2163 cur = sk;
2164 out:
2165 return cur;
2166 }
2167
2168 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2169 {
2170 struct tcp_iter_state *st = seq->private;
2171 void *rc;
2172
2173 st->bucket = 0;
2174 rc = established_get_first(seq);
2175
2176 while (rc && pos) {
2177 rc = established_get_next(seq, rc);
2178 --pos;
2179 }
2180 return rc;
2181 }
2182
2183 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2184 {
2185 void *rc;
2186 struct tcp_iter_state *st = seq->private;
2187
2188 st->state = TCP_SEQ_STATE_LISTENING;
2189 rc = listening_get_idx(seq, &pos);
2190
2191 if (!rc) {
2192 st->state = TCP_SEQ_STATE_ESTABLISHED;
2193 rc = established_get_idx(seq, pos);
2194 }
2195
2196 return rc;
2197 }
2198
2199 static void *tcp_seek_last_pos(struct seq_file *seq)
2200 {
2201 struct tcp_iter_state *st = seq->private;
2202 int offset = st->offset;
2203 int orig_num = st->num;
2204 void *rc = NULL;
2205
2206 switch (st->state) {
2207 case TCP_SEQ_STATE_OPENREQ:
2208 case TCP_SEQ_STATE_LISTENING:
2209 if (st->bucket >= INET_LHTABLE_SIZE)
2210 break;
2211 st->state = TCP_SEQ_STATE_LISTENING;
2212 rc = listening_get_next(seq, NULL);
2213 while (offset-- && rc)
2214 rc = listening_get_next(seq, rc);
2215 if (rc)
2216 break;
2217 st->bucket = 0;
2218 /* Fallthrough */
2219 case TCP_SEQ_STATE_ESTABLISHED:
2220 case TCP_SEQ_STATE_TIME_WAIT:
2221 st->state = TCP_SEQ_STATE_ESTABLISHED;
2222 if (st->bucket > tcp_hashinfo.ehash_mask)
2223 break;
2224 rc = established_get_first(seq);
2225 while (offset-- && rc)
2226 rc = established_get_next(seq, rc);
2227 }
2228
2229 st->num = orig_num;
2230
2231 return rc;
2232 }
2233
2234 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2235 {
2236 struct tcp_iter_state *st = seq->private;
2237 void *rc;
2238
2239 if (*pos && *pos == st->last_pos) {
2240 rc = tcp_seek_last_pos(seq);
2241 if (rc)
2242 goto out;
2243 }
2244
2245 st->state = TCP_SEQ_STATE_LISTENING;
2246 st->num = 0;
2247 st->bucket = 0;
2248 st->offset = 0;
2249 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2250
2251 out:
2252 st->last_pos = *pos;
2253 return rc;
2254 }
2255
2256 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2257 {
2258 struct tcp_iter_state *st = seq->private;
2259 void *rc = NULL;
2260
2261 if (v == SEQ_START_TOKEN) {
2262 rc = tcp_get_idx(seq, 0);
2263 goto out;
2264 }
2265
2266 switch (st->state) {
2267 case TCP_SEQ_STATE_OPENREQ:
2268 case TCP_SEQ_STATE_LISTENING:
2269 rc = listening_get_next(seq, v);
2270 if (!rc) {
2271 st->state = TCP_SEQ_STATE_ESTABLISHED;
2272 st->bucket = 0;
2273 st->offset = 0;
2274 rc = established_get_first(seq);
2275 }
2276 break;
2277 case TCP_SEQ_STATE_ESTABLISHED:
2278 case TCP_SEQ_STATE_TIME_WAIT:
2279 rc = established_get_next(seq, v);
2280 break;
2281 }
2282 out:
2283 ++*pos;
2284 st->last_pos = *pos;
2285 return rc;
2286 }
2287
2288 static void tcp_seq_stop(struct seq_file *seq, void *v)
2289 {
2290 struct tcp_iter_state *st = seq->private;
2291
2292 switch (st->state) {
2293 case TCP_SEQ_STATE_OPENREQ:
2294 if (v) {
2295 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2296 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2297 }
2298 case TCP_SEQ_STATE_LISTENING:
2299 if (v != SEQ_START_TOKEN)
2300 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2301 break;
2302 case TCP_SEQ_STATE_TIME_WAIT:
2303 case TCP_SEQ_STATE_ESTABLISHED:
2304 if (v)
2305 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2306 break;
2307 }
2308 }
2309
2310 static int tcp_seq_open(struct inode *inode, struct file *file)
2311 {
2312 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2313 struct tcp_iter_state *s;
2314 int err;
2315
2316 err = seq_open_net(inode, file, &afinfo->seq_ops,
2317 sizeof(struct tcp_iter_state));
2318 if (err < 0)
2319 return err;
2320
2321 s = ((struct seq_file *)file->private_data)->private;
2322 s->family = afinfo->family;
2323 s->last_pos = 0;
2324 return 0;
2325 }
2326
2327 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2328 {
2329 int rc = 0;
2330 struct proc_dir_entry *p;
2331
2332 afinfo->seq_fops.open = tcp_seq_open;
2333 afinfo->seq_fops.read = seq_read;
2334 afinfo->seq_fops.llseek = seq_lseek;
2335 afinfo->seq_fops.release = seq_release_net;
2336
2337 afinfo->seq_ops.start = tcp_seq_start;
2338 afinfo->seq_ops.next = tcp_seq_next;
2339 afinfo->seq_ops.stop = tcp_seq_stop;
2340
2341 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2342 &afinfo->seq_fops, afinfo);
2343 if (!p)
2344 rc = -ENOMEM;
2345 return rc;
2346 }
2347 EXPORT_SYMBOL(tcp_proc_register);
2348
2349 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2350 {
2351 proc_net_remove(net, afinfo->name);
2352 }
2353 EXPORT_SYMBOL(tcp_proc_unregister);
2354
2355 static void get_openreq4(struct sock *sk, struct request_sock *req,
2356 struct seq_file *f, int i, int uid, int *len)
2357 {
2358 const struct inet_request_sock *ireq = inet_rsk(req);
2359 int ttd = req->expires - jiffies;
2360
2361 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2362 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2363 i,
2364 ireq->loc_addr,
2365 ntohs(inet_sk(sk)->inet_sport),
2366 ireq->rmt_addr,
2367 ntohs(ireq->rmt_port),
2368 TCP_SYN_RECV,
2369 0, 0, /* could print option size, but that is af dependent. */
2370 1, /* timers active (only the expire timer) */
2371 jiffies_to_clock_t(ttd),
2372 req->retrans,
2373 uid,
2374 0, /* non standard timer */
2375 0, /* open_requests have no inode */
2376 atomic_read(&sk->sk_refcnt),
2377 req,
2378 len);
2379 }
2380
2381 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2382 {
2383 int timer_active;
2384 unsigned long timer_expires;
2385 struct tcp_sock *tp = tcp_sk(sk);
2386 const struct inet_connection_sock *icsk = inet_csk(sk);
2387 struct inet_sock *inet = inet_sk(sk);
2388 __be32 dest = inet->inet_daddr;
2389 __be32 src = inet->inet_rcv_saddr;
2390 __u16 destp = ntohs(inet->inet_dport);
2391 __u16 srcp = ntohs(inet->inet_sport);
2392 int rx_queue;
2393
2394 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2395 timer_active = 1;
2396 timer_expires = icsk->icsk_timeout;
2397 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2398 timer_active = 4;
2399 timer_expires = icsk->icsk_timeout;
2400 } else if (timer_pending(&sk->sk_timer)) {
2401 timer_active = 2;
2402 timer_expires = sk->sk_timer.expires;
2403 } else {
2404 timer_active = 0;
2405 timer_expires = jiffies;
2406 }
2407
2408 if (sk->sk_state == TCP_LISTEN)
2409 rx_queue = sk->sk_ack_backlog;
2410 else
2411 /*
2412 * because we dont lock socket, we might find a transient negative value
2413 */
2414 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2415
2416 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2417 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2418 i, src, srcp, dest, destp, sk->sk_state,
2419 tp->write_seq - tp->snd_una,
2420 rx_queue,
2421 timer_active,
2422 jiffies_to_clock_t(timer_expires - jiffies),
2423 icsk->icsk_retransmits,
2424 sock_i_uid(sk),
2425 icsk->icsk_probes_out,
2426 sock_i_ino(sk),
2427 atomic_read(&sk->sk_refcnt), sk,
2428 jiffies_to_clock_t(icsk->icsk_rto),
2429 jiffies_to_clock_t(icsk->icsk_ack.ato),
2430 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2431 tp->snd_cwnd,
2432 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2433 len);
2434 }
2435
2436 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2437 struct seq_file *f, int i, int *len)
2438 {
2439 __be32 dest, src;
2440 __u16 destp, srcp;
2441 int ttd = tw->tw_ttd - jiffies;
2442
2443 if (ttd < 0)
2444 ttd = 0;
2445
2446 dest = tw->tw_daddr;
2447 src = tw->tw_rcv_saddr;
2448 destp = ntohs(tw->tw_dport);
2449 srcp = ntohs(tw->tw_sport);
2450
2451 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2452 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2453 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2454 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2455 atomic_read(&tw->tw_refcnt), tw, len);
2456 }
2457
2458 #define TMPSZ 150
2459
2460 static int tcp4_seq_show(struct seq_file *seq, void *v)
2461 {
2462 struct tcp_iter_state *st;
2463 int len;
2464
2465 if (v == SEQ_START_TOKEN) {
2466 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2467 " sl local_address rem_address st tx_queue "
2468 "rx_queue tr tm->when retrnsmt uid timeout "
2469 "inode");
2470 goto out;
2471 }
2472 st = seq->private;
2473
2474 switch (st->state) {
2475 case TCP_SEQ_STATE_LISTENING:
2476 case TCP_SEQ_STATE_ESTABLISHED:
2477 get_tcp4_sock(v, seq, st->num, &len);
2478 break;
2479 case TCP_SEQ_STATE_OPENREQ:
2480 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2481 break;
2482 case TCP_SEQ_STATE_TIME_WAIT:
2483 get_timewait4_sock(v, seq, st->num, &len);
2484 break;
2485 }
2486 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2487 out:
2488 return 0;
2489 }
2490
2491 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2492 .name = "tcp",
2493 .family = AF_INET,
2494 .seq_fops = {
2495 .owner = THIS_MODULE,
2496 },
2497 .seq_ops = {
2498 .show = tcp4_seq_show,
2499 },
2500 };
2501
2502 static int __net_init tcp4_proc_init_net(struct net *net)
2503 {
2504 return tcp_proc_register(net, &tcp4_seq_afinfo);
2505 }
2506
2507 static void __net_exit tcp4_proc_exit_net(struct net *net)
2508 {
2509 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2510 }
2511
2512 static struct pernet_operations tcp4_net_ops = {
2513 .init = tcp4_proc_init_net,
2514 .exit = tcp4_proc_exit_net,
2515 };
2516
2517 int __init tcp4_proc_init(void)
2518 {
2519 return register_pernet_subsys(&tcp4_net_ops);
2520 }
2521
2522 void tcp4_proc_exit(void)
2523 {
2524 unregister_pernet_subsys(&tcp4_net_ops);
2525 }
2526 #endif /* CONFIG_PROC_FS */
2527
2528 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2529 {
2530 struct iphdr *iph = skb_gro_network_header(skb);
2531
2532 switch (skb->ip_summed) {
2533 case CHECKSUM_COMPLETE:
2534 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2535 skb->csum)) {
2536 skb->ip_summed = CHECKSUM_UNNECESSARY;
2537 break;
2538 }
2539
2540 /* fall through */
2541 case CHECKSUM_NONE:
2542 NAPI_GRO_CB(skb)->flush = 1;
2543 return NULL;
2544 }
2545
2546 return tcp_gro_receive(head, skb);
2547 }
2548
2549 int tcp4_gro_complete(struct sk_buff *skb)
2550 {
2551 struct iphdr *iph = ip_hdr(skb);
2552 struct tcphdr *th = tcp_hdr(skb);
2553
2554 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2555 iph->saddr, iph->daddr, 0);
2556 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2557
2558 return tcp_gro_complete(skb);
2559 }
2560
2561 struct proto tcp_prot = {
2562 .name = "TCP",
2563 .owner = THIS_MODULE,
2564 .close = tcp_close,
2565 .connect = tcp_v4_connect,
2566 .disconnect = tcp_disconnect,
2567 .accept = inet_csk_accept,
2568 .ioctl = tcp_ioctl,
2569 .init = tcp_v4_init_sock,
2570 .destroy = tcp_v4_destroy_sock,
2571 .shutdown = tcp_shutdown,
2572 .setsockopt = tcp_setsockopt,
2573 .getsockopt = tcp_getsockopt,
2574 .recvmsg = tcp_recvmsg,
2575 .sendmsg = tcp_sendmsg,
2576 .sendpage = tcp_sendpage,
2577 .backlog_rcv = tcp_v4_do_rcv,
2578 .hash = inet_hash,
2579 .unhash = inet_unhash,
2580 .get_port = inet_csk_get_port,
2581 .enter_memory_pressure = tcp_enter_memory_pressure,
2582 .sockets_allocated = &tcp_sockets_allocated,
2583 .orphan_count = &tcp_orphan_count,
2584 .memory_allocated = &tcp_memory_allocated,
2585 .memory_pressure = &tcp_memory_pressure,
2586 .sysctl_mem = sysctl_tcp_mem,
2587 .sysctl_wmem = sysctl_tcp_wmem,
2588 .sysctl_rmem = sysctl_tcp_rmem,
2589 .max_header = MAX_TCP_HEADER,
2590 .obj_size = sizeof(struct tcp_sock),
2591 .slab_flags = SLAB_DESTROY_BY_RCU,
2592 .twsk_prot = &tcp_timewait_sock_ops,
2593 .rsk_prot = &tcp_request_sock_ops,
2594 .h.hashinfo = &tcp_hashinfo,
2595 .no_autobind = true,
2596 #ifdef CONFIG_COMPAT
2597 .compat_setsockopt = compat_tcp_setsockopt,
2598 .compat_getsockopt = compat_tcp_getsockopt,
2599 #endif
2600 };
2601 EXPORT_SYMBOL(tcp_prot);
2602
2603
2604 static int __net_init tcp_sk_init(struct net *net)
2605 {
2606 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2607 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2608 }
2609
2610 static void __net_exit tcp_sk_exit(struct net *net)
2611 {
2612 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2613 }
2614
2615 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2616 {
2617 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2618 }
2619
2620 static struct pernet_operations __net_initdata tcp_sk_ops = {
2621 .init = tcp_sk_init,
2622 .exit = tcp_sk_exit,
2623 .exit_batch = tcp_sk_exit_batch,
2624 };
2625
2626 void __init tcp_v4_init(void)
2627 {
2628 inet_hashinfo_init(&tcp_hashinfo);
2629 if (register_pernet_subsys(&tcp_sk_ops))
2630 panic("Failed to create the TCP control socket.\n");
2631 }