tcp: fix tcp_match_skb_to_sack() for unaligned SACK at end of an skb
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96
97 int sysctl_tcp_thin_dupack __read_mostly;
98
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
115
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
126 */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
132
133 icsk->icsk_ack.last_seg_size = 0;
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
165 }
166 }
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 }
171 }
172
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 const struct inet_connection_sock *icsk = inet_csk(sk);
199
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
224
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 }
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
243 }
244 }
245
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 return true;
262 return false;
263 }
264
265 /* Buffer size and advertised window tuning.
266 *
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268 */
269
270 static void tcp_fixup_sndbuf(struct sock *sk)
271 {
272 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
273
274 sndmem *= TCP_INIT_CWND;
275 if (sk->sk_sndbuf < sndmem)
276 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
277 }
278
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280 *
281 * All tcp_full_space() is split to two parts: "network" buffer, allocated
282 * forward and advertised in receiver window (tp->rcv_wnd) and
283 * "application buffer", required to isolate scheduling/application
284 * latencies from network.
285 * window_clamp is maximal advertised window. It can be less than
286 * tcp_full_space(), in this case tcp_full_space() - window_clamp
287 * is reserved for "application" buffer. The less window_clamp is
288 * the smoother our behaviour from viewpoint of network, but the lower
289 * throughput and the higher sensitivity of the connection to losses. 8)
290 *
291 * rcv_ssthresh is more strict window_clamp used at "slow start"
292 * phase to predict further behaviour of this connection.
293 * It is used for two goals:
294 * - to enforce header prediction at sender, even when application
295 * requires some significant "application buffer". It is check #1.
296 * - to prevent pruning of receive queue because of misprediction
297 * of receiver window. Check #2.
298 *
299 * The scheme does not work when sender sends good segments opening
300 * window and then starts to feed us spaghetti. But it should work
301 * in common situations. Otherwise, we have to rely on queue collapsing.
302 */
303
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
306 {
307 struct tcp_sock *tp = tcp_sk(sk);
308 /* Optimize this! */
309 int truesize = tcp_win_from_space(skb->truesize) >> 1;
310 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
311
312 while (tp->rcv_ssthresh <= window) {
313 if (truesize <= skb->len)
314 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
315
316 truesize >>= 1;
317 window >>= 1;
318 }
319 return 0;
320 }
321
322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
323 {
324 struct tcp_sock *tp = tcp_sk(sk);
325
326 /* Check #1 */
327 if (tp->rcv_ssthresh < tp->window_clamp &&
328 (int)tp->rcv_ssthresh < tcp_space(sk) &&
329 !sk_under_memory_pressure(sk)) {
330 int incr;
331
332 /* Check #2. Increase window, if skb with such overhead
333 * will fit to rcvbuf in future.
334 */
335 if (tcp_win_from_space(skb->truesize) <= skb->len)
336 incr = 2 * tp->advmss;
337 else
338 incr = __tcp_grow_window(sk, skb);
339
340 if (incr) {
341 incr = max_t(int, incr, 2 * skb->len);
342 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343 tp->window_clamp);
344 inet_csk(sk)->icsk_ack.quick |= 1;
345 }
346 }
347 }
348
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350
351 static void tcp_fixup_rcvbuf(struct sock *sk)
352 {
353 u32 mss = tcp_sk(sk)->advmss;
354 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
355 int rcvmem;
356
357 /* Limit to 10 segments if mss <= 1460,
358 * or 14600/mss segments, with a minimum of two segments.
359 */
360 if (mss > 1460)
361 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
362
363 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
364 while (tcp_win_from_space(rcvmem) < mss)
365 rcvmem += 128;
366
367 rcvmem *= icwnd;
368
369 if (sk->sk_rcvbuf < rcvmem)
370 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
371 }
372
373 /* 4. Try to fixup all. It is made immediately after connection enters
374 * established state.
375 */
376 void tcp_init_buffer_space(struct sock *sk)
377 {
378 struct tcp_sock *tp = tcp_sk(sk);
379 int maxwin;
380
381 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
382 tcp_fixup_rcvbuf(sk);
383 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
384 tcp_fixup_sndbuf(sk);
385
386 tp->rcvq_space.space = tp->rcv_wnd;
387
388 maxwin = tcp_full_space(sk);
389
390 if (tp->window_clamp >= maxwin) {
391 tp->window_clamp = maxwin;
392
393 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
394 tp->window_clamp = max(maxwin -
395 (maxwin >> sysctl_tcp_app_win),
396 4 * tp->advmss);
397 }
398
399 /* Force reservation of one segment. */
400 if (sysctl_tcp_app_win &&
401 tp->window_clamp > 2 * tp->advmss &&
402 tp->window_clamp + tp->advmss > maxwin)
403 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
404
405 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
406 tp->snd_cwnd_stamp = tcp_time_stamp;
407 }
408
409 /* 5. Recalculate window clamp after socket hit its memory bounds. */
410 static void tcp_clamp_window(struct sock *sk)
411 {
412 struct tcp_sock *tp = tcp_sk(sk);
413 struct inet_connection_sock *icsk = inet_csk(sk);
414
415 icsk->icsk_ack.quick = 0;
416
417 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
418 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
419 !sk_under_memory_pressure(sk) &&
420 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
421 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
422 sysctl_tcp_rmem[2]);
423 }
424 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
425 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
426 }
427
428 /* Initialize RCV_MSS value.
429 * RCV_MSS is an our guess about MSS used by the peer.
430 * We haven't any direct information about the MSS.
431 * It's better to underestimate the RCV_MSS rather than overestimate.
432 * Overestimations make us ACKing less frequently than needed.
433 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
434 */
435 void tcp_initialize_rcv_mss(struct sock *sk)
436 {
437 const struct tcp_sock *tp = tcp_sk(sk);
438 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
439
440 hint = min(hint, tp->rcv_wnd / 2);
441 hint = min(hint, TCP_MSS_DEFAULT);
442 hint = max(hint, TCP_MIN_MSS);
443
444 inet_csk(sk)->icsk_ack.rcv_mss = hint;
445 }
446 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
447
448 /* Receiver "autotuning" code.
449 *
450 * The algorithm for RTT estimation w/o timestamps is based on
451 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
452 * <http://public.lanl.gov/radiant/pubs.html#DRS>
453 *
454 * More detail on this code can be found at
455 * <http://staff.psc.edu/jheffner/>,
456 * though this reference is out of date. A new paper
457 * is pending.
458 */
459 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
460 {
461 u32 new_sample = tp->rcv_rtt_est.rtt;
462 long m = sample;
463
464 if (m == 0)
465 m = 1;
466
467 if (new_sample != 0) {
468 /* If we sample in larger samples in the non-timestamp
469 * case, we could grossly overestimate the RTT especially
470 * with chatty applications or bulk transfer apps which
471 * are stalled on filesystem I/O.
472 *
473 * Also, since we are only going for a minimum in the
474 * non-timestamp case, we do not smooth things out
475 * else with timestamps disabled convergence takes too
476 * long.
477 */
478 if (!win_dep) {
479 m -= (new_sample >> 3);
480 new_sample += m;
481 } else {
482 m <<= 3;
483 if (m < new_sample)
484 new_sample = m;
485 }
486 } else {
487 /* No previous measure. */
488 new_sample = m << 3;
489 }
490
491 if (tp->rcv_rtt_est.rtt != new_sample)
492 tp->rcv_rtt_est.rtt = new_sample;
493 }
494
495 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
496 {
497 if (tp->rcv_rtt_est.time == 0)
498 goto new_measure;
499 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
500 return;
501 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
502
503 new_measure:
504 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
505 tp->rcv_rtt_est.time = tcp_time_stamp;
506 }
507
508 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
509 const struct sk_buff *skb)
510 {
511 struct tcp_sock *tp = tcp_sk(sk);
512 if (tp->rx_opt.rcv_tsecr &&
513 (TCP_SKB_CB(skb)->end_seq -
514 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
515 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
516 }
517
518 /*
519 * This function should be called every time data is copied to user space.
520 * It calculates the appropriate TCP receive buffer space.
521 */
522 void tcp_rcv_space_adjust(struct sock *sk)
523 {
524 struct tcp_sock *tp = tcp_sk(sk);
525 int time;
526 int space;
527
528 if (tp->rcvq_space.time == 0)
529 goto new_measure;
530
531 time = tcp_time_stamp - tp->rcvq_space.time;
532 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
533 return;
534
535 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
536
537 space = max(tp->rcvq_space.space, space);
538
539 if (tp->rcvq_space.space != space) {
540 int rcvmem;
541
542 tp->rcvq_space.space = space;
543
544 if (sysctl_tcp_moderate_rcvbuf &&
545 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
546 int new_clamp = space;
547
548 /* Receive space grows, normalize in order to
549 * take into account packet headers and sk_buff
550 * structure overhead.
551 */
552 space /= tp->advmss;
553 if (!space)
554 space = 1;
555 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
556 while (tcp_win_from_space(rcvmem) < tp->advmss)
557 rcvmem += 128;
558 space *= rcvmem;
559 space = min(space, sysctl_tcp_rmem[2]);
560 if (space > sk->sk_rcvbuf) {
561 sk->sk_rcvbuf = space;
562
563 /* Make the window clamp follow along. */
564 tp->window_clamp = new_clamp;
565 }
566 }
567 }
568
569 new_measure:
570 tp->rcvq_space.seq = tp->copied_seq;
571 tp->rcvq_space.time = tcp_time_stamp;
572 }
573
574 /* There is something which you must keep in mind when you analyze the
575 * behavior of the tp->ato delayed ack timeout interval. When a
576 * connection starts up, we want to ack as quickly as possible. The
577 * problem is that "good" TCP's do slow start at the beginning of data
578 * transmission. The means that until we send the first few ACK's the
579 * sender will sit on his end and only queue most of his data, because
580 * he can only send snd_cwnd unacked packets at any given time. For
581 * each ACK we send, he increments snd_cwnd and transmits more of his
582 * queue. -DaveM
583 */
584 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
585 {
586 struct tcp_sock *tp = tcp_sk(sk);
587 struct inet_connection_sock *icsk = inet_csk(sk);
588 u32 now;
589
590 inet_csk_schedule_ack(sk);
591
592 tcp_measure_rcv_mss(sk, skb);
593
594 tcp_rcv_rtt_measure(tp);
595
596 now = tcp_time_stamp;
597
598 if (!icsk->icsk_ack.ato) {
599 /* The _first_ data packet received, initialize
600 * delayed ACK engine.
601 */
602 tcp_incr_quickack(sk);
603 icsk->icsk_ack.ato = TCP_ATO_MIN;
604 } else {
605 int m = now - icsk->icsk_ack.lrcvtime;
606
607 if (m <= TCP_ATO_MIN / 2) {
608 /* The fastest case is the first. */
609 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
610 } else if (m < icsk->icsk_ack.ato) {
611 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
612 if (icsk->icsk_ack.ato > icsk->icsk_rto)
613 icsk->icsk_ack.ato = icsk->icsk_rto;
614 } else if (m > icsk->icsk_rto) {
615 /* Too long gap. Apparently sender failed to
616 * restart window, so that we send ACKs quickly.
617 */
618 tcp_incr_quickack(sk);
619 sk_mem_reclaim(sk);
620 }
621 }
622 icsk->icsk_ack.lrcvtime = now;
623
624 TCP_ECN_check_ce(tp, skb);
625
626 if (skb->len >= 128)
627 tcp_grow_window(sk, skb);
628 }
629
630 /* Called to compute a smoothed rtt estimate. The data fed to this
631 * routine either comes from timestamps, or from segments that were
632 * known _not_ to have been retransmitted [see Karn/Partridge
633 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
634 * piece by Van Jacobson.
635 * NOTE: the next three routines used to be one big routine.
636 * To save cycles in the RFC 1323 implementation it was better to break
637 * it up into three procedures. -- erics
638 */
639 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
640 {
641 struct tcp_sock *tp = tcp_sk(sk);
642 long m = mrtt; /* RTT */
643
644 /* The following amusing code comes from Jacobson's
645 * article in SIGCOMM '88. Note that rtt and mdev
646 * are scaled versions of rtt and mean deviation.
647 * This is designed to be as fast as possible
648 * m stands for "measurement".
649 *
650 * On a 1990 paper the rto value is changed to:
651 * RTO = rtt + 4 * mdev
652 *
653 * Funny. This algorithm seems to be very broken.
654 * These formulae increase RTO, when it should be decreased, increase
655 * too slowly, when it should be increased quickly, decrease too quickly
656 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
657 * does not matter how to _calculate_ it. Seems, it was trap
658 * that VJ failed to avoid. 8)
659 */
660 if (m == 0)
661 m = 1;
662 if (tp->srtt != 0) {
663 m -= (tp->srtt >> 3); /* m is now error in rtt est */
664 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
665 if (m < 0) {
666 m = -m; /* m is now abs(error) */
667 m -= (tp->mdev >> 2); /* similar update on mdev */
668 /* This is similar to one of Eifel findings.
669 * Eifel blocks mdev updates when rtt decreases.
670 * This solution is a bit different: we use finer gain
671 * for mdev in this case (alpha*beta).
672 * Like Eifel it also prevents growth of rto,
673 * but also it limits too fast rto decreases,
674 * happening in pure Eifel.
675 */
676 if (m > 0)
677 m >>= 3;
678 } else {
679 m -= (tp->mdev >> 2); /* similar update on mdev */
680 }
681 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
682 if (tp->mdev > tp->mdev_max) {
683 tp->mdev_max = tp->mdev;
684 if (tp->mdev_max > tp->rttvar)
685 tp->rttvar = tp->mdev_max;
686 }
687 if (after(tp->snd_una, tp->rtt_seq)) {
688 if (tp->mdev_max < tp->rttvar)
689 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
690 tp->rtt_seq = tp->snd_nxt;
691 tp->mdev_max = tcp_rto_min(sk);
692 }
693 } else {
694 /* no previous measure. */
695 tp->srtt = m << 3; /* take the measured time to be rtt */
696 tp->mdev = m << 1; /* make sure rto = 3*rtt */
697 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
698 tp->rtt_seq = tp->snd_nxt;
699 }
700 }
701
702 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
703 * Note: TCP stack does not yet implement pacing.
704 * FQ packet scheduler can be used to implement cheap but effective
705 * TCP pacing, to smooth the burst on large writes when packets
706 * in flight is significantly lower than cwnd (or rwin)
707 */
708 static void tcp_update_pacing_rate(struct sock *sk)
709 {
710 const struct tcp_sock *tp = tcp_sk(sk);
711 u64 rate;
712
713 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
714 rate = (u64)tp->mss_cache * 2 * (HZ << 3);
715
716 rate *= max(tp->snd_cwnd, tp->packets_out);
717
718 /* Correction for small srtt : minimum srtt being 8 (1 jiffy << 3),
719 * be conservative and assume srtt = 1 (125 us instead of 1.25 ms)
720 * We probably need usec resolution in the future.
721 * Note: This also takes care of possible srtt=0 case,
722 * when tcp_rtt_estimator() was not yet called.
723 */
724 if (tp->srtt > 8 + 2)
725 do_div(rate, tp->srtt);
726
727 sk->sk_pacing_rate = min_t(u64, rate, ~0U);
728 }
729
730 /* Calculate rto without backoff. This is the second half of Van Jacobson's
731 * routine referred to above.
732 */
733 void tcp_set_rto(struct sock *sk)
734 {
735 const struct tcp_sock *tp = tcp_sk(sk);
736 /* Old crap is replaced with new one. 8)
737 *
738 * More seriously:
739 * 1. If rtt variance happened to be less 50msec, it is hallucination.
740 * It cannot be less due to utterly erratic ACK generation made
741 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
742 * to do with delayed acks, because at cwnd>2 true delack timeout
743 * is invisible. Actually, Linux-2.4 also generates erratic
744 * ACKs in some circumstances.
745 */
746 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
747
748 /* 2. Fixups made earlier cannot be right.
749 * If we do not estimate RTO correctly without them,
750 * all the algo is pure shit and should be replaced
751 * with correct one. It is exactly, which we pretend to do.
752 */
753
754 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
755 * guarantees that rto is higher.
756 */
757 tcp_bound_rto(sk);
758 }
759
760 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
761 {
762 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
763
764 if (!cwnd)
765 cwnd = TCP_INIT_CWND;
766 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
767 }
768
769 /*
770 * Packet counting of FACK is based on in-order assumptions, therefore TCP
771 * disables it when reordering is detected
772 */
773 void tcp_disable_fack(struct tcp_sock *tp)
774 {
775 /* RFC3517 uses different metric in lost marker => reset on change */
776 if (tcp_is_fack(tp))
777 tp->lost_skb_hint = NULL;
778 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
779 }
780
781 /* Take a notice that peer is sending D-SACKs */
782 static void tcp_dsack_seen(struct tcp_sock *tp)
783 {
784 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
785 }
786
787 static void tcp_update_reordering(struct sock *sk, const int metric,
788 const int ts)
789 {
790 struct tcp_sock *tp = tcp_sk(sk);
791 if (metric > tp->reordering) {
792 int mib_idx;
793
794 tp->reordering = min(TCP_MAX_REORDERING, metric);
795
796 /* This exciting event is worth to be remembered. 8) */
797 if (ts)
798 mib_idx = LINUX_MIB_TCPTSREORDER;
799 else if (tcp_is_reno(tp))
800 mib_idx = LINUX_MIB_TCPRENOREORDER;
801 else if (tcp_is_fack(tp))
802 mib_idx = LINUX_MIB_TCPFACKREORDER;
803 else
804 mib_idx = LINUX_MIB_TCPSACKREORDER;
805
806 NET_INC_STATS_BH(sock_net(sk), mib_idx);
807 #if FASTRETRANS_DEBUG > 1
808 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
809 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
810 tp->reordering,
811 tp->fackets_out,
812 tp->sacked_out,
813 tp->undo_marker ? tp->undo_retrans : 0);
814 #endif
815 tcp_disable_fack(tp);
816 }
817
818 if (metric > 0)
819 tcp_disable_early_retrans(tp);
820 }
821
822 /* This must be called before lost_out is incremented */
823 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
824 {
825 if ((tp->retransmit_skb_hint == NULL) ||
826 before(TCP_SKB_CB(skb)->seq,
827 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
828 tp->retransmit_skb_hint = skb;
829
830 if (!tp->lost_out ||
831 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
832 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
833 }
834
835 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
836 {
837 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
838 tcp_verify_retransmit_hint(tp, skb);
839
840 tp->lost_out += tcp_skb_pcount(skb);
841 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
842 }
843 }
844
845 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
846 struct sk_buff *skb)
847 {
848 tcp_verify_retransmit_hint(tp, skb);
849
850 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
851 tp->lost_out += tcp_skb_pcount(skb);
852 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
853 }
854 }
855
856 /* This procedure tags the retransmission queue when SACKs arrive.
857 *
858 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
859 * Packets in queue with these bits set are counted in variables
860 * sacked_out, retrans_out and lost_out, correspondingly.
861 *
862 * Valid combinations are:
863 * Tag InFlight Description
864 * 0 1 - orig segment is in flight.
865 * S 0 - nothing flies, orig reached receiver.
866 * L 0 - nothing flies, orig lost by net.
867 * R 2 - both orig and retransmit are in flight.
868 * L|R 1 - orig is lost, retransmit is in flight.
869 * S|R 1 - orig reached receiver, retrans is still in flight.
870 * (L|S|R is logically valid, it could occur when L|R is sacked,
871 * but it is equivalent to plain S and code short-curcuits it to S.
872 * L|S is logically invalid, it would mean -1 packet in flight 8))
873 *
874 * These 6 states form finite state machine, controlled by the following events:
875 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
876 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
877 * 3. Loss detection event of two flavors:
878 * A. Scoreboard estimator decided the packet is lost.
879 * A'. Reno "three dupacks" marks head of queue lost.
880 * A''. Its FACK modification, head until snd.fack is lost.
881 * B. SACK arrives sacking SND.NXT at the moment, when the
882 * segment was retransmitted.
883 * 4. D-SACK added new rule: D-SACK changes any tag to S.
884 *
885 * It is pleasant to note, that state diagram turns out to be commutative,
886 * so that we are allowed not to be bothered by order of our actions,
887 * when multiple events arrive simultaneously. (see the function below).
888 *
889 * Reordering detection.
890 * --------------------
891 * Reordering metric is maximal distance, which a packet can be displaced
892 * in packet stream. With SACKs we can estimate it:
893 *
894 * 1. SACK fills old hole and the corresponding segment was not
895 * ever retransmitted -> reordering. Alas, we cannot use it
896 * when segment was retransmitted.
897 * 2. The last flaw is solved with D-SACK. D-SACK arrives
898 * for retransmitted and already SACKed segment -> reordering..
899 * Both of these heuristics are not used in Loss state, when we cannot
900 * account for retransmits accurately.
901 *
902 * SACK block validation.
903 * ----------------------
904 *
905 * SACK block range validation checks that the received SACK block fits to
906 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
907 * Note that SND.UNA is not included to the range though being valid because
908 * it means that the receiver is rather inconsistent with itself reporting
909 * SACK reneging when it should advance SND.UNA. Such SACK block this is
910 * perfectly valid, however, in light of RFC2018 which explicitly states
911 * that "SACK block MUST reflect the newest segment. Even if the newest
912 * segment is going to be discarded ...", not that it looks very clever
913 * in case of head skb. Due to potentional receiver driven attacks, we
914 * choose to avoid immediate execution of a walk in write queue due to
915 * reneging and defer head skb's loss recovery to standard loss recovery
916 * procedure that will eventually trigger (nothing forbids us doing this).
917 *
918 * Implements also blockage to start_seq wrap-around. Problem lies in the
919 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
920 * there's no guarantee that it will be before snd_nxt (n). The problem
921 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
922 * wrap (s_w):
923 *
924 * <- outs wnd -> <- wrapzone ->
925 * u e n u_w e_w s n_w
926 * | | | | | | |
927 * |<------------+------+----- TCP seqno space --------------+---------->|
928 * ...-- <2^31 ->| |<--------...
929 * ...---- >2^31 ------>| |<--------...
930 *
931 * Current code wouldn't be vulnerable but it's better still to discard such
932 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
933 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
934 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
935 * equal to the ideal case (infinite seqno space without wrap caused issues).
936 *
937 * With D-SACK the lower bound is extended to cover sequence space below
938 * SND.UNA down to undo_marker, which is the last point of interest. Yet
939 * again, D-SACK block must not to go across snd_una (for the same reason as
940 * for the normal SACK blocks, explained above). But there all simplicity
941 * ends, TCP might receive valid D-SACKs below that. As long as they reside
942 * fully below undo_marker they do not affect behavior in anyway and can
943 * therefore be safely ignored. In rare cases (which are more or less
944 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
945 * fragmentation and packet reordering past skb's retransmission. To consider
946 * them correctly, the acceptable range must be extended even more though
947 * the exact amount is rather hard to quantify. However, tp->max_window can
948 * be used as an exaggerated estimate.
949 */
950 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
951 u32 start_seq, u32 end_seq)
952 {
953 /* Too far in future, or reversed (interpretation is ambiguous) */
954 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
955 return false;
956
957 /* Nasty start_seq wrap-around check (see comments above) */
958 if (!before(start_seq, tp->snd_nxt))
959 return false;
960
961 /* In outstanding window? ...This is valid exit for D-SACKs too.
962 * start_seq == snd_una is non-sensical (see comments above)
963 */
964 if (after(start_seq, tp->snd_una))
965 return true;
966
967 if (!is_dsack || !tp->undo_marker)
968 return false;
969
970 /* ...Then it's D-SACK, and must reside below snd_una completely */
971 if (after(end_seq, tp->snd_una))
972 return false;
973
974 if (!before(start_seq, tp->undo_marker))
975 return true;
976
977 /* Too old */
978 if (!after(end_seq, tp->undo_marker))
979 return false;
980
981 /* Undo_marker boundary crossing (overestimates a lot). Known already:
982 * start_seq < undo_marker and end_seq >= undo_marker.
983 */
984 return !before(start_seq, end_seq - tp->max_window);
985 }
986
987 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
988 * Event "B". Later note: FACK people cheated me again 8), we have to account
989 * for reordering! Ugly, but should help.
990 *
991 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
992 * less than what is now known to be received by the other end (derived from
993 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
994 * retransmitted skbs to avoid some costly processing per ACKs.
995 */
996 static void tcp_mark_lost_retrans(struct sock *sk)
997 {
998 const struct inet_connection_sock *icsk = inet_csk(sk);
999 struct tcp_sock *tp = tcp_sk(sk);
1000 struct sk_buff *skb;
1001 int cnt = 0;
1002 u32 new_low_seq = tp->snd_nxt;
1003 u32 received_upto = tcp_highest_sack_seq(tp);
1004
1005 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1006 !after(received_upto, tp->lost_retrans_low) ||
1007 icsk->icsk_ca_state != TCP_CA_Recovery)
1008 return;
1009
1010 tcp_for_write_queue(skb, sk) {
1011 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1012
1013 if (skb == tcp_send_head(sk))
1014 break;
1015 if (cnt == tp->retrans_out)
1016 break;
1017 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1018 continue;
1019
1020 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1021 continue;
1022
1023 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1024 * constraint here (see above) but figuring out that at
1025 * least tp->reordering SACK blocks reside between ack_seq
1026 * and received_upto is not easy task to do cheaply with
1027 * the available datastructures.
1028 *
1029 * Whether FACK should check here for tp->reordering segs
1030 * in-between one could argue for either way (it would be
1031 * rather simple to implement as we could count fack_count
1032 * during the walk and do tp->fackets_out - fack_count).
1033 */
1034 if (after(received_upto, ack_seq)) {
1035 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1036 tp->retrans_out -= tcp_skb_pcount(skb);
1037
1038 tcp_skb_mark_lost_uncond_verify(tp, skb);
1039 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1040 } else {
1041 if (before(ack_seq, new_low_seq))
1042 new_low_seq = ack_seq;
1043 cnt += tcp_skb_pcount(skb);
1044 }
1045 }
1046
1047 if (tp->retrans_out)
1048 tp->lost_retrans_low = new_low_seq;
1049 }
1050
1051 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1052 struct tcp_sack_block_wire *sp, int num_sacks,
1053 u32 prior_snd_una)
1054 {
1055 struct tcp_sock *tp = tcp_sk(sk);
1056 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1057 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1058 bool dup_sack = false;
1059
1060 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1061 dup_sack = true;
1062 tcp_dsack_seen(tp);
1063 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1064 } else if (num_sacks > 1) {
1065 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1066 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1067
1068 if (!after(end_seq_0, end_seq_1) &&
1069 !before(start_seq_0, start_seq_1)) {
1070 dup_sack = true;
1071 tcp_dsack_seen(tp);
1072 NET_INC_STATS_BH(sock_net(sk),
1073 LINUX_MIB_TCPDSACKOFORECV);
1074 }
1075 }
1076
1077 /* D-SACK for already forgotten data... Do dumb counting. */
1078 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1079 !after(end_seq_0, prior_snd_una) &&
1080 after(end_seq_0, tp->undo_marker))
1081 tp->undo_retrans--;
1082
1083 return dup_sack;
1084 }
1085
1086 struct tcp_sacktag_state {
1087 int reord;
1088 int fack_count;
1089 int flag;
1090 };
1091
1092 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1093 * the incoming SACK may not exactly match but we can find smaller MSS
1094 * aligned portion of it that matches. Therefore we might need to fragment
1095 * which may fail and creates some hassle (caller must handle error case
1096 * returns).
1097 *
1098 * FIXME: this could be merged to shift decision code
1099 */
1100 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1101 u32 start_seq, u32 end_seq)
1102 {
1103 int err;
1104 bool in_sack;
1105 unsigned int pkt_len;
1106 unsigned int mss;
1107
1108 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1109 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1110
1111 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1112 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1113 mss = tcp_skb_mss(skb);
1114 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1115
1116 if (!in_sack) {
1117 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1118 if (pkt_len < mss)
1119 pkt_len = mss;
1120 } else {
1121 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1122 if (pkt_len < mss)
1123 return -EINVAL;
1124 }
1125
1126 /* Round if necessary so that SACKs cover only full MSSes
1127 * and/or the remaining small portion (if present)
1128 */
1129 if (pkt_len > mss) {
1130 unsigned int new_len = (pkt_len / mss) * mss;
1131 if (!in_sack && new_len < pkt_len) {
1132 new_len += mss;
1133 if (new_len >= skb->len)
1134 return 0;
1135 }
1136 pkt_len = new_len;
1137 }
1138 err = tcp_fragment(sk, skb, pkt_len, mss);
1139 if (err < 0)
1140 return err;
1141 }
1142
1143 return in_sack;
1144 }
1145
1146 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1147 static u8 tcp_sacktag_one(struct sock *sk,
1148 struct tcp_sacktag_state *state, u8 sacked,
1149 u32 start_seq, u32 end_seq,
1150 bool dup_sack, int pcount)
1151 {
1152 struct tcp_sock *tp = tcp_sk(sk);
1153 int fack_count = state->fack_count;
1154
1155 /* Account D-SACK for retransmitted packet. */
1156 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1157 if (tp->undo_marker && tp->undo_retrans &&
1158 after(end_seq, tp->undo_marker))
1159 tp->undo_retrans--;
1160 if (sacked & TCPCB_SACKED_ACKED)
1161 state->reord = min(fack_count, state->reord);
1162 }
1163
1164 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1165 if (!after(end_seq, tp->snd_una))
1166 return sacked;
1167
1168 if (!(sacked & TCPCB_SACKED_ACKED)) {
1169 if (sacked & TCPCB_SACKED_RETRANS) {
1170 /* If the segment is not tagged as lost,
1171 * we do not clear RETRANS, believing
1172 * that retransmission is still in flight.
1173 */
1174 if (sacked & TCPCB_LOST) {
1175 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1176 tp->lost_out -= pcount;
1177 tp->retrans_out -= pcount;
1178 }
1179 } else {
1180 if (!(sacked & TCPCB_RETRANS)) {
1181 /* New sack for not retransmitted frame,
1182 * which was in hole. It is reordering.
1183 */
1184 if (before(start_seq,
1185 tcp_highest_sack_seq(tp)))
1186 state->reord = min(fack_count,
1187 state->reord);
1188 if (!after(end_seq, tp->high_seq))
1189 state->flag |= FLAG_ORIG_SACK_ACKED;
1190 }
1191
1192 if (sacked & TCPCB_LOST) {
1193 sacked &= ~TCPCB_LOST;
1194 tp->lost_out -= pcount;
1195 }
1196 }
1197
1198 sacked |= TCPCB_SACKED_ACKED;
1199 state->flag |= FLAG_DATA_SACKED;
1200 tp->sacked_out += pcount;
1201
1202 fack_count += pcount;
1203
1204 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1205 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1206 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1207 tp->lost_cnt_hint += pcount;
1208
1209 if (fack_count > tp->fackets_out)
1210 tp->fackets_out = fack_count;
1211 }
1212
1213 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1214 * frames and clear it. undo_retrans is decreased above, L|R frames
1215 * are accounted above as well.
1216 */
1217 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1218 sacked &= ~TCPCB_SACKED_RETRANS;
1219 tp->retrans_out -= pcount;
1220 }
1221
1222 return sacked;
1223 }
1224
1225 /* Shift newly-SACKed bytes from this skb to the immediately previous
1226 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1227 */
1228 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1229 struct tcp_sacktag_state *state,
1230 unsigned int pcount, int shifted, int mss,
1231 bool dup_sack)
1232 {
1233 struct tcp_sock *tp = tcp_sk(sk);
1234 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1235 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1236 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1237
1238 BUG_ON(!pcount);
1239
1240 /* Adjust counters and hints for the newly sacked sequence
1241 * range but discard the return value since prev is already
1242 * marked. We must tag the range first because the seq
1243 * advancement below implicitly advances
1244 * tcp_highest_sack_seq() when skb is highest_sack.
1245 */
1246 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1247 start_seq, end_seq, dup_sack, pcount);
1248
1249 if (skb == tp->lost_skb_hint)
1250 tp->lost_cnt_hint += pcount;
1251
1252 TCP_SKB_CB(prev)->end_seq += shifted;
1253 TCP_SKB_CB(skb)->seq += shifted;
1254
1255 skb_shinfo(prev)->gso_segs += pcount;
1256 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1257 skb_shinfo(skb)->gso_segs -= pcount;
1258
1259 /* When we're adding to gso_segs == 1, gso_size will be zero,
1260 * in theory this shouldn't be necessary but as long as DSACK
1261 * code can come after this skb later on it's better to keep
1262 * setting gso_size to something.
1263 */
1264 if (!skb_shinfo(prev)->gso_size) {
1265 skb_shinfo(prev)->gso_size = mss;
1266 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1267 }
1268
1269 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1270 if (skb_shinfo(skb)->gso_segs <= 1) {
1271 skb_shinfo(skb)->gso_size = 0;
1272 skb_shinfo(skb)->gso_type = 0;
1273 }
1274
1275 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1276 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1277
1278 if (skb->len > 0) {
1279 BUG_ON(!tcp_skb_pcount(skb));
1280 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1281 return false;
1282 }
1283
1284 /* Whole SKB was eaten :-) */
1285
1286 if (skb == tp->retransmit_skb_hint)
1287 tp->retransmit_skb_hint = prev;
1288 if (skb == tp->scoreboard_skb_hint)
1289 tp->scoreboard_skb_hint = prev;
1290 if (skb == tp->lost_skb_hint) {
1291 tp->lost_skb_hint = prev;
1292 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1293 }
1294
1295 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1296 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1297 TCP_SKB_CB(prev)->end_seq++;
1298
1299 if (skb == tcp_highest_sack(sk))
1300 tcp_advance_highest_sack(sk, skb);
1301
1302 tcp_unlink_write_queue(skb, sk);
1303 sk_wmem_free_skb(sk, skb);
1304
1305 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1306
1307 return true;
1308 }
1309
1310 /* I wish gso_size would have a bit more sane initialization than
1311 * something-or-zero which complicates things
1312 */
1313 static int tcp_skb_seglen(const struct sk_buff *skb)
1314 {
1315 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1316 }
1317
1318 /* Shifting pages past head area doesn't work */
1319 static int skb_can_shift(const struct sk_buff *skb)
1320 {
1321 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1322 }
1323
1324 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1325 * skb.
1326 */
1327 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1328 struct tcp_sacktag_state *state,
1329 u32 start_seq, u32 end_seq,
1330 bool dup_sack)
1331 {
1332 struct tcp_sock *tp = tcp_sk(sk);
1333 struct sk_buff *prev;
1334 int mss;
1335 int pcount = 0;
1336 int len;
1337 int in_sack;
1338
1339 if (!sk_can_gso(sk))
1340 goto fallback;
1341
1342 /* Normally R but no L won't result in plain S */
1343 if (!dup_sack &&
1344 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1345 goto fallback;
1346 if (!skb_can_shift(skb))
1347 goto fallback;
1348 /* This frame is about to be dropped (was ACKed). */
1349 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1350 goto fallback;
1351
1352 /* Can only happen with delayed DSACK + discard craziness */
1353 if (unlikely(skb == tcp_write_queue_head(sk)))
1354 goto fallback;
1355 prev = tcp_write_queue_prev(sk, skb);
1356
1357 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1358 goto fallback;
1359
1360 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1361 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1362
1363 if (in_sack) {
1364 len = skb->len;
1365 pcount = tcp_skb_pcount(skb);
1366 mss = tcp_skb_seglen(skb);
1367
1368 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1369 * drop this restriction as unnecessary
1370 */
1371 if (mss != tcp_skb_seglen(prev))
1372 goto fallback;
1373 } else {
1374 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1375 goto noop;
1376 /* CHECKME: This is non-MSS split case only?, this will
1377 * cause skipped skbs due to advancing loop btw, original
1378 * has that feature too
1379 */
1380 if (tcp_skb_pcount(skb) <= 1)
1381 goto noop;
1382
1383 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1384 if (!in_sack) {
1385 /* TODO: head merge to next could be attempted here
1386 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1387 * though it might not be worth of the additional hassle
1388 *
1389 * ...we can probably just fallback to what was done
1390 * previously. We could try merging non-SACKed ones
1391 * as well but it probably isn't going to buy off
1392 * because later SACKs might again split them, and
1393 * it would make skb timestamp tracking considerably
1394 * harder problem.
1395 */
1396 goto fallback;
1397 }
1398
1399 len = end_seq - TCP_SKB_CB(skb)->seq;
1400 BUG_ON(len < 0);
1401 BUG_ON(len > skb->len);
1402
1403 /* MSS boundaries should be honoured or else pcount will
1404 * severely break even though it makes things bit trickier.
1405 * Optimize common case to avoid most of the divides
1406 */
1407 mss = tcp_skb_mss(skb);
1408
1409 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1410 * drop this restriction as unnecessary
1411 */
1412 if (mss != tcp_skb_seglen(prev))
1413 goto fallback;
1414
1415 if (len == mss) {
1416 pcount = 1;
1417 } else if (len < mss) {
1418 goto noop;
1419 } else {
1420 pcount = len / mss;
1421 len = pcount * mss;
1422 }
1423 }
1424
1425 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1426 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1427 goto fallback;
1428
1429 if (!skb_shift(prev, skb, len))
1430 goto fallback;
1431 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1432 goto out;
1433
1434 /* Hole filled allows collapsing with the next as well, this is very
1435 * useful when hole on every nth skb pattern happens
1436 */
1437 if (prev == tcp_write_queue_tail(sk))
1438 goto out;
1439 skb = tcp_write_queue_next(sk, prev);
1440
1441 if (!skb_can_shift(skb) ||
1442 (skb == tcp_send_head(sk)) ||
1443 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1444 (mss != tcp_skb_seglen(skb)))
1445 goto out;
1446
1447 len = skb->len;
1448 if (skb_shift(prev, skb, len)) {
1449 pcount += tcp_skb_pcount(skb);
1450 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1451 }
1452
1453 out:
1454 state->fack_count += pcount;
1455 return prev;
1456
1457 noop:
1458 return skb;
1459
1460 fallback:
1461 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1462 return NULL;
1463 }
1464
1465 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1466 struct tcp_sack_block *next_dup,
1467 struct tcp_sacktag_state *state,
1468 u32 start_seq, u32 end_seq,
1469 bool dup_sack_in)
1470 {
1471 struct tcp_sock *tp = tcp_sk(sk);
1472 struct sk_buff *tmp;
1473
1474 tcp_for_write_queue_from(skb, sk) {
1475 int in_sack = 0;
1476 bool dup_sack = dup_sack_in;
1477
1478 if (skb == tcp_send_head(sk))
1479 break;
1480
1481 /* queue is in-order => we can short-circuit the walk early */
1482 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1483 break;
1484
1485 if ((next_dup != NULL) &&
1486 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1487 in_sack = tcp_match_skb_to_sack(sk, skb,
1488 next_dup->start_seq,
1489 next_dup->end_seq);
1490 if (in_sack > 0)
1491 dup_sack = true;
1492 }
1493
1494 /* skb reference here is a bit tricky to get right, since
1495 * shifting can eat and free both this skb and the next,
1496 * so not even _safe variant of the loop is enough.
1497 */
1498 if (in_sack <= 0) {
1499 tmp = tcp_shift_skb_data(sk, skb, state,
1500 start_seq, end_seq, dup_sack);
1501 if (tmp != NULL) {
1502 if (tmp != skb) {
1503 skb = tmp;
1504 continue;
1505 }
1506
1507 in_sack = 0;
1508 } else {
1509 in_sack = tcp_match_skb_to_sack(sk, skb,
1510 start_seq,
1511 end_seq);
1512 }
1513 }
1514
1515 if (unlikely(in_sack < 0))
1516 break;
1517
1518 if (in_sack) {
1519 TCP_SKB_CB(skb)->sacked =
1520 tcp_sacktag_one(sk,
1521 state,
1522 TCP_SKB_CB(skb)->sacked,
1523 TCP_SKB_CB(skb)->seq,
1524 TCP_SKB_CB(skb)->end_seq,
1525 dup_sack,
1526 tcp_skb_pcount(skb));
1527
1528 if (!before(TCP_SKB_CB(skb)->seq,
1529 tcp_highest_sack_seq(tp)))
1530 tcp_advance_highest_sack(sk, skb);
1531 }
1532
1533 state->fack_count += tcp_skb_pcount(skb);
1534 }
1535 return skb;
1536 }
1537
1538 /* Avoid all extra work that is being done by sacktag while walking in
1539 * a normal way
1540 */
1541 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1542 struct tcp_sacktag_state *state,
1543 u32 skip_to_seq)
1544 {
1545 tcp_for_write_queue_from(skb, sk) {
1546 if (skb == tcp_send_head(sk))
1547 break;
1548
1549 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1550 break;
1551
1552 state->fack_count += tcp_skb_pcount(skb);
1553 }
1554 return skb;
1555 }
1556
1557 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1558 struct sock *sk,
1559 struct tcp_sack_block *next_dup,
1560 struct tcp_sacktag_state *state,
1561 u32 skip_to_seq)
1562 {
1563 if (next_dup == NULL)
1564 return skb;
1565
1566 if (before(next_dup->start_seq, skip_to_seq)) {
1567 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1568 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1569 next_dup->start_seq, next_dup->end_seq,
1570 1);
1571 }
1572
1573 return skb;
1574 }
1575
1576 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1577 {
1578 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1579 }
1580
1581 static int
1582 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1583 u32 prior_snd_una)
1584 {
1585 struct tcp_sock *tp = tcp_sk(sk);
1586 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1587 TCP_SKB_CB(ack_skb)->sacked);
1588 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1589 struct tcp_sack_block sp[TCP_NUM_SACKS];
1590 struct tcp_sack_block *cache;
1591 struct tcp_sacktag_state state;
1592 struct sk_buff *skb;
1593 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1594 int used_sacks;
1595 bool found_dup_sack = false;
1596 int i, j;
1597 int first_sack_index;
1598
1599 state.flag = 0;
1600 state.reord = tp->packets_out;
1601
1602 if (!tp->sacked_out) {
1603 if (WARN_ON(tp->fackets_out))
1604 tp->fackets_out = 0;
1605 tcp_highest_sack_reset(sk);
1606 }
1607
1608 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1609 num_sacks, prior_snd_una);
1610 if (found_dup_sack)
1611 state.flag |= FLAG_DSACKING_ACK;
1612
1613 /* Eliminate too old ACKs, but take into
1614 * account more or less fresh ones, they can
1615 * contain valid SACK info.
1616 */
1617 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1618 return 0;
1619
1620 if (!tp->packets_out)
1621 goto out;
1622
1623 used_sacks = 0;
1624 first_sack_index = 0;
1625 for (i = 0; i < num_sacks; i++) {
1626 bool dup_sack = !i && found_dup_sack;
1627
1628 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1629 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1630
1631 if (!tcp_is_sackblock_valid(tp, dup_sack,
1632 sp[used_sacks].start_seq,
1633 sp[used_sacks].end_seq)) {
1634 int mib_idx;
1635
1636 if (dup_sack) {
1637 if (!tp->undo_marker)
1638 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1639 else
1640 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1641 } else {
1642 /* Don't count olds caused by ACK reordering */
1643 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1644 !after(sp[used_sacks].end_seq, tp->snd_una))
1645 continue;
1646 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1647 }
1648
1649 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1650 if (i == 0)
1651 first_sack_index = -1;
1652 continue;
1653 }
1654
1655 /* Ignore very old stuff early */
1656 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1657 continue;
1658
1659 used_sacks++;
1660 }
1661
1662 /* order SACK blocks to allow in order walk of the retrans queue */
1663 for (i = used_sacks - 1; i > 0; i--) {
1664 for (j = 0; j < i; j++) {
1665 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1666 swap(sp[j], sp[j + 1]);
1667
1668 /* Track where the first SACK block goes to */
1669 if (j == first_sack_index)
1670 first_sack_index = j + 1;
1671 }
1672 }
1673 }
1674
1675 skb = tcp_write_queue_head(sk);
1676 state.fack_count = 0;
1677 i = 0;
1678
1679 if (!tp->sacked_out) {
1680 /* It's already past, so skip checking against it */
1681 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1682 } else {
1683 cache = tp->recv_sack_cache;
1684 /* Skip empty blocks in at head of the cache */
1685 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1686 !cache->end_seq)
1687 cache++;
1688 }
1689
1690 while (i < used_sacks) {
1691 u32 start_seq = sp[i].start_seq;
1692 u32 end_seq = sp[i].end_seq;
1693 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1694 struct tcp_sack_block *next_dup = NULL;
1695
1696 if (found_dup_sack && ((i + 1) == first_sack_index))
1697 next_dup = &sp[i + 1];
1698
1699 /* Skip too early cached blocks */
1700 while (tcp_sack_cache_ok(tp, cache) &&
1701 !before(start_seq, cache->end_seq))
1702 cache++;
1703
1704 /* Can skip some work by looking recv_sack_cache? */
1705 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1706 after(end_seq, cache->start_seq)) {
1707
1708 /* Head todo? */
1709 if (before(start_seq, cache->start_seq)) {
1710 skb = tcp_sacktag_skip(skb, sk, &state,
1711 start_seq);
1712 skb = tcp_sacktag_walk(skb, sk, next_dup,
1713 &state,
1714 start_seq,
1715 cache->start_seq,
1716 dup_sack);
1717 }
1718
1719 /* Rest of the block already fully processed? */
1720 if (!after(end_seq, cache->end_seq))
1721 goto advance_sp;
1722
1723 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1724 &state,
1725 cache->end_seq);
1726
1727 /* ...tail remains todo... */
1728 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1729 /* ...but better entrypoint exists! */
1730 skb = tcp_highest_sack(sk);
1731 if (skb == NULL)
1732 break;
1733 state.fack_count = tp->fackets_out;
1734 cache++;
1735 goto walk;
1736 }
1737
1738 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1739 /* Check overlap against next cached too (past this one already) */
1740 cache++;
1741 continue;
1742 }
1743
1744 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1745 skb = tcp_highest_sack(sk);
1746 if (skb == NULL)
1747 break;
1748 state.fack_count = tp->fackets_out;
1749 }
1750 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1751
1752 walk:
1753 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1754 start_seq, end_seq, dup_sack);
1755
1756 advance_sp:
1757 i++;
1758 }
1759
1760 /* Clear the head of the cache sack blocks so we can skip it next time */
1761 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1762 tp->recv_sack_cache[i].start_seq = 0;
1763 tp->recv_sack_cache[i].end_seq = 0;
1764 }
1765 for (j = 0; j < used_sacks; j++)
1766 tp->recv_sack_cache[i++] = sp[j];
1767
1768 tcp_mark_lost_retrans(sk);
1769
1770 tcp_verify_left_out(tp);
1771
1772 if ((state.reord < tp->fackets_out) &&
1773 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1774 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1775
1776 out:
1777
1778 #if FASTRETRANS_DEBUG > 0
1779 WARN_ON((int)tp->sacked_out < 0);
1780 WARN_ON((int)tp->lost_out < 0);
1781 WARN_ON((int)tp->retrans_out < 0);
1782 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1783 #endif
1784 return state.flag;
1785 }
1786
1787 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1788 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1789 */
1790 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1791 {
1792 u32 holes;
1793
1794 holes = max(tp->lost_out, 1U);
1795 holes = min(holes, tp->packets_out);
1796
1797 if ((tp->sacked_out + holes) > tp->packets_out) {
1798 tp->sacked_out = tp->packets_out - holes;
1799 return true;
1800 }
1801 return false;
1802 }
1803
1804 /* If we receive more dupacks than we expected counting segments
1805 * in assumption of absent reordering, interpret this as reordering.
1806 * The only another reason could be bug in receiver TCP.
1807 */
1808 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1809 {
1810 struct tcp_sock *tp = tcp_sk(sk);
1811 if (tcp_limit_reno_sacked(tp))
1812 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1813 }
1814
1815 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1816
1817 static void tcp_add_reno_sack(struct sock *sk)
1818 {
1819 struct tcp_sock *tp = tcp_sk(sk);
1820 tp->sacked_out++;
1821 tcp_check_reno_reordering(sk, 0);
1822 tcp_verify_left_out(tp);
1823 }
1824
1825 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1826
1827 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1828 {
1829 struct tcp_sock *tp = tcp_sk(sk);
1830
1831 if (acked > 0) {
1832 /* One ACK acked hole. The rest eat duplicate ACKs. */
1833 if (acked - 1 >= tp->sacked_out)
1834 tp->sacked_out = 0;
1835 else
1836 tp->sacked_out -= acked - 1;
1837 }
1838 tcp_check_reno_reordering(sk, acked);
1839 tcp_verify_left_out(tp);
1840 }
1841
1842 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1843 {
1844 tp->sacked_out = 0;
1845 }
1846
1847 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1848 {
1849 tp->retrans_out = 0;
1850 tp->lost_out = 0;
1851
1852 tp->undo_marker = 0;
1853 tp->undo_retrans = 0;
1854 }
1855
1856 void tcp_clear_retrans(struct tcp_sock *tp)
1857 {
1858 tcp_clear_retrans_partial(tp);
1859
1860 tp->fackets_out = 0;
1861 tp->sacked_out = 0;
1862 }
1863
1864 /* Enter Loss state. If "how" is not zero, forget all SACK information
1865 * and reset tags completely, otherwise preserve SACKs. If receiver
1866 * dropped its ofo queue, we will know this due to reneging detection.
1867 */
1868 void tcp_enter_loss(struct sock *sk, int how)
1869 {
1870 const struct inet_connection_sock *icsk = inet_csk(sk);
1871 struct tcp_sock *tp = tcp_sk(sk);
1872 struct sk_buff *skb;
1873 bool new_recovery = false;
1874
1875 /* Reduce ssthresh if it has not yet been made inside this window. */
1876 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1877 !after(tp->high_seq, tp->snd_una) ||
1878 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1879 new_recovery = true;
1880 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1881 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1882 tcp_ca_event(sk, CA_EVENT_LOSS);
1883 }
1884 tp->snd_cwnd = 1;
1885 tp->snd_cwnd_cnt = 0;
1886 tp->snd_cwnd_stamp = tcp_time_stamp;
1887
1888 tcp_clear_retrans_partial(tp);
1889
1890 if (tcp_is_reno(tp))
1891 tcp_reset_reno_sack(tp);
1892
1893 tp->undo_marker = tp->snd_una;
1894 if (how) {
1895 tp->sacked_out = 0;
1896 tp->fackets_out = 0;
1897 }
1898 tcp_clear_all_retrans_hints(tp);
1899
1900 tcp_for_write_queue(skb, sk) {
1901 if (skb == tcp_send_head(sk))
1902 break;
1903
1904 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1905 tp->undo_marker = 0;
1906 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1907 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1908 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1909 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1910 tp->lost_out += tcp_skb_pcount(skb);
1911 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1912 }
1913 }
1914 tcp_verify_left_out(tp);
1915
1916 tp->reordering = min_t(unsigned int, tp->reordering,
1917 sysctl_tcp_reordering);
1918 tcp_set_ca_state(sk, TCP_CA_Loss);
1919 tp->high_seq = tp->snd_nxt;
1920 TCP_ECN_queue_cwr(tp);
1921
1922 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1923 * loss recovery is underway except recurring timeout(s) on
1924 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1925 */
1926 tp->frto = sysctl_tcp_frto &&
1927 (new_recovery || icsk->icsk_retransmits) &&
1928 !inet_csk(sk)->icsk_mtup.probe_size;
1929 }
1930
1931 /* If ACK arrived pointing to a remembered SACK, it means that our
1932 * remembered SACKs do not reflect real state of receiver i.e.
1933 * receiver _host_ is heavily congested (or buggy).
1934 *
1935 * Do processing similar to RTO timeout.
1936 */
1937 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1938 {
1939 if (flag & FLAG_SACK_RENEGING) {
1940 struct inet_connection_sock *icsk = inet_csk(sk);
1941 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1942
1943 tcp_enter_loss(sk, 1);
1944 icsk->icsk_retransmits++;
1945 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1946 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1947 icsk->icsk_rto, TCP_RTO_MAX);
1948 return true;
1949 }
1950 return false;
1951 }
1952
1953 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1954 {
1955 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1956 }
1957
1958 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1959 * counter when SACK is enabled (without SACK, sacked_out is used for
1960 * that purpose).
1961 *
1962 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1963 * segments up to the highest received SACK block so far and holes in
1964 * between them.
1965 *
1966 * With reordering, holes may still be in flight, so RFC3517 recovery
1967 * uses pure sacked_out (total number of SACKed segments) even though
1968 * it violates the RFC that uses duplicate ACKs, often these are equal
1969 * but when e.g. out-of-window ACKs or packet duplication occurs,
1970 * they differ. Since neither occurs due to loss, TCP should really
1971 * ignore them.
1972 */
1973 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1974 {
1975 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1976 }
1977
1978 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1979 {
1980 struct tcp_sock *tp = tcp_sk(sk);
1981 unsigned long delay;
1982
1983 /* Delay early retransmit and entering fast recovery for
1984 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1985 * available, or RTO is scheduled to fire first.
1986 */
1987 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
1988 (flag & FLAG_ECE) || !tp->srtt)
1989 return false;
1990
1991 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
1992 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
1993 return false;
1994
1995 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
1996 TCP_RTO_MAX);
1997 return true;
1998 }
1999
2000 static inline int tcp_skb_timedout(const struct sock *sk,
2001 const struct sk_buff *skb)
2002 {
2003 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2004 }
2005
2006 static inline int tcp_head_timedout(const struct sock *sk)
2007 {
2008 const struct tcp_sock *tp = tcp_sk(sk);
2009
2010 return tp->packets_out &&
2011 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2012 }
2013
2014 /* Linux NewReno/SACK/FACK/ECN state machine.
2015 * --------------------------------------
2016 *
2017 * "Open" Normal state, no dubious events, fast path.
2018 * "Disorder" In all the respects it is "Open",
2019 * but requires a bit more attention. It is entered when
2020 * we see some SACKs or dupacks. It is split of "Open"
2021 * mainly to move some processing from fast path to slow one.
2022 * "CWR" CWND was reduced due to some Congestion Notification event.
2023 * It can be ECN, ICMP source quench, local device congestion.
2024 * "Recovery" CWND was reduced, we are fast-retransmitting.
2025 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2026 *
2027 * tcp_fastretrans_alert() is entered:
2028 * - each incoming ACK, if state is not "Open"
2029 * - when arrived ACK is unusual, namely:
2030 * * SACK
2031 * * Duplicate ACK.
2032 * * ECN ECE.
2033 *
2034 * Counting packets in flight is pretty simple.
2035 *
2036 * in_flight = packets_out - left_out + retrans_out
2037 *
2038 * packets_out is SND.NXT-SND.UNA counted in packets.
2039 *
2040 * retrans_out is number of retransmitted segments.
2041 *
2042 * left_out is number of segments left network, but not ACKed yet.
2043 *
2044 * left_out = sacked_out + lost_out
2045 *
2046 * sacked_out: Packets, which arrived to receiver out of order
2047 * and hence not ACKed. With SACKs this number is simply
2048 * amount of SACKed data. Even without SACKs
2049 * it is easy to give pretty reliable estimate of this number,
2050 * counting duplicate ACKs.
2051 *
2052 * lost_out: Packets lost by network. TCP has no explicit
2053 * "loss notification" feedback from network (for now).
2054 * It means that this number can be only _guessed_.
2055 * Actually, it is the heuristics to predict lossage that
2056 * distinguishes different algorithms.
2057 *
2058 * F.e. after RTO, when all the queue is considered as lost,
2059 * lost_out = packets_out and in_flight = retrans_out.
2060 *
2061 * Essentially, we have now two algorithms counting
2062 * lost packets.
2063 *
2064 * FACK: It is the simplest heuristics. As soon as we decided
2065 * that something is lost, we decide that _all_ not SACKed
2066 * packets until the most forward SACK are lost. I.e.
2067 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2068 * It is absolutely correct estimate, if network does not reorder
2069 * packets. And it loses any connection to reality when reordering
2070 * takes place. We use FACK by default until reordering
2071 * is suspected on the path to this destination.
2072 *
2073 * NewReno: when Recovery is entered, we assume that one segment
2074 * is lost (classic Reno). While we are in Recovery and
2075 * a partial ACK arrives, we assume that one more packet
2076 * is lost (NewReno). This heuristics are the same in NewReno
2077 * and SACK.
2078 *
2079 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2080 * deflation etc. CWND is real congestion window, never inflated, changes
2081 * only according to classic VJ rules.
2082 *
2083 * Really tricky (and requiring careful tuning) part of algorithm
2084 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2085 * The first determines the moment _when_ we should reduce CWND and,
2086 * hence, slow down forward transmission. In fact, it determines the moment
2087 * when we decide that hole is caused by loss, rather than by a reorder.
2088 *
2089 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2090 * holes, caused by lost packets.
2091 *
2092 * And the most logically complicated part of algorithm is undo
2093 * heuristics. We detect false retransmits due to both too early
2094 * fast retransmit (reordering) and underestimated RTO, analyzing
2095 * timestamps and D-SACKs. When we detect that some segments were
2096 * retransmitted by mistake and CWND reduction was wrong, we undo
2097 * window reduction and abort recovery phase. This logic is hidden
2098 * inside several functions named tcp_try_undo_<something>.
2099 */
2100
2101 /* This function decides, when we should leave Disordered state
2102 * and enter Recovery phase, reducing congestion window.
2103 *
2104 * Main question: may we further continue forward transmission
2105 * with the same cwnd?
2106 */
2107 static bool tcp_time_to_recover(struct sock *sk, int flag)
2108 {
2109 struct tcp_sock *tp = tcp_sk(sk);
2110 __u32 packets_out;
2111
2112 /* Trick#1: The loss is proven. */
2113 if (tp->lost_out)
2114 return true;
2115
2116 /* Not-A-Trick#2 : Classic rule... */
2117 if (tcp_dupack_heuristics(tp) > tp->reordering)
2118 return true;
2119
2120 /* Trick#3 : when we use RFC2988 timer restart, fast
2121 * retransmit can be triggered by timeout of queue head.
2122 */
2123 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2124 return true;
2125
2126 /* Trick#4: It is still not OK... But will it be useful to delay
2127 * recovery more?
2128 */
2129 packets_out = tp->packets_out;
2130 if (packets_out <= tp->reordering &&
2131 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2132 !tcp_may_send_now(sk)) {
2133 /* We have nothing to send. This connection is limited
2134 * either by receiver window or by application.
2135 */
2136 return true;
2137 }
2138
2139 /* If a thin stream is detected, retransmit after first
2140 * received dupack. Employ only if SACK is supported in order
2141 * to avoid possible corner-case series of spurious retransmissions
2142 * Use only if there are no unsent data.
2143 */
2144 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2145 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2146 tcp_is_sack(tp) && !tcp_send_head(sk))
2147 return true;
2148
2149 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2150 * retransmissions due to small network reorderings, we implement
2151 * Mitigation A.3 in the RFC and delay the retransmission for a short
2152 * interval if appropriate.
2153 */
2154 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2155 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2156 !tcp_may_send_now(sk))
2157 return !tcp_pause_early_retransmit(sk, flag);
2158
2159 return false;
2160 }
2161
2162 /* New heuristics: it is possible only after we switched to restart timer
2163 * each time when something is ACKed. Hence, we can detect timed out packets
2164 * during fast retransmit without falling to slow start.
2165 *
2166 * Usefulness of this as is very questionable, since we should know which of
2167 * the segments is the next to timeout which is relatively expensive to find
2168 * in general case unless we add some data structure just for that. The
2169 * current approach certainly won't find the right one too often and when it
2170 * finally does find _something_ it usually marks large part of the window
2171 * right away (because a retransmission with a larger timestamp blocks the
2172 * loop from advancing). -ij
2173 */
2174 static void tcp_timeout_skbs(struct sock *sk)
2175 {
2176 struct tcp_sock *tp = tcp_sk(sk);
2177 struct sk_buff *skb;
2178
2179 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2180 return;
2181
2182 skb = tp->scoreboard_skb_hint;
2183 if (tp->scoreboard_skb_hint == NULL)
2184 skb = tcp_write_queue_head(sk);
2185
2186 tcp_for_write_queue_from(skb, sk) {
2187 if (skb == tcp_send_head(sk))
2188 break;
2189 if (!tcp_skb_timedout(sk, skb))
2190 break;
2191
2192 tcp_skb_mark_lost(tp, skb);
2193 }
2194
2195 tp->scoreboard_skb_hint = skb;
2196
2197 tcp_verify_left_out(tp);
2198 }
2199
2200 /* Detect loss in event "A" above by marking head of queue up as lost.
2201 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2202 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2203 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2204 * the maximum SACKed segments to pass before reaching this limit.
2205 */
2206 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2207 {
2208 struct tcp_sock *tp = tcp_sk(sk);
2209 struct sk_buff *skb;
2210 int cnt, oldcnt;
2211 int err;
2212 unsigned int mss;
2213 /* Use SACK to deduce losses of new sequences sent during recovery */
2214 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2215
2216 WARN_ON(packets > tp->packets_out);
2217 if (tp->lost_skb_hint) {
2218 skb = tp->lost_skb_hint;
2219 cnt = tp->lost_cnt_hint;
2220 /* Head already handled? */
2221 if (mark_head && skb != tcp_write_queue_head(sk))
2222 return;
2223 } else {
2224 skb = tcp_write_queue_head(sk);
2225 cnt = 0;
2226 }
2227
2228 tcp_for_write_queue_from(skb, sk) {
2229 if (skb == tcp_send_head(sk))
2230 break;
2231 /* TODO: do this better */
2232 /* this is not the most efficient way to do this... */
2233 tp->lost_skb_hint = skb;
2234 tp->lost_cnt_hint = cnt;
2235
2236 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2237 break;
2238
2239 oldcnt = cnt;
2240 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2241 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2242 cnt += tcp_skb_pcount(skb);
2243
2244 if (cnt > packets) {
2245 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2246 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2247 (oldcnt >= packets))
2248 break;
2249
2250 mss = skb_shinfo(skb)->gso_size;
2251 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2252 if (err < 0)
2253 break;
2254 cnt = packets;
2255 }
2256
2257 tcp_skb_mark_lost(tp, skb);
2258
2259 if (mark_head)
2260 break;
2261 }
2262 tcp_verify_left_out(tp);
2263 }
2264
2265 /* Account newly detected lost packet(s) */
2266
2267 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2268 {
2269 struct tcp_sock *tp = tcp_sk(sk);
2270
2271 if (tcp_is_reno(tp)) {
2272 tcp_mark_head_lost(sk, 1, 1);
2273 } else if (tcp_is_fack(tp)) {
2274 int lost = tp->fackets_out - tp->reordering;
2275 if (lost <= 0)
2276 lost = 1;
2277 tcp_mark_head_lost(sk, lost, 0);
2278 } else {
2279 int sacked_upto = tp->sacked_out - tp->reordering;
2280 if (sacked_upto >= 0)
2281 tcp_mark_head_lost(sk, sacked_upto, 0);
2282 else if (fast_rexmit)
2283 tcp_mark_head_lost(sk, 1, 1);
2284 }
2285
2286 tcp_timeout_skbs(sk);
2287 }
2288
2289 /* CWND moderation, preventing bursts due to too big ACKs
2290 * in dubious situations.
2291 */
2292 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2293 {
2294 tp->snd_cwnd = min(tp->snd_cwnd,
2295 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2296 tp->snd_cwnd_stamp = tcp_time_stamp;
2297 }
2298
2299 /* Nothing was retransmitted or returned timestamp is less
2300 * than timestamp of the first retransmission.
2301 */
2302 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2303 {
2304 return !tp->retrans_stamp ||
2305 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2306 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2307 }
2308
2309 /* Undo procedures. */
2310
2311 #if FASTRETRANS_DEBUG > 1
2312 static void DBGUNDO(struct sock *sk, const char *msg)
2313 {
2314 struct tcp_sock *tp = tcp_sk(sk);
2315 struct inet_sock *inet = inet_sk(sk);
2316
2317 if (sk->sk_family == AF_INET) {
2318 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2319 msg,
2320 &inet->inet_daddr, ntohs(inet->inet_dport),
2321 tp->snd_cwnd, tcp_left_out(tp),
2322 tp->snd_ssthresh, tp->prior_ssthresh,
2323 tp->packets_out);
2324 }
2325 #if IS_ENABLED(CONFIG_IPV6)
2326 else if (sk->sk_family == AF_INET6) {
2327 struct ipv6_pinfo *np = inet6_sk(sk);
2328 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2329 msg,
2330 &np->daddr, ntohs(inet->inet_dport),
2331 tp->snd_cwnd, tcp_left_out(tp),
2332 tp->snd_ssthresh, tp->prior_ssthresh,
2333 tp->packets_out);
2334 }
2335 #endif
2336 }
2337 #else
2338 #define DBGUNDO(x...) do { } while (0)
2339 #endif
2340
2341 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2342 {
2343 struct tcp_sock *tp = tcp_sk(sk);
2344
2345 if (tp->prior_ssthresh) {
2346 const struct inet_connection_sock *icsk = inet_csk(sk);
2347
2348 if (icsk->icsk_ca_ops->undo_cwnd)
2349 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2350 else
2351 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2352
2353 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2354 tp->snd_ssthresh = tp->prior_ssthresh;
2355 TCP_ECN_withdraw_cwr(tp);
2356 }
2357 } else {
2358 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2359 }
2360 tp->snd_cwnd_stamp = tcp_time_stamp;
2361 }
2362
2363 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2364 {
2365 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2366 }
2367
2368 /* People celebrate: "We love our President!" */
2369 static bool tcp_try_undo_recovery(struct sock *sk)
2370 {
2371 struct tcp_sock *tp = tcp_sk(sk);
2372
2373 if (tcp_may_undo(tp)) {
2374 int mib_idx;
2375
2376 /* Happy end! We did not retransmit anything
2377 * or our original transmission succeeded.
2378 */
2379 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2380 tcp_undo_cwr(sk, true);
2381 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2382 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2383 else
2384 mib_idx = LINUX_MIB_TCPFULLUNDO;
2385
2386 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2387 tp->undo_marker = 0;
2388 }
2389 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2390 /* Hold old state until something *above* high_seq
2391 * is ACKed. For Reno it is MUST to prevent false
2392 * fast retransmits (RFC2582). SACK TCP is safe. */
2393 tcp_moderate_cwnd(tp);
2394 return true;
2395 }
2396 tcp_set_ca_state(sk, TCP_CA_Open);
2397 return false;
2398 }
2399
2400 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2401 static void tcp_try_undo_dsack(struct sock *sk)
2402 {
2403 struct tcp_sock *tp = tcp_sk(sk);
2404
2405 if (tp->undo_marker && !tp->undo_retrans) {
2406 DBGUNDO(sk, "D-SACK");
2407 tcp_undo_cwr(sk, true);
2408 tp->undo_marker = 0;
2409 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2410 }
2411 }
2412
2413 /* We can clear retrans_stamp when there are no retransmissions in the
2414 * window. It would seem that it is trivially available for us in
2415 * tp->retrans_out, however, that kind of assumptions doesn't consider
2416 * what will happen if errors occur when sending retransmission for the
2417 * second time. ...It could the that such segment has only
2418 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2419 * the head skb is enough except for some reneging corner cases that
2420 * are not worth the effort.
2421 *
2422 * Main reason for all this complexity is the fact that connection dying
2423 * time now depends on the validity of the retrans_stamp, in particular,
2424 * that successive retransmissions of a segment must not advance
2425 * retrans_stamp under any conditions.
2426 */
2427 static bool tcp_any_retrans_done(const struct sock *sk)
2428 {
2429 const struct tcp_sock *tp = tcp_sk(sk);
2430 struct sk_buff *skb;
2431
2432 if (tp->retrans_out)
2433 return true;
2434
2435 skb = tcp_write_queue_head(sk);
2436 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2437 return true;
2438
2439 return false;
2440 }
2441
2442 /* Undo during fast recovery after partial ACK. */
2443
2444 static int tcp_try_undo_partial(struct sock *sk, int acked)
2445 {
2446 struct tcp_sock *tp = tcp_sk(sk);
2447 /* Partial ACK arrived. Force Hoe's retransmit. */
2448 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2449
2450 if (tcp_may_undo(tp)) {
2451 /* Plain luck! Hole if filled with delayed
2452 * packet, rather than with a retransmit.
2453 */
2454 if (!tcp_any_retrans_done(sk))
2455 tp->retrans_stamp = 0;
2456
2457 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2458
2459 DBGUNDO(sk, "Hoe");
2460 tcp_undo_cwr(sk, false);
2461 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2462
2463 /* So... Do not make Hoe's retransmit yet.
2464 * If the first packet was delayed, the rest
2465 * ones are most probably delayed as well.
2466 */
2467 failed = 0;
2468 }
2469 return failed;
2470 }
2471
2472 /* Undo during loss recovery after partial ACK or using F-RTO. */
2473 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2474 {
2475 struct tcp_sock *tp = tcp_sk(sk);
2476
2477 if (frto_undo || tcp_may_undo(tp)) {
2478 struct sk_buff *skb;
2479 tcp_for_write_queue(skb, sk) {
2480 if (skb == tcp_send_head(sk))
2481 break;
2482 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2483 }
2484
2485 tcp_clear_all_retrans_hints(tp);
2486
2487 DBGUNDO(sk, "partial loss");
2488 tp->lost_out = 0;
2489 tcp_undo_cwr(sk, true);
2490 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2491 if (frto_undo)
2492 NET_INC_STATS_BH(sock_net(sk),
2493 LINUX_MIB_TCPSPURIOUSRTOS);
2494 inet_csk(sk)->icsk_retransmits = 0;
2495 tp->undo_marker = 0;
2496 if (frto_undo || tcp_is_sack(tp))
2497 tcp_set_ca_state(sk, TCP_CA_Open);
2498 return true;
2499 }
2500 return false;
2501 }
2502
2503 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2504 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2505 * It computes the number of packets to send (sndcnt) based on packets newly
2506 * delivered:
2507 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2508 * cwnd reductions across a full RTT.
2509 * 2) If packets in flight is lower than ssthresh (such as due to excess
2510 * losses and/or application stalls), do not perform any further cwnd
2511 * reductions, but instead slow start up to ssthresh.
2512 */
2513 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2514 {
2515 struct tcp_sock *tp = tcp_sk(sk);
2516
2517 tp->high_seq = tp->snd_nxt;
2518 tp->tlp_high_seq = 0;
2519 tp->snd_cwnd_cnt = 0;
2520 tp->prior_cwnd = tp->snd_cwnd;
2521 tp->prr_delivered = 0;
2522 tp->prr_out = 0;
2523 if (set_ssthresh)
2524 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2525 TCP_ECN_queue_cwr(tp);
2526 }
2527
2528 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2529 int fast_rexmit)
2530 {
2531 struct tcp_sock *tp = tcp_sk(sk);
2532 int sndcnt = 0;
2533 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2534
2535 tp->prr_delivered += newly_acked_sacked;
2536 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2537 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2538 tp->prior_cwnd - 1;
2539 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2540 } else {
2541 sndcnt = min_t(int, delta,
2542 max_t(int, tp->prr_delivered - tp->prr_out,
2543 newly_acked_sacked) + 1);
2544 }
2545
2546 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2547 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2548 }
2549
2550 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2551 {
2552 struct tcp_sock *tp = tcp_sk(sk);
2553
2554 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2555 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2556 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2557 tp->snd_cwnd = tp->snd_ssthresh;
2558 tp->snd_cwnd_stamp = tcp_time_stamp;
2559 }
2560 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2561 }
2562
2563 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2564 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2565 {
2566 struct tcp_sock *tp = tcp_sk(sk);
2567
2568 tp->prior_ssthresh = 0;
2569 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2570 tp->undo_marker = 0;
2571 tcp_init_cwnd_reduction(sk, set_ssthresh);
2572 tcp_set_ca_state(sk, TCP_CA_CWR);
2573 }
2574 }
2575
2576 static void tcp_try_keep_open(struct sock *sk)
2577 {
2578 struct tcp_sock *tp = tcp_sk(sk);
2579 int state = TCP_CA_Open;
2580
2581 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2582 state = TCP_CA_Disorder;
2583
2584 if (inet_csk(sk)->icsk_ca_state != state) {
2585 tcp_set_ca_state(sk, state);
2586 tp->high_seq = tp->snd_nxt;
2587 }
2588 }
2589
2590 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2591 {
2592 struct tcp_sock *tp = tcp_sk(sk);
2593
2594 tcp_verify_left_out(tp);
2595
2596 if (!tcp_any_retrans_done(sk))
2597 tp->retrans_stamp = 0;
2598
2599 if (flag & FLAG_ECE)
2600 tcp_enter_cwr(sk, 1);
2601
2602 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2603 tcp_try_keep_open(sk);
2604 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2605 tcp_moderate_cwnd(tp);
2606 } else {
2607 tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2608 }
2609 }
2610
2611 static void tcp_mtup_probe_failed(struct sock *sk)
2612 {
2613 struct inet_connection_sock *icsk = inet_csk(sk);
2614
2615 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2616 icsk->icsk_mtup.probe_size = 0;
2617 }
2618
2619 static void tcp_mtup_probe_success(struct sock *sk)
2620 {
2621 struct tcp_sock *tp = tcp_sk(sk);
2622 struct inet_connection_sock *icsk = inet_csk(sk);
2623
2624 /* FIXME: breaks with very large cwnd */
2625 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2626 tp->snd_cwnd = tp->snd_cwnd *
2627 tcp_mss_to_mtu(sk, tp->mss_cache) /
2628 icsk->icsk_mtup.probe_size;
2629 tp->snd_cwnd_cnt = 0;
2630 tp->snd_cwnd_stamp = tcp_time_stamp;
2631 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2632
2633 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2634 icsk->icsk_mtup.probe_size = 0;
2635 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2636 }
2637
2638 /* Do a simple retransmit without using the backoff mechanisms in
2639 * tcp_timer. This is used for path mtu discovery.
2640 * The socket is already locked here.
2641 */
2642 void tcp_simple_retransmit(struct sock *sk)
2643 {
2644 const struct inet_connection_sock *icsk = inet_csk(sk);
2645 struct tcp_sock *tp = tcp_sk(sk);
2646 struct sk_buff *skb;
2647 unsigned int mss = tcp_current_mss(sk);
2648 u32 prior_lost = tp->lost_out;
2649
2650 tcp_for_write_queue(skb, sk) {
2651 if (skb == tcp_send_head(sk))
2652 break;
2653 if (tcp_skb_seglen(skb) > mss &&
2654 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2655 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2656 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2657 tp->retrans_out -= tcp_skb_pcount(skb);
2658 }
2659 tcp_skb_mark_lost_uncond_verify(tp, skb);
2660 }
2661 }
2662
2663 tcp_clear_retrans_hints_partial(tp);
2664
2665 if (prior_lost == tp->lost_out)
2666 return;
2667
2668 if (tcp_is_reno(tp))
2669 tcp_limit_reno_sacked(tp);
2670
2671 tcp_verify_left_out(tp);
2672
2673 /* Don't muck with the congestion window here.
2674 * Reason is that we do not increase amount of _data_
2675 * in network, but units changed and effective
2676 * cwnd/ssthresh really reduced now.
2677 */
2678 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2679 tp->high_seq = tp->snd_nxt;
2680 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2681 tp->prior_ssthresh = 0;
2682 tp->undo_marker = 0;
2683 tcp_set_ca_state(sk, TCP_CA_Loss);
2684 }
2685 tcp_xmit_retransmit_queue(sk);
2686 }
2687 EXPORT_SYMBOL(tcp_simple_retransmit);
2688
2689 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2690 {
2691 struct tcp_sock *tp = tcp_sk(sk);
2692 int mib_idx;
2693
2694 if (tcp_is_reno(tp))
2695 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2696 else
2697 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2698
2699 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2700
2701 tp->prior_ssthresh = 0;
2702 tp->undo_marker = tp->snd_una;
2703 tp->undo_retrans = tp->retrans_out;
2704
2705 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2706 if (!ece_ack)
2707 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2708 tcp_init_cwnd_reduction(sk, true);
2709 }
2710 tcp_set_ca_state(sk, TCP_CA_Recovery);
2711 }
2712
2713 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2714 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2715 */
2716 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2717 {
2718 struct inet_connection_sock *icsk = inet_csk(sk);
2719 struct tcp_sock *tp = tcp_sk(sk);
2720 bool recovered = !before(tp->snd_una, tp->high_seq);
2721
2722 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2723 /* Step 3.b. A timeout is spurious if not all data are
2724 * lost, i.e., never-retransmitted data are (s)acked.
2725 */
2726 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2727 return;
2728
2729 if (after(tp->snd_nxt, tp->high_seq) &&
2730 (flag & FLAG_DATA_SACKED || is_dupack)) {
2731 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2732 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2733 tp->high_seq = tp->snd_nxt;
2734 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2735 TCP_NAGLE_OFF);
2736 if (after(tp->snd_nxt, tp->high_seq))
2737 return; /* Step 2.b */
2738 tp->frto = 0;
2739 }
2740 }
2741
2742 if (recovered) {
2743 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2744 icsk->icsk_retransmits = 0;
2745 tcp_try_undo_recovery(sk);
2746 return;
2747 }
2748 if (flag & FLAG_DATA_ACKED)
2749 icsk->icsk_retransmits = 0;
2750 if (tcp_is_reno(tp)) {
2751 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2752 * delivered. Lower inflight to clock out (re)tranmissions.
2753 */
2754 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2755 tcp_add_reno_sack(sk);
2756 else if (flag & FLAG_SND_UNA_ADVANCED)
2757 tcp_reset_reno_sack(tp);
2758 }
2759 if (tcp_try_undo_loss(sk, false))
2760 return;
2761 tcp_xmit_retransmit_queue(sk);
2762 }
2763
2764 /* Process an event, which can update packets-in-flight not trivially.
2765 * Main goal of this function is to calculate new estimate for left_out,
2766 * taking into account both packets sitting in receiver's buffer and
2767 * packets lost by network.
2768 *
2769 * Besides that it does CWND reduction, when packet loss is detected
2770 * and changes state of machine.
2771 *
2772 * It does _not_ decide what to send, it is made in function
2773 * tcp_xmit_retransmit_queue().
2774 */
2775 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2776 int prior_sacked, int prior_packets,
2777 bool is_dupack, int flag)
2778 {
2779 struct inet_connection_sock *icsk = inet_csk(sk);
2780 struct tcp_sock *tp = tcp_sk(sk);
2781 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2782 (tcp_fackets_out(tp) > tp->reordering));
2783 int newly_acked_sacked = 0;
2784 int fast_rexmit = 0;
2785
2786 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2787 tp->sacked_out = 0;
2788 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2789 tp->fackets_out = 0;
2790
2791 /* Now state machine starts.
2792 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2793 if (flag & FLAG_ECE)
2794 tp->prior_ssthresh = 0;
2795
2796 /* B. In all the states check for reneging SACKs. */
2797 if (tcp_check_sack_reneging(sk, flag))
2798 return;
2799
2800 /* C. Check consistency of the current state. */
2801 tcp_verify_left_out(tp);
2802
2803 /* D. Check state exit conditions. State can be terminated
2804 * when high_seq is ACKed. */
2805 if (icsk->icsk_ca_state == TCP_CA_Open) {
2806 WARN_ON(tp->retrans_out != 0);
2807 tp->retrans_stamp = 0;
2808 } else if (!before(tp->snd_una, tp->high_seq)) {
2809 switch (icsk->icsk_ca_state) {
2810 case TCP_CA_CWR:
2811 /* CWR is to be held something *above* high_seq
2812 * is ACKed for CWR bit to reach receiver. */
2813 if (tp->snd_una != tp->high_seq) {
2814 tcp_end_cwnd_reduction(sk);
2815 tcp_set_ca_state(sk, TCP_CA_Open);
2816 }
2817 break;
2818
2819 case TCP_CA_Recovery:
2820 if (tcp_is_reno(tp))
2821 tcp_reset_reno_sack(tp);
2822 if (tcp_try_undo_recovery(sk))
2823 return;
2824 tcp_end_cwnd_reduction(sk);
2825 break;
2826 }
2827 }
2828
2829 /* E. Process state. */
2830 switch (icsk->icsk_ca_state) {
2831 case TCP_CA_Recovery:
2832 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2833 if (tcp_is_reno(tp) && is_dupack)
2834 tcp_add_reno_sack(sk);
2835 } else
2836 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2837 newly_acked_sacked = prior_packets - tp->packets_out +
2838 tp->sacked_out - prior_sacked;
2839 break;
2840 case TCP_CA_Loss:
2841 tcp_process_loss(sk, flag, is_dupack);
2842 if (icsk->icsk_ca_state != TCP_CA_Open)
2843 return;
2844 /* Fall through to processing in Open state. */
2845 default:
2846 if (tcp_is_reno(tp)) {
2847 if (flag & FLAG_SND_UNA_ADVANCED)
2848 tcp_reset_reno_sack(tp);
2849 if (is_dupack)
2850 tcp_add_reno_sack(sk);
2851 }
2852 newly_acked_sacked = prior_packets - tp->packets_out +
2853 tp->sacked_out - prior_sacked;
2854
2855 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2856 tcp_try_undo_dsack(sk);
2857
2858 if (!tcp_time_to_recover(sk, flag)) {
2859 tcp_try_to_open(sk, flag, newly_acked_sacked);
2860 return;
2861 }
2862
2863 /* MTU probe failure: don't reduce cwnd */
2864 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2865 icsk->icsk_mtup.probe_size &&
2866 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2867 tcp_mtup_probe_failed(sk);
2868 /* Restores the reduction we did in tcp_mtup_probe() */
2869 tp->snd_cwnd++;
2870 tcp_simple_retransmit(sk);
2871 return;
2872 }
2873
2874 /* Otherwise enter Recovery state */
2875 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2876 fast_rexmit = 1;
2877 }
2878
2879 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2880 tcp_update_scoreboard(sk, fast_rexmit);
2881 tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
2882 tcp_xmit_retransmit_queue(sk);
2883 }
2884
2885 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
2886 {
2887 tcp_rtt_estimator(sk, seq_rtt);
2888 tcp_set_rto(sk);
2889 inet_csk(sk)->icsk_backoff = 0;
2890 }
2891 EXPORT_SYMBOL(tcp_valid_rtt_meas);
2892
2893 /* Read draft-ietf-tcplw-high-performance before mucking
2894 * with this code. (Supersedes RFC1323)
2895 */
2896 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2897 {
2898 /* RTTM Rule: A TSecr value received in a segment is used to
2899 * update the averaged RTT measurement only if the segment
2900 * acknowledges some new data, i.e., only if it advances the
2901 * left edge of the send window.
2902 *
2903 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2904 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2905 *
2906 * Changed: reset backoff as soon as we see the first valid sample.
2907 * If we do not, we get strongly overestimated rto. With timestamps
2908 * samples are accepted even from very old segments: f.e., when rtt=1
2909 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2910 * answer arrives rto becomes 120 seconds! If at least one of segments
2911 * in window is lost... Voila. --ANK (010210)
2912 */
2913 struct tcp_sock *tp = tcp_sk(sk);
2914
2915 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2916 }
2917
2918 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2919 {
2920 /* We don't have a timestamp. Can only use
2921 * packets that are not retransmitted to determine
2922 * rtt estimates. Also, we must not reset the
2923 * backoff for rto until we get a non-retransmitted
2924 * packet. This allows us to deal with a situation
2925 * where the network delay has increased suddenly.
2926 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2927 */
2928
2929 if (flag & FLAG_RETRANS_DATA_ACKED)
2930 return;
2931
2932 tcp_valid_rtt_meas(sk, seq_rtt);
2933 }
2934
2935 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2936 const s32 seq_rtt)
2937 {
2938 const struct tcp_sock *tp = tcp_sk(sk);
2939 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2940 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2941 tcp_ack_saw_tstamp(sk, flag);
2942 else if (seq_rtt >= 0)
2943 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2944 }
2945
2946 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2947 {
2948 const struct inet_connection_sock *icsk = inet_csk(sk);
2949 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2950 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2951 }
2952
2953 /* Restart timer after forward progress on connection.
2954 * RFC2988 recommends to restart timer to now+rto.
2955 */
2956 void tcp_rearm_rto(struct sock *sk)
2957 {
2958 const struct inet_connection_sock *icsk = inet_csk(sk);
2959 struct tcp_sock *tp = tcp_sk(sk);
2960
2961 /* If the retrans timer is currently being used by Fast Open
2962 * for SYN-ACK retrans purpose, stay put.
2963 */
2964 if (tp->fastopen_rsk)
2965 return;
2966
2967 if (!tp->packets_out) {
2968 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2969 } else {
2970 u32 rto = inet_csk(sk)->icsk_rto;
2971 /* Offset the time elapsed after installing regular RTO */
2972 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2973 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2974 struct sk_buff *skb = tcp_write_queue_head(sk);
2975 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2976 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2977 /* delta may not be positive if the socket is locked
2978 * when the retrans timer fires and is rescheduled.
2979 */
2980 if (delta > 0)
2981 rto = delta;
2982 }
2983 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2984 TCP_RTO_MAX);
2985 }
2986 }
2987
2988 /* This function is called when the delayed ER timer fires. TCP enters
2989 * fast recovery and performs fast-retransmit.
2990 */
2991 void tcp_resume_early_retransmit(struct sock *sk)
2992 {
2993 struct tcp_sock *tp = tcp_sk(sk);
2994
2995 tcp_rearm_rto(sk);
2996
2997 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2998 if (!tp->do_early_retrans)
2999 return;
3000
3001 tcp_enter_recovery(sk, false);
3002 tcp_update_scoreboard(sk, 1);
3003 tcp_xmit_retransmit_queue(sk);
3004 }
3005
3006 /* If we get here, the whole TSO packet has not been acked. */
3007 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3008 {
3009 struct tcp_sock *tp = tcp_sk(sk);
3010 u32 packets_acked;
3011
3012 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3013
3014 packets_acked = tcp_skb_pcount(skb);
3015 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3016 return 0;
3017 packets_acked -= tcp_skb_pcount(skb);
3018
3019 if (packets_acked) {
3020 BUG_ON(tcp_skb_pcount(skb) == 0);
3021 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3022 }
3023
3024 return packets_acked;
3025 }
3026
3027 /* Remove acknowledged frames from the retransmission queue. If our packet
3028 * is before the ack sequence we can discard it as it's confirmed to have
3029 * arrived at the other end.
3030 */
3031 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3032 u32 prior_snd_una)
3033 {
3034 struct tcp_sock *tp = tcp_sk(sk);
3035 const struct inet_connection_sock *icsk = inet_csk(sk);
3036 struct sk_buff *skb;
3037 u32 now = tcp_time_stamp;
3038 int fully_acked = true;
3039 int flag = 0;
3040 u32 pkts_acked = 0;
3041 u32 reord = tp->packets_out;
3042 u32 prior_sacked = tp->sacked_out;
3043 s32 seq_rtt = -1;
3044 s32 ca_seq_rtt = -1;
3045 ktime_t last_ackt = net_invalid_timestamp();
3046
3047 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3048 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3049 u32 acked_pcount;
3050 u8 sacked = scb->sacked;
3051
3052 /* Determine how many packets and what bytes were acked, tso and else */
3053 if (after(scb->end_seq, tp->snd_una)) {
3054 if (tcp_skb_pcount(skb) == 1 ||
3055 !after(tp->snd_una, scb->seq))
3056 break;
3057
3058 acked_pcount = tcp_tso_acked(sk, skb);
3059 if (!acked_pcount)
3060 break;
3061
3062 fully_acked = false;
3063 } else {
3064 acked_pcount = tcp_skb_pcount(skb);
3065 }
3066
3067 if (sacked & TCPCB_RETRANS) {
3068 if (sacked & TCPCB_SACKED_RETRANS)
3069 tp->retrans_out -= acked_pcount;
3070 flag |= FLAG_RETRANS_DATA_ACKED;
3071 ca_seq_rtt = -1;
3072 seq_rtt = -1;
3073 } else {
3074 ca_seq_rtt = now - scb->when;
3075 last_ackt = skb->tstamp;
3076 if (seq_rtt < 0) {
3077 seq_rtt = ca_seq_rtt;
3078 }
3079 if (!(sacked & TCPCB_SACKED_ACKED))
3080 reord = min(pkts_acked, reord);
3081 if (!after(scb->end_seq, tp->high_seq))
3082 flag |= FLAG_ORIG_SACK_ACKED;
3083 }
3084
3085 if (sacked & TCPCB_SACKED_ACKED)
3086 tp->sacked_out -= acked_pcount;
3087 if (sacked & TCPCB_LOST)
3088 tp->lost_out -= acked_pcount;
3089
3090 tp->packets_out -= acked_pcount;
3091 pkts_acked += acked_pcount;
3092
3093 /* Initial outgoing SYN's get put onto the write_queue
3094 * just like anything else we transmit. It is not
3095 * true data, and if we misinform our callers that
3096 * this ACK acks real data, we will erroneously exit
3097 * connection startup slow start one packet too
3098 * quickly. This is severely frowned upon behavior.
3099 */
3100 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3101 flag |= FLAG_DATA_ACKED;
3102 } else {
3103 flag |= FLAG_SYN_ACKED;
3104 tp->retrans_stamp = 0;
3105 }
3106
3107 if (!fully_acked)
3108 break;
3109
3110 tcp_unlink_write_queue(skb, sk);
3111 sk_wmem_free_skb(sk, skb);
3112 tp->scoreboard_skb_hint = NULL;
3113 if (skb == tp->retransmit_skb_hint)
3114 tp->retransmit_skb_hint = NULL;
3115 if (skb == tp->lost_skb_hint)
3116 tp->lost_skb_hint = NULL;
3117 }
3118
3119 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3120 tp->snd_up = tp->snd_una;
3121
3122 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3123 flag |= FLAG_SACK_RENEGING;
3124
3125 if (flag & FLAG_ACKED) {
3126 const struct tcp_congestion_ops *ca_ops
3127 = inet_csk(sk)->icsk_ca_ops;
3128
3129 if (unlikely(icsk->icsk_mtup.probe_size &&
3130 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3131 tcp_mtup_probe_success(sk);
3132 }
3133
3134 tcp_ack_update_rtt(sk, flag, seq_rtt);
3135 tcp_rearm_rto(sk);
3136
3137 if (tcp_is_reno(tp)) {
3138 tcp_remove_reno_sacks(sk, pkts_acked);
3139 } else {
3140 int delta;
3141
3142 /* Non-retransmitted hole got filled? That's reordering */
3143 if (reord < prior_fackets)
3144 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3145
3146 delta = tcp_is_fack(tp) ? pkts_acked :
3147 prior_sacked - tp->sacked_out;
3148 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3149 }
3150
3151 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3152
3153 if (ca_ops->pkts_acked) {
3154 s32 rtt_us = -1;
3155
3156 /* Is the ACK triggering packet unambiguous? */
3157 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3158 /* High resolution needed and available? */
3159 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3160 !ktime_equal(last_ackt,
3161 net_invalid_timestamp()))
3162 rtt_us = ktime_us_delta(ktime_get_real(),
3163 last_ackt);
3164 else if (ca_seq_rtt >= 0)
3165 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3166 }
3167
3168 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3169 }
3170 }
3171
3172 #if FASTRETRANS_DEBUG > 0
3173 WARN_ON((int)tp->sacked_out < 0);
3174 WARN_ON((int)tp->lost_out < 0);
3175 WARN_ON((int)tp->retrans_out < 0);
3176 if (!tp->packets_out && tcp_is_sack(tp)) {
3177 icsk = inet_csk(sk);
3178 if (tp->lost_out) {
3179 pr_debug("Leak l=%u %d\n",
3180 tp->lost_out, icsk->icsk_ca_state);
3181 tp->lost_out = 0;
3182 }
3183 if (tp->sacked_out) {
3184 pr_debug("Leak s=%u %d\n",
3185 tp->sacked_out, icsk->icsk_ca_state);
3186 tp->sacked_out = 0;
3187 }
3188 if (tp->retrans_out) {
3189 pr_debug("Leak r=%u %d\n",
3190 tp->retrans_out, icsk->icsk_ca_state);
3191 tp->retrans_out = 0;
3192 }
3193 }
3194 #endif
3195 return flag;
3196 }
3197
3198 static void tcp_ack_probe(struct sock *sk)
3199 {
3200 const struct tcp_sock *tp = tcp_sk(sk);
3201 struct inet_connection_sock *icsk = inet_csk(sk);
3202
3203 /* Was it a usable window open? */
3204
3205 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3206 icsk->icsk_backoff = 0;
3207 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3208 /* Socket must be waked up by subsequent tcp_data_snd_check().
3209 * This function is not for random using!
3210 */
3211 } else {
3212 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3213 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3214 TCP_RTO_MAX);
3215 }
3216 }
3217
3218 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3219 {
3220 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3221 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3222 }
3223
3224 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3225 {
3226 const struct tcp_sock *tp = tcp_sk(sk);
3227 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3228 !tcp_in_cwnd_reduction(sk);
3229 }
3230
3231 /* Check that window update is acceptable.
3232 * The function assumes that snd_una<=ack<=snd_next.
3233 */
3234 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3235 const u32 ack, const u32 ack_seq,
3236 const u32 nwin)
3237 {
3238 return after(ack, tp->snd_una) ||
3239 after(ack_seq, tp->snd_wl1) ||
3240 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3241 }
3242
3243 /* Update our send window.
3244 *
3245 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3246 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3247 */
3248 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3249 u32 ack_seq)
3250 {
3251 struct tcp_sock *tp = tcp_sk(sk);
3252 int flag = 0;
3253 u32 nwin = ntohs(tcp_hdr(skb)->window);
3254
3255 if (likely(!tcp_hdr(skb)->syn))
3256 nwin <<= tp->rx_opt.snd_wscale;
3257
3258 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3259 flag |= FLAG_WIN_UPDATE;
3260 tcp_update_wl(tp, ack_seq);
3261
3262 if (tp->snd_wnd != nwin) {
3263 tp->snd_wnd = nwin;
3264
3265 /* Note, it is the only place, where
3266 * fast path is recovered for sending TCP.
3267 */
3268 tp->pred_flags = 0;
3269 tcp_fast_path_check(sk);
3270
3271 if (nwin > tp->max_window) {
3272 tp->max_window = nwin;
3273 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3274 }
3275 }
3276 }
3277
3278 tp->snd_una = ack;
3279
3280 return flag;
3281 }
3282
3283 /* RFC 5961 7 [ACK Throttling] */
3284 static void tcp_send_challenge_ack(struct sock *sk)
3285 {
3286 /* unprotected vars, we dont care of overwrites */
3287 static u32 challenge_timestamp;
3288 static unsigned int challenge_count;
3289 u32 now = jiffies / HZ;
3290
3291 if (now != challenge_timestamp) {
3292 challenge_timestamp = now;
3293 challenge_count = 0;
3294 }
3295 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3296 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3297 tcp_send_ack(sk);
3298 }
3299 }
3300
3301 static void tcp_store_ts_recent(struct tcp_sock *tp)
3302 {
3303 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3304 tp->rx_opt.ts_recent_stamp = get_seconds();
3305 }
3306
3307 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3308 {
3309 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3310 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3311 * extra check below makes sure this can only happen
3312 * for pure ACK frames. -DaveM
3313 *
3314 * Not only, also it occurs for expired timestamps.
3315 */
3316
3317 if (tcp_paws_check(&tp->rx_opt, 0))
3318 tcp_store_ts_recent(tp);
3319 }
3320 }
3321
3322 /* This routine deals with acks during a TLP episode.
3323 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3324 */
3325 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3326 {
3327 struct tcp_sock *tp = tcp_sk(sk);
3328 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3329 !(flag & (FLAG_SND_UNA_ADVANCED |
3330 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3331
3332 /* Mark the end of TLP episode on receiving TLP dupack or when
3333 * ack is after tlp_high_seq.
3334 */
3335 if (is_tlp_dupack) {
3336 tp->tlp_high_seq = 0;
3337 return;
3338 }
3339
3340 if (after(ack, tp->tlp_high_seq)) {
3341 tp->tlp_high_seq = 0;
3342 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3343 if (!(flag & FLAG_DSACKING_ACK)) {
3344 tcp_init_cwnd_reduction(sk, true);
3345 tcp_set_ca_state(sk, TCP_CA_CWR);
3346 tcp_end_cwnd_reduction(sk);
3347 tcp_try_keep_open(sk);
3348 NET_INC_STATS_BH(sock_net(sk),
3349 LINUX_MIB_TCPLOSSPROBERECOVERY);
3350 }
3351 }
3352 }
3353
3354 /* This routine deals with incoming acks, but not outgoing ones. */
3355 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3356 {
3357 struct inet_connection_sock *icsk = inet_csk(sk);
3358 struct tcp_sock *tp = tcp_sk(sk);
3359 u32 prior_snd_una = tp->snd_una;
3360 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3361 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3362 bool is_dupack = false;
3363 u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt;
3364 u32 prior_fackets;
3365 int prior_packets = tp->packets_out;
3366 int prior_sacked = tp->sacked_out;
3367 int pkts_acked = 0;
3368 int previous_packets_out = 0;
3369
3370 /* If the ack is older than previous acks
3371 * then we can probably ignore it.
3372 */
3373 if (before(ack, prior_snd_una)) {
3374 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3375 if (before(ack, prior_snd_una - tp->max_window)) {
3376 tcp_send_challenge_ack(sk);
3377 return -1;
3378 }
3379 goto old_ack;
3380 }
3381
3382 /* If the ack includes data we haven't sent yet, discard
3383 * this segment (RFC793 Section 3.9).
3384 */
3385 if (after(ack, tp->snd_nxt))
3386 goto invalid_ack;
3387
3388 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3389 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3390 tcp_rearm_rto(sk);
3391
3392 if (after(ack, prior_snd_una))
3393 flag |= FLAG_SND_UNA_ADVANCED;
3394
3395 prior_fackets = tp->fackets_out;
3396 prior_in_flight = tcp_packets_in_flight(tp);
3397
3398 /* ts_recent update must be made after we are sure that the packet
3399 * is in window.
3400 */
3401 if (flag & FLAG_UPDATE_TS_RECENT)
3402 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3403
3404 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3405 /* Window is constant, pure forward advance.
3406 * No more checks are required.
3407 * Note, we use the fact that SND.UNA>=SND.WL2.
3408 */
3409 tcp_update_wl(tp, ack_seq);
3410 tp->snd_una = ack;
3411 flag |= FLAG_WIN_UPDATE;
3412
3413 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3414
3415 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3416 } else {
3417 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3418 flag |= FLAG_DATA;
3419 else
3420 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3421
3422 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3423
3424 if (TCP_SKB_CB(skb)->sacked)
3425 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3426
3427 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3428 flag |= FLAG_ECE;
3429
3430 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3431 }
3432
3433 /* We passed data and got it acked, remove any soft error
3434 * log. Something worked...
3435 */
3436 sk->sk_err_soft = 0;
3437 icsk->icsk_probes_out = 0;
3438 tp->rcv_tstamp = tcp_time_stamp;
3439 if (!prior_packets)
3440 goto no_queue;
3441
3442 /* See if we can take anything off of the retransmit queue. */
3443 previous_packets_out = tp->packets_out;
3444 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3445
3446 pkts_acked = previous_packets_out - tp->packets_out;
3447
3448 if (tcp_ack_is_dubious(sk, flag)) {
3449 /* Advance CWND, if state allows this. */
3450 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
3451 tcp_cong_avoid(sk, ack, prior_in_flight);
3452 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3453 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3454 prior_packets, is_dupack, flag);
3455 } else {
3456 if (flag & FLAG_DATA_ACKED)
3457 tcp_cong_avoid(sk, ack, prior_in_flight);
3458 }
3459
3460 if (tp->tlp_high_seq)
3461 tcp_process_tlp_ack(sk, ack, flag);
3462
3463 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3464 struct dst_entry *dst = __sk_dst_get(sk);
3465 if (dst)
3466 dst_confirm(dst);
3467 }
3468
3469 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3470 tcp_schedule_loss_probe(sk);
3471 if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd)
3472 tcp_update_pacing_rate(sk);
3473 return 1;
3474
3475 no_queue:
3476 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3477 if (flag & FLAG_DSACKING_ACK)
3478 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3479 prior_packets, is_dupack, flag);
3480 /* If this ack opens up a zero window, clear backoff. It was
3481 * being used to time the probes, and is probably far higher than
3482 * it needs to be for normal retransmission.
3483 */
3484 if (tcp_send_head(sk))
3485 tcp_ack_probe(sk);
3486
3487 if (tp->tlp_high_seq)
3488 tcp_process_tlp_ack(sk, ack, flag);
3489 return 1;
3490
3491 invalid_ack:
3492 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3493 return -1;
3494
3495 old_ack:
3496 /* If data was SACKed, tag it and see if we should send more data.
3497 * If data was DSACKed, see if we can undo a cwnd reduction.
3498 */
3499 if (TCP_SKB_CB(skb)->sacked) {
3500 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3501 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3502 prior_packets, is_dupack, flag);
3503 }
3504
3505 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3506 return 0;
3507 }
3508
3509 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3510 * But, this can also be called on packets in the established flow when
3511 * the fast version below fails.
3512 */
3513 void tcp_parse_options(const struct sk_buff *skb,
3514 struct tcp_options_received *opt_rx, int estab,
3515 struct tcp_fastopen_cookie *foc)
3516 {
3517 const unsigned char *ptr;
3518 const struct tcphdr *th = tcp_hdr(skb);
3519 int length = (th->doff * 4) - sizeof(struct tcphdr);
3520
3521 ptr = (const unsigned char *)(th + 1);
3522 opt_rx->saw_tstamp = 0;
3523
3524 while (length > 0) {
3525 int opcode = *ptr++;
3526 int opsize;
3527
3528 switch (opcode) {
3529 case TCPOPT_EOL:
3530 return;
3531 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3532 length--;
3533 continue;
3534 default:
3535 opsize = *ptr++;
3536 if (opsize < 2) /* "silly options" */
3537 return;
3538 if (opsize > length)
3539 return; /* don't parse partial options */
3540 switch (opcode) {
3541 case TCPOPT_MSS:
3542 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3543 u16 in_mss = get_unaligned_be16(ptr);
3544 if (in_mss) {
3545 if (opt_rx->user_mss &&
3546 opt_rx->user_mss < in_mss)
3547 in_mss = opt_rx->user_mss;
3548 opt_rx->mss_clamp = in_mss;
3549 }
3550 }
3551 break;
3552 case TCPOPT_WINDOW:
3553 if (opsize == TCPOLEN_WINDOW && th->syn &&
3554 !estab && sysctl_tcp_window_scaling) {
3555 __u8 snd_wscale = *(__u8 *)ptr;
3556 opt_rx->wscale_ok = 1;
3557 if (snd_wscale > 14) {
3558 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3559 __func__,
3560 snd_wscale);
3561 snd_wscale = 14;
3562 }
3563 opt_rx->snd_wscale = snd_wscale;
3564 }
3565 break;
3566 case TCPOPT_TIMESTAMP:
3567 if ((opsize == TCPOLEN_TIMESTAMP) &&
3568 ((estab && opt_rx->tstamp_ok) ||
3569 (!estab && sysctl_tcp_timestamps))) {
3570 opt_rx->saw_tstamp = 1;
3571 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3572 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3573 }
3574 break;
3575 case TCPOPT_SACK_PERM:
3576 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3577 !estab && sysctl_tcp_sack) {
3578 opt_rx->sack_ok = TCP_SACK_SEEN;
3579 tcp_sack_reset(opt_rx);
3580 }
3581 break;
3582
3583 case TCPOPT_SACK:
3584 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3585 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3586 opt_rx->sack_ok) {
3587 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3588 }
3589 break;
3590 #ifdef CONFIG_TCP_MD5SIG
3591 case TCPOPT_MD5SIG:
3592 /*
3593 * The MD5 Hash has already been
3594 * checked (see tcp_v{4,6}_do_rcv()).
3595 */
3596 break;
3597 #endif
3598 case TCPOPT_EXP:
3599 /* Fast Open option shares code 254 using a
3600 * 16 bits magic number. It's valid only in
3601 * SYN or SYN-ACK with an even size.
3602 */
3603 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3604 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3605 foc == NULL || !th->syn || (opsize & 1))
3606 break;
3607 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3608 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3609 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3610 memcpy(foc->val, ptr + 2, foc->len);
3611 else if (foc->len != 0)
3612 foc->len = -1;
3613 break;
3614
3615 }
3616 ptr += opsize-2;
3617 length -= opsize;
3618 }
3619 }
3620 }
3621 EXPORT_SYMBOL(tcp_parse_options);
3622
3623 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3624 {
3625 const __be32 *ptr = (const __be32 *)(th + 1);
3626
3627 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3628 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3629 tp->rx_opt.saw_tstamp = 1;
3630 ++ptr;
3631 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3632 ++ptr;
3633 if (*ptr)
3634 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3635 else
3636 tp->rx_opt.rcv_tsecr = 0;
3637 return true;
3638 }
3639 return false;
3640 }
3641
3642 /* Fast parse options. This hopes to only see timestamps.
3643 * If it is wrong it falls back on tcp_parse_options().
3644 */
3645 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3646 const struct tcphdr *th, struct tcp_sock *tp)
3647 {
3648 /* In the spirit of fast parsing, compare doff directly to constant
3649 * values. Because equality is used, short doff can be ignored here.
3650 */
3651 if (th->doff == (sizeof(*th) / 4)) {
3652 tp->rx_opt.saw_tstamp = 0;
3653 return false;
3654 } else if (tp->rx_opt.tstamp_ok &&
3655 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3656 if (tcp_parse_aligned_timestamp(tp, th))
3657 return true;
3658 }
3659
3660 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3661 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3662 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3663
3664 return true;
3665 }
3666
3667 #ifdef CONFIG_TCP_MD5SIG
3668 /*
3669 * Parse MD5 Signature option
3670 */
3671 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3672 {
3673 int length = (th->doff << 2) - sizeof(*th);
3674 const u8 *ptr = (const u8 *)(th + 1);
3675
3676 /* If the TCP option is too short, we can short cut */
3677 if (length < TCPOLEN_MD5SIG)
3678 return NULL;
3679
3680 while (length > 0) {
3681 int opcode = *ptr++;
3682 int opsize;
3683
3684 switch(opcode) {
3685 case TCPOPT_EOL:
3686 return NULL;
3687 case TCPOPT_NOP:
3688 length--;
3689 continue;
3690 default:
3691 opsize = *ptr++;
3692 if (opsize < 2 || opsize > length)
3693 return NULL;
3694 if (opcode == TCPOPT_MD5SIG)
3695 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3696 }
3697 ptr += opsize - 2;
3698 length -= opsize;
3699 }
3700 return NULL;
3701 }
3702 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3703 #endif
3704
3705 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3706 *
3707 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3708 * it can pass through stack. So, the following predicate verifies that
3709 * this segment is not used for anything but congestion avoidance or
3710 * fast retransmit. Moreover, we even are able to eliminate most of such
3711 * second order effects, if we apply some small "replay" window (~RTO)
3712 * to timestamp space.
3713 *
3714 * All these measures still do not guarantee that we reject wrapped ACKs
3715 * on networks with high bandwidth, when sequence space is recycled fastly,
3716 * but it guarantees that such events will be very rare and do not affect
3717 * connection seriously. This doesn't look nice, but alas, PAWS is really
3718 * buggy extension.
3719 *
3720 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3721 * states that events when retransmit arrives after original data are rare.
3722 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3723 * the biggest problem on large power networks even with minor reordering.
3724 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3725 * up to bandwidth of 18Gigabit/sec. 8) ]
3726 */
3727
3728 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3729 {
3730 const struct tcp_sock *tp = tcp_sk(sk);
3731 const struct tcphdr *th = tcp_hdr(skb);
3732 u32 seq = TCP_SKB_CB(skb)->seq;
3733 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3734
3735 return (/* 1. Pure ACK with correct sequence number. */
3736 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3737
3738 /* 2. ... and duplicate ACK. */
3739 ack == tp->snd_una &&
3740
3741 /* 3. ... and does not update window. */
3742 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3743
3744 /* 4. ... and sits in replay window. */
3745 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3746 }
3747
3748 static inline bool tcp_paws_discard(const struct sock *sk,
3749 const struct sk_buff *skb)
3750 {
3751 const struct tcp_sock *tp = tcp_sk(sk);
3752
3753 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3754 !tcp_disordered_ack(sk, skb);
3755 }
3756
3757 /* Check segment sequence number for validity.
3758 *
3759 * Segment controls are considered valid, if the segment
3760 * fits to the window after truncation to the window. Acceptability
3761 * of data (and SYN, FIN, of course) is checked separately.
3762 * See tcp_data_queue(), for example.
3763 *
3764 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3765 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3766 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3767 * (borrowed from freebsd)
3768 */
3769
3770 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3771 {
3772 return !before(end_seq, tp->rcv_wup) &&
3773 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3774 }
3775
3776 /* When we get a reset we do this. */
3777 void tcp_reset(struct sock *sk)
3778 {
3779 /* We want the right error as BSD sees it (and indeed as we do). */
3780 switch (sk->sk_state) {
3781 case TCP_SYN_SENT:
3782 sk->sk_err = ECONNREFUSED;
3783 break;
3784 case TCP_CLOSE_WAIT:
3785 sk->sk_err = EPIPE;
3786 break;
3787 case TCP_CLOSE:
3788 return;
3789 default:
3790 sk->sk_err = ECONNRESET;
3791 }
3792 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3793 smp_wmb();
3794
3795 if (!sock_flag(sk, SOCK_DEAD))
3796 sk->sk_error_report(sk);
3797
3798 tcp_done(sk);
3799 }
3800
3801 /*
3802 * Process the FIN bit. This now behaves as it is supposed to work
3803 * and the FIN takes effect when it is validly part of sequence
3804 * space. Not before when we get holes.
3805 *
3806 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3807 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3808 * TIME-WAIT)
3809 *
3810 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3811 * close and we go into CLOSING (and later onto TIME-WAIT)
3812 *
3813 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3814 */
3815 static void tcp_fin(struct sock *sk)
3816 {
3817 struct tcp_sock *tp = tcp_sk(sk);
3818
3819 inet_csk_schedule_ack(sk);
3820
3821 sk->sk_shutdown |= RCV_SHUTDOWN;
3822 sock_set_flag(sk, SOCK_DONE);
3823
3824 switch (sk->sk_state) {
3825 case TCP_SYN_RECV:
3826 case TCP_ESTABLISHED:
3827 /* Move to CLOSE_WAIT */
3828 tcp_set_state(sk, TCP_CLOSE_WAIT);
3829 inet_csk(sk)->icsk_ack.pingpong = 1;
3830 break;
3831
3832 case TCP_CLOSE_WAIT:
3833 case TCP_CLOSING:
3834 /* Received a retransmission of the FIN, do
3835 * nothing.
3836 */
3837 break;
3838 case TCP_LAST_ACK:
3839 /* RFC793: Remain in the LAST-ACK state. */
3840 break;
3841
3842 case TCP_FIN_WAIT1:
3843 /* This case occurs when a simultaneous close
3844 * happens, we must ack the received FIN and
3845 * enter the CLOSING state.
3846 */
3847 tcp_send_ack(sk);
3848 tcp_set_state(sk, TCP_CLOSING);
3849 break;
3850 case TCP_FIN_WAIT2:
3851 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3852 tcp_send_ack(sk);
3853 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3854 break;
3855 default:
3856 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3857 * cases we should never reach this piece of code.
3858 */
3859 pr_err("%s: Impossible, sk->sk_state=%d\n",
3860 __func__, sk->sk_state);
3861 break;
3862 }
3863
3864 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3865 * Probably, we should reset in this case. For now drop them.
3866 */
3867 __skb_queue_purge(&tp->out_of_order_queue);
3868 if (tcp_is_sack(tp))
3869 tcp_sack_reset(&tp->rx_opt);
3870 sk_mem_reclaim(sk);
3871
3872 if (!sock_flag(sk, SOCK_DEAD)) {
3873 sk->sk_state_change(sk);
3874
3875 /* Do not send POLL_HUP for half duplex close. */
3876 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3877 sk->sk_state == TCP_CLOSE)
3878 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3879 else
3880 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3881 }
3882 }
3883
3884 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3885 u32 end_seq)
3886 {
3887 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3888 if (before(seq, sp->start_seq))
3889 sp->start_seq = seq;
3890 if (after(end_seq, sp->end_seq))
3891 sp->end_seq = end_seq;
3892 return true;
3893 }
3894 return false;
3895 }
3896
3897 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3898 {
3899 struct tcp_sock *tp = tcp_sk(sk);
3900
3901 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3902 int mib_idx;
3903
3904 if (before(seq, tp->rcv_nxt))
3905 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3906 else
3907 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3908
3909 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3910
3911 tp->rx_opt.dsack = 1;
3912 tp->duplicate_sack[0].start_seq = seq;
3913 tp->duplicate_sack[0].end_seq = end_seq;
3914 }
3915 }
3916
3917 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3918 {
3919 struct tcp_sock *tp = tcp_sk(sk);
3920
3921 if (!tp->rx_opt.dsack)
3922 tcp_dsack_set(sk, seq, end_seq);
3923 else
3924 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3925 }
3926
3927 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3928 {
3929 struct tcp_sock *tp = tcp_sk(sk);
3930
3931 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3932 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3933 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3934 tcp_enter_quickack_mode(sk);
3935
3936 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3937 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3938
3939 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3940 end_seq = tp->rcv_nxt;
3941 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3942 }
3943 }
3944
3945 tcp_send_ack(sk);
3946 }
3947
3948 /* These routines update the SACK block as out-of-order packets arrive or
3949 * in-order packets close up the sequence space.
3950 */
3951 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3952 {
3953 int this_sack;
3954 struct tcp_sack_block *sp = &tp->selective_acks[0];
3955 struct tcp_sack_block *swalk = sp + 1;
3956
3957 /* See if the recent change to the first SACK eats into
3958 * or hits the sequence space of other SACK blocks, if so coalesce.
3959 */
3960 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3961 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3962 int i;
3963
3964 /* Zap SWALK, by moving every further SACK up by one slot.
3965 * Decrease num_sacks.
3966 */
3967 tp->rx_opt.num_sacks--;
3968 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3969 sp[i] = sp[i + 1];
3970 continue;
3971 }
3972 this_sack++, swalk++;
3973 }
3974 }
3975
3976 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3977 {
3978 struct tcp_sock *tp = tcp_sk(sk);
3979 struct tcp_sack_block *sp = &tp->selective_acks[0];
3980 int cur_sacks = tp->rx_opt.num_sacks;
3981 int this_sack;
3982
3983 if (!cur_sacks)
3984 goto new_sack;
3985
3986 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3987 if (tcp_sack_extend(sp, seq, end_seq)) {
3988 /* Rotate this_sack to the first one. */
3989 for (; this_sack > 0; this_sack--, sp--)
3990 swap(*sp, *(sp - 1));
3991 if (cur_sacks > 1)
3992 tcp_sack_maybe_coalesce(tp);
3993 return;
3994 }
3995 }
3996
3997 /* Could not find an adjacent existing SACK, build a new one,
3998 * put it at the front, and shift everyone else down. We
3999 * always know there is at least one SACK present already here.
4000 *
4001 * If the sack array is full, forget about the last one.
4002 */
4003 if (this_sack >= TCP_NUM_SACKS) {
4004 this_sack--;
4005 tp->rx_opt.num_sacks--;
4006 sp--;
4007 }
4008 for (; this_sack > 0; this_sack--, sp--)
4009 *sp = *(sp - 1);
4010
4011 new_sack:
4012 /* Build the new head SACK, and we're done. */
4013 sp->start_seq = seq;
4014 sp->end_seq = end_seq;
4015 tp->rx_opt.num_sacks++;
4016 }
4017
4018 /* RCV.NXT advances, some SACKs should be eaten. */
4019
4020 static void tcp_sack_remove(struct tcp_sock *tp)
4021 {
4022 struct tcp_sack_block *sp = &tp->selective_acks[0];
4023 int num_sacks = tp->rx_opt.num_sacks;
4024 int this_sack;
4025
4026 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4027 if (skb_queue_empty(&tp->out_of_order_queue)) {
4028 tp->rx_opt.num_sacks = 0;
4029 return;
4030 }
4031
4032 for (this_sack = 0; this_sack < num_sacks;) {
4033 /* Check if the start of the sack is covered by RCV.NXT. */
4034 if (!before(tp->rcv_nxt, sp->start_seq)) {
4035 int i;
4036
4037 /* RCV.NXT must cover all the block! */
4038 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4039
4040 /* Zap this SACK, by moving forward any other SACKS. */
4041 for (i=this_sack+1; i < num_sacks; i++)
4042 tp->selective_acks[i-1] = tp->selective_acks[i];
4043 num_sacks--;
4044 continue;
4045 }
4046 this_sack++;
4047 sp++;
4048 }
4049 tp->rx_opt.num_sacks = num_sacks;
4050 }
4051
4052 /* This one checks to see if we can put data from the
4053 * out_of_order queue into the receive_queue.
4054 */
4055 static void tcp_ofo_queue(struct sock *sk)
4056 {
4057 struct tcp_sock *tp = tcp_sk(sk);
4058 __u32 dsack_high = tp->rcv_nxt;
4059 struct sk_buff *skb;
4060
4061 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4062 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4063 break;
4064
4065 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4066 __u32 dsack = dsack_high;
4067 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4068 dsack_high = TCP_SKB_CB(skb)->end_seq;
4069 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4070 }
4071
4072 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4073 SOCK_DEBUG(sk, "ofo packet was already received\n");
4074 __skb_unlink(skb, &tp->out_of_order_queue);
4075 __kfree_skb(skb);
4076 continue;
4077 }
4078 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4079 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4080 TCP_SKB_CB(skb)->end_seq);
4081
4082 __skb_unlink(skb, &tp->out_of_order_queue);
4083 __skb_queue_tail(&sk->sk_receive_queue, skb);
4084 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4085 if (tcp_hdr(skb)->fin)
4086 tcp_fin(sk);
4087 }
4088 }
4089
4090 static bool tcp_prune_ofo_queue(struct sock *sk);
4091 static int tcp_prune_queue(struct sock *sk);
4092
4093 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4094 unsigned int size)
4095 {
4096 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4097 !sk_rmem_schedule(sk, skb, size)) {
4098
4099 if (tcp_prune_queue(sk) < 0)
4100 return -1;
4101
4102 if (!sk_rmem_schedule(sk, skb, size)) {
4103 if (!tcp_prune_ofo_queue(sk))
4104 return -1;
4105
4106 if (!sk_rmem_schedule(sk, skb, size))
4107 return -1;
4108 }
4109 }
4110 return 0;
4111 }
4112
4113 /**
4114 * tcp_try_coalesce - try to merge skb to prior one
4115 * @sk: socket
4116 * @to: prior buffer
4117 * @from: buffer to add in queue
4118 * @fragstolen: pointer to boolean
4119 *
4120 * Before queueing skb @from after @to, try to merge them
4121 * to reduce overall memory use and queue lengths, if cost is small.
4122 * Packets in ofo or receive queues can stay a long time.
4123 * Better try to coalesce them right now to avoid future collapses.
4124 * Returns true if caller should free @from instead of queueing it
4125 */
4126 static bool tcp_try_coalesce(struct sock *sk,
4127 struct sk_buff *to,
4128 struct sk_buff *from,
4129 bool *fragstolen)
4130 {
4131 int delta;
4132
4133 *fragstolen = false;
4134
4135 if (tcp_hdr(from)->fin)
4136 return false;
4137
4138 /* Its possible this segment overlaps with prior segment in queue */
4139 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4140 return false;
4141
4142 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4143 return false;
4144
4145 atomic_add(delta, &sk->sk_rmem_alloc);
4146 sk_mem_charge(sk, delta);
4147 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4148 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4149 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4150 return true;
4151 }
4152
4153 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4154 {
4155 struct tcp_sock *tp = tcp_sk(sk);
4156 struct sk_buff *skb1;
4157 u32 seq, end_seq;
4158
4159 TCP_ECN_check_ce(tp, skb);
4160
4161 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4162 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4163 __kfree_skb(skb);
4164 return;
4165 }
4166
4167 /* Disable header prediction. */
4168 tp->pred_flags = 0;
4169 inet_csk_schedule_ack(sk);
4170
4171 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4172 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4173 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4174
4175 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4176 if (!skb1) {
4177 /* Initial out of order segment, build 1 SACK. */
4178 if (tcp_is_sack(tp)) {
4179 tp->rx_opt.num_sacks = 1;
4180 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4181 tp->selective_acks[0].end_seq =
4182 TCP_SKB_CB(skb)->end_seq;
4183 }
4184 __skb_queue_head(&tp->out_of_order_queue, skb);
4185 goto end;
4186 }
4187
4188 seq = TCP_SKB_CB(skb)->seq;
4189 end_seq = TCP_SKB_CB(skb)->end_seq;
4190
4191 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4192 bool fragstolen;
4193
4194 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4195 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4196 } else {
4197 kfree_skb_partial(skb, fragstolen);
4198 skb = NULL;
4199 }
4200
4201 if (!tp->rx_opt.num_sacks ||
4202 tp->selective_acks[0].end_seq != seq)
4203 goto add_sack;
4204
4205 /* Common case: data arrive in order after hole. */
4206 tp->selective_acks[0].end_seq = end_seq;
4207 goto end;
4208 }
4209
4210 /* Find place to insert this segment. */
4211 while (1) {
4212 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4213 break;
4214 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4215 skb1 = NULL;
4216 break;
4217 }
4218 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4219 }
4220
4221 /* Do skb overlap to previous one? */
4222 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4223 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4224 /* All the bits are present. Drop. */
4225 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4226 __kfree_skb(skb);
4227 skb = NULL;
4228 tcp_dsack_set(sk, seq, end_seq);
4229 goto add_sack;
4230 }
4231 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4232 /* Partial overlap. */
4233 tcp_dsack_set(sk, seq,
4234 TCP_SKB_CB(skb1)->end_seq);
4235 } else {
4236 if (skb_queue_is_first(&tp->out_of_order_queue,
4237 skb1))
4238 skb1 = NULL;
4239 else
4240 skb1 = skb_queue_prev(
4241 &tp->out_of_order_queue,
4242 skb1);
4243 }
4244 }
4245 if (!skb1)
4246 __skb_queue_head(&tp->out_of_order_queue, skb);
4247 else
4248 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4249
4250 /* And clean segments covered by new one as whole. */
4251 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4252 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4253
4254 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4255 break;
4256 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4257 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4258 end_seq);
4259 break;
4260 }
4261 __skb_unlink(skb1, &tp->out_of_order_queue);
4262 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4263 TCP_SKB_CB(skb1)->end_seq);
4264 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4265 __kfree_skb(skb1);
4266 }
4267
4268 add_sack:
4269 if (tcp_is_sack(tp))
4270 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4271 end:
4272 if (skb)
4273 skb_set_owner_r(skb, sk);
4274 }
4275
4276 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4277 bool *fragstolen)
4278 {
4279 int eaten;
4280 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4281
4282 __skb_pull(skb, hdrlen);
4283 eaten = (tail &&
4284 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4285 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4286 if (!eaten) {
4287 __skb_queue_tail(&sk->sk_receive_queue, skb);
4288 skb_set_owner_r(skb, sk);
4289 }
4290 return eaten;
4291 }
4292
4293 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4294 {
4295 struct sk_buff *skb = NULL;
4296 struct tcphdr *th;
4297 bool fragstolen;
4298
4299 if (size == 0)
4300 return 0;
4301
4302 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4303 if (!skb)
4304 goto err;
4305
4306 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4307 goto err_free;
4308
4309 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4310 skb_reset_transport_header(skb);
4311 memset(th, 0, sizeof(*th));
4312
4313 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4314 goto err_free;
4315
4316 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4317 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4318 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4319
4320 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4321 WARN_ON_ONCE(fragstolen); /* should not happen */
4322 __kfree_skb(skb);
4323 }
4324 return size;
4325
4326 err_free:
4327 kfree_skb(skb);
4328 err:
4329 return -ENOMEM;
4330 }
4331
4332 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4333 {
4334 const struct tcphdr *th = tcp_hdr(skb);
4335 struct tcp_sock *tp = tcp_sk(sk);
4336 int eaten = -1;
4337 bool fragstolen = false;
4338
4339 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4340 goto drop;
4341
4342 skb_dst_drop(skb);
4343 __skb_pull(skb, th->doff * 4);
4344
4345 TCP_ECN_accept_cwr(tp, skb);
4346
4347 tp->rx_opt.dsack = 0;
4348
4349 /* Queue data for delivery to the user.
4350 * Packets in sequence go to the receive queue.
4351 * Out of sequence packets to the out_of_order_queue.
4352 */
4353 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4354 if (tcp_receive_window(tp) == 0)
4355 goto out_of_window;
4356
4357 /* Ok. In sequence. In window. */
4358 if (tp->ucopy.task == current &&
4359 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4360 sock_owned_by_user(sk) && !tp->urg_data) {
4361 int chunk = min_t(unsigned int, skb->len,
4362 tp->ucopy.len);
4363
4364 __set_current_state(TASK_RUNNING);
4365
4366 local_bh_enable();
4367 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4368 tp->ucopy.len -= chunk;
4369 tp->copied_seq += chunk;
4370 eaten = (chunk == skb->len);
4371 tcp_rcv_space_adjust(sk);
4372 }
4373 local_bh_disable();
4374 }
4375
4376 if (eaten <= 0) {
4377 queue_and_out:
4378 if (eaten < 0 &&
4379 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4380 goto drop;
4381
4382 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4383 }
4384 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4385 if (skb->len)
4386 tcp_event_data_recv(sk, skb);
4387 if (th->fin)
4388 tcp_fin(sk);
4389
4390 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4391 tcp_ofo_queue(sk);
4392
4393 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4394 * gap in queue is filled.
4395 */
4396 if (skb_queue_empty(&tp->out_of_order_queue))
4397 inet_csk(sk)->icsk_ack.pingpong = 0;
4398 }
4399
4400 if (tp->rx_opt.num_sacks)
4401 tcp_sack_remove(tp);
4402
4403 tcp_fast_path_check(sk);
4404
4405 if (eaten > 0)
4406 kfree_skb_partial(skb, fragstolen);
4407 if (!sock_flag(sk, SOCK_DEAD))
4408 sk->sk_data_ready(sk, 0);
4409 return;
4410 }
4411
4412 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4413 /* A retransmit, 2nd most common case. Force an immediate ack. */
4414 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4415 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4416
4417 out_of_window:
4418 tcp_enter_quickack_mode(sk);
4419 inet_csk_schedule_ack(sk);
4420 drop:
4421 __kfree_skb(skb);
4422 return;
4423 }
4424
4425 /* Out of window. F.e. zero window probe. */
4426 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4427 goto out_of_window;
4428
4429 tcp_enter_quickack_mode(sk);
4430
4431 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4432 /* Partial packet, seq < rcv_next < end_seq */
4433 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4434 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4435 TCP_SKB_CB(skb)->end_seq);
4436
4437 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4438
4439 /* If window is closed, drop tail of packet. But after
4440 * remembering D-SACK for its head made in previous line.
4441 */
4442 if (!tcp_receive_window(tp))
4443 goto out_of_window;
4444 goto queue_and_out;
4445 }
4446
4447 tcp_data_queue_ofo(sk, skb);
4448 }
4449
4450 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4451 struct sk_buff_head *list)
4452 {
4453 struct sk_buff *next = NULL;
4454
4455 if (!skb_queue_is_last(list, skb))
4456 next = skb_queue_next(list, skb);
4457
4458 __skb_unlink(skb, list);
4459 __kfree_skb(skb);
4460 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4461
4462 return next;
4463 }
4464
4465 /* Collapse contiguous sequence of skbs head..tail with
4466 * sequence numbers start..end.
4467 *
4468 * If tail is NULL, this means until the end of the list.
4469 *
4470 * Segments with FIN/SYN are not collapsed (only because this
4471 * simplifies code)
4472 */
4473 static void
4474 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4475 struct sk_buff *head, struct sk_buff *tail,
4476 u32 start, u32 end)
4477 {
4478 struct sk_buff *skb, *n;
4479 bool end_of_skbs;
4480
4481 /* First, check that queue is collapsible and find
4482 * the point where collapsing can be useful. */
4483 skb = head;
4484 restart:
4485 end_of_skbs = true;
4486 skb_queue_walk_from_safe(list, skb, n) {
4487 if (skb == tail)
4488 break;
4489 /* No new bits? It is possible on ofo queue. */
4490 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4491 skb = tcp_collapse_one(sk, skb, list);
4492 if (!skb)
4493 break;
4494 goto restart;
4495 }
4496
4497 /* The first skb to collapse is:
4498 * - not SYN/FIN and
4499 * - bloated or contains data before "start" or
4500 * overlaps to the next one.
4501 */
4502 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4503 (tcp_win_from_space(skb->truesize) > skb->len ||
4504 before(TCP_SKB_CB(skb)->seq, start))) {
4505 end_of_skbs = false;
4506 break;
4507 }
4508
4509 if (!skb_queue_is_last(list, skb)) {
4510 struct sk_buff *next = skb_queue_next(list, skb);
4511 if (next != tail &&
4512 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4513 end_of_skbs = false;
4514 break;
4515 }
4516 }
4517
4518 /* Decided to skip this, advance start seq. */
4519 start = TCP_SKB_CB(skb)->end_seq;
4520 }
4521 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4522 return;
4523
4524 while (before(start, end)) {
4525 struct sk_buff *nskb;
4526 unsigned int header = skb_headroom(skb);
4527 int copy = SKB_MAX_ORDER(header, 0);
4528
4529 /* Too big header? This can happen with IPv6. */
4530 if (copy < 0)
4531 return;
4532 if (end - start < copy)
4533 copy = end - start;
4534 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4535 if (!nskb)
4536 return;
4537
4538 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4539 skb_set_network_header(nskb, (skb_network_header(skb) -
4540 skb->head));
4541 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4542 skb->head));
4543 skb_reserve(nskb, header);
4544 memcpy(nskb->head, skb->head, header);
4545 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4546 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4547 __skb_queue_before(list, skb, nskb);
4548 skb_set_owner_r(nskb, sk);
4549
4550 /* Copy data, releasing collapsed skbs. */
4551 while (copy > 0) {
4552 int offset = start - TCP_SKB_CB(skb)->seq;
4553 int size = TCP_SKB_CB(skb)->end_seq - start;
4554
4555 BUG_ON(offset < 0);
4556 if (size > 0) {
4557 size = min(copy, size);
4558 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4559 BUG();
4560 TCP_SKB_CB(nskb)->end_seq += size;
4561 copy -= size;
4562 start += size;
4563 }
4564 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4565 skb = tcp_collapse_one(sk, skb, list);
4566 if (!skb ||
4567 skb == tail ||
4568 tcp_hdr(skb)->syn ||
4569 tcp_hdr(skb)->fin)
4570 return;
4571 }
4572 }
4573 }
4574 }
4575
4576 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4577 * and tcp_collapse() them until all the queue is collapsed.
4578 */
4579 static void tcp_collapse_ofo_queue(struct sock *sk)
4580 {
4581 struct tcp_sock *tp = tcp_sk(sk);
4582 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4583 struct sk_buff *head;
4584 u32 start, end;
4585
4586 if (skb == NULL)
4587 return;
4588
4589 start = TCP_SKB_CB(skb)->seq;
4590 end = TCP_SKB_CB(skb)->end_seq;
4591 head = skb;
4592
4593 for (;;) {
4594 struct sk_buff *next = NULL;
4595
4596 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4597 next = skb_queue_next(&tp->out_of_order_queue, skb);
4598 skb = next;
4599
4600 /* Segment is terminated when we see gap or when
4601 * we are at the end of all the queue. */
4602 if (!skb ||
4603 after(TCP_SKB_CB(skb)->seq, end) ||
4604 before(TCP_SKB_CB(skb)->end_seq, start)) {
4605 tcp_collapse(sk, &tp->out_of_order_queue,
4606 head, skb, start, end);
4607 head = skb;
4608 if (!skb)
4609 break;
4610 /* Start new segment */
4611 start = TCP_SKB_CB(skb)->seq;
4612 end = TCP_SKB_CB(skb)->end_seq;
4613 } else {
4614 if (before(TCP_SKB_CB(skb)->seq, start))
4615 start = TCP_SKB_CB(skb)->seq;
4616 if (after(TCP_SKB_CB(skb)->end_seq, end))
4617 end = TCP_SKB_CB(skb)->end_seq;
4618 }
4619 }
4620 }
4621
4622 /*
4623 * Purge the out-of-order queue.
4624 * Return true if queue was pruned.
4625 */
4626 static bool tcp_prune_ofo_queue(struct sock *sk)
4627 {
4628 struct tcp_sock *tp = tcp_sk(sk);
4629 bool res = false;
4630
4631 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4632 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4633 __skb_queue_purge(&tp->out_of_order_queue);
4634
4635 /* Reset SACK state. A conforming SACK implementation will
4636 * do the same at a timeout based retransmit. When a connection
4637 * is in a sad state like this, we care only about integrity
4638 * of the connection not performance.
4639 */
4640 if (tp->rx_opt.sack_ok)
4641 tcp_sack_reset(&tp->rx_opt);
4642 sk_mem_reclaim(sk);
4643 res = true;
4644 }
4645 return res;
4646 }
4647
4648 /* Reduce allocated memory if we can, trying to get
4649 * the socket within its memory limits again.
4650 *
4651 * Return less than zero if we should start dropping frames
4652 * until the socket owning process reads some of the data
4653 * to stabilize the situation.
4654 */
4655 static int tcp_prune_queue(struct sock *sk)
4656 {
4657 struct tcp_sock *tp = tcp_sk(sk);
4658
4659 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4660
4661 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4662
4663 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4664 tcp_clamp_window(sk);
4665 else if (sk_under_memory_pressure(sk))
4666 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4667
4668 tcp_collapse_ofo_queue(sk);
4669 if (!skb_queue_empty(&sk->sk_receive_queue))
4670 tcp_collapse(sk, &sk->sk_receive_queue,
4671 skb_peek(&sk->sk_receive_queue),
4672 NULL,
4673 tp->copied_seq, tp->rcv_nxt);
4674 sk_mem_reclaim(sk);
4675
4676 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4677 return 0;
4678
4679 /* Collapsing did not help, destructive actions follow.
4680 * This must not ever occur. */
4681
4682 tcp_prune_ofo_queue(sk);
4683
4684 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4685 return 0;
4686
4687 /* If we are really being abused, tell the caller to silently
4688 * drop receive data on the floor. It will get retransmitted
4689 * and hopefully then we'll have sufficient space.
4690 */
4691 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4692
4693 /* Massive buffer overcommit. */
4694 tp->pred_flags = 0;
4695 return -1;
4696 }
4697
4698 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4699 * As additional protections, we do not touch cwnd in retransmission phases,
4700 * and if application hit its sndbuf limit recently.
4701 */
4702 void tcp_cwnd_application_limited(struct sock *sk)
4703 {
4704 struct tcp_sock *tp = tcp_sk(sk);
4705
4706 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4707 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4708 /* Limited by application or receiver window. */
4709 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4710 u32 win_used = max(tp->snd_cwnd_used, init_win);
4711 if (win_used < tp->snd_cwnd) {
4712 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4713 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4714 }
4715 tp->snd_cwnd_used = 0;
4716 }
4717 tp->snd_cwnd_stamp = tcp_time_stamp;
4718 }
4719
4720 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4721 {
4722 const struct tcp_sock *tp = tcp_sk(sk);
4723
4724 /* If the user specified a specific send buffer setting, do
4725 * not modify it.
4726 */
4727 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4728 return false;
4729
4730 /* If we are under global TCP memory pressure, do not expand. */
4731 if (sk_under_memory_pressure(sk))
4732 return false;
4733
4734 /* If we are under soft global TCP memory pressure, do not expand. */
4735 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4736 return false;
4737
4738 /* If we filled the congestion window, do not expand. */
4739 if (tp->packets_out >= tp->snd_cwnd)
4740 return false;
4741
4742 return true;
4743 }
4744
4745 /* When incoming ACK allowed to free some skb from write_queue,
4746 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4747 * on the exit from tcp input handler.
4748 *
4749 * PROBLEM: sndbuf expansion does not work well with largesend.
4750 */
4751 static void tcp_new_space(struct sock *sk)
4752 {
4753 struct tcp_sock *tp = tcp_sk(sk);
4754
4755 if (tcp_should_expand_sndbuf(sk)) {
4756 int sndmem = SKB_TRUESIZE(max_t(u32,
4757 tp->rx_opt.mss_clamp,
4758 tp->mss_cache) +
4759 MAX_TCP_HEADER);
4760 int demanded = max_t(unsigned int, tp->snd_cwnd,
4761 tp->reordering + 1);
4762 sndmem *= 2 * demanded;
4763 if (sndmem > sk->sk_sndbuf)
4764 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4765 tp->snd_cwnd_stamp = tcp_time_stamp;
4766 }
4767
4768 sk->sk_write_space(sk);
4769 }
4770
4771 static void tcp_check_space(struct sock *sk)
4772 {
4773 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4774 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4775 if (sk->sk_socket &&
4776 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4777 tcp_new_space(sk);
4778 }
4779 }
4780
4781 static inline void tcp_data_snd_check(struct sock *sk)
4782 {
4783 tcp_push_pending_frames(sk);
4784 tcp_check_space(sk);
4785 }
4786
4787 /*
4788 * Check if sending an ack is needed.
4789 */
4790 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4791 {
4792 struct tcp_sock *tp = tcp_sk(sk);
4793
4794 /* More than one full frame received... */
4795 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4796 /* ... and right edge of window advances far enough.
4797 * (tcp_recvmsg() will send ACK otherwise). Or...
4798 */
4799 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4800 /* We ACK each frame or... */
4801 tcp_in_quickack_mode(sk) ||
4802 /* We have out of order data. */
4803 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4804 /* Then ack it now */
4805 tcp_send_ack(sk);
4806 } else {
4807 /* Else, send delayed ack. */
4808 tcp_send_delayed_ack(sk);
4809 }
4810 }
4811
4812 static inline void tcp_ack_snd_check(struct sock *sk)
4813 {
4814 if (!inet_csk_ack_scheduled(sk)) {
4815 /* We sent a data segment already. */
4816 return;
4817 }
4818 __tcp_ack_snd_check(sk, 1);
4819 }
4820
4821 /*
4822 * This routine is only called when we have urgent data
4823 * signaled. Its the 'slow' part of tcp_urg. It could be
4824 * moved inline now as tcp_urg is only called from one
4825 * place. We handle URGent data wrong. We have to - as
4826 * BSD still doesn't use the correction from RFC961.
4827 * For 1003.1g we should support a new option TCP_STDURG to permit
4828 * either form (or just set the sysctl tcp_stdurg).
4829 */
4830
4831 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4832 {
4833 struct tcp_sock *tp = tcp_sk(sk);
4834 u32 ptr = ntohs(th->urg_ptr);
4835
4836 if (ptr && !sysctl_tcp_stdurg)
4837 ptr--;
4838 ptr += ntohl(th->seq);
4839
4840 /* Ignore urgent data that we've already seen and read. */
4841 if (after(tp->copied_seq, ptr))
4842 return;
4843
4844 /* Do not replay urg ptr.
4845 *
4846 * NOTE: interesting situation not covered by specs.
4847 * Misbehaving sender may send urg ptr, pointing to segment,
4848 * which we already have in ofo queue. We are not able to fetch
4849 * such data and will stay in TCP_URG_NOTYET until will be eaten
4850 * by recvmsg(). Seems, we are not obliged to handle such wicked
4851 * situations. But it is worth to think about possibility of some
4852 * DoSes using some hypothetical application level deadlock.
4853 */
4854 if (before(ptr, tp->rcv_nxt))
4855 return;
4856
4857 /* Do we already have a newer (or duplicate) urgent pointer? */
4858 if (tp->urg_data && !after(ptr, tp->urg_seq))
4859 return;
4860
4861 /* Tell the world about our new urgent pointer. */
4862 sk_send_sigurg(sk);
4863
4864 /* We may be adding urgent data when the last byte read was
4865 * urgent. To do this requires some care. We cannot just ignore
4866 * tp->copied_seq since we would read the last urgent byte again
4867 * as data, nor can we alter copied_seq until this data arrives
4868 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4869 *
4870 * NOTE. Double Dutch. Rendering to plain English: author of comment
4871 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4872 * and expect that both A and B disappear from stream. This is _wrong_.
4873 * Though this happens in BSD with high probability, this is occasional.
4874 * Any application relying on this is buggy. Note also, that fix "works"
4875 * only in this artificial test. Insert some normal data between A and B and we will
4876 * decline of BSD again. Verdict: it is better to remove to trap
4877 * buggy users.
4878 */
4879 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4880 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4881 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4882 tp->copied_seq++;
4883 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4884 __skb_unlink(skb, &sk->sk_receive_queue);
4885 __kfree_skb(skb);
4886 }
4887 }
4888
4889 tp->urg_data = TCP_URG_NOTYET;
4890 tp->urg_seq = ptr;
4891
4892 /* Disable header prediction. */
4893 tp->pred_flags = 0;
4894 }
4895
4896 /* This is the 'fast' part of urgent handling. */
4897 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4898 {
4899 struct tcp_sock *tp = tcp_sk(sk);
4900
4901 /* Check if we get a new urgent pointer - normally not. */
4902 if (th->urg)
4903 tcp_check_urg(sk, th);
4904
4905 /* Do we wait for any urgent data? - normally not... */
4906 if (tp->urg_data == TCP_URG_NOTYET) {
4907 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4908 th->syn;
4909
4910 /* Is the urgent pointer pointing into this packet? */
4911 if (ptr < skb->len) {
4912 u8 tmp;
4913 if (skb_copy_bits(skb, ptr, &tmp, 1))
4914 BUG();
4915 tp->urg_data = TCP_URG_VALID | tmp;
4916 if (!sock_flag(sk, SOCK_DEAD))
4917 sk->sk_data_ready(sk, 0);
4918 }
4919 }
4920 }
4921
4922 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4923 {
4924 struct tcp_sock *tp = tcp_sk(sk);
4925 int chunk = skb->len - hlen;
4926 int err;
4927
4928 local_bh_enable();
4929 if (skb_csum_unnecessary(skb))
4930 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4931 else
4932 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4933 tp->ucopy.iov);
4934
4935 if (!err) {
4936 tp->ucopy.len -= chunk;
4937 tp->copied_seq += chunk;
4938 tcp_rcv_space_adjust(sk);
4939 }
4940
4941 local_bh_disable();
4942 return err;
4943 }
4944
4945 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4946 struct sk_buff *skb)
4947 {
4948 __sum16 result;
4949
4950 if (sock_owned_by_user(sk)) {
4951 local_bh_enable();
4952 result = __tcp_checksum_complete(skb);
4953 local_bh_disable();
4954 } else {
4955 result = __tcp_checksum_complete(skb);
4956 }
4957 return result;
4958 }
4959
4960 static inline bool tcp_checksum_complete_user(struct sock *sk,
4961 struct sk_buff *skb)
4962 {
4963 return !skb_csum_unnecessary(skb) &&
4964 __tcp_checksum_complete_user(sk, skb);
4965 }
4966
4967 #ifdef CONFIG_NET_DMA
4968 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4969 int hlen)
4970 {
4971 struct tcp_sock *tp = tcp_sk(sk);
4972 int chunk = skb->len - hlen;
4973 int dma_cookie;
4974 bool copied_early = false;
4975
4976 if (tp->ucopy.wakeup)
4977 return false;
4978
4979 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4980 tp->ucopy.dma_chan = net_dma_find_channel();
4981
4982 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4983
4984 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4985 skb, hlen,
4986 tp->ucopy.iov, chunk,
4987 tp->ucopy.pinned_list);
4988
4989 if (dma_cookie < 0)
4990 goto out;
4991
4992 tp->ucopy.dma_cookie = dma_cookie;
4993 copied_early = true;
4994
4995 tp->ucopy.len -= chunk;
4996 tp->copied_seq += chunk;
4997 tcp_rcv_space_adjust(sk);
4998
4999 if ((tp->ucopy.len == 0) ||
5000 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5001 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5002 tp->ucopy.wakeup = 1;
5003 sk->sk_data_ready(sk, 0);
5004 }
5005 } else if (chunk > 0) {
5006 tp->ucopy.wakeup = 1;
5007 sk->sk_data_ready(sk, 0);
5008 }
5009 out:
5010 return copied_early;
5011 }
5012 #endif /* CONFIG_NET_DMA */
5013
5014 /* Does PAWS and seqno based validation of an incoming segment, flags will
5015 * play significant role here.
5016 */
5017 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5018 const struct tcphdr *th, int syn_inerr)
5019 {
5020 struct tcp_sock *tp = tcp_sk(sk);
5021
5022 /* RFC1323: H1. Apply PAWS check first. */
5023 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5024 tcp_paws_discard(sk, skb)) {
5025 if (!th->rst) {
5026 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5027 tcp_send_dupack(sk, skb);
5028 goto discard;
5029 }
5030 /* Reset is accepted even if it did not pass PAWS. */
5031 }
5032
5033 /* Step 1: check sequence number */
5034 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5035 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5036 * (RST) segments are validated by checking their SEQ-fields."
5037 * And page 69: "If an incoming segment is not acceptable,
5038 * an acknowledgment should be sent in reply (unless the RST
5039 * bit is set, if so drop the segment and return)".
5040 */
5041 if (!th->rst) {
5042 if (th->syn)
5043 goto syn_challenge;
5044 tcp_send_dupack(sk, skb);
5045 }
5046 goto discard;
5047 }
5048
5049 /* Step 2: check RST bit */
5050 if (th->rst) {
5051 /* RFC 5961 3.2 :
5052 * If sequence number exactly matches RCV.NXT, then
5053 * RESET the connection
5054 * else
5055 * Send a challenge ACK
5056 */
5057 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5058 tcp_reset(sk);
5059 else
5060 tcp_send_challenge_ack(sk);
5061 goto discard;
5062 }
5063
5064 /* step 3: check security and precedence [ignored] */
5065
5066 /* step 4: Check for a SYN
5067 * RFC 5691 4.2 : Send a challenge ack
5068 */
5069 if (th->syn) {
5070 syn_challenge:
5071 if (syn_inerr)
5072 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5073 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5074 tcp_send_challenge_ack(sk);
5075 goto discard;
5076 }
5077
5078 return true;
5079
5080 discard:
5081 __kfree_skb(skb);
5082 return false;
5083 }
5084
5085 /*
5086 * TCP receive function for the ESTABLISHED state.
5087 *
5088 * It is split into a fast path and a slow path. The fast path is
5089 * disabled when:
5090 * - A zero window was announced from us - zero window probing
5091 * is only handled properly in the slow path.
5092 * - Out of order segments arrived.
5093 * - Urgent data is expected.
5094 * - There is no buffer space left
5095 * - Unexpected TCP flags/window values/header lengths are received
5096 * (detected by checking the TCP header against pred_flags)
5097 * - Data is sent in both directions. Fast path only supports pure senders
5098 * or pure receivers (this means either the sequence number or the ack
5099 * value must stay constant)
5100 * - Unexpected TCP option.
5101 *
5102 * When these conditions are not satisfied it drops into a standard
5103 * receive procedure patterned after RFC793 to handle all cases.
5104 * The first three cases are guaranteed by proper pred_flags setting,
5105 * the rest is checked inline. Fast processing is turned on in
5106 * tcp_data_queue when everything is OK.
5107 */
5108 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5109 const struct tcphdr *th, unsigned int len)
5110 {
5111 struct tcp_sock *tp = tcp_sk(sk);
5112
5113 if (unlikely(sk->sk_rx_dst == NULL))
5114 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5115 /*
5116 * Header prediction.
5117 * The code loosely follows the one in the famous
5118 * "30 instruction TCP receive" Van Jacobson mail.
5119 *
5120 * Van's trick is to deposit buffers into socket queue
5121 * on a device interrupt, to call tcp_recv function
5122 * on the receive process context and checksum and copy
5123 * the buffer to user space. smart...
5124 *
5125 * Our current scheme is not silly either but we take the
5126 * extra cost of the net_bh soft interrupt processing...
5127 * We do checksum and copy also but from device to kernel.
5128 */
5129
5130 tp->rx_opt.saw_tstamp = 0;
5131
5132 /* pred_flags is 0xS?10 << 16 + snd_wnd
5133 * if header_prediction is to be made
5134 * 'S' will always be tp->tcp_header_len >> 2
5135 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5136 * turn it off (when there are holes in the receive
5137 * space for instance)
5138 * PSH flag is ignored.
5139 */
5140
5141 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5142 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5143 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5144 int tcp_header_len = tp->tcp_header_len;
5145
5146 /* Timestamp header prediction: tcp_header_len
5147 * is automatically equal to th->doff*4 due to pred_flags
5148 * match.
5149 */
5150
5151 /* Check timestamp */
5152 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5153 /* No? Slow path! */
5154 if (!tcp_parse_aligned_timestamp(tp, th))
5155 goto slow_path;
5156
5157 /* If PAWS failed, check it more carefully in slow path */
5158 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5159 goto slow_path;
5160
5161 /* DO NOT update ts_recent here, if checksum fails
5162 * and timestamp was corrupted part, it will result
5163 * in a hung connection since we will drop all
5164 * future packets due to the PAWS test.
5165 */
5166 }
5167
5168 if (len <= tcp_header_len) {
5169 /* Bulk data transfer: sender */
5170 if (len == tcp_header_len) {
5171 /* Predicted packet is in window by definition.
5172 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5173 * Hence, check seq<=rcv_wup reduces to:
5174 */
5175 if (tcp_header_len ==
5176 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5177 tp->rcv_nxt == tp->rcv_wup)
5178 tcp_store_ts_recent(tp);
5179
5180 /* We know that such packets are checksummed
5181 * on entry.
5182 */
5183 tcp_ack(sk, skb, 0);
5184 __kfree_skb(skb);
5185 tcp_data_snd_check(sk);
5186 return 0;
5187 } else { /* Header too small */
5188 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5189 goto discard;
5190 }
5191 } else {
5192 int eaten = 0;
5193 int copied_early = 0;
5194 bool fragstolen = false;
5195
5196 if (tp->copied_seq == tp->rcv_nxt &&
5197 len - tcp_header_len <= tp->ucopy.len) {
5198 #ifdef CONFIG_NET_DMA
5199 if (tp->ucopy.task == current &&
5200 sock_owned_by_user(sk) &&
5201 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5202 copied_early = 1;
5203 eaten = 1;
5204 }
5205 #endif
5206 if (tp->ucopy.task == current &&
5207 sock_owned_by_user(sk) && !copied_early) {
5208 __set_current_state(TASK_RUNNING);
5209
5210 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5211 eaten = 1;
5212 }
5213 if (eaten) {
5214 /* Predicted packet is in window by definition.
5215 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5216 * Hence, check seq<=rcv_wup reduces to:
5217 */
5218 if (tcp_header_len ==
5219 (sizeof(struct tcphdr) +
5220 TCPOLEN_TSTAMP_ALIGNED) &&
5221 tp->rcv_nxt == tp->rcv_wup)
5222 tcp_store_ts_recent(tp);
5223
5224 tcp_rcv_rtt_measure_ts(sk, skb);
5225
5226 __skb_pull(skb, tcp_header_len);
5227 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5228 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5229 }
5230 if (copied_early)
5231 tcp_cleanup_rbuf(sk, skb->len);
5232 }
5233 if (!eaten) {
5234 if (tcp_checksum_complete_user(sk, skb))
5235 goto csum_error;
5236
5237 if ((int)skb->truesize > sk->sk_forward_alloc)
5238 goto step5;
5239
5240 /* Predicted packet is in window by definition.
5241 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5242 * Hence, check seq<=rcv_wup reduces to:
5243 */
5244 if (tcp_header_len ==
5245 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5246 tp->rcv_nxt == tp->rcv_wup)
5247 tcp_store_ts_recent(tp);
5248
5249 tcp_rcv_rtt_measure_ts(sk, skb);
5250
5251 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5252
5253 /* Bulk data transfer: receiver */
5254 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5255 &fragstolen);
5256 }
5257
5258 tcp_event_data_recv(sk, skb);
5259
5260 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5261 /* Well, only one small jumplet in fast path... */
5262 tcp_ack(sk, skb, FLAG_DATA);
5263 tcp_data_snd_check(sk);
5264 if (!inet_csk_ack_scheduled(sk))
5265 goto no_ack;
5266 }
5267
5268 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5269 __tcp_ack_snd_check(sk, 0);
5270 no_ack:
5271 #ifdef CONFIG_NET_DMA
5272 if (copied_early)
5273 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5274 else
5275 #endif
5276 if (eaten)
5277 kfree_skb_partial(skb, fragstolen);
5278 sk->sk_data_ready(sk, 0);
5279 return 0;
5280 }
5281 }
5282
5283 slow_path:
5284 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5285 goto csum_error;
5286
5287 if (!th->ack && !th->rst)
5288 goto discard;
5289
5290 /*
5291 * Standard slow path.
5292 */
5293
5294 if (!tcp_validate_incoming(sk, skb, th, 1))
5295 return 0;
5296
5297 step5:
5298 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5299 goto discard;
5300
5301 tcp_rcv_rtt_measure_ts(sk, skb);
5302
5303 /* Process urgent data. */
5304 tcp_urg(sk, skb, th);
5305
5306 /* step 7: process the segment text */
5307 tcp_data_queue(sk, skb);
5308
5309 tcp_data_snd_check(sk);
5310 tcp_ack_snd_check(sk);
5311 return 0;
5312
5313 csum_error:
5314 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5315 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5316
5317 discard:
5318 __kfree_skb(skb);
5319 return 0;
5320 }
5321 EXPORT_SYMBOL(tcp_rcv_established);
5322
5323 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5324 {
5325 struct tcp_sock *tp = tcp_sk(sk);
5326 struct inet_connection_sock *icsk = inet_csk(sk);
5327
5328 tcp_set_state(sk, TCP_ESTABLISHED);
5329
5330 if (skb != NULL) {
5331 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5332 security_inet_conn_established(sk, skb);
5333 }
5334
5335 /* Make sure socket is routed, for correct metrics. */
5336 icsk->icsk_af_ops->rebuild_header(sk);
5337
5338 tcp_init_metrics(sk);
5339
5340 tcp_init_congestion_control(sk);
5341
5342 /* Prevent spurious tcp_cwnd_restart() on first data
5343 * packet.
5344 */
5345 tp->lsndtime = tcp_time_stamp;
5346
5347 tcp_init_buffer_space(sk);
5348
5349 if (sock_flag(sk, SOCK_KEEPOPEN))
5350 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5351
5352 if (!tp->rx_opt.snd_wscale)
5353 __tcp_fast_path_on(tp, tp->snd_wnd);
5354 else
5355 tp->pred_flags = 0;
5356
5357 if (!sock_flag(sk, SOCK_DEAD)) {
5358 sk->sk_state_change(sk);
5359 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5360 }
5361 }
5362
5363 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5364 struct tcp_fastopen_cookie *cookie)
5365 {
5366 struct tcp_sock *tp = tcp_sk(sk);
5367 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5368 u16 mss = tp->rx_opt.mss_clamp;
5369 bool syn_drop;
5370
5371 if (mss == tp->rx_opt.user_mss) {
5372 struct tcp_options_received opt;
5373
5374 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5375 tcp_clear_options(&opt);
5376 opt.user_mss = opt.mss_clamp = 0;
5377 tcp_parse_options(synack, &opt, 0, NULL);
5378 mss = opt.mss_clamp;
5379 }
5380
5381 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5382 cookie->len = -1;
5383
5384 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5385 * the remote receives only the retransmitted (regular) SYNs: either
5386 * the original SYN-data or the corresponding SYN-ACK is lost.
5387 */
5388 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5389
5390 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5391
5392 if (data) { /* Retransmit unacked data in SYN */
5393 tcp_for_write_queue_from(data, sk) {
5394 if (data == tcp_send_head(sk) ||
5395 __tcp_retransmit_skb(sk, data))
5396 break;
5397 }
5398 tcp_rearm_rto(sk);
5399 return true;
5400 }
5401 tp->syn_data_acked = tp->syn_data;
5402 return false;
5403 }
5404
5405 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5406 const struct tcphdr *th, unsigned int len)
5407 {
5408 struct inet_connection_sock *icsk = inet_csk(sk);
5409 struct tcp_sock *tp = tcp_sk(sk);
5410 struct tcp_fastopen_cookie foc = { .len = -1 };
5411 int saved_clamp = tp->rx_opt.mss_clamp;
5412
5413 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5414 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5415 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5416
5417 if (th->ack) {
5418 /* rfc793:
5419 * "If the state is SYN-SENT then
5420 * first check the ACK bit
5421 * If the ACK bit is set
5422 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5423 * a reset (unless the RST bit is set, if so drop
5424 * the segment and return)"
5425 */
5426 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5427 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5428 goto reset_and_undo;
5429
5430 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5431 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5432 tcp_time_stamp)) {
5433 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5434 goto reset_and_undo;
5435 }
5436
5437 /* Now ACK is acceptable.
5438 *
5439 * "If the RST bit is set
5440 * If the ACK was acceptable then signal the user "error:
5441 * connection reset", drop the segment, enter CLOSED state,
5442 * delete TCB, and return."
5443 */
5444
5445 if (th->rst) {
5446 tcp_reset(sk);
5447 goto discard;
5448 }
5449
5450 /* rfc793:
5451 * "fifth, if neither of the SYN or RST bits is set then
5452 * drop the segment and return."
5453 *
5454 * See note below!
5455 * --ANK(990513)
5456 */
5457 if (!th->syn)
5458 goto discard_and_undo;
5459
5460 /* rfc793:
5461 * "If the SYN bit is on ...
5462 * are acceptable then ...
5463 * (our SYN has been ACKed), change the connection
5464 * state to ESTABLISHED..."
5465 */
5466
5467 TCP_ECN_rcv_synack(tp, th);
5468
5469 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5470 tcp_ack(sk, skb, FLAG_SLOWPATH);
5471
5472 /* Ok.. it's good. Set up sequence numbers and
5473 * move to established.
5474 */
5475 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5476 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5477
5478 /* RFC1323: The window in SYN & SYN/ACK segments is
5479 * never scaled.
5480 */
5481 tp->snd_wnd = ntohs(th->window);
5482
5483 if (!tp->rx_opt.wscale_ok) {
5484 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5485 tp->window_clamp = min(tp->window_clamp, 65535U);
5486 }
5487
5488 if (tp->rx_opt.saw_tstamp) {
5489 tp->rx_opt.tstamp_ok = 1;
5490 tp->tcp_header_len =
5491 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5492 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5493 tcp_store_ts_recent(tp);
5494 } else {
5495 tp->tcp_header_len = sizeof(struct tcphdr);
5496 }
5497
5498 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5499 tcp_enable_fack(tp);
5500
5501 tcp_mtup_init(sk);
5502 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5503 tcp_initialize_rcv_mss(sk);
5504
5505 /* Remember, tcp_poll() does not lock socket!
5506 * Change state from SYN-SENT only after copied_seq
5507 * is initialized. */
5508 tp->copied_seq = tp->rcv_nxt;
5509
5510 smp_mb();
5511
5512 tcp_finish_connect(sk, skb);
5513
5514 if ((tp->syn_fastopen || tp->syn_data) &&
5515 tcp_rcv_fastopen_synack(sk, skb, &foc))
5516 return -1;
5517
5518 if (sk->sk_write_pending ||
5519 icsk->icsk_accept_queue.rskq_defer_accept ||
5520 icsk->icsk_ack.pingpong) {
5521 /* Save one ACK. Data will be ready after
5522 * several ticks, if write_pending is set.
5523 *
5524 * It may be deleted, but with this feature tcpdumps
5525 * look so _wonderfully_ clever, that I was not able
5526 * to stand against the temptation 8) --ANK
5527 */
5528 inet_csk_schedule_ack(sk);
5529 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5530 tcp_enter_quickack_mode(sk);
5531 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5532 TCP_DELACK_MAX, TCP_RTO_MAX);
5533
5534 discard:
5535 __kfree_skb(skb);
5536 return 0;
5537 } else {
5538 tcp_send_ack(sk);
5539 }
5540 return -1;
5541 }
5542
5543 /* No ACK in the segment */
5544
5545 if (th->rst) {
5546 /* rfc793:
5547 * "If the RST bit is set
5548 *
5549 * Otherwise (no ACK) drop the segment and return."
5550 */
5551
5552 goto discard_and_undo;
5553 }
5554
5555 /* PAWS check. */
5556 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5557 tcp_paws_reject(&tp->rx_opt, 0))
5558 goto discard_and_undo;
5559
5560 if (th->syn) {
5561 /* We see SYN without ACK. It is attempt of
5562 * simultaneous connect with crossed SYNs.
5563 * Particularly, it can be connect to self.
5564 */
5565 tcp_set_state(sk, TCP_SYN_RECV);
5566
5567 if (tp->rx_opt.saw_tstamp) {
5568 tp->rx_opt.tstamp_ok = 1;
5569 tcp_store_ts_recent(tp);
5570 tp->tcp_header_len =
5571 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5572 } else {
5573 tp->tcp_header_len = sizeof(struct tcphdr);
5574 }
5575
5576 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5577 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5578
5579 /* RFC1323: The window in SYN & SYN/ACK segments is
5580 * never scaled.
5581 */
5582 tp->snd_wnd = ntohs(th->window);
5583 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5584 tp->max_window = tp->snd_wnd;
5585
5586 TCP_ECN_rcv_syn(tp, th);
5587
5588 tcp_mtup_init(sk);
5589 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5590 tcp_initialize_rcv_mss(sk);
5591
5592 tcp_send_synack(sk);
5593 #if 0
5594 /* Note, we could accept data and URG from this segment.
5595 * There are no obstacles to make this (except that we must
5596 * either change tcp_recvmsg() to prevent it from returning data
5597 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5598 *
5599 * However, if we ignore data in ACKless segments sometimes,
5600 * we have no reasons to accept it sometimes.
5601 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5602 * is not flawless. So, discard packet for sanity.
5603 * Uncomment this return to process the data.
5604 */
5605 return -1;
5606 #else
5607 goto discard;
5608 #endif
5609 }
5610 /* "fifth, if neither of the SYN or RST bits is set then
5611 * drop the segment and return."
5612 */
5613
5614 discard_and_undo:
5615 tcp_clear_options(&tp->rx_opt);
5616 tp->rx_opt.mss_clamp = saved_clamp;
5617 goto discard;
5618
5619 reset_and_undo:
5620 tcp_clear_options(&tp->rx_opt);
5621 tp->rx_opt.mss_clamp = saved_clamp;
5622 return 1;
5623 }
5624
5625 /*
5626 * This function implements the receiving procedure of RFC 793 for
5627 * all states except ESTABLISHED and TIME_WAIT.
5628 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5629 * address independent.
5630 */
5631
5632 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5633 const struct tcphdr *th, unsigned int len)
5634 {
5635 struct tcp_sock *tp = tcp_sk(sk);
5636 struct inet_connection_sock *icsk = inet_csk(sk);
5637 struct request_sock *req;
5638 int queued = 0;
5639
5640 tp->rx_opt.saw_tstamp = 0;
5641
5642 switch (sk->sk_state) {
5643 case TCP_CLOSE:
5644 goto discard;
5645
5646 case TCP_LISTEN:
5647 if (th->ack)
5648 return 1;
5649
5650 if (th->rst)
5651 goto discard;
5652
5653 if (th->syn) {
5654 if (th->fin)
5655 goto discard;
5656 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5657 return 1;
5658
5659 /* Now we have several options: In theory there is
5660 * nothing else in the frame. KA9Q has an option to
5661 * send data with the syn, BSD accepts data with the
5662 * syn up to the [to be] advertised window and
5663 * Solaris 2.1 gives you a protocol error. For now
5664 * we just ignore it, that fits the spec precisely
5665 * and avoids incompatibilities. It would be nice in
5666 * future to drop through and process the data.
5667 *
5668 * Now that TTCP is starting to be used we ought to
5669 * queue this data.
5670 * But, this leaves one open to an easy denial of
5671 * service attack, and SYN cookies can't defend
5672 * against this problem. So, we drop the data
5673 * in the interest of security over speed unless
5674 * it's still in use.
5675 */
5676 kfree_skb(skb);
5677 return 0;
5678 }
5679 goto discard;
5680
5681 case TCP_SYN_SENT:
5682 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5683 if (queued >= 0)
5684 return queued;
5685
5686 /* Do step6 onward by hand. */
5687 tcp_urg(sk, skb, th);
5688 __kfree_skb(skb);
5689 tcp_data_snd_check(sk);
5690 return 0;
5691 }
5692
5693 req = tp->fastopen_rsk;
5694 if (req != NULL) {
5695 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5696 sk->sk_state != TCP_FIN_WAIT1);
5697
5698 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5699 goto discard;
5700 }
5701
5702 if (!th->ack && !th->rst)
5703 goto discard;
5704
5705 if (!tcp_validate_incoming(sk, skb, th, 0))
5706 return 0;
5707
5708 /* step 5: check the ACK field */
5709 if (true) {
5710 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5711 FLAG_UPDATE_TS_RECENT) > 0;
5712
5713 switch (sk->sk_state) {
5714 case TCP_SYN_RECV:
5715 if (acceptable) {
5716 /* Once we leave TCP_SYN_RECV, we no longer
5717 * need req so release it.
5718 */
5719 if (req) {
5720 tcp_synack_rtt_meas(sk, req);
5721 tp->total_retrans = req->num_retrans;
5722
5723 reqsk_fastopen_remove(sk, req, false);
5724 } else {
5725 /* Make sure socket is routed, for
5726 * correct metrics.
5727 */
5728 icsk->icsk_af_ops->rebuild_header(sk);
5729 tcp_init_congestion_control(sk);
5730
5731 tcp_mtup_init(sk);
5732 tcp_init_buffer_space(sk);
5733 tp->copied_seq = tp->rcv_nxt;
5734 }
5735 smp_mb();
5736 tcp_set_state(sk, TCP_ESTABLISHED);
5737 sk->sk_state_change(sk);
5738
5739 /* Note, that this wakeup is only for marginal
5740 * crossed SYN case. Passively open sockets
5741 * are not waked up, because sk->sk_sleep ==
5742 * NULL and sk->sk_socket == NULL.
5743 */
5744 if (sk->sk_socket)
5745 sk_wake_async(sk,
5746 SOCK_WAKE_IO, POLL_OUT);
5747
5748 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5749 tp->snd_wnd = ntohs(th->window) <<
5750 tp->rx_opt.snd_wscale;
5751 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5752
5753 if (tp->rx_opt.tstamp_ok)
5754 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5755
5756 if (req) {
5757 /* Re-arm the timer because data may
5758 * have been sent out. This is similar
5759 * to the regular data transmission case
5760 * when new data has just been ack'ed.
5761 *
5762 * (TFO) - we could try to be more
5763 * aggressive and retranmitting any data
5764 * sooner based on when they were sent
5765 * out.
5766 */
5767 tcp_rearm_rto(sk);
5768 } else
5769 tcp_init_metrics(sk);
5770
5771 tcp_update_pacing_rate(sk);
5772
5773 /* Prevent spurious tcp_cwnd_restart() on
5774 * first data packet.
5775 */
5776 tp->lsndtime = tcp_time_stamp;
5777
5778 tcp_initialize_rcv_mss(sk);
5779 tcp_fast_path_on(tp);
5780 } else {
5781 return 1;
5782 }
5783 break;
5784
5785 case TCP_FIN_WAIT1:
5786 /* If we enter the TCP_FIN_WAIT1 state and we are a
5787 * Fast Open socket and this is the first acceptable
5788 * ACK we have received, this would have acknowledged
5789 * our SYNACK so stop the SYNACK timer.
5790 */
5791 if (req != NULL) {
5792 /* Return RST if ack_seq is invalid.
5793 * Note that RFC793 only says to generate a
5794 * DUPACK for it but for TCP Fast Open it seems
5795 * better to treat this case like TCP_SYN_RECV
5796 * above.
5797 */
5798 if (!acceptable)
5799 return 1;
5800 /* We no longer need the request sock. */
5801 reqsk_fastopen_remove(sk, req, false);
5802 tcp_rearm_rto(sk);
5803 }
5804 if (tp->snd_una == tp->write_seq) {
5805 struct dst_entry *dst;
5806
5807 tcp_set_state(sk, TCP_FIN_WAIT2);
5808 sk->sk_shutdown |= SEND_SHUTDOWN;
5809
5810 dst = __sk_dst_get(sk);
5811 if (dst)
5812 dst_confirm(dst);
5813
5814 if (!sock_flag(sk, SOCK_DEAD))
5815 /* Wake up lingering close() */
5816 sk->sk_state_change(sk);
5817 else {
5818 int tmo;
5819
5820 if (tp->linger2 < 0 ||
5821 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5822 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5823 tcp_done(sk);
5824 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5825 return 1;
5826 }
5827
5828 tmo = tcp_fin_time(sk);
5829 if (tmo > TCP_TIMEWAIT_LEN) {
5830 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5831 } else if (th->fin || sock_owned_by_user(sk)) {
5832 /* Bad case. We could lose such FIN otherwise.
5833 * It is not a big problem, but it looks confusing
5834 * and not so rare event. We still can lose it now,
5835 * if it spins in bh_lock_sock(), but it is really
5836 * marginal case.
5837 */
5838 inet_csk_reset_keepalive_timer(sk, tmo);
5839 } else {
5840 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5841 goto discard;
5842 }
5843 }
5844 }
5845 break;
5846
5847 case TCP_CLOSING:
5848 if (tp->snd_una == tp->write_seq) {
5849 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5850 goto discard;
5851 }
5852 break;
5853
5854 case TCP_LAST_ACK:
5855 if (tp->snd_una == tp->write_seq) {
5856 tcp_update_metrics(sk);
5857 tcp_done(sk);
5858 goto discard;
5859 }
5860 break;
5861 }
5862 }
5863
5864 /* step 6: check the URG bit */
5865 tcp_urg(sk, skb, th);
5866
5867 /* step 7: process the segment text */
5868 switch (sk->sk_state) {
5869 case TCP_CLOSE_WAIT:
5870 case TCP_CLOSING:
5871 case TCP_LAST_ACK:
5872 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5873 break;
5874 case TCP_FIN_WAIT1:
5875 case TCP_FIN_WAIT2:
5876 /* RFC 793 says to queue data in these states,
5877 * RFC 1122 says we MUST send a reset.
5878 * BSD 4.4 also does reset.
5879 */
5880 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5881 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5882 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5883 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5884 tcp_reset(sk);
5885 return 1;
5886 }
5887 }
5888 /* Fall through */
5889 case TCP_ESTABLISHED:
5890 tcp_data_queue(sk, skb);
5891 queued = 1;
5892 break;
5893 }
5894
5895 /* tcp_data could move socket to TIME-WAIT */
5896 if (sk->sk_state != TCP_CLOSE) {
5897 tcp_data_snd_check(sk);
5898 tcp_ack_snd_check(sk);
5899 }
5900
5901 if (!queued) {
5902 discard:
5903 __kfree_skb(skb);
5904 }
5905 return 0;
5906 }
5907 EXPORT_SYMBOL(tcp_rcv_state_process);