Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96
97 int sysctl_tcp_thin_dupack __read_mostly;
98
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
115
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
126 */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
132
133 icsk->icsk_ack.last_seg_size = 0;
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
165 }
166 }
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 }
171 }
172
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 const struct inet_connection_sock *icsk = inet_csk(sk);
199
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
224
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 }
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
243 }
244 }
245
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 return true;
262 return false;
263 }
264
265 /* Buffer size and advertised window tuning.
266 *
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268 */
269
270 static void tcp_fixup_sndbuf(struct sock *sk)
271 {
272 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
273
274 sndmem *= TCP_INIT_CWND;
275 if (sk->sk_sndbuf < sndmem)
276 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
277 }
278
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280 *
281 * All tcp_full_space() is split to two parts: "network" buffer, allocated
282 * forward and advertised in receiver window (tp->rcv_wnd) and
283 * "application buffer", required to isolate scheduling/application
284 * latencies from network.
285 * window_clamp is maximal advertised window. It can be less than
286 * tcp_full_space(), in this case tcp_full_space() - window_clamp
287 * is reserved for "application" buffer. The less window_clamp is
288 * the smoother our behaviour from viewpoint of network, but the lower
289 * throughput and the higher sensitivity of the connection to losses. 8)
290 *
291 * rcv_ssthresh is more strict window_clamp used at "slow start"
292 * phase to predict further behaviour of this connection.
293 * It is used for two goals:
294 * - to enforce header prediction at sender, even when application
295 * requires some significant "application buffer". It is check #1.
296 * - to prevent pruning of receive queue because of misprediction
297 * of receiver window. Check #2.
298 *
299 * The scheme does not work when sender sends good segments opening
300 * window and then starts to feed us spaghetti. But it should work
301 * in common situations. Otherwise, we have to rely on queue collapsing.
302 */
303
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
306 {
307 struct tcp_sock *tp = tcp_sk(sk);
308 /* Optimize this! */
309 int truesize = tcp_win_from_space(skb->truesize) >> 1;
310 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
311
312 while (tp->rcv_ssthresh <= window) {
313 if (truesize <= skb->len)
314 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
315
316 truesize >>= 1;
317 window >>= 1;
318 }
319 return 0;
320 }
321
322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
323 {
324 struct tcp_sock *tp = tcp_sk(sk);
325
326 /* Check #1 */
327 if (tp->rcv_ssthresh < tp->window_clamp &&
328 (int)tp->rcv_ssthresh < tcp_space(sk) &&
329 !sk_under_memory_pressure(sk)) {
330 int incr;
331
332 /* Check #2. Increase window, if skb with such overhead
333 * will fit to rcvbuf in future.
334 */
335 if (tcp_win_from_space(skb->truesize) <= skb->len)
336 incr = 2 * tp->advmss;
337 else
338 incr = __tcp_grow_window(sk, skb);
339
340 if (incr) {
341 incr = max_t(int, incr, 2 * skb->len);
342 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343 tp->window_clamp);
344 inet_csk(sk)->icsk_ack.quick |= 1;
345 }
346 }
347 }
348
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350
351 static void tcp_fixup_rcvbuf(struct sock *sk)
352 {
353 u32 mss = tcp_sk(sk)->advmss;
354 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
355 int rcvmem;
356
357 /* Limit to 10 segments if mss <= 1460,
358 * or 14600/mss segments, with a minimum of two segments.
359 */
360 if (mss > 1460)
361 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
362
363 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
364 while (tcp_win_from_space(rcvmem) < mss)
365 rcvmem += 128;
366
367 rcvmem *= icwnd;
368
369 if (sk->sk_rcvbuf < rcvmem)
370 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
371 }
372
373 /* 4. Try to fixup all. It is made immediately after connection enters
374 * established state.
375 */
376 void tcp_init_buffer_space(struct sock *sk)
377 {
378 struct tcp_sock *tp = tcp_sk(sk);
379 int maxwin;
380
381 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
382 tcp_fixup_rcvbuf(sk);
383 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
384 tcp_fixup_sndbuf(sk);
385
386 tp->rcvq_space.space = tp->rcv_wnd;
387
388 maxwin = tcp_full_space(sk);
389
390 if (tp->window_clamp >= maxwin) {
391 tp->window_clamp = maxwin;
392
393 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
394 tp->window_clamp = max(maxwin -
395 (maxwin >> sysctl_tcp_app_win),
396 4 * tp->advmss);
397 }
398
399 /* Force reservation of one segment. */
400 if (sysctl_tcp_app_win &&
401 tp->window_clamp > 2 * tp->advmss &&
402 tp->window_clamp + tp->advmss > maxwin)
403 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
404
405 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
406 tp->snd_cwnd_stamp = tcp_time_stamp;
407 }
408
409 /* 5. Recalculate window clamp after socket hit its memory bounds. */
410 static void tcp_clamp_window(struct sock *sk)
411 {
412 struct tcp_sock *tp = tcp_sk(sk);
413 struct inet_connection_sock *icsk = inet_csk(sk);
414
415 icsk->icsk_ack.quick = 0;
416
417 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
418 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
419 !sk_under_memory_pressure(sk) &&
420 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
421 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
422 sysctl_tcp_rmem[2]);
423 }
424 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
425 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
426 }
427
428 /* Initialize RCV_MSS value.
429 * RCV_MSS is an our guess about MSS used by the peer.
430 * We haven't any direct information about the MSS.
431 * It's better to underestimate the RCV_MSS rather than overestimate.
432 * Overestimations make us ACKing less frequently than needed.
433 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
434 */
435 void tcp_initialize_rcv_mss(struct sock *sk)
436 {
437 const struct tcp_sock *tp = tcp_sk(sk);
438 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
439
440 hint = min(hint, tp->rcv_wnd / 2);
441 hint = min(hint, TCP_MSS_DEFAULT);
442 hint = max(hint, TCP_MIN_MSS);
443
444 inet_csk(sk)->icsk_ack.rcv_mss = hint;
445 }
446 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
447
448 /* Receiver "autotuning" code.
449 *
450 * The algorithm for RTT estimation w/o timestamps is based on
451 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
452 * <http://public.lanl.gov/radiant/pubs.html#DRS>
453 *
454 * More detail on this code can be found at
455 * <http://staff.psc.edu/jheffner/>,
456 * though this reference is out of date. A new paper
457 * is pending.
458 */
459 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
460 {
461 u32 new_sample = tp->rcv_rtt_est.rtt;
462 long m = sample;
463
464 if (m == 0)
465 m = 1;
466
467 if (new_sample != 0) {
468 /* If we sample in larger samples in the non-timestamp
469 * case, we could grossly overestimate the RTT especially
470 * with chatty applications or bulk transfer apps which
471 * are stalled on filesystem I/O.
472 *
473 * Also, since we are only going for a minimum in the
474 * non-timestamp case, we do not smooth things out
475 * else with timestamps disabled convergence takes too
476 * long.
477 */
478 if (!win_dep) {
479 m -= (new_sample >> 3);
480 new_sample += m;
481 } else {
482 m <<= 3;
483 if (m < new_sample)
484 new_sample = m;
485 }
486 } else {
487 /* No previous measure. */
488 new_sample = m << 3;
489 }
490
491 if (tp->rcv_rtt_est.rtt != new_sample)
492 tp->rcv_rtt_est.rtt = new_sample;
493 }
494
495 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
496 {
497 if (tp->rcv_rtt_est.time == 0)
498 goto new_measure;
499 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
500 return;
501 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
502
503 new_measure:
504 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
505 tp->rcv_rtt_est.time = tcp_time_stamp;
506 }
507
508 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
509 const struct sk_buff *skb)
510 {
511 struct tcp_sock *tp = tcp_sk(sk);
512 if (tp->rx_opt.rcv_tsecr &&
513 (TCP_SKB_CB(skb)->end_seq -
514 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
515 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
516 }
517
518 /*
519 * This function should be called every time data is copied to user space.
520 * It calculates the appropriate TCP receive buffer space.
521 */
522 void tcp_rcv_space_adjust(struct sock *sk)
523 {
524 struct tcp_sock *tp = tcp_sk(sk);
525 int time;
526 int space;
527
528 if (tp->rcvq_space.time == 0)
529 goto new_measure;
530
531 time = tcp_time_stamp - tp->rcvq_space.time;
532 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
533 return;
534
535 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
536
537 space = max(tp->rcvq_space.space, space);
538
539 if (tp->rcvq_space.space != space) {
540 int rcvmem;
541
542 tp->rcvq_space.space = space;
543
544 if (sysctl_tcp_moderate_rcvbuf &&
545 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
546 int new_clamp = space;
547
548 /* Receive space grows, normalize in order to
549 * take into account packet headers and sk_buff
550 * structure overhead.
551 */
552 space /= tp->advmss;
553 if (!space)
554 space = 1;
555 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
556 while (tcp_win_from_space(rcvmem) < tp->advmss)
557 rcvmem += 128;
558 space *= rcvmem;
559 space = min(space, sysctl_tcp_rmem[2]);
560 if (space > sk->sk_rcvbuf) {
561 sk->sk_rcvbuf = space;
562
563 /* Make the window clamp follow along. */
564 tp->window_clamp = new_clamp;
565 }
566 }
567 }
568
569 new_measure:
570 tp->rcvq_space.seq = tp->copied_seq;
571 tp->rcvq_space.time = tcp_time_stamp;
572 }
573
574 /* There is something which you must keep in mind when you analyze the
575 * behavior of the tp->ato delayed ack timeout interval. When a
576 * connection starts up, we want to ack as quickly as possible. The
577 * problem is that "good" TCP's do slow start at the beginning of data
578 * transmission. The means that until we send the first few ACK's the
579 * sender will sit on his end and only queue most of his data, because
580 * he can only send snd_cwnd unacked packets at any given time. For
581 * each ACK we send, he increments snd_cwnd and transmits more of his
582 * queue. -DaveM
583 */
584 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
585 {
586 struct tcp_sock *tp = tcp_sk(sk);
587 struct inet_connection_sock *icsk = inet_csk(sk);
588 u32 now;
589
590 inet_csk_schedule_ack(sk);
591
592 tcp_measure_rcv_mss(sk, skb);
593
594 tcp_rcv_rtt_measure(tp);
595
596 now = tcp_time_stamp;
597
598 if (!icsk->icsk_ack.ato) {
599 /* The _first_ data packet received, initialize
600 * delayed ACK engine.
601 */
602 tcp_incr_quickack(sk);
603 icsk->icsk_ack.ato = TCP_ATO_MIN;
604 } else {
605 int m = now - icsk->icsk_ack.lrcvtime;
606
607 if (m <= TCP_ATO_MIN / 2) {
608 /* The fastest case is the first. */
609 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
610 } else if (m < icsk->icsk_ack.ato) {
611 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
612 if (icsk->icsk_ack.ato > icsk->icsk_rto)
613 icsk->icsk_ack.ato = icsk->icsk_rto;
614 } else if (m > icsk->icsk_rto) {
615 /* Too long gap. Apparently sender failed to
616 * restart window, so that we send ACKs quickly.
617 */
618 tcp_incr_quickack(sk);
619 sk_mem_reclaim(sk);
620 }
621 }
622 icsk->icsk_ack.lrcvtime = now;
623
624 TCP_ECN_check_ce(tp, skb);
625
626 if (skb->len >= 128)
627 tcp_grow_window(sk, skb);
628 }
629
630 /* Called to compute a smoothed rtt estimate. The data fed to this
631 * routine either comes from timestamps, or from segments that were
632 * known _not_ to have been retransmitted [see Karn/Partridge
633 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
634 * piece by Van Jacobson.
635 * NOTE: the next three routines used to be one big routine.
636 * To save cycles in the RFC 1323 implementation it was better to break
637 * it up into three procedures. -- erics
638 */
639 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
640 {
641 struct tcp_sock *tp = tcp_sk(sk);
642 long m = mrtt; /* RTT */
643
644 /* The following amusing code comes from Jacobson's
645 * article in SIGCOMM '88. Note that rtt and mdev
646 * are scaled versions of rtt and mean deviation.
647 * This is designed to be as fast as possible
648 * m stands for "measurement".
649 *
650 * On a 1990 paper the rto value is changed to:
651 * RTO = rtt + 4 * mdev
652 *
653 * Funny. This algorithm seems to be very broken.
654 * These formulae increase RTO, when it should be decreased, increase
655 * too slowly, when it should be increased quickly, decrease too quickly
656 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
657 * does not matter how to _calculate_ it. Seems, it was trap
658 * that VJ failed to avoid. 8)
659 */
660 if (m == 0)
661 m = 1;
662 if (tp->srtt != 0) {
663 m -= (tp->srtt >> 3); /* m is now error in rtt est */
664 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
665 if (m < 0) {
666 m = -m; /* m is now abs(error) */
667 m -= (tp->mdev >> 2); /* similar update on mdev */
668 /* This is similar to one of Eifel findings.
669 * Eifel blocks mdev updates when rtt decreases.
670 * This solution is a bit different: we use finer gain
671 * for mdev in this case (alpha*beta).
672 * Like Eifel it also prevents growth of rto,
673 * but also it limits too fast rto decreases,
674 * happening in pure Eifel.
675 */
676 if (m > 0)
677 m >>= 3;
678 } else {
679 m -= (tp->mdev >> 2); /* similar update on mdev */
680 }
681 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
682 if (tp->mdev > tp->mdev_max) {
683 tp->mdev_max = tp->mdev;
684 if (tp->mdev_max > tp->rttvar)
685 tp->rttvar = tp->mdev_max;
686 }
687 if (after(tp->snd_una, tp->rtt_seq)) {
688 if (tp->mdev_max < tp->rttvar)
689 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
690 tp->rtt_seq = tp->snd_nxt;
691 tp->mdev_max = tcp_rto_min(sk);
692 }
693 } else {
694 /* no previous measure. */
695 tp->srtt = m << 3; /* take the measured time to be rtt */
696 tp->mdev = m << 1; /* make sure rto = 3*rtt */
697 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
698 tp->rtt_seq = tp->snd_nxt;
699 }
700 }
701
702 /* Calculate rto without backoff. This is the second half of Van Jacobson's
703 * routine referred to above.
704 */
705 void tcp_set_rto(struct sock *sk)
706 {
707 const struct tcp_sock *tp = tcp_sk(sk);
708 /* Old crap is replaced with new one. 8)
709 *
710 * More seriously:
711 * 1. If rtt variance happened to be less 50msec, it is hallucination.
712 * It cannot be less due to utterly erratic ACK generation made
713 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
714 * to do with delayed acks, because at cwnd>2 true delack timeout
715 * is invisible. Actually, Linux-2.4 also generates erratic
716 * ACKs in some circumstances.
717 */
718 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
719
720 /* 2. Fixups made earlier cannot be right.
721 * If we do not estimate RTO correctly without them,
722 * all the algo is pure shit and should be replaced
723 * with correct one. It is exactly, which we pretend to do.
724 */
725
726 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
727 * guarantees that rto is higher.
728 */
729 tcp_bound_rto(sk);
730 }
731
732 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
733 {
734 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
735
736 if (!cwnd)
737 cwnd = TCP_INIT_CWND;
738 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
739 }
740
741 /*
742 * Packet counting of FACK is based on in-order assumptions, therefore TCP
743 * disables it when reordering is detected
744 */
745 void tcp_disable_fack(struct tcp_sock *tp)
746 {
747 /* RFC3517 uses different metric in lost marker => reset on change */
748 if (tcp_is_fack(tp))
749 tp->lost_skb_hint = NULL;
750 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
751 }
752
753 /* Take a notice that peer is sending D-SACKs */
754 static void tcp_dsack_seen(struct tcp_sock *tp)
755 {
756 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
757 }
758
759 static void tcp_update_reordering(struct sock *sk, const int metric,
760 const int ts)
761 {
762 struct tcp_sock *tp = tcp_sk(sk);
763 if (metric > tp->reordering) {
764 int mib_idx;
765
766 tp->reordering = min(TCP_MAX_REORDERING, metric);
767
768 /* This exciting event is worth to be remembered. 8) */
769 if (ts)
770 mib_idx = LINUX_MIB_TCPTSREORDER;
771 else if (tcp_is_reno(tp))
772 mib_idx = LINUX_MIB_TCPRENOREORDER;
773 else if (tcp_is_fack(tp))
774 mib_idx = LINUX_MIB_TCPFACKREORDER;
775 else
776 mib_idx = LINUX_MIB_TCPSACKREORDER;
777
778 NET_INC_STATS_BH(sock_net(sk), mib_idx);
779 #if FASTRETRANS_DEBUG > 1
780 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
781 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
782 tp->reordering,
783 tp->fackets_out,
784 tp->sacked_out,
785 tp->undo_marker ? tp->undo_retrans : 0);
786 #endif
787 tcp_disable_fack(tp);
788 }
789
790 if (metric > 0)
791 tcp_disable_early_retrans(tp);
792 }
793
794 /* This must be called before lost_out is incremented */
795 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
796 {
797 if ((tp->retransmit_skb_hint == NULL) ||
798 before(TCP_SKB_CB(skb)->seq,
799 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
800 tp->retransmit_skb_hint = skb;
801
802 if (!tp->lost_out ||
803 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
804 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
805 }
806
807 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
808 {
809 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
810 tcp_verify_retransmit_hint(tp, skb);
811
812 tp->lost_out += tcp_skb_pcount(skb);
813 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
814 }
815 }
816
817 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
818 struct sk_buff *skb)
819 {
820 tcp_verify_retransmit_hint(tp, skb);
821
822 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
823 tp->lost_out += tcp_skb_pcount(skb);
824 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
825 }
826 }
827
828 /* This procedure tags the retransmission queue when SACKs arrive.
829 *
830 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
831 * Packets in queue with these bits set are counted in variables
832 * sacked_out, retrans_out and lost_out, correspondingly.
833 *
834 * Valid combinations are:
835 * Tag InFlight Description
836 * 0 1 - orig segment is in flight.
837 * S 0 - nothing flies, orig reached receiver.
838 * L 0 - nothing flies, orig lost by net.
839 * R 2 - both orig and retransmit are in flight.
840 * L|R 1 - orig is lost, retransmit is in flight.
841 * S|R 1 - orig reached receiver, retrans is still in flight.
842 * (L|S|R is logically valid, it could occur when L|R is sacked,
843 * but it is equivalent to plain S and code short-curcuits it to S.
844 * L|S is logically invalid, it would mean -1 packet in flight 8))
845 *
846 * These 6 states form finite state machine, controlled by the following events:
847 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
848 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
849 * 3. Loss detection event of two flavors:
850 * A. Scoreboard estimator decided the packet is lost.
851 * A'. Reno "three dupacks" marks head of queue lost.
852 * A''. Its FACK modification, head until snd.fack is lost.
853 * B. SACK arrives sacking SND.NXT at the moment, when the
854 * segment was retransmitted.
855 * 4. D-SACK added new rule: D-SACK changes any tag to S.
856 *
857 * It is pleasant to note, that state diagram turns out to be commutative,
858 * so that we are allowed not to be bothered by order of our actions,
859 * when multiple events arrive simultaneously. (see the function below).
860 *
861 * Reordering detection.
862 * --------------------
863 * Reordering metric is maximal distance, which a packet can be displaced
864 * in packet stream. With SACKs we can estimate it:
865 *
866 * 1. SACK fills old hole and the corresponding segment was not
867 * ever retransmitted -> reordering. Alas, we cannot use it
868 * when segment was retransmitted.
869 * 2. The last flaw is solved with D-SACK. D-SACK arrives
870 * for retransmitted and already SACKed segment -> reordering..
871 * Both of these heuristics are not used in Loss state, when we cannot
872 * account for retransmits accurately.
873 *
874 * SACK block validation.
875 * ----------------------
876 *
877 * SACK block range validation checks that the received SACK block fits to
878 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
879 * Note that SND.UNA is not included to the range though being valid because
880 * it means that the receiver is rather inconsistent with itself reporting
881 * SACK reneging when it should advance SND.UNA. Such SACK block this is
882 * perfectly valid, however, in light of RFC2018 which explicitly states
883 * that "SACK block MUST reflect the newest segment. Even if the newest
884 * segment is going to be discarded ...", not that it looks very clever
885 * in case of head skb. Due to potentional receiver driven attacks, we
886 * choose to avoid immediate execution of a walk in write queue due to
887 * reneging and defer head skb's loss recovery to standard loss recovery
888 * procedure that will eventually trigger (nothing forbids us doing this).
889 *
890 * Implements also blockage to start_seq wrap-around. Problem lies in the
891 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
892 * there's no guarantee that it will be before snd_nxt (n). The problem
893 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
894 * wrap (s_w):
895 *
896 * <- outs wnd -> <- wrapzone ->
897 * u e n u_w e_w s n_w
898 * | | | | | | |
899 * |<------------+------+----- TCP seqno space --------------+---------->|
900 * ...-- <2^31 ->| |<--------...
901 * ...---- >2^31 ------>| |<--------...
902 *
903 * Current code wouldn't be vulnerable but it's better still to discard such
904 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
905 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
906 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
907 * equal to the ideal case (infinite seqno space without wrap caused issues).
908 *
909 * With D-SACK the lower bound is extended to cover sequence space below
910 * SND.UNA down to undo_marker, which is the last point of interest. Yet
911 * again, D-SACK block must not to go across snd_una (for the same reason as
912 * for the normal SACK blocks, explained above). But there all simplicity
913 * ends, TCP might receive valid D-SACKs below that. As long as they reside
914 * fully below undo_marker they do not affect behavior in anyway and can
915 * therefore be safely ignored. In rare cases (which are more or less
916 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
917 * fragmentation and packet reordering past skb's retransmission. To consider
918 * them correctly, the acceptable range must be extended even more though
919 * the exact amount is rather hard to quantify. However, tp->max_window can
920 * be used as an exaggerated estimate.
921 */
922 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
923 u32 start_seq, u32 end_seq)
924 {
925 /* Too far in future, or reversed (interpretation is ambiguous) */
926 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
927 return false;
928
929 /* Nasty start_seq wrap-around check (see comments above) */
930 if (!before(start_seq, tp->snd_nxt))
931 return false;
932
933 /* In outstanding window? ...This is valid exit for D-SACKs too.
934 * start_seq == snd_una is non-sensical (see comments above)
935 */
936 if (after(start_seq, tp->snd_una))
937 return true;
938
939 if (!is_dsack || !tp->undo_marker)
940 return false;
941
942 /* ...Then it's D-SACK, and must reside below snd_una completely */
943 if (after(end_seq, tp->snd_una))
944 return false;
945
946 if (!before(start_seq, tp->undo_marker))
947 return true;
948
949 /* Too old */
950 if (!after(end_seq, tp->undo_marker))
951 return false;
952
953 /* Undo_marker boundary crossing (overestimates a lot). Known already:
954 * start_seq < undo_marker and end_seq >= undo_marker.
955 */
956 return !before(start_seq, end_seq - tp->max_window);
957 }
958
959 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
960 * Event "B". Later note: FACK people cheated me again 8), we have to account
961 * for reordering! Ugly, but should help.
962 *
963 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
964 * less than what is now known to be received by the other end (derived from
965 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
966 * retransmitted skbs to avoid some costly processing per ACKs.
967 */
968 static void tcp_mark_lost_retrans(struct sock *sk)
969 {
970 const struct inet_connection_sock *icsk = inet_csk(sk);
971 struct tcp_sock *tp = tcp_sk(sk);
972 struct sk_buff *skb;
973 int cnt = 0;
974 u32 new_low_seq = tp->snd_nxt;
975 u32 received_upto = tcp_highest_sack_seq(tp);
976
977 if (!tcp_is_fack(tp) || !tp->retrans_out ||
978 !after(received_upto, tp->lost_retrans_low) ||
979 icsk->icsk_ca_state != TCP_CA_Recovery)
980 return;
981
982 tcp_for_write_queue(skb, sk) {
983 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
984
985 if (skb == tcp_send_head(sk))
986 break;
987 if (cnt == tp->retrans_out)
988 break;
989 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
990 continue;
991
992 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
993 continue;
994
995 /* TODO: We would like to get rid of tcp_is_fack(tp) only
996 * constraint here (see above) but figuring out that at
997 * least tp->reordering SACK blocks reside between ack_seq
998 * and received_upto is not easy task to do cheaply with
999 * the available datastructures.
1000 *
1001 * Whether FACK should check here for tp->reordering segs
1002 * in-between one could argue for either way (it would be
1003 * rather simple to implement as we could count fack_count
1004 * during the walk and do tp->fackets_out - fack_count).
1005 */
1006 if (after(received_upto, ack_seq)) {
1007 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1008 tp->retrans_out -= tcp_skb_pcount(skb);
1009
1010 tcp_skb_mark_lost_uncond_verify(tp, skb);
1011 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1012 } else {
1013 if (before(ack_seq, new_low_seq))
1014 new_low_seq = ack_seq;
1015 cnt += tcp_skb_pcount(skb);
1016 }
1017 }
1018
1019 if (tp->retrans_out)
1020 tp->lost_retrans_low = new_low_seq;
1021 }
1022
1023 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1024 struct tcp_sack_block_wire *sp, int num_sacks,
1025 u32 prior_snd_una)
1026 {
1027 struct tcp_sock *tp = tcp_sk(sk);
1028 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1029 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1030 bool dup_sack = false;
1031
1032 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1033 dup_sack = true;
1034 tcp_dsack_seen(tp);
1035 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1036 } else if (num_sacks > 1) {
1037 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1038 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1039
1040 if (!after(end_seq_0, end_seq_1) &&
1041 !before(start_seq_0, start_seq_1)) {
1042 dup_sack = true;
1043 tcp_dsack_seen(tp);
1044 NET_INC_STATS_BH(sock_net(sk),
1045 LINUX_MIB_TCPDSACKOFORECV);
1046 }
1047 }
1048
1049 /* D-SACK for already forgotten data... Do dumb counting. */
1050 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1051 !after(end_seq_0, prior_snd_una) &&
1052 after(end_seq_0, tp->undo_marker))
1053 tp->undo_retrans--;
1054
1055 return dup_sack;
1056 }
1057
1058 struct tcp_sacktag_state {
1059 int reord;
1060 int fack_count;
1061 int flag;
1062 };
1063
1064 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1065 * the incoming SACK may not exactly match but we can find smaller MSS
1066 * aligned portion of it that matches. Therefore we might need to fragment
1067 * which may fail and creates some hassle (caller must handle error case
1068 * returns).
1069 *
1070 * FIXME: this could be merged to shift decision code
1071 */
1072 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1073 u32 start_seq, u32 end_seq)
1074 {
1075 int err;
1076 bool in_sack;
1077 unsigned int pkt_len;
1078 unsigned int mss;
1079
1080 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1081 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1082
1083 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1084 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1085 mss = tcp_skb_mss(skb);
1086 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1087
1088 if (!in_sack) {
1089 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1090 if (pkt_len < mss)
1091 pkt_len = mss;
1092 } else {
1093 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1094 if (pkt_len < mss)
1095 return -EINVAL;
1096 }
1097
1098 /* Round if necessary so that SACKs cover only full MSSes
1099 * and/or the remaining small portion (if present)
1100 */
1101 if (pkt_len > mss) {
1102 unsigned int new_len = (pkt_len / mss) * mss;
1103 if (!in_sack && new_len < pkt_len) {
1104 new_len += mss;
1105 if (new_len > skb->len)
1106 return 0;
1107 }
1108 pkt_len = new_len;
1109 }
1110 err = tcp_fragment(sk, skb, pkt_len, mss);
1111 if (err < 0)
1112 return err;
1113 }
1114
1115 return in_sack;
1116 }
1117
1118 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1119 static u8 tcp_sacktag_one(struct sock *sk,
1120 struct tcp_sacktag_state *state, u8 sacked,
1121 u32 start_seq, u32 end_seq,
1122 bool dup_sack, int pcount)
1123 {
1124 struct tcp_sock *tp = tcp_sk(sk);
1125 int fack_count = state->fack_count;
1126
1127 /* Account D-SACK for retransmitted packet. */
1128 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1129 if (tp->undo_marker && tp->undo_retrans &&
1130 after(end_seq, tp->undo_marker))
1131 tp->undo_retrans--;
1132 if (sacked & TCPCB_SACKED_ACKED)
1133 state->reord = min(fack_count, state->reord);
1134 }
1135
1136 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1137 if (!after(end_seq, tp->snd_una))
1138 return sacked;
1139
1140 if (!(sacked & TCPCB_SACKED_ACKED)) {
1141 if (sacked & TCPCB_SACKED_RETRANS) {
1142 /* If the segment is not tagged as lost,
1143 * we do not clear RETRANS, believing
1144 * that retransmission is still in flight.
1145 */
1146 if (sacked & TCPCB_LOST) {
1147 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1148 tp->lost_out -= pcount;
1149 tp->retrans_out -= pcount;
1150 }
1151 } else {
1152 if (!(sacked & TCPCB_RETRANS)) {
1153 /* New sack for not retransmitted frame,
1154 * which was in hole. It is reordering.
1155 */
1156 if (before(start_seq,
1157 tcp_highest_sack_seq(tp)))
1158 state->reord = min(fack_count,
1159 state->reord);
1160 if (!after(end_seq, tp->high_seq))
1161 state->flag |= FLAG_ORIG_SACK_ACKED;
1162 }
1163
1164 if (sacked & TCPCB_LOST) {
1165 sacked &= ~TCPCB_LOST;
1166 tp->lost_out -= pcount;
1167 }
1168 }
1169
1170 sacked |= TCPCB_SACKED_ACKED;
1171 state->flag |= FLAG_DATA_SACKED;
1172 tp->sacked_out += pcount;
1173
1174 fack_count += pcount;
1175
1176 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1177 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1178 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1179 tp->lost_cnt_hint += pcount;
1180
1181 if (fack_count > tp->fackets_out)
1182 tp->fackets_out = fack_count;
1183 }
1184
1185 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1186 * frames and clear it. undo_retrans is decreased above, L|R frames
1187 * are accounted above as well.
1188 */
1189 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1190 sacked &= ~TCPCB_SACKED_RETRANS;
1191 tp->retrans_out -= pcount;
1192 }
1193
1194 return sacked;
1195 }
1196
1197 /* Shift newly-SACKed bytes from this skb to the immediately previous
1198 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1199 */
1200 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1201 struct tcp_sacktag_state *state,
1202 unsigned int pcount, int shifted, int mss,
1203 bool dup_sack)
1204 {
1205 struct tcp_sock *tp = tcp_sk(sk);
1206 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1207 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1208 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1209
1210 BUG_ON(!pcount);
1211
1212 /* Adjust counters and hints for the newly sacked sequence
1213 * range but discard the return value since prev is already
1214 * marked. We must tag the range first because the seq
1215 * advancement below implicitly advances
1216 * tcp_highest_sack_seq() when skb is highest_sack.
1217 */
1218 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1219 start_seq, end_seq, dup_sack, pcount);
1220
1221 if (skb == tp->lost_skb_hint)
1222 tp->lost_cnt_hint += pcount;
1223
1224 TCP_SKB_CB(prev)->end_seq += shifted;
1225 TCP_SKB_CB(skb)->seq += shifted;
1226
1227 skb_shinfo(prev)->gso_segs += pcount;
1228 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1229 skb_shinfo(skb)->gso_segs -= pcount;
1230
1231 /* When we're adding to gso_segs == 1, gso_size will be zero,
1232 * in theory this shouldn't be necessary but as long as DSACK
1233 * code can come after this skb later on it's better to keep
1234 * setting gso_size to something.
1235 */
1236 if (!skb_shinfo(prev)->gso_size) {
1237 skb_shinfo(prev)->gso_size = mss;
1238 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1239 }
1240
1241 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1242 if (skb_shinfo(skb)->gso_segs <= 1) {
1243 skb_shinfo(skb)->gso_size = 0;
1244 skb_shinfo(skb)->gso_type = 0;
1245 }
1246
1247 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1248 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1249
1250 if (skb->len > 0) {
1251 BUG_ON(!tcp_skb_pcount(skb));
1252 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1253 return false;
1254 }
1255
1256 /* Whole SKB was eaten :-) */
1257
1258 if (skb == tp->retransmit_skb_hint)
1259 tp->retransmit_skb_hint = prev;
1260 if (skb == tp->scoreboard_skb_hint)
1261 tp->scoreboard_skb_hint = prev;
1262 if (skb == tp->lost_skb_hint) {
1263 tp->lost_skb_hint = prev;
1264 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1265 }
1266
1267 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1268 if (skb == tcp_highest_sack(sk))
1269 tcp_advance_highest_sack(sk, skb);
1270
1271 tcp_unlink_write_queue(skb, sk);
1272 sk_wmem_free_skb(sk, skb);
1273
1274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1275
1276 return true;
1277 }
1278
1279 /* I wish gso_size would have a bit more sane initialization than
1280 * something-or-zero which complicates things
1281 */
1282 static int tcp_skb_seglen(const struct sk_buff *skb)
1283 {
1284 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1285 }
1286
1287 /* Shifting pages past head area doesn't work */
1288 static int skb_can_shift(const struct sk_buff *skb)
1289 {
1290 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1291 }
1292
1293 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1294 * skb.
1295 */
1296 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1297 struct tcp_sacktag_state *state,
1298 u32 start_seq, u32 end_seq,
1299 bool dup_sack)
1300 {
1301 struct tcp_sock *tp = tcp_sk(sk);
1302 struct sk_buff *prev;
1303 int mss;
1304 int pcount = 0;
1305 int len;
1306 int in_sack;
1307
1308 if (!sk_can_gso(sk))
1309 goto fallback;
1310
1311 /* Normally R but no L won't result in plain S */
1312 if (!dup_sack &&
1313 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1314 goto fallback;
1315 if (!skb_can_shift(skb))
1316 goto fallback;
1317 /* This frame is about to be dropped (was ACKed). */
1318 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1319 goto fallback;
1320
1321 /* Can only happen with delayed DSACK + discard craziness */
1322 if (unlikely(skb == tcp_write_queue_head(sk)))
1323 goto fallback;
1324 prev = tcp_write_queue_prev(sk, skb);
1325
1326 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1327 goto fallback;
1328
1329 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1330 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1331
1332 if (in_sack) {
1333 len = skb->len;
1334 pcount = tcp_skb_pcount(skb);
1335 mss = tcp_skb_seglen(skb);
1336
1337 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1338 * drop this restriction as unnecessary
1339 */
1340 if (mss != tcp_skb_seglen(prev))
1341 goto fallback;
1342 } else {
1343 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1344 goto noop;
1345 /* CHECKME: This is non-MSS split case only?, this will
1346 * cause skipped skbs due to advancing loop btw, original
1347 * has that feature too
1348 */
1349 if (tcp_skb_pcount(skb) <= 1)
1350 goto noop;
1351
1352 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1353 if (!in_sack) {
1354 /* TODO: head merge to next could be attempted here
1355 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1356 * though it might not be worth of the additional hassle
1357 *
1358 * ...we can probably just fallback to what was done
1359 * previously. We could try merging non-SACKed ones
1360 * as well but it probably isn't going to buy off
1361 * because later SACKs might again split them, and
1362 * it would make skb timestamp tracking considerably
1363 * harder problem.
1364 */
1365 goto fallback;
1366 }
1367
1368 len = end_seq - TCP_SKB_CB(skb)->seq;
1369 BUG_ON(len < 0);
1370 BUG_ON(len > skb->len);
1371
1372 /* MSS boundaries should be honoured or else pcount will
1373 * severely break even though it makes things bit trickier.
1374 * Optimize common case to avoid most of the divides
1375 */
1376 mss = tcp_skb_mss(skb);
1377
1378 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1379 * drop this restriction as unnecessary
1380 */
1381 if (mss != tcp_skb_seglen(prev))
1382 goto fallback;
1383
1384 if (len == mss) {
1385 pcount = 1;
1386 } else if (len < mss) {
1387 goto noop;
1388 } else {
1389 pcount = len / mss;
1390 len = pcount * mss;
1391 }
1392 }
1393
1394 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1395 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1396 goto fallback;
1397
1398 if (!skb_shift(prev, skb, len))
1399 goto fallback;
1400 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1401 goto out;
1402
1403 /* Hole filled allows collapsing with the next as well, this is very
1404 * useful when hole on every nth skb pattern happens
1405 */
1406 if (prev == tcp_write_queue_tail(sk))
1407 goto out;
1408 skb = tcp_write_queue_next(sk, prev);
1409
1410 if (!skb_can_shift(skb) ||
1411 (skb == tcp_send_head(sk)) ||
1412 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1413 (mss != tcp_skb_seglen(skb)))
1414 goto out;
1415
1416 len = skb->len;
1417 if (skb_shift(prev, skb, len)) {
1418 pcount += tcp_skb_pcount(skb);
1419 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1420 }
1421
1422 out:
1423 state->fack_count += pcount;
1424 return prev;
1425
1426 noop:
1427 return skb;
1428
1429 fallback:
1430 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1431 return NULL;
1432 }
1433
1434 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1435 struct tcp_sack_block *next_dup,
1436 struct tcp_sacktag_state *state,
1437 u32 start_seq, u32 end_seq,
1438 bool dup_sack_in)
1439 {
1440 struct tcp_sock *tp = tcp_sk(sk);
1441 struct sk_buff *tmp;
1442
1443 tcp_for_write_queue_from(skb, sk) {
1444 int in_sack = 0;
1445 bool dup_sack = dup_sack_in;
1446
1447 if (skb == tcp_send_head(sk))
1448 break;
1449
1450 /* queue is in-order => we can short-circuit the walk early */
1451 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1452 break;
1453
1454 if ((next_dup != NULL) &&
1455 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1456 in_sack = tcp_match_skb_to_sack(sk, skb,
1457 next_dup->start_seq,
1458 next_dup->end_seq);
1459 if (in_sack > 0)
1460 dup_sack = true;
1461 }
1462
1463 /* skb reference here is a bit tricky to get right, since
1464 * shifting can eat and free both this skb and the next,
1465 * so not even _safe variant of the loop is enough.
1466 */
1467 if (in_sack <= 0) {
1468 tmp = tcp_shift_skb_data(sk, skb, state,
1469 start_seq, end_seq, dup_sack);
1470 if (tmp != NULL) {
1471 if (tmp != skb) {
1472 skb = tmp;
1473 continue;
1474 }
1475
1476 in_sack = 0;
1477 } else {
1478 in_sack = tcp_match_skb_to_sack(sk, skb,
1479 start_seq,
1480 end_seq);
1481 }
1482 }
1483
1484 if (unlikely(in_sack < 0))
1485 break;
1486
1487 if (in_sack) {
1488 TCP_SKB_CB(skb)->sacked =
1489 tcp_sacktag_one(sk,
1490 state,
1491 TCP_SKB_CB(skb)->sacked,
1492 TCP_SKB_CB(skb)->seq,
1493 TCP_SKB_CB(skb)->end_seq,
1494 dup_sack,
1495 tcp_skb_pcount(skb));
1496
1497 if (!before(TCP_SKB_CB(skb)->seq,
1498 tcp_highest_sack_seq(tp)))
1499 tcp_advance_highest_sack(sk, skb);
1500 }
1501
1502 state->fack_count += tcp_skb_pcount(skb);
1503 }
1504 return skb;
1505 }
1506
1507 /* Avoid all extra work that is being done by sacktag while walking in
1508 * a normal way
1509 */
1510 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1511 struct tcp_sacktag_state *state,
1512 u32 skip_to_seq)
1513 {
1514 tcp_for_write_queue_from(skb, sk) {
1515 if (skb == tcp_send_head(sk))
1516 break;
1517
1518 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1519 break;
1520
1521 state->fack_count += tcp_skb_pcount(skb);
1522 }
1523 return skb;
1524 }
1525
1526 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1527 struct sock *sk,
1528 struct tcp_sack_block *next_dup,
1529 struct tcp_sacktag_state *state,
1530 u32 skip_to_seq)
1531 {
1532 if (next_dup == NULL)
1533 return skb;
1534
1535 if (before(next_dup->start_seq, skip_to_seq)) {
1536 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1537 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1538 next_dup->start_seq, next_dup->end_seq,
1539 1);
1540 }
1541
1542 return skb;
1543 }
1544
1545 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1546 {
1547 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1548 }
1549
1550 static int
1551 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1552 u32 prior_snd_una)
1553 {
1554 struct tcp_sock *tp = tcp_sk(sk);
1555 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1556 TCP_SKB_CB(ack_skb)->sacked);
1557 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1558 struct tcp_sack_block sp[TCP_NUM_SACKS];
1559 struct tcp_sack_block *cache;
1560 struct tcp_sacktag_state state;
1561 struct sk_buff *skb;
1562 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1563 int used_sacks;
1564 bool found_dup_sack = false;
1565 int i, j;
1566 int first_sack_index;
1567
1568 state.flag = 0;
1569 state.reord = tp->packets_out;
1570
1571 if (!tp->sacked_out) {
1572 if (WARN_ON(tp->fackets_out))
1573 tp->fackets_out = 0;
1574 tcp_highest_sack_reset(sk);
1575 }
1576
1577 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1578 num_sacks, prior_snd_una);
1579 if (found_dup_sack)
1580 state.flag |= FLAG_DSACKING_ACK;
1581
1582 /* Eliminate too old ACKs, but take into
1583 * account more or less fresh ones, they can
1584 * contain valid SACK info.
1585 */
1586 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1587 return 0;
1588
1589 if (!tp->packets_out)
1590 goto out;
1591
1592 used_sacks = 0;
1593 first_sack_index = 0;
1594 for (i = 0; i < num_sacks; i++) {
1595 bool dup_sack = !i && found_dup_sack;
1596
1597 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1598 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1599
1600 if (!tcp_is_sackblock_valid(tp, dup_sack,
1601 sp[used_sacks].start_seq,
1602 sp[used_sacks].end_seq)) {
1603 int mib_idx;
1604
1605 if (dup_sack) {
1606 if (!tp->undo_marker)
1607 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1608 else
1609 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1610 } else {
1611 /* Don't count olds caused by ACK reordering */
1612 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1613 !after(sp[used_sacks].end_seq, tp->snd_una))
1614 continue;
1615 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1616 }
1617
1618 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1619 if (i == 0)
1620 first_sack_index = -1;
1621 continue;
1622 }
1623
1624 /* Ignore very old stuff early */
1625 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1626 continue;
1627
1628 used_sacks++;
1629 }
1630
1631 /* order SACK blocks to allow in order walk of the retrans queue */
1632 for (i = used_sacks - 1; i > 0; i--) {
1633 for (j = 0; j < i; j++) {
1634 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1635 swap(sp[j], sp[j + 1]);
1636
1637 /* Track where the first SACK block goes to */
1638 if (j == first_sack_index)
1639 first_sack_index = j + 1;
1640 }
1641 }
1642 }
1643
1644 skb = tcp_write_queue_head(sk);
1645 state.fack_count = 0;
1646 i = 0;
1647
1648 if (!tp->sacked_out) {
1649 /* It's already past, so skip checking against it */
1650 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1651 } else {
1652 cache = tp->recv_sack_cache;
1653 /* Skip empty blocks in at head of the cache */
1654 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1655 !cache->end_seq)
1656 cache++;
1657 }
1658
1659 while (i < used_sacks) {
1660 u32 start_seq = sp[i].start_seq;
1661 u32 end_seq = sp[i].end_seq;
1662 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1663 struct tcp_sack_block *next_dup = NULL;
1664
1665 if (found_dup_sack && ((i + 1) == first_sack_index))
1666 next_dup = &sp[i + 1];
1667
1668 /* Skip too early cached blocks */
1669 while (tcp_sack_cache_ok(tp, cache) &&
1670 !before(start_seq, cache->end_seq))
1671 cache++;
1672
1673 /* Can skip some work by looking recv_sack_cache? */
1674 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1675 after(end_seq, cache->start_seq)) {
1676
1677 /* Head todo? */
1678 if (before(start_seq, cache->start_seq)) {
1679 skb = tcp_sacktag_skip(skb, sk, &state,
1680 start_seq);
1681 skb = tcp_sacktag_walk(skb, sk, next_dup,
1682 &state,
1683 start_seq,
1684 cache->start_seq,
1685 dup_sack);
1686 }
1687
1688 /* Rest of the block already fully processed? */
1689 if (!after(end_seq, cache->end_seq))
1690 goto advance_sp;
1691
1692 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1693 &state,
1694 cache->end_seq);
1695
1696 /* ...tail remains todo... */
1697 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1698 /* ...but better entrypoint exists! */
1699 skb = tcp_highest_sack(sk);
1700 if (skb == NULL)
1701 break;
1702 state.fack_count = tp->fackets_out;
1703 cache++;
1704 goto walk;
1705 }
1706
1707 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1708 /* Check overlap against next cached too (past this one already) */
1709 cache++;
1710 continue;
1711 }
1712
1713 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1714 skb = tcp_highest_sack(sk);
1715 if (skb == NULL)
1716 break;
1717 state.fack_count = tp->fackets_out;
1718 }
1719 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1720
1721 walk:
1722 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1723 start_seq, end_seq, dup_sack);
1724
1725 advance_sp:
1726 i++;
1727 }
1728
1729 /* Clear the head of the cache sack blocks so we can skip it next time */
1730 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1731 tp->recv_sack_cache[i].start_seq = 0;
1732 tp->recv_sack_cache[i].end_seq = 0;
1733 }
1734 for (j = 0; j < used_sacks; j++)
1735 tp->recv_sack_cache[i++] = sp[j];
1736
1737 tcp_mark_lost_retrans(sk);
1738
1739 tcp_verify_left_out(tp);
1740
1741 if ((state.reord < tp->fackets_out) &&
1742 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1743 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1744
1745 out:
1746
1747 #if FASTRETRANS_DEBUG > 0
1748 WARN_ON((int)tp->sacked_out < 0);
1749 WARN_ON((int)tp->lost_out < 0);
1750 WARN_ON((int)tp->retrans_out < 0);
1751 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1752 #endif
1753 return state.flag;
1754 }
1755
1756 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1757 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1758 */
1759 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1760 {
1761 u32 holes;
1762
1763 holes = max(tp->lost_out, 1U);
1764 holes = min(holes, tp->packets_out);
1765
1766 if ((tp->sacked_out + holes) > tp->packets_out) {
1767 tp->sacked_out = tp->packets_out - holes;
1768 return true;
1769 }
1770 return false;
1771 }
1772
1773 /* If we receive more dupacks than we expected counting segments
1774 * in assumption of absent reordering, interpret this as reordering.
1775 * The only another reason could be bug in receiver TCP.
1776 */
1777 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1778 {
1779 struct tcp_sock *tp = tcp_sk(sk);
1780 if (tcp_limit_reno_sacked(tp))
1781 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1782 }
1783
1784 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1785
1786 static void tcp_add_reno_sack(struct sock *sk)
1787 {
1788 struct tcp_sock *tp = tcp_sk(sk);
1789 tp->sacked_out++;
1790 tcp_check_reno_reordering(sk, 0);
1791 tcp_verify_left_out(tp);
1792 }
1793
1794 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1795
1796 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1797 {
1798 struct tcp_sock *tp = tcp_sk(sk);
1799
1800 if (acked > 0) {
1801 /* One ACK acked hole. The rest eat duplicate ACKs. */
1802 if (acked - 1 >= tp->sacked_out)
1803 tp->sacked_out = 0;
1804 else
1805 tp->sacked_out -= acked - 1;
1806 }
1807 tcp_check_reno_reordering(sk, acked);
1808 tcp_verify_left_out(tp);
1809 }
1810
1811 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1812 {
1813 tp->sacked_out = 0;
1814 }
1815
1816 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1817 {
1818 tp->retrans_out = 0;
1819 tp->lost_out = 0;
1820
1821 tp->undo_marker = 0;
1822 tp->undo_retrans = 0;
1823 }
1824
1825 void tcp_clear_retrans(struct tcp_sock *tp)
1826 {
1827 tcp_clear_retrans_partial(tp);
1828
1829 tp->fackets_out = 0;
1830 tp->sacked_out = 0;
1831 }
1832
1833 /* Enter Loss state. If "how" is not zero, forget all SACK information
1834 * and reset tags completely, otherwise preserve SACKs. If receiver
1835 * dropped its ofo queue, we will know this due to reneging detection.
1836 */
1837 void tcp_enter_loss(struct sock *sk, int how)
1838 {
1839 const struct inet_connection_sock *icsk = inet_csk(sk);
1840 struct tcp_sock *tp = tcp_sk(sk);
1841 struct sk_buff *skb;
1842 bool new_recovery = false;
1843
1844 /* Reduce ssthresh if it has not yet been made inside this window. */
1845 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1846 !after(tp->high_seq, tp->snd_una) ||
1847 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1848 new_recovery = true;
1849 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1850 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1851 tcp_ca_event(sk, CA_EVENT_LOSS);
1852 }
1853 tp->snd_cwnd = 1;
1854 tp->snd_cwnd_cnt = 0;
1855 tp->snd_cwnd_stamp = tcp_time_stamp;
1856
1857 tcp_clear_retrans_partial(tp);
1858
1859 if (tcp_is_reno(tp))
1860 tcp_reset_reno_sack(tp);
1861
1862 tp->undo_marker = tp->snd_una;
1863 if (how) {
1864 tp->sacked_out = 0;
1865 tp->fackets_out = 0;
1866 }
1867 tcp_clear_all_retrans_hints(tp);
1868
1869 tcp_for_write_queue(skb, sk) {
1870 if (skb == tcp_send_head(sk))
1871 break;
1872
1873 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1874 tp->undo_marker = 0;
1875 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1876 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1877 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1878 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1879 tp->lost_out += tcp_skb_pcount(skb);
1880 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1881 }
1882 }
1883 tcp_verify_left_out(tp);
1884
1885 tp->reordering = min_t(unsigned int, tp->reordering,
1886 sysctl_tcp_reordering);
1887 tcp_set_ca_state(sk, TCP_CA_Loss);
1888 tp->high_seq = tp->snd_nxt;
1889 TCP_ECN_queue_cwr(tp);
1890
1891 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1892 * loss recovery is underway except recurring timeout(s) on
1893 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1894 */
1895 tp->frto = sysctl_tcp_frto &&
1896 (new_recovery || icsk->icsk_retransmits) &&
1897 !inet_csk(sk)->icsk_mtup.probe_size;
1898 }
1899
1900 /* If ACK arrived pointing to a remembered SACK, it means that our
1901 * remembered SACKs do not reflect real state of receiver i.e.
1902 * receiver _host_ is heavily congested (or buggy).
1903 *
1904 * Do processing similar to RTO timeout.
1905 */
1906 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1907 {
1908 if (flag & FLAG_SACK_RENEGING) {
1909 struct inet_connection_sock *icsk = inet_csk(sk);
1910 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1911
1912 tcp_enter_loss(sk, 1);
1913 icsk->icsk_retransmits++;
1914 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1915 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1916 icsk->icsk_rto, TCP_RTO_MAX);
1917 return true;
1918 }
1919 return false;
1920 }
1921
1922 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1923 {
1924 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1925 }
1926
1927 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1928 * counter when SACK is enabled (without SACK, sacked_out is used for
1929 * that purpose).
1930 *
1931 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1932 * segments up to the highest received SACK block so far and holes in
1933 * between them.
1934 *
1935 * With reordering, holes may still be in flight, so RFC3517 recovery
1936 * uses pure sacked_out (total number of SACKed segments) even though
1937 * it violates the RFC that uses duplicate ACKs, often these are equal
1938 * but when e.g. out-of-window ACKs or packet duplication occurs,
1939 * they differ. Since neither occurs due to loss, TCP should really
1940 * ignore them.
1941 */
1942 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1943 {
1944 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1945 }
1946
1947 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1948 {
1949 struct tcp_sock *tp = tcp_sk(sk);
1950 unsigned long delay;
1951
1952 /* Delay early retransmit and entering fast recovery for
1953 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1954 * available, or RTO is scheduled to fire first.
1955 */
1956 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
1957 (flag & FLAG_ECE) || !tp->srtt)
1958 return false;
1959
1960 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
1961 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
1962 return false;
1963
1964 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
1965 TCP_RTO_MAX);
1966 return true;
1967 }
1968
1969 static inline int tcp_skb_timedout(const struct sock *sk,
1970 const struct sk_buff *skb)
1971 {
1972 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
1973 }
1974
1975 static inline int tcp_head_timedout(const struct sock *sk)
1976 {
1977 const struct tcp_sock *tp = tcp_sk(sk);
1978
1979 return tp->packets_out &&
1980 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1981 }
1982
1983 /* Linux NewReno/SACK/FACK/ECN state machine.
1984 * --------------------------------------
1985 *
1986 * "Open" Normal state, no dubious events, fast path.
1987 * "Disorder" In all the respects it is "Open",
1988 * but requires a bit more attention. It is entered when
1989 * we see some SACKs or dupacks. It is split of "Open"
1990 * mainly to move some processing from fast path to slow one.
1991 * "CWR" CWND was reduced due to some Congestion Notification event.
1992 * It can be ECN, ICMP source quench, local device congestion.
1993 * "Recovery" CWND was reduced, we are fast-retransmitting.
1994 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1995 *
1996 * tcp_fastretrans_alert() is entered:
1997 * - each incoming ACK, if state is not "Open"
1998 * - when arrived ACK is unusual, namely:
1999 * * SACK
2000 * * Duplicate ACK.
2001 * * ECN ECE.
2002 *
2003 * Counting packets in flight is pretty simple.
2004 *
2005 * in_flight = packets_out - left_out + retrans_out
2006 *
2007 * packets_out is SND.NXT-SND.UNA counted in packets.
2008 *
2009 * retrans_out is number of retransmitted segments.
2010 *
2011 * left_out is number of segments left network, but not ACKed yet.
2012 *
2013 * left_out = sacked_out + lost_out
2014 *
2015 * sacked_out: Packets, which arrived to receiver out of order
2016 * and hence not ACKed. With SACKs this number is simply
2017 * amount of SACKed data. Even without SACKs
2018 * it is easy to give pretty reliable estimate of this number,
2019 * counting duplicate ACKs.
2020 *
2021 * lost_out: Packets lost by network. TCP has no explicit
2022 * "loss notification" feedback from network (for now).
2023 * It means that this number can be only _guessed_.
2024 * Actually, it is the heuristics to predict lossage that
2025 * distinguishes different algorithms.
2026 *
2027 * F.e. after RTO, when all the queue is considered as lost,
2028 * lost_out = packets_out and in_flight = retrans_out.
2029 *
2030 * Essentially, we have now two algorithms counting
2031 * lost packets.
2032 *
2033 * FACK: It is the simplest heuristics. As soon as we decided
2034 * that something is lost, we decide that _all_ not SACKed
2035 * packets until the most forward SACK are lost. I.e.
2036 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2037 * It is absolutely correct estimate, if network does not reorder
2038 * packets. And it loses any connection to reality when reordering
2039 * takes place. We use FACK by default until reordering
2040 * is suspected on the path to this destination.
2041 *
2042 * NewReno: when Recovery is entered, we assume that one segment
2043 * is lost (classic Reno). While we are in Recovery and
2044 * a partial ACK arrives, we assume that one more packet
2045 * is lost (NewReno). This heuristics are the same in NewReno
2046 * and SACK.
2047 *
2048 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2049 * deflation etc. CWND is real congestion window, never inflated, changes
2050 * only according to classic VJ rules.
2051 *
2052 * Really tricky (and requiring careful tuning) part of algorithm
2053 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2054 * The first determines the moment _when_ we should reduce CWND and,
2055 * hence, slow down forward transmission. In fact, it determines the moment
2056 * when we decide that hole is caused by loss, rather than by a reorder.
2057 *
2058 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2059 * holes, caused by lost packets.
2060 *
2061 * And the most logically complicated part of algorithm is undo
2062 * heuristics. We detect false retransmits due to both too early
2063 * fast retransmit (reordering) and underestimated RTO, analyzing
2064 * timestamps and D-SACKs. When we detect that some segments were
2065 * retransmitted by mistake and CWND reduction was wrong, we undo
2066 * window reduction and abort recovery phase. This logic is hidden
2067 * inside several functions named tcp_try_undo_<something>.
2068 */
2069
2070 /* This function decides, when we should leave Disordered state
2071 * and enter Recovery phase, reducing congestion window.
2072 *
2073 * Main question: may we further continue forward transmission
2074 * with the same cwnd?
2075 */
2076 static bool tcp_time_to_recover(struct sock *sk, int flag)
2077 {
2078 struct tcp_sock *tp = tcp_sk(sk);
2079 __u32 packets_out;
2080
2081 /* Trick#1: The loss is proven. */
2082 if (tp->lost_out)
2083 return true;
2084
2085 /* Not-A-Trick#2 : Classic rule... */
2086 if (tcp_dupack_heuristics(tp) > tp->reordering)
2087 return true;
2088
2089 /* Trick#3 : when we use RFC2988 timer restart, fast
2090 * retransmit can be triggered by timeout of queue head.
2091 */
2092 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2093 return true;
2094
2095 /* Trick#4: It is still not OK... But will it be useful to delay
2096 * recovery more?
2097 */
2098 packets_out = tp->packets_out;
2099 if (packets_out <= tp->reordering &&
2100 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2101 !tcp_may_send_now(sk)) {
2102 /* We have nothing to send. This connection is limited
2103 * either by receiver window or by application.
2104 */
2105 return true;
2106 }
2107
2108 /* If a thin stream is detected, retransmit after first
2109 * received dupack. Employ only if SACK is supported in order
2110 * to avoid possible corner-case series of spurious retransmissions
2111 * Use only if there are no unsent data.
2112 */
2113 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2114 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2115 tcp_is_sack(tp) && !tcp_send_head(sk))
2116 return true;
2117
2118 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2119 * retransmissions due to small network reorderings, we implement
2120 * Mitigation A.3 in the RFC and delay the retransmission for a short
2121 * interval if appropriate.
2122 */
2123 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2124 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2125 !tcp_may_send_now(sk))
2126 return !tcp_pause_early_retransmit(sk, flag);
2127
2128 return false;
2129 }
2130
2131 /* New heuristics: it is possible only after we switched to restart timer
2132 * each time when something is ACKed. Hence, we can detect timed out packets
2133 * during fast retransmit without falling to slow start.
2134 *
2135 * Usefulness of this as is very questionable, since we should know which of
2136 * the segments is the next to timeout which is relatively expensive to find
2137 * in general case unless we add some data structure just for that. The
2138 * current approach certainly won't find the right one too often and when it
2139 * finally does find _something_ it usually marks large part of the window
2140 * right away (because a retransmission with a larger timestamp blocks the
2141 * loop from advancing). -ij
2142 */
2143 static void tcp_timeout_skbs(struct sock *sk)
2144 {
2145 struct tcp_sock *tp = tcp_sk(sk);
2146 struct sk_buff *skb;
2147
2148 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2149 return;
2150
2151 skb = tp->scoreboard_skb_hint;
2152 if (tp->scoreboard_skb_hint == NULL)
2153 skb = tcp_write_queue_head(sk);
2154
2155 tcp_for_write_queue_from(skb, sk) {
2156 if (skb == tcp_send_head(sk))
2157 break;
2158 if (!tcp_skb_timedout(sk, skb))
2159 break;
2160
2161 tcp_skb_mark_lost(tp, skb);
2162 }
2163
2164 tp->scoreboard_skb_hint = skb;
2165
2166 tcp_verify_left_out(tp);
2167 }
2168
2169 /* Detect loss in event "A" above by marking head of queue up as lost.
2170 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2171 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2172 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2173 * the maximum SACKed segments to pass before reaching this limit.
2174 */
2175 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2176 {
2177 struct tcp_sock *tp = tcp_sk(sk);
2178 struct sk_buff *skb;
2179 int cnt, oldcnt;
2180 int err;
2181 unsigned int mss;
2182 /* Use SACK to deduce losses of new sequences sent during recovery */
2183 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2184
2185 WARN_ON(packets > tp->packets_out);
2186 if (tp->lost_skb_hint) {
2187 skb = tp->lost_skb_hint;
2188 cnt = tp->lost_cnt_hint;
2189 /* Head already handled? */
2190 if (mark_head && skb != tcp_write_queue_head(sk))
2191 return;
2192 } else {
2193 skb = tcp_write_queue_head(sk);
2194 cnt = 0;
2195 }
2196
2197 tcp_for_write_queue_from(skb, sk) {
2198 if (skb == tcp_send_head(sk))
2199 break;
2200 /* TODO: do this better */
2201 /* this is not the most efficient way to do this... */
2202 tp->lost_skb_hint = skb;
2203 tp->lost_cnt_hint = cnt;
2204
2205 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2206 break;
2207
2208 oldcnt = cnt;
2209 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2210 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2211 cnt += tcp_skb_pcount(skb);
2212
2213 if (cnt > packets) {
2214 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2215 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2216 (oldcnt >= packets))
2217 break;
2218
2219 mss = skb_shinfo(skb)->gso_size;
2220 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2221 if (err < 0)
2222 break;
2223 cnt = packets;
2224 }
2225
2226 tcp_skb_mark_lost(tp, skb);
2227
2228 if (mark_head)
2229 break;
2230 }
2231 tcp_verify_left_out(tp);
2232 }
2233
2234 /* Account newly detected lost packet(s) */
2235
2236 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2237 {
2238 struct tcp_sock *tp = tcp_sk(sk);
2239
2240 if (tcp_is_reno(tp)) {
2241 tcp_mark_head_lost(sk, 1, 1);
2242 } else if (tcp_is_fack(tp)) {
2243 int lost = tp->fackets_out - tp->reordering;
2244 if (lost <= 0)
2245 lost = 1;
2246 tcp_mark_head_lost(sk, lost, 0);
2247 } else {
2248 int sacked_upto = tp->sacked_out - tp->reordering;
2249 if (sacked_upto >= 0)
2250 tcp_mark_head_lost(sk, sacked_upto, 0);
2251 else if (fast_rexmit)
2252 tcp_mark_head_lost(sk, 1, 1);
2253 }
2254
2255 tcp_timeout_skbs(sk);
2256 }
2257
2258 /* CWND moderation, preventing bursts due to too big ACKs
2259 * in dubious situations.
2260 */
2261 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2262 {
2263 tp->snd_cwnd = min(tp->snd_cwnd,
2264 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2265 tp->snd_cwnd_stamp = tcp_time_stamp;
2266 }
2267
2268 /* Nothing was retransmitted or returned timestamp is less
2269 * than timestamp of the first retransmission.
2270 */
2271 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2272 {
2273 return !tp->retrans_stamp ||
2274 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2275 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2276 }
2277
2278 /* Undo procedures. */
2279
2280 #if FASTRETRANS_DEBUG > 1
2281 static void DBGUNDO(struct sock *sk, const char *msg)
2282 {
2283 struct tcp_sock *tp = tcp_sk(sk);
2284 struct inet_sock *inet = inet_sk(sk);
2285
2286 if (sk->sk_family == AF_INET) {
2287 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2288 msg,
2289 &inet->inet_daddr, ntohs(inet->inet_dport),
2290 tp->snd_cwnd, tcp_left_out(tp),
2291 tp->snd_ssthresh, tp->prior_ssthresh,
2292 tp->packets_out);
2293 }
2294 #if IS_ENABLED(CONFIG_IPV6)
2295 else if (sk->sk_family == AF_INET6) {
2296 struct ipv6_pinfo *np = inet6_sk(sk);
2297 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2298 msg,
2299 &np->daddr, ntohs(inet->inet_dport),
2300 tp->snd_cwnd, tcp_left_out(tp),
2301 tp->snd_ssthresh, tp->prior_ssthresh,
2302 tp->packets_out);
2303 }
2304 #endif
2305 }
2306 #else
2307 #define DBGUNDO(x...) do { } while (0)
2308 #endif
2309
2310 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2311 {
2312 struct tcp_sock *tp = tcp_sk(sk);
2313
2314 if (tp->prior_ssthresh) {
2315 const struct inet_connection_sock *icsk = inet_csk(sk);
2316
2317 if (icsk->icsk_ca_ops->undo_cwnd)
2318 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2319 else
2320 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2321
2322 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2323 tp->snd_ssthresh = tp->prior_ssthresh;
2324 TCP_ECN_withdraw_cwr(tp);
2325 }
2326 } else {
2327 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2328 }
2329 tp->snd_cwnd_stamp = tcp_time_stamp;
2330 }
2331
2332 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2333 {
2334 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2335 }
2336
2337 /* People celebrate: "We love our President!" */
2338 static bool tcp_try_undo_recovery(struct sock *sk)
2339 {
2340 struct tcp_sock *tp = tcp_sk(sk);
2341
2342 if (tcp_may_undo(tp)) {
2343 int mib_idx;
2344
2345 /* Happy end! We did not retransmit anything
2346 * or our original transmission succeeded.
2347 */
2348 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2349 tcp_undo_cwr(sk, true);
2350 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2351 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2352 else
2353 mib_idx = LINUX_MIB_TCPFULLUNDO;
2354
2355 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2356 tp->undo_marker = 0;
2357 }
2358 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2359 /* Hold old state until something *above* high_seq
2360 * is ACKed. For Reno it is MUST to prevent false
2361 * fast retransmits (RFC2582). SACK TCP is safe. */
2362 tcp_moderate_cwnd(tp);
2363 return true;
2364 }
2365 tcp_set_ca_state(sk, TCP_CA_Open);
2366 return false;
2367 }
2368
2369 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2370 static void tcp_try_undo_dsack(struct sock *sk)
2371 {
2372 struct tcp_sock *tp = tcp_sk(sk);
2373
2374 if (tp->undo_marker && !tp->undo_retrans) {
2375 DBGUNDO(sk, "D-SACK");
2376 tcp_undo_cwr(sk, true);
2377 tp->undo_marker = 0;
2378 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2379 }
2380 }
2381
2382 /* We can clear retrans_stamp when there are no retransmissions in the
2383 * window. It would seem that it is trivially available for us in
2384 * tp->retrans_out, however, that kind of assumptions doesn't consider
2385 * what will happen if errors occur when sending retransmission for the
2386 * second time. ...It could the that such segment has only
2387 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2388 * the head skb is enough except for some reneging corner cases that
2389 * are not worth the effort.
2390 *
2391 * Main reason for all this complexity is the fact that connection dying
2392 * time now depends on the validity of the retrans_stamp, in particular,
2393 * that successive retransmissions of a segment must not advance
2394 * retrans_stamp under any conditions.
2395 */
2396 static bool tcp_any_retrans_done(const struct sock *sk)
2397 {
2398 const struct tcp_sock *tp = tcp_sk(sk);
2399 struct sk_buff *skb;
2400
2401 if (tp->retrans_out)
2402 return true;
2403
2404 skb = tcp_write_queue_head(sk);
2405 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2406 return true;
2407
2408 return false;
2409 }
2410
2411 /* Undo during fast recovery after partial ACK. */
2412
2413 static int tcp_try_undo_partial(struct sock *sk, int acked)
2414 {
2415 struct tcp_sock *tp = tcp_sk(sk);
2416 /* Partial ACK arrived. Force Hoe's retransmit. */
2417 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2418
2419 if (tcp_may_undo(tp)) {
2420 /* Plain luck! Hole if filled with delayed
2421 * packet, rather than with a retransmit.
2422 */
2423 if (!tcp_any_retrans_done(sk))
2424 tp->retrans_stamp = 0;
2425
2426 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2427
2428 DBGUNDO(sk, "Hoe");
2429 tcp_undo_cwr(sk, false);
2430 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2431
2432 /* So... Do not make Hoe's retransmit yet.
2433 * If the first packet was delayed, the rest
2434 * ones are most probably delayed as well.
2435 */
2436 failed = 0;
2437 }
2438 return failed;
2439 }
2440
2441 /* Undo during loss recovery after partial ACK or using F-RTO. */
2442 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2443 {
2444 struct tcp_sock *tp = tcp_sk(sk);
2445
2446 if (frto_undo || tcp_may_undo(tp)) {
2447 struct sk_buff *skb;
2448 tcp_for_write_queue(skb, sk) {
2449 if (skb == tcp_send_head(sk))
2450 break;
2451 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2452 }
2453
2454 tcp_clear_all_retrans_hints(tp);
2455
2456 DBGUNDO(sk, "partial loss");
2457 tp->lost_out = 0;
2458 tcp_undo_cwr(sk, true);
2459 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2460 if (frto_undo)
2461 NET_INC_STATS_BH(sock_net(sk),
2462 LINUX_MIB_TCPSPURIOUSRTOS);
2463 inet_csk(sk)->icsk_retransmits = 0;
2464 tp->undo_marker = 0;
2465 if (frto_undo || tcp_is_sack(tp))
2466 tcp_set_ca_state(sk, TCP_CA_Open);
2467 return true;
2468 }
2469 return false;
2470 }
2471
2472 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2473 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2474 * It computes the number of packets to send (sndcnt) based on packets newly
2475 * delivered:
2476 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2477 * cwnd reductions across a full RTT.
2478 * 2) If packets in flight is lower than ssthresh (such as due to excess
2479 * losses and/or application stalls), do not perform any further cwnd
2480 * reductions, but instead slow start up to ssthresh.
2481 */
2482 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2483 {
2484 struct tcp_sock *tp = tcp_sk(sk);
2485
2486 tp->high_seq = tp->snd_nxt;
2487 tp->tlp_high_seq = 0;
2488 tp->snd_cwnd_cnt = 0;
2489 tp->prior_cwnd = tp->snd_cwnd;
2490 tp->prr_delivered = 0;
2491 tp->prr_out = 0;
2492 if (set_ssthresh)
2493 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2494 TCP_ECN_queue_cwr(tp);
2495 }
2496
2497 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2498 int fast_rexmit)
2499 {
2500 struct tcp_sock *tp = tcp_sk(sk);
2501 int sndcnt = 0;
2502 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2503
2504 tp->prr_delivered += newly_acked_sacked;
2505 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2506 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2507 tp->prior_cwnd - 1;
2508 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2509 } else {
2510 sndcnt = min_t(int, delta,
2511 max_t(int, tp->prr_delivered - tp->prr_out,
2512 newly_acked_sacked) + 1);
2513 }
2514
2515 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2516 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2517 }
2518
2519 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2520 {
2521 struct tcp_sock *tp = tcp_sk(sk);
2522
2523 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2524 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2525 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2526 tp->snd_cwnd = tp->snd_ssthresh;
2527 tp->snd_cwnd_stamp = tcp_time_stamp;
2528 }
2529 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2530 }
2531
2532 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2533 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2534 {
2535 struct tcp_sock *tp = tcp_sk(sk);
2536
2537 tp->prior_ssthresh = 0;
2538 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2539 tp->undo_marker = 0;
2540 tcp_init_cwnd_reduction(sk, set_ssthresh);
2541 tcp_set_ca_state(sk, TCP_CA_CWR);
2542 }
2543 }
2544
2545 static void tcp_try_keep_open(struct sock *sk)
2546 {
2547 struct tcp_sock *tp = tcp_sk(sk);
2548 int state = TCP_CA_Open;
2549
2550 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2551 state = TCP_CA_Disorder;
2552
2553 if (inet_csk(sk)->icsk_ca_state != state) {
2554 tcp_set_ca_state(sk, state);
2555 tp->high_seq = tp->snd_nxt;
2556 }
2557 }
2558
2559 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2560 {
2561 struct tcp_sock *tp = tcp_sk(sk);
2562
2563 tcp_verify_left_out(tp);
2564
2565 if (!tcp_any_retrans_done(sk))
2566 tp->retrans_stamp = 0;
2567
2568 if (flag & FLAG_ECE)
2569 tcp_enter_cwr(sk, 1);
2570
2571 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2572 tcp_try_keep_open(sk);
2573 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2574 tcp_moderate_cwnd(tp);
2575 } else {
2576 tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2577 }
2578 }
2579
2580 static void tcp_mtup_probe_failed(struct sock *sk)
2581 {
2582 struct inet_connection_sock *icsk = inet_csk(sk);
2583
2584 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2585 icsk->icsk_mtup.probe_size = 0;
2586 }
2587
2588 static void tcp_mtup_probe_success(struct sock *sk)
2589 {
2590 struct tcp_sock *tp = tcp_sk(sk);
2591 struct inet_connection_sock *icsk = inet_csk(sk);
2592
2593 /* FIXME: breaks with very large cwnd */
2594 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2595 tp->snd_cwnd = tp->snd_cwnd *
2596 tcp_mss_to_mtu(sk, tp->mss_cache) /
2597 icsk->icsk_mtup.probe_size;
2598 tp->snd_cwnd_cnt = 0;
2599 tp->snd_cwnd_stamp = tcp_time_stamp;
2600 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2601
2602 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2603 icsk->icsk_mtup.probe_size = 0;
2604 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2605 }
2606
2607 /* Do a simple retransmit without using the backoff mechanisms in
2608 * tcp_timer. This is used for path mtu discovery.
2609 * The socket is already locked here.
2610 */
2611 void tcp_simple_retransmit(struct sock *sk)
2612 {
2613 const struct inet_connection_sock *icsk = inet_csk(sk);
2614 struct tcp_sock *tp = tcp_sk(sk);
2615 struct sk_buff *skb;
2616 unsigned int mss = tcp_current_mss(sk);
2617 u32 prior_lost = tp->lost_out;
2618
2619 tcp_for_write_queue(skb, sk) {
2620 if (skb == tcp_send_head(sk))
2621 break;
2622 if (tcp_skb_seglen(skb) > mss &&
2623 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2624 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2625 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2626 tp->retrans_out -= tcp_skb_pcount(skb);
2627 }
2628 tcp_skb_mark_lost_uncond_verify(tp, skb);
2629 }
2630 }
2631
2632 tcp_clear_retrans_hints_partial(tp);
2633
2634 if (prior_lost == tp->lost_out)
2635 return;
2636
2637 if (tcp_is_reno(tp))
2638 tcp_limit_reno_sacked(tp);
2639
2640 tcp_verify_left_out(tp);
2641
2642 /* Don't muck with the congestion window here.
2643 * Reason is that we do not increase amount of _data_
2644 * in network, but units changed and effective
2645 * cwnd/ssthresh really reduced now.
2646 */
2647 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2648 tp->high_seq = tp->snd_nxt;
2649 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2650 tp->prior_ssthresh = 0;
2651 tp->undo_marker = 0;
2652 tcp_set_ca_state(sk, TCP_CA_Loss);
2653 }
2654 tcp_xmit_retransmit_queue(sk);
2655 }
2656 EXPORT_SYMBOL(tcp_simple_retransmit);
2657
2658 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2659 {
2660 struct tcp_sock *tp = tcp_sk(sk);
2661 int mib_idx;
2662
2663 if (tcp_is_reno(tp))
2664 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2665 else
2666 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2667
2668 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2669
2670 tp->prior_ssthresh = 0;
2671 tp->undo_marker = tp->snd_una;
2672 tp->undo_retrans = tp->retrans_out;
2673
2674 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2675 if (!ece_ack)
2676 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2677 tcp_init_cwnd_reduction(sk, true);
2678 }
2679 tcp_set_ca_state(sk, TCP_CA_Recovery);
2680 }
2681
2682 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2683 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2684 */
2685 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2686 {
2687 struct inet_connection_sock *icsk = inet_csk(sk);
2688 struct tcp_sock *tp = tcp_sk(sk);
2689 bool recovered = !before(tp->snd_una, tp->high_seq);
2690
2691 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2692 if (flag & FLAG_ORIG_SACK_ACKED) {
2693 /* Step 3.b. A timeout is spurious if not all data are
2694 * lost, i.e., never-retransmitted data are (s)acked.
2695 */
2696 tcp_try_undo_loss(sk, true);
2697 return;
2698 }
2699 if (after(tp->snd_nxt, tp->high_seq) &&
2700 (flag & FLAG_DATA_SACKED || is_dupack)) {
2701 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2702 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2703 tp->high_seq = tp->snd_nxt;
2704 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2705 TCP_NAGLE_OFF);
2706 if (after(tp->snd_nxt, tp->high_seq))
2707 return; /* Step 2.b */
2708 tp->frto = 0;
2709 }
2710 }
2711
2712 if (recovered) {
2713 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2714 icsk->icsk_retransmits = 0;
2715 tcp_try_undo_recovery(sk);
2716 return;
2717 }
2718 if (flag & FLAG_DATA_ACKED)
2719 icsk->icsk_retransmits = 0;
2720 if (tcp_is_reno(tp)) {
2721 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2722 * delivered. Lower inflight to clock out (re)tranmissions.
2723 */
2724 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2725 tcp_add_reno_sack(sk);
2726 else if (flag & FLAG_SND_UNA_ADVANCED)
2727 tcp_reset_reno_sack(tp);
2728 }
2729 if (tcp_try_undo_loss(sk, false))
2730 return;
2731 tcp_xmit_retransmit_queue(sk);
2732 }
2733
2734 /* Process an event, which can update packets-in-flight not trivially.
2735 * Main goal of this function is to calculate new estimate for left_out,
2736 * taking into account both packets sitting in receiver's buffer and
2737 * packets lost by network.
2738 *
2739 * Besides that it does CWND reduction, when packet loss is detected
2740 * and changes state of machine.
2741 *
2742 * It does _not_ decide what to send, it is made in function
2743 * tcp_xmit_retransmit_queue().
2744 */
2745 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2746 int prior_sacked, int prior_packets,
2747 bool is_dupack, int flag)
2748 {
2749 struct inet_connection_sock *icsk = inet_csk(sk);
2750 struct tcp_sock *tp = tcp_sk(sk);
2751 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2752 (tcp_fackets_out(tp) > tp->reordering));
2753 int newly_acked_sacked = 0;
2754 int fast_rexmit = 0;
2755
2756 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2757 tp->sacked_out = 0;
2758 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2759 tp->fackets_out = 0;
2760
2761 /* Now state machine starts.
2762 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2763 if (flag & FLAG_ECE)
2764 tp->prior_ssthresh = 0;
2765
2766 /* B. In all the states check for reneging SACKs. */
2767 if (tcp_check_sack_reneging(sk, flag))
2768 return;
2769
2770 /* C. Check consistency of the current state. */
2771 tcp_verify_left_out(tp);
2772
2773 /* D. Check state exit conditions. State can be terminated
2774 * when high_seq is ACKed. */
2775 if (icsk->icsk_ca_state == TCP_CA_Open) {
2776 WARN_ON(tp->retrans_out != 0);
2777 tp->retrans_stamp = 0;
2778 } else if (!before(tp->snd_una, tp->high_seq)) {
2779 switch (icsk->icsk_ca_state) {
2780 case TCP_CA_CWR:
2781 /* CWR is to be held something *above* high_seq
2782 * is ACKed for CWR bit to reach receiver. */
2783 if (tp->snd_una != tp->high_seq) {
2784 tcp_end_cwnd_reduction(sk);
2785 tcp_set_ca_state(sk, TCP_CA_Open);
2786 }
2787 break;
2788
2789 case TCP_CA_Recovery:
2790 if (tcp_is_reno(tp))
2791 tcp_reset_reno_sack(tp);
2792 if (tcp_try_undo_recovery(sk))
2793 return;
2794 tcp_end_cwnd_reduction(sk);
2795 break;
2796 }
2797 }
2798
2799 /* E. Process state. */
2800 switch (icsk->icsk_ca_state) {
2801 case TCP_CA_Recovery:
2802 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2803 if (tcp_is_reno(tp) && is_dupack)
2804 tcp_add_reno_sack(sk);
2805 } else
2806 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2807 newly_acked_sacked = prior_packets - tp->packets_out +
2808 tp->sacked_out - prior_sacked;
2809 break;
2810 case TCP_CA_Loss:
2811 tcp_process_loss(sk, flag, is_dupack);
2812 if (icsk->icsk_ca_state != TCP_CA_Open)
2813 return;
2814 /* Fall through to processing in Open state. */
2815 default:
2816 if (tcp_is_reno(tp)) {
2817 if (flag & FLAG_SND_UNA_ADVANCED)
2818 tcp_reset_reno_sack(tp);
2819 if (is_dupack)
2820 tcp_add_reno_sack(sk);
2821 }
2822 newly_acked_sacked = prior_packets - tp->packets_out +
2823 tp->sacked_out - prior_sacked;
2824
2825 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2826 tcp_try_undo_dsack(sk);
2827
2828 if (!tcp_time_to_recover(sk, flag)) {
2829 tcp_try_to_open(sk, flag, newly_acked_sacked);
2830 return;
2831 }
2832
2833 /* MTU probe failure: don't reduce cwnd */
2834 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2835 icsk->icsk_mtup.probe_size &&
2836 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2837 tcp_mtup_probe_failed(sk);
2838 /* Restores the reduction we did in tcp_mtup_probe() */
2839 tp->snd_cwnd++;
2840 tcp_simple_retransmit(sk);
2841 return;
2842 }
2843
2844 /* Otherwise enter Recovery state */
2845 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2846 fast_rexmit = 1;
2847 }
2848
2849 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2850 tcp_update_scoreboard(sk, fast_rexmit);
2851 tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
2852 tcp_xmit_retransmit_queue(sk);
2853 }
2854
2855 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
2856 {
2857 tcp_rtt_estimator(sk, seq_rtt);
2858 tcp_set_rto(sk);
2859 inet_csk(sk)->icsk_backoff = 0;
2860 }
2861 EXPORT_SYMBOL(tcp_valid_rtt_meas);
2862
2863 /* Read draft-ietf-tcplw-high-performance before mucking
2864 * with this code. (Supersedes RFC1323)
2865 */
2866 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2867 {
2868 /* RTTM Rule: A TSecr value received in a segment is used to
2869 * update the averaged RTT measurement only if the segment
2870 * acknowledges some new data, i.e., only if it advances the
2871 * left edge of the send window.
2872 *
2873 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2874 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2875 *
2876 * Changed: reset backoff as soon as we see the first valid sample.
2877 * If we do not, we get strongly overestimated rto. With timestamps
2878 * samples are accepted even from very old segments: f.e., when rtt=1
2879 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2880 * answer arrives rto becomes 120 seconds! If at least one of segments
2881 * in window is lost... Voila. --ANK (010210)
2882 */
2883 struct tcp_sock *tp = tcp_sk(sk);
2884
2885 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2886 }
2887
2888 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2889 {
2890 /* We don't have a timestamp. Can only use
2891 * packets that are not retransmitted to determine
2892 * rtt estimates. Also, we must not reset the
2893 * backoff for rto until we get a non-retransmitted
2894 * packet. This allows us to deal with a situation
2895 * where the network delay has increased suddenly.
2896 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2897 */
2898
2899 if (flag & FLAG_RETRANS_DATA_ACKED)
2900 return;
2901
2902 tcp_valid_rtt_meas(sk, seq_rtt);
2903 }
2904
2905 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2906 const s32 seq_rtt)
2907 {
2908 const struct tcp_sock *tp = tcp_sk(sk);
2909 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2910 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2911 tcp_ack_saw_tstamp(sk, flag);
2912 else if (seq_rtt >= 0)
2913 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2914 }
2915
2916 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2917 {
2918 const struct inet_connection_sock *icsk = inet_csk(sk);
2919 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2920 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2921 }
2922
2923 /* Restart timer after forward progress on connection.
2924 * RFC2988 recommends to restart timer to now+rto.
2925 */
2926 void tcp_rearm_rto(struct sock *sk)
2927 {
2928 const struct inet_connection_sock *icsk = inet_csk(sk);
2929 struct tcp_sock *tp = tcp_sk(sk);
2930
2931 /* If the retrans timer is currently being used by Fast Open
2932 * for SYN-ACK retrans purpose, stay put.
2933 */
2934 if (tp->fastopen_rsk)
2935 return;
2936
2937 if (!tp->packets_out) {
2938 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2939 } else {
2940 u32 rto = inet_csk(sk)->icsk_rto;
2941 /* Offset the time elapsed after installing regular RTO */
2942 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2943 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2944 struct sk_buff *skb = tcp_write_queue_head(sk);
2945 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2946 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2947 /* delta may not be positive if the socket is locked
2948 * when the retrans timer fires and is rescheduled.
2949 */
2950 if (delta > 0)
2951 rto = delta;
2952 }
2953 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2954 TCP_RTO_MAX);
2955 }
2956 }
2957
2958 /* This function is called when the delayed ER timer fires. TCP enters
2959 * fast recovery and performs fast-retransmit.
2960 */
2961 void tcp_resume_early_retransmit(struct sock *sk)
2962 {
2963 struct tcp_sock *tp = tcp_sk(sk);
2964
2965 tcp_rearm_rto(sk);
2966
2967 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2968 if (!tp->do_early_retrans)
2969 return;
2970
2971 tcp_enter_recovery(sk, false);
2972 tcp_update_scoreboard(sk, 1);
2973 tcp_xmit_retransmit_queue(sk);
2974 }
2975
2976 /* If we get here, the whole TSO packet has not been acked. */
2977 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2978 {
2979 struct tcp_sock *tp = tcp_sk(sk);
2980 u32 packets_acked;
2981
2982 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2983
2984 packets_acked = tcp_skb_pcount(skb);
2985 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2986 return 0;
2987 packets_acked -= tcp_skb_pcount(skb);
2988
2989 if (packets_acked) {
2990 BUG_ON(tcp_skb_pcount(skb) == 0);
2991 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2992 }
2993
2994 return packets_acked;
2995 }
2996
2997 /* Remove acknowledged frames from the retransmission queue. If our packet
2998 * is before the ack sequence we can discard it as it's confirmed to have
2999 * arrived at the other end.
3000 */
3001 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3002 u32 prior_snd_una)
3003 {
3004 struct tcp_sock *tp = tcp_sk(sk);
3005 const struct inet_connection_sock *icsk = inet_csk(sk);
3006 struct sk_buff *skb;
3007 u32 now = tcp_time_stamp;
3008 int fully_acked = true;
3009 int flag = 0;
3010 u32 pkts_acked = 0;
3011 u32 reord = tp->packets_out;
3012 u32 prior_sacked = tp->sacked_out;
3013 s32 seq_rtt = -1;
3014 s32 ca_seq_rtt = -1;
3015 ktime_t last_ackt = net_invalid_timestamp();
3016
3017 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3018 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3019 u32 acked_pcount;
3020 u8 sacked = scb->sacked;
3021
3022 /* Determine how many packets and what bytes were acked, tso and else */
3023 if (after(scb->end_seq, tp->snd_una)) {
3024 if (tcp_skb_pcount(skb) == 1 ||
3025 !after(tp->snd_una, scb->seq))
3026 break;
3027
3028 acked_pcount = tcp_tso_acked(sk, skb);
3029 if (!acked_pcount)
3030 break;
3031
3032 fully_acked = false;
3033 } else {
3034 acked_pcount = tcp_skb_pcount(skb);
3035 }
3036
3037 if (sacked & TCPCB_RETRANS) {
3038 if (sacked & TCPCB_SACKED_RETRANS)
3039 tp->retrans_out -= acked_pcount;
3040 flag |= FLAG_RETRANS_DATA_ACKED;
3041 ca_seq_rtt = -1;
3042 seq_rtt = -1;
3043 } else {
3044 ca_seq_rtt = now - scb->when;
3045 last_ackt = skb->tstamp;
3046 if (seq_rtt < 0) {
3047 seq_rtt = ca_seq_rtt;
3048 }
3049 if (!(sacked & TCPCB_SACKED_ACKED))
3050 reord = min(pkts_acked, reord);
3051 if (!after(scb->end_seq, tp->high_seq))
3052 flag |= FLAG_ORIG_SACK_ACKED;
3053 }
3054
3055 if (sacked & TCPCB_SACKED_ACKED)
3056 tp->sacked_out -= acked_pcount;
3057 if (sacked & TCPCB_LOST)
3058 tp->lost_out -= acked_pcount;
3059
3060 tp->packets_out -= acked_pcount;
3061 pkts_acked += acked_pcount;
3062
3063 /* Initial outgoing SYN's get put onto the write_queue
3064 * just like anything else we transmit. It is not
3065 * true data, and if we misinform our callers that
3066 * this ACK acks real data, we will erroneously exit
3067 * connection startup slow start one packet too
3068 * quickly. This is severely frowned upon behavior.
3069 */
3070 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3071 flag |= FLAG_DATA_ACKED;
3072 } else {
3073 flag |= FLAG_SYN_ACKED;
3074 tp->retrans_stamp = 0;
3075 }
3076
3077 if (!fully_acked)
3078 break;
3079
3080 tcp_unlink_write_queue(skb, sk);
3081 sk_wmem_free_skb(sk, skb);
3082 tp->scoreboard_skb_hint = NULL;
3083 if (skb == tp->retransmit_skb_hint)
3084 tp->retransmit_skb_hint = NULL;
3085 if (skb == tp->lost_skb_hint)
3086 tp->lost_skb_hint = NULL;
3087 }
3088
3089 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3090 tp->snd_up = tp->snd_una;
3091
3092 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3093 flag |= FLAG_SACK_RENEGING;
3094
3095 if (flag & FLAG_ACKED) {
3096 const struct tcp_congestion_ops *ca_ops
3097 = inet_csk(sk)->icsk_ca_ops;
3098
3099 if (unlikely(icsk->icsk_mtup.probe_size &&
3100 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3101 tcp_mtup_probe_success(sk);
3102 }
3103
3104 tcp_ack_update_rtt(sk, flag, seq_rtt);
3105 tcp_rearm_rto(sk);
3106
3107 if (tcp_is_reno(tp)) {
3108 tcp_remove_reno_sacks(sk, pkts_acked);
3109 } else {
3110 int delta;
3111
3112 /* Non-retransmitted hole got filled? That's reordering */
3113 if (reord < prior_fackets)
3114 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3115
3116 delta = tcp_is_fack(tp) ? pkts_acked :
3117 prior_sacked - tp->sacked_out;
3118 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3119 }
3120
3121 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3122
3123 if (ca_ops->pkts_acked) {
3124 s32 rtt_us = -1;
3125
3126 /* Is the ACK triggering packet unambiguous? */
3127 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3128 /* High resolution needed and available? */
3129 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3130 !ktime_equal(last_ackt,
3131 net_invalid_timestamp()))
3132 rtt_us = ktime_us_delta(ktime_get_real(),
3133 last_ackt);
3134 else if (ca_seq_rtt >= 0)
3135 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3136 }
3137
3138 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3139 }
3140 }
3141
3142 #if FASTRETRANS_DEBUG > 0
3143 WARN_ON((int)tp->sacked_out < 0);
3144 WARN_ON((int)tp->lost_out < 0);
3145 WARN_ON((int)tp->retrans_out < 0);
3146 if (!tp->packets_out && tcp_is_sack(tp)) {
3147 icsk = inet_csk(sk);
3148 if (tp->lost_out) {
3149 pr_debug("Leak l=%u %d\n",
3150 tp->lost_out, icsk->icsk_ca_state);
3151 tp->lost_out = 0;
3152 }
3153 if (tp->sacked_out) {
3154 pr_debug("Leak s=%u %d\n",
3155 tp->sacked_out, icsk->icsk_ca_state);
3156 tp->sacked_out = 0;
3157 }
3158 if (tp->retrans_out) {
3159 pr_debug("Leak r=%u %d\n",
3160 tp->retrans_out, icsk->icsk_ca_state);
3161 tp->retrans_out = 0;
3162 }
3163 }
3164 #endif
3165 return flag;
3166 }
3167
3168 static void tcp_ack_probe(struct sock *sk)
3169 {
3170 const struct tcp_sock *tp = tcp_sk(sk);
3171 struct inet_connection_sock *icsk = inet_csk(sk);
3172
3173 /* Was it a usable window open? */
3174
3175 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3176 icsk->icsk_backoff = 0;
3177 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3178 /* Socket must be waked up by subsequent tcp_data_snd_check().
3179 * This function is not for random using!
3180 */
3181 } else {
3182 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3183 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3184 TCP_RTO_MAX);
3185 }
3186 }
3187
3188 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3189 {
3190 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3191 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3192 }
3193
3194 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3195 {
3196 const struct tcp_sock *tp = tcp_sk(sk);
3197 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3198 !tcp_in_cwnd_reduction(sk);
3199 }
3200
3201 /* Check that window update is acceptable.
3202 * The function assumes that snd_una<=ack<=snd_next.
3203 */
3204 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3205 const u32 ack, const u32 ack_seq,
3206 const u32 nwin)
3207 {
3208 return after(ack, tp->snd_una) ||
3209 after(ack_seq, tp->snd_wl1) ||
3210 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3211 }
3212
3213 /* Update our send window.
3214 *
3215 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3216 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3217 */
3218 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3219 u32 ack_seq)
3220 {
3221 struct tcp_sock *tp = tcp_sk(sk);
3222 int flag = 0;
3223 u32 nwin = ntohs(tcp_hdr(skb)->window);
3224
3225 if (likely(!tcp_hdr(skb)->syn))
3226 nwin <<= tp->rx_opt.snd_wscale;
3227
3228 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3229 flag |= FLAG_WIN_UPDATE;
3230 tcp_update_wl(tp, ack_seq);
3231
3232 if (tp->snd_wnd != nwin) {
3233 tp->snd_wnd = nwin;
3234
3235 /* Note, it is the only place, where
3236 * fast path is recovered for sending TCP.
3237 */
3238 tp->pred_flags = 0;
3239 tcp_fast_path_check(sk);
3240
3241 if (nwin > tp->max_window) {
3242 tp->max_window = nwin;
3243 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3244 }
3245 }
3246 }
3247
3248 tp->snd_una = ack;
3249
3250 return flag;
3251 }
3252
3253 /* RFC 5961 7 [ACK Throttling] */
3254 static void tcp_send_challenge_ack(struct sock *sk)
3255 {
3256 /* unprotected vars, we dont care of overwrites */
3257 static u32 challenge_timestamp;
3258 static unsigned int challenge_count;
3259 u32 now = jiffies / HZ;
3260
3261 if (now != challenge_timestamp) {
3262 challenge_timestamp = now;
3263 challenge_count = 0;
3264 }
3265 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3266 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3267 tcp_send_ack(sk);
3268 }
3269 }
3270
3271 static void tcp_store_ts_recent(struct tcp_sock *tp)
3272 {
3273 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3274 tp->rx_opt.ts_recent_stamp = get_seconds();
3275 }
3276
3277 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3278 {
3279 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3280 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3281 * extra check below makes sure this can only happen
3282 * for pure ACK frames. -DaveM
3283 *
3284 * Not only, also it occurs for expired timestamps.
3285 */
3286
3287 if (tcp_paws_check(&tp->rx_opt, 0))
3288 tcp_store_ts_recent(tp);
3289 }
3290 }
3291
3292 /* This routine deals with acks during a TLP episode.
3293 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3294 */
3295 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3296 {
3297 struct tcp_sock *tp = tcp_sk(sk);
3298 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3299 !(flag & (FLAG_SND_UNA_ADVANCED |
3300 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3301
3302 /* Mark the end of TLP episode on receiving TLP dupack or when
3303 * ack is after tlp_high_seq.
3304 */
3305 if (is_tlp_dupack) {
3306 tp->tlp_high_seq = 0;
3307 return;
3308 }
3309
3310 if (after(ack, tp->tlp_high_seq)) {
3311 tp->tlp_high_seq = 0;
3312 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3313 if (!(flag & FLAG_DSACKING_ACK)) {
3314 tcp_init_cwnd_reduction(sk, true);
3315 tcp_set_ca_state(sk, TCP_CA_CWR);
3316 tcp_end_cwnd_reduction(sk);
3317 tcp_set_ca_state(sk, TCP_CA_Open);
3318 NET_INC_STATS_BH(sock_net(sk),
3319 LINUX_MIB_TCPLOSSPROBERECOVERY);
3320 }
3321 }
3322 }
3323
3324 /* This routine deals with incoming acks, but not outgoing ones. */
3325 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3326 {
3327 struct inet_connection_sock *icsk = inet_csk(sk);
3328 struct tcp_sock *tp = tcp_sk(sk);
3329 u32 prior_snd_una = tp->snd_una;
3330 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3331 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3332 bool is_dupack = false;
3333 u32 prior_in_flight;
3334 u32 prior_fackets;
3335 int prior_packets = tp->packets_out;
3336 int prior_sacked = tp->sacked_out;
3337 int pkts_acked = 0;
3338 int previous_packets_out = 0;
3339
3340 /* If the ack is older than previous acks
3341 * then we can probably ignore it.
3342 */
3343 if (before(ack, prior_snd_una)) {
3344 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3345 if (before(ack, prior_snd_una - tp->max_window)) {
3346 tcp_send_challenge_ack(sk);
3347 return -1;
3348 }
3349 goto old_ack;
3350 }
3351
3352 /* If the ack includes data we haven't sent yet, discard
3353 * this segment (RFC793 Section 3.9).
3354 */
3355 if (after(ack, tp->snd_nxt))
3356 goto invalid_ack;
3357
3358 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3359 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3360 tcp_rearm_rto(sk);
3361
3362 if (after(ack, prior_snd_una))
3363 flag |= FLAG_SND_UNA_ADVANCED;
3364
3365 prior_fackets = tp->fackets_out;
3366 prior_in_flight = tcp_packets_in_flight(tp);
3367
3368 /* ts_recent update must be made after we are sure that the packet
3369 * is in window.
3370 */
3371 if (flag & FLAG_UPDATE_TS_RECENT)
3372 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3373
3374 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3375 /* Window is constant, pure forward advance.
3376 * No more checks are required.
3377 * Note, we use the fact that SND.UNA>=SND.WL2.
3378 */
3379 tcp_update_wl(tp, ack_seq);
3380 tp->snd_una = ack;
3381 flag |= FLAG_WIN_UPDATE;
3382
3383 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3384
3385 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3386 } else {
3387 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3388 flag |= FLAG_DATA;
3389 else
3390 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3391
3392 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3393
3394 if (TCP_SKB_CB(skb)->sacked)
3395 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3396
3397 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3398 flag |= FLAG_ECE;
3399
3400 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3401 }
3402
3403 /* We passed data and got it acked, remove any soft error
3404 * log. Something worked...
3405 */
3406 sk->sk_err_soft = 0;
3407 icsk->icsk_probes_out = 0;
3408 tp->rcv_tstamp = tcp_time_stamp;
3409 if (!prior_packets)
3410 goto no_queue;
3411
3412 /* See if we can take anything off of the retransmit queue. */
3413 previous_packets_out = tp->packets_out;
3414 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3415
3416 pkts_acked = previous_packets_out - tp->packets_out;
3417
3418 if (tcp_ack_is_dubious(sk, flag)) {
3419 /* Advance CWND, if state allows this. */
3420 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
3421 tcp_cong_avoid(sk, ack, prior_in_flight);
3422 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3423 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3424 prior_packets, is_dupack, flag);
3425 } else {
3426 if (flag & FLAG_DATA_ACKED)
3427 tcp_cong_avoid(sk, ack, prior_in_flight);
3428 }
3429
3430 if (tp->tlp_high_seq)
3431 tcp_process_tlp_ack(sk, ack, flag);
3432
3433 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3434 struct dst_entry *dst = __sk_dst_get(sk);
3435 if (dst)
3436 dst_confirm(dst);
3437 }
3438
3439 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3440 tcp_schedule_loss_probe(sk);
3441 return 1;
3442
3443 no_queue:
3444 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3445 if (flag & FLAG_DSACKING_ACK)
3446 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3447 prior_packets, is_dupack, flag);
3448 /* If this ack opens up a zero window, clear backoff. It was
3449 * being used to time the probes, and is probably far higher than
3450 * it needs to be for normal retransmission.
3451 */
3452 if (tcp_send_head(sk))
3453 tcp_ack_probe(sk);
3454
3455 if (tp->tlp_high_seq)
3456 tcp_process_tlp_ack(sk, ack, flag);
3457 return 1;
3458
3459 invalid_ack:
3460 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3461 return -1;
3462
3463 old_ack:
3464 /* If data was SACKed, tag it and see if we should send more data.
3465 * If data was DSACKed, see if we can undo a cwnd reduction.
3466 */
3467 if (TCP_SKB_CB(skb)->sacked) {
3468 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3469 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3470 prior_packets, is_dupack, flag);
3471 }
3472
3473 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3474 return 0;
3475 }
3476
3477 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3478 * But, this can also be called on packets in the established flow when
3479 * the fast version below fails.
3480 */
3481 void tcp_parse_options(const struct sk_buff *skb,
3482 struct tcp_options_received *opt_rx, int estab,
3483 struct tcp_fastopen_cookie *foc)
3484 {
3485 const unsigned char *ptr;
3486 const struct tcphdr *th = tcp_hdr(skb);
3487 int length = (th->doff * 4) - sizeof(struct tcphdr);
3488
3489 ptr = (const unsigned char *)(th + 1);
3490 opt_rx->saw_tstamp = 0;
3491
3492 while (length > 0) {
3493 int opcode = *ptr++;
3494 int opsize;
3495
3496 switch (opcode) {
3497 case TCPOPT_EOL:
3498 return;
3499 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3500 length--;
3501 continue;
3502 default:
3503 opsize = *ptr++;
3504 if (opsize < 2) /* "silly options" */
3505 return;
3506 if (opsize > length)
3507 return; /* don't parse partial options */
3508 switch (opcode) {
3509 case TCPOPT_MSS:
3510 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3511 u16 in_mss = get_unaligned_be16(ptr);
3512 if (in_mss) {
3513 if (opt_rx->user_mss &&
3514 opt_rx->user_mss < in_mss)
3515 in_mss = opt_rx->user_mss;
3516 opt_rx->mss_clamp = in_mss;
3517 }
3518 }
3519 break;
3520 case TCPOPT_WINDOW:
3521 if (opsize == TCPOLEN_WINDOW && th->syn &&
3522 !estab && sysctl_tcp_window_scaling) {
3523 __u8 snd_wscale = *(__u8 *)ptr;
3524 opt_rx->wscale_ok = 1;
3525 if (snd_wscale > 14) {
3526 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3527 __func__,
3528 snd_wscale);
3529 snd_wscale = 14;
3530 }
3531 opt_rx->snd_wscale = snd_wscale;
3532 }
3533 break;
3534 case TCPOPT_TIMESTAMP:
3535 if ((opsize == TCPOLEN_TIMESTAMP) &&
3536 ((estab && opt_rx->tstamp_ok) ||
3537 (!estab && sysctl_tcp_timestamps))) {
3538 opt_rx->saw_tstamp = 1;
3539 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3540 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3541 }
3542 break;
3543 case TCPOPT_SACK_PERM:
3544 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3545 !estab && sysctl_tcp_sack) {
3546 opt_rx->sack_ok = TCP_SACK_SEEN;
3547 tcp_sack_reset(opt_rx);
3548 }
3549 break;
3550
3551 case TCPOPT_SACK:
3552 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3553 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3554 opt_rx->sack_ok) {
3555 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3556 }
3557 break;
3558 #ifdef CONFIG_TCP_MD5SIG
3559 case TCPOPT_MD5SIG:
3560 /*
3561 * The MD5 Hash has already been
3562 * checked (see tcp_v{4,6}_do_rcv()).
3563 */
3564 break;
3565 #endif
3566 case TCPOPT_EXP:
3567 /* Fast Open option shares code 254 using a
3568 * 16 bits magic number. It's valid only in
3569 * SYN or SYN-ACK with an even size.
3570 */
3571 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3572 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3573 foc == NULL || !th->syn || (opsize & 1))
3574 break;
3575 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3576 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3577 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3578 memcpy(foc->val, ptr + 2, foc->len);
3579 else if (foc->len != 0)
3580 foc->len = -1;
3581 break;
3582
3583 }
3584 ptr += opsize-2;
3585 length -= opsize;
3586 }
3587 }
3588 }
3589 EXPORT_SYMBOL(tcp_parse_options);
3590
3591 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3592 {
3593 const __be32 *ptr = (const __be32 *)(th + 1);
3594
3595 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3596 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3597 tp->rx_opt.saw_tstamp = 1;
3598 ++ptr;
3599 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3600 ++ptr;
3601 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3602 return true;
3603 }
3604 return false;
3605 }
3606
3607 /* Fast parse options. This hopes to only see timestamps.
3608 * If it is wrong it falls back on tcp_parse_options().
3609 */
3610 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3611 const struct tcphdr *th, struct tcp_sock *tp)
3612 {
3613 /* In the spirit of fast parsing, compare doff directly to constant
3614 * values. Because equality is used, short doff can be ignored here.
3615 */
3616 if (th->doff == (sizeof(*th) / 4)) {
3617 tp->rx_opt.saw_tstamp = 0;
3618 return false;
3619 } else if (tp->rx_opt.tstamp_ok &&
3620 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3621 if (tcp_parse_aligned_timestamp(tp, th))
3622 return true;
3623 }
3624
3625 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3626 if (tp->rx_opt.saw_tstamp)
3627 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3628
3629 return true;
3630 }
3631
3632 #ifdef CONFIG_TCP_MD5SIG
3633 /*
3634 * Parse MD5 Signature option
3635 */
3636 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3637 {
3638 int length = (th->doff << 2) - sizeof(*th);
3639 const u8 *ptr = (const u8 *)(th + 1);
3640
3641 /* If the TCP option is too short, we can short cut */
3642 if (length < TCPOLEN_MD5SIG)
3643 return NULL;
3644
3645 while (length > 0) {
3646 int opcode = *ptr++;
3647 int opsize;
3648
3649 switch(opcode) {
3650 case TCPOPT_EOL:
3651 return NULL;
3652 case TCPOPT_NOP:
3653 length--;
3654 continue;
3655 default:
3656 opsize = *ptr++;
3657 if (opsize < 2 || opsize > length)
3658 return NULL;
3659 if (opcode == TCPOPT_MD5SIG)
3660 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3661 }
3662 ptr += opsize - 2;
3663 length -= opsize;
3664 }
3665 return NULL;
3666 }
3667 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3668 #endif
3669
3670 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3671 *
3672 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3673 * it can pass through stack. So, the following predicate verifies that
3674 * this segment is not used for anything but congestion avoidance or
3675 * fast retransmit. Moreover, we even are able to eliminate most of such
3676 * second order effects, if we apply some small "replay" window (~RTO)
3677 * to timestamp space.
3678 *
3679 * All these measures still do not guarantee that we reject wrapped ACKs
3680 * on networks with high bandwidth, when sequence space is recycled fastly,
3681 * but it guarantees that such events will be very rare and do not affect
3682 * connection seriously. This doesn't look nice, but alas, PAWS is really
3683 * buggy extension.
3684 *
3685 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3686 * states that events when retransmit arrives after original data are rare.
3687 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3688 * the biggest problem on large power networks even with minor reordering.
3689 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3690 * up to bandwidth of 18Gigabit/sec. 8) ]
3691 */
3692
3693 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3694 {
3695 const struct tcp_sock *tp = tcp_sk(sk);
3696 const struct tcphdr *th = tcp_hdr(skb);
3697 u32 seq = TCP_SKB_CB(skb)->seq;
3698 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3699
3700 return (/* 1. Pure ACK with correct sequence number. */
3701 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3702
3703 /* 2. ... and duplicate ACK. */
3704 ack == tp->snd_una &&
3705
3706 /* 3. ... and does not update window. */
3707 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3708
3709 /* 4. ... and sits in replay window. */
3710 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3711 }
3712
3713 static inline bool tcp_paws_discard(const struct sock *sk,
3714 const struct sk_buff *skb)
3715 {
3716 const struct tcp_sock *tp = tcp_sk(sk);
3717
3718 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3719 !tcp_disordered_ack(sk, skb);
3720 }
3721
3722 /* Check segment sequence number for validity.
3723 *
3724 * Segment controls are considered valid, if the segment
3725 * fits to the window after truncation to the window. Acceptability
3726 * of data (and SYN, FIN, of course) is checked separately.
3727 * See tcp_data_queue(), for example.
3728 *
3729 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3730 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3731 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3732 * (borrowed from freebsd)
3733 */
3734
3735 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3736 {
3737 return !before(end_seq, tp->rcv_wup) &&
3738 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3739 }
3740
3741 /* When we get a reset we do this. */
3742 void tcp_reset(struct sock *sk)
3743 {
3744 /* We want the right error as BSD sees it (and indeed as we do). */
3745 switch (sk->sk_state) {
3746 case TCP_SYN_SENT:
3747 sk->sk_err = ECONNREFUSED;
3748 break;
3749 case TCP_CLOSE_WAIT:
3750 sk->sk_err = EPIPE;
3751 break;
3752 case TCP_CLOSE:
3753 return;
3754 default:
3755 sk->sk_err = ECONNRESET;
3756 }
3757 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3758 smp_wmb();
3759
3760 if (!sock_flag(sk, SOCK_DEAD))
3761 sk->sk_error_report(sk);
3762
3763 tcp_done(sk);
3764 }
3765
3766 /*
3767 * Process the FIN bit. This now behaves as it is supposed to work
3768 * and the FIN takes effect when it is validly part of sequence
3769 * space. Not before when we get holes.
3770 *
3771 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3772 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3773 * TIME-WAIT)
3774 *
3775 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3776 * close and we go into CLOSING (and later onto TIME-WAIT)
3777 *
3778 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3779 */
3780 static void tcp_fin(struct sock *sk)
3781 {
3782 struct tcp_sock *tp = tcp_sk(sk);
3783
3784 inet_csk_schedule_ack(sk);
3785
3786 sk->sk_shutdown |= RCV_SHUTDOWN;
3787 sock_set_flag(sk, SOCK_DONE);
3788
3789 switch (sk->sk_state) {
3790 case TCP_SYN_RECV:
3791 case TCP_ESTABLISHED:
3792 /* Move to CLOSE_WAIT */
3793 tcp_set_state(sk, TCP_CLOSE_WAIT);
3794 inet_csk(sk)->icsk_ack.pingpong = 1;
3795 break;
3796
3797 case TCP_CLOSE_WAIT:
3798 case TCP_CLOSING:
3799 /* Received a retransmission of the FIN, do
3800 * nothing.
3801 */
3802 break;
3803 case TCP_LAST_ACK:
3804 /* RFC793: Remain in the LAST-ACK state. */
3805 break;
3806
3807 case TCP_FIN_WAIT1:
3808 /* This case occurs when a simultaneous close
3809 * happens, we must ack the received FIN and
3810 * enter the CLOSING state.
3811 */
3812 tcp_send_ack(sk);
3813 tcp_set_state(sk, TCP_CLOSING);
3814 break;
3815 case TCP_FIN_WAIT2:
3816 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3817 tcp_send_ack(sk);
3818 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3819 break;
3820 default:
3821 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3822 * cases we should never reach this piece of code.
3823 */
3824 pr_err("%s: Impossible, sk->sk_state=%d\n",
3825 __func__, sk->sk_state);
3826 break;
3827 }
3828
3829 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3830 * Probably, we should reset in this case. For now drop them.
3831 */
3832 __skb_queue_purge(&tp->out_of_order_queue);
3833 if (tcp_is_sack(tp))
3834 tcp_sack_reset(&tp->rx_opt);
3835 sk_mem_reclaim(sk);
3836
3837 if (!sock_flag(sk, SOCK_DEAD)) {
3838 sk->sk_state_change(sk);
3839
3840 /* Do not send POLL_HUP for half duplex close. */
3841 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3842 sk->sk_state == TCP_CLOSE)
3843 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3844 else
3845 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3846 }
3847 }
3848
3849 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3850 u32 end_seq)
3851 {
3852 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3853 if (before(seq, sp->start_seq))
3854 sp->start_seq = seq;
3855 if (after(end_seq, sp->end_seq))
3856 sp->end_seq = end_seq;
3857 return true;
3858 }
3859 return false;
3860 }
3861
3862 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3863 {
3864 struct tcp_sock *tp = tcp_sk(sk);
3865
3866 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3867 int mib_idx;
3868
3869 if (before(seq, tp->rcv_nxt))
3870 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3871 else
3872 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3873
3874 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3875
3876 tp->rx_opt.dsack = 1;
3877 tp->duplicate_sack[0].start_seq = seq;
3878 tp->duplicate_sack[0].end_seq = end_seq;
3879 }
3880 }
3881
3882 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3883 {
3884 struct tcp_sock *tp = tcp_sk(sk);
3885
3886 if (!tp->rx_opt.dsack)
3887 tcp_dsack_set(sk, seq, end_seq);
3888 else
3889 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3890 }
3891
3892 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3893 {
3894 struct tcp_sock *tp = tcp_sk(sk);
3895
3896 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3897 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3898 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3899 tcp_enter_quickack_mode(sk);
3900
3901 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3902 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3903
3904 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3905 end_seq = tp->rcv_nxt;
3906 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3907 }
3908 }
3909
3910 tcp_send_ack(sk);
3911 }
3912
3913 /* These routines update the SACK block as out-of-order packets arrive or
3914 * in-order packets close up the sequence space.
3915 */
3916 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3917 {
3918 int this_sack;
3919 struct tcp_sack_block *sp = &tp->selective_acks[0];
3920 struct tcp_sack_block *swalk = sp + 1;
3921
3922 /* See if the recent change to the first SACK eats into
3923 * or hits the sequence space of other SACK blocks, if so coalesce.
3924 */
3925 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3926 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3927 int i;
3928
3929 /* Zap SWALK, by moving every further SACK up by one slot.
3930 * Decrease num_sacks.
3931 */
3932 tp->rx_opt.num_sacks--;
3933 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3934 sp[i] = sp[i + 1];
3935 continue;
3936 }
3937 this_sack++, swalk++;
3938 }
3939 }
3940
3941 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3942 {
3943 struct tcp_sock *tp = tcp_sk(sk);
3944 struct tcp_sack_block *sp = &tp->selective_acks[0];
3945 int cur_sacks = tp->rx_opt.num_sacks;
3946 int this_sack;
3947
3948 if (!cur_sacks)
3949 goto new_sack;
3950
3951 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3952 if (tcp_sack_extend(sp, seq, end_seq)) {
3953 /* Rotate this_sack to the first one. */
3954 for (; this_sack > 0; this_sack--, sp--)
3955 swap(*sp, *(sp - 1));
3956 if (cur_sacks > 1)
3957 tcp_sack_maybe_coalesce(tp);
3958 return;
3959 }
3960 }
3961
3962 /* Could not find an adjacent existing SACK, build a new one,
3963 * put it at the front, and shift everyone else down. We
3964 * always know there is at least one SACK present already here.
3965 *
3966 * If the sack array is full, forget about the last one.
3967 */
3968 if (this_sack >= TCP_NUM_SACKS) {
3969 this_sack--;
3970 tp->rx_opt.num_sacks--;
3971 sp--;
3972 }
3973 for (; this_sack > 0; this_sack--, sp--)
3974 *sp = *(sp - 1);
3975
3976 new_sack:
3977 /* Build the new head SACK, and we're done. */
3978 sp->start_seq = seq;
3979 sp->end_seq = end_seq;
3980 tp->rx_opt.num_sacks++;
3981 }
3982
3983 /* RCV.NXT advances, some SACKs should be eaten. */
3984
3985 static void tcp_sack_remove(struct tcp_sock *tp)
3986 {
3987 struct tcp_sack_block *sp = &tp->selective_acks[0];
3988 int num_sacks = tp->rx_opt.num_sacks;
3989 int this_sack;
3990
3991 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3992 if (skb_queue_empty(&tp->out_of_order_queue)) {
3993 tp->rx_opt.num_sacks = 0;
3994 return;
3995 }
3996
3997 for (this_sack = 0; this_sack < num_sacks;) {
3998 /* Check if the start of the sack is covered by RCV.NXT. */
3999 if (!before(tp->rcv_nxt, sp->start_seq)) {
4000 int i;
4001
4002 /* RCV.NXT must cover all the block! */
4003 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4004
4005 /* Zap this SACK, by moving forward any other SACKS. */
4006 for (i=this_sack+1; i < num_sacks; i++)
4007 tp->selective_acks[i-1] = tp->selective_acks[i];
4008 num_sacks--;
4009 continue;
4010 }
4011 this_sack++;
4012 sp++;
4013 }
4014 tp->rx_opt.num_sacks = num_sacks;
4015 }
4016
4017 /* This one checks to see if we can put data from the
4018 * out_of_order queue into the receive_queue.
4019 */
4020 static void tcp_ofo_queue(struct sock *sk)
4021 {
4022 struct tcp_sock *tp = tcp_sk(sk);
4023 __u32 dsack_high = tp->rcv_nxt;
4024 struct sk_buff *skb;
4025
4026 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4027 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4028 break;
4029
4030 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4031 __u32 dsack = dsack_high;
4032 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4033 dsack_high = TCP_SKB_CB(skb)->end_seq;
4034 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4035 }
4036
4037 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4038 SOCK_DEBUG(sk, "ofo packet was already received\n");
4039 __skb_unlink(skb, &tp->out_of_order_queue);
4040 __kfree_skb(skb);
4041 continue;
4042 }
4043 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4044 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4045 TCP_SKB_CB(skb)->end_seq);
4046
4047 __skb_unlink(skb, &tp->out_of_order_queue);
4048 __skb_queue_tail(&sk->sk_receive_queue, skb);
4049 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4050 if (tcp_hdr(skb)->fin)
4051 tcp_fin(sk);
4052 }
4053 }
4054
4055 static bool tcp_prune_ofo_queue(struct sock *sk);
4056 static int tcp_prune_queue(struct sock *sk);
4057
4058 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4059 unsigned int size)
4060 {
4061 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4062 !sk_rmem_schedule(sk, skb, size)) {
4063
4064 if (tcp_prune_queue(sk) < 0)
4065 return -1;
4066
4067 if (!sk_rmem_schedule(sk, skb, size)) {
4068 if (!tcp_prune_ofo_queue(sk))
4069 return -1;
4070
4071 if (!sk_rmem_schedule(sk, skb, size))
4072 return -1;
4073 }
4074 }
4075 return 0;
4076 }
4077
4078 /**
4079 * tcp_try_coalesce - try to merge skb to prior one
4080 * @sk: socket
4081 * @to: prior buffer
4082 * @from: buffer to add in queue
4083 * @fragstolen: pointer to boolean
4084 *
4085 * Before queueing skb @from after @to, try to merge them
4086 * to reduce overall memory use and queue lengths, if cost is small.
4087 * Packets in ofo or receive queues can stay a long time.
4088 * Better try to coalesce them right now to avoid future collapses.
4089 * Returns true if caller should free @from instead of queueing it
4090 */
4091 static bool tcp_try_coalesce(struct sock *sk,
4092 struct sk_buff *to,
4093 struct sk_buff *from,
4094 bool *fragstolen)
4095 {
4096 int delta;
4097
4098 *fragstolen = false;
4099
4100 if (tcp_hdr(from)->fin)
4101 return false;
4102
4103 /* Its possible this segment overlaps with prior segment in queue */
4104 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4105 return false;
4106
4107 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4108 return false;
4109
4110 atomic_add(delta, &sk->sk_rmem_alloc);
4111 sk_mem_charge(sk, delta);
4112 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4113 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4114 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4115 return true;
4116 }
4117
4118 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4119 {
4120 struct tcp_sock *tp = tcp_sk(sk);
4121 struct sk_buff *skb1;
4122 u32 seq, end_seq;
4123
4124 TCP_ECN_check_ce(tp, skb);
4125
4126 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4127 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4128 __kfree_skb(skb);
4129 return;
4130 }
4131
4132 /* Disable header prediction. */
4133 tp->pred_flags = 0;
4134 inet_csk_schedule_ack(sk);
4135
4136 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4137 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4138 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4139
4140 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4141 if (!skb1) {
4142 /* Initial out of order segment, build 1 SACK. */
4143 if (tcp_is_sack(tp)) {
4144 tp->rx_opt.num_sacks = 1;
4145 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4146 tp->selective_acks[0].end_seq =
4147 TCP_SKB_CB(skb)->end_seq;
4148 }
4149 __skb_queue_head(&tp->out_of_order_queue, skb);
4150 goto end;
4151 }
4152
4153 seq = TCP_SKB_CB(skb)->seq;
4154 end_seq = TCP_SKB_CB(skb)->end_seq;
4155
4156 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4157 bool fragstolen;
4158
4159 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4160 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4161 } else {
4162 kfree_skb_partial(skb, fragstolen);
4163 skb = NULL;
4164 }
4165
4166 if (!tp->rx_opt.num_sacks ||
4167 tp->selective_acks[0].end_seq != seq)
4168 goto add_sack;
4169
4170 /* Common case: data arrive in order after hole. */
4171 tp->selective_acks[0].end_seq = end_seq;
4172 goto end;
4173 }
4174
4175 /* Find place to insert this segment. */
4176 while (1) {
4177 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4178 break;
4179 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4180 skb1 = NULL;
4181 break;
4182 }
4183 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4184 }
4185
4186 /* Do skb overlap to previous one? */
4187 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4188 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4189 /* All the bits are present. Drop. */
4190 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4191 __kfree_skb(skb);
4192 skb = NULL;
4193 tcp_dsack_set(sk, seq, end_seq);
4194 goto add_sack;
4195 }
4196 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4197 /* Partial overlap. */
4198 tcp_dsack_set(sk, seq,
4199 TCP_SKB_CB(skb1)->end_seq);
4200 } else {
4201 if (skb_queue_is_first(&tp->out_of_order_queue,
4202 skb1))
4203 skb1 = NULL;
4204 else
4205 skb1 = skb_queue_prev(
4206 &tp->out_of_order_queue,
4207 skb1);
4208 }
4209 }
4210 if (!skb1)
4211 __skb_queue_head(&tp->out_of_order_queue, skb);
4212 else
4213 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4214
4215 /* And clean segments covered by new one as whole. */
4216 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4217 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4218
4219 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4220 break;
4221 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4222 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4223 end_seq);
4224 break;
4225 }
4226 __skb_unlink(skb1, &tp->out_of_order_queue);
4227 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4228 TCP_SKB_CB(skb1)->end_seq);
4229 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4230 __kfree_skb(skb1);
4231 }
4232
4233 add_sack:
4234 if (tcp_is_sack(tp))
4235 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4236 end:
4237 if (skb)
4238 skb_set_owner_r(skb, sk);
4239 }
4240
4241 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4242 bool *fragstolen)
4243 {
4244 int eaten;
4245 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4246
4247 __skb_pull(skb, hdrlen);
4248 eaten = (tail &&
4249 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4250 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4251 if (!eaten) {
4252 __skb_queue_tail(&sk->sk_receive_queue, skb);
4253 skb_set_owner_r(skb, sk);
4254 }
4255 return eaten;
4256 }
4257
4258 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4259 {
4260 struct sk_buff *skb = NULL;
4261 struct tcphdr *th;
4262 bool fragstolen;
4263
4264 if (size == 0)
4265 return 0;
4266
4267 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4268 if (!skb)
4269 goto err;
4270
4271 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4272 goto err_free;
4273
4274 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4275 skb_reset_transport_header(skb);
4276 memset(th, 0, sizeof(*th));
4277
4278 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4279 goto err_free;
4280
4281 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4282 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4283 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4284
4285 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4286 WARN_ON_ONCE(fragstolen); /* should not happen */
4287 __kfree_skb(skb);
4288 }
4289 return size;
4290
4291 err_free:
4292 kfree_skb(skb);
4293 err:
4294 return -ENOMEM;
4295 }
4296
4297 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4298 {
4299 const struct tcphdr *th = tcp_hdr(skb);
4300 struct tcp_sock *tp = tcp_sk(sk);
4301 int eaten = -1;
4302 bool fragstolen = false;
4303
4304 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4305 goto drop;
4306
4307 skb_dst_drop(skb);
4308 __skb_pull(skb, th->doff * 4);
4309
4310 TCP_ECN_accept_cwr(tp, skb);
4311
4312 tp->rx_opt.dsack = 0;
4313
4314 /* Queue data for delivery to the user.
4315 * Packets in sequence go to the receive queue.
4316 * Out of sequence packets to the out_of_order_queue.
4317 */
4318 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4319 if (tcp_receive_window(tp) == 0)
4320 goto out_of_window;
4321
4322 /* Ok. In sequence. In window. */
4323 if (tp->ucopy.task == current &&
4324 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4325 sock_owned_by_user(sk) && !tp->urg_data) {
4326 int chunk = min_t(unsigned int, skb->len,
4327 tp->ucopy.len);
4328
4329 __set_current_state(TASK_RUNNING);
4330
4331 local_bh_enable();
4332 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4333 tp->ucopy.len -= chunk;
4334 tp->copied_seq += chunk;
4335 eaten = (chunk == skb->len);
4336 tcp_rcv_space_adjust(sk);
4337 }
4338 local_bh_disable();
4339 }
4340
4341 if (eaten <= 0) {
4342 queue_and_out:
4343 if (eaten < 0 &&
4344 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4345 goto drop;
4346
4347 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4348 }
4349 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4350 if (skb->len)
4351 tcp_event_data_recv(sk, skb);
4352 if (th->fin)
4353 tcp_fin(sk);
4354
4355 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4356 tcp_ofo_queue(sk);
4357
4358 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4359 * gap in queue is filled.
4360 */
4361 if (skb_queue_empty(&tp->out_of_order_queue))
4362 inet_csk(sk)->icsk_ack.pingpong = 0;
4363 }
4364
4365 if (tp->rx_opt.num_sacks)
4366 tcp_sack_remove(tp);
4367
4368 tcp_fast_path_check(sk);
4369
4370 if (eaten > 0)
4371 kfree_skb_partial(skb, fragstolen);
4372 if (!sock_flag(sk, SOCK_DEAD))
4373 sk->sk_data_ready(sk, 0);
4374 return;
4375 }
4376
4377 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4378 /* A retransmit, 2nd most common case. Force an immediate ack. */
4379 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4380 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4381
4382 out_of_window:
4383 tcp_enter_quickack_mode(sk);
4384 inet_csk_schedule_ack(sk);
4385 drop:
4386 __kfree_skb(skb);
4387 return;
4388 }
4389
4390 /* Out of window. F.e. zero window probe. */
4391 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4392 goto out_of_window;
4393
4394 tcp_enter_quickack_mode(sk);
4395
4396 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4397 /* Partial packet, seq < rcv_next < end_seq */
4398 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4399 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4400 TCP_SKB_CB(skb)->end_seq);
4401
4402 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4403
4404 /* If window is closed, drop tail of packet. But after
4405 * remembering D-SACK for its head made in previous line.
4406 */
4407 if (!tcp_receive_window(tp))
4408 goto out_of_window;
4409 goto queue_and_out;
4410 }
4411
4412 tcp_data_queue_ofo(sk, skb);
4413 }
4414
4415 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4416 struct sk_buff_head *list)
4417 {
4418 struct sk_buff *next = NULL;
4419
4420 if (!skb_queue_is_last(list, skb))
4421 next = skb_queue_next(list, skb);
4422
4423 __skb_unlink(skb, list);
4424 __kfree_skb(skb);
4425 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4426
4427 return next;
4428 }
4429
4430 /* Collapse contiguous sequence of skbs head..tail with
4431 * sequence numbers start..end.
4432 *
4433 * If tail is NULL, this means until the end of the list.
4434 *
4435 * Segments with FIN/SYN are not collapsed (only because this
4436 * simplifies code)
4437 */
4438 static void
4439 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4440 struct sk_buff *head, struct sk_buff *tail,
4441 u32 start, u32 end)
4442 {
4443 struct sk_buff *skb, *n;
4444 bool end_of_skbs;
4445
4446 /* First, check that queue is collapsible and find
4447 * the point where collapsing can be useful. */
4448 skb = head;
4449 restart:
4450 end_of_skbs = true;
4451 skb_queue_walk_from_safe(list, skb, n) {
4452 if (skb == tail)
4453 break;
4454 /* No new bits? It is possible on ofo queue. */
4455 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4456 skb = tcp_collapse_one(sk, skb, list);
4457 if (!skb)
4458 break;
4459 goto restart;
4460 }
4461
4462 /* The first skb to collapse is:
4463 * - not SYN/FIN and
4464 * - bloated or contains data before "start" or
4465 * overlaps to the next one.
4466 */
4467 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4468 (tcp_win_from_space(skb->truesize) > skb->len ||
4469 before(TCP_SKB_CB(skb)->seq, start))) {
4470 end_of_skbs = false;
4471 break;
4472 }
4473
4474 if (!skb_queue_is_last(list, skb)) {
4475 struct sk_buff *next = skb_queue_next(list, skb);
4476 if (next != tail &&
4477 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4478 end_of_skbs = false;
4479 break;
4480 }
4481 }
4482
4483 /* Decided to skip this, advance start seq. */
4484 start = TCP_SKB_CB(skb)->end_seq;
4485 }
4486 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4487 return;
4488
4489 while (before(start, end)) {
4490 struct sk_buff *nskb;
4491 unsigned int header = skb_headroom(skb);
4492 int copy = SKB_MAX_ORDER(header, 0);
4493
4494 /* Too big header? This can happen with IPv6. */
4495 if (copy < 0)
4496 return;
4497 if (end - start < copy)
4498 copy = end - start;
4499 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4500 if (!nskb)
4501 return;
4502
4503 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4504 skb_set_network_header(nskb, (skb_network_header(skb) -
4505 skb->head));
4506 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4507 skb->head));
4508 skb_reserve(nskb, header);
4509 memcpy(nskb->head, skb->head, header);
4510 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4511 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4512 __skb_queue_before(list, skb, nskb);
4513 skb_set_owner_r(nskb, sk);
4514
4515 /* Copy data, releasing collapsed skbs. */
4516 while (copy > 0) {
4517 int offset = start - TCP_SKB_CB(skb)->seq;
4518 int size = TCP_SKB_CB(skb)->end_seq - start;
4519
4520 BUG_ON(offset < 0);
4521 if (size > 0) {
4522 size = min(copy, size);
4523 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4524 BUG();
4525 TCP_SKB_CB(nskb)->end_seq += size;
4526 copy -= size;
4527 start += size;
4528 }
4529 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4530 skb = tcp_collapse_one(sk, skb, list);
4531 if (!skb ||
4532 skb == tail ||
4533 tcp_hdr(skb)->syn ||
4534 tcp_hdr(skb)->fin)
4535 return;
4536 }
4537 }
4538 }
4539 }
4540
4541 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4542 * and tcp_collapse() them until all the queue is collapsed.
4543 */
4544 static void tcp_collapse_ofo_queue(struct sock *sk)
4545 {
4546 struct tcp_sock *tp = tcp_sk(sk);
4547 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4548 struct sk_buff *head;
4549 u32 start, end;
4550
4551 if (skb == NULL)
4552 return;
4553
4554 start = TCP_SKB_CB(skb)->seq;
4555 end = TCP_SKB_CB(skb)->end_seq;
4556 head = skb;
4557
4558 for (;;) {
4559 struct sk_buff *next = NULL;
4560
4561 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4562 next = skb_queue_next(&tp->out_of_order_queue, skb);
4563 skb = next;
4564
4565 /* Segment is terminated when we see gap or when
4566 * we are at the end of all the queue. */
4567 if (!skb ||
4568 after(TCP_SKB_CB(skb)->seq, end) ||
4569 before(TCP_SKB_CB(skb)->end_seq, start)) {
4570 tcp_collapse(sk, &tp->out_of_order_queue,
4571 head, skb, start, end);
4572 head = skb;
4573 if (!skb)
4574 break;
4575 /* Start new segment */
4576 start = TCP_SKB_CB(skb)->seq;
4577 end = TCP_SKB_CB(skb)->end_seq;
4578 } else {
4579 if (before(TCP_SKB_CB(skb)->seq, start))
4580 start = TCP_SKB_CB(skb)->seq;
4581 if (after(TCP_SKB_CB(skb)->end_seq, end))
4582 end = TCP_SKB_CB(skb)->end_seq;
4583 }
4584 }
4585 }
4586
4587 /*
4588 * Purge the out-of-order queue.
4589 * Return true if queue was pruned.
4590 */
4591 static bool tcp_prune_ofo_queue(struct sock *sk)
4592 {
4593 struct tcp_sock *tp = tcp_sk(sk);
4594 bool res = false;
4595
4596 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4597 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4598 __skb_queue_purge(&tp->out_of_order_queue);
4599
4600 /* Reset SACK state. A conforming SACK implementation will
4601 * do the same at a timeout based retransmit. When a connection
4602 * is in a sad state like this, we care only about integrity
4603 * of the connection not performance.
4604 */
4605 if (tp->rx_opt.sack_ok)
4606 tcp_sack_reset(&tp->rx_opt);
4607 sk_mem_reclaim(sk);
4608 res = true;
4609 }
4610 return res;
4611 }
4612
4613 /* Reduce allocated memory if we can, trying to get
4614 * the socket within its memory limits again.
4615 *
4616 * Return less than zero if we should start dropping frames
4617 * until the socket owning process reads some of the data
4618 * to stabilize the situation.
4619 */
4620 static int tcp_prune_queue(struct sock *sk)
4621 {
4622 struct tcp_sock *tp = tcp_sk(sk);
4623
4624 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4625
4626 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4627
4628 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4629 tcp_clamp_window(sk);
4630 else if (sk_under_memory_pressure(sk))
4631 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4632
4633 tcp_collapse_ofo_queue(sk);
4634 if (!skb_queue_empty(&sk->sk_receive_queue))
4635 tcp_collapse(sk, &sk->sk_receive_queue,
4636 skb_peek(&sk->sk_receive_queue),
4637 NULL,
4638 tp->copied_seq, tp->rcv_nxt);
4639 sk_mem_reclaim(sk);
4640
4641 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4642 return 0;
4643
4644 /* Collapsing did not help, destructive actions follow.
4645 * This must not ever occur. */
4646
4647 tcp_prune_ofo_queue(sk);
4648
4649 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4650 return 0;
4651
4652 /* If we are really being abused, tell the caller to silently
4653 * drop receive data on the floor. It will get retransmitted
4654 * and hopefully then we'll have sufficient space.
4655 */
4656 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4657
4658 /* Massive buffer overcommit. */
4659 tp->pred_flags = 0;
4660 return -1;
4661 }
4662
4663 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4664 * As additional protections, we do not touch cwnd in retransmission phases,
4665 * and if application hit its sndbuf limit recently.
4666 */
4667 void tcp_cwnd_application_limited(struct sock *sk)
4668 {
4669 struct tcp_sock *tp = tcp_sk(sk);
4670
4671 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4672 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4673 /* Limited by application or receiver window. */
4674 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4675 u32 win_used = max(tp->snd_cwnd_used, init_win);
4676 if (win_used < tp->snd_cwnd) {
4677 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4678 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4679 }
4680 tp->snd_cwnd_used = 0;
4681 }
4682 tp->snd_cwnd_stamp = tcp_time_stamp;
4683 }
4684
4685 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4686 {
4687 const struct tcp_sock *tp = tcp_sk(sk);
4688
4689 /* If the user specified a specific send buffer setting, do
4690 * not modify it.
4691 */
4692 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4693 return false;
4694
4695 /* If we are under global TCP memory pressure, do not expand. */
4696 if (sk_under_memory_pressure(sk))
4697 return false;
4698
4699 /* If we are under soft global TCP memory pressure, do not expand. */
4700 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4701 return false;
4702
4703 /* If we filled the congestion window, do not expand. */
4704 if (tp->packets_out >= tp->snd_cwnd)
4705 return false;
4706
4707 return true;
4708 }
4709
4710 /* When incoming ACK allowed to free some skb from write_queue,
4711 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4712 * on the exit from tcp input handler.
4713 *
4714 * PROBLEM: sndbuf expansion does not work well with largesend.
4715 */
4716 static void tcp_new_space(struct sock *sk)
4717 {
4718 struct tcp_sock *tp = tcp_sk(sk);
4719
4720 if (tcp_should_expand_sndbuf(sk)) {
4721 int sndmem = SKB_TRUESIZE(max_t(u32,
4722 tp->rx_opt.mss_clamp,
4723 tp->mss_cache) +
4724 MAX_TCP_HEADER);
4725 int demanded = max_t(unsigned int, tp->snd_cwnd,
4726 tp->reordering + 1);
4727 sndmem *= 2 * demanded;
4728 if (sndmem > sk->sk_sndbuf)
4729 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4730 tp->snd_cwnd_stamp = tcp_time_stamp;
4731 }
4732
4733 sk->sk_write_space(sk);
4734 }
4735
4736 static void tcp_check_space(struct sock *sk)
4737 {
4738 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4739 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4740 if (sk->sk_socket &&
4741 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4742 tcp_new_space(sk);
4743 }
4744 }
4745
4746 static inline void tcp_data_snd_check(struct sock *sk)
4747 {
4748 tcp_push_pending_frames(sk);
4749 tcp_check_space(sk);
4750 }
4751
4752 /*
4753 * Check if sending an ack is needed.
4754 */
4755 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4756 {
4757 struct tcp_sock *tp = tcp_sk(sk);
4758
4759 /* More than one full frame received... */
4760 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4761 /* ... and right edge of window advances far enough.
4762 * (tcp_recvmsg() will send ACK otherwise). Or...
4763 */
4764 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4765 /* We ACK each frame or... */
4766 tcp_in_quickack_mode(sk) ||
4767 /* We have out of order data. */
4768 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4769 /* Then ack it now */
4770 tcp_send_ack(sk);
4771 } else {
4772 /* Else, send delayed ack. */
4773 tcp_send_delayed_ack(sk);
4774 }
4775 }
4776
4777 static inline void tcp_ack_snd_check(struct sock *sk)
4778 {
4779 if (!inet_csk_ack_scheduled(sk)) {
4780 /* We sent a data segment already. */
4781 return;
4782 }
4783 __tcp_ack_snd_check(sk, 1);
4784 }
4785
4786 /*
4787 * This routine is only called when we have urgent data
4788 * signaled. Its the 'slow' part of tcp_urg. It could be
4789 * moved inline now as tcp_urg is only called from one
4790 * place. We handle URGent data wrong. We have to - as
4791 * BSD still doesn't use the correction from RFC961.
4792 * For 1003.1g we should support a new option TCP_STDURG to permit
4793 * either form (or just set the sysctl tcp_stdurg).
4794 */
4795
4796 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4797 {
4798 struct tcp_sock *tp = tcp_sk(sk);
4799 u32 ptr = ntohs(th->urg_ptr);
4800
4801 if (ptr && !sysctl_tcp_stdurg)
4802 ptr--;
4803 ptr += ntohl(th->seq);
4804
4805 /* Ignore urgent data that we've already seen and read. */
4806 if (after(tp->copied_seq, ptr))
4807 return;
4808
4809 /* Do not replay urg ptr.
4810 *
4811 * NOTE: interesting situation not covered by specs.
4812 * Misbehaving sender may send urg ptr, pointing to segment,
4813 * which we already have in ofo queue. We are not able to fetch
4814 * such data and will stay in TCP_URG_NOTYET until will be eaten
4815 * by recvmsg(). Seems, we are not obliged to handle such wicked
4816 * situations. But it is worth to think about possibility of some
4817 * DoSes using some hypothetical application level deadlock.
4818 */
4819 if (before(ptr, tp->rcv_nxt))
4820 return;
4821
4822 /* Do we already have a newer (or duplicate) urgent pointer? */
4823 if (tp->urg_data && !after(ptr, tp->urg_seq))
4824 return;
4825
4826 /* Tell the world about our new urgent pointer. */
4827 sk_send_sigurg(sk);
4828
4829 /* We may be adding urgent data when the last byte read was
4830 * urgent. To do this requires some care. We cannot just ignore
4831 * tp->copied_seq since we would read the last urgent byte again
4832 * as data, nor can we alter copied_seq until this data arrives
4833 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4834 *
4835 * NOTE. Double Dutch. Rendering to plain English: author of comment
4836 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4837 * and expect that both A and B disappear from stream. This is _wrong_.
4838 * Though this happens in BSD with high probability, this is occasional.
4839 * Any application relying on this is buggy. Note also, that fix "works"
4840 * only in this artificial test. Insert some normal data between A and B and we will
4841 * decline of BSD again. Verdict: it is better to remove to trap
4842 * buggy users.
4843 */
4844 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4845 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4846 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4847 tp->copied_seq++;
4848 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4849 __skb_unlink(skb, &sk->sk_receive_queue);
4850 __kfree_skb(skb);
4851 }
4852 }
4853
4854 tp->urg_data = TCP_URG_NOTYET;
4855 tp->urg_seq = ptr;
4856
4857 /* Disable header prediction. */
4858 tp->pred_flags = 0;
4859 }
4860
4861 /* This is the 'fast' part of urgent handling. */
4862 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4863 {
4864 struct tcp_sock *tp = tcp_sk(sk);
4865
4866 /* Check if we get a new urgent pointer - normally not. */
4867 if (th->urg)
4868 tcp_check_urg(sk, th);
4869
4870 /* Do we wait for any urgent data? - normally not... */
4871 if (tp->urg_data == TCP_URG_NOTYET) {
4872 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4873 th->syn;
4874
4875 /* Is the urgent pointer pointing into this packet? */
4876 if (ptr < skb->len) {
4877 u8 tmp;
4878 if (skb_copy_bits(skb, ptr, &tmp, 1))
4879 BUG();
4880 tp->urg_data = TCP_URG_VALID | tmp;
4881 if (!sock_flag(sk, SOCK_DEAD))
4882 sk->sk_data_ready(sk, 0);
4883 }
4884 }
4885 }
4886
4887 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4888 {
4889 struct tcp_sock *tp = tcp_sk(sk);
4890 int chunk = skb->len - hlen;
4891 int err;
4892
4893 local_bh_enable();
4894 if (skb_csum_unnecessary(skb))
4895 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4896 else
4897 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4898 tp->ucopy.iov);
4899
4900 if (!err) {
4901 tp->ucopy.len -= chunk;
4902 tp->copied_seq += chunk;
4903 tcp_rcv_space_adjust(sk);
4904 }
4905
4906 local_bh_disable();
4907 return err;
4908 }
4909
4910 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4911 struct sk_buff *skb)
4912 {
4913 __sum16 result;
4914
4915 if (sock_owned_by_user(sk)) {
4916 local_bh_enable();
4917 result = __tcp_checksum_complete(skb);
4918 local_bh_disable();
4919 } else {
4920 result = __tcp_checksum_complete(skb);
4921 }
4922 return result;
4923 }
4924
4925 static inline bool tcp_checksum_complete_user(struct sock *sk,
4926 struct sk_buff *skb)
4927 {
4928 return !skb_csum_unnecessary(skb) &&
4929 __tcp_checksum_complete_user(sk, skb);
4930 }
4931
4932 #ifdef CONFIG_NET_DMA
4933 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4934 int hlen)
4935 {
4936 struct tcp_sock *tp = tcp_sk(sk);
4937 int chunk = skb->len - hlen;
4938 int dma_cookie;
4939 bool copied_early = false;
4940
4941 if (tp->ucopy.wakeup)
4942 return false;
4943
4944 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4945 tp->ucopy.dma_chan = net_dma_find_channel();
4946
4947 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4948
4949 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4950 skb, hlen,
4951 tp->ucopy.iov, chunk,
4952 tp->ucopy.pinned_list);
4953
4954 if (dma_cookie < 0)
4955 goto out;
4956
4957 tp->ucopy.dma_cookie = dma_cookie;
4958 copied_early = true;
4959
4960 tp->ucopy.len -= chunk;
4961 tp->copied_seq += chunk;
4962 tcp_rcv_space_adjust(sk);
4963
4964 if ((tp->ucopy.len == 0) ||
4965 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4966 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4967 tp->ucopy.wakeup = 1;
4968 sk->sk_data_ready(sk, 0);
4969 }
4970 } else if (chunk > 0) {
4971 tp->ucopy.wakeup = 1;
4972 sk->sk_data_ready(sk, 0);
4973 }
4974 out:
4975 return copied_early;
4976 }
4977 #endif /* CONFIG_NET_DMA */
4978
4979 /* Does PAWS and seqno based validation of an incoming segment, flags will
4980 * play significant role here.
4981 */
4982 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4983 const struct tcphdr *th, int syn_inerr)
4984 {
4985 struct tcp_sock *tp = tcp_sk(sk);
4986
4987 /* RFC1323: H1. Apply PAWS check first. */
4988 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4989 tcp_paws_discard(sk, skb)) {
4990 if (!th->rst) {
4991 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4992 tcp_send_dupack(sk, skb);
4993 goto discard;
4994 }
4995 /* Reset is accepted even if it did not pass PAWS. */
4996 }
4997
4998 /* Step 1: check sequence number */
4999 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5000 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5001 * (RST) segments are validated by checking their SEQ-fields."
5002 * And page 69: "If an incoming segment is not acceptable,
5003 * an acknowledgment should be sent in reply (unless the RST
5004 * bit is set, if so drop the segment and return)".
5005 */
5006 if (!th->rst) {
5007 if (th->syn)
5008 goto syn_challenge;
5009 tcp_send_dupack(sk, skb);
5010 }
5011 goto discard;
5012 }
5013
5014 /* Step 2: check RST bit */
5015 if (th->rst) {
5016 /* RFC 5961 3.2 :
5017 * If sequence number exactly matches RCV.NXT, then
5018 * RESET the connection
5019 * else
5020 * Send a challenge ACK
5021 */
5022 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5023 tcp_reset(sk);
5024 else
5025 tcp_send_challenge_ack(sk);
5026 goto discard;
5027 }
5028
5029 /* step 3: check security and precedence [ignored] */
5030
5031 /* step 4: Check for a SYN
5032 * RFC 5691 4.2 : Send a challenge ack
5033 */
5034 if (th->syn) {
5035 syn_challenge:
5036 if (syn_inerr)
5037 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5038 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5039 tcp_send_challenge_ack(sk);
5040 goto discard;
5041 }
5042
5043 return true;
5044
5045 discard:
5046 __kfree_skb(skb);
5047 return false;
5048 }
5049
5050 /*
5051 * TCP receive function for the ESTABLISHED state.
5052 *
5053 * It is split into a fast path and a slow path. The fast path is
5054 * disabled when:
5055 * - A zero window was announced from us - zero window probing
5056 * is only handled properly in the slow path.
5057 * - Out of order segments arrived.
5058 * - Urgent data is expected.
5059 * - There is no buffer space left
5060 * - Unexpected TCP flags/window values/header lengths are received
5061 * (detected by checking the TCP header against pred_flags)
5062 * - Data is sent in both directions. Fast path only supports pure senders
5063 * or pure receivers (this means either the sequence number or the ack
5064 * value must stay constant)
5065 * - Unexpected TCP option.
5066 *
5067 * When these conditions are not satisfied it drops into a standard
5068 * receive procedure patterned after RFC793 to handle all cases.
5069 * The first three cases are guaranteed by proper pred_flags setting,
5070 * the rest is checked inline. Fast processing is turned on in
5071 * tcp_data_queue when everything is OK.
5072 */
5073 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5074 const struct tcphdr *th, unsigned int len)
5075 {
5076 struct tcp_sock *tp = tcp_sk(sk);
5077
5078 if (unlikely(sk->sk_rx_dst == NULL))
5079 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5080 /*
5081 * Header prediction.
5082 * The code loosely follows the one in the famous
5083 * "30 instruction TCP receive" Van Jacobson mail.
5084 *
5085 * Van's trick is to deposit buffers into socket queue
5086 * on a device interrupt, to call tcp_recv function
5087 * on the receive process context and checksum and copy
5088 * the buffer to user space. smart...
5089 *
5090 * Our current scheme is not silly either but we take the
5091 * extra cost of the net_bh soft interrupt processing...
5092 * We do checksum and copy also but from device to kernel.
5093 */
5094
5095 tp->rx_opt.saw_tstamp = 0;
5096
5097 /* pred_flags is 0xS?10 << 16 + snd_wnd
5098 * if header_prediction is to be made
5099 * 'S' will always be tp->tcp_header_len >> 2
5100 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5101 * turn it off (when there are holes in the receive
5102 * space for instance)
5103 * PSH flag is ignored.
5104 */
5105
5106 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5107 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5108 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5109 int tcp_header_len = tp->tcp_header_len;
5110
5111 /* Timestamp header prediction: tcp_header_len
5112 * is automatically equal to th->doff*4 due to pred_flags
5113 * match.
5114 */
5115
5116 /* Check timestamp */
5117 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5118 /* No? Slow path! */
5119 if (!tcp_parse_aligned_timestamp(tp, th))
5120 goto slow_path;
5121
5122 /* If PAWS failed, check it more carefully in slow path */
5123 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5124 goto slow_path;
5125
5126 /* DO NOT update ts_recent here, if checksum fails
5127 * and timestamp was corrupted part, it will result
5128 * in a hung connection since we will drop all
5129 * future packets due to the PAWS test.
5130 */
5131 }
5132
5133 if (len <= tcp_header_len) {
5134 /* Bulk data transfer: sender */
5135 if (len == tcp_header_len) {
5136 /* Predicted packet is in window by definition.
5137 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5138 * Hence, check seq<=rcv_wup reduces to:
5139 */
5140 if (tcp_header_len ==
5141 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5142 tp->rcv_nxt == tp->rcv_wup)
5143 tcp_store_ts_recent(tp);
5144
5145 /* We know that such packets are checksummed
5146 * on entry.
5147 */
5148 tcp_ack(sk, skb, 0);
5149 __kfree_skb(skb);
5150 tcp_data_snd_check(sk);
5151 return 0;
5152 } else { /* Header too small */
5153 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5154 goto discard;
5155 }
5156 } else {
5157 int eaten = 0;
5158 int copied_early = 0;
5159 bool fragstolen = false;
5160
5161 if (tp->copied_seq == tp->rcv_nxt &&
5162 len - tcp_header_len <= tp->ucopy.len) {
5163 #ifdef CONFIG_NET_DMA
5164 if (tp->ucopy.task == current &&
5165 sock_owned_by_user(sk) &&
5166 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5167 copied_early = 1;
5168 eaten = 1;
5169 }
5170 #endif
5171 if (tp->ucopy.task == current &&
5172 sock_owned_by_user(sk) && !copied_early) {
5173 __set_current_state(TASK_RUNNING);
5174
5175 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5176 eaten = 1;
5177 }
5178 if (eaten) {
5179 /* Predicted packet is in window by definition.
5180 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5181 * Hence, check seq<=rcv_wup reduces to:
5182 */
5183 if (tcp_header_len ==
5184 (sizeof(struct tcphdr) +
5185 TCPOLEN_TSTAMP_ALIGNED) &&
5186 tp->rcv_nxt == tp->rcv_wup)
5187 tcp_store_ts_recent(tp);
5188
5189 tcp_rcv_rtt_measure_ts(sk, skb);
5190
5191 __skb_pull(skb, tcp_header_len);
5192 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5193 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5194 }
5195 if (copied_early)
5196 tcp_cleanup_rbuf(sk, skb->len);
5197 }
5198 if (!eaten) {
5199 if (tcp_checksum_complete_user(sk, skb))
5200 goto csum_error;
5201
5202 if ((int)skb->truesize > sk->sk_forward_alloc)
5203 goto step5;
5204
5205 /* Predicted packet is in window by definition.
5206 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5207 * Hence, check seq<=rcv_wup reduces to:
5208 */
5209 if (tcp_header_len ==
5210 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5211 tp->rcv_nxt == tp->rcv_wup)
5212 tcp_store_ts_recent(tp);
5213
5214 tcp_rcv_rtt_measure_ts(sk, skb);
5215
5216 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5217
5218 /* Bulk data transfer: receiver */
5219 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5220 &fragstolen);
5221 }
5222
5223 tcp_event_data_recv(sk, skb);
5224
5225 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5226 /* Well, only one small jumplet in fast path... */
5227 tcp_ack(sk, skb, FLAG_DATA);
5228 tcp_data_snd_check(sk);
5229 if (!inet_csk_ack_scheduled(sk))
5230 goto no_ack;
5231 }
5232
5233 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5234 __tcp_ack_snd_check(sk, 0);
5235 no_ack:
5236 #ifdef CONFIG_NET_DMA
5237 if (copied_early)
5238 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5239 else
5240 #endif
5241 if (eaten)
5242 kfree_skb_partial(skb, fragstolen);
5243 sk->sk_data_ready(sk, 0);
5244 return 0;
5245 }
5246 }
5247
5248 slow_path:
5249 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5250 goto csum_error;
5251
5252 if (!th->ack && !th->rst)
5253 goto discard;
5254
5255 /*
5256 * Standard slow path.
5257 */
5258
5259 if (!tcp_validate_incoming(sk, skb, th, 1))
5260 return 0;
5261
5262 step5:
5263 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5264 goto discard;
5265
5266 tcp_rcv_rtt_measure_ts(sk, skb);
5267
5268 /* Process urgent data. */
5269 tcp_urg(sk, skb, th);
5270
5271 /* step 7: process the segment text */
5272 tcp_data_queue(sk, skb);
5273
5274 tcp_data_snd_check(sk);
5275 tcp_ack_snd_check(sk);
5276 return 0;
5277
5278 csum_error:
5279 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5280 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5281
5282 discard:
5283 __kfree_skb(skb);
5284 return 0;
5285 }
5286 EXPORT_SYMBOL(tcp_rcv_established);
5287
5288 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5289 {
5290 struct tcp_sock *tp = tcp_sk(sk);
5291 struct inet_connection_sock *icsk = inet_csk(sk);
5292
5293 tcp_set_state(sk, TCP_ESTABLISHED);
5294
5295 if (skb != NULL) {
5296 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5297 security_inet_conn_established(sk, skb);
5298 }
5299
5300 /* Make sure socket is routed, for correct metrics. */
5301 icsk->icsk_af_ops->rebuild_header(sk);
5302
5303 tcp_init_metrics(sk);
5304
5305 tcp_init_congestion_control(sk);
5306
5307 /* Prevent spurious tcp_cwnd_restart() on first data
5308 * packet.
5309 */
5310 tp->lsndtime = tcp_time_stamp;
5311
5312 tcp_init_buffer_space(sk);
5313
5314 if (sock_flag(sk, SOCK_KEEPOPEN))
5315 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5316
5317 if (!tp->rx_opt.snd_wscale)
5318 __tcp_fast_path_on(tp, tp->snd_wnd);
5319 else
5320 tp->pred_flags = 0;
5321
5322 if (!sock_flag(sk, SOCK_DEAD)) {
5323 sk->sk_state_change(sk);
5324 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5325 }
5326 }
5327
5328 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5329 struct tcp_fastopen_cookie *cookie)
5330 {
5331 struct tcp_sock *tp = tcp_sk(sk);
5332 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5333 u16 mss = tp->rx_opt.mss_clamp;
5334 bool syn_drop;
5335
5336 if (mss == tp->rx_opt.user_mss) {
5337 struct tcp_options_received opt;
5338
5339 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5340 tcp_clear_options(&opt);
5341 opt.user_mss = opt.mss_clamp = 0;
5342 tcp_parse_options(synack, &opt, 0, NULL);
5343 mss = opt.mss_clamp;
5344 }
5345
5346 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5347 cookie->len = -1;
5348
5349 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5350 * the remote receives only the retransmitted (regular) SYNs: either
5351 * the original SYN-data or the corresponding SYN-ACK is lost.
5352 */
5353 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5354
5355 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5356
5357 if (data) { /* Retransmit unacked data in SYN */
5358 tcp_for_write_queue_from(data, sk) {
5359 if (data == tcp_send_head(sk) ||
5360 __tcp_retransmit_skb(sk, data))
5361 break;
5362 }
5363 tcp_rearm_rto(sk);
5364 return true;
5365 }
5366 tp->syn_data_acked = tp->syn_data;
5367 return false;
5368 }
5369
5370 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5371 const struct tcphdr *th, unsigned int len)
5372 {
5373 struct inet_connection_sock *icsk = inet_csk(sk);
5374 struct tcp_sock *tp = tcp_sk(sk);
5375 struct tcp_fastopen_cookie foc = { .len = -1 };
5376 int saved_clamp = tp->rx_opt.mss_clamp;
5377
5378 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5379 if (tp->rx_opt.saw_tstamp)
5380 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5381
5382 if (th->ack) {
5383 /* rfc793:
5384 * "If the state is SYN-SENT then
5385 * first check the ACK bit
5386 * If the ACK bit is set
5387 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5388 * a reset (unless the RST bit is set, if so drop
5389 * the segment and return)"
5390 */
5391 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5392 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5393 goto reset_and_undo;
5394
5395 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5396 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5397 tcp_time_stamp)) {
5398 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5399 goto reset_and_undo;
5400 }
5401
5402 /* Now ACK is acceptable.
5403 *
5404 * "If the RST bit is set
5405 * If the ACK was acceptable then signal the user "error:
5406 * connection reset", drop the segment, enter CLOSED state,
5407 * delete TCB, and return."
5408 */
5409
5410 if (th->rst) {
5411 tcp_reset(sk);
5412 goto discard;
5413 }
5414
5415 /* rfc793:
5416 * "fifth, if neither of the SYN or RST bits is set then
5417 * drop the segment and return."
5418 *
5419 * See note below!
5420 * --ANK(990513)
5421 */
5422 if (!th->syn)
5423 goto discard_and_undo;
5424
5425 /* rfc793:
5426 * "If the SYN bit is on ...
5427 * are acceptable then ...
5428 * (our SYN has been ACKed), change the connection
5429 * state to ESTABLISHED..."
5430 */
5431
5432 TCP_ECN_rcv_synack(tp, th);
5433
5434 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5435 tcp_ack(sk, skb, FLAG_SLOWPATH);
5436
5437 /* Ok.. it's good. Set up sequence numbers and
5438 * move to established.
5439 */
5440 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5441 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5442
5443 /* RFC1323: The window in SYN & SYN/ACK segments is
5444 * never scaled.
5445 */
5446 tp->snd_wnd = ntohs(th->window);
5447
5448 if (!tp->rx_opt.wscale_ok) {
5449 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5450 tp->window_clamp = min(tp->window_clamp, 65535U);
5451 }
5452
5453 if (tp->rx_opt.saw_tstamp) {
5454 tp->rx_opt.tstamp_ok = 1;
5455 tp->tcp_header_len =
5456 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5457 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5458 tcp_store_ts_recent(tp);
5459 } else {
5460 tp->tcp_header_len = sizeof(struct tcphdr);
5461 }
5462
5463 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5464 tcp_enable_fack(tp);
5465
5466 tcp_mtup_init(sk);
5467 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5468 tcp_initialize_rcv_mss(sk);
5469
5470 /* Remember, tcp_poll() does not lock socket!
5471 * Change state from SYN-SENT only after copied_seq
5472 * is initialized. */
5473 tp->copied_seq = tp->rcv_nxt;
5474
5475 smp_mb();
5476
5477 tcp_finish_connect(sk, skb);
5478
5479 if ((tp->syn_fastopen || tp->syn_data) &&
5480 tcp_rcv_fastopen_synack(sk, skb, &foc))
5481 return -1;
5482
5483 if (sk->sk_write_pending ||
5484 icsk->icsk_accept_queue.rskq_defer_accept ||
5485 icsk->icsk_ack.pingpong) {
5486 /* Save one ACK. Data will be ready after
5487 * several ticks, if write_pending is set.
5488 *
5489 * It may be deleted, but with this feature tcpdumps
5490 * look so _wonderfully_ clever, that I was not able
5491 * to stand against the temptation 8) --ANK
5492 */
5493 inet_csk_schedule_ack(sk);
5494 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5495 tcp_enter_quickack_mode(sk);
5496 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5497 TCP_DELACK_MAX, TCP_RTO_MAX);
5498
5499 discard:
5500 __kfree_skb(skb);
5501 return 0;
5502 } else {
5503 tcp_send_ack(sk);
5504 }
5505 return -1;
5506 }
5507
5508 /* No ACK in the segment */
5509
5510 if (th->rst) {
5511 /* rfc793:
5512 * "If the RST bit is set
5513 *
5514 * Otherwise (no ACK) drop the segment and return."
5515 */
5516
5517 goto discard_and_undo;
5518 }
5519
5520 /* PAWS check. */
5521 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5522 tcp_paws_reject(&tp->rx_opt, 0))
5523 goto discard_and_undo;
5524
5525 if (th->syn) {
5526 /* We see SYN without ACK. It is attempt of
5527 * simultaneous connect with crossed SYNs.
5528 * Particularly, it can be connect to self.
5529 */
5530 tcp_set_state(sk, TCP_SYN_RECV);
5531
5532 if (tp->rx_opt.saw_tstamp) {
5533 tp->rx_opt.tstamp_ok = 1;
5534 tcp_store_ts_recent(tp);
5535 tp->tcp_header_len =
5536 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5537 } else {
5538 tp->tcp_header_len = sizeof(struct tcphdr);
5539 }
5540
5541 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5542 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5543
5544 /* RFC1323: The window in SYN & SYN/ACK segments is
5545 * never scaled.
5546 */
5547 tp->snd_wnd = ntohs(th->window);
5548 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5549 tp->max_window = tp->snd_wnd;
5550
5551 TCP_ECN_rcv_syn(tp, th);
5552
5553 tcp_mtup_init(sk);
5554 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5555 tcp_initialize_rcv_mss(sk);
5556
5557 tcp_send_synack(sk);
5558 #if 0
5559 /* Note, we could accept data and URG from this segment.
5560 * There are no obstacles to make this (except that we must
5561 * either change tcp_recvmsg() to prevent it from returning data
5562 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5563 *
5564 * However, if we ignore data in ACKless segments sometimes,
5565 * we have no reasons to accept it sometimes.
5566 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5567 * is not flawless. So, discard packet for sanity.
5568 * Uncomment this return to process the data.
5569 */
5570 return -1;
5571 #else
5572 goto discard;
5573 #endif
5574 }
5575 /* "fifth, if neither of the SYN or RST bits is set then
5576 * drop the segment and return."
5577 */
5578
5579 discard_and_undo:
5580 tcp_clear_options(&tp->rx_opt);
5581 tp->rx_opt.mss_clamp = saved_clamp;
5582 goto discard;
5583
5584 reset_and_undo:
5585 tcp_clear_options(&tp->rx_opt);
5586 tp->rx_opt.mss_clamp = saved_clamp;
5587 return 1;
5588 }
5589
5590 /*
5591 * This function implements the receiving procedure of RFC 793 for
5592 * all states except ESTABLISHED and TIME_WAIT.
5593 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5594 * address independent.
5595 */
5596
5597 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5598 const struct tcphdr *th, unsigned int len)
5599 {
5600 struct tcp_sock *tp = tcp_sk(sk);
5601 struct inet_connection_sock *icsk = inet_csk(sk);
5602 struct request_sock *req;
5603 int queued = 0;
5604
5605 tp->rx_opt.saw_tstamp = 0;
5606
5607 switch (sk->sk_state) {
5608 case TCP_CLOSE:
5609 goto discard;
5610
5611 case TCP_LISTEN:
5612 if (th->ack)
5613 return 1;
5614
5615 if (th->rst)
5616 goto discard;
5617
5618 if (th->syn) {
5619 if (th->fin)
5620 goto discard;
5621 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5622 return 1;
5623
5624 /* Now we have several options: In theory there is
5625 * nothing else in the frame. KA9Q has an option to
5626 * send data with the syn, BSD accepts data with the
5627 * syn up to the [to be] advertised window and
5628 * Solaris 2.1 gives you a protocol error. For now
5629 * we just ignore it, that fits the spec precisely
5630 * and avoids incompatibilities. It would be nice in
5631 * future to drop through and process the data.
5632 *
5633 * Now that TTCP is starting to be used we ought to
5634 * queue this data.
5635 * But, this leaves one open to an easy denial of
5636 * service attack, and SYN cookies can't defend
5637 * against this problem. So, we drop the data
5638 * in the interest of security over speed unless
5639 * it's still in use.
5640 */
5641 kfree_skb(skb);
5642 return 0;
5643 }
5644 goto discard;
5645
5646 case TCP_SYN_SENT:
5647 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5648 if (queued >= 0)
5649 return queued;
5650
5651 /* Do step6 onward by hand. */
5652 tcp_urg(sk, skb, th);
5653 __kfree_skb(skb);
5654 tcp_data_snd_check(sk);
5655 return 0;
5656 }
5657
5658 req = tp->fastopen_rsk;
5659 if (req != NULL) {
5660 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5661 sk->sk_state != TCP_FIN_WAIT1);
5662
5663 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5664 goto discard;
5665 }
5666
5667 if (!th->ack && !th->rst)
5668 goto discard;
5669
5670 if (!tcp_validate_incoming(sk, skb, th, 0))
5671 return 0;
5672
5673 /* step 5: check the ACK field */
5674 if (true) {
5675 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5676 FLAG_UPDATE_TS_RECENT) > 0;
5677
5678 switch (sk->sk_state) {
5679 case TCP_SYN_RECV:
5680 if (acceptable) {
5681 /* Once we leave TCP_SYN_RECV, we no longer
5682 * need req so release it.
5683 */
5684 if (req) {
5685 tcp_synack_rtt_meas(sk, req);
5686 tp->total_retrans = req->num_retrans;
5687
5688 reqsk_fastopen_remove(sk, req, false);
5689 } else {
5690 /* Make sure socket is routed, for
5691 * correct metrics.
5692 */
5693 icsk->icsk_af_ops->rebuild_header(sk);
5694 tcp_init_congestion_control(sk);
5695
5696 tcp_mtup_init(sk);
5697 tcp_init_buffer_space(sk);
5698 tp->copied_seq = tp->rcv_nxt;
5699 }
5700 smp_mb();
5701 tcp_set_state(sk, TCP_ESTABLISHED);
5702 sk->sk_state_change(sk);
5703
5704 /* Note, that this wakeup is only for marginal
5705 * crossed SYN case. Passively open sockets
5706 * are not waked up, because sk->sk_sleep ==
5707 * NULL and sk->sk_socket == NULL.
5708 */
5709 if (sk->sk_socket)
5710 sk_wake_async(sk,
5711 SOCK_WAKE_IO, POLL_OUT);
5712
5713 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5714 tp->snd_wnd = ntohs(th->window) <<
5715 tp->rx_opt.snd_wscale;
5716 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5717
5718 if (tp->rx_opt.tstamp_ok)
5719 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5720
5721 if (req) {
5722 /* Re-arm the timer because data may
5723 * have been sent out. This is similar
5724 * to the regular data transmission case
5725 * when new data has just been ack'ed.
5726 *
5727 * (TFO) - we could try to be more
5728 * aggressive and retranmitting any data
5729 * sooner based on when they were sent
5730 * out.
5731 */
5732 tcp_rearm_rto(sk);
5733 } else
5734 tcp_init_metrics(sk);
5735
5736 /* Prevent spurious tcp_cwnd_restart() on
5737 * first data packet.
5738 */
5739 tp->lsndtime = tcp_time_stamp;
5740
5741 tcp_initialize_rcv_mss(sk);
5742 tcp_fast_path_on(tp);
5743 } else {
5744 return 1;
5745 }
5746 break;
5747
5748 case TCP_FIN_WAIT1:
5749 /* If we enter the TCP_FIN_WAIT1 state and we are a
5750 * Fast Open socket and this is the first acceptable
5751 * ACK we have received, this would have acknowledged
5752 * our SYNACK so stop the SYNACK timer.
5753 */
5754 if (req != NULL) {
5755 /* Return RST if ack_seq is invalid.
5756 * Note that RFC793 only says to generate a
5757 * DUPACK for it but for TCP Fast Open it seems
5758 * better to treat this case like TCP_SYN_RECV
5759 * above.
5760 */
5761 if (!acceptable)
5762 return 1;
5763 /* We no longer need the request sock. */
5764 reqsk_fastopen_remove(sk, req, false);
5765 tcp_rearm_rto(sk);
5766 }
5767 if (tp->snd_una == tp->write_seq) {
5768 struct dst_entry *dst;
5769
5770 tcp_set_state(sk, TCP_FIN_WAIT2);
5771 sk->sk_shutdown |= SEND_SHUTDOWN;
5772
5773 dst = __sk_dst_get(sk);
5774 if (dst)
5775 dst_confirm(dst);
5776
5777 if (!sock_flag(sk, SOCK_DEAD))
5778 /* Wake up lingering close() */
5779 sk->sk_state_change(sk);
5780 else {
5781 int tmo;
5782
5783 if (tp->linger2 < 0 ||
5784 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5785 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5786 tcp_done(sk);
5787 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5788 return 1;
5789 }
5790
5791 tmo = tcp_fin_time(sk);
5792 if (tmo > TCP_TIMEWAIT_LEN) {
5793 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5794 } else if (th->fin || sock_owned_by_user(sk)) {
5795 /* Bad case. We could lose such FIN otherwise.
5796 * It is not a big problem, but it looks confusing
5797 * and not so rare event. We still can lose it now,
5798 * if it spins in bh_lock_sock(), but it is really
5799 * marginal case.
5800 */
5801 inet_csk_reset_keepalive_timer(sk, tmo);
5802 } else {
5803 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5804 goto discard;
5805 }
5806 }
5807 }
5808 break;
5809
5810 case TCP_CLOSING:
5811 if (tp->snd_una == tp->write_seq) {
5812 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5813 goto discard;
5814 }
5815 break;
5816
5817 case TCP_LAST_ACK:
5818 if (tp->snd_una == tp->write_seq) {
5819 tcp_update_metrics(sk);
5820 tcp_done(sk);
5821 goto discard;
5822 }
5823 break;
5824 }
5825 }
5826
5827 /* step 6: check the URG bit */
5828 tcp_urg(sk, skb, th);
5829
5830 /* step 7: process the segment text */
5831 switch (sk->sk_state) {
5832 case TCP_CLOSE_WAIT:
5833 case TCP_CLOSING:
5834 case TCP_LAST_ACK:
5835 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5836 break;
5837 case TCP_FIN_WAIT1:
5838 case TCP_FIN_WAIT2:
5839 /* RFC 793 says to queue data in these states,
5840 * RFC 1122 says we MUST send a reset.
5841 * BSD 4.4 also does reset.
5842 */
5843 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5844 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5845 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5846 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5847 tcp_reset(sk);
5848 return 1;
5849 }
5850 }
5851 /* Fall through */
5852 case TCP_ESTABLISHED:
5853 tcp_data_queue(sk, skb);
5854 queued = 1;
5855 break;
5856 }
5857
5858 /* tcp_data could move socket to TIME-WAIT */
5859 if (sk->sk_state != TCP_CLOSE) {
5860 tcp_data_snd_check(sk);
5861 tcp_ack_snd_check(sk);
5862 }
5863
5864 if (!queued) {
5865 discard:
5866 __kfree_skb(skb);
5867 }
5868 return 0;
5869 }
5870 EXPORT_SYMBOL(tcp_rcv_state_process);