tcp: early retransmit: delayed fast retransmit
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 2;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 int sysctl_tcp_stdurg __read_mostly;
92 int sysctl_tcp_rfc1337 __read_mostly;
93 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94 int sysctl_tcp_frto __read_mostly = 2;
95 int sysctl_tcp_frto_response __read_mostly;
96 int sysctl_tcp_nometrics_save __read_mostly;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_abc __read_mostly;
102 int sysctl_tcp_early_retrans __read_mostly = 2;
103
104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
110 #define FLAG_ECE 0x40 /* ECE in this ACK */
111 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
112 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
113 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
114 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
115 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117
118 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
121 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
122 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
123
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126
127 /* Adapt the MSS value used to make delayed ack decision to the
128 * real world.
129 */
130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131 {
132 struct inet_connection_sock *icsk = inet_csk(sk);
133 const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 unsigned int len;
135
136 icsk->icsk_ack.last_seg_size = 0;
137
138 /* skb->len may jitter because of SACKs, even if peer
139 * sends good full-sized frames.
140 */
141 len = skb_shinfo(skb)->gso_size ? : skb->len;
142 if (len >= icsk->icsk_ack.rcv_mss) {
143 icsk->icsk_ack.rcv_mss = len;
144 } else {
145 /* Otherwise, we make more careful check taking into account,
146 * that SACKs block is variable.
147 *
148 * "len" is invariant segment length, including TCP header.
149 */
150 len += skb->data - skb_transport_header(skb);
151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152 /* If PSH is not set, packet should be
153 * full sized, provided peer TCP is not badly broken.
154 * This observation (if it is correct 8)) allows
155 * to handle super-low mtu links fairly.
156 */
157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159 /* Subtract also invariant (if peer is RFC compliant),
160 * tcp header plus fixed timestamp option length.
161 * Resulting "len" is MSS free of SACK jitter.
162 */
163 len -= tcp_sk(sk)->tcp_header_len;
164 icsk->icsk_ack.last_seg_size = len;
165 if (len == lss) {
166 icsk->icsk_ack.rcv_mss = len;
167 return;
168 }
169 }
170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 }
174 }
175
176 static void tcp_incr_quickack(struct sock *sk)
177 {
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180
181 if (quickacks == 0)
182 quickacks = 2;
183 if (quickacks > icsk->icsk_ack.quick)
184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 }
186
187 static void tcp_enter_quickack_mode(struct sock *sk)
188 {
189 struct inet_connection_sock *icsk = inet_csk(sk);
190 tcp_incr_quickack(sk);
191 icsk->icsk_ack.pingpong = 0;
192 icsk->icsk_ack.ato = TCP_ATO_MIN;
193 }
194
195 /* Send ACKs quickly, if "quick" count is not exhausted
196 * and the session is not interactive.
197 */
198
199 static inline int tcp_in_quickack_mode(const struct sock *sk)
200 {
201 const struct inet_connection_sock *icsk = inet_csk(sk);
202 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 }
204
205 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
206 {
207 if (tp->ecn_flags & TCP_ECN_OK)
208 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 }
210
211 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
212 {
213 if (tcp_hdr(skb)->cwr)
214 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 }
216
217 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
218 {
219 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 }
221
222 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
223 {
224 if (!(tp->ecn_flags & TCP_ECN_OK))
225 return;
226
227 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
228 case INET_ECN_NOT_ECT:
229 /* Funny extension: if ECT is not set on a segment,
230 * and we already seen ECT on a previous segment,
231 * it is probably a retransmit.
232 */
233 if (tp->ecn_flags & TCP_ECN_SEEN)
234 tcp_enter_quickack_mode((struct sock *)tp);
235 break;
236 case INET_ECN_CE:
237 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
238 /* fallinto */
239 default:
240 tp->ecn_flags |= TCP_ECN_SEEN;
241 }
242 }
243
244 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
245 {
246 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
247 tp->ecn_flags &= ~TCP_ECN_OK;
248 }
249
250 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
251 {
252 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
253 tp->ecn_flags &= ~TCP_ECN_OK;
254 }
255
256 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
257 {
258 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
259 return 1;
260 return 0;
261 }
262
263 /* Buffer size and advertised window tuning.
264 *
265 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
266 */
267
268 static void tcp_fixup_sndbuf(struct sock *sk)
269 {
270 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
271
272 sndmem *= TCP_INIT_CWND;
273 if (sk->sk_sndbuf < sndmem)
274 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
275 }
276
277 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
278 *
279 * All tcp_full_space() is split to two parts: "network" buffer, allocated
280 * forward and advertised in receiver window (tp->rcv_wnd) and
281 * "application buffer", required to isolate scheduling/application
282 * latencies from network.
283 * window_clamp is maximal advertised window. It can be less than
284 * tcp_full_space(), in this case tcp_full_space() - window_clamp
285 * is reserved for "application" buffer. The less window_clamp is
286 * the smoother our behaviour from viewpoint of network, but the lower
287 * throughput and the higher sensitivity of the connection to losses. 8)
288 *
289 * rcv_ssthresh is more strict window_clamp used at "slow start"
290 * phase to predict further behaviour of this connection.
291 * It is used for two goals:
292 * - to enforce header prediction at sender, even when application
293 * requires some significant "application buffer". It is check #1.
294 * - to prevent pruning of receive queue because of misprediction
295 * of receiver window. Check #2.
296 *
297 * The scheme does not work when sender sends good segments opening
298 * window and then starts to feed us spaghetti. But it should work
299 * in common situations. Otherwise, we have to rely on queue collapsing.
300 */
301
302 /* Slow part of check#2. */
303 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
304 {
305 struct tcp_sock *tp = tcp_sk(sk);
306 /* Optimize this! */
307 int truesize = tcp_win_from_space(skb->truesize) >> 1;
308 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
309
310 while (tp->rcv_ssthresh <= window) {
311 if (truesize <= skb->len)
312 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
313
314 truesize >>= 1;
315 window >>= 1;
316 }
317 return 0;
318 }
319
320 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
321 {
322 struct tcp_sock *tp = tcp_sk(sk);
323
324 /* Check #1 */
325 if (tp->rcv_ssthresh < tp->window_clamp &&
326 (int)tp->rcv_ssthresh < tcp_space(sk) &&
327 !sk_under_memory_pressure(sk)) {
328 int incr;
329
330 /* Check #2. Increase window, if skb with such overhead
331 * will fit to rcvbuf in future.
332 */
333 if (tcp_win_from_space(skb->truesize) <= skb->len)
334 incr = 2 * tp->advmss;
335 else
336 incr = __tcp_grow_window(sk, skb);
337
338 if (incr) {
339 incr = max_t(int, incr, 2 * skb->len);
340 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
341 tp->window_clamp);
342 inet_csk(sk)->icsk_ack.quick |= 1;
343 }
344 }
345 }
346
347 /* 3. Tuning rcvbuf, when connection enters established state. */
348
349 static void tcp_fixup_rcvbuf(struct sock *sk)
350 {
351 u32 mss = tcp_sk(sk)->advmss;
352 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
353 int rcvmem;
354
355 /* Limit to 10 segments if mss <= 1460,
356 * or 14600/mss segments, with a minimum of two segments.
357 */
358 if (mss > 1460)
359 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
360
361 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
362 while (tcp_win_from_space(rcvmem) < mss)
363 rcvmem += 128;
364
365 rcvmem *= icwnd;
366
367 if (sk->sk_rcvbuf < rcvmem)
368 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
369 }
370
371 /* 4. Try to fixup all. It is made immediately after connection enters
372 * established state.
373 */
374 static void tcp_init_buffer_space(struct sock *sk)
375 {
376 struct tcp_sock *tp = tcp_sk(sk);
377 int maxwin;
378
379 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
380 tcp_fixup_rcvbuf(sk);
381 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
382 tcp_fixup_sndbuf(sk);
383
384 tp->rcvq_space.space = tp->rcv_wnd;
385
386 maxwin = tcp_full_space(sk);
387
388 if (tp->window_clamp >= maxwin) {
389 tp->window_clamp = maxwin;
390
391 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
392 tp->window_clamp = max(maxwin -
393 (maxwin >> sysctl_tcp_app_win),
394 4 * tp->advmss);
395 }
396
397 /* Force reservation of one segment. */
398 if (sysctl_tcp_app_win &&
399 tp->window_clamp > 2 * tp->advmss &&
400 tp->window_clamp + tp->advmss > maxwin)
401 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
402
403 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
404 tp->snd_cwnd_stamp = tcp_time_stamp;
405 }
406
407 /* 5. Recalculate window clamp after socket hit its memory bounds. */
408 static void tcp_clamp_window(struct sock *sk)
409 {
410 struct tcp_sock *tp = tcp_sk(sk);
411 struct inet_connection_sock *icsk = inet_csk(sk);
412
413 icsk->icsk_ack.quick = 0;
414
415 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
416 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
417 !sk_under_memory_pressure(sk) &&
418 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
419 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
420 sysctl_tcp_rmem[2]);
421 }
422 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
423 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
424 }
425
426 /* Initialize RCV_MSS value.
427 * RCV_MSS is an our guess about MSS used by the peer.
428 * We haven't any direct information about the MSS.
429 * It's better to underestimate the RCV_MSS rather than overestimate.
430 * Overestimations make us ACKing less frequently than needed.
431 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
432 */
433 void tcp_initialize_rcv_mss(struct sock *sk)
434 {
435 const struct tcp_sock *tp = tcp_sk(sk);
436 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
437
438 hint = min(hint, tp->rcv_wnd / 2);
439 hint = min(hint, TCP_MSS_DEFAULT);
440 hint = max(hint, TCP_MIN_MSS);
441
442 inet_csk(sk)->icsk_ack.rcv_mss = hint;
443 }
444 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
445
446 /* Receiver "autotuning" code.
447 *
448 * The algorithm for RTT estimation w/o timestamps is based on
449 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
450 * <http://public.lanl.gov/radiant/pubs.html#DRS>
451 *
452 * More detail on this code can be found at
453 * <http://staff.psc.edu/jheffner/>,
454 * though this reference is out of date. A new paper
455 * is pending.
456 */
457 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
458 {
459 u32 new_sample = tp->rcv_rtt_est.rtt;
460 long m = sample;
461
462 if (m == 0)
463 m = 1;
464
465 if (new_sample != 0) {
466 /* If we sample in larger samples in the non-timestamp
467 * case, we could grossly overestimate the RTT especially
468 * with chatty applications or bulk transfer apps which
469 * are stalled on filesystem I/O.
470 *
471 * Also, since we are only going for a minimum in the
472 * non-timestamp case, we do not smooth things out
473 * else with timestamps disabled convergence takes too
474 * long.
475 */
476 if (!win_dep) {
477 m -= (new_sample >> 3);
478 new_sample += m;
479 } else {
480 m <<= 3;
481 if (m < new_sample)
482 new_sample = m;
483 }
484 } else {
485 /* No previous measure. */
486 new_sample = m << 3;
487 }
488
489 if (tp->rcv_rtt_est.rtt != new_sample)
490 tp->rcv_rtt_est.rtt = new_sample;
491 }
492
493 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
494 {
495 if (tp->rcv_rtt_est.time == 0)
496 goto new_measure;
497 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
498 return;
499 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
500
501 new_measure:
502 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
503 tp->rcv_rtt_est.time = tcp_time_stamp;
504 }
505
506 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
507 const struct sk_buff *skb)
508 {
509 struct tcp_sock *tp = tcp_sk(sk);
510 if (tp->rx_opt.rcv_tsecr &&
511 (TCP_SKB_CB(skb)->end_seq -
512 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
513 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
514 }
515
516 /*
517 * This function should be called every time data is copied to user space.
518 * It calculates the appropriate TCP receive buffer space.
519 */
520 void tcp_rcv_space_adjust(struct sock *sk)
521 {
522 struct tcp_sock *tp = tcp_sk(sk);
523 int time;
524 int space;
525
526 if (tp->rcvq_space.time == 0)
527 goto new_measure;
528
529 time = tcp_time_stamp - tp->rcvq_space.time;
530 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
531 return;
532
533 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
534
535 space = max(tp->rcvq_space.space, space);
536
537 if (tp->rcvq_space.space != space) {
538 int rcvmem;
539
540 tp->rcvq_space.space = space;
541
542 if (sysctl_tcp_moderate_rcvbuf &&
543 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
544 int new_clamp = space;
545
546 /* Receive space grows, normalize in order to
547 * take into account packet headers and sk_buff
548 * structure overhead.
549 */
550 space /= tp->advmss;
551 if (!space)
552 space = 1;
553 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
554 while (tcp_win_from_space(rcvmem) < tp->advmss)
555 rcvmem += 128;
556 space *= rcvmem;
557 space = min(space, sysctl_tcp_rmem[2]);
558 if (space > sk->sk_rcvbuf) {
559 sk->sk_rcvbuf = space;
560
561 /* Make the window clamp follow along. */
562 tp->window_clamp = new_clamp;
563 }
564 }
565 }
566
567 new_measure:
568 tp->rcvq_space.seq = tp->copied_seq;
569 tp->rcvq_space.time = tcp_time_stamp;
570 }
571
572 /* There is something which you must keep in mind when you analyze the
573 * behavior of the tp->ato delayed ack timeout interval. When a
574 * connection starts up, we want to ack as quickly as possible. The
575 * problem is that "good" TCP's do slow start at the beginning of data
576 * transmission. The means that until we send the first few ACK's the
577 * sender will sit on his end and only queue most of his data, because
578 * he can only send snd_cwnd unacked packets at any given time. For
579 * each ACK we send, he increments snd_cwnd and transmits more of his
580 * queue. -DaveM
581 */
582 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
583 {
584 struct tcp_sock *tp = tcp_sk(sk);
585 struct inet_connection_sock *icsk = inet_csk(sk);
586 u32 now;
587
588 inet_csk_schedule_ack(sk);
589
590 tcp_measure_rcv_mss(sk, skb);
591
592 tcp_rcv_rtt_measure(tp);
593
594 now = tcp_time_stamp;
595
596 if (!icsk->icsk_ack.ato) {
597 /* The _first_ data packet received, initialize
598 * delayed ACK engine.
599 */
600 tcp_incr_quickack(sk);
601 icsk->icsk_ack.ato = TCP_ATO_MIN;
602 } else {
603 int m = now - icsk->icsk_ack.lrcvtime;
604
605 if (m <= TCP_ATO_MIN / 2) {
606 /* The fastest case is the first. */
607 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
608 } else if (m < icsk->icsk_ack.ato) {
609 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
610 if (icsk->icsk_ack.ato > icsk->icsk_rto)
611 icsk->icsk_ack.ato = icsk->icsk_rto;
612 } else if (m > icsk->icsk_rto) {
613 /* Too long gap. Apparently sender failed to
614 * restart window, so that we send ACKs quickly.
615 */
616 tcp_incr_quickack(sk);
617 sk_mem_reclaim(sk);
618 }
619 }
620 icsk->icsk_ack.lrcvtime = now;
621
622 TCP_ECN_check_ce(tp, skb);
623
624 if (skb->len >= 128)
625 tcp_grow_window(sk, skb);
626 }
627
628 /* Called to compute a smoothed rtt estimate. The data fed to this
629 * routine either comes from timestamps, or from segments that were
630 * known _not_ to have been retransmitted [see Karn/Partridge
631 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
632 * piece by Van Jacobson.
633 * NOTE: the next three routines used to be one big routine.
634 * To save cycles in the RFC 1323 implementation it was better to break
635 * it up into three procedures. -- erics
636 */
637 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
638 {
639 struct tcp_sock *tp = tcp_sk(sk);
640 long m = mrtt; /* RTT */
641
642 /* The following amusing code comes from Jacobson's
643 * article in SIGCOMM '88. Note that rtt and mdev
644 * are scaled versions of rtt and mean deviation.
645 * This is designed to be as fast as possible
646 * m stands for "measurement".
647 *
648 * On a 1990 paper the rto value is changed to:
649 * RTO = rtt + 4 * mdev
650 *
651 * Funny. This algorithm seems to be very broken.
652 * These formulae increase RTO, when it should be decreased, increase
653 * too slowly, when it should be increased quickly, decrease too quickly
654 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
655 * does not matter how to _calculate_ it. Seems, it was trap
656 * that VJ failed to avoid. 8)
657 */
658 if (m == 0)
659 m = 1;
660 if (tp->srtt != 0) {
661 m -= (tp->srtt >> 3); /* m is now error in rtt est */
662 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
663 if (m < 0) {
664 m = -m; /* m is now abs(error) */
665 m -= (tp->mdev >> 2); /* similar update on mdev */
666 /* This is similar to one of Eifel findings.
667 * Eifel blocks mdev updates when rtt decreases.
668 * This solution is a bit different: we use finer gain
669 * for mdev in this case (alpha*beta).
670 * Like Eifel it also prevents growth of rto,
671 * but also it limits too fast rto decreases,
672 * happening in pure Eifel.
673 */
674 if (m > 0)
675 m >>= 3;
676 } else {
677 m -= (tp->mdev >> 2); /* similar update on mdev */
678 }
679 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
680 if (tp->mdev > tp->mdev_max) {
681 tp->mdev_max = tp->mdev;
682 if (tp->mdev_max > tp->rttvar)
683 tp->rttvar = tp->mdev_max;
684 }
685 if (after(tp->snd_una, tp->rtt_seq)) {
686 if (tp->mdev_max < tp->rttvar)
687 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
688 tp->rtt_seq = tp->snd_nxt;
689 tp->mdev_max = tcp_rto_min(sk);
690 }
691 } else {
692 /* no previous measure. */
693 tp->srtt = m << 3; /* take the measured time to be rtt */
694 tp->mdev = m << 1; /* make sure rto = 3*rtt */
695 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
696 tp->rtt_seq = tp->snd_nxt;
697 }
698 }
699
700 /* Calculate rto without backoff. This is the second half of Van Jacobson's
701 * routine referred to above.
702 */
703 static inline void tcp_set_rto(struct sock *sk)
704 {
705 const struct tcp_sock *tp = tcp_sk(sk);
706 /* Old crap is replaced with new one. 8)
707 *
708 * More seriously:
709 * 1. If rtt variance happened to be less 50msec, it is hallucination.
710 * It cannot be less due to utterly erratic ACK generation made
711 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
712 * to do with delayed acks, because at cwnd>2 true delack timeout
713 * is invisible. Actually, Linux-2.4 also generates erratic
714 * ACKs in some circumstances.
715 */
716 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
717
718 /* 2. Fixups made earlier cannot be right.
719 * If we do not estimate RTO correctly without them,
720 * all the algo is pure shit and should be replaced
721 * with correct one. It is exactly, which we pretend to do.
722 */
723
724 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
725 * guarantees that rto is higher.
726 */
727 tcp_bound_rto(sk);
728 }
729
730 /* Save metrics learned by this TCP session.
731 This function is called only, when TCP finishes successfully
732 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
733 */
734 void tcp_update_metrics(struct sock *sk)
735 {
736 struct tcp_sock *tp = tcp_sk(sk);
737 struct dst_entry *dst = __sk_dst_get(sk);
738
739 if (sysctl_tcp_nometrics_save)
740 return;
741
742 dst_confirm(dst);
743
744 if (dst && (dst->flags & DST_HOST)) {
745 const struct inet_connection_sock *icsk = inet_csk(sk);
746 int m;
747 unsigned long rtt;
748
749 if (icsk->icsk_backoff || !tp->srtt) {
750 /* This session failed to estimate rtt. Why?
751 * Probably, no packets returned in time.
752 * Reset our results.
753 */
754 if (!(dst_metric_locked(dst, RTAX_RTT)))
755 dst_metric_set(dst, RTAX_RTT, 0);
756 return;
757 }
758
759 rtt = dst_metric_rtt(dst, RTAX_RTT);
760 m = rtt - tp->srtt;
761
762 /* If newly calculated rtt larger than stored one,
763 * store new one. Otherwise, use EWMA. Remember,
764 * rtt overestimation is always better than underestimation.
765 */
766 if (!(dst_metric_locked(dst, RTAX_RTT))) {
767 if (m <= 0)
768 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
769 else
770 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
771 }
772
773 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
774 unsigned long var;
775 if (m < 0)
776 m = -m;
777
778 /* Scale deviation to rttvar fixed point */
779 m >>= 1;
780 if (m < tp->mdev)
781 m = tp->mdev;
782
783 var = dst_metric_rtt(dst, RTAX_RTTVAR);
784 if (m >= var)
785 var = m;
786 else
787 var -= (var - m) >> 2;
788
789 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
790 }
791
792 if (tcp_in_initial_slowstart(tp)) {
793 /* Slow start still did not finish. */
794 if (dst_metric(dst, RTAX_SSTHRESH) &&
795 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
796 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
797 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
798 if (!dst_metric_locked(dst, RTAX_CWND) &&
799 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
800 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
801 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
802 icsk->icsk_ca_state == TCP_CA_Open) {
803 /* Cong. avoidance phase, cwnd is reliable. */
804 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
805 dst_metric_set(dst, RTAX_SSTHRESH,
806 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
807 if (!dst_metric_locked(dst, RTAX_CWND))
808 dst_metric_set(dst, RTAX_CWND,
809 (dst_metric(dst, RTAX_CWND) +
810 tp->snd_cwnd) >> 1);
811 } else {
812 /* Else slow start did not finish, cwnd is non-sense,
813 ssthresh may be also invalid.
814 */
815 if (!dst_metric_locked(dst, RTAX_CWND))
816 dst_metric_set(dst, RTAX_CWND,
817 (dst_metric(dst, RTAX_CWND) +
818 tp->snd_ssthresh) >> 1);
819 if (dst_metric(dst, RTAX_SSTHRESH) &&
820 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
821 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
822 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
823 }
824
825 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
826 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
827 tp->reordering != sysctl_tcp_reordering)
828 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
829 }
830 }
831 }
832
833 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
834 {
835 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
836
837 if (!cwnd)
838 cwnd = TCP_INIT_CWND;
839 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
840 }
841
842 /* Set slow start threshold and cwnd not falling to slow start */
843 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
844 {
845 struct tcp_sock *tp = tcp_sk(sk);
846 const struct inet_connection_sock *icsk = inet_csk(sk);
847
848 tp->prior_ssthresh = 0;
849 tp->bytes_acked = 0;
850 if (icsk->icsk_ca_state < TCP_CA_CWR) {
851 tp->undo_marker = 0;
852 if (set_ssthresh)
853 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
854 tp->snd_cwnd = min(tp->snd_cwnd,
855 tcp_packets_in_flight(tp) + 1U);
856 tp->snd_cwnd_cnt = 0;
857 tp->high_seq = tp->snd_nxt;
858 tp->snd_cwnd_stamp = tcp_time_stamp;
859 TCP_ECN_queue_cwr(tp);
860
861 tcp_set_ca_state(sk, TCP_CA_CWR);
862 }
863 }
864
865 /*
866 * Packet counting of FACK is based on in-order assumptions, therefore TCP
867 * disables it when reordering is detected
868 */
869 static void tcp_disable_fack(struct tcp_sock *tp)
870 {
871 /* RFC3517 uses different metric in lost marker => reset on change */
872 if (tcp_is_fack(tp))
873 tp->lost_skb_hint = NULL;
874 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
875 }
876
877 /* Take a notice that peer is sending D-SACKs */
878 static void tcp_dsack_seen(struct tcp_sock *tp)
879 {
880 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
881 }
882
883 /* Initialize metrics on socket. */
884
885 static void tcp_init_metrics(struct sock *sk)
886 {
887 struct tcp_sock *tp = tcp_sk(sk);
888 struct dst_entry *dst = __sk_dst_get(sk);
889
890 if (dst == NULL)
891 goto reset;
892
893 dst_confirm(dst);
894
895 if (dst_metric_locked(dst, RTAX_CWND))
896 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
897 if (dst_metric(dst, RTAX_SSTHRESH)) {
898 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
899 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
900 tp->snd_ssthresh = tp->snd_cwnd_clamp;
901 } else {
902 /* ssthresh may have been reduced unnecessarily during.
903 * 3WHS. Restore it back to its initial default.
904 */
905 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
906 }
907 if (dst_metric(dst, RTAX_REORDERING) &&
908 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
909 tcp_disable_fack(tp);
910 tcp_disable_early_retrans(tp);
911 tp->reordering = dst_metric(dst, RTAX_REORDERING);
912 }
913
914 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
915 goto reset;
916
917 /* Initial rtt is determined from SYN,SYN-ACK.
918 * The segment is small and rtt may appear much
919 * less than real one. Use per-dst memory
920 * to make it more realistic.
921 *
922 * A bit of theory. RTT is time passed after "normal" sized packet
923 * is sent until it is ACKed. In normal circumstances sending small
924 * packets force peer to delay ACKs and calculation is correct too.
925 * The algorithm is adaptive and, provided we follow specs, it
926 * NEVER underestimate RTT. BUT! If peer tries to make some clever
927 * tricks sort of "quick acks" for time long enough to decrease RTT
928 * to low value, and then abruptly stops to do it and starts to delay
929 * ACKs, wait for troubles.
930 */
931 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
932 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
933 tp->rtt_seq = tp->snd_nxt;
934 }
935 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
936 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
937 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
938 }
939 tcp_set_rto(sk);
940 reset:
941 if (tp->srtt == 0) {
942 /* RFC6298: 5.7 We've failed to get a valid RTT sample from
943 * 3WHS. This is most likely due to retransmission,
944 * including spurious one. Reset the RTO back to 3secs
945 * from the more aggressive 1sec to avoid more spurious
946 * retransmission.
947 */
948 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
949 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
950 }
951 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
952 * retransmitted. In light of RFC6298 more aggressive 1sec
953 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
954 * retransmission has occurred.
955 */
956 if (tp->total_retrans > 1)
957 tp->snd_cwnd = 1;
958 else
959 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
960 tp->snd_cwnd_stamp = tcp_time_stamp;
961 }
962
963 static void tcp_update_reordering(struct sock *sk, const int metric,
964 const int ts)
965 {
966 struct tcp_sock *tp = tcp_sk(sk);
967 if (metric > tp->reordering) {
968 int mib_idx;
969
970 tp->reordering = min(TCP_MAX_REORDERING, metric);
971
972 /* This exciting event is worth to be remembered. 8) */
973 if (ts)
974 mib_idx = LINUX_MIB_TCPTSREORDER;
975 else if (tcp_is_reno(tp))
976 mib_idx = LINUX_MIB_TCPRENOREORDER;
977 else if (tcp_is_fack(tp))
978 mib_idx = LINUX_MIB_TCPFACKREORDER;
979 else
980 mib_idx = LINUX_MIB_TCPSACKREORDER;
981
982 NET_INC_STATS_BH(sock_net(sk), mib_idx);
983 #if FASTRETRANS_DEBUG > 1
984 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
985 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
986 tp->reordering,
987 tp->fackets_out,
988 tp->sacked_out,
989 tp->undo_marker ? tp->undo_retrans : 0);
990 #endif
991 tcp_disable_fack(tp);
992 }
993
994 if (metric > 0)
995 tcp_disable_early_retrans(tp);
996 }
997
998 /* This must be called before lost_out is incremented */
999 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1000 {
1001 if ((tp->retransmit_skb_hint == NULL) ||
1002 before(TCP_SKB_CB(skb)->seq,
1003 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1004 tp->retransmit_skb_hint = skb;
1005
1006 if (!tp->lost_out ||
1007 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1008 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1009 }
1010
1011 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1012 {
1013 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1014 tcp_verify_retransmit_hint(tp, skb);
1015
1016 tp->lost_out += tcp_skb_pcount(skb);
1017 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1018 }
1019 }
1020
1021 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1022 struct sk_buff *skb)
1023 {
1024 tcp_verify_retransmit_hint(tp, skb);
1025
1026 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1027 tp->lost_out += tcp_skb_pcount(skb);
1028 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1029 }
1030 }
1031
1032 /* This procedure tags the retransmission queue when SACKs arrive.
1033 *
1034 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1035 * Packets in queue with these bits set are counted in variables
1036 * sacked_out, retrans_out and lost_out, correspondingly.
1037 *
1038 * Valid combinations are:
1039 * Tag InFlight Description
1040 * 0 1 - orig segment is in flight.
1041 * S 0 - nothing flies, orig reached receiver.
1042 * L 0 - nothing flies, orig lost by net.
1043 * R 2 - both orig and retransmit are in flight.
1044 * L|R 1 - orig is lost, retransmit is in flight.
1045 * S|R 1 - orig reached receiver, retrans is still in flight.
1046 * (L|S|R is logically valid, it could occur when L|R is sacked,
1047 * but it is equivalent to plain S and code short-curcuits it to S.
1048 * L|S is logically invalid, it would mean -1 packet in flight 8))
1049 *
1050 * These 6 states form finite state machine, controlled by the following events:
1051 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1052 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1053 * 3. Loss detection event of two flavors:
1054 * A. Scoreboard estimator decided the packet is lost.
1055 * A'. Reno "three dupacks" marks head of queue lost.
1056 * A''. Its FACK modification, head until snd.fack is lost.
1057 * B. SACK arrives sacking SND.NXT at the moment, when the
1058 * segment was retransmitted.
1059 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1060 *
1061 * It is pleasant to note, that state diagram turns out to be commutative,
1062 * so that we are allowed not to be bothered by order of our actions,
1063 * when multiple events arrive simultaneously. (see the function below).
1064 *
1065 * Reordering detection.
1066 * --------------------
1067 * Reordering metric is maximal distance, which a packet can be displaced
1068 * in packet stream. With SACKs we can estimate it:
1069 *
1070 * 1. SACK fills old hole and the corresponding segment was not
1071 * ever retransmitted -> reordering. Alas, we cannot use it
1072 * when segment was retransmitted.
1073 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1074 * for retransmitted and already SACKed segment -> reordering..
1075 * Both of these heuristics are not used in Loss state, when we cannot
1076 * account for retransmits accurately.
1077 *
1078 * SACK block validation.
1079 * ----------------------
1080 *
1081 * SACK block range validation checks that the received SACK block fits to
1082 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1083 * Note that SND.UNA is not included to the range though being valid because
1084 * it means that the receiver is rather inconsistent with itself reporting
1085 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1086 * perfectly valid, however, in light of RFC2018 which explicitly states
1087 * that "SACK block MUST reflect the newest segment. Even if the newest
1088 * segment is going to be discarded ...", not that it looks very clever
1089 * in case of head skb. Due to potentional receiver driven attacks, we
1090 * choose to avoid immediate execution of a walk in write queue due to
1091 * reneging and defer head skb's loss recovery to standard loss recovery
1092 * procedure that will eventually trigger (nothing forbids us doing this).
1093 *
1094 * Implements also blockage to start_seq wrap-around. Problem lies in the
1095 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1096 * there's no guarantee that it will be before snd_nxt (n). The problem
1097 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1098 * wrap (s_w):
1099 *
1100 * <- outs wnd -> <- wrapzone ->
1101 * u e n u_w e_w s n_w
1102 * | | | | | | |
1103 * |<------------+------+----- TCP seqno space --------------+---------->|
1104 * ...-- <2^31 ->| |<--------...
1105 * ...---- >2^31 ------>| |<--------...
1106 *
1107 * Current code wouldn't be vulnerable but it's better still to discard such
1108 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1109 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1110 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1111 * equal to the ideal case (infinite seqno space without wrap caused issues).
1112 *
1113 * With D-SACK the lower bound is extended to cover sequence space below
1114 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1115 * again, D-SACK block must not to go across snd_una (for the same reason as
1116 * for the normal SACK blocks, explained above). But there all simplicity
1117 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1118 * fully below undo_marker they do not affect behavior in anyway and can
1119 * therefore be safely ignored. In rare cases (which are more or less
1120 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1121 * fragmentation and packet reordering past skb's retransmission. To consider
1122 * them correctly, the acceptable range must be extended even more though
1123 * the exact amount is rather hard to quantify. However, tp->max_window can
1124 * be used as an exaggerated estimate.
1125 */
1126 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1127 u32 start_seq, u32 end_seq)
1128 {
1129 /* Too far in future, or reversed (interpretation is ambiguous) */
1130 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1131 return 0;
1132
1133 /* Nasty start_seq wrap-around check (see comments above) */
1134 if (!before(start_seq, tp->snd_nxt))
1135 return 0;
1136
1137 /* In outstanding window? ...This is valid exit for D-SACKs too.
1138 * start_seq == snd_una is non-sensical (see comments above)
1139 */
1140 if (after(start_seq, tp->snd_una))
1141 return 1;
1142
1143 if (!is_dsack || !tp->undo_marker)
1144 return 0;
1145
1146 /* ...Then it's D-SACK, and must reside below snd_una completely */
1147 if (after(end_seq, tp->snd_una))
1148 return 0;
1149
1150 if (!before(start_seq, tp->undo_marker))
1151 return 1;
1152
1153 /* Too old */
1154 if (!after(end_seq, tp->undo_marker))
1155 return 0;
1156
1157 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1158 * start_seq < undo_marker and end_seq >= undo_marker.
1159 */
1160 return !before(start_seq, end_seq - tp->max_window);
1161 }
1162
1163 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1164 * Event "B". Later note: FACK people cheated me again 8), we have to account
1165 * for reordering! Ugly, but should help.
1166 *
1167 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1168 * less than what is now known to be received by the other end (derived from
1169 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1170 * retransmitted skbs to avoid some costly processing per ACKs.
1171 */
1172 static void tcp_mark_lost_retrans(struct sock *sk)
1173 {
1174 const struct inet_connection_sock *icsk = inet_csk(sk);
1175 struct tcp_sock *tp = tcp_sk(sk);
1176 struct sk_buff *skb;
1177 int cnt = 0;
1178 u32 new_low_seq = tp->snd_nxt;
1179 u32 received_upto = tcp_highest_sack_seq(tp);
1180
1181 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1182 !after(received_upto, tp->lost_retrans_low) ||
1183 icsk->icsk_ca_state != TCP_CA_Recovery)
1184 return;
1185
1186 tcp_for_write_queue(skb, sk) {
1187 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1188
1189 if (skb == tcp_send_head(sk))
1190 break;
1191 if (cnt == tp->retrans_out)
1192 break;
1193 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1194 continue;
1195
1196 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1197 continue;
1198
1199 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1200 * constraint here (see above) but figuring out that at
1201 * least tp->reordering SACK blocks reside between ack_seq
1202 * and received_upto is not easy task to do cheaply with
1203 * the available datastructures.
1204 *
1205 * Whether FACK should check here for tp->reordering segs
1206 * in-between one could argue for either way (it would be
1207 * rather simple to implement as we could count fack_count
1208 * during the walk and do tp->fackets_out - fack_count).
1209 */
1210 if (after(received_upto, ack_seq)) {
1211 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1212 tp->retrans_out -= tcp_skb_pcount(skb);
1213
1214 tcp_skb_mark_lost_uncond_verify(tp, skb);
1215 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1216 } else {
1217 if (before(ack_seq, new_low_seq))
1218 new_low_seq = ack_seq;
1219 cnt += tcp_skb_pcount(skb);
1220 }
1221 }
1222
1223 if (tp->retrans_out)
1224 tp->lost_retrans_low = new_low_seq;
1225 }
1226
1227 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1228 struct tcp_sack_block_wire *sp, int num_sacks,
1229 u32 prior_snd_una)
1230 {
1231 struct tcp_sock *tp = tcp_sk(sk);
1232 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1233 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1234 int dup_sack = 0;
1235
1236 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1237 dup_sack = 1;
1238 tcp_dsack_seen(tp);
1239 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1240 } else if (num_sacks > 1) {
1241 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1242 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1243
1244 if (!after(end_seq_0, end_seq_1) &&
1245 !before(start_seq_0, start_seq_1)) {
1246 dup_sack = 1;
1247 tcp_dsack_seen(tp);
1248 NET_INC_STATS_BH(sock_net(sk),
1249 LINUX_MIB_TCPDSACKOFORECV);
1250 }
1251 }
1252
1253 /* D-SACK for already forgotten data... Do dumb counting. */
1254 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1255 !after(end_seq_0, prior_snd_una) &&
1256 after(end_seq_0, tp->undo_marker))
1257 tp->undo_retrans--;
1258
1259 return dup_sack;
1260 }
1261
1262 struct tcp_sacktag_state {
1263 int reord;
1264 int fack_count;
1265 int flag;
1266 };
1267
1268 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1269 * the incoming SACK may not exactly match but we can find smaller MSS
1270 * aligned portion of it that matches. Therefore we might need to fragment
1271 * which may fail and creates some hassle (caller must handle error case
1272 * returns).
1273 *
1274 * FIXME: this could be merged to shift decision code
1275 */
1276 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1277 u32 start_seq, u32 end_seq)
1278 {
1279 int in_sack, err;
1280 unsigned int pkt_len;
1281 unsigned int mss;
1282
1283 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1284 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1285
1286 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1287 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1288 mss = tcp_skb_mss(skb);
1289 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1290
1291 if (!in_sack) {
1292 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1293 if (pkt_len < mss)
1294 pkt_len = mss;
1295 } else {
1296 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1297 if (pkt_len < mss)
1298 return -EINVAL;
1299 }
1300
1301 /* Round if necessary so that SACKs cover only full MSSes
1302 * and/or the remaining small portion (if present)
1303 */
1304 if (pkt_len > mss) {
1305 unsigned int new_len = (pkt_len / mss) * mss;
1306 if (!in_sack && new_len < pkt_len) {
1307 new_len += mss;
1308 if (new_len > skb->len)
1309 return 0;
1310 }
1311 pkt_len = new_len;
1312 }
1313 err = tcp_fragment(sk, skb, pkt_len, mss);
1314 if (err < 0)
1315 return err;
1316 }
1317
1318 return in_sack;
1319 }
1320
1321 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1322 static u8 tcp_sacktag_one(struct sock *sk,
1323 struct tcp_sacktag_state *state, u8 sacked,
1324 u32 start_seq, u32 end_seq,
1325 int dup_sack, int pcount)
1326 {
1327 struct tcp_sock *tp = tcp_sk(sk);
1328 int fack_count = state->fack_count;
1329
1330 /* Account D-SACK for retransmitted packet. */
1331 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1332 if (tp->undo_marker && tp->undo_retrans &&
1333 after(end_seq, tp->undo_marker))
1334 tp->undo_retrans--;
1335 if (sacked & TCPCB_SACKED_ACKED)
1336 state->reord = min(fack_count, state->reord);
1337 }
1338
1339 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1340 if (!after(end_seq, tp->snd_una))
1341 return sacked;
1342
1343 if (!(sacked & TCPCB_SACKED_ACKED)) {
1344 if (sacked & TCPCB_SACKED_RETRANS) {
1345 /* If the segment is not tagged as lost,
1346 * we do not clear RETRANS, believing
1347 * that retransmission is still in flight.
1348 */
1349 if (sacked & TCPCB_LOST) {
1350 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1351 tp->lost_out -= pcount;
1352 tp->retrans_out -= pcount;
1353 }
1354 } else {
1355 if (!(sacked & TCPCB_RETRANS)) {
1356 /* New sack for not retransmitted frame,
1357 * which was in hole. It is reordering.
1358 */
1359 if (before(start_seq,
1360 tcp_highest_sack_seq(tp)))
1361 state->reord = min(fack_count,
1362 state->reord);
1363
1364 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1365 if (!after(end_seq, tp->frto_highmark))
1366 state->flag |= FLAG_ONLY_ORIG_SACKED;
1367 }
1368
1369 if (sacked & TCPCB_LOST) {
1370 sacked &= ~TCPCB_LOST;
1371 tp->lost_out -= pcount;
1372 }
1373 }
1374
1375 sacked |= TCPCB_SACKED_ACKED;
1376 state->flag |= FLAG_DATA_SACKED;
1377 tp->sacked_out += pcount;
1378
1379 fack_count += pcount;
1380
1381 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1382 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1383 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1384 tp->lost_cnt_hint += pcount;
1385
1386 if (fack_count > tp->fackets_out)
1387 tp->fackets_out = fack_count;
1388 }
1389
1390 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1391 * frames and clear it. undo_retrans is decreased above, L|R frames
1392 * are accounted above as well.
1393 */
1394 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1395 sacked &= ~TCPCB_SACKED_RETRANS;
1396 tp->retrans_out -= pcount;
1397 }
1398
1399 return sacked;
1400 }
1401
1402 /* Shift newly-SACKed bytes from this skb to the immediately previous
1403 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1404 */
1405 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1406 struct tcp_sacktag_state *state,
1407 unsigned int pcount, int shifted, int mss,
1408 int dup_sack)
1409 {
1410 struct tcp_sock *tp = tcp_sk(sk);
1411 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1412 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1413 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1414
1415 BUG_ON(!pcount);
1416
1417 /* Adjust counters and hints for the newly sacked sequence
1418 * range but discard the return value since prev is already
1419 * marked. We must tag the range first because the seq
1420 * advancement below implicitly advances
1421 * tcp_highest_sack_seq() when skb is highest_sack.
1422 */
1423 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1424 start_seq, end_seq, dup_sack, pcount);
1425
1426 if (skb == tp->lost_skb_hint)
1427 tp->lost_cnt_hint += pcount;
1428
1429 TCP_SKB_CB(prev)->end_seq += shifted;
1430 TCP_SKB_CB(skb)->seq += shifted;
1431
1432 skb_shinfo(prev)->gso_segs += pcount;
1433 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1434 skb_shinfo(skb)->gso_segs -= pcount;
1435
1436 /* When we're adding to gso_segs == 1, gso_size will be zero,
1437 * in theory this shouldn't be necessary but as long as DSACK
1438 * code can come after this skb later on it's better to keep
1439 * setting gso_size to something.
1440 */
1441 if (!skb_shinfo(prev)->gso_size) {
1442 skb_shinfo(prev)->gso_size = mss;
1443 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1444 }
1445
1446 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1447 if (skb_shinfo(skb)->gso_segs <= 1) {
1448 skb_shinfo(skb)->gso_size = 0;
1449 skb_shinfo(skb)->gso_type = 0;
1450 }
1451
1452 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1453 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1454
1455 if (skb->len > 0) {
1456 BUG_ON(!tcp_skb_pcount(skb));
1457 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1458 return 0;
1459 }
1460
1461 /* Whole SKB was eaten :-) */
1462
1463 if (skb == tp->retransmit_skb_hint)
1464 tp->retransmit_skb_hint = prev;
1465 if (skb == tp->scoreboard_skb_hint)
1466 tp->scoreboard_skb_hint = prev;
1467 if (skb == tp->lost_skb_hint) {
1468 tp->lost_skb_hint = prev;
1469 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1470 }
1471
1472 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1473 if (skb == tcp_highest_sack(sk))
1474 tcp_advance_highest_sack(sk, skb);
1475
1476 tcp_unlink_write_queue(skb, sk);
1477 sk_wmem_free_skb(sk, skb);
1478
1479 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1480
1481 return 1;
1482 }
1483
1484 /* I wish gso_size would have a bit more sane initialization than
1485 * something-or-zero which complicates things
1486 */
1487 static int tcp_skb_seglen(const struct sk_buff *skb)
1488 {
1489 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1490 }
1491
1492 /* Shifting pages past head area doesn't work */
1493 static int skb_can_shift(const struct sk_buff *skb)
1494 {
1495 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1496 }
1497
1498 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1499 * skb.
1500 */
1501 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1502 struct tcp_sacktag_state *state,
1503 u32 start_seq, u32 end_seq,
1504 int dup_sack)
1505 {
1506 struct tcp_sock *tp = tcp_sk(sk);
1507 struct sk_buff *prev;
1508 int mss;
1509 int pcount = 0;
1510 int len;
1511 int in_sack;
1512
1513 if (!sk_can_gso(sk))
1514 goto fallback;
1515
1516 /* Normally R but no L won't result in plain S */
1517 if (!dup_sack &&
1518 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1519 goto fallback;
1520 if (!skb_can_shift(skb))
1521 goto fallback;
1522 /* This frame is about to be dropped (was ACKed). */
1523 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1524 goto fallback;
1525
1526 /* Can only happen with delayed DSACK + discard craziness */
1527 if (unlikely(skb == tcp_write_queue_head(sk)))
1528 goto fallback;
1529 prev = tcp_write_queue_prev(sk, skb);
1530
1531 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1532 goto fallback;
1533
1534 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1535 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1536
1537 if (in_sack) {
1538 len = skb->len;
1539 pcount = tcp_skb_pcount(skb);
1540 mss = tcp_skb_seglen(skb);
1541
1542 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1543 * drop this restriction as unnecessary
1544 */
1545 if (mss != tcp_skb_seglen(prev))
1546 goto fallback;
1547 } else {
1548 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1549 goto noop;
1550 /* CHECKME: This is non-MSS split case only?, this will
1551 * cause skipped skbs due to advancing loop btw, original
1552 * has that feature too
1553 */
1554 if (tcp_skb_pcount(skb) <= 1)
1555 goto noop;
1556
1557 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1558 if (!in_sack) {
1559 /* TODO: head merge to next could be attempted here
1560 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1561 * though it might not be worth of the additional hassle
1562 *
1563 * ...we can probably just fallback to what was done
1564 * previously. We could try merging non-SACKed ones
1565 * as well but it probably isn't going to buy off
1566 * because later SACKs might again split them, and
1567 * it would make skb timestamp tracking considerably
1568 * harder problem.
1569 */
1570 goto fallback;
1571 }
1572
1573 len = end_seq - TCP_SKB_CB(skb)->seq;
1574 BUG_ON(len < 0);
1575 BUG_ON(len > skb->len);
1576
1577 /* MSS boundaries should be honoured or else pcount will
1578 * severely break even though it makes things bit trickier.
1579 * Optimize common case to avoid most of the divides
1580 */
1581 mss = tcp_skb_mss(skb);
1582
1583 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1584 * drop this restriction as unnecessary
1585 */
1586 if (mss != tcp_skb_seglen(prev))
1587 goto fallback;
1588
1589 if (len == mss) {
1590 pcount = 1;
1591 } else if (len < mss) {
1592 goto noop;
1593 } else {
1594 pcount = len / mss;
1595 len = pcount * mss;
1596 }
1597 }
1598
1599 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1600 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1601 goto fallback;
1602
1603 if (!skb_shift(prev, skb, len))
1604 goto fallback;
1605 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1606 goto out;
1607
1608 /* Hole filled allows collapsing with the next as well, this is very
1609 * useful when hole on every nth skb pattern happens
1610 */
1611 if (prev == tcp_write_queue_tail(sk))
1612 goto out;
1613 skb = tcp_write_queue_next(sk, prev);
1614
1615 if (!skb_can_shift(skb) ||
1616 (skb == tcp_send_head(sk)) ||
1617 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1618 (mss != tcp_skb_seglen(skb)))
1619 goto out;
1620
1621 len = skb->len;
1622 if (skb_shift(prev, skb, len)) {
1623 pcount += tcp_skb_pcount(skb);
1624 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1625 }
1626
1627 out:
1628 state->fack_count += pcount;
1629 return prev;
1630
1631 noop:
1632 return skb;
1633
1634 fallback:
1635 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1636 return NULL;
1637 }
1638
1639 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1640 struct tcp_sack_block *next_dup,
1641 struct tcp_sacktag_state *state,
1642 u32 start_seq, u32 end_seq,
1643 int dup_sack_in)
1644 {
1645 struct tcp_sock *tp = tcp_sk(sk);
1646 struct sk_buff *tmp;
1647
1648 tcp_for_write_queue_from(skb, sk) {
1649 int in_sack = 0;
1650 int dup_sack = dup_sack_in;
1651
1652 if (skb == tcp_send_head(sk))
1653 break;
1654
1655 /* queue is in-order => we can short-circuit the walk early */
1656 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1657 break;
1658
1659 if ((next_dup != NULL) &&
1660 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1661 in_sack = tcp_match_skb_to_sack(sk, skb,
1662 next_dup->start_seq,
1663 next_dup->end_seq);
1664 if (in_sack > 0)
1665 dup_sack = 1;
1666 }
1667
1668 /* skb reference here is a bit tricky to get right, since
1669 * shifting can eat and free both this skb and the next,
1670 * so not even _safe variant of the loop is enough.
1671 */
1672 if (in_sack <= 0) {
1673 tmp = tcp_shift_skb_data(sk, skb, state,
1674 start_seq, end_seq, dup_sack);
1675 if (tmp != NULL) {
1676 if (tmp != skb) {
1677 skb = tmp;
1678 continue;
1679 }
1680
1681 in_sack = 0;
1682 } else {
1683 in_sack = tcp_match_skb_to_sack(sk, skb,
1684 start_seq,
1685 end_seq);
1686 }
1687 }
1688
1689 if (unlikely(in_sack < 0))
1690 break;
1691
1692 if (in_sack) {
1693 TCP_SKB_CB(skb)->sacked =
1694 tcp_sacktag_one(sk,
1695 state,
1696 TCP_SKB_CB(skb)->sacked,
1697 TCP_SKB_CB(skb)->seq,
1698 TCP_SKB_CB(skb)->end_seq,
1699 dup_sack,
1700 tcp_skb_pcount(skb));
1701
1702 if (!before(TCP_SKB_CB(skb)->seq,
1703 tcp_highest_sack_seq(tp)))
1704 tcp_advance_highest_sack(sk, skb);
1705 }
1706
1707 state->fack_count += tcp_skb_pcount(skb);
1708 }
1709 return skb;
1710 }
1711
1712 /* Avoid all extra work that is being done by sacktag while walking in
1713 * a normal way
1714 */
1715 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1716 struct tcp_sacktag_state *state,
1717 u32 skip_to_seq)
1718 {
1719 tcp_for_write_queue_from(skb, sk) {
1720 if (skb == tcp_send_head(sk))
1721 break;
1722
1723 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1724 break;
1725
1726 state->fack_count += tcp_skb_pcount(skb);
1727 }
1728 return skb;
1729 }
1730
1731 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1732 struct sock *sk,
1733 struct tcp_sack_block *next_dup,
1734 struct tcp_sacktag_state *state,
1735 u32 skip_to_seq)
1736 {
1737 if (next_dup == NULL)
1738 return skb;
1739
1740 if (before(next_dup->start_seq, skip_to_seq)) {
1741 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1742 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1743 next_dup->start_seq, next_dup->end_seq,
1744 1);
1745 }
1746
1747 return skb;
1748 }
1749
1750 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1751 {
1752 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1753 }
1754
1755 static int
1756 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1757 u32 prior_snd_una)
1758 {
1759 const struct inet_connection_sock *icsk = inet_csk(sk);
1760 struct tcp_sock *tp = tcp_sk(sk);
1761 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1762 TCP_SKB_CB(ack_skb)->sacked);
1763 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1764 struct tcp_sack_block sp[TCP_NUM_SACKS];
1765 struct tcp_sack_block *cache;
1766 struct tcp_sacktag_state state;
1767 struct sk_buff *skb;
1768 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1769 int used_sacks;
1770 int found_dup_sack = 0;
1771 int i, j;
1772 int first_sack_index;
1773
1774 state.flag = 0;
1775 state.reord = tp->packets_out;
1776
1777 if (!tp->sacked_out) {
1778 if (WARN_ON(tp->fackets_out))
1779 tp->fackets_out = 0;
1780 tcp_highest_sack_reset(sk);
1781 }
1782
1783 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1784 num_sacks, prior_snd_una);
1785 if (found_dup_sack)
1786 state.flag |= FLAG_DSACKING_ACK;
1787
1788 /* Eliminate too old ACKs, but take into
1789 * account more or less fresh ones, they can
1790 * contain valid SACK info.
1791 */
1792 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1793 return 0;
1794
1795 if (!tp->packets_out)
1796 goto out;
1797
1798 used_sacks = 0;
1799 first_sack_index = 0;
1800 for (i = 0; i < num_sacks; i++) {
1801 int dup_sack = !i && found_dup_sack;
1802
1803 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1804 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1805
1806 if (!tcp_is_sackblock_valid(tp, dup_sack,
1807 sp[used_sacks].start_seq,
1808 sp[used_sacks].end_seq)) {
1809 int mib_idx;
1810
1811 if (dup_sack) {
1812 if (!tp->undo_marker)
1813 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1814 else
1815 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1816 } else {
1817 /* Don't count olds caused by ACK reordering */
1818 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1819 !after(sp[used_sacks].end_seq, tp->snd_una))
1820 continue;
1821 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1822 }
1823
1824 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1825 if (i == 0)
1826 first_sack_index = -1;
1827 continue;
1828 }
1829
1830 /* Ignore very old stuff early */
1831 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1832 continue;
1833
1834 used_sacks++;
1835 }
1836
1837 /* order SACK blocks to allow in order walk of the retrans queue */
1838 for (i = used_sacks - 1; i > 0; i--) {
1839 for (j = 0; j < i; j++) {
1840 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1841 swap(sp[j], sp[j + 1]);
1842
1843 /* Track where the first SACK block goes to */
1844 if (j == first_sack_index)
1845 first_sack_index = j + 1;
1846 }
1847 }
1848 }
1849
1850 skb = tcp_write_queue_head(sk);
1851 state.fack_count = 0;
1852 i = 0;
1853
1854 if (!tp->sacked_out) {
1855 /* It's already past, so skip checking against it */
1856 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1857 } else {
1858 cache = tp->recv_sack_cache;
1859 /* Skip empty blocks in at head of the cache */
1860 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1861 !cache->end_seq)
1862 cache++;
1863 }
1864
1865 while (i < used_sacks) {
1866 u32 start_seq = sp[i].start_seq;
1867 u32 end_seq = sp[i].end_seq;
1868 int dup_sack = (found_dup_sack && (i == first_sack_index));
1869 struct tcp_sack_block *next_dup = NULL;
1870
1871 if (found_dup_sack && ((i + 1) == first_sack_index))
1872 next_dup = &sp[i + 1];
1873
1874 /* Skip too early cached blocks */
1875 while (tcp_sack_cache_ok(tp, cache) &&
1876 !before(start_seq, cache->end_seq))
1877 cache++;
1878
1879 /* Can skip some work by looking recv_sack_cache? */
1880 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1881 after(end_seq, cache->start_seq)) {
1882
1883 /* Head todo? */
1884 if (before(start_seq, cache->start_seq)) {
1885 skb = tcp_sacktag_skip(skb, sk, &state,
1886 start_seq);
1887 skb = tcp_sacktag_walk(skb, sk, next_dup,
1888 &state,
1889 start_seq,
1890 cache->start_seq,
1891 dup_sack);
1892 }
1893
1894 /* Rest of the block already fully processed? */
1895 if (!after(end_seq, cache->end_seq))
1896 goto advance_sp;
1897
1898 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1899 &state,
1900 cache->end_seq);
1901
1902 /* ...tail remains todo... */
1903 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1904 /* ...but better entrypoint exists! */
1905 skb = tcp_highest_sack(sk);
1906 if (skb == NULL)
1907 break;
1908 state.fack_count = tp->fackets_out;
1909 cache++;
1910 goto walk;
1911 }
1912
1913 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1914 /* Check overlap against next cached too (past this one already) */
1915 cache++;
1916 continue;
1917 }
1918
1919 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1920 skb = tcp_highest_sack(sk);
1921 if (skb == NULL)
1922 break;
1923 state.fack_count = tp->fackets_out;
1924 }
1925 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1926
1927 walk:
1928 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1929 start_seq, end_seq, dup_sack);
1930
1931 advance_sp:
1932 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1933 * due to in-order walk
1934 */
1935 if (after(end_seq, tp->frto_highmark))
1936 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1937
1938 i++;
1939 }
1940
1941 /* Clear the head of the cache sack blocks so we can skip it next time */
1942 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1943 tp->recv_sack_cache[i].start_seq = 0;
1944 tp->recv_sack_cache[i].end_seq = 0;
1945 }
1946 for (j = 0; j < used_sacks; j++)
1947 tp->recv_sack_cache[i++] = sp[j];
1948
1949 tcp_mark_lost_retrans(sk);
1950
1951 tcp_verify_left_out(tp);
1952
1953 if ((state.reord < tp->fackets_out) &&
1954 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1955 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1956 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1957
1958 out:
1959
1960 #if FASTRETRANS_DEBUG > 0
1961 WARN_ON((int)tp->sacked_out < 0);
1962 WARN_ON((int)tp->lost_out < 0);
1963 WARN_ON((int)tp->retrans_out < 0);
1964 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1965 #endif
1966 return state.flag;
1967 }
1968
1969 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1970 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1971 */
1972 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1973 {
1974 u32 holes;
1975
1976 holes = max(tp->lost_out, 1U);
1977 holes = min(holes, tp->packets_out);
1978
1979 if ((tp->sacked_out + holes) > tp->packets_out) {
1980 tp->sacked_out = tp->packets_out - holes;
1981 return 1;
1982 }
1983 return 0;
1984 }
1985
1986 /* If we receive more dupacks than we expected counting segments
1987 * in assumption of absent reordering, interpret this as reordering.
1988 * The only another reason could be bug in receiver TCP.
1989 */
1990 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1991 {
1992 struct tcp_sock *tp = tcp_sk(sk);
1993 if (tcp_limit_reno_sacked(tp))
1994 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1995 }
1996
1997 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1998
1999 static void tcp_add_reno_sack(struct sock *sk)
2000 {
2001 struct tcp_sock *tp = tcp_sk(sk);
2002 tp->sacked_out++;
2003 tcp_check_reno_reordering(sk, 0);
2004 tcp_verify_left_out(tp);
2005 }
2006
2007 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2008
2009 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2010 {
2011 struct tcp_sock *tp = tcp_sk(sk);
2012
2013 if (acked > 0) {
2014 /* One ACK acked hole. The rest eat duplicate ACKs. */
2015 if (acked - 1 >= tp->sacked_out)
2016 tp->sacked_out = 0;
2017 else
2018 tp->sacked_out -= acked - 1;
2019 }
2020 tcp_check_reno_reordering(sk, acked);
2021 tcp_verify_left_out(tp);
2022 }
2023
2024 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2025 {
2026 tp->sacked_out = 0;
2027 }
2028
2029 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2030 {
2031 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2032 }
2033
2034 /* F-RTO can only be used if TCP has never retransmitted anything other than
2035 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2036 */
2037 int tcp_use_frto(struct sock *sk)
2038 {
2039 const struct tcp_sock *tp = tcp_sk(sk);
2040 const struct inet_connection_sock *icsk = inet_csk(sk);
2041 struct sk_buff *skb;
2042
2043 if (!sysctl_tcp_frto)
2044 return 0;
2045
2046 /* MTU probe and F-RTO won't really play nicely along currently */
2047 if (icsk->icsk_mtup.probe_size)
2048 return 0;
2049
2050 if (tcp_is_sackfrto(tp))
2051 return 1;
2052
2053 /* Avoid expensive walking of rexmit queue if possible */
2054 if (tp->retrans_out > 1)
2055 return 0;
2056
2057 skb = tcp_write_queue_head(sk);
2058 if (tcp_skb_is_last(sk, skb))
2059 return 1;
2060 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2061 tcp_for_write_queue_from(skb, sk) {
2062 if (skb == tcp_send_head(sk))
2063 break;
2064 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2065 return 0;
2066 /* Short-circuit when first non-SACKed skb has been checked */
2067 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2068 break;
2069 }
2070 return 1;
2071 }
2072
2073 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2074 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2075 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2076 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2077 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2078 * bits are handled if the Loss state is really to be entered (in
2079 * tcp_enter_frto_loss).
2080 *
2081 * Do like tcp_enter_loss() would; when RTO expires the second time it
2082 * does:
2083 * "Reduce ssthresh if it has not yet been made inside this window."
2084 */
2085 void tcp_enter_frto(struct sock *sk)
2086 {
2087 const struct inet_connection_sock *icsk = inet_csk(sk);
2088 struct tcp_sock *tp = tcp_sk(sk);
2089 struct sk_buff *skb;
2090
2091 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2092 tp->snd_una == tp->high_seq ||
2093 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2094 !icsk->icsk_retransmits)) {
2095 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2096 /* Our state is too optimistic in ssthresh() call because cwnd
2097 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2098 * recovery has not yet completed. Pattern would be this: RTO,
2099 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2100 * up here twice).
2101 * RFC4138 should be more specific on what to do, even though
2102 * RTO is quite unlikely to occur after the first Cumulative ACK
2103 * due to back-off and complexity of triggering events ...
2104 */
2105 if (tp->frto_counter) {
2106 u32 stored_cwnd;
2107 stored_cwnd = tp->snd_cwnd;
2108 tp->snd_cwnd = 2;
2109 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2110 tp->snd_cwnd = stored_cwnd;
2111 } else {
2112 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2113 }
2114 /* ... in theory, cong.control module could do "any tricks" in
2115 * ssthresh(), which means that ca_state, lost bits and lost_out
2116 * counter would have to be faked before the call occurs. We
2117 * consider that too expensive, unlikely and hacky, so modules
2118 * using these in ssthresh() must deal these incompatibility
2119 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2120 */
2121 tcp_ca_event(sk, CA_EVENT_FRTO);
2122 }
2123
2124 tp->undo_marker = tp->snd_una;
2125 tp->undo_retrans = 0;
2126
2127 skb = tcp_write_queue_head(sk);
2128 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2129 tp->undo_marker = 0;
2130 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2131 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2132 tp->retrans_out -= tcp_skb_pcount(skb);
2133 }
2134 tcp_verify_left_out(tp);
2135
2136 /* Too bad if TCP was application limited */
2137 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2138
2139 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2140 * The last condition is necessary at least in tp->frto_counter case.
2141 */
2142 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2143 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2144 after(tp->high_seq, tp->snd_una)) {
2145 tp->frto_highmark = tp->high_seq;
2146 } else {
2147 tp->frto_highmark = tp->snd_nxt;
2148 }
2149 tcp_set_ca_state(sk, TCP_CA_Disorder);
2150 tp->high_seq = tp->snd_nxt;
2151 tp->frto_counter = 1;
2152 }
2153
2154 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2155 * which indicates that we should follow the traditional RTO recovery,
2156 * i.e. mark everything lost and do go-back-N retransmission.
2157 */
2158 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2159 {
2160 struct tcp_sock *tp = tcp_sk(sk);
2161 struct sk_buff *skb;
2162
2163 tp->lost_out = 0;
2164 tp->retrans_out = 0;
2165 if (tcp_is_reno(tp))
2166 tcp_reset_reno_sack(tp);
2167
2168 tcp_for_write_queue(skb, sk) {
2169 if (skb == tcp_send_head(sk))
2170 break;
2171
2172 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2173 /*
2174 * Count the retransmission made on RTO correctly (only when
2175 * waiting for the first ACK and did not get it)...
2176 */
2177 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2178 /* For some reason this R-bit might get cleared? */
2179 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2180 tp->retrans_out += tcp_skb_pcount(skb);
2181 /* ...enter this if branch just for the first segment */
2182 flag |= FLAG_DATA_ACKED;
2183 } else {
2184 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2185 tp->undo_marker = 0;
2186 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2187 }
2188
2189 /* Marking forward transmissions that were made after RTO lost
2190 * can cause unnecessary retransmissions in some scenarios,
2191 * SACK blocks will mitigate that in some but not in all cases.
2192 * We used to not mark them but it was causing break-ups with
2193 * receivers that do only in-order receival.
2194 *
2195 * TODO: we could detect presence of such receiver and select
2196 * different behavior per flow.
2197 */
2198 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2199 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2200 tp->lost_out += tcp_skb_pcount(skb);
2201 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2202 }
2203 }
2204 tcp_verify_left_out(tp);
2205
2206 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2207 tp->snd_cwnd_cnt = 0;
2208 tp->snd_cwnd_stamp = tcp_time_stamp;
2209 tp->frto_counter = 0;
2210 tp->bytes_acked = 0;
2211
2212 tp->reordering = min_t(unsigned int, tp->reordering,
2213 sysctl_tcp_reordering);
2214 tcp_set_ca_state(sk, TCP_CA_Loss);
2215 tp->high_seq = tp->snd_nxt;
2216 TCP_ECN_queue_cwr(tp);
2217
2218 tcp_clear_all_retrans_hints(tp);
2219 }
2220
2221 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2222 {
2223 tp->retrans_out = 0;
2224 tp->lost_out = 0;
2225
2226 tp->undo_marker = 0;
2227 tp->undo_retrans = 0;
2228 }
2229
2230 void tcp_clear_retrans(struct tcp_sock *tp)
2231 {
2232 tcp_clear_retrans_partial(tp);
2233
2234 tp->fackets_out = 0;
2235 tp->sacked_out = 0;
2236 }
2237
2238 /* Enter Loss state. If "how" is not zero, forget all SACK information
2239 * and reset tags completely, otherwise preserve SACKs. If receiver
2240 * dropped its ofo queue, we will know this due to reneging detection.
2241 */
2242 void tcp_enter_loss(struct sock *sk, int how)
2243 {
2244 const struct inet_connection_sock *icsk = inet_csk(sk);
2245 struct tcp_sock *tp = tcp_sk(sk);
2246 struct sk_buff *skb;
2247
2248 /* Reduce ssthresh if it has not yet been made inside this window. */
2249 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2250 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2251 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2252 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2253 tcp_ca_event(sk, CA_EVENT_LOSS);
2254 }
2255 tp->snd_cwnd = 1;
2256 tp->snd_cwnd_cnt = 0;
2257 tp->snd_cwnd_stamp = tcp_time_stamp;
2258
2259 tp->bytes_acked = 0;
2260 tcp_clear_retrans_partial(tp);
2261
2262 if (tcp_is_reno(tp))
2263 tcp_reset_reno_sack(tp);
2264
2265 if (!how) {
2266 /* Push undo marker, if it was plain RTO and nothing
2267 * was retransmitted. */
2268 tp->undo_marker = tp->snd_una;
2269 } else {
2270 tp->sacked_out = 0;
2271 tp->fackets_out = 0;
2272 }
2273 tcp_clear_all_retrans_hints(tp);
2274
2275 tcp_for_write_queue(skb, sk) {
2276 if (skb == tcp_send_head(sk))
2277 break;
2278
2279 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2280 tp->undo_marker = 0;
2281 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2282 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2283 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2284 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2285 tp->lost_out += tcp_skb_pcount(skb);
2286 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2287 }
2288 }
2289 tcp_verify_left_out(tp);
2290
2291 tp->reordering = min_t(unsigned int, tp->reordering,
2292 sysctl_tcp_reordering);
2293 tcp_set_ca_state(sk, TCP_CA_Loss);
2294 tp->high_seq = tp->snd_nxt;
2295 TCP_ECN_queue_cwr(tp);
2296 /* Abort F-RTO algorithm if one is in progress */
2297 tp->frto_counter = 0;
2298 }
2299
2300 /* If ACK arrived pointing to a remembered SACK, it means that our
2301 * remembered SACKs do not reflect real state of receiver i.e.
2302 * receiver _host_ is heavily congested (or buggy).
2303 *
2304 * Do processing similar to RTO timeout.
2305 */
2306 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2307 {
2308 if (flag & FLAG_SACK_RENEGING) {
2309 struct inet_connection_sock *icsk = inet_csk(sk);
2310 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2311
2312 tcp_enter_loss(sk, 1);
2313 icsk->icsk_retransmits++;
2314 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2315 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2316 icsk->icsk_rto, TCP_RTO_MAX);
2317 return 1;
2318 }
2319 return 0;
2320 }
2321
2322 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2323 {
2324 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2325 }
2326
2327 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2328 * counter when SACK is enabled (without SACK, sacked_out is used for
2329 * that purpose).
2330 *
2331 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2332 * segments up to the highest received SACK block so far and holes in
2333 * between them.
2334 *
2335 * With reordering, holes may still be in flight, so RFC3517 recovery
2336 * uses pure sacked_out (total number of SACKed segments) even though
2337 * it violates the RFC that uses duplicate ACKs, often these are equal
2338 * but when e.g. out-of-window ACKs or packet duplication occurs,
2339 * they differ. Since neither occurs due to loss, TCP should really
2340 * ignore them.
2341 */
2342 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2343 {
2344 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2345 }
2346
2347 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2348 {
2349 struct tcp_sock *tp = tcp_sk(sk);
2350 unsigned long delay;
2351
2352 /* Delay early retransmit and entering fast recovery for
2353 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2354 * available, or RTO is scheduled to fire first.
2355 */
2356 if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2357 return false;
2358
2359 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2360 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2361 return false;
2362
2363 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2364 tp->early_retrans_delayed = 1;
2365 return true;
2366 }
2367
2368 static inline int tcp_skb_timedout(const struct sock *sk,
2369 const struct sk_buff *skb)
2370 {
2371 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2372 }
2373
2374 static inline int tcp_head_timedout(const struct sock *sk)
2375 {
2376 const struct tcp_sock *tp = tcp_sk(sk);
2377
2378 return tp->packets_out &&
2379 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2380 }
2381
2382 /* Linux NewReno/SACK/FACK/ECN state machine.
2383 * --------------------------------------
2384 *
2385 * "Open" Normal state, no dubious events, fast path.
2386 * "Disorder" In all the respects it is "Open",
2387 * but requires a bit more attention. It is entered when
2388 * we see some SACKs or dupacks. It is split of "Open"
2389 * mainly to move some processing from fast path to slow one.
2390 * "CWR" CWND was reduced due to some Congestion Notification event.
2391 * It can be ECN, ICMP source quench, local device congestion.
2392 * "Recovery" CWND was reduced, we are fast-retransmitting.
2393 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2394 *
2395 * tcp_fastretrans_alert() is entered:
2396 * - each incoming ACK, if state is not "Open"
2397 * - when arrived ACK is unusual, namely:
2398 * * SACK
2399 * * Duplicate ACK.
2400 * * ECN ECE.
2401 *
2402 * Counting packets in flight is pretty simple.
2403 *
2404 * in_flight = packets_out - left_out + retrans_out
2405 *
2406 * packets_out is SND.NXT-SND.UNA counted in packets.
2407 *
2408 * retrans_out is number of retransmitted segments.
2409 *
2410 * left_out is number of segments left network, but not ACKed yet.
2411 *
2412 * left_out = sacked_out + lost_out
2413 *
2414 * sacked_out: Packets, which arrived to receiver out of order
2415 * and hence not ACKed. With SACKs this number is simply
2416 * amount of SACKed data. Even without SACKs
2417 * it is easy to give pretty reliable estimate of this number,
2418 * counting duplicate ACKs.
2419 *
2420 * lost_out: Packets lost by network. TCP has no explicit
2421 * "loss notification" feedback from network (for now).
2422 * It means that this number can be only _guessed_.
2423 * Actually, it is the heuristics to predict lossage that
2424 * distinguishes different algorithms.
2425 *
2426 * F.e. after RTO, when all the queue is considered as lost,
2427 * lost_out = packets_out and in_flight = retrans_out.
2428 *
2429 * Essentially, we have now two algorithms counting
2430 * lost packets.
2431 *
2432 * FACK: It is the simplest heuristics. As soon as we decided
2433 * that something is lost, we decide that _all_ not SACKed
2434 * packets until the most forward SACK are lost. I.e.
2435 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2436 * It is absolutely correct estimate, if network does not reorder
2437 * packets. And it loses any connection to reality when reordering
2438 * takes place. We use FACK by default until reordering
2439 * is suspected on the path to this destination.
2440 *
2441 * NewReno: when Recovery is entered, we assume that one segment
2442 * is lost (classic Reno). While we are in Recovery and
2443 * a partial ACK arrives, we assume that one more packet
2444 * is lost (NewReno). This heuristics are the same in NewReno
2445 * and SACK.
2446 *
2447 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2448 * deflation etc. CWND is real congestion window, never inflated, changes
2449 * only according to classic VJ rules.
2450 *
2451 * Really tricky (and requiring careful tuning) part of algorithm
2452 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2453 * The first determines the moment _when_ we should reduce CWND and,
2454 * hence, slow down forward transmission. In fact, it determines the moment
2455 * when we decide that hole is caused by loss, rather than by a reorder.
2456 *
2457 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2458 * holes, caused by lost packets.
2459 *
2460 * And the most logically complicated part of algorithm is undo
2461 * heuristics. We detect false retransmits due to both too early
2462 * fast retransmit (reordering) and underestimated RTO, analyzing
2463 * timestamps and D-SACKs. When we detect that some segments were
2464 * retransmitted by mistake and CWND reduction was wrong, we undo
2465 * window reduction and abort recovery phase. This logic is hidden
2466 * inside several functions named tcp_try_undo_<something>.
2467 */
2468
2469 /* This function decides, when we should leave Disordered state
2470 * and enter Recovery phase, reducing congestion window.
2471 *
2472 * Main question: may we further continue forward transmission
2473 * with the same cwnd?
2474 */
2475 static int tcp_time_to_recover(struct sock *sk, int flag)
2476 {
2477 struct tcp_sock *tp = tcp_sk(sk);
2478 __u32 packets_out;
2479
2480 /* Do not perform any recovery during F-RTO algorithm */
2481 if (tp->frto_counter)
2482 return 0;
2483
2484 /* Trick#1: The loss is proven. */
2485 if (tp->lost_out)
2486 return 1;
2487
2488 /* Not-A-Trick#2 : Classic rule... */
2489 if (tcp_dupack_heuristics(tp) > tp->reordering)
2490 return 1;
2491
2492 /* Trick#3 : when we use RFC2988 timer restart, fast
2493 * retransmit can be triggered by timeout of queue head.
2494 */
2495 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2496 return 1;
2497
2498 /* Trick#4: It is still not OK... But will it be useful to delay
2499 * recovery more?
2500 */
2501 packets_out = tp->packets_out;
2502 if (packets_out <= tp->reordering &&
2503 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2504 !tcp_may_send_now(sk)) {
2505 /* We have nothing to send. This connection is limited
2506 * either by receiver window or by application.
2507 */
2508 return 1;
2509 }
2510
2511 /* If a thin stream is detected, retransmit after first
2512 * received dupack. Employ only if SACK is supported in order
2513 * to avoid possible corner-case series of spurious retransmissions
2514 * Use only if there are no unsent data.
2515 */
2516 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2517 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2518 tcp_is_sack(tp) && !tcp_send_head(sk))
2519 return 1;
2520
2521 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2522 * retransmissions due to small network reorderings, we implement
2523 * Mitigation A.3 in the RFC and delay the retransmission for a short
2524 * interval if appropriate.
2525 */
2526 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2527 (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2528 !tcp_may_send_now(sk))
2529 return !tcp_pause_early_retransmit(sk, flag);
2530
2531 return 0;
2532 }
2533
2534 /* New heuristics: it is possible only after we switched to restart timer
2535 * each time when something is ACKed. Hence, we can detect timed out packets
2536 * during fast retransmit without falling to slow start.
2537 *
2538 * Usefulness of this as is very questionable, since we should know which of
2539 * the segments is the next to timeout which is relatively expensive to find
2540 * in general case unless we add some data structure just for that. The
2541 * current approach certainly won't find the right one too often and when it
2542 * finally does find _something_ it usually marks large part of the window
2543 * right away (because a retransmission with a larger timestamp blocks the
2544 * loop from advancing). -ij
2545 */
2546 static void tcp_timeout_skbs(struct sock *sk)
2547 {
2548 struct tcp_sock *tp = tcp_sk(sk);
2549 struct sk_buff *skb;
2550
2551 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2552 return;
2553
2554 skb = tp->scoreboard_skb_hint;
2555 if (tp->scoreboard_skb_hint == NULL)
2556 skb = tcp_write_queue_head(sk);
2557
2558 tcp_for_write_queue_from(skb, sk) {
2559 if (skb == tcp_send_head(sk))
2560 break;
2561 if (!tcp_skb_timedout(sk, skb))
2562 break;
2563
2564 tcp_skb_mark_lost(tp, skb);
2565 }
2566
2567 tp->scoreboard_skb_hint = skb;
2568
2569 tcp_verify_left_out(tp);
2570 }
2571
2572 /* Detect loss in event "A" above by marking head of queue up as lost.
2573 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2574 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2575 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2576 * the maximum SACKed segments to pass before reaching this limit.
2577 */
2578 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2579 {
2580 struct tcp_sock *tp = tcp_sk(sk);
2581 struct sk_buff *skb;
2582 int cnt, oldcnt;
2583 int err;
2584 unsigned int mss;
2585 /* Use SACK to deduce losses of new sequences sent during recovery */
2586 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2587
2588 WARN_ON(packets > tp->packets_out);
2589 if (tp->lost_skb_hint) {
2590 skb = tp->lost_skb_hint;
2591 cnt = tp->lost_cnt_hint;
2592 /* Head already handled? */
2593 if (mark_head && skb != tcp_write_queue_head(sk))
2594 return;
2595 } else {
2596 skb = tcp_write_queue_head(sk);
2597 cnt = 0;
2598 }
2599
2600 tcp_for_write_queue_from(skb, sk) {
2601 if (skb == tcp_send_head(sk))
2602 break;
2603 /* TODO: do this better */
2604 /* this is not the most efficient way to do this... */
2605 tp->lost_skb_hint = skb;
2606 tp->lost_cnt_hint = cnt;
2607
2608 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2609 break;
2610
2611 oldcnt = cnt;
2612 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2613 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2614 cnt += tcp_skb_pcount(skb);
2615
2616 if (cnt > packets) {
2617 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2618 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2619 (oldcnt >= packets))
2620 break;
2621
2622 mss = skb_shinfo(skb)->gso_size;
2623 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2624 if (err < 0)
2625 break;
2626 cnt = packets;
2627 }
2628
2629 tcp_skb_mark_lost(tp, skb);
2630
2631 if (mark_head)
2632 break;
2633 }
2634 tcp_verify_left_out(tp);
2635 }
2636
2637 /* Account newly detected lost packet(s) */
2638
2639 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2640 {
2641 struct tcp_sock *tp = tcp_sk(sk);
2642
2643 if (tcp_is_reno(tp)) {
2644 tcp_mark_head_lost(sk, 1, 1);
2645 } else if (tcp_is_fack(tp)) {
2646 int lost = tp->fackets_out - tp->reordering;
2647 if (lost <= 0)
2648 lost = 1;
2649 tcp_mark_head_lost(sk, lost, 0);
2650 } else {
2651 int sacked_upto = tp->sacked_out - tp->reordering;
2652 if (sacked_upto >= 0)
2653 tcp_mark_head_lost(sk, sacked_upto, 0);
2654 else if (fast_rexmit)
2655 tcp_mark_head_lost(sk, 1, 1);
2656 }
2657
2658 tcp_timeout_skbs(sk);
2659 }
2660
2661 /* CWND moderation, preventing bursts due to too big ACKs
2662 * in dubious situations.
2663 */
2664 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2665 {
2666 tp->snd_cwnd = min(tp->snd_cwnd,
2667 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2668 tp->snd_cwnd_stamp = tcp_time_stamp;
2669 }
2670
2671 /* Lower bound on congestion window is slow start threshold
2672 * unless congestion avoidance choice decides to overide it.
2673 */
2674 static inline u32 tcp_cwnd_min(const struct sock *sk)
2675 {
2676 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2677
2678 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2679 }
2680
2681 /* Decrease cwnd each second ack. */
2682 static void tcp_cwnd_down(struct sock *sk, int flag)
2683 {
2684 struct tcp_sock *tp = tcp_sk(sk);
2685 int decr = tp->snd_cwnd_cnt + 1;
2686
2687 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2688 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2689 tp->snd_cwnd_cnt = decr & 1;
2690 decr >>= 1;
2691
2692 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2693 tp->snd_cwnd -= decr;
2694
2695 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2696 tp->snd_cwnd_stamp = tcp_time_stamp;
2697 }
2698 }
2699
2700 /* Nothing was retransmitted or returned timestamp is less
2701 * than timestamp of the first retransmission.
2702 */
2703 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2704 {
2705 return !tp->retrans_stamp ||
2706 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2707 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2708 }
2709
2710 /* Undo procedures. */
2711
2712 #if FASTRETRANS_DEBUG > 1
2713 static void DBGUNDO(struct sock *sk, const char *msg)
2714 {
2715 struct tcp_sock *tp = tcp_sk(sk);
2716 struct inet_sock *inet = inet_sk(sk);
2717
2718 if (sk->sk_family == AF_INET) {
2719 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2720 msg,
2721 &inet->inet_daddr, ntohs(inet->inet_dport),
2722 tp->snd_cwnd, tcp_left_out(tp),
2723 tp->snd_ssthresh, tp->prior_ssthresh,
2724 tp->packets_out);
2725 }
2726 #if IS_ENABLED(CONFIG_IPV6)
2727 else if (sk->sk_family == AF_INET6) {
2728 struct ipv6_pinfo *np = inet6_sk(sk);
2729 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2730 msg,
2731 &np->daddr, ntohs(inet->inet_dport),
2732 tp->snd_cwnd, tcp_left_out(tp),
2733 tp->snd_ssthresh, tp->prior_ssthresh,
2734 tp->packets_out);
2735 }
2736 #endif
2737 }
2738 #else
2739 #define DBGUNDO(x...) do { } while (0)
2740 #endif
2741
2742 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2743 {
2744 struct tcp_sock *tp = tcp_sk(sk);
2745
2746 if (tp->prior_ssthresh) {
2747 const struct inet_connection_sock *icsk = inet_csk(sk);
2748
2749 if (icsk->icsk_ca_ops->undo_cwnd)
2750 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2751 else
2752 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2753
2754 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2755 tp->snd_ssthresh = tp->prior_ssthresh;
2756 TCP_ECN_withdraw_cwr(tp);
2757 }
2758 } else {
2759 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2760 }
2761 tp->snd_cwnd_stamp = tcp_time_stamp;
2762 }
2763
2764 static inline int tcp_may_undo(const struct tcp_sock *tp)
2765 {
2766 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2767 }
2768
2769 /* People celebrate: "We love our President!" */
2770 static int tcp_try_undo_recovery(struct sock *sk)
2771 {
2772 struct tcp_sock *tp = tcp_sk(sk);
2773
2774 if (tcp_may_undo(tp)) {
2775 int mib_idx;
2776
2777 /* Happy end! We did not retransmit anything
2778 * or our original transmission succeeded.
2779 */
2780 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2781 tcp_undo_cwr(sk, true);
2782 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2783 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2784 else
2785 mib_idx = LINUX_MIB_TCPFULLUNDO;
2786
2787 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2788 tp->undo_marker = 0;
2789 }
2790 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2791 /* Hold old state until something *above* high_seq
2792 * is ACKed. For Reno it is MUST to prevent false
2793 * fast retransmits (RFC2582). SACK TCP is safe. */
2794 tcp_moderate_cwnd(tp);
2795 return 1;
2796 }
2797 tcp_set_ca_state(sk, TCP_CA_Open);
2798 return 0;
2799 }
2800
2801 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2802 static void tcp_try_undo_dsack(struct sock *sk)
2803 {
2804 struct tcp_sock *tp = tcp_sk(sk);
2805
2806 if (tp->undo_marker && !tp->undo_retrans) {
2807 DBGUNDO(sk, "D-SACK");
2808 tcp_undo_cwr(sk, true);
2809 tp->undo_marker = 0;
2810 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2811 }
2812 }
2813
2814 /* We can clear retrans_stamp when there are no retransmissions in the
2815 * window. It would seem that it is trivially available for us in
2816 * tp->retrans_out, however, that kind of assumptions doesn't consider
2817 * what will happen if errors occur when sending retransmission for the
2818 * second time. ...It could the that such segment has only
2819 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2820 * the head skb is enough except for some reneging corner cases that
2821 * are not worth the effort.
2822 *
2823 * Main reason for all this complexity is the fact that connection dying
2824 * time now depends on the validity of the retrans_stamp, in particular,
2825 * that successive retransmissions of a segment must not advance
2826 * retrans_stamp under any conditions.
2827 */
2828 static int tcp_any_retrans_done(const struct sock *sk)
2829 {
2830 const struct tcp_sock *tp = tcp_sk(sk);
2831 struct sk_buff *skb;
2832
2833 if (tp->retrans_out)
2834 return 1;
2835
2836 skb = tcp_write_queue_head(sk);
2837 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2838 return 1;
2839
2840 return 0;
2841 }
2842
2843 /* Undo during fast recovery after partial ACK. */
2844
2845 static int tcp_try_undo_partial(struct sock *sk, int acked)
2846 {
2847 struct tcp_sock *tp = tcp_sk(sk);
2848 /* Partial ACK arrived. Force Hoe's retransmit. */
2849 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2850
2851 if (tcp_may_undo(tp)) {
2852 /* Plain luck! Hole if filled with delayed
2853 * packet, rather than with a retransmit.
2854 */
2855 if (!tcp_any_retrans_done(sk))
2856 tp->retrans_stamp = 0;
2857
2858 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2859
2860 DBGUNDO(sk, "Hoe");
2861 tcp_undo_cwr(sk, false);
2862 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2863
2864 /* So... Do not make Hoe's retransmit yet.
2865 * If the first packet was delayed, the rest
2866 * ones are most probably delayed as well.
2867 */
2868 failed = 0;
2869 }
2870 return failed;
2871 }
2872
2873 /* Undo during loss recovery after partial ACK. */
2874 static int tcp_try_undo_loss(struct sock *sk)
2875 {
2876 struct tcp_sock *tp = tcp_sk(sk);
2877
2878 if (tcp_may_undo(tp)) {
2879 struct sk_buff *skb;
2880 tcp_for_write_queue(skb, sk) {
2881 if (skb == tcp_send_head(sk))
2882 break;
2883 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2884 }
2885
2886 tcp_clear_all_retrans_hints(tp);
2887
2888 DBGUNDO(sk, "partial loss");
2889 tp->lost_out = 0;
2890 tcp_undo_cwr(sk, true);
2891 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2892 inet_csk(sk)->icsk_retransmits = 0;
2893 tp->undo_marker = 0;
2894 if (tcp_is_sack(tp))
2895 tcp_set_ca_state(sk, TCP_CA_Open);
2896 return 1;
2897 }
2898 return 0;
2899 }
2900
2901 static inline void tcp_complete_cwr(struct sock *sk)
2902 {
2903 struct tcp_sock *tp = tcp_sk(sk);
2904
2905 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2906 if (tp->undo_marker) {
2907 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2908 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2909 else /* PRR */
2910 tp->snd_cwnd = tp->snd_ssthresh;
2911 tp->snd_cwnd_stamp = tcp_time_stamp;
2912 }
2913 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2914 }
2915
2916 static void tcp_try_keep_open(struct sock *sk)
2917 {
2918 struct tcp_sock *tp = tcp_sk(sk);
2919 int state = TCP_CA_Open;
2920
2921 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2922 state = TCP_CA_Disorder;
2923
2924 if (inet_csk(sk)->icsk_ca_state != state) {
2925 tcp_set_ca_state(sk, state);
2926 tp->high_seq = tp->snd_nxt;
2927 }
2928 }
2929
2930 static void tcp_try_to_open(struct sock *sk, int flag)
2931 {
2932 struct tcp_sock *tp = tcp_sk(sk);
2933
2934 tcp_verify_left_out(tp);
2935
2936 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2937 tp->retrans_stamp = 0;
2938
2939 if (flag & FLAG_ECE)
2940 tcp_enter_cwr(sk, 1);
2941
2942 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2943 tcp_try_keep_open(sk);
2944 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2945 tcp_moderate_cwnd(tp);
2946 } else {
2947 tcp_cwnd_down(sk, flag);
2948 }
2949 }
2950
2951 static void tcp_mtup_probe_failed(struct sock *sk)
2952 {
2953 struct inet_connection_sock *icsk = inet_csk(sk);
2954
2955 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2956 icsk->icsk_mtup.probe_size = 0;
2957 }
2958
2959 static void tcp_mtup_probe_success(struct sock *sk)
2960 {
2961 struct tcp_sock *tp = tcp_sk(sk);
2962 struct inet_connection_sock *icsk = inet_csk(sk);
2963
2964 /* FIXME: breaks with very large cwnd */
2965 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2966 tp->snd_cwnd = tp->snd_cwnd *
2967 tcp_mss_to_mtu(sk, tp->mss_cache) /
2968 icsk->icsk_mtup.probe_size;
2969 tp->snd_cwnd_cnt = 0;
2970 tp->snd_cwnd_stamp = tcp_time_stamp;
2971 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2972
2973 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2974 icsk->icsk_mtup.probe_size = 0;
2975 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2976 }
2977
2978 /* Do a simple retransmit without using the backoff mechanisms in
2979 * tcp_timer. This is used for path mtu discovery.
2980 * The socket is already locked here.
2981 */
2982 void tcp_simple_retransmit(struct sock *sk)
2983 {
2984 const struct inet_connection_sock *icsk = inet_csk(sk);
2985 struct tcp_sock *tp = tcp_sk(sk);
2986 struct sk_buff *skb;
2987 unsigned int mss = tcp_current_mss(sk);
2988 u32 prior_lost = tp->lost_out;
2989
2990 tcp_for_write_queue(skb, sk) {
2991 if (skb == tcp_send_head(sk))
2992 break;
2993 if (tcp_skb_seglen(skb) > mss &&
2994 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2995 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2996 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2997 tp->retrans_out -= tcp_skb_pcount(skb);
2998 }
2999 tcp_skb_mark_lost_uncond_verify(tp, skb);
3000 }
3001 }
3002
3003 tcp_clear_retrans_hints_partial(tp);
3004
3005 if (prior_lost == tp->lost_out)
3006 return;
3007
3008 if (tcp_is_reno(tp))
3009 tcp_limit_reno_sacked(tp);
3010
3011 tcp_verify_left_out(tp);
3012
3013 /* Don't muck with the congestion window here.
3014 * Reason is that we do not increase amount of _data_
3015 * in network, but units changed and effective
3016 * cwnd/ssthresh really reduced now.
3017 */
3018 if (icsk->icsk_ca_state != TCP_CA_Loss) {
3019 tp->high_seq = tp->snd_nxt;
3020 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3021 tp->prior_ssthresh = 0;
3022 tp->undo_marker = 0;
3023 tcp_set_ca_state(sk, TCP_CA_Loss);
3024 }
3025 tcp_xmit_retransmit_queue(sk);
3026 }
3027 EXPORT_SYMBOL(tcp_simple_retransmit);
3028
3029 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
3030 * (proportional rate reduction with slow start reduction bound) as described in
3031 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3032 * It computes the number of packets to send (sndcnt) based on packets newly
3033 * delivered:
3034 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
3035 * cwnd reductions across a full RTT.
3036 * 2) If packets in flight is lower than ssthresh (such as due to excess
3037 * losses and/or application stalls), do not perform any further cwnd
3038 * reductions, but instead slow start up to ssthresh.
3039 */
3040 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3041 int fast_rexmit, int flag)
3042 {
3043 struct tcp_sock *tp = tcp_sk(sk);
3044 int sndcnt = 0;
3045 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3046
3047 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3048 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3049 tp->prior_cwnd - 1;
3050 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3051 } else {
3052 sndcnt = min_t(int, delta,
3053 max_t(int, tp->prr_delivered - tp->prr_out,
3054 newly_acked_sacked) + 1);
3055 }
3056
3057 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3058 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3059 }
3060
3061 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
3062 {
3063 struct tcp_sock *tp = tcp_sk(sk);
3064 int mib_idx;
3065
3066 if (tcp_is_reno(tp))
3067 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3068 else
3069 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3070
3071 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3072
3073 tp->high_seq = tp->snd_nxt;
3074 tp->prior_ssthresh = 0;
3075 tp->undo_marker = tp->snd_una;
3076 tp->undo_retrans = tp->retrans_out;
3077
3078 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
3079 if (!ece_ack)
3080 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3081 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
3082 TCP_ECN_queue_cwr(tp);
3083 }
3084
3085 tp->bytes_acked = 0;
3086 tp->snd_cwnd_cnt = 0;
3087 tp->prior_cwnd = tp->snd_cwnd;
3088 tp->prr_delivered = 0;
3089 tp->prr_out = 0;
3090 tcp_set_ca_state(sk, TCP_CA_Recovery);
3091 }
3092
3093 /* Process an event, which can update packets-in-flight not trivially.
3094 * Main goal of this function is to calculate new estimate for left_out,
3095 * taking into account both packets sitting in receiver's buffer and
3096 * packets lost by network.
3097 *
3098 * Besides that it does CWND reduction, when packet loss is detected
3099 * and changes state of machine.
3100 *
3101 * It does _not_ decide what to send, it is made in function
3102 * tcp_xmit_retransmit_queue().
3103 */
3104 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3105 int newly_acked_sacked, bool is_dupack,
3106 int flag)
3107 {
3108 struct inet_connection_sock *icsk = inet_csk(sk);
3109 struct tcp_sock *tp = tcp_sk(sk);
3110 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3111 (tcp_fackets_out(tp) > tp->reordering));
3112 int fast_rexmit = 0;
3113
3114 if (WARN_ON(!tp->packets_out && tp->sacked_out))
3115 tp->sacked_out = 0;
3116 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3117 tp->fackets_out = 0;
3118
3119 /* Now state machine starts.
3120 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3121 if (flag & FLAG_ECE)
3122 tp->prior_ssthresh = 0;
3123
3124 /* B. In all the states check for reneging SACKs. */
3125 if (tcp_check_sack_reneging(sk, flag))
3126 return;
3127
3128 /* C. Check consistency of the current state. */
3129 tcp_verify_left_out(tp);
3130
3131 /* D. Check state exit conditions. State can be terminated
3132 * when high_seq is ACKed. */
3133 if (icsk->icsk_ca_state == TCP_CA_Open) {
3134 WARN_ON(tp->retrans_out != 0);
3135 tp->retrans_stamp = 0;
3136 } else if (!before(tp->snd_una, tp->high_seq)) {
3137 switch (icsk->icsk_ca_state) {
3138 case TCP_CA_Loss:
3139 icsk->icsk_retransmits = 0;
3140 if (tcp_try_undo_recovery(sk))
3141 return;
3142 break;
3143
3144 case TCP_CA_CWR:
3145 /* CWR is to be held something *above* high_seq
3146 * is ACKed for CWR bit to reach receiver. */
3147 if (tp->snd_una != tp->high_seq) {
3148 tcp_complete_cwr(sk);
3149 tcp_set_ca_state(sk, TCP_CA_Open);
3150 }
3151 break;
3152
3153 case TCP_CA_Recovery:
3154 if (tcp_is_reno(tp))
3155 tcp_reset_reno_sack(tp);
3156 if (tcp_try_undo_recovery(sk))
3157 return;
3158 tcp_complete_cwr(sk);
3159 break;
3160 }
3161 }
3162
3163 /* E. Process state. */
3164 switch (icsk->icsk_ca_state) {
3165 case TCP_CA_Recovery:
3166 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3167 if (tcp_is_reno(tp) && is_dupack)
3168 tcp_add_reno_sack(sk);
3169 } else
3170 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3171 break;
3172 case TCP_CA_Loss:
3173 if (flag & FLAG_DATA_ACKED)
3174 icsk->icsk_retransmits = 0;
3175 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3176 tcp_reset_reno_sack(tp);
3177 if (!tcp_try_undo_loss(sk)) {
3178 tcp_moderate_cwnd(tp);
3179 tcp_xmit_retransmit_queue(sk);
3180 return;
3181 }
3182 if (icsk->icsk_ca_state != TCP_CA_Open)
3183 return;
3184 /* Loss is undone; fall through to processing in Open state. */
3185 default:
3186 if (tcp_is_reno(tp)) {
3187 if (flag & FLAG_SND_UNA_ADVANCED)
3188 tcp_reset_reno_sack(tp);
3189 if (is_dupack)
3190 tcp_add_reno_sack(sk);
3191 }
3192
3193 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3194 tcp_try_undo_dsack(sk);
3195
3196 if (!tcp_time_to_recover(sk, flag)) {
3197 tcp_try_to_open(sk, flag);
3198 return;
3199 }
3200
3201 /* MTU probe failure: don't reduce cwnd */
3202 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3203 icsk->icsk_mtup.probe_size &&
3204 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3205 tcp_mtup_probe_failed(sk);
3206 /* Restores the reduction we did in tcp_mtup_probe() */
3207 tp->snd_cwnd++;
3208 tcp_simple_retransmit(sk);
3209 return;
3210 }
3211
3212 /* Otherwise enter Recovery state */
3213 tcp_enter_recovery(sk, (flag & FLAG_ECE));
3214 fast_rexmit = 1;
3215 }
3216
3217 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3218 tcp_update_scoreboard(sk, fast_rexmit);
3219 tp->prr_delivered += newly_acked_sacked;
3220 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3221 tcp_xmit_retransmit_queue(sk);
3222 }
3223
3224 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3225 {
3226 tcp_rtt_estimator(sk, seq_rtt);
3227 tcp_set_rto(sk);
3228 inet_csk(sk)->icsk_backoff = 0;
3229 }
3230 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3231
3232 /* Read draft-ietf-tcplw-high-performance before mucking
3233 * with this code. (Supersedes RFC1323)
3234 */
3235 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3236 {
3237 /* RTTM Rule: A TSecr value received in a segment is used to
3238 * update the averaged RTT measurement only if the segment
3239 * acknowledges some new data, i.e., only if it advances the
3240 * left edge of the send window.
3241 *
3242 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3243 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3244 *
3245 * Changed: reset backoff as soon as we see the first valid sample.
3246 * If we do not, we get strongly overestimated rto. With timestamps
3247 * samples are accepted even from very old segments: f.e., when rtt=1
3248 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3249 * answer arrives rto becomes 120 seconds! If at least one of segments
3250 * in window is lost... Voila. --ANK (010210)
3251 */
3252 struct tcp_sock *tp = tcp_sk(sk);
3253
3254 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3255 }
3256
3257 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3258 {
3259 /* We don't have a timestamp. Can only use
3260 * packets that are not retransmitted to determine
3261 * rtt estimates. Also, we must not reset the
3262 * backoff for rto until we get a non-retransmitted
3263 * packet. This allows us to deal with a situation
3264 * where the network delay has increased suddenly.
3265 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3266 */
3267
3268 if (flag & FLAG_RETRANS_DATA_ACKED)
3269 return;
3270
3271 tcp_valid_rtt_meas(sk, seq_rtt);
3272 }
3273
3274 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3275 const s32 seq_rtt)
3276 {
3277 const struct tcp_sock *tp = tcp_sk(sk);
3278 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3279 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3280 tcp_ack_saw_tstamp(sk, flag);
3281 else if (seq_rtt >= 0)
3282 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3283 }
3284
3285 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3286 {
3287 const struct inet_connection_sock *icsk = inet_csk(sk);
3288 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3289 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3290 }
3291
3292 /* Restart timer after forward progress on connection.
3293 * RFC2988 recommends to restart timer to now+rto.
3294 */
3295 void tcp_rearm_rto(struct sock *sk)
3296 {
3297 struct tcp_sock *tp = tcp_sk(sk);
3298
3299 if (!tp->packets_out) {
3300 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3301 } else {
3302 u32 rto = inet_csk(sk)->icsk_rto;
3303 /* Offset the time elapsed after installing regular RTO */
3304 if (tp->early_retrans_delayed) {
3305 struct sk_buff *skb = tcp_write_queue_head(sk);
3306 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3307 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3308 /* delta may not be positive if the socket is locked
3309 * when the delayed ER timer fires and is rescheduled.
3310 */
3311 if (delta > 0)
3312 rto = delta;
3313 }
3314 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3315 TCP_RTO_MAX);
3316 }
3317 tp->early_retrans_delayed = 0;
3318 }
3319
3320 /* This function is called when the delayed ER timer fires. TCP enters
3321 * fast recovery and performs fast-retransmit.
3322 */
3323 void tcp_resume_early_retransmit(struct sock *sk)
3324 {
3325 struct tcp_sock *tp = tcp_sk(sk);
3326
3327 tcp_rearm_rto(sk);
3328
3329 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3330 if (!tp->do_early_retrans)
3331 return;
3332
3333 tcp_enter_recovery(sk, false);
3334 tcp_update_scoreboard(sk, 1);
3335 tcp_xmit_retransmit_queue(sk);
3336 }
3337
3338 /* If we get here, the whole TSO packet has not been acked. */
3339 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3340 {
3341 struct tcp_sock *tp = tcp_sk(sk);
3342 u32 packets_acked;
3343
3344 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3345
3346 packets_acked = tcp_skb_pcount(skb);
3347 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3348 return 0;
3349 packets_acked -= tcp_skb_pcount(skb);
3350
3351 if (packets_acked) {
3352 BUG_ON(tcp_skb_pcount(skb) == 0);
3353 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3354 }
3355
3356 return packets_acked;
3357 }
3358
3359 /* Remove acknowledged frames from the retransmission queue. If our packet
3360 * is before the ack sequence we can discard it as it's confirmed to have
3361 * arrived at the other end.
3362 */
3363 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3364 u32 prior_snd_una)
3365 {
3366 struct tcp_sock *tp = tcp_sk(sk);
3367 const struct inet_connection_sock *icsk = inet_csk(sk);
3368 struct sk_buff *skb;
3369 u32 now = tcp_time_stamp;
3370 int fully_acked = 1;
3371 int flag = 0;
3372 u32 pkts_acked = 0;
3373 u32 reord = tp->packets_out;
3374 u32 prior_sacked = tp->sacked_out;
3375 s32 seq_rtt = -1;
3376 s32 ca_seq_rtt = -1;
3377 ktime_t last_ackt = net_invalid_timestamp();
3378
3379 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3380 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3381 u32 acked_pcount;
3382 u8 sacked = scb->sacked;
3383
3384 /* Determine how many packets and what bytes were acked, tso and else */
3385 if (after(scb->end_seq, tp->snd_una)) {
3386 if (tcp_skb_pcount(skb) == 1 ||
3387 !after(tp->snd_una, scb->seq))
3388 break;
3389
3390 acked_pcount = tcp_tso_acked(sk, skb);
3391 if (!acked_pcount)
3392 break;
3393
3394 fully_acked = 0;
3395 } else {
3396 acked_pcount = tcp_skb_pcount(skb);
3397 }
3398
3399 if (sacked & TCPCB_RETRANS) {
3400 if (sacked & TCPCB_SACKED_RETRANS)
3401 tp->retrans_out -= acked_pcount;
3402 flag |= FLAG_RETRANS_DATA_ACKED;
3403 ca_seq_rtt = -1;
3404 seq_rtt = -1;
3405 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3406 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3407 } else {
3408 ca_seq_rtt = now - scb->when;
3409 last_ackt = skb->tstamp;
3410 if (seq_rtt < 0) {
3411 seq_rtt = ca_seq_rtt;
3412 }
3413 if (!(sacked & TCPCB_SACKED_ACKED))
3414 reord = min(pkts_acked, reord);
3415 }
3416
3417 if (sacked & TCPCB_SACKED_ACKED)
3418 tp->sacked_out -= acked_pcount;
3419 if (sacked & TCPCB_LOST)
3420 tp->lost_out -= acked_pcount;
3421
3422 tp->packets_out -= acked_pcount;
3423 pkts_acked += acked_pcount;
3424
3425 /* Initial outgoing SYN's get put onto the write_queue
3426 * just like anything else we transmit. It is not
3427 * true data, and if we misinform our callers that
3428 * this ACK acks real data, we will erroneously exit
3429 * connection startup slow start one packet too
3430 * quickly. This is severely frowned upon behavior.
3431 */
3432 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3433 flag |= FLAG_DATA_ACKED;
3434 } else {
3435 flag |= FLAG_SYN_ACKED;
3436 tp->retrans_stamp = 0;
3437 }
3438
3439 if (!fully_acked)
3440 break;
3441
3442 tcp_unlink_write_queue(skb, sk);
3443 sk_wmem_free_skb(sk, skb);
3444 tp->scoreboard_skb_hint = NULL;
3445 if (skb == tp->retransmit_skb_hint)
3446 tp->retransmit_skb_hint = NULL;
3447 if (skb == tp->lost_skb_hint)
3448 tp->lost_skb_hint = NULL;
3449 }
3450
3451 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3452 tp->snd_up = tp->snd_una;
3453
3454 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3455 flag |= FLAG_SACK_RENEGING;
3456
3457 if (flag & FLAG_ACKED) {
3458 const struct tcp_congestion_ops *ca_ops
3459 = inet_csk(sk)->icsk_ca_ops;
3460
3461 if (unlikely(icsk->icsk_mtup.probe_size &&
3462 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3463 tcp_mtup_probe_success(sk);
3464 }
3465
3466 tcp_ack_update_rtt(sk, flag, seq_rtt);
3467 tcp_rearm_rto(sk);
3468
3469 if (tcp_is_reno(tp)) {
3470 tcp_remove_reno_sacks(sk, pkts_acked);
3471 } else {
3472 int delta;
3473
3474 /* Non-retransmitted hole got filled? That's reordering */
3475 if (reord < prior_fackets)
3476 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3477
3478 delta = tcp_is_fack(tp) ? pkts_acked :
3479 prior_sacked - tp->sacked_out;
3480 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3481 }
3482
3483 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3484
3485 if (ca_ops->pkts_acked) {
3486 s32 rtt_us = -1;
3487
3488 /* Is the ACK triggering packet unambiguous? */
3489 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3490 /* High resolution needed and available? */
3491 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3492 !ktime_equal(last_ackt,
3493 net_invalid_timestamp()))
3494 rtt_us = ktime_us_delta(ktime_get_real(),
3495 last_ackt);
3496 else if (ca_seq_rtt >= 0)
3497 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3498 }
3499
3500 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3501 }
3502 }
3503
3504 #if FASTRETRANS_DEBUG > 0
3505 WARN_ON((int)tp->sacked_out < 0);
3506 WARN_ON((int)tp->lost_out < 0);
3507 WARN_ON((int)tp->retrans_out < 0);
3508 if (!tp->packets_out && tcp_is_sack(tp)) {
3509 icsk = inet_csk(sk);
3510 if (tp->lost_out) {
3511 printk(KERN_DEBUG "Leak l=%u %d\n",
3512 tp->lost_out, icsk->icsk_ca_state);
3513 tp->lost_out = 0;
3514 }
3515 if (tp->sacked_out) {
3516 printk(KERN_DEBUG "Leak s=%u %d\n",
3517 tp->sacked_out, icsk->icsk_ca_state);
3518 tp->sacked_out = 0;
3519 }
3520 if (tp->retrans_out) {
3521 printk(KERN_DEBUG "Leak r=%u %d\n",
3522 tp->retrans_out, icsk->icsk_ca_state);
3523 tp->retrans_out = 0;
3524 }
3525 }
3526 #endif
3527 return flag;
3528 }
3529
3530 static void tcp_ack_probe(struct sock *sk)
3531 {
3532 const struct tcp_sock *tp = tcp_sk(sk);
3533 struct inet_connection_sock *icsk = inet_csk(sk);
3534
3535 /* Was it a usable window open? */
3536
3537 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3538 icsk->icsk_backoff = 0;
3539 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3540 /* Socket must be waked up by subsequent tcp_data_snd_check().
3541 * This function is not for random using!
3542 */
3543 } else {
3544 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3545 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3546 TCP_RTO_MAX);
3547 }
3548 }
3549
3550 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3551 {
3552 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3553 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3554 }
3555
3556 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3557 {
3558 const struct tcp_sock *tp = tcp_sk(sk);
3559 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3560 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3561 }
3562
3563 /* Check that window update is acceptable.
3564 * The function assumes that snd_una<=ack<=snd_next.
3565 */
3566 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3567 const u32 ack, const u32 ack_seq,
3568 const u32 nwin)
3569 {
3570 return after(ack, tp->snd_una) ||
3571 after(ack_seq, tp->snd_wl1) ||
3572 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3573 }
3574
3575 /* Update our send window.
3576 *
3577 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3578 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3579 */
3580 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3581 u32 ack_seq)
3582 {
3583 struct tcp_sock *tp = tcp_sk(sk);
3584 int flag = 0;
3585 u32 nwin = ntohs(tcp_hdr(skb)->window);
3586
3587 if (likely(!tcp_hdr(skb)->syn))
3588 nwin <<= tp->rx_opt.snd_wscale;
3589
3590 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3591 flag |= FLAG_WIN_UPDATE;
3592 tcp_update_wl(tp, ack_seq);
3593
3594 if (tp->snd_wnd != nwin) {
3595 tp->snd_wnd = nwin;
3596
3597 /* Note, it is the only place, where
3598 * fast path is recovered for sending TCP.
3599 */
3600 tp->pred_flags = 0;
3601 tcp_fast_path_check(sk);
3602
3603 if (nwin > tp->max_window) {
3604 tp->max_window = nwin;
3605 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3606 }
3607 }
3608 }
3609
3610 tp->snd_una = ack;
3611
3612 return flag;
3613 }
3614
3615 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3616 * continue in congestion avoidance.
3617 */
3618 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3619 {
3620 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3621 tp->snd_cwnd_cnt = 0;
3622 tp->bytes_acked = 0;
3623 TCP_ECN_queue_cwr(tp);
3624 tcp_moderate_cwnd(tp);
3625 }
3626
3627 /* A conservative spurious RTO response algorithm: reduce cwnd using
3628 * rate halving and continue in congestion avoidance.
3629 */
3630 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3631 {
3632 tcp_enter_cwr(sk, 0);
3633 }
3634
3635 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3636 {
3637 if (flag & FLAG_ECE)
3638 tcp_ratehalving_spur_to_response(sk);
3639 else
3640 tcp_undo_cwr(sk, true);
3641 }
3642
3643 /* F-RTO spurious RTO detection algorithm (RFC4138)
3644 *
3645 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3646 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3647 * window (but not to or beyond highest sequence sent before RTO):
3648 * On First ACK, send two new segments out.
3649 * On Second ACK, RTO was likely spurious. Do spurious response (response
3650 * algorithm is not part of the F-RTO detection algorithm
3651 * given in RFC4138 but can be selected separately).
3652 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3653 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3654 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3655 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3656 *
3657 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3658 * original window even after we transmit two new data segments.
3659 *
3660 * SACK version:
3661 * on first step, wait until first cumulative ACK arrives, then move to
3662 * the second step. In second step, the next ACK decides.
3663 *
3664 * F-RTO is implemented (mainly) in four functions:
3665 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3666 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3667 * called when tcp_use_frto() showed green light
3668 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3669 * - tcp_enter_frto_loss() is called if there is not enough evidence
3670 * to prove that the RTO is indeed spurious. It transfers the control
3671 * from F-RTO to the conventional RTO recovery
3672 */
3673 static int tcp_process_frto(struct sock *sk, int flag)
3674 {
3675 struct tcp_sock *tp = tcp_sk(sk);
3676
3677 tcp_verify_left_out(tp);
3678
3679 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3680 if (flag & FLAG_DATA_ACKED)
3681 inet_csk(sk)->icsk_retransmits = 0;
3682
3683 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3684 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3685 tp->undo_marker = 0;
3686
3687 if (!before(tp->snd_una, tp->frto_highmark)) {
3688 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3689 return 1;
3690 }
3691
3692 if (!tcp_is_sackfrto(tp)) {
3693 /* RFC4138 shortcoming in step 2; should also have case c):
3694 * ACK isn't duplicate nor advances window, e.g., opposite dir
3695 * data, winupdate
3696 */
3697 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3698 return 1;
3699
3700 if (!(flag & FLAG_DATA_ACKED)) {
3701 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3702 flag);
3703 return 1;
3704 }
3705 } else {
3706 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3707 /* Prevent sending of new data. */
3708 tp->snd_cwnd = min(tp->snd_cwnd,
3709 tcp_packets_in_flight(tp));
3710 return 1;
3711 }
3712
3713 if ((tp->frto_counter >= 2) &&
3714 (!(flag & FLAG_FORWARD_PROGRESS) ||
3715 ((flag & FLAG_DATA_SACKED) &&
3716 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3717 /* RFC4138 shortcoming (see comment above) */
3718 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3719 (flag & FLAG_NOT_DUP))
3720 return 1;
3721
3722 tcp_enter_frto_loss(sk, 3, flag);
3723 return 1;
3724 }
3725 }
3726
3727 if (tp->frto_counter == 1) {
3728 /* tcp_may_send_now needs to see updated state */
3729 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3730 tp->frto_counter = 2;
3731
3732 if (!tcp_may_send_now(sk))
3733 tcp_enter_frto_loss(sk, 2, flag);
3734
3735 return 1;
3736 } else {
3737 switch (sysctl_tcp_frto_response) {
3738 case 2:
3739 tcp_undo_spur_to_response(sk, flag);
3740 break;
3741 case 1:
3742 tcp_conservative_spur_to_response(tp);
3743 break;
3744 default:
3745 tcp_ratehalving_spur_to_response(sk);
3746 break;
3747 }
3748 tp->frto_counter = 0;
3749 tp->undo_marker = 0;
3750 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3751 }
3752 return 0;
3753 }
3754
3755 /* This routine deals with incoming acks, but not outgoing ones. */
3756 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3757 {
3758 struct inet_connection_sock *icsk = inet_csk(sk);
3759 struct tcp_sock *tp = tcp_sk(sk);
3760 u32 prior_snd_una = tp->snd_una;
3761 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3762 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3763 bool is_dupack = false;
3764 u32 prior_in_flight;
3765 u32 prior_fackets;
3766 int prior_packets;
3767 int prior_sacked = tp->sacked_out;
3768 int pkts_acked = 0;
3769 int newly_acked_sacked = 0;
3770 int frto_cwnd = 0;
3771
3772 /* If the ack is older than previous acks
3773 * then we can probably ignore it.
3774 */
3775 if (before(ack, prior_snd_una))
3776 goto old_ack;
3777
3778 /* If the ack includes data we haven't sent yet, discard
3779 * this segment (RFC793 Section 3.9).
3780 */
3781 if (after(ack, tp->snd_nxt))
3782 goto invalid_ack;
3783
3784 if (tp->early_retrans_delayed)
3785 tcp_rearm_rto(sk);
3786
3787 if (after(ack, prior_snd_una))
3788 flag |= FLAG_SND_UNA_ADVANCED;
3789
3790 if (sysctl_tcp_abc) {
3791 if (icsk->icsk_ca_state < TCP_CA_CWR)
3792 tp->bytes_acked += ack - prior_snd_una;
3793 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3794 /* we assume just one segment left network */
3795 tp->bytes_acked += min(ack - prior_snd_una,
3796 tp->mss_cache);
3797 }
3798
3799 prior_fackets = tp->fackets_out;
3800 prior_in_flight = tcp_packets_in_flight(tp);
3801
3802 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3803 /* Window is constant, pure forward advance.
3804 * No more checks are required.
3805 * Note, we use the fact that SND.UNA>=SND.WL2.
3806 */
3807 tcp_update_wl(tp, ack_seq);
3808 tp->snd_una = ack;
3809 flag |= FLAG_WIN_UPDATE;
3810
3811 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3812
3813 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3814 } else {
3815 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3816 flag |= FLAG_DATA;
3817 else
3818 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3819
3820 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3821
3822 if (TCP_SKB_CB(skb)->sacked)
3823 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3824
3825 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3826 flag |= FLAG_ECE;
3827
3828 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3829 }
3830
3831 /* We passed data and got it acked, remove any soft error
3832 * log. Something worked...
3833 */
3834 sk->sk_err_soft = 0;
3835 icsk->icsk_probes_out = 0;
3836 tp->rcv_tstamp = tcp_time_stamp;
3837 prior_packets = tp->packets_out;
3838 if (!prior_packets)
3839 goto no_queue;
3840
3841 /* See if we can take anything off of the retransmit queue. */
3842 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3843
3844 pkts_acked = prior_packets - tp->packets_out;
3845 newly_acked_sacked = (prior_packets - prior_sacked) -
3846 (tp->packets_out - tp->sacked_out);
3847
3848 if (tp->frto_counter)
3849 frto_cwnd = tcp_process_frto(sk, flag);
3850 /* Guarantee sacktag reordering detection against wrap-arounds */
3851 if (before(tp->frto_highmark, tp->snd_una))
3852 tp->frto_highmark = 0;
3853
3854 if (tcp_ack_is_dubious(sk, flag)) {
3855 /* Advance CWND, if state allows this. */
3856 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3857 tcp_may_raise_cwnd(sk, flag))
3858 tcp_cong_avoid(sk, ack, prior_in_flight);
3859 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3860 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3861 is_dupack, flag);
3862 } else {
3863 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3864 tcp_cong_avoid(sk, ack, prior_in_flight);
3865 }
3866
3867 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3868 dst_confirm(__sk_dst_get(sk));
3869
3870 return 1;
3871
3872 no_queue:
3873 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3874 if (flag & FLAG_DSACKING_ACK)
3875 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3876 is_dupack, flag);
3877 /* If this ack opens up a zero window, clear backoff. It was
3878 * being used to time the probes, and is probably far higher than
3879 * it needs to be for normal retransmission.
3880 */
3881 if (tcp_send_head(sk))
3882 tcp_ack_probe(sk);
3883 return 1;
3884
3885 invalid_ack:
3886 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3887 return -1;
3888
3889 old_ack:
3890 /* If data was SACKed, tag it and see if we should send more data.
3891 * If data was DSACKed, see if we can undo a cwnd reduction.
3892 */
3893 if (TCP_SKB_CB(skb)->sacked) {
3894 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3895 newly_acked_sacked = tp->sacked_out - prior_sacked;
3896 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3897 is_dupack, flag);
3898 }
3899
3900 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3901 return 0;
3902 }
3903
3904 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3905 * But, this can also be called on packets in the established flow when
3906 * the fast version below fails.
3907 */
3908 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3909 const u8 **hvpp, int estab)
3910 {
3911 const unsigned char *ptr;
3912 const struct tcphdr *th = tcp_hdr(skb);
3913 int length = (th->doff * 4) - sizeof(struct tcphdr);
3914
3915 ptr = (const unsigned char *)(th + 1);
3916 opt_rx->saw_tstamp = 0;
3917
3918 while (length > 0) {
3919 int opcode = *ptr++;
3920 int opsize;
3921
3922 switch (opcode) {
3923 case TCPOPT_EOL:
3924 return;
3925 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3926 length--;
3927 continue;
3928 default:
3929 opsize = *ptr++;
3930 if (opsize < 2) /* "silly options" */
3931 return;
3932 if (opsize > length)
3933 return; /* don't parse partial options */
3934 switch (opcode) {
3935 case TCPOPT_MSS:
3936 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3937 u16 in_mss = get_unaligned_be16(ptr);
3938 if (in_mss) {
3939 if (opt_rx->user_mss &&
3940 opt_rx->user_mss < in_mss)
3941 in_mss = opt_rx->user_mss;
3942 opt_rx->mss_clamp = in_mss;
3943 }
3944 }
3945 break;
3946 case TCPOPT_WINDOW:
3947 if (opsize == TCPOLEN_WINDOW && th->syn &&
3948 !estab && sysctl_tcp_window_scaling) {
3949 __u8 snd_wscale = *(__u8 *)ptr;
3950 opt_rx->wscale_ok = 1;
3951 if (snd_wscale > 14) {
3952 if (net_ratelimit())
3953 pr_info("%s: Illegal window scaling value %d >14 received\n",
3954 __func__,
3955 snd_wscale);
3956 snd_wscale = 14;
3957 }
3958 opt_rx->snd_wscale = snd_wscale;
3959 }
3960 break;
3961 case TCPOPT_TIMESTAMP:
3962 if ((opsize == TCPOLEN_TIMESTAMP) &&
3963 ((estab && opt_rx->tstamp_ok) ||
3964 (!estab && sysctl_tcp_timestamps))) {
3965 opt_rx->saw_tstamp = 1;
3966 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3967 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3968 }
3969 break;
3970 case TCPOPT_SACK_PERM:
3971 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3972 !estab && sysctl_tcp_sack) {
3973 opt_rx->sack_ok = TCP_SACK_SEEN;
3974 tcp_sack_reset(opt_rx);
3975 }
3976 break;
3977
3978 case TCPOPT_SACK:
3979 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3980 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3981 opt_rx->sack_ok) {
3982 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3983 }
3984 break;
3985 #ifdef CONFIG_TCP_MD5SIG
3986 case TCPOPT_MD5SIG:
3987 /*
3988 * The MD5 Hash has already been
3989 * checked (see tcp_v{4,6}_do_rcv()).
3990 */
3991 break;
3992 #endif
3993 case TCPOPT_COOKIE:
3994 /* This option is variable length.
3995 */
3996 switch (opsize) {
3997 case TCPOLEN_COOKIE_BASE:
3998 /* not yet implemented */
3999 break;
4000 case TCPOLEN_COOKIE_PAIR:
4001 /* not yet implemented */
4002 break;
4003 case TCPOLEN_COOKIE_MIN+0:
4004 case TCPOLEN_COOKIE_MIN+2:
4005 case TCPOLEN_COOKIE_MIN+4:
4006 case TCPOLEN_COOKIE_MIN+6:
4007 case TCPOLEN_COOKIE_MAX:
4008 /* 16-bit multiple */
4009 opt_rx->cookie_plus = opsize;
4010 *hvpp = ptr;
4011 break;
4012 default:
4013 /* ignore option */
4014 break;
4015 }
4016 break;
4017 }
4018
4019 ptr += opsize-2;
4020 length -= opsize;
4021 }
4022 }
4023 }
4024 EXPORT_SYMBOL(tcp_parse_options);
4025
4026 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4027 {
4028 const __be32 *ptr = (const __be32 *)(th + 1);
4029
4030 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4031 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4032 tp->rx_opt.saw_tstamp = 1;
4033 ++ptr;
4034 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4035 ++ptr;
4036 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4037 return 1;
4038 }
4039 return 0;
4040 }
4041
4042 /* Fast parse options. This hopes to only see timestamps.
4043 * If it is wrong it falls back on tcp_parse_options().
4044 */
4045 static int tcp_fast_parse_options(const struct sk_buff *skb,
4046 const struct tcphdr *th,
4047 struct tcp_sock *tp, const u8 **hvpp)
4048 {
4049 /* In the spirit of fast parsing, compare doff directly to constant
4050 * values. Because equality is used, short doff can be ignored here.
4051 */
4052 if (th->doff == (sizeof(*th) / 4)) {
4053 tp->rx_opt.saw_tstamp = 0;
4054 return 0;
4055 } else if (tp->rx_opt.tstamp_ok &&
4056 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4057 if (tcp_parse_aligned_timestamp(tp, th))
4058 return 1;
4059 }
4060 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
4061 return 1;
4062 }
4063
4064 #ifdef CONFIG_TCP_MD5SIG
4065 /*
4066 * Parse MD5 Signature option
4067 */
4068 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4069 {
4070 int length = (th->doff << 2) - sizeof(*th);
4071 const u8 *ptr = (const u8 *)(th + 1);
4072
4073 /* If the TCP option is too short, we can short cut */
4074 if (length < TCPOLEN_MD5SIG)
4075 return NULL;
4076
4077 while (length > 0) {
4078 int opcode = *ptr++;
4079 int opsize;
4080
4081 switch(opcode) {
4082 case TCPOPT_EOL:
4083 return NULL;
4084 case TCPOPT_NOP:
4085 length--;
4086 continue;
4087 default:
4088 opsize = *ptr++;
4089 if (opsize < 2 || opsize > length)
4090 return NULL;
4091 if (opcode == TCPOPT_MD5SIG)
4092 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4093 }
4094 ptr += opsize - 2;
4095 length -= opsize;
4096 }
4097 return NULL;
4098 }
4099 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4100 #endif
4101
4102 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4103 {
4104 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4105 tp->rx_opt.ts_recent_stamp = get_seconds();
4106 }
4107
4108 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4109 {
4110 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4111 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4112 * extra check below makes sure this can only happen
4113 * for pure ACK frames. -DaveM
4114 *
4115 * Not only, also it occurs for expired timestamps.
4116 */
4117
4118 if (tcp_paws_check(&tp->rx_opt, 0))
4119 tcp_store_ts_recent(tp);
4120 }
4121 }
4122
4123 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4124 *
4125 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4126 * it can pass through stack. So, the following predicate verifies that
4127 * this segment is not used for anything but congestion avoidance or
4128 * fast retransmit. Moreover, we even are able to eliminate most of such
4129 * second order effects, if we apply some small "replay" window (~RTO)
4130 * to timestamp space.
4131 *
4132 * All these measures still do not guarantee that we reject wrapped ACKs
4133 * on networks with high bandwidth, when sequence space is recycled fastly,
4134 * but it guarantees that such events will be very rare and do not affect
4135 * connection seriously. This doesn't look nice, but alas, PAWS is really
4136 * buggy extension.
4137 *
4138 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4139 * states that events when retransmit arrives after original data are rare.
4140 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4141 * the biggest problem on large power networks even with minor reordering.
4142 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4143 * up to bandwidth of 18Gigabit/sec. 8) ]
4144 */
4145
4146 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4147 {
4148 const struct tcp_sock *tp = tcp_sk(sk);
4149 const struct tcphdr *th = tcp_hdr(skb);
4150 u32 seq = TCP_SKB_CB(skb)->seq;
4151 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4152
4153 return (/* 1. Pure ACK with correct sequence number. */
4154 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4155
4156 /* 2. ... and duplicate ACK. */
4157 ack == tp->snd_una &&
4158
4159 /* 3. ... and does not update window. */
4160 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4161
4162 /* 4. ... and sits in replay window. */
4163 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4164 }
4165
4166 static inline int tcp_paws_discard(const struct sock *sk,
4167 const struct sk_buff *skb)
4168 {
4169 const struct tcp_sock *tp = tcp_sk(sk);
4170
4171 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4172 !tcp_disordered_ack(sk, skb);
4173 }
4174
4175 /* Check segment sequence number for validity.
4176 *
4177 * Segment controls are considered valid, if the segment
4178 * fits to the window after truncation to the window. Acceptability
4179 * of data (and SYN, FIN, of course) is checked separately.
4180 * See tcp_data_queue(), for example.
4181 *
4182 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4183 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4184 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4185 * (borrowed from freebsd)
4186 */
4187
4188 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4189 {
4190 return !before(end_seq, tp->rcv_wup) &&
4191 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4192 }
4193
4194 /* When we get a reset we do this. */
4195 static void tcp_reset(struct sock *sk)
4196 {
4197 /* We want the right error as BSD sees it (and indeed as we do). */
4198 switch (sk->sk_state) {
4199 case TCP_SYN_SENT:
4200 sk->sk_err = ECONNREFUSED;
4201 break;
4202 case TCP_CLOSE_WAIT:
4203 sk->sk_err = EPIPE;
4204 break;
4205 case TCP_CLOSE:
4206 return;
4207 default:
4208 sk->sk_err = ECONNRESET;
4209 }
4210 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4211 smp_wmb();
4212
4213 if (!sock_flag(sk, SOCK_DEAD))
4214 sk->sk_error_report(sk);
4215
4216 tcp_done(sk);
4217 }
4218
4219 /*
4220 * Process the FIN bit. This now behaves as it is supposed to work
4221 * and the FIN takes effect when it is validly part of sequence
4222 * space. Not before when we get holes.
4223 *
4224 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4225 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4226 * TIME-WAIT)
4227 *
4228 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4229 * close and we go into CLOSING (and later onto TIME-WAIT)
4230 *
4231 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4232 */
4233 static void tcp_fin(struct sock *sk)
4234 {
4235 struct tcp_sock *tp = tcp_sk(sk);
4236
4237 inet_csk_schedule_ack(sk);
4238
4239 sk->sk_shutdown |= RCV_SHUTDOWN;
4240 sock_set_flag(sk, SOCK_DONE);
4241
4242 switch (sk->sk_state) {
4243 case TCP_SYN_RECV:
4244 case TCP_ESTABLISHED:
4245 /* Move to CLOSE_WAIT */
4246 tcp_set_state(sk, TCP_CLOSE_WAIT);
4247 inet_csk(sk)->icsk_ack.pingpong = 1;
4248 break;
4249
4250 case TCP_CLOSE_WAIT:
4251 case TCP_CLOSING:
4252 /* Received a retransmission of the FIN, do
4253 * nothing.
4254 */
4255 break;
4256 case TCP_LAST_ACK:
4257 /* RFC793: Remain in the LAST-ACK state. */
4258 break;
4259
4260 case TCP_FIN_WAIT1:
4261 /* This case occurs when a simultaneous close
4262 * happens, we must ack the received FIN and
4263 * enter the CLOSING state.
4264 */
4265 tcp_send_ack(sk);
4266 tcp_set_state(sk, TCP_CLOSING);
4267 break;
4268 case TCP_FIN_WAIT2:
4269 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4270 tcp_send_ack(sk);
4271 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4272 break;
4273 default:
4274 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4275 * cases we should never reach this piece of code.
4276 */
4277 pr_err("%s: Impossible, sk->sk_state=%d\n",
4278 __func__, sk->sk_state);
4279 break;
4280 }
4281
4282 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4283 * Probably, we should reset in this case. For now drop them.
4284 */
4285 __skb_queue_purge(&tp->out_of_order_queue);
4286 if (tcp_is_sack(tp))
4287 tcp_sack_reset(&tp->rx_opt);
4288 sk_mem_reclaim(sk);
4289
4290 if (!sock_flag(sk, SOCK_DEAD)) {
4291 sk->sk_state_change(sk);
4292
4293 /* Do not send POLL_HUP for half duplex close. */
4294 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4295 sk->sk_state == TCP_CLOSE)
4296 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4297 else
4298 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4299 }
4300 }
4301
4302 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4303 u32 end_seq)
4304 {
4305 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4306 if (before(seq, sp->start_seq))
4307 sp->start_seq = seq;
4308 if (after(end_seq, sp->end_seq))
4309 sp->end_seq = end_seq;
4310 return 1;
4311 }
4312 return 0;
4313 }
4314
4315 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4316 {
4317 struct tcp_sock *tp = tcp_sk(sk);
4318
4319 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4320 int mib_idx;
4321
4322 if (before(seq, tp->rcv_nxt))
4323 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4324 else
4325 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4326
4327 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4328
4329 tp->rx_opt.dsack = 1;
4330 tp->duplicate_sack[0].start_seq = seq;
4331 tp->duplicate_sack[0].end_seq = end_seq;
4332 }
4333 }
4334
4335 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4336 {
4337 struct tcp_sock *tp = tcp_sk(sk);
4338
4339 if (!tp->rx_opt.dsack)
4340 tcp_dsack_set(sk, seq, end_seq);
4341 else
4342 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4343 }
4344
4345 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4346 {
4347 struct tcp_sock *tp = tcp_sk(sk);
4348
4349 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4350 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4351 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4352 tcp_enter_quickack_mode(sk);
4353
4354 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4355 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4356
4357 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4358 end_seq = tp->rcv_nxt;
4359 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4360 }
4361 }
4362
4363 tcp_send_ack(sk);
4364 }
4365
4366 /* These routines update the SACK block as out-of-order packets arrive or
4367 * in-order packets close up the sequence space.
4368 */
4369 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4370 {
4371 int this_sack;
4372 struct tcp_sack_block *sp = &tp->selective_acks[0];
4373 struct tcp_sack_block *swalk = sp + 1;
4374
4375 /* See if the recent change to the first SACK eats into
4376 * or hits the sequence space of other SACK blocks, if so coalesce.
4377 */
4378 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4379 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4380 int i;
4381
4382 /* Zap SWALK, by moving every further SACK up by one slot.
4383 * Decrease num_sacks.
4384 */
4385 tp->rx_opt.num_sacks--;
4386 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4387 sp[i] = sp[i + 1];
4388 continue;
4389 }
4390 this_sack++, swalk++;
4391 }
4392 }
4393
4394 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4395 {
4396 struct tcp_sock *tp = tcp_sk(sk);
4397 struct tcp_sack_block *sp = &tp->selective_acks[0];
4398 int cur_sacks = tp->rx_opt.num_sacks;
4399 int this_sack;
4400
4401 if (!cur_sacks)
4402 goto new_sack;
4403
4404 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4405 if (tcp_sack_extend(sp, seq, end_seq)) {
4406 /* Rotate this_sack to the first one. */
4407 for (; this_sack > 0; this_sack--, sp--)
4408 swap(*sp, *(sp - 1));
4409 if (cur_sacks > 1)
4410 tcp_sack_maybe_coalesce(tp);
4411 return;
4412 }
4413 }
4414
4415 /* Could not find an adjacent existing SACK, build a new one,
4416 * put it at the front, and shift everyone else down. We
4417 * always know there is at least one SACK present already here.
4418 *
4419 * If the sack array is full, forget about the last one.
4420 */
4421 if (this_sack >= TCP_NUM_SACKS) {
4422 this_sack--;
4423 tp->rx_opt.num_sacks--;
4424 sp--;
4425 }
4426 for (; this_sack > 0; this_sack--, sp--)
4427 *sp = *(sp - 1);
4428
4429 new_sack:
4430 /* Build the new head SACK, and we're done. */
4431 sp->start_seq = seq;
4432 sp->end_seq = end_seq;
4433 tp->rx_opt.num_sacks++;
4434 }
4435
4436 /* RCV.NXT advances, some SACKs should be eaten. */
4437
4438 static void tcp_sack_remove(struct tcp_sock *tp)
4439 {
4440 struct tcp_sack_block *sp = &tp->selective_acks[0];
4441 int num_sacks = tp->rx_opt.num_sacks;
4442 int this_sack;
4443
4444 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4445 if (skb_queue_empty(&tp->out_of_order_queue)) {
4446 tp->rx_opt.num_sacks = 0;
4447 return;
4448 }
4449
4450 for (this_sack = 0; this_sack < num_sacks;) {
4451 /* Check if the start of the sack is covered by RCV.NXT. */
4452 if (!before(tp->rcv_nxt, sp->start_seq)) {
4453 int i;
4454
4455 /* RCV.NXT must cover all the block! */
4456 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4457
4458 /* Zap this SACK, by moving forward any other SACKS. */
4459 for (i=this_sack+1; i < num_sacks; i++)
4460 tp->selective_acks[i-1] = tp->selective_acks[i];
4461 num_sacks--;
4462 continue;
4463 }
4464 this_sack++;
4465 sp++;
4466 }
4467 tp->rx_opt.num_sacks = num_sacks;
4468 }
4469
4470 /* This one checks to see if we can put data from the
4471 * out_of_order queue into the receive_queue.
4472 */
4473 static void tcp_ofo_queue(struct sock *sk)
4474 {
4475 struct tcp_sock *tp = tcp_sk(sk);
4476 __u32 dsack_high = tp->rcv_nxt;
4477 struct sk_buff *skb;
4478
4479 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4480 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4481 break;
4482
4483 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4484 __u32 dsack = dsack_high;
4485 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4486 dsack_high = TCP_SKB_CB(skb)->end_seq;
4487 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4488 }
4489
4490 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4491 SOCK_DEBUG(sk, "ofo packet was already received\n");
4492 __skb_unlink(skb, &tp->out_of_order_queue);
4493 __kfree_skb(skb);
4494 continue;
4495 }
4496 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4497 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4498 TCP_SKB_CB(skb)->end_seq);
4499
4500 __skb_unlink(skb, &tp->out_of_order_queue);
4501 __skb_queue_tail(&sk->sk_receive_queue, skb);
4502 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4503 if (tcp_hdr(skb)->fin)
4504 tcp_fin(sk);
4505 }
4506 }
4507
4508 static int tcp_prune_ofo_queue(struct sock *sk);
4509 static int tcp_prune_queue(struct sock *sk);
4510
4511 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4512 {
4513 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4514 !sk_rmem_schedule(sk, size)) {
4515
4516 if (tcp_prune_queue(sk) < 0)
4517 return -1;
4518
4519 if (!sk_rmem_schedule(sk, size)) {
4520 if (!tcp_prune_ofo_queue(sk))
4521 return -1;
4522
4523 if (!sk_rmem_schedule(sk, size))
4524 return -1;
4525 }
4526 }
4527 return 0;
4528 }
4529
4530 /**
4531 * tcp_try_coalesce - try to merge skb to prior one
4532 * @sk: socket
4533 * @to: prior buffer
4534 * @from: buffer to add in queue
4535 *
4536 * Before queueing skb @from after @to, try to merge them
4537 * to reduce overall memory use and queue lengths, if cost is small.
4538 * Packets in ofo or receive queues can stay a long time.
4539 * Better try to coalesce them right now to avoid future collapses.
4540 * Returns true if caller should free @from instead of queueing it
4541 */
4542 static bool tcp_try_coalesce(struct sock *sk,
4543 struct sk_buff *to,
4544 struct sk_buff *from,
4545 bool *fragstolen)
4546 {
4547 int delta, len = from->len;
4548
4549 *fragstolen = false;
4550 if (tcp_hdr(from)->fin)
4551 return false;
4552 if (len <= skb_tailroom(to)) {
4553 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4554 merge:
4555 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4556 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4557 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4558 return true;
4559 }
4560
4561 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4562 return false;
4563
4564 if (skb_headlen(from) == 0 &&
4565 (skb_shinfo(to)->nr_frags +
4566 skb_shinfo(from)->nr_frags <= MAX_SKB_FRAGS)) {
4567 WARN_ON_ONCE(from->head_frag);
4568 delta = from->truesize - ksize(from->head) -
4569 SKB_DATA_ALIGN(sizeof(struct sk_buff));
4570
4571 WARN_ON_ONCE(delta < len);
4572 copyfrags:
4573 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4574 skb_shinfo(from)->frags,
4575 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4576 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4577 skb_shinfo(from)->nr_frags = 0;
4578 to->truesize += delta;
4579 atomic_add(delta, &sk->sk_rmem_alloc);
4580 sk_mem_charge(sk, delta);
4581 to->len += len;
4582 to->data_len += len;
4583 goto merge;
4584 }
4585 if (from->head_frag) {
4586 struct page *page;
4587 unsigned int offset;
4588
4589 if (skb_shinfo(to)->nr_frags + skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4590 return false;
4591 page = virt_to_head_page(from->head);
4592 offset = from->data - (unsigned char *)page_address(page);
4593 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4594 page, offset, skb_headlen(from));
4595 *fragstolen = true;
4596 delta = len; /* we dont know real truesize... */
4597 goto copyfrags;
4598 }
4599 return false;
4600 }
4601
4602 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4603 {
4604 struct tcp_sock *tp = tcp_sk(sk);
4605 struct sk_buff *skb1;
4606 u32 seq, end_seq;
4607
4608 TCP_ECN_check_ce(tp, skb);
4609
4610 if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4611 /* TODO: should increment a counter */
4612 __kfree_skb(skb);
4613 return;
4614 }
4615
4616 /* Disable header prediction. */
4617 tp->pred_flags = 0;
4618 inet_csk_schedule_ack(sk);
4619
4620 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4621 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4622
4623 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4624 if (!skb1) {
4625 /* Initial out of order segment, build 1 SACK. */
4626 if (tcp_is_sack(tp)) {
4627 tp->rx_opt.num_sacks = 1;
4628 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4629 tp->selective_acks[0].end_seq =
4630 TCP_SKB_CB(skb)->end_seq;
4631 }
4632 __skb_queue_head(&tp->out_of_order_queue, skb);
4633 goto end;
4634 }
4635
4636 seq = TCP_SKB_CB(skb)->seq;
4637 end_seq = TCP_SKB_CB(skb)->end_seq;
4638
4639 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4640 bool fragstolen;
4641
4642 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4643 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4644 } else {
4645 if (fragstolen)
4646 kmem_cache_free(skbuff_head_cache, skb);
4647 else
4648 __kfree_skb(skb);
4649 skb = NULL;
4650 }
4651
4652 if (!tp->rx_opt.num_sacks ||
4653 tp->selective_acks[0].end_seq != seq)
4654 goto add_sack;
4655
4656 /* Common case: data arrive in order after hole. */
4657 tp->selective_acks[0].end_seq = end_seq;
4658 goto end;
4659 }
4660
4661 /* Find place to insert this segment. */
4662 while (1) {
4663 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4664 break;
4665 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4666 skb1 = NULL;
4667 break;
4668 }
4669 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4670 }
4671
4672 /* Do skb overlap to previous one? */
4673 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4674 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4675 /* All the bits are present. Drop. */
4676 __kfree_skb(skb);
4677 skb = NULL;
4678 tcp_dsack_set(sk, seq, end_seq);
4679 goto add_sack;
4680 }
4681 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4682 /* Partial overlap. */
4683 tcp_dsack_set(sk, seq,
4684 TCP_SKB_CB(skb1)->end_seq);
4685 } else {
4686 if (skb_queue_is_first(&tp->out_of_order_queue,
4687 skb1))
4688 skb1 = NULL;
4689 else
4690 skb1 = skb_queue_prev(
4691 &tp->out_of_order_queue,
4692 skb1);
4693 }
4694 }
4695 if (!skb1)
4696 __skb_queue_head(&tp->out_of_order_queue, skb);
4697 else
4698 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4699
4700 /* And clean segments covered by new one as whole. */
4701 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4702 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4703
4704 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4705 break;
4706 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4707 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4708 end_seq);
4709 break;
4710 }
4711 __skb_unlink(skb1, &tp->out_of_order_queue);
4712 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4713 TCP_SKB_CB(skb1)->end_seq);
4714 __kfree_skb(skb1);
4715 }
4716
4717 add_sack:
4718 if (tcp_is_sack(tp))
4719 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4720 end:
4721 if (skb)
4722 skb_set_owner_r(skb, sk);
4723 }
4724
4725
4726 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4727 {
4728 const struct tcphdr *th = tcp_hdr(skb);
4729 struct tcp_sock *tp = tcp_sk(sk);
4730 int eaten = -1;
4731 bool fragstolen = false;
4732
4733 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4734 goto drop;
4735
4736 skb_dst_drop(skb);
4737 __skb_pull(skb, th->doff * 4);
4738
4739 TCP_ECN_accept_cwr(tp, skb);
4740
4741 tp->rx_opt.dsack = 0;
4742
4743 /* Queue data for delivery to the user.
4744 * Packets in sequence go to the receive queue.
4745 * Out of sequence packets to the out_of_order_queue.
4746 */
4747 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4748 if (tcp_receive_window(tp) == 0)
4749 goto out_of_window;
4750
4751 /* Ok. In sequence. In window. */
4752 if (tp->ucopy.task == current &&
4753 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4754 sock_owned_by_user(sk) && !tp->urg_data) {
4755 int chunk = min_t(unsigned int, skb->len,
4756 tp->ucopy.len);
4757
4758 __set_current_state(TASK_RUNNING);
4759
4760 local_bh_enable();
4761 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4762 tp->ucopy.len -= chunk;
4763 tp->copied_seq += chunk;
4764 eaten = (chunk == skb->len);
4765 tcp_rcv_space_adjust(sk);
4766 }
4767 local_bh_disable();
4768 }
4769
4770 if (eaten <= 0) {
4771 struct sk_buff *tail;
4772 queue_and_out:
4773 if (eaten < 0 &&
4774 tcp_try_rmem_schedule(sk, skb->truesize))
4775 goto drop;
4776
4777 tail = skb_peek_tail(&sk->sk_receive_queue);
4778 eaten = (tail &&
4779 tcp_try_coalesce(sk, tail, skb,
4780 &fragstolen)) ? 1 : 0;
4781 if (eaten <= 0) {
4782 skb_set_owner_r(skb, sk);
4783 __skb_queue_tail(&sk->sk_receive_queue, skb);
4784 }
4785 }
4786 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4787 if (skb->len)
4788 tcp_event_data_recv(sk, skb);
4789 if (th->fin)
4790 tcp_fin(sk);
4791
4792 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4793 tcp_ofo_queue(sk);
4794
4795 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4796 * gap in queue is filled.
4797 */
4798 if (skb_queue_empty(&tp->out_of_order_queue))
4799 inet_csk(sk)->icsk_ack.pingpong = 0;
4800 }
4801
4802 if (tp->rx_opt.num_sacks)
4803 tcp_sack_remove(tp);
4804
4805 tcp_fast_path_check(sk);
4806
4807 if (eaten > 0) {
4808 if (fragstolen)
4809 kmem_cache_free(skbuff_head_cache, skb);
4810 else
4811 __kfree_skb(skb);
4812 } else if (!sock_flag(sk, SOCK_DEAD))
4813 sk->sk_data_ready(sk, 0);
4814 return;
4815 }
4816
4817 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4818 /* A retransmit, 2nd most common case. Force an immediate ack. */
4819 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4820 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4821
4822 out_of_window:
4823 tcp_enter_quickack_mode(sk);
4824 inet_csk_schedule_ack(sk);
4825 drop:
4826 __kfree_skb(skb);
4827 return;
4828 }
4829
4830 /* Out of window. F.e. zero window probe. */
4831 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4832 goto out_of_window;
4833
4834 tcp_enter_quickack_mode(sk);
4835
4836 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4837 /* Partial packet, seq < rcv_next < end_seq */
4838 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4839 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4840 TCP_SKB_CB(skb)->end_seq);
4841
4842 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4843
4844 /* If window is closed, drop tail of packet. But after
4845 * remembering D-SACK for its head made in previous line.
4846 */
4847 if (!tcp_receive_window(tp))
4848 goto out_of_window;
4849 goto queue_and_out;
4850 }
4851
4852 tcp_data_queue_ofo(sk, skb);
4853 }
4854
4855 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4856 struct sk_buff_head *list)
4857 {
4858 struct sk_buff *next = NULL;
4859
4860 if (!skb_queue_is_last(list, skb))
4861 next = skb_queue_next(list, skb);
4862
4863 __skb_unlink(skb, list);
4864 __kfree_skb(skb);
4865 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4866
4867 return next;
4868 }
4869
4870 /* Collapse contiguous sequence of skbs head..tail with
4871 * sequence numbers start..end.
4872 *
4873 * If tail is NULL, this means until the end of the list.
4874 *
4875 * Segments with FIN/SYN are not collapsed (only because this
4876 * simplifies code)
4877 */
4878 static void
4879 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4880 struct sk_buff *head, struct sk_buff *tail,
4881 u32 start, u32 end)
4882 {
4883 struct sk_buff *skb, *n;
4884 bool end_of_skbs;
4885
4886 /* First, check that queue is collapsible and find
4887 * the point where collapsing can be useful. */
4888 skb = head;
4889 restart:
4890 end_of_skbs = true;
4891 skb_queue_walk_from_safe(list, skb, n) {
4892 if (skb == tail)
4893 break;
4894 /* No new bits? It is possible on ofo queue. */
4895 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4896 skb = tcp_collapse_one(sk, skb, list);
4897 if (!skb)
4898 break;
4899 goto restart;
4900 }
4901
4902 /* The first skb to collapse is:
4903 * - not SYN/FIN and
4904 * - bloated or contains data before "start" or
4905 * overlaps to the next one.
4906 */
4907 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4908 (tcp_win_from_space(skb->truesize) > skb->len ||
4909 before(TCP_SKB_CB(skb)->seq, start))) {
4910 end_of_skbs = false;
4911 break;
4912 }
4913
4914 if (!skb_queue_is_last(list, skb)) {
4915 struct sk_buff *next = skb_queue_next(list, skb);
4916 if (next != tail &&
4917 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4918 end_of_skbs = false;
4919 break;
4920 }
4921 }
4922
4923 /* Decided to skip this, advance start seq. */
4924 start = TCP_SKB_CB(skb)->end_seq;
4925 }
4926 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4927 return;
4928
4929 while (before(start, end)) {
4930 struct sk_buff *nskb;
4931 unsigned int header = skb_headroom(skb);
4932 int copy = SKB_MAX_ORDER(header, 0);
4933
4934 /* Too big header? This can happen with IPv6. */
4935 if (copy < 0)
4936 return;
4937 if (end - start < copy)
4938 copy = end - start;
4939 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4940 if (!nskb)
4941 return;
4942
4943 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4944 skb_set_network_header(nskb, (skb_network_header(skb) -
4945 skb->head));
4946 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4947 skb->head));
4948 skb_reserve(nskb, header);
4949 memcpy(nskb->head, skb->head, header);
4950 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4951 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4952 __skb_queue_before(list, skb, nskb);
4953 skb_set_owner_r(nskb, sk);
4954
4955 /* Copy data, releasing collapsed skbs. */
4956 while (copy > 0) {
4957 int offset = start - TCP_SKB_CB(skb)->seq;
4958 int size = TCP_SKB_CB(skb)->end_seq - start;
4959
4960 BUG_ON(offset < 0);
4961 if (size > 0) {
4962 size = min(copy, size);
4963 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4964 BUG();
4965 TCP_SKB_CB(nskb)->end_seq += size;
4966 copy -= size;
4967 start += size;
4968 }
4969 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4970 skb = tcp_collapse_one(sk, skb, list);
4971 if (!skb ||
4972 skb == tail ||
4973 tcp_hdr(skb)->syn ||
4974 tcp_hdr(skb)->fin)
4975 return;
4976 }
4977 }
4978 }
4979 }
4980
4981 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4982 * and tcp_collapse() them until all the queue is collapsed.
4983 */
4984 static void tcp_collapse_ofo_queue(struct sock *sk)
4985 {
4986 struct tcp_sock *tp = tcp_sk(sk);
4987 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4988 struct sk_buff *head;
4989 u32 start, end;
4990
4991 if (skb == NULL)
4992 return;
4993
4994 start = TCP_SKB_CB(skb)->seq;
4995 end = TCP_SKB_CB(skb)->end_seq;
4996 head = skb;
4997
4998 for (;;) {
4999 struct sk_buff *next = NULL;
5000
5001 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
5002 next = skb_queue_next(&tp->out_of_order_queue, skb);
5003 skb = next;
5004
5005 /* Segment is terminated when we see gap or when
5006 * we are at the end of all the queue. */
5007 if (!skb ||
5008 after(TCP_SKB_CB(skb)->seq, end) ||
5009 before(TCP_SKB_CB(skb)->end_seq, start)) {
5010 tcp_collapse(sk, &tp->out_of_order_queue,
5011 head, skb, start, end);
5012 head = skb;
5013 if (!skb)
5014 break;
5015 /* Start new segment */
5016 start = TCP_SKB_CB(skb)->seq;
5017 end = TCP_SKB_CB(skb)->end_seq;
5018 } else {
5019 if (before(TCP_SKB_CB(skb)->seq, start))
5020 start = TCP_SKB_CB(skb)->seq;
5021 if (after(TCP_SKB_CB(skb)->end_seq, end))
5022 end = TCP_SKB_CB(skb)->end_seq;
5023 }
5024 }
5025 }
5026
5027 /*
5028 * Purge the out-of-order queue.
5029 * Return true if queue was pruned.
5030 */
5031 static int tcp_prune_ofo_queue(struct sock *sk)
5032 {
5033 struct tcp_sock *tp = tcp_sk(sk);
5034 int res = 0;
5035
5036 if (!skb_queue_empty(&tp->out_of_order_queue)) {
5037 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
5038 __skb_queue_purge(&tp->out_of_order_queue);
5039
5040 /* Reset SACK state. A conforming SACK implementation will
5041 * do the same at a timeout based retransmit. When a connection
5042 * is in a sad state like this, we care only about integrity
5043 * of the connection not performance.
5044 */
5045 if (tp->rx_opt.sack_ok)
5046 tcp_sack_reset(&tp->rx_opt);
5047 sk_mem_reclaim(sk);
5048 res = 1;
5049 }
5050 return res;
5051 }
5052
5053 /* Reduce allocated memory if we can, trying to get
5054 * the socket within its memory limits again.
5055 *
5056 * Return less than zero if we should start dropping frames
5057 * until the socket owning process reads some of the data
5058 * to stabilize the situation.
5059 */
5060 static int tcp_prune_queue(struct sock *sk)
5061 {
5062 struct tcp_sock *tp = tcp_sk(sk);
5063
5064 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5065
5066 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
5067
5068 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5069 tcp_clamp_window(sk);
5070 else if (sk_under_memory_pressure(sk))
5071 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5072
5073 tcp_collapse_ofo_queue(sk);
5074 if (!skb_queue_empty(&sk->sk_receive_queue))
5075 tcp_collapse(sk, &sk->sk_receive_queue,
5076 skb_peek(&sk->sk_receive_queue),
5077 NULL,
5078 tp->copied_seq, tp->rcv_nxt);
5079 sk_mem_reclaim(sk);
5080
5081 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5082 return 0;
5083
5084 /* Collapsing did not help, destructive actions follow.
5085 * This must not ever occur. */
5086
5087 tcp_prune_ofo_queue(sk);
5088
5089 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5090 return 0;
5091
5092 /* If we are really being abused, tell the caller to silently
5093 * drop receive data on the floor. It will get retransmitted
5094 * and hopefully then we'll have sufficient space.
5095 */
5096 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
5097
5098 /* Massive buffer overcommit. */
5099 tp->pred_flags = 0;
5100 return -1;
5101 }
5102
5103 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
5104 * As additional protections, we do not touch cwnd in retransmission phases,
5105 * and if application hit its sndbuf limit recently.
5106 */
5107 void tcp_cwnd_application_limited(struct sock *sk)
5108 {
5109 struct tcp_sock *tp = tcp_sk(sk);
5110
5111 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
5112 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5113 /* Limited by application or receiver window. */
5114 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
5115 u32 win_used = max(tp->snd_cwnd_used, init_win);
5116 if (win_used < tp->snd_cwnd) {
5117 tp->snd_ssthresh = tcp_current_ssthresh(sk);
5118 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
5119 }
5120 tp->snd_cwnd_used = 0;
5121 }
5122 tp->snd_cwnd_stamp = tcp_time_stamp;
5123 }
5124
5125 static int tcp_should_expand_sndbuf(const struct sock *sk)
5126 {
5127 const struct tcp_sock *tp = tcp_sk(sk);
5128
5129 /* If the user specified a specific send buffer setting, do
5130 * not modify it.
5131 */
5132 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5133 return 0;
5134
5135 /* If we are under global TCP memory pressure, do not expand. */
5136 if (sk_under_memory_pressure(sk))
5137 return 0;
5138
5139 /* If we are under soft global TCP memory pressure, do not expand. */
5140 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5141 return 0;
5142
5143 /* If we filled the congestion window, do not expand. */
5144 if (tp->packets_out >= tp->snd_cwnd)
5145 return 0;
5146
5147 return 1;
5148 }
5149
5150 /* When incoming ACK allowed to free some skb from write_queue,
5151 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5152 * on the exit from tcp input handler.
5153 *
5154 * PROBLEM: sndbuf expansion does not work well with largesend.
5155 */
5156 static void tcp_new_space(struct sock *sk)
5157 {
5158 struct tcp_sock *tp = tcp_sk(sk);
5159
5160 if (tcp_should_expand_sndbuf(sk)) {
5161 int sndmem = SKB_TRUESIZE(max_t(u32,
5162 tp->rx_opt.mss_clamp,
5163 tp->mss_cache) +
5164 MAX_TCP_HEADER);
5165 int demanded = max_t(unsigned int, tp->snd_cwnd,
5166 tp->reordering + 1);
5167 sndmem *= 2 * demanded;
5168 if (sndmem > sk->sk_sndbuf)
5169 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5170 tp->snd_cwnd_stamp = tcp_time_stamp;
5171 }
5172
5173 sk->sk_write_space(sk);
5174 }
5175
5176 static void tcp_check_space(struct sock *sk)
5177 {
5178 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5179 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5180 if (sk->sk_socket &&
5181 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5182 tcp_new_space(sk);
5183 }
5184 }
5185
5186 static inline void tcp_data_snd_check(struct sock *sk)
5187 {
5188 tcp_push_pending_frames(sk);
5189 tcp_check_space(sk);
5190 }
5191
5192 /*
5193 * Check if sending an ack is needed.
5194 */
5195 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5196 {
5197 struct tcp_sock *tp = tcp_sk(sk);
5198
5199 /* More than one full frame received... */
5200 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5201 /* ... and right edge of window advances far enough.
5202 * (tcp_recvmsg() will send ACK otherwise). Or...
5203 */
5204 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5205 /* We ACK each frame or... */
5206 tcp_in_quickack_mode(sk) ||
5207 /* We have out of order data. */
5208 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5209 /* Then ack it now */
5210 tcp_send_ack(sk);
5211 } else {
5212 /* Else, send delayed ack. */
5213 tcp_send_delayed_ack(sk);
5214 }
5215 }
5216
5217 static inline void tcp_ack_snd_check(struct sock *sk)
5218 {
5219 if (!inet_csk_ack_scheduled(sk)) {
5220 /* We sent a data segment already. */
5221 return;
5222 }
5223 __tcp_ack_snd_check(sk, 1);
5224 }
5225
5226 /*
5227 * This routine is only called when we have urgent data
5228 * signaled. Its the 'slow' part of tcp_urg. It could be
5229 * moved inline now as tcp_urg is only called from one
5230 * place. We handle URGent data wrong. We have to - as
5231 * BSD still doesn't use the correction from RFC961.
5232 * For 1003.1g we should support a new option TCP_STDURG to permit
5233 * either form (or just set the sysctl tcp_stdurg).
5234 */
5235
5236 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5237 {
5238 struct tcp_sock *tp = tcp_sk(sk);
5239 u32 ptr = ntohs(th->urg_ptr);
5240
5241 if (ptr && !sysctl_tcp_stdurg)
5242 ptr--;
5243 ptr += ntohl(th->seq);
5244
5245 /* Ignore urgent data that we've already seen and read. */
5246 if (after(tp->copied_seq, ptr))
5247 return;
5248
5249 /* Do not replay urg ptr.
5250 *
5251 * NOTE: interesting situation not covered by specs.
5252 * Misbehaving sender may send urg ptr, pointing to segment,
5253 * which we already have in ofo queue. We are not able to fetch
5254 * such data and will stay in TCP_URG_NOTYET until will be eaten
5255 * by recvmsg(). Seems, we are not obliged to handle such wicked
5256 * situations. But it is worth to think about possibility of some
5257 * DoSes using some hypothetical application level deadlock.
5258 */
5259 if (before(ptr, tp->rcv_nxt))
5260 return;
5261
5262 /* Do we already have a newer (or duplicate) urgent pointer? */
5263 if (tp->urg_data && !after(ptr, tp->urg_seq))
5264 return;
5265
5266 /* Tell the world about our new urgent pointer. */
5267 sk_send_sigurg(sk);
5268
5269 /* We may be adding urgent data when the last byte read was
5270 * urgent. To do this requires some care. We cannot just ignore
5271 * tp->copied_seq since we would read the last urgent byte again
5272 * as data, nor can we alter copied_seq until this data arrives
5273 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5274 *
5275 * NOTE. Double Dutch. Rendering to plain English: author of comment
5276 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5277 * and expect that both A and B disappear from stream. This is _wrong_.
5278 * Though this happens in BSD with high probability, this is occasional.
5279 * Any application relying on this is buggy. Note also, that fix "works"
5280 * only in this artificial test. Insert some normal data between A and B and we will
5281 * decline of BSD again. Verdict: it is better to remove to trap
5282 * buggy users.
5283 */
5284 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5285 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5286 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5287 tp->copied_seq++;
5288 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5289 __skb_unlink(skb, &sk->sk_receive_queue);
5290 __kfree_skb(skb);
5291 }
5292 }
5293
5294 tp->urg_data = TCP_URG_NOTYET;
5295 tp->urg_seq = ptr;
5296
5297 /* Disable header prediction. */
5298 tp->pred_flags = 0;
5299 }
5300
5301 /* This is the 'fast' part of urgent handling. */
5302 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5303 {
5304 struct tcp_sock *tp = tcp_sk(sk);
5305
5306 /* Check if we get a new urgent pointer - normally not. */
5307 if (th->urg)
5308 tcp_check_urg(sk, th);
5309
5310 /* Do we wait for any urgent data? - normally not... */
5311 if (tp->urg_data == TCP_URG_NOTYET) {
5312 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5313 th->syn;
5314
5315 /* Is the urgent pointer pointing into this packet? */
5316 if (ptr < skb->len) {
5317 u8 tmp;
5318 if (skb_copy_bits(skb, ptr, &tmp, 1))
5319 BUG();
5320 tp->urg_data = TCP_URG_VALID | tmp;
5321 if (!sock_flag(sk, SOCK_DEAD))
5322 sk->sk_data_ready(sk, 0);
5323 }
5324 }
5325 }
5326
5327 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5328 {
5329 struct tcp_sock *tp = tcp_sk(sk);
5330 int chunk = skb->len - hlen;
5331 int err;
5332
5333 local_bh_enable();
5334 if (skb_csum_unnecessary(skb))
5335 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5336 else
5337 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5338 tp->ucopy.iov);
5339
5340 if (!err) {
5341 tp->ucopy.len -= chunk;
5342 tp->copied_seq += chunk;
5343 tcp_rcv_space_adjust(sk);
5344 }
5345
5346 local_bh_disable();
5347 return err;
5348 }
5349
5350 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5351 struct sk_buff *skb)
5352 {
5353 __sum16 result;
5354
5355 if (sock_owned_by_user(sk)) {
5356 local_bh_enable();
5357 result = __tcp_checksum_complete(skb);
5358 local_bh_disable();
5359 } else {
5360 result = __tcp_checksum_complete(skb);
5361 }
5362 return result;
5363 }
5364
5365 static inline int tcp_checksum_complete_user(struct sock *sk,
5366 struct sk_buff *skb)
5367 {
5368 return !skb_csum_unnecessary(skb) &&
5369 __tcp_checksum_complete_user(sk, skb);
5370 }
5371
5372 #ifdef CONFIG_NET_DMA
5373 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5374 int hlen)
5375 {
5376 struct tcp_sock *tp = tcp_sk(sk);
5377 int chunk = skb->len - hlen;
5378 int dma_cookie;
5379 int copied_early = 0;
5380
5381 if (tp->ucopy.wakeup)
5382 return 0;
5383
5384 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5385 tp->ucopy.dma_chan = net_dma_find_channel();
5386
5387 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5388
5389 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5390 skb, hlen,
5391 tp->ucopy.iov, chunk,
5392 tp->ucopy.pinned_list);
5393
5394 if (dma_cookie < 0)
5395 goto out;
5396
5397 tp->ucopy.dma_cookie = dma_cookie;
5398 copied_early = 1;
5399
5400 tp->ucopy.len -= chunk;
5401 tp->copied_seq += chunk;
5402 tcp_rcv_space_adjust(sk);
5403
5404 if ((tp->ucopy.len == 0) ||
5405 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5406 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5407 tp->ucopy.wakeup = 1;
5408 sk->sk_data_ready(sk, 0);
5409 }
5410 } else if (chunk > 0) {
5411 tp->ucopy.wakeup = 1;
5412 sk->sk_data_ready(sk, 0);
5413 }
5414 out:
5415 return copied_early;
5416 }
5417 #endif /* CONFIG_NET_DMA */
5418
5419 /* Does PAWS and seqno based validation of an incoming segment, flags will
5420 * play significant role here.
5421 */
5422 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5423 const struct tcphdr *th, int syn_inerr)
5424 {
5425 const u8 *hash_location;
5426 struct tcp_sock *tp = tcp_sk(sk);
5427
5428 /* RFC1323: H1. Apply PAWS check first. */
5429 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5430 tp->rx_opt.saw_tstamp &&
5431 tcp_paws_discard(sk, skb)) {
5432 if (!th->rst) {
5433 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5434 tcp_send_dupack(sk, skb);
5435 goto discard;
5436 }
5437 /* Reset is accepted even if it did not pass PAWS. */
5438 }
5439
5440 /* Step 1: check sequence number */
5441 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5442 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5443 * (RST) segments are validated by checking their SEQ-fields."
5444 * And page 69: "If an incoming segment is not acceptable,
5445 * an acknowledgment should be sent in reply (unless the RST
5446 * bit is set, if so drop the segment and return)".
5447 */
5448 if (!th->rst)
5449 tcp_send_dupack(sk, skb);
5450 goto discard;
5451 }
5452
5453 /* Step 2: check RST bit */
5454 if (th->rst) {
5455 tcp_reset(sk);
5456 goto discard;
5457 }
5458
5459 /* ts_recent update must be made after we are sure that the packet
5460 * is in window.
5461 */
5462 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5463
5464 /* step 3: check security and precedence [ignored] */
5465
5466 /* step 4: Check for a SYN in window. */
5467 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5468 if (syn_inerr)
5469 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5470 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5471 tcp_reset(sk);
5472 return -1;
5473 }
5474
5475 return 1;
5476
5477 discard:
5478 __kfree_skb(skb);
5479 return 0;
5480 }
5481
5482 void tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen)
5483 {
5484 __skb_pull(skb, hdrlen);
5485 __skb_queue_tail(&sk->sk_receive_queue, skb);
5486 skb_set_owner_r(skb, sk);
5487 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5488 }
5489
5490 /*
5491 * TCP receive function for the ESTABLISHED state.
5492 *
5493 * It is split into a fast path and a slow path. The fast path is
5494 * disabled when:
5495 * - A zero window was announced from us - zero window probing
5496 * is only handled properly in the slow path.
5497 * - Out of order segments arrived.
5498 * - Urgent data is expected.
5499 * - There is no buffer space left
5500 * - Unexpected TCP flags/window values/header lengths are received
5501 * (detected by checking the TCP header against pred_flags)
5502 * - Data is sent in both directions. Fast path only supports pure senders
5503 * or pure receivers (this means either the sequence number or the ack
5504 * value must stay constant)
5505 * - Unexpected TCP option.
5506 *
5507 * When these conditions are not satisfied it drops into a standard
5508 * receive procedure patterned after RFC793 to handle all cases.
5509 * The first three cases are guaranteed by proper pred_flags setting,
5510 * the rest is checked inline. Fast processing is turned on in
5511 * tcp_data_queue when everything is OK.
5512 */
5513 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5514 const struct tcphdr *th, unsigned int len)
5515 {
5516 struct tcp_sock *tp = tcp_sk(sk);
5517 int res;
5518
5519 /*
5520 * Header prediction.
5521 * The code loosely follows the one in the famous
5522 * "30 instruction TCP receive" Van Jacobson mail.
5523 *
5524 * Van's trick is to deposit buffers into socket queue
5525 * on a device interrupt, to call tcp_recv function
5526 * on the receive process context and checksum and copy
5527 * the buffer to user space. smart...
5528 *
5529 * Our current scheme is not silly either but we take the
5530 * extra cost of the net_bh soft interrupt processing...
5531 * We do checksum and copy also but from device to kernel.
5532 */
5533
5534 tp->rx_opt.saw_tstamp = 0;
5535
5536 /* pred_flags is 0xS?10 << 16 + snd_wnd
5537 * if header_prediction is to be made
5538 * 'S' will always be tp->tcp_header_len >> 2
5539 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5540 * turn it off (when there are holes in the receive
5541 * space for instance)
5542 * PSH flag is ignored.
5543 */
5544
5545 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5546 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5547 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5548 int tcp_header_len = tp->tcp_header_len;
5549
5550 /* Timestamp header prediction: tcp_header_len
5551 * is automatically equal to th->doff*4 due to pred_flags
5552 * match.
5553 */
5554
5555 /* Check timestamp */
5556 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5557 /* No? Slow path! */
5558 if (!tcp_parse_aligned_timestamp(tp, th))
5559 goto slow_path;
5560
5561 /* If PAWS failed, check it more carefully in slow path */
5562 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5563 goto slow_path;
5564
5565 /* DO NOT update ts_recent here, if checksum fails
5566 * and timestamp was corrupted part, it will result
5567 * in a hung connection since we will drop all
5568 * future packets due to the PAWS test.
5569 */
5570 }
5571
5572 if (len <= tcp_header_len) {
5573 /* Bulk data transfer: sender */
5574 if (len == tcp_header_len) {
5575 /* Predicted packet is in window by definition.
5576 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5577 * Hence, check seq<=rcv_wup reduces to:
5578 */
5579 if (tcp_header_len ==
5580 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5581 tp->rcv_nxt == tp->rcv_wup)
5582 tcp_store_ts_recent(tp);
5583
5584 /* We know that such packets are checksummed
5585 * on entry.
5586 */
5587 tcp_ack(sk, skb, 0);
5588 __kfree_skb(skb);
5589 tcp_data_snd_check(sk);
5590 return 0;
5591 } else { /* Header too small */
5592 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5593 goto discard;
5594 }
5595 } else {
5596 int eaten = 0;
5597 int copied_early = 0;
5598
5599 if (tp->copied_seq == tp->rcv_nxt &&
5600 len - tcp_header_len <= tp->ucopy.len) {
5601 #ifdef CONFIG_NET_DMA
5602 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5603 copied_early = 1;
5604 eaten = 1;
5605 }
5606 #endif
5607 if (tp->ucopy.task == current &&
5608 sock_owned_by_user(sk) && !copied_early) {
5609 __set_current_state(TASK_RUNNING);
5610
5611 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5612 eaten = 1;
5613 }
5614 if (eaten) {
5615 /* Predicted packet is in window by definition.
5616 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5617 * Hence, check seq<=rcv_wup reduces to:
5618 */
5619 if (tcp_header_len ==
5620 (sizeof(struct tcphdr) +
5621 TCPOLEN_TSTAMP_ALIGNED) &&
5622 tp->rcv_nxt == tp->rcv_wup)
5623 tcp_store_ts_recent(tp);
5624
5625 tcp_rcv_rtt_measure_ts(sk, skb);
5626
5627 __skb_pull(skb, tcp_header_len);
5628 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5629 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5630 }
5631 if (copied_early)
5632 tcp_cleanup_rbuf(sk, skb->len);
5633 }
5634 if (!eaten) {
5635 if (tcp_checksum_complete_user(sk, skb))
5636 goto csum_error;
5637
5638 /* Predicted packet is in window by definition.
5639 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5640 * Hence, check seq<=rcv_wup reduces to:
5641 */
5642 if (tcp_header_len ==
5643 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5644 tp->rcv_nxt == tp->rcv_wup)
5645 tcp_store_ts_recent(tp);
5646
5647 tcp_rcv_rtt_measure_ts(sk, skb);
5648
5649 if ((int)skb->truesize > sk->sk_forward_alloc)
5650 goto step5;
5651
5652 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5653
5654 /* Bulk data transfer: receiver */
5655 tcp_queue_rcv(sk, skb, tcp_header_len);
5656 }
5657
5658 tcp_event_data_recv(sk, skb);
5659
5660 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5661 /* Well, only one small jumplet in fast path... */
5662 tcp_ack(sk, skb, FLAG_DATA);
5663 tcp_data_snd_check(sk);
5664 if (!inet_csk_ack_scheduled(sk))
5665 goto no_ack;
5666 }
5667
5668 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5669 __tcp_ack_snd_check(sk, 0);
5670 no_ack:
5671 #ifdef CONFIG_NET_DMA
5672 if (copied_early)
5673 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5674 else
5675 #endif
5676 if (eaten)
5677 __kfree_skb(skb);
5678 else
5679 sk->sk_data_ready(sk, 0);
5680 return 0;
5681 }
5682 }
5683
5684 slow_path:
5685 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5686 goto csum_error;
5687
5688 /*
5689 * Standard slow path.
5690 */
5691
5692 res = tcp_validate_incoming(sk, skb, th, 1);
5693 if (res <= 0)
5694 return -res;
5695
5696 step5:
5697 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5698 goto discard;
5699
5700 tcp_rcv_rtt_measure_ts(sk, skb);
5701
5702 /* Process urgent data. */
5703 tcp_urg(sk, skb, th);
5704
5705 /* step 7: process the segment text */
5706 tcp_data_queue(sk, skb);
5707
5708 tcp_data_snd_check(sk);
5709 tcp_ack_snd_check(sk);
5710 return 0;
5711
5712 csum_error:
5713 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5714
5715 discard:
5716 __kfree_skb(skb);
5717 return 0;
5718 }
5719 EXPORT_SYMBOL(tcp_rcv_established);
5720
5721 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5722 {
5723 struct tcp_sock *tp = tcp_sk(sk);
5724 struct inet_connection_sock *icsk = inet_csk(sk);
5725
5726 tcp_set_state(sk, TCP_ESTABLISHED);
5727
5728 if (skb != NULL)
5729 security_inet_conn_established(sk, skb);
5730
5731 /* Make sure socket is routed, for correct metrics. */
5732 icsk->icsk_af_ops->rebuild_header(sk);
5733
5734 tcp_init_metrics(sk);
5735
5736 tcp_init_congestion_control(sk);
5737
5738 /* Prevent spurious tcp_cwnd_restart() on first data
5739 * packet.
5740 */
5741 tp->lsndtime = tcp_time_stamp;
5742
5743 tcp_init_buffer_space(sk);
5744
5745 if (sock_flag(sk, SOCK_KEEPOPEN))
5746 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5747
5748 if (!tp->rx_opt.snd_wscale)
5749 __tcp_fast_path_on(tp, tp->snd_wnd);
5750 else
5751 tp->pred_flags = 0;
5752
5753 if (!sock_flag(sk, SOCK_DEAD)) {
5754 sk->sk_state_change(sk);
5755 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5756 }
5757 }
5758
5759 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5760 const struct tcphdr *th, unsigned int len)
5761 {
5762 const u8 *hash_location;
5763 struct inet_connection_sock *icsk = inet_csk(sk);
5764 struct tcp_sock *tp = tcp_sk(sk);
5765 struct tcp_cookie_values *cvp = tp->cookie_values;
5766 int saved_clamp = tp->rx_opt.mss_clamp;
5767
5768 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5769
5770 if (th->ack) {
5771 /* rfc793:
5772 * "If the state is SYN-SENT then
5773 * first check the ACK bit
5774 * If the ACK bit is set
5775 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5776 * a reset (unless the RST bit is set, if so drop
5777 * the segment and return)"
5778 *
5779 * We do not send data with SYN, so that RFC-correct
5780 * test reduces to:
5781 */
5782 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5783 goto reset_and_undo;
5784
5785 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5786 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5787 tcp_time_stamp)) {
5788 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5789 goto reset_and_undo;
5790 }
5791
5792 /* Now ACK is acceptable.
5793 *
5794 * "If the RST bit is set
5795 * If the ACK was acceptable then signal the user "error:
5796 * connection reset", drop the segment, enter CLOSED state,
5797 * delete TCB, and return."
5798 */
5799
5800 if (th->rst) {
5801 tcp_reset(sk);
5802 goto discard;
5803 }
5804
5805 /* rfc793:
5806 * "fifth, if neither of the SYN or RST bits is set then
5807 * drop the segment and return."
5808 *
5809 * See note below!
5810 * --ANK(990513)
5811 */
5812 if (!th->syn)
5813 goto discard_and_undo;
5814
5815 /* rfc793:
5816 * "If the SYN bit is on ...
5817 * are acceptable then ...
5818 * (our SYN has been ACKed), change the connection
5819 * state to ESTABLISHED..."
5820 */
5821
5822 TCP_ECN_rcv_synack(tp, th);
5823
5824 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5825 tcp_ack(sk, skb, FLAG_SLOWPATH);
5826
5827 /* Ok.. it's good. Set up sequence numbers and
5828 * move to established.
5829 */
5830 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5831 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5832
5833 /* RFC1323: The window in SYN & SYN/ACK segments is
5834 * never scaled.
5835 */
5836 tp->snd_wnd = ntohs(th->window);
5837 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5838
5839 if (!tp->rx_opt.wscale_ok) {
5840 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5841 tp->window_clamp = min(tp->window_clamp, 65535U);
5842 }
5843
5844 if (tp->rx_opt.saw_tstamp) {
5845 tp->rx_opt.tstamp_ok = 1;
5846 tp->tcp_header_len =
5847 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5848 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5849 tcp_store_ts_recent(tp);
5850 } else {
5851 tp->tcp_header_len = sizeof(struct tcphdr);
5852 }
5853
5854 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5855 tcp_enable_fack(tp);
5856
5857 tcp_mtup_init(sk);
5858 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5859 tcp_initialize_rcv_mss(sk);
5860
5861 /* Remember, tcp_poll() does not lock socket!
5862 * Change state from SYN-SENT only after copied_seq
5863 * is initialized. */
5864 tp->copied_seq = tp->rcv_nxt;
5865
5866 if (cvp != NULL &&
5867 cvp->cookie_pair_size > 0 &&
5868 tp->rx_opt.cookie_plus > 0) {
5869 int cookie_size = tp->rx_opt.cookie_plus
5870 - TCPOLEN_COOKIE_BASE;
5871 int cookie_pair_size = cookie_size
5872 + cvp->cookie_desired;
5873
5874 /* A cookie extension option was sent and returned.
5875 * Note that each incoming SYNACK replaces the
5876 * Responder cookie. The initial exchange is most
5877 * fragile, as protection against spoofing relies
5878 * entirely upon the sequence and timestamp (above).
5879 * This replacement strategy allows the correct pair to
5880 * pass through, while any others will be filtered via
5881 * Responder verification later.
5882 */
5883 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5884 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5885 hash_location, cookie_size);
5886 cvp->cookie_pair_size = cookie_pair_size;
5887 }
5888 }
5889
5890 smp_mb();
5891
5892 tcp_finish_connect(sk, skb);
5893
5894 if (sk->sk_write_pending ||
5895 icsk->icsk_accept_queue.rskq_defer_accept ||
5896 icsk->icsk_ack.pingpong) {
5897 /* Save one ACK. Data will be ready after
5898 * several ticks, if write_pending is set.
5899 *
5900 * It may be deleted, but with this feature tcpdumps
5901 * look so _wonderfully_ clever, that I was not able
5902 * to stand against the temptation 8) --ANK
5903 */
5904 inet_csk_schedule_ack(sk);
5905 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5906 tcp_enter_quickack_mode(sk);
5907 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5908 TCP_DELACK_MAX, TCP_RTO_MAX);
5909
5910 discard:
5911 __kfree_skb(skb);
5912 return 0;
5913 } else {
5914 tcp_send_ack(sk);
5915 }
5916 return -1;
5917 }
5918
5919 /* No ACK in the segment */
5920
5921 if (th->rst) {
5922 /* rfc793:
5923 * "If the RST bit is set
5924 *
5925 * Otherwise (no ACK) drop the segment and return."
5926 */
5927
5928 goto discard_and_undo;
5929 }
5930
5931 /* PAWS check. */
5932 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5933 tcp_paws_reject(&tp->rx_opt, 0))
5934 goto discard_and_undo;
5935
5936 if (th->syn) {
5937 /* We see SYN without ACK. It is attempt of
5938 * simultaneous connect with crossed SYNs.
5939 * Particularly, it can be connect to self.
5940 */
5941 tcp_set_state(sk, TCP_SYN_RECV);
5942
5943 if (tp->rx_opt.saw_tstamp) {
5944 tp->rx_opt.tstamp_ok = 1;
5945 tcp_store_ts_recent(tp);
5946 tp->tcp_header_len =
5947 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5948 } else {
5949 tp->tcp_header_len = sizeof(struct tcphdr);
5950 }
5951
5952 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5953 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5954
5955 /* RFC1323: The window in SYN & SYN/ACK segments is
5956 * never scaled.
5957 */
5958 tp->snd_wnd = ntohs(th->window);
5959 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5960 tp->max_window = tp->snd_wnd;
5961
5962 TCP_ECN_rcv_syn(tp, th);
5963
5964 tcp_mtup_init(sk);
5965 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5966 tcp_initialize_rcv_mss(sk);
5967
5968 tcp_send_synack(sk);
5969 #if 0
5970 /* Note, we could accept data and URG from this segment.
5971 * There are no obstacles to make this.
5972 *
5973 * However, if we ignore data in ACKless segments sometimes,
5974 * we have no reasons to accept it sometimes.
5975 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5976 * is not flawless. So, discard packet for sanity.
5977 * Uncomment this return to process the data.
5978 */
5979 return -1;
5980 #else
5981 goto discard;
5982 #endif
5983 }
5984 /* "fifth, if neither of the SYN or RST bits is set then
5985 * drop the segment and return."
5986 */
5987
5988 discard_and_undo:
5989 tcp_clear_options(&tp->rx_opt);
5990 tp->rx_opt.mss_clamp = saved_clamp;
5991 goto discard;
5992
5993 reset_and_undo:
5994 tcp_clear_options(&tp->rx_opt);
5995 tp->rx_opt.mss_clamp = saved_clamp;
5996 return 1;
5997 }
5998
5999 /*
6000 * This function implements the receiving procedure of RFC 793 for
6001 * all states except ESTABLISHED and TIME_WAIT.
6002 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6003 * address independent.
6004 */
6005
6006 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
6007 const struct tcphdr *th, unsigned int len)
6008 {
6009 struct tcp_sock *tp = tcp_sk(sk);
6010 struct inet_connection_sock *icsk = inet_csk(sk);
6011 int queued = 0;
6012 int res;
6013
6014 tp->rx_opt.saw_tstamp = 0;
6015
6016 switch (sk->sk_state) {
6017 case TCP_CLOSE:
6018 goto discard;
6019
6020 case TCP_LISTEN:
6021 if (th->ack)
6022 return 1;
6023
6024 if (th->rst)
6025 goto discard;
6026
6027 if (th->syn) {
6028 if (th->fin)
6029 goto discard;
6030 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
6031 return 1;
6032
6033 /* Now we have several options: In theory there is
6034 * nothing else in the frame. KA9Q has an option to
6035 * send data with the syn, BSD accepts data with the
6036 * syn up to the [to be] advertised window and
6037 * Solaris 2.1 gives you a protocol error. For now
6038 * we just ignore it, that fits the spec precisely
6039 * and avoids incompatibilities. It would be nice in
6040 * future to drop through and process the data.
6041 *
6042 * Now that TTCP is starting to be used we ought to
6043 * queue this data.
6044 * But, this leaves one open to an easy denial of
6045 * service attack, and SYN cookies can't defend
6046 * against this problem. So, we drop the data
6047 * in the interest of security over speed unless
6048 * it's still in use.
6049 */
6050 kfree_skb(skb);
6051 return 0;
6052 }
6053 goto discard;
6054
6055 case TCP_SYN_SENT:
6056 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
6057 if (queued >= 0)
6058 return queued;
6059
6060 /* Do step6 onward by hand. */
6061 tcp_urg(sk, skb, th);
6062 __kfree_skb(skb);
6063 tcp_data_snd_check(sk);
6064 return 0;
6065 }
6066
6067 res = tcp_validate_incoming(sk, skb, th, 0);
6068 if (res <= 0)
6069 return -res;
6070
6071 /* step 5: check the ACK field */
6072 if (th->ack) {
6073 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
6074
6075 switch (sk->sk_state) {
6076 case TCP_SYN_RECV:
6077 if (acceptable) {
6078 tp->copied_seq = tp->rcv_nxt;
6079 smp_mb();
6080 tcp_set_state(sk, TCP_ESTABLISHED);
6081 sk->sk_state_change(sk);
6082
6083 /* Note, that this wakeup is only for marginal
6084 * crossed SYN case. Passively open sockets
6085 * are not waked up, because sk->sk_sleep ==
6086 * NULL and sk->sk_socket == NULL.
6087 */
6088 if (sk->sk_socket)
6089 sk_wake_async(sk,
6090 SOCK_WAKE_IO, POLL_OUT);
6091
6092 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6093 tp->snd_wnd = ntohs(th->window) <<
6094 tp->rx_opt.snd_wscale;
6095 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6096
6097 if (tp->rx_opt.tstamp_ok)
6098 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6099
6100 /* Make sure socket is routed, for
6101 * correct metrics.
6102 */
6103 icsk->icsk_af_ops->rebuild_header(sk);
6104
6105 tcp_init_metrics(sk);
6106
6107 tcp_init_congestion_control(sk);
6108
6109 /* Prevent spurious tcp_cwnd_restart() on
6110 * first data packet.
6111 */
6112 tp->lsndtime = tcp_time_stamp;
6113
6114 tcp_mtup_init(sk);
6115 tcp_initialize_rcv_mss(sk);
6116 tcp_init_buffer_space(sk);
6117 tcp_fast_path_on(tp);
6118 } else {
6119 return 1;
6120 }
6121 break;
6122
6123 case TCP_FIN_WAIT1:
6124 if (tp->snd_una == tp->write_seq) {
6125 tcp_set_state(sk, TCP_FIN_WAIT2);
6126 sk->sk_shutdown |= SEND_SHUTDOWN;
6127 dst_confirm(__sk_dst_get(sk));
6128
6129 if (!sock_flag(sk, SOCK_DEAD))
6130 /* Wake up lingering close() */
6131 sk->sk_state_change(sk);
6132 else {
6133 int tmo;
6134
6135 if (tp->linger2 < 0 ||
6136 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6137 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6138 tcp_done(sk);
6139 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6140 return 1;
6141 }
6142
6143 tmo = tcp_fin_time(sk);
6144 if (tmo > TCP_TIMEWAIT_LEN) {
6145 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6146 } else if (th->fin || sock_owned_by_user(sk)) {
6147 /* Bad case. We could lose such FIN otherwise.
6148 * It is not a big problem, but it looks confusing
6149 * and not so rare event. We still can lose it now,
6150 * if it spins in bh_lock_sock(), but it is really
6151 * marginal case.
6152 */
6153 inet_csk_reset_keepalive_timer(sk, tmo);
6154 } else {
6155 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6156 goto discard;
6157 }
6158 }
6159 }
6160 break;
6161
6162 case TCP_CLOSING:
6163 if (tp->snd_una == tp->write_seq) {
6164 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6165 goto discard;
6166 }
6167 break;
6168
6169 case TCP_LAST_ACK:
6170 if (tp->snd_una == tp->write_seq) {
6171 tcp_update_metrics(sk);
6172 tcp_done(sk);
6173 goto discard;
6174 }
6175 break;
6176 }
6177 } else
6178 goto discard;
6179
6180 /* step 6: check the URG bit */
6181 tcp_urg(sk, skb, th);
6182
6183 /* step 7: process the segment text */
6184 switch (sk->sk_state) {
6185 case TCP_CLOSE_WAIT:
6186 case TCP_CLOSING:
6187 case TCP_LAST_ACK:
6188 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6189 break;
6190 case TCP_FIN_WAIT1:
6191 case TCP_FIN_WAIT2:
6192 /* RFC 793 says to queue data in these states,
6193 * RFC 1122 says we MUST send a reset.
6194 * BSD 4.4 also does reset.
6195 */
6196 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6197 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6198 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6199 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6200 tcp_reset(sk);
6201 return 1;
6202 }
6203 }
6204 /* Fall through */
6205 case TCP_ESTABLISHED:
6206 tcp_data_queue(sk, skb);
6207 queued = 1;
6208 break;
6209 }
6210
6211 /* tcp_data could move socket to TIME-WAIT */
6212 if (sk->sk_state != TCP_CLOSE) {
6213 tcp_data_snd_check(sk);
6214 tcp_ack_snd_check(sk);
6215 }
6216
6217 if (!queued) {
6218 discard:
6219 __kfree_skb(skb);
6220 }
6221 return 0;
6222 }
6223 EXPORT_SYMBOL(tcp_rcv_state_process);