[TCP]: Sed magic converts func(sk, tp, ...) -> func(sk, ...)
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105
106 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
109 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
110
111 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
112 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
113 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118
119 /* Adapt the MSS value used to make delayed ack decision to the
120 * real world.
121 */
122 static void tcp_measure_rcv_mss(struct sock *sk,
123 const struct sk_buff *skb)
124 {
125 struct inet_connection_sock *icsk = inet_csk(sk);
126 const unsigned int lss = icsk->icsk_ack.last_seg_size;
127 unsigned int len;
128
129 icsk->icsk_ack.last_seg_size = 0;
130
131 /* skb->len may jitter because of SACKs, even if peer
132 * sends good full-sized frames.
133 */
134 len = skb_shinfo(skb)->gso_size ?: skb->len;
135 if (len >= icsk->icsk_ack.rcv_mss) {
136 icsk->icsk_ack.rcv_mss = len;
137 } else {
138 /* Otherwise, we make more careful check taking into account,
139 * that SACKs block is variable.
140 *
141 * "len" is invariant segment length, including TCP header.
142 */
143 len += skb->data - skb_transport_header(skb);
144 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145 /* If PSH is not set, packet should be
146 * full sized, provided peer TCP is not badly broken.
147 * This observation (if it is correct 8)) allows
148 * to handle super-low mtu links fairly.
149 */
150 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
152 /* Subtract also invariant (if peer is RFC compliant),
153 * tcp header plus fixed timestamp option length.
154 * Resulting "len" is MSS free of SACK jitter.
155 */
156 len -= tcp_sk(sk)->tcp_header_len;
157 icsk->icsk_ack.last_seg_size = len;
158 if (len == lss) {
159 icsk->icsk_ack.rcv_mss = len;
160 return;
161 }
162 }
163 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
166 }
167 }
168
169 static void tcp_incr_quickack(struct sock *sk)
170 {
171 struct inet_connection_sock *icsk = inet_csk(sk);
172 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173
174 if (quickacks==0)
175 quickacks=2;
176 if (quickacks > icsk->icsk_ack.quick)
177 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 }
179
180 void tcp_enter_quickack_mode(struct sock *sk)
181 {
182 struct inet_connection_sock *icsk = inet_csk(sk);
183 tcp_incr_quickack(sk);
184 icsk->icsk_ack.pingpong = 0;
185 icsk->icsk_ack.ato = TCP_ATO_MIN;
186 }
187
188 /* Send ACKs quickly, if "quick" count is not exhausted
189 * and the session is not interactive.
190 */
191
192 static inline int tcp_in_quickack_mode(const struct sock *sk)
193 {
194 const struct inet_connection_sock *icsk = inet_csk(sk);
195 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 }
197
198 /* Buffer size and advertised window tuning.
199 *
200 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
201 */
202
203 static void tcp_fixup_sndbuf(struct sock *sk)
204 {
205 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
206 sizeof(struct sk_buff);
207
208 if (sk->sk_sndbuf < 3 * sndmem)
209 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
210 }
211
212 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
213 *
214 * All tcp_full_space() is split to two parts: "network" buffer, allocated
215 * forward and advertised in receiver window (tp->rcv_wnd) and
216 * "application buffer", required to isolate scheduling/application
217 * latencies from network.
218 * window_clamp is maximal advertised window. It can be less than
219 * tcp_full_space(), in this case tcp_full_space() - window_clamp
220 * is reserved for "application" buffer. The less window_clamp is
221 * the smoother our behaviour from viewpoint of network, but the lower
222 * throughput and the higher sensitivity of the connection to losses. 8)
223 *
224 * rcv_ssthresh is more strict window_clamp used at "slow start"
225 * phase to predict further behaviour of this connection.
226 * It is used for two goals:
227 * - to enforce header prediction at sender, even when application
228 * requires some significant "application buffer". It is check #1.
229 * - to prevent pruning of receive queue because of misprediction
230 * of receiver window. Check #2.
231 *
232 * The scheme does not work when sender sends good segments opening
233 * window and then starts to feed us spaghetti. But it should work
234 * in common situations. Otherwise, we have to rely on queue collapsing.
235 */
236
237 /* Slow part of check#2. */
238 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
239 {
240 struct tcp_sock *tp = tcp_sk(sk);
241 /* Optimize this! */
242 int truesize = tcp_win_from_space(skb->truesize)/2;
243 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
244
245 while (tp->rcv_ssthresh <= window) {
246 if (truesize <= skb->len)
247 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
248
249 truesize >>= 1;
250 window >>= 1;
251 }
252 return 0;
253 }
254
255 static void tcp_grow_window(struct sock *sk,
256 struct sk_buff *skb)
257 {
258 struct tcp_sock *tp = tcp_sk(sk);
259
260 /* Check #1 */
261 if (tp->rcv_ssthresh < tp->window_clamp &&
262 (int)tp->rcv_ssthresh < tcp_space(sk) &&
263 !tcp_memory_pressure) {
264 int incr;
265
266 /* Check #2. Increase window, if skb with such overhead
267 * will fit to rcvbuf in future.
268 */
269 if (tcp_win_from_space(skb->truesize) <= skb->len)
270 incr = 2*tp->advmss;
271 else
272 incr = __tcp_grow_window(sk, skb);
273
274 if (incr) {
275 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
276 inet_csk(sk)->icsk_ack.quick |= 1;
277 }
278 }
279 }
280
281 /* 3. Tuning rcvbuf, when connection enters established state. */
282
283 static void tcp_fixup_rcvbuf(struct sock *sk)
284 {
285 struct tcp_sock *tp = tcp_sk(sk);
286 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
287
288 /* Try to select rcvbuf so that 4 mss-sized segments
289 * will fit to window and corresponding skbs will fit to our rcvbuf.
290 * (was 3; 4 is minimum to allow fast retransmit to work.)
291 */
292 while (tcp_win_from_space(rcvmem) < tp->advmss)
293 rcvmem += 128;
294 if (sk->sk_rcvbuf < 4 * rcvmem)
295 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
296 }
297
298 /* 4. Try to fixup all. It is made immediately after connection enters
299 * established state.
300 */
301 static void tcp_init_buffer_space(struct sock *sk)
302 {
303 struct tcp_sock *tp = tcp_sk(sk);
304 int maxwin;
305
306 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
307 tcp_fixup_rcvbuf(sk);
308 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
309 tcp_fixup_sndbuf(sk);
310
311 tp->rcvq_space.space = tp->rcv_wnd;
312
313 maxwin = tcp_full_space(sk);
314
315 if (tp->window_clamp >= maxwin) {
316 tp->window_clamp = maxwin;
317
318 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
319 tp->window_clamp = max(maxwin -
320 (maxwin >> sysctl_tcp_app_win),
321 4 * tp->advmss);
322 }
323
324 /* Force reservation of one segment. */
325 if (sysctl_tcp_app_win &&
326 tp->window_clamp > 2 * tp->advmss &&
327 tp->window_clamp + tp->advmss > maxwin)
328 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
329
330 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
331 tp->snd_cwnd_stamp = tcp_time_stamp;
332 }
333
334 /* 5. Recalculate window clamp after socket hit its memory bounds. */
335 static void tcp_clamp_window(struct sock *sk)
336 {
337 struct tcp_sock *tp = tcp_sk(sk);
338 struct inet_connection_sock *icsk = inet_csk(sk);
339
340 icsk->icsk_ack.quick = 0;
341
342 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
343 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
344 !tcp_memory_pressure &&
345 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
346 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
347 sysctl_tcp_rmem[2]);
348 }
349 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
350 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
351 }
352
353
354 /* Initialize RCV_MSS value.
355 * RCV_MSS is an our guess about MSS used by the peer.
356 * We haven't any direct information about the MSS.
357 * It's better to underestimate the RCV_MSS rather than overestimate.
358 * Overestimations make us ACKing less frequently than needed.
359 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
360 */
361 void tcp_initialize_rcv_mss(struct sock *sk)
362 {
363 struct tcp_sock *tp = tcp_sk(sk);
364 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
365
366 hint = min(hint, tp->rcv_wnd/2);
367 hint = min(hint, TCP_MIN_RCVMSS);
368 hint = max(hint, TCP_MIN_MSS);
369
370 inet_csk(sk)->icsk_ack.rcv_mss = hint;
371 }
372
373 /* Receiver "autotuning" code.
374 *
375 * The algorithm for RTT estimation w/o timestamps is based on
376 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
377 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
378 *
379 * More detail on this code can be found at
380 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
381 * though this reference is out of date. A new paper
382 * is pending.
383 */
384 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
385 {
386 u32 new_sample = tp->rcv_rtt_est.rtt;
387 long m = sample;
388
389 if (m == 0)
390 m = 1;
391
392 if (new_sample != 0) {
393 /* If we sample in larger samples in the non-timestamp
394 * case, we could grossly overestimate the RTT especially
395 * with chatty applications or bulk transfer apps which
396 * are stalled on filesystem I/O.
397 *
398 * Also, since we are only going for a minimum in the
399 * non-timestamp case, we do not smooth things out
400 * else with timestamps disabled convergence takes too
401 * long.
402 */
403 if (!win_dep) {
404 m -= (new_sample >> 3);
405 new_sample += m;
406 } else if (m < new_sample)
407 new_sample = m << 3;
408 } else {
409 /* No previous measure. */
410 new_sample = m << 3;
411 }
412
413 if (tp->rcv_rtt_est.rtt != new_sample)
414 tp->rcv_rtt_est.rtt = new_sample;
415 }
416
417 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
418 {
419 if (tp->rcv_rtt_est.time == 0)
420 goto new_measure;
421 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
422 return;
423 tcp_rcv_rtt_update(tp,
424 jiffies - tp->rcv_rtt_est.time,
425 1);
426
427 new_measure:
428 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
429 tp->rcv_rtt_est.time = tcp_time_stamp;
430 }
431
432 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
433 {
434 struct tcp_sock *tp = tcp_sk(sk);
435 if (tp->rx_opt.rcv_tsecr &&
436 (TCP_SKB_CB(skb)->end_seq -
437 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
438 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
439 }
440
441 /*
442 * This function should be called every time data is copied to user space.
443 * It calculates the appropriate TCP receive buffer space.
444 */
445 void tcp_rcv_space_adjust(struct sock *sk)
446 {
447 struct tcp_sock *tp = tcp_sk(sk);
448 int time;
449 int space;
450
451 if (tp->rcvq_space.time == 0)
452 goto new_measure;
453
454 time = tcp_time_stamp - tp->rcvq_space.time;
455 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
456 tp->rcv_rtt_est.rtt == 0)
457 return;
458
459 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
460
461 space = max(tp->rcvq_space.space, space);
462
463 if (tp->rcvq_space.space != space) {
464 int rcvmem;
465
466 tp->rcvq_space.space = space;
467
468 if (sysctl_tcp_moderate_rcvbuf &&
469 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
470 int new_clamp = space;
471
472 /* Receive space grows, normalize in order to
473 * take into account packet headers and sk_buff
474 * structure overhead.
475 */
476 space /= tp->advmss;
477 if (!space)
478 space = 1;
479 rcvmem = (tp->advmss + MAX_TCP_HEADER +
480 16 + sizeof(struct sk_buff));
481 while (tcp_win_from_space(rcvmem) < tp->advmss)
482 rcvmem += 128;
483 space *= rcvmem;
484 space = min(space, sysctl_tcp_rmem[2]);
485 if (space > sk->sk_rcvbuf) {
486 sk->sk_rcvbuf = space;
487
488 /* Make the window clamp follow along. */
489 tp->window_clamp = new_clamp;
490 }
491 }
492 }
493
494 new_measure:
495 tp->rcvq_space.seq = tp->copied_seq;
496 tp->rcvq_space.time = tcp_time_stamp;
497 }
498
499 /* There is something which you must keep in mind when you analyze the
500 * behavior of the tp->ato delayed ack timeout interval. When a
501 * connection starts up, we want to ack as quickly as possible. The
502 * problem is that "good" TCP's do slow start at the beginning of data
503 * transmission. The means that until we send the first few ACK's the
504 * sender will sit on his end and only queue most of his data, because
505 * he can only send snd_cwnd unacked packets at any given time. For
506 * each ACK we send, he increments snd_cwnd and transmits more of his
507 * queue. -DaveM
508 */
509 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
510 {
511 struct tcp_sock *tp = tcp_sk(sk);
512 struct inet_connection_sock *icsk = inet_csk(sk);
513 u32 now;
514
515 inet_csk_schedule_ack(sk);
516
517 tcp_measure_rcv_mss(sk, skb);
518
519 tcp_rcv_rtt_measure(tp);
520
521 now = tcp_time_stamp;
522
523 if (!icsk->icsk_ack.ato) {
524 /* The _first_ data packet received, initialize
525 * delayed ACK engine.
526 */
527 tcp_incr_quickack(sk);
528 icsk->icsk_ack.ato = TCP_ATO_MIN;
529 } else {
530 int m = now - icsk->icsk_ack.lrcvtime;
531
532 if (m <= TCP_ATO_MIN/2) {
533 /* The fastest case is the first. */
534 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
535 } else if (m < icsk->icsk_ack.ato) {
536 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
537 if (icsk->icsk_ack.ato > icsk->icsk_rto)
538 icsk->icsk_ack.ato = icsk->icsk_rto;
539 } else if (m > icsk->icsk_rto) {
540 /* Too long gap. Apparently sender failed to
541 * restart window, so that we send ACKs quickly.
542 */
543 tcp_incr_quickack(sk);
544 sk_stream_mem_reclaim(sk);
545 }
546 }
547 icsk->icsk_ack.lrcvtime = now;
548
549 TCP_ECN_check_ce(tp, skb);
550
551 if (skb->len >= 128)
552 tcp_grow_window(sk, skb);
553 }
554
555 /* Called to compute a smoothed rtt estimate. The data fed to this
556 * routine either comes from timestamps, or from segments that were
557 * known _not_ to have been retransmitted [see Karn/Partridge
558 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
559 * piece by Van Jacobson.
560 * NOTE: the next three routines used to be one big routine.
561 * To save cycles in the RFC 1323 implementation it was better to break
562 * it up into three procedures. -- erics
563 */
564 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
565 {
566 struct tcp_sock *tp = tcp_sk(sk);
567 long m = mrtt; /* RTT */
568
569 /* The following amusing code comes from Jacobson's
570 * article in SIGCOMM '88. Note that rtt and mdev
571 * are scaled versions of rtt and mean deviation.
572 * This is designed to be as fast as possible
573 * m stands for "measurement".
574 *
575 * On a 1990 paper the rto value is changed to:
576 * RTO = rtt + 4 * mdev
577 *
578 * Funny. This algorithm seems to be very broken.
579 * These formulae increase RTO, when it should be decreased, increase
580 * too slowly, when it should be increased quickly, decrease too quickly
581 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
582 * does not matter how to _calculate_ it. Seems, it was trap
583 * that VJ failed to avoid. 8)
584 */
585 if (m == 0)
586 m = 1;
587 if (tp->srtt != 0) {
588 m -= (tp->srtt >> 3); /* m is now error in rtt est */
589 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
590 if (m < 0) {
591 m = -m; /* m is now abs(error) */
592 m -= (tp->mdev >> 2); /* similar update on mdev */
593 /* This is similar to one of Eifel findings.
594 * Eifel blocks mdev updates when rtt decreases.
595 * This solution is a bit different: we use finer gain
596 * for mdev in this case (alpha*beta).
597 * Like Eifel it also prevents growth of rto,
598 * but also it limits too fast rto decreases,
599 * happening in pure Eifel.
600 */
601 if (m > 0)
602 m >>= 3;
603 } else {
604 m -= (tp->mdev >> 2); /* similar update on mdev */
605 }
606 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
607 if (tp->mdev > tp->mdev_max) {
608 tp->mdev_max = tp->mdev;
609 if (tp->mdev_max > tp->rttvar)
610 tp->rttvar = tp->mdev_max;
611 }
612 if (after(tp->snd_una, tp->rtt_seq)) {
613 if (tp->mdev_max < tp->rttvar)
614 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
615 tp->rtt_seq = tp->snd_nxt;
616 tp->mdev_max = TCP_RTO_MIN;
617 }
618 } else {
619 /* no previous measure. */
620 tp->srtt = m<<3; /* take the measured time to be rtt */
621 tp->mdev = m<<1; /* make sure rto = 3*rtt */
622 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
623 tp->rtt_seq = tp->snd_nxt;
624 }
625 }
626
627 /* Calculate rto without backoff. This is the second half of Van Jacobson's
628 * routine referred to above.
629 */
630 static inline void tcp_set_rto(struct sock *sk)
631 {
632 const struct tcp_sock *tp = tcp_sk(sk);
633 /* Old crap is replaced with new one. 8)
634 *
635 * More seriously:
636 * 1. If rtt variance happened to be less 50msec, it is hallucination.
637 * It cannot be less due to utterly erratic ACK generation made
638 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
639 * to do with delayed acks, because at cwnd>2 true delack timeout
640 * is invisible. Actually, Linux-2.4 also generates erratic
641 * ACKs in some circumstances.
642 */
643 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
644
645 /* 2. Fixups made earlier cannot be right.
646 * If we do not estimate RTO correctly without them,
647 * all the algo is pure shit and should be replaced
648 * with correct one. It is exactly, which we pretend to do.
649 */
650 }
651
652 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
653 * guarantees that rto is higher.
654 */
655 static inline void tcp_bound_rto(struct sock *sk)
656 {
657 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
658 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
659 }
660
661 /* Save metrics learned by this TCP session.
662 This function is called only, when TCP finishes successfully
663 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
664 */
665 void tcp_update_metrics(struct sock *sk)
666 {
667 struct tcp_sock *tp = tcp_sk(sk);
668 struct dst_entry *dst = __sk_dst_get(sk);
669
670 if (sysctl_tcp_nometrics_save)
671 return;
672
673 dst_confirm(dst);
674
675 if (dst && (dst->flags&DST_HOST)) {
676 const struct inet_connection_sock *icsk = inet_csk(sk);
677 int m;
678
679 if (icsk->icsk_backoff || !tp->srtt) {
680 /* This session failed to estimate rtt. Why?
681 * Probably, no packets returned in time.
682 * Reset our results.
683 */
684 if (!(dst_metric_locked(dst, RTAX_RTT)))
685 dst->metrics[RTAX_RTT-1] = 0;
686 return;
687 }
688
689 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
690
691 /* If newly calculated rtt larger than stored one,
692 * store new one. Otherwise, use EWMA. Remember,
693 * rtt overestimation is always better than underestimation.
694 */
695 if (!(dst_metric_locked(dst, RTAX_RTT))) {
696 if (m <= 0)
697 dst->metrics[RTAX_RTT-1] = tp->srtt;
698 else
699 dst->metrics[RTAX_RTT-1] -= (m>>3);
700 }
701
702 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
703 if (m < 0)
704 m = -m;
705
706 /* Scale deviation to rttvar fixed point */
707 m >>= 1;
708 if (m < tp->mdev)
709 m = tp->mdev;
710
711 if (m >= dst_metric(dst, RTAX_RTTVAR))
712 dst->metrics[RTAX_RTTVAR-1] = m;
713 else
714 dst->metrics[RTAX_RTTVAR-1] -=
715 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
716 }
717
718 if (tp->snd_ssthresh >= 0xFFFF) {
719 /* Slow start still did not finish. */
720 if (dst_metric(dst, RTAX_SSTHRESH) &&
721 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
722 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
723 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
724 if (!dst_metric_locked(dst, RTAX_CWND) &&
725 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
726 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
727 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
728 icsk->icsk_ca_state == TCP_CA_Open) {
729 /* Cong. avoidance phase, cwnd is reliable. */
730 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
731 dst->metrics[RTAX_SSTHRESH-1] =
732 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
733 if (!dst_metric_locked(dst, RTAX_CWND))
734 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
735 } else {
736 /* Else slow start did not finish, cwnd is non-sense,
737 ssthresh may be also invalid.
738 */
739 if (!dst_metric_locked(dst, RTAX_CWND))
740 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
741 if (dst->metrics[RTAX_SSTHRESH-1] &&
742 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
743 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
744 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
745 }
746
747 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
748 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
749 tp->reordering != sysctl_tcp_reordering)
750 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
751 }
752 }
753 }
754
755 /* Numbers are taken from RFC2414. */
756 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
757 {
758 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
759
760 if (!cwnd) {
761 if (tp->mss_cache > 1460)
762 cwnd = 2;
763 else
764 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
765 }
766 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
767 }
768
769 /* Set slow start threshold and cwnd not falling to slow start */
770 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
771 {
772 struct tcp_sock *tp = tcp_sk(sk);
773 const struct inet_connection_sock *icsk = inet_csk(sk);
774
775 tp->prior_ssthresh = 0;
776 tp->bytes_acked = 0;
777 if (icsk->icsk_ca_state < TCP_CA_CWR) {
778 tp->undo_marker = 0;
779 if (set_ssthresh)
780 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
781 tp->snd_cwnd = min(tp->snd_cwnd,
782 tcp_packets_in_flight(tp) + 1U);
783 tp->snd_cwnd_cnt = 0;
784 tp->high_seq = tp->snd_nxt;
785 tp->snd_cwnd_stamp = tcp_time_stamp;
786 TCP_ECN_queue_cwr(tp);
787
788 tcp_set_ca_state(sk, TCP_CA_CWR);
789 }
790 }
791
792 /* Initialize metrics on socket. */
793
794 static void tcp_init_metrics(struct sock *sk)
795 {
796 struct tcp_sock *tp = tcp_sk(sk);
797 struct dst_entry *dst = __sk_dst_get(sk);
798
799 if (dst == NULL)
800 goto reset;
801
802 dst_confirm(dst);
803
804 if (dst_metric_locked(dst, RTAX_CWND))
805 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
806 if (dst_metric(dst, RTAX_SSTHRESH)) {
807 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
808 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
809 tp->snd_ssthresh = tp->snd_cwnd_clamp;
810 }
811 if (dst_metric(dst, RTAX_REORDERING) &&
812 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
813 tp->rx_opt.sack_ok &= ~2;
814 tp->reordering = dst_metric(dst, RTAX_REORDERING);
815 }
816
817 if (dst_metric(dst, RTAX_RTT) == 0)
818 goto reset;
819
820 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
821 goto reset;
822
823 /* Initial rtt is determined from SYN,SYN-ACK.
824 * The segment is small and rtt may appear much
825 * less than real one. Use per-dst memory
826 * to make it more realistic.
827 *
828 * A bit of theory. RTT is time passed after "normal" sized packet
829 * is sent until it is ACKed. In normal circumstances sending small
830 * packets force peer to delay ACKs and calculation is correct too.
831 * The algorithm is adaptive and, provided we follow specs, it
832 * NEVER underestimate RTT. BUT! If peer tries to make some clever
833 * tricks sort of "quick acks" for time long enough to decrease RTT
834 * to low value, and then abruptly stops to do it and starts to delay
835 * ACKs, wait for troubles.
836 */
837 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
838 tp->srtt = dst_metric(dst, RTAX_RTT);
839 tp->rtt_seq = tp->snd_nxt;
840 }
841 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
842 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
843 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
844 }
845 tcp_set_rto(sk);
846 tcp_bound_rto(sk);
847 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
848 goto reset;
849 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
850 tp->snd_cwnd_stamp = tcp_time_stamp;
851 return;
852
853 reset:
854 /* Play conservative. If timestamps are not
855 * supported, TCP will fail to recalculate correct
856 * rtt, if initial rto is too small. FORGET ALL AND RESET!
857 */
858 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
859 tp->srtt = 0;
860 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
861 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
862 }
863 }
864
865 static void tcp_update_reordering(struct sock *sk, const int metric,
866 const int ts)
867 {
868 struct tcp_sock *tp = tcp_sk(sk);
869 if (metric > tp->reordering) {
870 tp->reordering = min(TCP_MAX_REORDERING, metric);
871
872 /* This exciting event is worth to be remembered. 8) */
873 if (ts)
874 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
875 else if (IsReno(tp))
876 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
877 else if (IsFack(tp))
878 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
879 else
880 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
881 #if FASTRETRANS_DEBUG > 1
882 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
883 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
884 tp->reordering,
885 tp->fackets_out,
886 tp->sacked_out,
887 tp->undo_marker ? tp->undo_retrans : 0);
888 #endif
889 /* Disable FACK yet. */
890 tp->rx_opt.sack_ok &= ~2;
891 }
892 }
893
894 /* This procedure tags the retransmission queue when SACKs arrive.
895 *
896 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
897 * Packets in queue with these bits set are counted in variables
898 * sacked_out, retrans_out and lost_out, correspondingly.
899 *
900 * Valid combinations are:
901 * Tag InFlight Description
902 * 0 1 - orig segment is in flight.
903 * S 0 - nothing flies, orig reached receiver.
904 * L 0 - nothing flies, orig lost by net.
905 * R 2 - both orig and retransmit are in flight.
906 * L|R 1 - orig is lost, retransmit is in flight.
907 * S|R 1 - orig reached receiver, retrans is still in flight.
908 * (L|S|R is logically valid, it could occur when L|R is sacked,
909 * but it is equivalent to plain S and code short-curcuits it to S.
910 * L|S is logically invalid, it would mean -1 packet in flight 8))
911 *
912 * These 6 states form finite state machine, controlled by the following events:
913 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
914 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
915 * 3. Loss detection event of one of three flavors:
916 * A. Scoreboard estimator decided the packet is lost.
917 * A'. Reno "three dupacks" marks head of queue lost.
918 * A''. Its FACK modfication, head until snd.fack is lost.
919 * B. SACK arrives sacking data transmitted after never retransmitted
920 * hole was sent out.
921 * C. SACK arrives sacking SND.NXT at the moment, when the
922 * segment was retransmitted.
923 * 4. D-SACK added new rule: D-SACK changes any tag to S.
924 *
925 * It is pleasant to note, that state diagram turns out to be commutative,
926 * so that we are allowed not to be bothered by order of our actions,
927 * when multiple events arrive simultaneously. (see the function below).
928 *
929 * Reordering detection.
930 * --------------------
931 * Reordering metric is maximal distance, which a packet can be displaced
932 * in packet stream. With SACKs we can estimate it:
933 *
934 * 1. SACK fills old hole and the corresponding segment was not
935 * ever retransmitted -> reordering. Alas, we cannot use it
936 * when segment was retransmitted.
937 * 2. The last flaw is solved with D-SACK. D-SACK arrives
938 * for retransmitted and already SACKed segment -> reordering..
939 * Both of these heuristics are not used in Loss state, when we cannot
940 * account for retransmits accurately.
941 */
942 static int
943 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
944 {
945 const struct inet_connection_sock *icsk = inet_csk(sk);
946 struct tcp_sock *tp = tcp_sk(sk);
947 unsigned char *ptr = (skb_transport_header(ack_skb) +
948 TCP_SKB_CB(ack_skb)->sacked);
949 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
950 struct sk_buff *cached_skb;
951 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
952 int reord = tp->packets_out;
953 int prior_fackets;
954 u32 lost_retrans = 0;
955 int flag = 0;
956 int dup_sack = 0;
957 int cached_fack_count;
958 int i;
959 int first_sack_index;
960
961 if (!tp->sacked_out)
962 tp->fackets_out = 0;
963 prior_fackets = tp->fackets_out;
964
965 /* Check for D-SACK. */
966 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
967 dup_sack = 1;
968 tp->rx_opt.sack_ok |= 4;
969 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
970 } else if (num_sacks > 1 &&
971 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
972 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
973 dup_sack = 1;
974 tp->rx_opt.sack_ok |= 4;
975 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
976 }
977
978 /* D-SACK for already forgotten data...
979 * Do dumb counting. */
980 if (dup_sack &&
981 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
982 after(ntohl(sp[0].end_seq), tp->undo_marker))
983 tp->undo_retrans--;
984
985 /* Eliminate too old ACKs, but take into
986 * account more or less fresh ones, they can
987 * contain valid SACK info.
988 */
989 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
990 return 0;
991
992 /* SACK fastpath:
993 * if the only SACK change is the increase of the end_seq of
994 * the first block then only apply that SACK block
995 * and use retrans queue hinting otherwise slowpath */
996 flag = 1;
997 for (i = 0; i < num_sacks; i++) {
998 __be32 start_seq = sp[i].start_seq;
999 __be32 end_seq = sp[i].end_seq;
1000
1001 if (i == 0) {
1002 if (tp->recv_sack_cache[i].start_seq != start_seq)
1003 flag = 0;
1004 } else {
1005 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1006 (tp->recv_sack_cache[i].end_seq != end_seq))
1007 flag = 0;
1008 }
1009 tp->recv_sack_cache[i].start_seq = start_seq;
1010 tp->recv_sack_cache[i].end_seq = end_seq;
1011 }
1012 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1013 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1014 tp->recv_sack_cache[i].start_seq = 0;
1015 tp->recv_sack_cache[i].end_seq = 0;
1016 }
1017
1018 first_sack_index = 0;
1019 if (flag)
1020 num_sacks = 1;
1021 else {
1022 int j;
1023 tp->fastpath_skb_hint = NULL;
1024
1025 /* order SACK blocks to allow in order walk of the retrans queue */
1026 for (i = num_sacks-1; i > 0; i--) {
1027 for (j = 0; j < i; j++){
1028 if (after(ntohl(sp[j].start_seq),
1029 ntohl(sp[j+1].start_seq))){
1030 struct tcp_sack_block_wire tmp;
1031
1032 tmp = sp[j];
1033 sp[j] = sp[j+1];
1034 sp[j+1] = tmp;
1035
1036 /* Track where the first SACK block goes to */
1037 if (j == first_sack_index)
1038 first_sack_index = j+1;
1039 }
1040
1041 }
1042 }
1043 }
1044
1045 /* clear flag as used for different purpose in following code */
1046 flag = 0;
1047
1048 /* Use SACK fastpath hint if valid */
1049 cached_skb = tp->fastpath_skb_hint;
1050 cached_fack_count = tp->fastpath_cnt_hint;
1051 if (!cached_skb) {
1052 cached_skb = tcp_write_queue_head(sk);
1053 cached_fack_count = 0;
1054 }
1055
1056 for (i=0; i<num_sacks; i++, sp++) {
1057 struct sk_buff *skb;
1058 __u32 start_seq = ntohl(sp->start_seq);
1059 __u32 end_seq = ntohl(sp->end_seq);
1060 int fack_count;
1061
1062 skb = cached_skb;
1063 fack_count = cached_fack_count;
1064
1065 /* Event "B" in the comment above. */
1066 if (after(end_seq, tp->high_seq))
1067 flag |= FLAG_DATA_LOST;
1068
1069 tcp_for_write_queue_from(skb, sk) {
1070 int in_sack, pcount;
1071 u8 sacked;
1072
1073 if (skb == tcp_send_head(sk))
1074 break;
1075
1076 cached_skb = skb;
1077 cached_fack_count = fack_count;
1078 if (i == first_sack_index) {
1079 tp->fastpath_skb_hint = skb;
1080 tp->fastpath_cnt_hint = fack_count;
1081 }
1082
1083 /* The retransmission queue is always in order, so
1084 * we can short-circuit the walk early.
1085 */
1086 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1087 break;
1088
1089 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1090 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1091
1092 pcount = tcp_skb_pcount(skb);
1093
1094 if (pcount > 1 && !in_sack &&
1095 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1096 unsigned int pkt_len;
1097
1098 in_sack = !after(start_seq,
1099 TCP_SKB_CB(skb)->seq);
1100
1101 if (!in_sack)
1102 pkt_len = (start_seq -
1103 TCP_SKB_CB(skb)->seq);
1104 else
1105 pkt_len = (end_seq -
1106 TCP_SKB_CB(skb)->seq);
1107 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1108 break;
1109 pcount = tcp_skb_pcount(skb);
1110 }
1111
1112 fack_count += pcount;
1113
1114 sacked = TCP_SKB_CB(skb)->sacked;
1115
1116 /* Account D-SACK for retransmitted packet. */
1117 if ((dup_sack && in_sack) &&
1118 (sacked & TCPCB_RETRANS) &&
1119 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1120 tp->undo_retrans--;
1121
1122 /* The frame is ACKed. */
1123 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1124 if (sacked&TCPCB_RETRANS) {
1125 if ((dup_sack && in_sack) &&
1126 (sacked&TCPCB_SACKED_ACKED))
1127 reord = min(fack_count, reord);
1128 } else {
1129 /* If it was in a hole, we detected reordering. */
1130 if (fack_count < prior_fackets &&
1131 !(sacked&TCPCB_SACKED_ACKED))
1132 reord = min(fack_count, reord);
1133 }
1134
1135 /* Nothing to do; acked frame is about to be dropped. */
1136 continue;
1137 }
1138
1139 if ((sacked&TCPCB_SACKED_RETRANS) &&
1140 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1141 (!lost_retrans || after(end_seq, lost_retrans)))
1142 lost_retrans = end_seq;
1143
1144 if (!in_sack)
1145 continue;
1146
1147 if (!(sacked&TCPCB_SACKED_ACKED)) {
1148 if (sacked & TCPCB_SACKED_RETRANS) {
1149 /* If the segment is not tagged as lost,
1150 * we do not clear RETRANS, believing
1151 * that retransmission is still in flight.
1152 */
1153 if (sacked & TCPCB_LOST) {
1154 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1155 tp->lost_out -= tcp_skb_pcount(skb);
1156 tp->retrans_out -= tcp_skb_pcount(skb);
1157
1158 /* clear lost hint */
1159 tp->retransmit_skb_hint = NULL;
1160 }
1161 } else {
1162 /* New sack for not retransmitted frame,
1163 * which was in hole. It is reordering.
1164 */
1165 if (!(sacked & TCPCB_RETRANS) &&
1166 fack_count < prior_fackets)
1167 reord = min(fack_count, reord);
1168
1169 if (sacked & TCPCB_LOST) {
1170 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1171 tp->lost_out -= tcp_skb_pcount(skb);
1172
1173 /* clear lost hint */
1174 tp->retransmit_skb_hint = NULL;
1175 }
1176 /* SACK enhanced F-RTO detection.
1177 * Set flag if and only if non-rexmitted
1178 * segments below frto_highmark are
1179 * SACKed (RFC4138; Appendix B).
1180 * Clearing correct due to in-order walk
1181 */
1182 if (after(end_seq, tp->frto_highmark)) {
1183 flag &= ~FLAG_ONLY_ORIG_SACKED;
1184 } else {
1185 if (!(sacked & TCPCB_RETRANS))
1186 flag |= FLAG_ONLY_ORIG_SACKED;
1187 }
1188 }
1189
1190 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1191 flag |= FLAG_DATA_SACKED;
1192 tp->sacked_out += tcp_skb_pcount(skb);
1193
1194 if (fack_count > tp->fackets_out)
1195 tp->fackets_out = fack_count;
1196 } else {
1197 if (dup_sack && (sacked&TCPCB_RETRANS))
1198 reord = min(fack_count, reord);
1199 }
1200
1201 /* D-SACK. We can detect redundant retransmission
1202 * in S|R and plain R frames and clear it.
1203 * undo_retrans is decreased above, L|R frames
1204 * are accounted above as well.
1205 */
1206 if (dup_sack &&
1207 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1208 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1209 tp->retrans_out -= tcp_skb_pcount(skb);
1210 tp->retransmit_skb_hint = NULL;
1211 }
1212 }
1213 }
1214
1215 /* Check for lost retransmit. This superb idea is
1216 * borrowed from "ratehalving". Event "C".
1217 * Later note: FACK people cheated me again 8),
1218 * we have to account for reordering! Ugly,
1219 * but should help.
1220 */
1221 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1222 struct sk_buff *skb;
1223
1224 tcp_for_write_queue(skb, sk) {
1225 if (skb == tcp_send_head(sk))
1226 break;
1227 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1228 break;
1229 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1230 continue;
1231 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1232 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1233 (IsFack(tp) ||
1234 !before(lost_retrans,
1235 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1236 tp->mss_cache))) {
1237 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1238 tp->retrans_out -= tcp_skb_pcount(skb);
1239
1240 /* clear lost hint */
1241 tp->retransmit_skb_hint = NULL;
1242
1243 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1244 tp->lost_out += tcp_skb_pcount(skb);
1245 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1246 flag |= FLAG_DATA_SACKED;
1247 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1248 }
1249 }
1250 }
1251 }
1252
1253 tp->left_out = tp->sacked_out + tp->lost_out;
1254
1255 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1256 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1257 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1258
1259 #if FASTRETRANS_DEBUG > 0
1260 BUG_TRAP((int)tp->sacked_out >= 0);
1261 BUG_TRAP((int)tp->lost_out >= 0);
1262 BUG_TRAP((int)tp->retrans_out >= 0);
1263 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1264 #endif
1265 return flag;
1266 }
1267
1268 /* F-RTO can only be used if these conditions are satisfied:
1269 * - there must be some unsent new data
1270 * - the advertised window should allow sending it
1271 * - TCP has never retransmitted anything other than head (SACK enhanced
1272 * variant from Appendix B of RFC4138 is more robust here)
1273 */
1274 int tcp_use_frto(struct sock *sk)
1275 {
1276 const struct tcp_sock *tp = tcp_sk(sk);
1277 struct sk_buff *skb;
1278
1279 if (!sysctl_tcp_frto || !tcp_send_head(sk) ||
1280 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
1281 tp->snd_una + tp->snd_wnd))
1282 return 0;
1283
1284 if (IsSackFrto())
1285 return 1;
1286
1287 /* Avoid expensive walking of rexmit queue if possible */
1288 if (tp->retrans_out > 1)
1289 return 0;
1290
1291 skb = tcp_write_queue_head(sk);
1292 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1293 tcp_for_write_queue_from(skb, sk) {
1294 if (skb == tcp_send_head(sk))
1295 break;
1296 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1297 return 0;
1298 /* Short-circuit when first non-SACKed skb has been checked */
1299 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1300 break;
1301 }
1302 return 1;
1303 }
1304
1305 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1306 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1307 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1308 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1309 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1310 * bits are handled if the Loss state is really to be entered (in
1311 * tcp_enter_frto_loss).
1312 *
1313 * Do like tcp_enter_loss() would; when RTO expires the second time it
1314 * does:
1315 * "Reduce ssthresh if it has not yet been made inside this window."
1316 */
1317 void tcp_enter_frto(struct sock *sk)
1318 {
1319 const struct inet_connection_sock *icsk = inet_csk(sk);
1320 struct tcp_sock *tp = tcp_sk(sk);
1321 struct sk_buff *skb;
1322
1323 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1324 tp->snd_una == tp->high_seq ||
1325 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1326 !icsk->icsk_retransmits)) {
1327 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1328 /* Our state is too optimistic in ssthresh() call because cwnd
1329 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1330 * recovery has not yet completed. Pattern would be this: RTO,
1331 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1332 * up here twice).
1333 * RFC4138 should be more specific on what to do, even though
1334 * RTO is quite unlikely to occur after the first Cumulative ACK
1335 * due to back-off and complexity of triggering events ...
1336 */
1337 if (tp->frto_counter) {
1338 u32 stored_cwnd;
1339 stored_cwnd = tp->snd_cwnd;
1340 tp->snd_cwnd = 2;
1341 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1342 tp->snd_cwnd = stored_cwnd;
1343 } else {
1344 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1345 }
1346 /* ... in theory, cong.control module could do "any tricks" in
1347 * ssthresh(), which means that ca_state, lost bits and lost_out
1348 * counter would have to be faked before the call occurs. We
1349 * consider that too expensive, unlikely and hacky, so modules
1350 * using these in ssthresh() must deal these incompatibility
1351 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1352 */
1353 tcp_ca_event(sk, CA_EVENT_FRTO);
1354 }
1355
1356 tp->undo_marker = tp->snd_una;
1357 tp->undo_retrans = 0;
1358
1359 skb = tcp_write_queue_head(sk);
1360 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1361 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1362 tp->retrans_out -= tcp_skb_pcount(skb);
1363 }
1364 tcp_sync_left_out(tp);
1365
1366 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1367 * The last condition is necessary at least in tp->frto_counter case.
1368 */
1369 if (IsSackFrto() && (tp->frto_counter ||
1370 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1371 after(tp->high_seq, tp->snd_una)) {
1372 tp->frto_highmark = tp->high_seq;
1373 } else {
1374 tp->frto_highmark = tp->snd_nxt;
1375 }
1376 tcp_set_ca_state(sk, TCP_CA_Disorder);
1377 tp->high_seq = tp->snd_nxt;
1378 tp->frto_counter = 1;
1379 }
1380
1381 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1382 * which indicates that we should follow the traditional RTO recovery,
1383 * i.e. mark everything lost and do go-back-N retransmission.
1384 */
1385 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1386 {
1387 struct tcp_sock *tp = tcp_sk(sk);
1388 struct sk_buff *skb;
1389 int cnt = 0;
1390
1391 tp->sacked_out = 0;
1392 tp->lost_out = 0;
1393 tp->fackets_out = 0;
1394 tp->retrans_out = 0;
1395
1396 tcp_for_write_queue(skb, sk) {
1397 if (skb == tcp_send_head(sk))
1398 break;
1399 cnt += tcp_skb_pcount(skb);
1400 /*
1401 * Count the retransmission made on RTO correctly (only when
1402 * waiting for the first ACK and did not get it)...
1403 */
1404 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1405 tp->retrans_out += tcp_skb_pcount(skb);
1406 /* ...enter this if branch just for the first segment */
1407 flag |= FLAG_DATA_ACKED;
1408 } else {
1409 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1410 }
1411 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1412
1413 /* Do not mark those segments lost that were
1414 * forward transmitted after RTO
1415 */
1416 if (!after(TCP_SKB_CB(skb)->end_seq,
1417 tp->frto_highmark)) {
1418 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1419 tp->lost_out += tcp_skb_pcount(skb);
1420 }
1421 } else {
1422 tp->sacked_out += tcp_skb_pcount(skb);
1423 tp->fackets_out = cnt;
1424 }
1425 }
1426 tcp_sync_left_out(tp);
1427
1428 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1429 tp->snd_cwnd_cnt = 0;
1430 tp->snd_cwnd_stamp = tcp_time_stamp;
1431 tp->undo_marker = 0;
1432 tp->frto_counter = 0;
1433
1434 tp->reordering = min_t(unsigned int, tp->reordering,
1435 sysctl_tcp_reordering);
1436 tcp_set_ca_state(sk, TCP_CA_Loss);
1437 tp->high_seq = tp->frto_highmark;
1438 TCP_ECN_queue_cwr(tp);
1439
1440 clear_all_retrans_hints(tp);
1441 }
1442
1443 void tcp_clear_retrans(struct tcp_sock *tp)
1444 {
1445 tp->left_out = 0;
1446 tp->retrans_out = 0;
1447
1448 tp->fackets_out = 0;
1449 tp->sacked_out = 0;
1450 tp->lost_out = 0;
1451
1452 tp->undo_marker = 0;
1453 tp->undo_retrans = 0;
1454 }
1455
1456 /* Enter Loss state. If "how" is not zero, forget all SACK information
1457 * and reset tags completely, otherwise preserve SACKs. If receiver
1458 * dropped its ofo queue, we will know this due to reneging detection.
1459 */
1460 void tcp_enter_loss(struct sock *sk, int how)
1461 {
1462 const struct inet_connection_sock *icsk = inet_csk(sk);
1463 struct tcp_sock *tp = tcp_sk(sk);
1464 struct sk_buff *skb;
1465 int cnt = 0;
1466
1467 /* Reduce ssthresh if it has not yet been made inside this window. */
1468 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1469 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1470 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1471 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1472 tcp_ca_event(sk, CA_EVENT_LOSS);
1473 }
1474 tp->snd_cwnd = 1;
1475 tp->snd_cwnd_cnt = 0;
1476 tp->snd_cwnd_stamp = tcp_time_stamp;
1477
1478 tp->bytes_acked = 0;
1479 tcp_clear_retrans(tp);
1480
1481 /* Push undo marker, if it was plain RTO and nothing
1482 * was retransmitted. */
1483 if (!how)
1484 tp->undo_marker = tp->snd_una;
1485
1486 tcp_for_write_queue(skb, sk) {
1487 if (skb == tcp_send_head(sk))
1488 break;
1489 cnt += tcp_skb_pcount(skb);
1490 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1491 tp->undo_marker = 0;
1492 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1493 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1494 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1495 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1496 tp->lost_out += tcp_skb_pcount(skb);
1497 } else {
1498 tp->sacked_out += tcp_skb_pcount(skb);
1499 tp->fackets_out = cnt;
1500 }
1501 }
1502 tcp_sync_left_out(tp);
1503
1504 tp->reordering = min_t(unsigned int, tp->reordering,
1505 sysctl_tcp_reordering);
1506 tcp_set_ca_state(sk, TCP_CA_Loss);
1507 tp->high_seq = tp->snd_nxt;
1508 TCP_ECN_queue_cwr(tp);
1509
1510 clear_all_retrans_hints(tp);
1511 }
1512
1513 static int tcp_check_sack_reneging(struct sock *sk)
1514 {
1515 struct sk_buff *skb;
1516
1517 /* If ACK arrived pointing to a remembered SACK,
1518 * it means that our remembered SACKs do not reflect
1519 * real state of receiver i.e.
1520 * receiver _host_ is heavily congested (or buggy).
1521 * Do processing similar to RTO timeout.
1522 */
1523 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1524 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1525 struct inet_connection_sock *icsk = inet_csk(sk);
1526 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1527
1528 tcp_enter_loss(sk, 1);
1529 icsk->icsk_retransmits++;
1530 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1531 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1532 icsk->icsk_rto, TCP_RTO_MAX);
1533 return 1;
1534 }
1535 return 0;
1536 }
1537
1538 static inline int tcp_fackets_out(struct tcp_sock *tp)
1539 {
1540 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1541 }
1542
1543 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1544 {
1545 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1546 }
1547
1548 static inline int tcp_head_timedout(struct sock *sk)
1549 {
1550 struct tcp_sock *tp = tcp_sk(sk);
1551
1552 return tp->packets_out &&
1553 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1554 }
1555
1556 /* Linux NewReno/SACK/FACK/ECN state machine.
1557 * --------------------------------------
1558 *
1559 * "Open" Normal state, no dubious events, fast path.
1560 * "Disorder" In all the respects it is "Open",
1561 * but requires a bit more attention. It is entered when
1562 * we see some SACKs or dupacks. It is split of "Open"
1563 * mainly to move some processing from fast path to slow one.
1564 * "CWR" CWND was reduced due to some Congestion Notification event.
1565 * It can be ECN, ICMP source quench, local device congestion.
1566 * "Recovery" CWND was reduced, we are fast-retransmitting.
1567 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1568 *
1569 * tcp_fastretrans_alert() is entered:
1570 * - each incoming ACK, if state is not "Open"
1571 * - when arrived ACK is unusual, namely:
1572 * * SACK
1573 * * Duplicate ACK.
1574 * * ECN ECE.
1575 *
1576 * Counting packets in flight is pretty simple.
1577 *
1578 * in_flight = packets_out - left_out + retrans_out
1579 *
1580 * packets_out is SND.NXT-SND.UNA counted in packets.
1581 *
1582 * retrans_out is number of retransmitted segments.
1583 *
1584 * left_out is number of segments left network, but not ACKed yet.
1585 *
1586 * left_out = sacked_out + lost_out
1587 *
1588 * sacked_out: Packets, which arrived to receiver out of order
1589 * and hence not ACKed. With SACKs this number is simply
1590 * amount of SACKed data. Even without SACKs
1591 * it is easy to give pretty reliable estimate of this number,
1592 * counting duplicate ACKs.
1593 *
1594 * lost_out: Packets lost by network. TCP has no explicit
1595 * "loss notification" feedback from network (for now).
1596 * It means that this number can be only _guessed_.
1597 * Actually, it is the heuristics to predict lossage that
1598 * distinguishes different algorithms.
1599 *
1600 * F.e. after RTO, when all the queue is considered as lost,
1601 * lost_out = packets_out and in_flight = retrans_out.
1602 *
1603 * Essentially, we have now two algorithms counting
1604 * lost packets.
1605 *
1606 * FACK: It is the simplest heuristics. As soon as we decided
1607 * that something is lost, we decide that _all_ not SACKed
1608 * packets until the most forward SACK are lost. I.e.
1609 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1610 * It is absolutely correct estimate, if network does not reorder
1611 * packets. And it loses any connection to reality when reordering
1612 * takes place. We use FACK by default until reordering
1613 * is suspected on the path to this destination.
1614 *
1615 * NewReno: when Recovery is entered, we assume that one segment
1616 * is lost (classic Reno). While we are in Recovery and
1617 * a partial ACK arrives, we assume that one more packet
1618 * is lost (NewReno). This heuristics are the same in NewReno
1619 * and SACK.
1620 *
1621 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1622 * deflation etc. CWND is real congestion window, never inflated, changes
1623 * only according to classic VJ rules.
1624 *
1625 * Really tricky (and requiring careful tuning) part of algorithm
1626 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1627 * The first determines the moment _when_ we should reduce CWND and,
1628 * hence, slow down forward transmission. In fact, it determines the moment
1629 * when we decide that hole is caused by loss, rather than by a reorder.
1630 *
1631 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1632 * holes, caused by lost packets.
1633 *
1634 * And the most logically complicated part of algorithm is undo
1635 * heuristics. We detect false retransmits due to both too early
1636 * fast retransmit (reordering) and underestimated RTO, analyzing
1637 * timestamps and D-SACKs. When we detect that some segments were
1638 * retransmitted by mistake and CWND reduction was wrong, we undo
1639 * window reduction and abort recovery phase. This logic is hidden
1640 * inside several functions named tcp_try_undo_<something>.
1641 */
1642
1643 /* This function decides, when we should leave Disordered state
1644 * and enter Recovery phase, reducing congestion window.
1645 *
1646 * Main question: may we further continue forward transmission
1647 * with the same cwnd?
1648 */
1649 static int tcp_time_to_recover(struct sock *sk)
1650 {
1651 struct tcp_sock *tp = tcp_sk(sk);
1652 __u32 packets_out;
1653
1654 /* Do not perform any recovery during FRTO algorithm */
1655 if (tp->frto_counter)
1656 return 0;
1657
1658 /* Trick#1: The loss is proven. */
1659 if (tp->lost_out)
1660 return 1;
1661
1662 /* Not-A-Trick#2 : Classic rule... */
1663 if (tcp_fackets_out(tp) > tp->reordering)
1664 return 1;
1665
1666 /* Trick#3 : when we use RFC2988 timer restart, fast
1667 * retransmit can be triggered by timeout of queue head.
1668 */
1669 if (tcp_head_timedout(sk))
1670 return 1;
1671
1672 /* Trick#4: It is still not OK... But will it be useful to delay
1673 * recovery more?
1674 */
1675 packets_out = tp->packets_out;
1676 if (packets_out <= tp->reordering &&
1677 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1678 !tcp_may_send_now(sk)) {
1679 /* We have nothing to send. This connection is limited
1680 * either by receiver window or by application.
1681 */
1682 return 1;
1683 }
1684
1685 return 0;
1686 }
1687
1688 /* If we receive more dupacks than we expected counting segments
1689 * in assumption of absent reordering, interpret this as reordering.
1690 * The only another reason could be bug in receiver TCP.
1691 */
1692 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1693 {
1694 struct tcp_sock *tp = tcp_sk(sk);
1695 u32 holes;
1696
1697 holes = max(tp->lost_out, 1U);
1698 holes = min(holes, tp->packets_out);
1699
1700 if ((tp->sacked_out + holes) > tp->packets_out) {
1701 tp->sacked_out = tp->packets_out - holes;
1702 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1703 }
1704 }
1705
1706 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1707
1708 static void tcp_add_reno_sack(struct sock *sk)
1709 {
1710 struct tcp_sock *tp = tcp_sk(sk);
1711 tp->sacked_out++;
1712 tcp_check_reno_reordering(sk, 0);
1713 tcp_sync_left_out(tp);
1714 }
1715
1716 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1717
1718 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1719 {
1720 struct tcp_sock *tp = tcp_sk(sk);
1721
1722 if (acked > 0) {
1723 /* One ACK acked hole. The rest eat duplicate ACKs. */
1724 if (acked-1 >= tp->sacked_out)
1725 tp->sacked_out = 0;
1726 else
1727 tp->sacked_out -= acked-1;
1728 }
1729 tcp_check_reno_reordering(sk, acked);
1730 tcp_sync_left_out(tp);
1731 }
1732
1733 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1734 {
1735 tp->sacked_out = 0;
1736 tp->left_out = tp->lost_out;
1737 }
1738
1739 /* Mark head of queue up as lost. */
1740 static void tcp_mark_head_lost(struct sock *sk,
1741 int packets, u32 high_seq)
1742 {
1743 struct tcp_sock *tp = tcp_sk(sk);
1744 struct sk_buff *skb;
1745 int cnt;
1746
1747 BUG_TRAP(packets <= tp->packets_out);
1748 if (tp->lost_skb_hint) {
1749 skb = tp->lost_skb_hint;
1750 cnt = tp->lost_cnt_hint;
1751 } else {
1752 skb = tcp_write_queue_head(sk);
1753 cnt = 0;
1754 }
1755
1756 tcp_for_write_queue_from(skb, sk) {
1757 if (skb == tcp_send_head(sk))
1758 break;
1759 /* TODO: do this better */
1760 /* this is not the most efficient way to do this... */
1761 tp->lost_skb_hint = skb;
1762 tp->lost_cnt_hint = cnt;
1763 cnt += tcp_skb_pcount(skb);
1764 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1765 break;
1766 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1767 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1768 tp->lost_out += tcp_skb_pcount(skb);
1769
1770 /* clear xmit_retransmit_queue hints
1771 * if this is beyond hint */
1772 if (tp->retransmit_skb_hint != NULL &&
1773 before(TCP_SKB_CB(skb)->seq,
1774 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1775 tp->retransmit_skb_hint = NULL;
1776
1777 }
1778 }
1779 tcp_sync_left_out(tp);
1780 }
1781
1782 /* Account newly detected lost packet(s) */
1783
1784 static void tcp_update_scoreboard(struct sock *sk)
1785 {
1786 struct tcp_sock *tp = tcp_sk(sk);
1787
1788 if (IsFack(tp)) {
1789 int lost = tp->fackets_out - tp->reordering;
1790 if (lost <= 0)
1791 lost = 1;
1792 tcp_mark_head_lost(sk, lost, tp->high_seq);
1793 } else {
1794 tcp_mark_head_lost(sk, 1, tp->high_seq);
1795 }
1796
1797 /* New heuristics: it is possible only after we switched
1798 * to restart timer each time when something is ACKed.
1799 * Hence, we can detect timed out packets during fast
1800 * retransmit without falling to slow start.
1801 */
1802 if (!IsReno(tp) && tcp_head_timedout(sk)) {
1803 struct sk_buff *skb;
1804
1805 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1806 : tcp_write_queue_head(sk);
1807
1808 tcp_for_write_queue_from(skb, sk) {
1809 if (skb == tcp_send_head(sk))
1810 break;
1811 if (!tcp_skb_timedout(sk, skb))
1812 break;
1813
1814 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1815 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1816 tp->lost_out += tcp_skb_pcount(skb);
1817
1818 /* clear xmit_retrans hint */
1819 if (tp->retransmit_skb_hint &&
1820 before(TCP_SKB_CB(skb)->seq,
1821 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1822
1823 tp->retransmit_skb_hint = NULL;
1824 }
1825 }
1826
1827 tp->scoreboard_skb_hint = skb;
1828
1829 tcp_sync_left_out(tp);
1830 }
1831 }
1832
1833 /* CWND moderation, preventing bursts due to too big ACKs
1834 * in dubious situations.
1835 */
1836 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1837 {
1838 tp->snd_cwnd = min(tp->snd_cwnd,
1839 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1840 tp->snd_cwnd_stamp = tcp_time_stamp;
1841 }
1842
1843 /* Lower bound on congestion window is slow start threshold
1844 * unless congestion avoidance choice decides to overide it.
1845 */
1846 static inline u32 tcp_cwnd_min(const struct sock *sk)
1847 {
1848 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1849
1850 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1851 }
1852
1853 /* Decrease cwnd each second ack. */
1854 static void tcp_cwnd_down(struct sock *sk)
1855 {
1856 struct tcp_sock *tp = tcp_sk(sk);
1857 int decr = tp->snd_cwnd_cnt + 1;
1858
1859 tp->snd_cwnd_cnt = decr&1;
1860 decr >>= 1;
1861
1862 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1863 tp->snd_cwnd -= decr;
1864
1865 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1866 tp->snd_cwnd_stamp = tcp_time_stamp;
1867 }
1868
1869 /* Nothing was retransmitted or returned timestamp is less
1870 * than timestamp of the first retransmission.
1871 */
1872 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1873 {
1874 return !tp->retrans_stamp ||
1875 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1876 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1877 }
1878
1879 /* Undo procedures. */
1880
1881 #if FASTRETRANS_DEBUG > 1
1882 static void DBGUNDO(struct sock *sk, const char *msg)
1883 {
1884 struct tcp_sock *tp = tcp_sk(sk);
1885 struct inet_sock *inet = inet_sk(sk);
1886
1887 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1888 msg,
1889 NIPQUAD(inet->daddr), ntohs(inet->dport),
1890 tp->snd_cwnd, tp->left_out,
1891 tp->snd_ssthresh, tp->prior_ssthresh,
1892 tp->packets_out);
1893 }
1894 #else
1895 #define DBGUNDO(x...) do { } while (0)
1896 #endif
1897
1898 static void tcp_undo_cwr(struct sock *sk, const int undo)
1899 {
1900 struct tcp_sock *tp = tcp_sk(sk);
1901
1902 if (tp->prior_ssthresh) {
1903 const struct inet_connection_sock *icsk = inet_csk(sk);
1904
1905 if (icsk->icsk_ca_ops->undo_cwnd)
1906 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1907 else
1908 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1909
1910 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1911 tp->snd_ssthresh = tp->prior_ssthresh;
1912 TCP_ECN_withdraw_cwr(tp);
1913 }
1914 } else {
1915 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1916 }
1917 tcp_moderate_cwnd(tp);
1918 tp->snd_cwnd_stamp = tcp_time_stamp;
1919
1920 /* There is something screwy going on with the retrans hints after
1921 an undo */
1922 clear_all_retrans_hints(tp);
1923 }
1924
1925 static inline int tcp_may_undo(struct tcp_sock *tp)
1926 {
1927 return tp->undo_marker &&
1928 (!tp->undo_retrans || tcp_packet_delayed(tp));
1929 }
1930
1931 /* People celebrate: "We love our President!" */
1932 static int tcp_try_undo_recovery(struct sock *sk)
1933 {
1934 struct tcp_sock *tp = tcp_sk(sk);
1935
1936 if (tcp_may_undo(tp)) {
1937 /* Happy end! We did not retransmit anything
1938 * or our original transmission succeeded.
1939 */
1940 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1941 tcp_undo_cwr(sk, 1);
1942 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1943 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1944 else
1945 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1946 tp->undo_marker = 0;
1947 }
1948 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1949 /* Hold old state until something *above* high_seq
1950 * is ACKed. For Reno it is MUST to prevent false
1951 * fast retransmits (RFC2582). SACK TCP is safe. */
1952 tcp_moderate_cwnd(tp);
1953 return 1;
1954 }
1955 tcp_set_ca_state(sk, TCP_CA_Open);
1956 return 0;
1957 }
1958
1959 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1960 static void tcp_try_undo_dsack(struct sock *sk)
1961 {
1962 struct tcp_sock *tp = tcp_sk(sk);
1963
1964 if (tp->undo_marker && !tp->undo_retrans) {
1965 DBGUNDO(sk, "D-SACK");
1966 tcp_undo_cwr(sk, 1);
1967 tp->undo_marker = 0;
1968 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1969 }
1970 }
1971
1972 /* Undo during fast recovery after partial ACK. */
1973
1974 static int tcp_try_undo_partial(struct sock *sk, int acked)
1975 {
1976 struct tcp_sock *tp = tcp_sk(sk);
1977 /* Partial ACK arrived. Force Hoe's retransmit. */
1978 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1979
1980 if (tcp_may_undo(tp)) {
1981 /* Plain luck! Hole if filled with delayed
1982 * packet, rather than with a retransmit.
1983 */
1984 if (tp->retrans_out == 0)
1985 tp->retrans_stamp = 0;
1986
1987 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1988
1989 DBGUNDO(sk, "Hoe");
1990 tcp_undo_cwr(sk, 0);
1991 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1992
1993 /* So... Do not make Hoe's retransmit yet.
1994 * If the first packet was delayed, the rest
1995 * ones are most probably delayed as well.
1996 */
1997 failed = 0;
1998 }
1999 return failed;
2000 }
2001
2002 /* Undo during loss recovery after partial ACK. */
2003 static int tcp_try_undo_loss(struct sock *sk)
2004 {
2005 struct tcp_sock *tp = tcp_sk(sk);
2006
2007 if (tcp_may_undo(tp)) {
2008 struct sk_buff *skb;
2009 tcp_for_write_queue(skb, sk) {
2010 if (skb == tcp_send_head(sk))
2011 break;
2012 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2013 }
2014
2015 clear_all_retrans_hints(tp);
2016
2017 DBGUNDO(sk, "partial loss");
2018 tp->lost_out = 0;
2019 tp->left_out = tp->sacked_out;
2020 tcp_undo_cwr(sk, 1);
2021 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2022 inet_csk(sk)->icsk_retransmits = 0;
2023 tp->undo_marker = 0;
2024 if (!IsReno(tp))
2025 tcp_set_ca_state(sk, TCP_CA_Open);
2026 return 1;
2027 }
2028 return 0;
2029 }
2030
2031 static inline void tcp_complete_cwr(struct sock *sk)
2032 {
2033 struct tcp_sock *tp = tcp_sk(sk);
2034 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2035 tp->snd_cwnd_stamp = tcp_time_stamp;
2036 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2037 }
2038
2039 static void tcp_try_to_open(struct sock *sk, int flag)
2040 {
2041 struct tcp_sock *tp = tcp_sk(sk);
2042
2043 tp->left_out = tp->sacked_out;
2044
2045 if (tp->retrans_out == 0)
2046 tp->retrans_stamp = 0;
2047
2048 if (flag&FLAG_ECE)
2049 tcp_enter_cwr(sk, 1);
2050
2051 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2052 int state = TCP_CA_Open;
2053
2054 if (tp->left_out || tp->retrans_out || tp->undo_marker)
2055 state = TCP_CA_Disorder;
2056
2057 if (inet_csk(sk)->icsk_ca_state != state) {
2058 tcp_set_ca_state(sk, state);
2059 tp->high_seq = tp->snd_nxt;
2060 }
2061 tcp_moderate_cwnd(tp);
2062 } else {
2063 tcp_cwnd_down(sk);
2064 }
2065 }
2066
2067 static void tcp_mtup_probe_failed(struct sock *sk)
2068 {
2069 struct inet_connection_sock *icsk = inet_csk(sk);
2070
2071 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2072 icsk->icsk_mtup.probe_size = 0;
2073 }
2074
2075 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2076 {
2077 struct tcp_sock *tp = tcp_sk(sk);
2078 struct inet_connection_sock *icsk = inet_csk(sk);
2079
2080 /* FIXME: breaks with very large cwnd */
2081 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2082 tp->snd_cwnd = tp->snd_cwnd *
2083 tcp_mss_to_mtu(sk, tp->mss_cache) /
2084 icsk->icsk_mtup.probe_size;
2085 tp->snd_cwnd_cnt = 0;
2086 tp->snd_cwnd_stamp = tcp_time_stamp;
2087 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2088
2089 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2090 icsk->icsk_mtup.probe_size = 0;
2091 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2092 }
2093
2094
2095 /* Process an event, which can update packets-in-flight not trivially.
2096 * Main goal of this function is to calculate new estimate for left_out,
2097 * taking into account both packets sitting in receiver's buffer and
2098 * packets lost by network.
2099 *
2100 * Besides that it does CWND reduction, when packet loss is detected
2101 * and changes state of machine.
2102 *
2103 * It does _not_ decide what to send, it is made in function
2104 * tcp_xmit_retransmit_queue().
2105 */
2106 static void
2107 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2108 int prior_packets, int flag)
2109 {
2110 struct inet_connection_sock *icsk = inet_csk(sk);
2111 struct tcp_sock *tp = tcp_sk(sk);
2112 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
2113
2114 /* Some technical things:
2115 * 1. Reno does not count dupacks (sacked_out) automatically. */
2116 if (!tp->packets_out)
2117 tp->sacked_out = 0;
2118 /* 2. SACK counts snd_fack in packets inaccurately. */
2119 if (tp->sacked_out == 0)
2120 tp->fackets_out = 0;
2121
2122 /* Now state machine starts.
2123 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2124 if (flag&FLAG_ECE)
2125 tp->prior_ssthresh = 0;
2126
2127 /* B. In all the states check for reneging SACKs. */
2128 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2129 return;
2130
2131 /* C. Process data loss notification, provided it is valid. */
2132 if ((flag&FLAG_DATA_LOST) &&
2133 before(tp->snd_una, tp->high_seq) &&
2134 icsk->icsk_ca_state != TCP_CA_Open &&
2135 tp->fackets_out > tp->reordering) {
2136 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2137 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2138 }
2139
2140 /* D. Synchronize left_out to current state. */
2141 tcp_sync_left_out(tp);
2142
2143 /* E. Check state exit conditions. State can be terminated
2144 * when high_seq is ACKed. */
2145 if (icsk->icsk_ca_state == TCP_CA_Open) {
2146 BUG_TRAP(tp->retrans_out == 0);
2147 tp->retrans_stamp = 0;
2148 } else if (!before(tp->snd_una, tp->high_seq)) {
2149 switch (icsk->icsk_ca_state) {
2150 case TCP_CA_Loss:
2151 icsk->icsk_retransmits = 0;
2152 if (tcp_try_undo_recovery(sk))
2153 return;
2154 break;
2155
2156 case TCP_CA_CWR:
2157 /* CWR is to be held something *above* high_seq
2158 * is ACKed for CWR bit to reach receiver. */
2159 if (tp->snd_una != tp->high_seq) {
2160 tcp_complete_cwr(sk);
2161 tcp_set_ca_state(sk, TCP_CA_Open);
2162 }
2163 break;
2164
2165 case TCP_CA_Disorder:
2166 tcp_try_undo_dsack(sk);
2167 if (!tp->undo_marker ||
2168 /* For SACK case do not Open to allow to undo
2169 * catching for all duplicate ACKs. */
2170 IsReno(tp) || tp->snd_una != tp->high_seq) {
2171 tp->undo_marker = 0;
2172 tcp_set_ca_state(sk, TCP_CA_Open);
2173 }
2174 break;
2175
2176 case TCP_CA_Recovery:
2177 if (IsReno(tp))
2178 tcp_reset_reno_sack(tp);
2179 if (tcp_try_undo_recovery(sk))
2180 return;
2181 tcp_complete_cwr(sk);
2182 break;
2183 }
2184 }
2185
2186 /* F. Process state. */
2187 switch (icsk->icsk_ca_state) {
2188 case TCP_CA_Recovery:
2189 if (prior_snd_una == tp->snd_una) {
2190 if (IsReno(tp) && is_dupack)
2191 tcp_add_reno_sack(sk);
2192 } else {
2193 int acked = prior_packets - tp->packets_out;
2194 if (IsReno(tp))
2195 tcp_remove_reno_sacks(sk, acked);
2196 is_dupack = tcp_try_undo_partial(sk, acked);
2197 }
2198 break;
2199 case TCP_CA_Loss:
2200 if (flag&FLAG_DATA_ACKED)
2201 icsk->icsk_retransmits = 0;
2202 if (!tcp_try_undo_loss(sk)) {
2203 tcp_moderate_cwnd(tp);
2204 tcp_xmit_retransmit_queue(sk);
2205 return;
2206 }
2207 if (icsk->icsk_ca_state != TCP_CA_Open)
2208 return;
2209 /* Loss is undone; fall through to processing in Open state. */
2210 default:
2211 if (IsReno(tp)) {
2212 if (tp->snd_una != prior_snd_una)
2213 tcp_reset_reno_sack(tp);
2214 if (is_dupack)
2215 tcp_add_reno_sack(sk);
2216 }
2217
2218 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2219 tcp_try_undo_dsack(sk);
2220
2221 if (!tcp_time_to_recover(sk)) {
2222 tcp_try_to_open(sk, flag);
2223 return;
2224 }
2225
2226 /* MTU probe failure: don't reduce cwnd */
2227 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2228 icsk->icsk_mtup.probe_size &&
2229 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2230 tcp_mtup_probe_failed(sk);
2231 /* Restores the reduction we did in tcp_mtup_probe() */
2232 tp->snd_cwnd++;
2233 tcp_simple_retransmit(sk);
2234 return;
2235 }
2236
2237 /* Otherwise enter Recovery state */
2238
2239 if (IsReno(tp))
2240 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2241 else
2242 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2243
2244 tp->high_seq = tp->snd_nxt;
2245 tp->prior_ssthresh = 0;
2246 tp->undo_marker = tp->snd_una;
2247 tp->undo_retrans = tp->retrans_out;
2248
2249 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2250 if (!(flag&FLAG_ECE))
2251 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2252 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2253 TCP_ECN_queue_cwr(tp);
2254 }
2255
2256 tp->bytes_acked = 0;
2257 tp->snd_cwnd_cnt = 0;
2258 tcp_set_ca_state(sk, TCP_CA_Recovery);
2259 }
2260
2261 if (is_dupack || tcp_head_timedout(sk))
2262 tcp_update_scoreboard(sk);
2263 tcp_cwnd_down(sk);
2264 tcp_xmit_retransmit_queue(sk);
2265 }
2266
2267 /* Read draft-ietf-tcplw-high-performance before mucking
2268 * with this code. (Supersedes RFC1323)
2269 */
2270 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2271 {
2272 /* RTTM Rule: A TSecr value received in a segment is used to
2273 * update the averaged RTT measurement only if the segment
2274 * acknowledges some new data, i.e., only if it advances the
2275 * left edge of the send window.
2276 *
2277 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2278 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2279 *
2280 * Changed: reset backoff as soon as we see the first valid sample.
2281 * If we do not, we get strongly overestimated rto. With timestamps
2282 * samples are accepted even from very old segments: f.e., when rtt=1
2283 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2284 * answer arrives rto becomes 120 seconds! If at least one of segments
2285 * in window is lost... Voila. --ANK (010210)
2286 */
2287 struct tcp_sock *tp = tcp_sk(sk);
2288 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2289 tcp_rtt_estimator(sk, seq_rtt);
2290 tcp_set_rto(sk);
2291 inet_csk(sk)->icsk_backoff = 0;
2292 tcp_bound_rto(sk);
2293 }
2294
2295 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2296 {
2297 /* We don't have a timestamp. Can only use
2298 * packets that are not retransmitted to determine
2299 * rtt estimates. Also, we must not reset the
2300 * backoff for rto until we get a non-retransmitted
2301 * packet. This allows us to deal with a situation
2302 * where the network delay has increased suddenly.
2303 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2304 */
2305
2306 if (flag & FLAG_RETRANS_DATA_ACKED)
2307 return;
2308
2309 tcp_rtt_estimator(sk, seq_rtt);
2310 tcp_set_rto(sk);
2311 inet_csk(sk)->icsk_backoff = 0;
2312 tcp_bound_rto(sk);
2313 }
2314
2315 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2316 const s32 seq_rtt)
2317 {
2318 const struct tcp_sock *tp = tcp_sk(sk);
2319 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2320 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2321 tcp_ack_saw_tstamp(sk, flag);
2322 else if (seq_rtt >= 0)
2323 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2324 }
2325
2326 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2327 u32 in_flight, int good)
2328 {
2329 const struct inet_connection_sock *icsk = inet_csk(sk);
2330 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2331 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2332 }
2333
2334 /* Restart timer after forward progress on connection.
2335 * RFC2988 recommends to restart timer to now+rto.
2336 */
2337
2338 static void tcp_ack_packets_out(struct sock *sk)
2339 {
2340 struct tcp_sock *tp = tcp_sk(sk);
2341
2342 if (!tp->packets_out) {
2343 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2344 } else {
2345 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2346 }
2347 }
2348
2349 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2350 __u32 now, __s32 *seq_rtt)
2351 {
2352 struct tcp_sock *tp = tcp_sk(sk);
2353 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2354 __u32 seq = tp->snd_una;
2355 __u32 packets_acked;
2356 int acked = 0;
2357
2358 /* If we get here, the whole TSO packet has not been
2359 * acked.
2360 */
2361 BUG_ON(!after(scb->end_seq, seq));
2362
2363 packets_acked = tcp_skb_pcount(skb);
2364 if (tcp_trim_head(sk, skb, seq - scb->seq))
2365 return 0;
2366 packets_acked -= tcp_skb_pcount(skb);
2367
2368 if (packets_acked) {
2369 __u8 sacked = scb->sacked;
2370
2371 acked |= FLAG_DATA_ACKED;
2372 if (sacked) {
2373 if (sacked & TCPCB_RETRANS) {
2374 if (sacked & TCPCB_SACKED_RETRANS)
2375 tp->retrans_out -= packets_acked;
2376 acked |= FLAG_RETRANS_DATA_ACKED;
2377 *seq_rtt = -1;
2378 } else if (*seq_rtt < 0)
2379 *seq_rtt = now - scb->when;
2380 if (sacked & TCPCB_SACKED_ACKED)
2381 tp->sacked_out -= packets_acked;
2382 if (sacked & TCPCB_LOST)
2383 tp->lost_out -= packets_acked;
2384 if (sacked & TCPCB_URG) {
2385 if (tp->urg_mode &&
2386 !before(seq, tp->snd_up))
2387 tp->urg_mode = 0;
2388 }
2389 } else if (*seq_rtt < 0)
2390 *seq_rtt = now - scb->when;
2391
2392 if (tp->fackets_out) {
2393 __u32 dval = min(tp->fackets_out, packets_acked);
2394 tp->fackets_out -= dval;
2395 }
2396 tp->packets_out -= packets_acked;
2397
2398 BUG_ON(tcp_skb_pcount(skb) == 0);
2399 BUG_ON(!before(scb->seq, scb->end_seq));
2400 }
2401
2402 return acked;
2403 }
2404
2405 static u32 tcp_usrtt(struct timeval *tv)
2406 {
2407 struct timeval now;
2408
2409 do_gettimeofday(&now);
2410 return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2411 }
2412
2413 /* Remove acknowledged frames from the retransmission queue. */
2414 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2415 {
2416 struct tcp_sock *tp = tcp_sk(sk);
2417 const struct inet_connection_sock *icsk = inet_csk(sk);
2418 struct sk_buff *skb;
2419 __u32 now = tcp_time_stamp;
2420 int acked = 0;
2421 __s32 seq_rtt = -1;
2422 u32 pkts_acked = 0;
2423 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2424 = icsk->icsk_ca_ops->rtt_sample;
2425 struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
2426
2427 while ((skb = tcp_write_queue_head(sk)) &&
2428 skb != tcp_send_head(sk)) {
2429 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2430 __u8 sacked = scb->sacked;
2431
2432 /* If our packet is before the ack sequence we can
2433 * discard it as it's confirmed to have arrived at
2434 * the other end.
2435 */
2436 if (after(scb->end_seq, tp->snd_una)) {
2437 if (tcp_skb_pcount(skb) > 1 &&
2438 after(tp->snd_una, scb->seq))
2439 acked |= tcp_tso_acked(sk, skb,
2440 now, &seq_rtt);
2441 break;
2442 }
2443
2444 /* Initial outgoing SYN's get put onto the write_queue
2445 * just like anything else we transmit. It is not
2446 * true data, and if we misinform our callers that
2447 * this ACK acks real data, we will erroneously exit
2448 * connection startup slow start one packet too
2449 * quickly. This is severely frowned upon behavior.
2450 */
2451 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2452 acked |= FLAG_DATA_ACKED;
2453 ++pkts_acked;
2454 } else {
2455 acked |= FLAG_SYN_ACKED;
2456 tp->retrans_stamp = 0;
2457 }
2458
2459 /* MTU probing checks */
2460 if (icsk->icsk_mtup.probe_size) {
2461 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2462 tcp_mtup_probe_success(sk, skb);
2463 }
2464 }
2465
2466 if (sacked) {
2467 if (sacked & TCPCB_RETRANS) {
2468 if (sacked & TCPCB_SACKED_RETRANS)
2469 tp->retrans_out -= tcp_skb_pcount(skb);
2470 acked |= FLAG_RETRANS_DATA_ACKED;
2471 seq_rtt = -1;
2472 } else if (seq_rtt < 0) {
2473 seq_rtt = now - scb->when;
2474 skb_get_timestamp(skb, &tv);
2475 }
2476 if (sacked & TCPCB_SACKED_ACKED)
2477 tp->sacked_out -= tcp_skb_pcount(skb);
2478 if (sacked & TCPCB_LOST)
2479 tp->lost_out -= tcp_skb_pcount(skb);
2480 if (sacked & TCPCB_URG) {
2481 if (tp->urg_mode &&
2482 !before(scb->end_seq, tp->snd_up))
2483 tp->urg_mode = 0;
2484 }
2485 } else if (seq_rtt < 0) {
2486 seq_rtt = now - scb->when;
2487 skb_get_timestamp(skb, &tv);
2488 }
2489 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2490 tcp_packets_out_dec(tp, skb);
2491 tcp_unlink_write_queue(skb, sk);
2492 sk_stream_free_skb(sk, skb);
2493 clear_all_retrans_hints(tp);
2494 }
2495
2496 if (acked&FLAG_ACKED) {
2497 tcp_ack_update_rtt(sk, acked, seq_rtt);
2498 tcp_ack_packets_out(sk);
2499 if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2500 (*rtt_sample)(sk, tcp_usrtt(&tv));
2501
2502 if (icsk->icsk_ca_ops->pkts_acked)
2503 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2504 }
2505
2506 #if FASTRETRANS_DEBUG > 0
2507 BUG_TRAP((int)tp->sacked_out >= 0);
2508 BUG_TRAP((int)tp->lost_out >= 0);
2509 BUG_TRAP((int)tp->retrans_out >= 0);
2510 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2511 const struct inet_connection_sock *icsk = inet_csk(sk);
2512 if (tp->lost_out) {
2513 printk(KERN_DEBUG "Leak l=%u %d\n",
2514 tp->lost_out, icsk->icsk_ca_state);
2515 tp->lost_out = 0;
2516 }
2517 if (tp->sacked_out) {
2518 printk(KERN_DEBUG "Leak s=%u %d\n",
2519 tp->sacked_out, icsk->icsk_ca_state);
2520 tp->sacked_out = 0;
2521 }
2522 if (tp->retrans_out) {
2523 printk(KERN_DEBUG "Leak r=%u %d\n",
2524 tp->retrans_out, icsk->icsk_ca_state);
2525 tp->retrans_out = 0;
2526 }
2527 }
2528 #endif
2529 *seq_rtt_p = seq_rtt;
2530 return acked;
2531 }
2532
2533 static void tcp_ack_probe(struct sock *sk)
2534 {
2535 const struct tcp_sock *tp = tcp_sk(sk);
2536 struct inet_connection_sock *icsk = inet_csk(sk);
2537
2538 /* Was it a usable window open? */
2539
2540 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2541 tp->snd_una + tp->snd_wnd)) {
2542 icsk->icsk_backoff = 0;
2543 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2544 /* Socket must be waked up by subsequent tcp_data_snd_check().
2545 * This function is not for random using!
2546 */
2547 } else {
2548 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2549 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2550 TCP_RTO_MAX);
2551 }
2552 }
2553
2554 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2555 {
2556 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2557 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2558 }
2559
2560 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2561 {
2562 const struct tcp_sock *tp = tcp_sk(sk);
2563 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2564 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2565 }
2566
2567 /* Check that window update is acceptable.
2568 * The function assumes that snd_una<=ack<=snd_next.
2569 */
2570 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2571 const u32 ack_seq, const u32 nwin)
2572 {
2573 return (after(ack, tp->snd_una) ||
2574 after(ack_seq, tp->snd_wl1) ||
2575 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2576 }
2577
2578 /* Update our send window.
2579 *
2580 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2581 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2582 */
2583 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2584 u32 ack_seq)
2585 {
2586 struct tcp_sock *tp = tcp_sk(sk);
2587 int flag = 0;
2588 u32 nwin = ntohs(tcp_hdr(skb)->window);
2589
2590 if (likely(!tcp_hdr(skb)->syn))
2591 nwin <<= tp->rx_opt.snd_wscale;
2592
2593 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2594 flag |= FLAG_WIN_UPDATE;
2595 tcp_update_wl(tp, ack, ack_seq);
2596
2597 if (tp->snd_wnd != nwin) {
2598 tp->snd_wnd = nwin;
2599
2600 /* Note, it is the only place, where
2601 * fast path is recovered for sending TCP.
2602 */
2603 tp->pred_flags = 0;
2604 tcp_fast_path_check(sk);
2605
2606 if (nwin > tp->max_window) {
2607 tp->max_window = nwin;
2608 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2609 }
2610 }
2611 }
2612
2613 tp->snd_una = ack;
2614
2615 return flag;
2616 }
2617
2618 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2619 * continue in congestion avoidance.
2620 */
2621 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2622 {
2623 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2624 tp->snd_cwnd_cnt = 0;
2625 tcp_moderate_cwnd(tp);
2626 }
2627
2628 /* A conservative spurious RTO response algorithm: reduce cwnd using
2629 * rate halving and continue in congestion avoidance.
2630 */
2631 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2632 {
2633 tcp_enter_cwr(sk, 0);
2634 }
2635
2636 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2637 {
2638 if (flag&FLAG_ECE)
2639 tcp_ratehalving_spur_to_response(sk);
2640 else
2641 tcp_undo_cwr(sk, 1);
2642 }
2643
2644 /* F-RTO spurious RTO detection algorithm (RFC4138)
2645 *
2646 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2647 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2648 * window (but not to or beyond highest sequence sent before RTO):
2649 * On First ACK, send two new segments out.
2650 * On Second ACK, RTO was likely spurious. Do spurious response (response
2651 * algorithm is not part of the F-RTO detection algorithm
2652 * given in RFC4138 but can be selected separately).
2653 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2654 * and TCP falls back to conventional RTO recovery.
2655 *
2656 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2657 * original window even after we transmit two new data segments.
2658 *
2659 * SACK version:
2660 * on first step, wait until first cumulative ACK arrives, then move to
2661 * the second step. In second step, the next ACK decides.
2662 *
2663 * F-RTO is implemented (mainly) in four functions:
2664 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2665 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2666 * called when tcp_use_frto() showed green light
2667 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2668 * - tcp_enter_frto_loss() is called if there is not enough evidence
2669 * to prove that the RTO is indeed spurious. It transfers the control
2670 * from F-RTO to the conventional RTO recovery
2671 */
2672 static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
2673 {
2674 struct tcp_sock *tp = tcp_sk(sk);
2675
2676 tcp_sync_left_out(tp);
2677
2678 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2679 if (flag&FLAG_DATA_ACKED)
2680 inet_csk(sk)->icsk_retransmits = 0;
2681
2682 if (!before(tp->snd_una, tp->frto_highmark)) {
2683 tcp_enter_frto_loss(sk, tp->frto_counter + 1, flag);
2684 return 1;
2685 }
2686
2687 if (!IsSackFrto() || IsReno(tp)) {
2688 /* RFC4138 shortcoming in step 2; should also have case c):
2689 * ACK isn't duplicate nor advances window, e.g., opposite dir
2690 * data, winupdate
2691 */
2692 if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2693 !(flag&FLAG_FORWARD_PROGRESS))
2694 return 1;
2695
2696 if (!(flag&FLAG_DATA_ACKED)) {
2697 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2698 flag);
2699 return 1;
2700 }
2701 } else {
2702 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2703 /* Prevent sending of new data. */
2704 tp->snd_cwnd = min(tp->snd_cwnd,
2705 tcp_packets_in_flight(tp));
2706 return 1;
2707 }
2708
2709 if ((tp->frto_counter == 2) &&
2710 (!(flag&FLAG_FORWARD_PROGRESS) ||
2711 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2712 /* RFC4138 shortcoming (see comment above) */
2713 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2714 return 1;
2715
2716 tcp_enter_frto_loss(sk, 3, flag);
2717 return 1;
2718 }
2719 }
2720
2721 if (tp->frto_counter == 1) {
2722 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2723 tp->frto_counter = 2;
2724 return 1;
2725 } else /* frto_counter == 2 */ {
2726 switch (sysctl_tcp_frto_response) {
2727 case 2:
2728 tcp_undo_spur_to_response(sk, flag);
2729 break;
2730 case 1:
2731 tcp_conservative_spur_to_response(tp);
2732 break;
2733 default:
2734 tcp_ratehalving_spur_to_response(sk);
2735 break;
2736 }
2737 tp->frto_counter = 0;
2738 }
2739 return 0;
2740 }
2741
2742 /* This routine deals with incoming acks, but not outgoing ones. */
2743 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2744 {
2745 struct inet_connection_sock *icsk = inet_csk(sk);
2746 struct tcp_sock *tp = tcp_sk(sk);
2747 u32 prior_snd_una = tp->snd_una;
2748 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2749 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2750 u32 prior_in_flight;
2751 s32 seq_rtt;
2752 int prior_packets;
2753 int frto_cwnd = 0;
2754
2755 /* If the ack is newer than sent or older than previous acks
2756 * then we can probably ignore it.
2757 */
2758 if (after(ack, tp->snd_nxt))
2759 goto uninteresting_ack;
2760
2761 if (before(ack, prior_snd_una))
2762 goto old_ack;
2763
2764 if (sysctl_tcp_abc) {
2765 if (icsk->icsk_ca_state < TCP_CA_CWR)
2766 tp->bytes_acked += ack - prior_snd_una;
2767 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2768 /* we assume just one segment left network */
2769 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2770 }
2771
2772 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2773 /* Window is constant, pure forward advance.
2774 * No more checks are required.
2775 * Note, we use the fact that SND.UNA>=SND.WL2.
2776 */
2777 tcp_update_wl(tp, ack, ack_seq);
2778 tp->snd_una = ack;
2779 flag |= FLAG_WIN_UPDATE;
2780
2781 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2782
2783 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2784 } else {
2785 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2786 flag |= FLAG_DATA;
2787 else
2788 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2789
2790 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
2791
2792 if (TCP_SKB_CB(skb)->sacked)
2793 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2794
2795 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
2796 flag |= FLAG_ECE;
2797
2798 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2799 }
2800
2801 /* We passed data and got it acked, remove any soft error
2802 * log. Something worked...
2803 */
2804 sk->sk_err_soft = 0;
2805 tp->rcv_tstamp = tcp_time_stamp;
2806 prior_packets = tp->packets_out;
2807 if (!prior_packets)
2808 goto no_queue;
2809
2810 prior_in_flight = tcp_packets_in_flight(tp);
2811
2812 /* See if we can take anything off of the retransmit queue. */
2813 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2814
2815 if (tp->frto_counter)
2816 frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
2817
2818 if (tcp_ack_is_dubious(sk, flag)) {
2819 /* Advance CWND, if state allows this. */
2820 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2821 tcp_may_raise_cwnd(sk, flag))
2822 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2823 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2824 } else {
2825 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2826 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2827 }
2828
2829 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2830 dst_confirm(sk->sk_dst_cache);
2831
2832 return 1;
2833
2834 no_queue:
2835 icsk->icsk_probes_out = 0;
2836
2837 /* If this ack opens up a zero window, clear backoff. It was
2838 * being used to time the probes, and is probably far higher than
2839 * it needs to be for normal retransmission.
2840 */
2841 if (tcp_send_head(sk))
2842 tcp_ack_probe(sk);
2843 return 1;
2844
2845 old_ack:
2846 if (TCP_SKB_CB(skb)->sacked)
2847 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2848
2849 uninteresting_ack:
2850 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2851 return 0;
2852 }
2853
2854
2855 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2856 * But, this can also be called on packets in the established flow when
2857 * the fast version below fails.
2858 */
2859 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2860 {
2861 unsigned char *ptr;
2862 struct tcphdr *th = tcp_hdr(skb);
2863 int length=(th->doff*4)-sizeof(struct tcphdr);
2864
2865 ptr = (unsigned char *)(th + 1);
2866 opt_rx->saw_tstamp = 0;
2867
2868 while (length > 0) {
2869 int opcode=*ptr++;
2870 int opsize;
2871
2872 switch (opcode) {
2873 case TCPOPT_EOL:
2874 return;
2875 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2876 length--;
2877 continue;
2878 default:
2879 opsize=*ptr++;
2880 if (opsize < 2) /* "silly options" */
2881 return;
2882 if (opsize > length)
2883 return; /* don't parse partial options */
2884 switch (opcode) {
2885 case TCPOPT_MSS:
2886 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
2887 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2888 if (in_mss) {
2889 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2890 in_mss = opt_rx->user_mss;
2891 opt_rx->mss_clamp = in_mss;
2892 }
2893 }
2894 break;
2895 case TCPOPT_WINDOW:
2896 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
2897 if (sysctl_tcp_window_scaling) {
2898 __u8 snd_wscale = *(__u8 *) ptr;
2899 opt_rx->wscale_ok = 1;
2900 if (snd_wscale > 14) {
2901 if (net_ratelimit())
2902 printk(KERN_INFO "tcp_parse_options: Illegal window "
2903 "scaling value %d >14 received.\n",
2904 snd_wscale);
2905 snd_wscale = 14;
2906 }
2907 opt_rx->snd_wscale = snd_wscale;
2908 }
2909 break;
2910 case TCPOPT_TIMESTAMP:
2911 if (opsize==TCPOLEN_TIMESTAMP) {
2912 if ((estab && opt_rx->tstamp_ok) ||
2913 (!estab && sysctl_tcp_timestamps)) {
2914 opt_rx->saw_tstamp = 1;
2915 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2916 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2917 }
2918 }
2919 break;
2920 case TCPOPT_SACK_PERM:
2921 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2922 if (sysctl_tcp_sack) {
2923 opt_rx->sack_ok = 1;
2924 tcp_sack_reset(opt_rx);
2925 }
2926 }
2927 break;
2928
2929 case TCPOPT_SACK:
2930 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2931 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2932 opt_rx->sack_ok) {
2933 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2934 }
2935 #ifdef CONFIG_TCP_MD5SIG
2936 case TCPOPT_MD5SIG:
2937 /*
2938 * The MD5 Hash has already been
2939 * checked (see tcp_v{4,6}_do_rcv()).
2940 */
2941 break;
2942 #endif
2943 }
2944
2945 ptr+=opsize-2;
2946 length-=opsize;
2947 }
2948 }
2949 }
2950
2951 /* Fast parse options. This hopes to only see timestamps.
2952 * If it is wrong it falls back on tcp_parse_options().
2953 */
2954 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2955 struct tcp_sock *tp)
2956 {
2957 if (th->doff == sizeof(struct tcphdr)>>2) {
2958 tp->rx_opt.saw_tstamp = 0;
2959 return 0;
2960 } else if (tp->rx_opt.tstamp_ok &&
2961 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2962 __be32 *ptr = (__be32 *)(th + 1);
2963 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2964 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2965 tp->rx_opt.saw_tstamp = 1;
2966 ++ptr;
2967 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2968 ++ptr;
2969 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2970 return 1;
2971 }
2972 }
2973 tcp_parse_options(skb, &tp->rx_opt, 1);
2974 return 1;
2975 }
2976
2977 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2978 {
2979 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2980 tp->rx_opt.ts_recent_stamp = get_seconds();
2981 }
2982
2983 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2984 {
2985 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2986 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2987 * extra check below makes sure this can only happen
2988 * for pure ACK frames. -DaveM
2989 *
2990 * Not only, also it occurs for expired timestamps.
2991 */
2992
2993 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2994 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2995 tcp_store_ts_recent(tp);
2996 }
2997 }
2998
2999 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3000 *
3001 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3002 * it can pass through stack. So, the following predicate verifies that
3003 * this segment is not used for anything but congestion avoidance or
3004 * fast retransmit. Moreover, we even are able to eliminate most of such
3005 * second order effects, if we apply some small "replay" window (~RTO)
3006 * to timestamp space.
3007 *
3008 * All these measures still do not guarantee that we reject wrapped ACKs
3009 * on networks with high bandwidth, when sequence space is recycled fastly,
3010 * but it guarantees that such events will be very rare and do not affect
3011 * connection seriously. This doesn't look nice, but alas, PAWS is really
3012 * buggy extension.
3013 *
3014 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3015 * states that events when retransmit arrives after original data are rare.
3016 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3017 * the biggest problem on large power networks even with minor reordering.
3018 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3019 * up to bandwidth of 18Gigabit/sec. 8) ]
3020 */
3021
3022 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3023 {
3024 struct tcp_sock *tp = tcp_sk(sk);
3025 struct tcphdr *th = tcp_hdr(skb);
3026 u32 seq = TCP_SKB_CB(skb)->seq;
3027 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3028
3029 return (/* 1. Pure ACK with correct sequence number. */
3030 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3031
3032 /* 2. ... and duplicate ACK. */
3033 ack == tp->snd_una &&
3034
3035 /* 3. ... and does not update window. */
3036 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3037
3038 /* 4. ... and sits in replay window. */
3039 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3040 }
3041
3042 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3043 {
3044 const struct tcp_sock *tp = tcp_sk(sk);
3045 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3046 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3047 !tcp_disordered_ack(sk, skb));
3048 }
3049
3050 /* Check segment sequence number for validity.
3051 *
3052 * Segment controls are considered valid, if the segment
3053 * fits to the window after truncation to the window. Acceptability
3054 * of data (and SYN, FIN, of course) is checked separately.
3055 * See tcp_data_queue(), for example.
3056 *
3057 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3058 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3059 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3060 * (borrowed from freebsd)
3061 */
3062
3063 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3064 {
3065 return !before(end_seq, tp->rcv_wup) &&
3066 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3067 }
3068
3069 /* When we get a reset we do this. */
3070 static void tcp_reset(struct sock *sk)
3071 {
3072 /* We want the right error as BSD sees it (and indeed as we do). */
3073 switch (sk->sk_state) {
3074 case TCP_SYN_SENT:
3075 sk->sk_err = ECONNREFUSED;
3076 break;
3077 case TCP_CLOSE_WAIT:
3078 sk->sk_err = EPIPE;
3079 break;
3080 case TCP_CLOSE:
3081 return;
3082 default:
3083 sk->sk_err = ECONNRESET;
3084 }
3085
3086 if (!sock_flag(sk, SOCK_DEAD))
3087 sk->sk_error_report(sk);
3088
3089 tcp_done(sk);
3090 }
3091
3092 /*
3093 * Process the FIN bit. This now behaves as it is supposed to work
3094 * and the FIN takes effect when it is validly part of sequence
3095 * space. Not before when we get holes.
3096 *
3097 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3098 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3099 * TIME-WAIT)
3100 *
3101 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3102 * close and we go into CLOSING (and later onto TIME-WAIT)
3103 *
3104 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3105 */
3106 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3107 {
3108 struct tcp_sock *tp = tcp_sk(sk);
3109
3110 inet_csk_schedule_ack(sk);
3111
3112 sk->sk_shutdown |= RCV_SHUTDOWN;
3113 sock_set_flag(sk, SOCK_DONE);
3114
3115 switch (sk->sk_state) {
3116 case TCP_SYN_RECV:
3117 case TCP_ESTABLISHED:
3118 /* Move to CLOSE_WAIT */
3119 tcp_set_state(sk, TCP_CLOSE_WAIT);
3120 inet_csk(sk)->icsk_ack.pingpong = 1;
3121 break;
3122
3123 case TCP_CLOSE_WAIT:
3124 case TCP_CLOSING:
3125 /* Received a retransmission of the FIN, do
3126 * nothing.
3127 */
3128 break;
3129 case TCP_LAST_ACK:
3130 /* RFC793: Remain in the LAST-ACK state. */
3131 break;
3132
3133 case TCP_FIN_WAIT1:
3134 /* This case occurs when a simultaneous close
3135 * happens, we must ack the received FIN and
3136 * enter the CLOSING state.
3137 */
3138 tcp_send_ack(sk);
3139 tcp_set_state(sk, TCP_CLOSING);
3140 break;
3141 case TCP_FIN_WAIT2:
3142 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3143 tcp_send_ack(sk);
3144 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3145 break;
3146 default:
3147 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3148 * cases we should never reach this piece of code.
3149 */
3150 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3151 __FUNCTION__, sk->sk_state);
3152 break;
3153 }
3154
3155 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3156 * Probably, we should reset in this case. For now drop them.
3157 */
3158 __skb_queue_purge(&tp->out_of_order_queue);
3159 if (tp->rx_opt.sack_ok)
3160 tcp_sack_reset(&tp->rx_opt);
3161 sk_stream_mem_reclaim(sk);
3162
3163 if (!sock_flag(sk, SOCK_DEAD)) {
3164 sk->sk_state_change(sk);
3165
3166 /* Do not send POLL_HUP for half duplex close. */
3167 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3168 sk->sk_state == TCP_CLOSE)
3169 sk_wake_async(sk, 1, POLL_HUP);
3170 else
3171 sk_wake_async(sk, 1, POLL_IN);
3172 }
3173 }
3174
3175 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3176 {
3177 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3178 if (before(seq, sp->start_seq))
3179 sp->start_seq = seq;
3180 if (after(end_seq, sp->end_seq))
3181 sp->end_seq = end_seq;
3182 return 1;
3183 }
3184 return 0;
3185 }
3186
3187 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3188 {
3189 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3190 if (before(seq, tp->rcv_nxt))
3191 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3192 else
3193 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3194
3195 tp->rx_opt.dsack = 1;
3196 tp->duplicate_sack[0].start_seq = seq;
3197 tp->duplicate_sack[0].end_seq = end_seq;
3198 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3199 }
3200 }
3201
3202 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3203 {
3204 if (!tp->rx_opt.dsack)
3205 tcp_dsack_set(tp, seq, end_seq);
3206 else
3207 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3208 }
3209
3210 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3211 {
3212 struct tcp_sock *tp = tcp_sk(sk);
3213
3214 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3215 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3216 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3217 tcp_enter_quickack_mode(sk);
3218
3219 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3220 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3221
3222 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3223 end_seq = tp->rcv_nxt;
3224 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3225 }
3226 }
3227
3228 tcp_send_ack(sk);
3229 }
3230
3231 /* These routines update the SACK block as out-of-order packets arrive or
3232 * in-order packets close up the sequence space.
3233 */
3234 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3235 {
3236 int this_sack;
3237 struct tcp_sack_block *sp = &tp->selective_acks[0];
3238 struct tcp_sack_block *swalk = sp+1;
3239
3240 /* See if the recent change to the first SACK eats into
3241 * or hits the sequence space of other SACK blocks, if so coalesce.
3242 */
3243 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3244 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3245 int i;
3246
3247 /* Zap SWALK, by moving every further SACK up by one slot.
3248 * Decrease num_sacks.
3249 */
3250 tp->rx_opt.num_sacks--;
3251 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3252 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3253 sp[i] = sp[i+1];
3254 continue;
3255 }
3256 this_sack++, swalk++;
3257 }
3258 }
3259
3260 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3261 {
3262 __u32 tmp;
3263
3264 tmp = sack1->start_seq;
3265 sack1->start_seq = sack2->start_seq;
3266 sack2->start_seq = tmp;
3267
3268 tmp = sack1->end_seq;
3269 sack1->end_seq = sack2->end_seq;
3270 sack2->end_seq = tmp;
3271 }
3272
3273 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3274 {
3275 struct tcp_sock *tp = tcp_sk(sk);
3276 struct tcp_sack_block *sp = &tp->selective_acks[0];
3277 int cur_sacks = tp->rx_opt.num_sacks;
3278 int this_sack;
3279
3280 if (!cur_sacks)
3281 goto new_sack;
3282
3283 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3284 if (tcp_sack_extend(sp, seq, end_seq)) {
3285 /* Rotate this_sack to the first one. */
3286 for (; this_sack>0; this_sack--, sp--)
3287 tcp_sack_swap(sp, sp-1);
3288 if (cur_sacks > 1)
3289 tcp_sack_maybe_coalesce(tp);
3290 return;
3291 }
3292 }
3293
3294 /* Could not find an adjacent existing SACK, build a new one,
3295 * put it at the front, and shift everyone else down. We
3296 * always know there is at least one SACK present already here.
3297 *
3298 * If the sack array is full, forget about the last one.
3299 */
3300 if (this_sack >= 4) {
3301 this_sack--;
3302 tp->rx_opt.num_sacks--;
3303 sp--;
3304 }
3305 for (; this_sack > 0; this_sack--, sp--)
3306 *sp = *(sp-1);
3307
3308 new_sack:
3309 /* Build the new head SACK, and we're done. */
3310 sp->start_seq = seq;
3311 sp->end_seq = end_seq;
3312 tp->rx_opt.num_sacks++;
3313 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3314 }
3315
3316 /* RCV.NXT advances, some SACKs should be eaten. */
3317
3318 static void tcp_sack_remove(struct tcp_sock *tp)
3319 {
3320 struct tcp_sack_block *sp = &tp->selective_acks[0];
3321 int num_sacks = tp->rx_opt.num_sacks;
3322 int this_sack;
3323
3324 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3325 if (skb_queue_empty(&tp->out_of_order_queue)) {
3326 tp->rx_opt.num_sacks = 0;
3327 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3328 return;
3329 }
3330
3331 for (this_sack = 0; this_sack < num_sacks; ) {
3332 /* Check if the start of the sack is covered by RCV.NXT. */
3333 if (!before(tp->rcv_nxt, sp->start_seq)) {
3334 int i;
3335
3336 /* RCV.NXT must cover all the block! */
3337 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3338
3339 /* Zap this SACK, by moving forward any other SACKS. */
3340 for (i=this_sack+1; i < num_sacks; i++)
3341 tp->selective_acks[i-1] = tp->selective_acks[i];
3342 num_sacks--;
3343 continue;
3344 }
3345 this_sack++;
3346 sp++;
3347 }
3348 if (num_sacks != tp->rx_opt.num_sacks) {
3349 tp->rx_opt.num_sacks = num_sacks;
3350 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3351 }
3352 }
3353
3354 /* This one checks to see if we can put data from the
3355 * out_of_order queue into the receive_queue.
3356 */
3357 static void tcp_ofo_queue(struct sock *sk)
3358 {
3359 struct tcp_sock *tp = tcp_sk(sk);
3360 __u32 dsack_high = tp->rcv_nxt;
3361 struct sk_buff *skb;
3362
3363 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3364 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3365 break;
3366
3367 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3368 __u32 dsack = dsack_high;
3369 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3370 dsack_high = TCP_SKB_CB(skb)->end_seq;
3371 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3372 }
3373
3374 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3375 SOCK_DEBUG(sk, "ofo packet was already received \n");
3376 __skb_unlink(skb, &tp->out_of_order_queue);
3377 __kfree_skb(skb);
3378 continue;
3379 }
3380 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3381 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3382 TCP_SKB_CB(skb)->end_seq);
3383
3384 __skb_unlink(skb, &tp->out_of_order_queue);
3385 __skb_queue_tail(&sk->sk_receive_queue, skb);
3386 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3387 if (tcp_hdr(skb)->fin)
3388 tcp_fin(skb, sk, tcp_hdr(skb));
3389 }
3390 }
3391
3392 static int tcp_prune_queue(struct sock *sk);
3393
3394 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3395 {
3396 struct tcphdr *th = tcp_hdr(skb);
3397 struct tcp_sock *tp = tcp_sk(sk);
3398 int eaten = -1;
3399
3400 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3401 goto drop;
3402
3403 __skb_pull(skb, th->doff*4);
3404
3405 TCP_ECN_accept_cwr(tp, skb);
3406
3407 if (tp->rx_opt.dsack) {
3408 tp->rx_opt.dsack = 0;
3409 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3410 4 - tp->rx_opt.tstamp_ok);
3411 }
3412
3413 /* Queue data for delivery to the user.
3414 * Packets in sequence go to the receive queue.
3415 * Out of sequence packets to the out_of_order_queue.
3416 */
3417 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3418 if (tcp_receive_window(tp) == 0)
3419 goto out_of_window;
3420
3421 /* Ok. In sequence. In window. */
3422 if (tp->ucopy.task == current &&
3423 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3424 sock_owned_by_user(sk) && !tp->urg_data) {
3425 int chunk = min_t(unsigned int, skb->len,
3426 tp->ucopy.len);
3427
3428 __set_current_state(TASK_RUNNING);
3429
3430 local_bh_enable();
3431 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3432 tp->ucopy.len -= chunk;
3433 tp->copied_seq += chunk;
3434 eaten = (chunk == skb->len && !th->fin);
3435 tcp_rcv_space_adjust(sk);
3436 }
3437 local_bh_disable();
3438 }
3439
3440 if (eaten <= 0) {
3441 queue_and_out:
3442 if (eaten < 0 &&
3443 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3444 !sk_stream_rmem_schedule(sk, skb))) {
3445 if (tcp_prune_queue(sk) < 0 ||
3446 !sk_stream_rmem_schedule(sk, skb))
3447 goto drop;
3448 }
3449 sk_stream_set_owner_r(skb, sk);
3450 __skb_queue_tail(&sk->sk_receive_queue, skb);
3451 }
3452 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3453 if (skb->len)
3454 tcp_event_data_recv(sk, skb);
3455 if (th->fin)
3456 tcp_fin(skb, sk, th);
3457
3458 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3459 tcp_ofo_queue(sk);
3460
3461 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3462 * gap in queue is filled.
3463 */
3464 if (skb_queue_empty(&tp->out_of_order_queue))
3465 inet_csk(sk)->icsk_ack.pingpong = 0;
3466 }
3467
3468 if (tp->rx_opt.num_sacks)
3469 tcp_sack_remove(tp);
3470
3471 tcp_fast_path_check(sk);
3472
3473 if (eaten > 0)
3474 __kfree_skb(skb);
3475 else if (!sock_flag(sk, SOCK_DEAD))
3476 sk->sk_data_ready(sk, 0);
3477 return;
3478 }
3479
3480 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3481 /* A retransmit, 2nd most common case. Force an immediate ack. */
3482 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3483 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3484
3485 out_of_window:
3486 tcp_enter_quickack_mode(sk);
3487 inet_csk_schedule_ack(sk);
3488 drop:
3489 __kfree_skb(skb);
3490 return;
3491 }
3492
3493 /* Out of window. F.e. zero window probe. */
3494 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3495 goto out_of_window;
3496
3497 tcp_enter_quickack_mode(sk);
3498
3499 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3500 /* Partial packet, seq < rcv_next < end_seq */
3501 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3502 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3503 TCP_SKB_CB(skb)->end_seq);
3504
3505 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3506
3507 /* If window is closed, drop tail of packet. But after
3508 * remembering D-SACK for its head made in previous line.
3509 */
3510 if (!tcp_receive_window(tp))
3511 goto out_of_window;
3512 goto queue_and_out;
3513 }
3514
3515 TCP_ECN_check_ce(tp, skb);
3516
3517 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3518 !sk_stream_rmem_schedule(sk, skb)) {
3519 if (tcp_prune_queue(sk) < 0 ||
3520 !sk_stream_rmem_schedule(sk, skb))
3521 goto drop;
3522 }
3523
3524 /* Disable header prediction. */
3525 tp->pred_flags = 0;
3526 inet_csk_schedule_ack(sk);
3527
3528 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3529 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3530
3531 sk_stream_set_owner_r(skb, sk);
3532
3533 if (!skb_peek(&tp->out_of_order_queue)) {
3534 /* Initial out of order segment, build 1 SACK. */
3535 if (tp->rx_opt.sack_ok) {
3536 tp->rx_opt.num_sacks = 1;
3537 tp->rx_opt.dsack = 0;
3538 tp->rx_opt.eff_sacks = 1;
3539 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3540 tp->selective_acks[0].end_seq =
3541 TCP_SKB_CB(skb)->end_seq;
3542 }
3543 __skb_queue_head(&tp->out_of_order_queue,skb);
3544 } else {
3545 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3546 u32 seq = TCP_SKB_CB(skb)->seq;
3547 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3548
3549 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3550 __skb_append(skb1, skb, &tp->out_of_order_queue);
3551
3552 if (!tp->rx_opt.num_sacks ||
3553 tp->selective_acks[0].end_seq != seq)
3554 goto add_sack;
3555
3556 /* Common case: data arrive in order after hole. */
3557 tp->selective_acks[0].end_seq = end_seq;
3558 return;
3559 }
3560
3561 /* Find place to insert this segment. */
3562 do {
3563 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3564 break;
3565 } while ((skb1 = skb1->prev) !=
3566 (struct sk_buff*)&tp->out_of_order_queue);
3567
3568 /* Do skb overlap to previous one? */
3569 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3570 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3571 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3572 /* All the bits are present. Drop. */
3573 __kfree_skb(skb);
3574 tcp_dsack_set(tp, seq, end_seq);
3575 goto add_sack;
3576 }
3577 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3578 /* Partial overlap. */
3579 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3580 } else {
3581 skb1 = skb1->prev;
3582 }
3583 }
3584 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3585
3586 /* And clean segments covered by new one as whole. */
3587 while ((skb1 = skb->next) !=
3588 (struct sk_buff*)&tp->out_of_order_queue &&
3589 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3590 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3591 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3592 break;
3593 }
3594 __skb_unlink(skb1, &tp->out_of_order_queue);
3595 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3596 __kfree_skb(skb1);
3597 }
3598
3599 add_sack:
3600 if (tp->rx_opt.sack_ok)
3601 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3602 }
3603 }
3604
3605 /* Collapse contiguous sequence of skbs head..tail with
3606 * sequence numbers start..end.
3607 * Segments with FIN/SYN are not collapsed (only because this
3608 * simplifies code)
3609 */
3610 static void
3611 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3612 struct sk_buff *head, struct sk_buff *tail,
3613 u32 start, u32 end)
3614 {
3615 struct sk_buff *skb;
3616
3617 /* First, check that queue is collapsible and find
3618 * the point where collapsing can be useful. */
3619 for (skb = head; skb != tail; ) {
3620 /* No new bits? It is possible on ofo queue. */
3621 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3622 struct sk_buff *next = skb->next;
3623 __skb_unlink(skb, list);
3624 __kfree_skb(skb);
3625 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3626 skb = next;
3627 continue;
3628 }
3629
3630 /* The first skb to collapse is:
3631 * - not SYN/FIN and
3632 * - bloated or contains data before "start" or
3633 * overlaps to the next one.
3634 */
3635 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3636 (tcp_win_from_space(skb->truesize) > skb->len ||
3637 before(TCP_SKB_CB(skb)->seq, start) ||
3638 (skb->next != tail &&
3639 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3640 break;
3641
3642 /* Decided to skip this, advance start seq. */
3643 start = TCP_SKB_CB(skb)->end_seq;
3644 skb = skb->next;
3645 }
3646 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3647 return;
3648
3649 while (before(start, end)) {
3650 struct sk_buff *nskb;
3651 int header = skb_headroom(skb);
3652 int copy = SKB_MAX_ORDER(header, 0);
3653
3654 /* Too big header? This can happen with IPv6. */
3655 if (copy < 0)
3656 return;
3657 if (end-start < copy)
3658 copy = end-start;
3659 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3660 if (!nskb)
3661 return;
3662
3663 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3664 skb_set_network_header(nskb, (skb_network_header(skb) -
3665 skb->head));
3666 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3667 skb->head));
3668 skb_reserve(nskb, header);
3669 memcpy(nskb->head, skb->head, header);
3670 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3671 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3672 __skb_insert(nskb, skb->prev, skb, list);
3673 sk_stream_set_owner_r(nskb, sk);
3674
3675 /* Copy data, releasing collapsed skbs. */
3676 while (copy > 0) {
3677 int offset = start - TCP_SKB_CB(skb)->seq;
3678 int size = TCP_SKB_CB(skb)->end_seq - start;
3679
3680 BUG_ON(offset < 0);
3681 if (size > 0) {
3682 size = min(copy, size);
3683 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3684 BUG();
3685 TCP_SKB_CB(nskb)->end_seq += size;
3686 copy -= size;
3687 start += size;
3688 }
3689 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3690 struct sk_buff *next = skb->next;
3691 __skb_unlink(skb, list);
3692 __kfree_skb(skb);
3693 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3694 skb = next;
3695 if (skb == tail ||
3696 tcp_hdr(skb)->syn ||
3697 tcp_hdr(skb)->fin)
3698 return;
3699 }
3700 }
3701 }
3702 }
3703
3704 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3705 * and tcp_collapse() them until all the queue is collapsed.
3706 */
3707 static void tcp_collapse_ofo_queue(struct sock *sk)
3708 {
3709 struct tcp_sock *tp = tcp_sk(sk);
3710 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3711 struct sk_buff *head;
3712 u32 start, end;
3713
3714 if (skb == NULL)
3715 return;
3716
3717 start = TCP_SKB_CB(skb)->seq;
3718 end = TCP_SKB_CB(skb)->end_seq;
3719 head = skb;
3720
3721 for (;;) {
3722 skb = skb->next;
3723
3724 /* Segment is terminated when we see gap or when
3725 * we are at the end of all the queue. */
3726 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3727 after(TCP_SKB_CB(skb)->seq, end) ||
3728 before(TCP_SKB_CB(skb)->end_seq, start)) {
3729 tcp_collapse(sk, &tp->out_of_order_queue,
3730 head, skb, start, end);
3731 head = skb;
3732 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3733 break;
3734 /* Start new segment */
3735 start = TCP_SKB_CB(skb)->seq;
3736 end = TCP_SKB_CB(skb)->end_seq;
3737 } else {
3738 if (before(TCP_SKB_CB(skb)->seq, start))
3739 start = TCP_SKB_CB(skb)->seq;
3740 if (after(TCP_SKB_CB(skb)->end_seq, end))
3741 end = TCP_SKB_CB(skb)->end_seq;
3742 }
3743 }
3744 }
3745
3746 /* Reduce allocated memory if we can, trying to get
3747 * the socket within its memory limits again.
3748 *
3749 * Return less than zero if we should start dropping frames
3750 * until the socket owning process reads some of the data
3751 * to stabilize the situation.
3752 */
3753 static int tcp_prune_queue(struct sock *sk)
3754 {
3755 struct tcp_sock *tp = tcp_sk(sk);
3756
3757 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3758
3759 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3760
3761 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3762 tcp_clamp_window(sk);
3763 else if (tcp_memory_pressure)
3764 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3765
3766 tcp_collapse_ofo_queue(sk);
3767 tcp_collapse(sk, &sk->sk_receive_queue,
3768 sk->sk_receive_queue.next,
3769 (struct sk_buff*)&sk->sk_receive_queue,
3770 tp->copied_seq, tp->rcv_nxt);
3771 sk_stream_mem_reclaim(sk);
3772
3773 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3774 return 0;
3775
3776 /* Collapsing did not help, destructive actions follow.
3777 * This must not ever occur. */
3778
3779 /* First, purge the out_of_order queue. */
3780 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3781 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3782 __skb_queue_purge(&tp->out_of_order_queue);
3783
3784 /* Reset SACK state. A conforming SACK implementation will
3785 * do the same at a timeout based retransmit. When a connection
3786 * is in a sad state like this, we care only about integrity
3787 * of the connection not performance.
3788 */
3789 if (tp->rx_opt.sack_ok)
3790 tcp_sack_reset(&tp->rx_opt);
3791 sk_stream_mem_reclaim(sk);
3792 }
3793
3794 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3795 return 0;
3796
3797 /* If we are really being abused, tell the caller to silently
3798 * drop receive data on the floor. It will get retransmitted
3799 * and hopefully then we'll have sufficient space.
3800 */
3801 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3802
3803 /* Massive buffer overcommit. */
3804 tp->pred_flags = 0;
3805 return -1;
3806 }
3807
3808
3809 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3810 * As additional protections, we do not touch cwnd in retransmission phases,
3811 * and if application hit its sndbuf limit recently.
3812 */
3813 void tcp_cwnd_application_limited(struct sock *sk)
3814 {
3815 struct tcp_sock *tp = tcp_sk(sk);
3816
3817 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3818 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3819 /* Limited by application or receiver window. */
3820 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3821 u32 win_used = max(tp->snd_cwnd_used, init_win);
3822 if (win_used < tp->snd_cwnd) {
3823 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3824 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3825 }
3826 tp->snd_cwnd_used = 0;
3827 }
3828 tp->snd_cwnd_stamp = tcp_time_stamp;
3829 }
3830
3831 static int tcp_should_expand_sndbuf(struct sock *sk)
3832 {
3833 struct tcp_sock *tp = tcp_sk(sk);
3834
3835 /* If the user specified a specific send buffer setting, do
3836 * not modify it.
3837 */
3838 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3839 return 0;
3840
3841 /* If we are under global TCP memory pressure, do not expand. */
3842 if (tcp_memory_pressure)
3843 return 0;
3844
3845 /* If we are under soft global TCP memory pressure, do not expand. */
3846 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3847 return 0;
3848
3849 /* If we filled the congestion window, do not expand. */
3850 if (tp->packets_out >= tp->snd_cwnd)
3851 return 0;
3852
3853 return 1;
3854 }
3855
3856 /* When incoming ACK allowed to free some skb from write_queue,
3857 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3858 * on the exit from tcp input handler.
3859 *
3860 * PROBLEM: sndbuf expansion does not work well with largesend.
3861 */
3862 static void tcp_new_space(struct sock *sk)
3863 {
3864 struct tcp_sock *tp = tcp_sk(sk);
3865
3866 if (tcp_should_expand_sndbuf(sk)) {
3867 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3868 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3869 demanded = max_t(unsigned int, tp->snd_cwnd,
3870 tp->reordering + 1);
3871 sndmem *= 2*demanded;
3872 if (sndmem > sk->sk_sndbuf)
3873 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3874 tp->snd_cwnd_stamp = tcp_time_stamp;
3875 }
3876
3877 sk->sk_write_space(sk);
3878 }
3879
3880 static void tcp_check_space(struct sock *sk)
3881 {
3882 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3883 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3884 if (sk->sk_socket &&
3885 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3886 tcp_new_space(sk);
3887 }
3888 }
3889
3890 static inline void tcp_data_snd_check(struct sock *sk)
3891 {
3892 tcp_push_pending_frames(sk);
3893 tcp_check_space(sk);
3894 }
3895
3896 /*
3897 * Check if sending an ack is needed.
3898 */
3899 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3900 {
3901 struct tcp_sock *tp = tcp_sk(sk);
3902
3903 /* More than one full frame received... */
3904 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3905 /* ... and right edge of window advances far enough.
3906 * (tcp_recvmsg() will send ACK otherwise). Or...
3907 */
3908 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3909 /* We ACK each frame or... */
3910 tcp_in_quickack_mode(sk) ||
3911 /* We have out of order data. */
3912 (ofo_possible &&
3913 skb_peek(&tp->out_of_order_queue))) {
3914 /* Then ack it now */
3915 tcp_send_ack(sk);
3916 } else {
3917 /* Else, send delayed ack. */
3918 tcp_send_delayed_ack(sk);
3919 }
3920 }
3921
3922 static inline void tcp_ack_snd_check(struct sock *sk)
3923 {
3924 if (!inet_csk_ack_scheduled(sk)) {
3925 /* We sent a data segment already. */
3926 return;
3927 }
3928 __tcp_ack_snd_check(sk, 1);
3929 }
3930
3931 /*
3932 * This routine is only called when we have urgent data
3933 * signaled. Its the 'slow' part of tcp_urg. It could be
3934 * moved inline now as tcp_urg is only called from one
3935 * place. We handle URGent data wrong. We have to - as
3936 * BSD still doesn't use the correction from RFC961.
3937 * For 1003.1g we should support a new option TCP_STDURG to permit
3938 * either form (or just set the sysctl tcp_stdurg).
3939 */
3940
3941 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3942 {
3943 struct tcp_sock *tp = tcp_sk(sk);
3944 u32 ptr = ntohs(th->urg_ptr);
3945
3946 if (ptr && !sysctl_tcp_stdurg)
3947 ptr--;
3948 ptr += ntohl(th->seq);
3949
3950 /* Ignore urgent data that we've already seen and read. */
3951 if (after(tp->copied_seq, ptr))
3952 return;
3953
3954 /* Do not replay urg ptr.
3955 *
3956 * NOTE: interesting situation not covered by specs.
3957 * Misbehaving sender may send urg ptr, pointing to segment,
3958 * which we already have in ofo queue. We are not able to fetch
3959 * such data and will stay in TCP_URG_NOTYET until will be eaten
3960 * by recvmsg(). Seems, we are not obliged to handle such wicked
3961 * situations. But it is worth to think about possibility of some
3962 * DoSes using some hypothetical application level deadlock.
3963 */
3964 if (before(ptr, tp->rcv_nxt))
3965 return;
3966
3967 /* Do we already have a newer (or duplicate) urgent pointer? */
3968 if (tp->urg_data && !after(ptr, tp->urg_seq))
3969 return;
3970
3971 /* Tell the world about our new urgent pointer. */
3972 sk_send_sigurg(sk);
3973
3974 /* We may be adding urgent data when the last byte read was
3975 * urgent. To do this requires some care. We cannot just ignore
3976 * tp->copied_seq since we would read the last urgent byte again
3977 * as data, nor can we alter copied_seq until this data arrives
3978 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3979 *
3980 * NOTE. Double Dutch. Rendering to plain English: author of comment
3981 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3982 * and expect that both A and B disappear from stream. This is _wrong_.
3983 * Though this happens in BSD with high probability, this is occasional.
3984 * Any application relying on this is buggy. Note also, that fix "works"
3985 * only in this artificial test. Insert some normal data between A and B and we will
3986 * decline of BSD again. Verdict: it is better to remove to trap
3987 * buggy users.
3988 */
3989 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3990 !sock_flag(sk, SOCK_URGINLINE) &&
3991 tp->copied_seq != tp->rcv_nxt) {
3992 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3993 tp->copied_seq++;
3994 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3995 __skb_unlink(skb, &sk->sk_receive_queue);
3996 __kfree_skb(skb);
3997 }
3998 }
3999
4000 tp->urg_data = TCP_URG_NOTYET;
4001 tp->urg_seq = ptr;
4002
4003 /* Disable header prediction. */
4004 tp->pred_flags = 0;
4005 }
4006
4007 /* This is the 'fast' part of urgent handling. */
4008 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4009 {
4010 struct tcp_sock *tp = tcp_sk(sk);
4011
4012 /* Check if we get a new urgent pointer - normally not. */
4013 if (th->urg)
4014 tcp_check_urg(sk,th);
4015
4016 /* Do we wait for any urgent data? - normally not... */
4017 if (tp->urg_data == TCP_URG_NOTYET) {
4018 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4019 th->syn;
4020
4021 /* Is the urgent pointer pointing into this packet? */
4022 if (ptr < skb->len) {
4023 u8 tmp;
4024 if (skb_copy_bits(skb, ptr, &tmp, 1))
4025 BUG();
4026 tp->urg_data = TCP_URG_VALID | tmp;
4027 if (!sock_flag(sk, SOCK_DEAD))
4028 sk->sk_data_ready(sk, 0);
4029 }
4030 }
4031 }
4032
4033 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4034 {
4035 struct tcp_sock *tp = tcp_sk(sk);
4036 int chunk = skb->len - hlen;
4037 int err;
4038
4039 local_bh_enable();
4040 if (skb_csum_unnecessary(skb))
4041 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4042 else
4043 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4044 tp->ucopy.iov);
4045
4046 if (!err) {
4047 tp->ucopy.len -= chunk;
4048 tp->copied_seq += chunk;
4049 tcp_rcv_space_adjust(sk);
4050 }
4051
4052 local_bh_disable();
4053 return err;
4054 }
4055
4056 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4057 {
4058 __sum16 result;
4059
4060 if (sock_owned_by_user(sk)) {
4061 local_bh_enable();
4062 result = __tcp_checksum_complete(skb);
4063 local_bh_disable();
4064 } else {
4065 result = __tcp_checksum_complete(skb);
4066 }
4067 return result;
4068 }
4069
4070 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4071 {
4072 return !skb_csum_unnecessary(skb) &&
4073 __tcp_checksum_complete_user(sk, skb);
4074 }
4075
4076 #ifdef CONFIG_NET_DMA
4077 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4078 {
4079 struct tcp_sock *tp = tcp_sk(sk);
4080 int chunk = skb->len - hlen;
4081 int dma_cookie;
4082 int copied_early = 0;
4083
4084 if (tp->ucopy.wakeup)
4085 return 0;
4086
4087 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4088 tp->ucopy.dma_chan = get_softnet_dma();
4089
4090 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4091
4092 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4093 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4094
4095 if (dma_cookie < 0)
4096 goto out;
4097
4098 tp->ucopy.dma_cookie = dma_cookie;
4099 copied_early = 1;
4100
4101 tp->ucopy.len -= chunk;
4102 tp->copied_seq += chunk;
4103 tcp_rcv_space_adjust(sk);
4104
4105 if ((tp->ucopy.len == 0) ||
4106 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4107 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4108 tp->ucopy.wakeup = 1;
4109 sk->sk_data_ready(sk, 0);
4110 }
4111 } else if (chunk > 0) {
4112 tp->ucopy.wakeup = 1;
4113 sk->sk_data_ready(sk, 0);
4114 }
4115 out:
4116 return copied_early;
4117 }
4118 #endif /* CONFIG_NET_DMA */
4119
4120 /*
4121 * TCP receive function for the ESTABLISHED state.
4122 *
4123 * It is split into a fast path and a slow path. The fast path is
4124 * disabled when:
4125 * - A zero window was announced from us - zero window probing
4126 * is only handled properly in the slow path.
4127 * - Out of order segments arrived.
4128 * - Urgent data is expected.
4129 * - There is no buffer space left
4130 * - Unexpected TCP flags/window values/header lengths are received
4131 * (detected by checking the TCP header against pred_flags)
4132 * - Data is sent in both directions. Fast path only supports pure senders
4133 * or pure receivers (this means either the sequence number or the ack
4134 * value must stay constant)
4135 * - Unexpected TCP option.
4136 *
4137 * When these conditions are not satisfied it drops into a standard
4138 * receive procedure patterned after RFC793 to handle all cases.
4139 * The first three cases are guaranteed by proper pred_flags setting,
4140 * the rest is checked inline. Fast processing is turned on in
4141 * tcp_data_queue when everything is OK.
4142 */
4143 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4144 struct tcphdr *th, unsigned len)
4145 {
4146 struct tcp_sock *tp = tcp_sk(sk);
4147
4148 /*
4149 * Header prediction.
4150 * The code loosely follows the one in the famous
4151 * "30 instruction TCP receive" Van Jacobson mail.
4152 *
4153 * Van's trick is to deposit buffers into socket queue
4154 * on a device interrupt, to call tcp_recv function
4155 * on the receive process context and checksum and copy
4156 * the buffer to user space. smart...
4157 *
4158 * Our current scheme is not silly either but we take the
4159 * extra cost of the net_bh soft interrupt processing...
4160 * We do checksum and copy also but from device to kernel.
4161 */
4162
4163 tp->rx_opt.saw_tstamp = 0;
4164
4165 /* pred_flags is 0xS?10 << 16 + snd_wnd
4166 * if header_prediction is to be made
4167 * 'S' will always be tp->tcp_header_len >> 2
4168 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4169 * turn it off (when there are holes in the receive
4170 * space for instance)
4171 * PSH flag is ignored.
4172 */
4173
4174 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4175 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4176 int tcp_header_len = tp->tcp_header_len;
4177
4178 /* Timestamp header prediction: tcp_header_len
4179 * is automatically equal to th->doff*4 due to pred_flags
4180 * match.
4181 */
4182
4183 /* Check timestamp */
4184 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4185 __be32 *ptr = (__be32 *)(th + 1);
4186
4187 /* No? Slow path! */
4188 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4189 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4190 goto slow_path;
4191
4192 tp->rx_opt.saw_tstamp = 1;
4193 ++ptr;
4194 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4195 ++ptr;
4196 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4197
4198 /* If PAWS failed, check it more carefully in slow path */
4199 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4200 goto slow_path;
4201
4202 /* DO NOT update ts_recent here, if checksum fails
4203 * and timestamp was corrupted part, it will result
4204 * in a hung connection since we will drop all
4205 * future packets due to the PAWS test.
4206 */
4207 }
4208
4209 if (len <= tcp_header_len) {
4210 /* Bulk data transfer: sender */
4211 if (len == tcp_header_len) {
4212 /* Predicted packet is in window by definition.
4213 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4214 * Hence, check seq<=rcv_wup reduces to:
4215 */
4216 if (tcp_header_len ==
4217 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4218 tp->rcv_nxt == tp->rcv_wup)
4219 tcp_store_ts_recent(tp);
4220
4221 /* We know that such packets are checksummed
4222 * on entry.
4223 */
4224 tcp_ack(sk, skb, 0);
4225 __kfree_skb(skb);
4226 tcp_data_snd_check(sk);
4227 return 0;
4228 } else { /* Header too small */
4229 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4230 goto discard;
4231 }
4232 } else {
4233 int eaten = 0;
4234 int copied_early = 0;
4235
4236 if (tp->copied_seq == tp->rcv_nxt &&
4237 len - tcp_header_len <= tp->ucopy.len) {
4238 #ifdef CONFIG_NET_DMA
4239 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4240 copied_early = 1;
4241 eaten = 1;
4242 }
4243 #endif
4244 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4245 __set_current_state(TASK_RUNNING);
4246
4247 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4248 eaten = 1;
4249 }
4250 if (eaten) {
4251 /* Predicted packet is in window by definition.
4252 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4253 * Hence, check seq<=rcv_wup reduces to:
4254 */
4255 if (tcp_header_len ==
4256 (sizeof(struct tcphdr) +
4257 TCPOLEN_TSTAMP_ALIGNED) &&
4258 tp->rcv_nxt == tp->rcv_wup)
4259 tcp_store_ts_recent(tp);
4260
4261 tcp_rcv_rtt_measure_ts(sk, skb);
4262
4263 __skb_pull(skb, tcp_header_len);
4264 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4265 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4266 }
4267 if (copied_early)
4268 tcp_cleanup_rbuf(sk, skb->len);
4269 }
4270 if (!eaten) {
4271 if (tcp_checksum_complete_user(sk, skb))
4272 goto csum_error;
4273
4274 /* Predicted packet is in window by definition.
4275 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4276 * Hence, check seq<=rcv_wup reduces to:
4277 */
4278 if (tcp_header_len ==
4279 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4280 tp->rcv_nxt == tp->rcv_wup)
4281 tcp_store_ts_recent(tp);
4282
4283 tcp_rcv_rtt_measure_ts(sk, skb);
4284
4285 if ((int)skb->truesize > sk->sk_forward_alloc)
4286 goto step5;
4287
4288 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4289
4290 /* Bulk data transfer: receiver */
4291 __skb_pull(skb,tcp_header_len);
4292 __skb_queue_tail(&sk->sk_receive_queue, skb);
4293 sk_stream_set_owner_r(skb, sk);
4294 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4295 }
4296
4297 tcp_event_data_recv(sk, skb);
4298
4299 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4300 /* Well, only one small jumplet in fast path... */
4301 tcp_ack(sk, skb, FLAG_DATA);
4302 tcp_data_snd_check(sk);
4303 if (!inet_csk_ack_scheduled(sk))
4304 goto no_ack;
4305 }
4306
4307 __tcp_ack_snd_check(sk, 0);
4308 no_ack:
4309 #ifdef CONFIG_NET_DMA
4310 if (copied_early)
4311 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4312 else
4313 #endif
4314 if (eaten)
4315 __kfree_skb(skb);
4316 else
4317 sk->sk_data_ready(sk, 0);
4318 return 0;
4319 }
4320 }
4321
4322 slow_path:
4323 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4324 goto csum_error;
4325
4326 /*
4327 * RFC1323: H1. Apply PAWS check first.
4328 */
4329 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4330 tcp_paws_discard(sk, skb)) {
4331 if (!th->rst) {
4332 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4333 tcp_send_dupack(sk, skb);
4334 goto discard;
4335 }
4336 /* Resets are accepted even if PAWS failed.
4337
4338 ts_recent update must be made after we are sure
4339 that the packet is in window.
4340 */
4341 }
4342
4343 /*
4344 * Standard slow path.
4345 */
4346
4347 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4348 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4349 * (RST) segments are validated by checking their SEQ-fields."
4350 * And page 69: "If an incoming segment is not acceptable,
4351 * an acknowledgment should be sent in reply (unless the RST bit
4352 * is set, if so drop the segment and return)".
4353 */
4354 if (!th->rst)
4355 tcp_send_dupack(sk, skb);
4356 goto discard;
4357 }
4358
4359 if (th->rst) {
4360 tcp_reset(sk);
4361 goto discard;
4362 }
4363
4364 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4365
4366 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4367 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4368 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4369 tcp_reset(sk);
4370 return 1;
4371 }
4372
4373 step5:
4374 if (th->ack)
4375 tcp_ack(sk, skb, FLAG_SLOWPATH);
4376
4377 tcp_rcv_rtt_measure_ts(sk, skb);
4378
4379 /* Process urgent data. */
4380 tcp_urg(sk, skb, th);
4381
4382 /* step 7: process the segment text */
4383 tcp_data_queue(sk, skb);
4384
4385 tcp_data_snd_check(sk);
4386 tcp_ack_snd_check(sk);
4387 return 0;
4388
4389 csum_error:
4390 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4391
4392 discard:
4393 __kfree_skb(skb);
4394 return 0;
4395 }
4396
4397 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4398 struct tcphdr *th, unsigned len)
4399 {
4400 struct tcp_sock *tp = tcp_sk(sk);
4401 struct inet_connection_sock *icsk = inet_csk(sk);
4402 int saved_clamp = tp->rx_opt.mss_clamp;
4403
4404 tcp_parse_options(skb, &tp->rx_opt, 0);
4405
4406 if (th->ack) {
4407 /* rfc793:
4408 * "If the state is SYN-SENT then
4409 * first check the ACK bit
4410 * If the ACK bit is set
4411 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4412 * a reset (unless the RST bit is set, if so drop
4413 * the segment and return)"
4414 *
4415 * We do not send data with SYN, so that RFC-correct
4416 * test reduces to:
4417 */
4418 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4419 goto reset_and_undo;
4420
4421 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4422 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4423 tcp_time_stamp)) {
4424 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4425 goto reset_and_undo;
4426 }
4427
4428 /* Now ACK is acceptable.
4429 *
4430 * "If the RST bit is set
4431 * If the ACK was acceptable then signal the user "error:
4432 * connection reset", drop the segment, enter CLOSED state,
4433 * delete TCB, and return."
4434 */
4435
4436 if (th->rst) {
4437 tcp_reset(sk);
4438 goto discard;
4439 }
4440
4441 /* rfc793:
4442 * "fifth, if neither of the SYN or RST bits is set then
4443 * drop the segment and return."
4444 *
4445 * See note below!
4446 * --ANK(990513)
4447 */
4448 if (!th->syn)
4449 goto discard_and_undo;
4450
4451 /* rfc793:
4452 * "If the SYN bit is on ...
4453 * are acceptable then ...
4454 * (our SYN has been ACKed), change the connection
4455 * state to ESTABLISHED..."
4456 */
4457
4458 TCP_ECN_rcv_synack(tp, th);
4459
4460 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4461 tcp_ack(sk, skb, FLAG_SLOWPATH);
4462
4463 /* Ok.. it's good. Set up sequence numbers and
4464 * move to established.
4465 */
4466 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4467 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4468
4469 /* RFC1323: The window in SYN & SYN/ACK segments is
4470 * never scaled.
4471 */
4472 tp->snd_wnd = ntohs(th->window);
4473 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4474
4475 if (!tp->rx_opt.wscale_ok) {
4476 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4477 tp->window_clamp = min(tp->window_clamp, 65535U);
4478 }
4479
4480 if (tp->rx_opt.saw_tstamp) {
4481 tp->rx_opt.tstamp_ok = 1;
4482 tp->tcp_header_len =
4483 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4484 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4485 tcp_store_ts_recent(tp);
4486 } else {
4487 tp->tcp_header_len = sizeof(struct tcphdr);
4488 }
4489
4490 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4491 tp->rx_opt.sack_ok |= 2;
4492
4493 tcp_mtup_init(sk);
4494 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4495 tcp_initialize_rcv_mss(sk);
4496
4497 /* Remember, tcp_poll() does not lock socket!
4498 * Change state from SYN-SENT only after copied_seq
4499 * is initialized. */
4500 tp->copied_seq = tp->rcv_nxt;
4501 smp_mb();
4502 tcp_set_state(sk, TCP_ESTABLISHED);
4503
4504 security_inet_conn_established(sk, skb);
4505
4506 /* Make sure socket is routed, for correct metrics. */
4507 icsk->icsk_af_ops->rebuild_header(sk);
4508
4509 tcp_init_metrics(sk);
4510
4511 tcp_init_congestion_control(sk);
4512
4513 /* Prevent spurious tcp_cwnd_restart() on first data
4514 * packet.
4515 */
4516 tp->lsndtime = tcp_time_stamp;
4517
4518 tcp_init_buffer_space(sk);
4519
4520 if (sock_flag(sk, SOCK_KEEPOPEN))
4521 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4522
4523 if (!tp->rx_opt.snd_wscale)
4524 __tcp_fast_path_on(tp, tp->snd_wnd);
4525 else
4526 tp->pred_flags = 0;
4527
4528 if (!sock_flag(sk, SOCK_DEAD)) {
4529 sk->sk_state_change(sk);
4530 sk_wake_async(sk, 0, POLL_OUT);
4531 }
4532
4533 if (sk->sk_write_pending ||
4534 icsk->icsk_accept_queue.rskq_defer_accept ||
4535 icsk->icsk_ack.pingpong) {
4536 /* Save one ACK. Data will be ready after
4537 * several ticks, if write_pending is set.
4538 *
4539 * It may be deleted, but with this feature tcpdumps
4540 * look so _wonderfully_ clever, that I was not able
4541 * to stand against the temptation 8) --ANK
4542 */
4543 inet_csk_schedule_ack(sk);
4544 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4545 icsk->icsk_ack.ato = TCP_ATO_MIN;
4546 tcp_incr_quickack(sk);
4547 tcp_enter_quickack_mode(sk);
4548 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4549 TCP_DELACK_MAX, TCP_RTO_MAX);
4550
4551 discard:
4552 __kfree_skb(skb);
4553 return 0;
4554 } else {
4555 tcp_send_ack(sk);
4556 }
4557 return -1;
4558 }
4559
4560 /* No ACK in the segment */
4561
4562 if (th->rst) {
4563 /* rfc793:
4564 * "If the RST bit is set
4565 *
4566 * Otherwise (no ACK) drop the segment and return."
4567 */
4568
4569 goto discard_and_undo;
4570 }
4571
4572 /* PAWS check. */
4573 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4574 goto discard_and_undo;
4575
4576 if (th->syn) {
4577 /* We see SYN without ACK. It is attempt of
4578 * simultaneous connect with crossed SYNs.
4579 * Particularly, it can be connect to self.
4580 */
4581 tcp_set_state(sk, TCP_SYN_RECV);
4582
4583 if (tp->rx_opt.saw_tstamp) {
4584 tp->rx_opt.tstamp_ok = 1;
4585 tcp_store_ts_recent(tp);
4586 tp->tcp_header_len =
4587 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4588 } else {
4589 tp->tcp_header_len = sizeof(struct tcphdr);
4590 }
4591
4592 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4593 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4594
4595 /* RFC1323: The window in SYN & SYN/ACK segments is
4596 * never scaled.
4597 */
4598 tp->snd_wnd = ntohs(th->window);
4599 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4600 tp->max_window = tp->snd_wnd;
4601
4602 TCP_ECN_rcv_syn(tp, th);
4603
4604 tcp_mtup_init(sk);
4605 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4606 tcp_initialize_rcv_mss(sk);
4607
4608
4609 tcp_send_synack(sk);
4610 #if 0
4611 /* Note, we could accept data and URG from this segment.
4612 * There are no obstacles to make this.
4613 *
4614 * However, if we ignore data in ACKless segments sometimes,
4615 * we have no reasons to accept it sometimes.
4616 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4617 * is not flawless. So, discard packet for sanity.
4618 * Uncomment this return to process the data.
4619 */
4620 return -1;
4621 #else
4622 goto discard;
4623 #endif
4624 }
4625 /* "fifth, if neither of the SYN or RST bits is set then
4626 * drop the segment and return."
4627 */
4628
4629 discard_and_undo:
4630 tcp_clear_options(&tp->rx_opt);
4631 tp->rx_opt.mss_clamp = saved_clamp;
4632 goto discard;
4633
4634 reset_and_undo:
4635 tcp_clear_options(&tp->rx_opt);
4636 tp->rx_opt.mss_clamp = saved_clamp;
4637 return 1;
4638 }
4639
4640
4641 /*
4642 * This function implements the receiving procedure of RFC 793 for
4643 * all states except ESTABLISHED and TIME_WAIT.
4644 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4645 * address independent.
4646 */
4647
4648 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4649 struct tcphdr *th, unsigned len)
4650 {
4651 struct tcp_sock *tp = tcp_sk(sk);
4652 struct inet_connection_sock *icsk = inet_csk(sk);
4653 int queued = 0;
4654
4655 tp->rx_opt.saw_tstamp = 0;
4656
4657 switch (sk->sk_state) {
4658 case TCP_CLOSE:
4659 goto discard;
4660
4661 case TCP_LISTEN:
4662 if (th->ack)
4663 return 1;
4664
4665 if (th->rst)
4666 goto discard;
4667
4668 if (th->syn) {
4669 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4670 return 1;
4671
4672 /* Now we have several options: In theory there is
4673 * nothing else in the frame. KA9Q has an option to
4674 * send data with the syn, BSD accepts data with the
4675 * syn up to the [to be] advertised window and
4676 * Solaris 2.1 gives you a protocol error. For now
4677 * we just ignore it, that fits the spec precisely
4678 * and avoids incompatibilities. It would be nice in
4679 * future to drop through and process the data.
4680 *
4681 * Now that TTCP is starting to be used we ought to
4682 * queue this data.
4683 * But, this leaves one open to an easy denial of
4684 * service attack, and SYN cookies can't defend
4685 * against this problem. So, we drop the data
4686 * in the interest of security over speed unless
4687 * it's still in use.
4688 */
4689 kfree_skb(skb);
4690 return 0;
4691 }
4692 goto discard;
4693
4694 case TCP_SYN_SENT:
4695 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4696 if (queued >= 0)
4697 return queued;
4698
4699 /* Do step6 onward by hand. */
4700 tcp_urg(sk, skb, th);
4701 __kfree_skb(skb);
4702 tcp_data_snd_check(sk);
4703 return 0;
4704 }
4705
4706 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4707 tcp_paws_discard(sk, skb)) {
4708 if (!th->rst) {
4709 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4710 tcp_send_dupack(sk, skb);
4711 goto discard;
4712 }
4713 /* Reset is accepted even if it did not pass PAWS. */
4714 }
4715
4716 /* step 1: check sequence number */
4717 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4718 if (!th->rst)
4719 tcp_send_dupack(sk, skb);
4720 goto discard;
4721 }
4722
4723 /* step 2: check RST bit */
4724 if (th->rst) {
4725 tcp_reset(sk);
4726 goto discard;
4727 }
4728
4729 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4730
4731 /* step 3: check security and precedence [ignored] */
4732
4733 /* step 4:
4734 *
4735 * Check for a SYN in window.
4736 */
4737 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4738 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4739 tcp_reset(sk);
4740 return 1;
4741 }
4742
4743 /* step 5: check the ACK field */
4744 if (th->ack) {
4745 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4746
4747 switch (sk->sk_state) {
4748 case TCP_SYN_RECV:
4749 if (acceptable) {
4750 tp->copied_seq = tp->rcv_nxt;
4751 smp_mb();
4752 tcp_set_state(sk, TCP_ESTABLISHED);
4753 sk->sk_state_change(sk);
4754
4755 /* Note, that this wakeup is only for marginal
4756 * crossed SYN case. Passively open sockets
4757 * are not waked up, because sk->sk_sleep ==
4758 * NULL and sk->sk_socket == NULL.
4759 */
4760 if (sk->sk_socket) {
4761 sk_wake_async(sk,0,POLL_OUT);
4762 }
4763
4764 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4765 tp->snd_wnd = ntohs(th->window) <<
4766 tp->rx_opt.snd_wscale;
4767 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4768 TCP_SKB_CB(skb)->seq);
4769
4770 /* tcp_ack considers this ACK as duplicate
4771 * and does not calculate rtt.
4772 * Fix it at least with timestamps.
4773 */
4774 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4775 !tp->srtt)
4776 tcp_ack_saw_tstamp(sk, 0);
4777
4778 if (tp->rx_opt.tstamp_ok)
4779 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4780
4781 /* Make sure socket is routed, for
4782 * correct metrics.
4783 */
4784 icsk->icsk_af_ops->rebuild_header(sk);
4785
4786 tcp_init_metrics(sk);
4787
4788 tcp_init_congestion_control(sk);
4789
4790 /* Prevent spurious tcp_cwnd_restart() on
4791 * first data packet.
4792 */
4793 tp->lsndtime = tcp_time_stamp;
4794
4795 tcp_mtup_init(sk);
4796 tcp_initialize_rcv_mss(sk);
4797 tcp_init_buffer_space(sk);
4798 tcp_fast_path_on(tp);
4799 } else {
4800 return 1;
4801 }
4802 break;
4803
4804 case TCP_FIN_WAIT1:
4805 if (tp->snd_una == tp->write_seq) {
4806 tcp_set_state(sk, TCP_FIN_WAIT2);
4807 sk->sk_shutdown |= SEND_SHUTDOWN;
4808 dst_confirm(sk->sk_dst_cache);
4809
4810 if (!sock_flag(sk, SOCK_DEAD))
4811 /* Wake up lingering close() */
4812 sk->sk_state_change(sk);
4813 else {
4814 int tmo;
4815
4816 if (tp->linger2 < 0 ||
4817 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4818 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4819 tcp_done(sk);
4820 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4821 return 1;
4822 }
4823
4824 tmo = tcp_fin_time(sk);
4825 if (tmo > TCP_TIMEWAIT_LEN) {
4826 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4827 } else if (th->fin || sock_owned_by_user(sk)) {
4828 /* Bad case. We could lose such FIN otherwise.
4829 * It is not a big problem, but it looks confusing
4830 * and not so rare event. We still can lose it now,
4831 * if it spins in bh_lock_sock(), but it is really
4832 * marginal case.
4833 */
4834 inet_csk_reset_keepalive_timer(sk, tmo);
4835 } else {
4836 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4837 goto discard;
4838 }
4839 }
4840 }
4841 break;
4842
4843 case TCP_CLOSING:
4844 if (tp->snd_una == tp->write_seq) {
4845 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4846 goto discard;
4847 }
4848 break;
4849
4850 case TCP_LAST_ACK:
4851 if (tp->snd_una == tp->write_seq) {
4852 tcp_update_metrics(sk);
4853 tcp_done(sk);
4854 goto discard;
4855 }
4856 break;
4857 }
4858 } else
4859 goto discard;
4860
4861 /* step 6: check the URG bit */
4862 tcp_urg(sk, skb, th);
4863
4864 /* step 7: process the segment text */
4865 switch (sk->sk_state) {
4866 case TCP_CLOSE_WAIT:
4867 case TCP_CLOSING:
4868 case TCP_LAST_ACK:
4869 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4870 break;
4871 case TCP_FIN_WAIT1:
4872 case TCP_FIN_WAIT2:
4873 /* RFC 793 says to queue data in these states,
4874 * RFC 1122 says we MUST send a reset.
4875 * BSD 4.4 also does reset.
4876 */
4877 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4878 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4879 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4880 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4881 tcp_reset(sk);
4882 return 1;
4883 }
4884 }
4885 /* Fall through */
4886 case TCP_ESTABLISHED:
4887 tcp_data_queue(sk, skb);
4888 queued = 1;
4889 break;
4890 }
4891
4892 /* tcp_data could move socket to TIME-WAIT */
4893 if (sk->sk_state != TCP_CLOSE) {
4894 tcp_data_snd_check(sk);
4895 tcp_ack_snd_check(sk);
4896 }
4897
4898 if (!queued) {
4899 discard:
4900 __kfree_skb(skb);
4901 }
4902 return 0;
4903 }
4904
4905 EXPORT_SYMBOL(sysctl_tcp_ecn);
4906 EXPORT_SYMBOL(sysctl_tcp_reordering);
4907 EXPORT_SYMBOL(tcp_parse_options);
4908 EXPORT_SYMBOL(tcp_rcv_established);
4909 EXPORT_SYMBOL(tcp_rcv_state_process);
4910 EXPORT_SYMBOL(tcp_initialize_rcv_mss);