Merge tag 'v3.10.108' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/reciprocal_div.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <net/netdma.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 EXPORT_SYMBOL(sysctl_tcp_reordering);
85 int sysctl_tcp_dsack __read_mostly = 1;
86 int sysctl_tcp_app_win __read_mostly = 31;
87 int sysctl_tcp_adv_win_scale __read_mostly = 1;
88 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 1000;
92
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_default_init_rwnd __read_mostly = TCP_DEFAULT_INIT_RCVWND;
103
104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
110 #define FLAG_ECE 0x40 /* ECE in this ACK */
111 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
112 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
113 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
114 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
115 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
118
119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
123
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126
127 /* Adapt the MSS value used to make delayed ack decision to the
128 * real world.
129 */
130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131 {
132 struct inet_connection_sock *icsk = inet_csk(sk);
133 const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 unsigned int len;
135
136 icsk->icsk_ack.last_seg_size = 0;
137
138 /* skb->len may jitter because of SACKs, even if peer
139 * sends good full-sized frames.
140 */
141 len = skb_shinfo(skb)->gso_size ? : skb->len;
142 if (len >= icsk->icsk_ack.rcv_mss) {
143 icsk->icsk_ack.rcv_mss = len;
144 } else {
145 /* Otherwise, we make more careful check taking into account,
146 * that SACKs block is variable.
147 *
148 * "len" is invariant segment length, including TCP header.
149 */
150 len += skb->data - skb_transport_header(skb);
151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152 /* If PSH is not set, packet should be
153 * full sized, provided peer TCP is not badly broken.
154 * This observation (if it is correct 8)) allows
155 * to handle super-low mtu links fairly.
156 */
157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159 /* Subtract also invariant (if peer is RFC compliant),
160 * tcp header plus fixed timestamp option length.
161 * Resulting "len" is MSS free of SACK jitter.
162 */
163 len -= tcp_sk(sk)->tcp_header_len;
164 icsk->icsk_ack.last_seg_size = len;
165 if (len == lss) {
166 icsk->icsk_ack.rcv_mss = len;
167 return;
168 }
169 }
170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 }
174 }
175
176 static void tcp_incr_quickack(struct sock *sk)
177 {
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180
181 if (quickacks == 0)
182 quickacks = 2;
183 if (quickacks > icsk->icsk_ack.quick)
184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 }
186
187 static void tcp_enter_quickack_mode(struct sock *sk)
188 {
189 struct inet_connection_sock *icsk = inet_csk(sk);
190 tcp_incr_quickack(sk);
191 icsk->icsk_ack.pingpong = 0;
192 icsk->icsk_ack.ato = TCP_ATO_MIN;
193 }
194
195 /* Send ACKs quickly, if "quick" count is not exhausted
196 * and the session is not interactive.
197 */
198
199 static inline bool tcp_in_quickack_mode(const struct sock *sk)
200 {
201 const struct inet_connection_sock *icsk = inet_csk(sk);
202
203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
204 }
205
206 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
207 {
208 if (tp->ecn_flags & TCP_ECN_OK)
209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210 }
211
212 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
213 {
214 if (tcp_hdr(skb)->cwr)
215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 }
217
218 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
219 {
220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221 }
222
223 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
224 {
225 if (!(tp->ecn_flags & TCP_ECN_OK))
226 return;
227
228 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
229 case INET_ECN_NOT_ECT:
230 /* Funny extension: if ECT is not set on a segment,
231 * and we already seen ECT on a previous segment,
232 * it is probably a retransmit.
233 */
234 if (tp->ecn_flags & TCP_ECN_SEEN)
235 tcp_enter_quickack_mode((struct sock *)tp);
236 break;
237 case INET_ECN_CE:
238 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
239 /* Better not delay acks, sender can have a very low cwnd */
240 tcp_enter_quickack_mode((struct sock *)tp);
241 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
242 }
243 /* fallinto */
244 default:
245 tp->ecn_flags |= TCP_ECN_SEEN;
246 }
247 }
248
249 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
250 {
251 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
252 tp->ecn_flags &= ~TCP_ECN_OK;
253 }
254
255 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
256 {
257 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
258 tp->ecn_flags &= ~TCP_ECN_OK;
259 }
260
261 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
262 {
263 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
264 return true;
265 return false;
266 }
267
268 /* Buffer size and advertised window tuning.
269 *
270 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
271 */
272
273 static void tcp_fixup_sndbuf(struct sock *sk)
274 {
275 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
276
277 sndmem *= TCP_INIT_CWND;
278 if (sk->sk_sndbuf < sndmem)
279 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
280 }
281
282 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
283 *
284 * All tcp_full_space() is split to two parts: "network" buffer, allocated
285 * forward and advertised in receiver window (tp->rcv_wnd) and
286 * "application buffer", required to isolate scheduling/application
287 * latencies from network.
288 * window_clamp is maximal advertised window. It can be less than
289 * tcp_full_space(), in this case tcp_full_space() - window_clamp
290 * is reserved for "application" buffer. The less window_clamp is
291 * the smoother our behaviour from viewpoint of network, but the lower
292 * throughput and the higher sensitivity of the connection to losses. 8)
293 *
294 * rcv_ssthresh is more strict window_clamp used at "slow start"
295 * phase to predict further behaviour of this connection.
296 * It is used for two goals:
297 * - to enforce header prediction at sender, even when application
298 * requires some significant "application buffer". It is check #1.
299 * - to prevent pruning of receive queue because of misprediction
300 * of receiver window. Check #2.
301 *
302 * The scheme does not work when sender sends good segments opening
303 * window and then starts to feed us spaghetti. But it should work
304 * in common situations. Otherwise, we have to rely on queue collapsing.
305 */
306
307 /* Slow part of check#2. */
308 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
309 {
310 struct tcp_sock *tp = tcp_sk(sk);
311 /* Optimize this! */
312 int truesize = tcp_win_from_space(skb->truesize) >> 1;
313 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
314
315 while (tp->rcv_ssthresh <= window) {
316 if (truesize <= skb->len)
317 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
318
319 truesize >>= 1;
320 window >>= 1;
321 }
322 return 0;
323 }
324
325 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
326 {
327 struct tcp_sock *tp = tcp_sk(sk);
328
329 /* Check #1 */
330 if (tp->rcv_ssthresh < tp->window_clamp &&
331 (int)tp->rcv_ssthresh < tcp_space(sk) &&
332 !sk_under_memory_pressure(sk)) {
333 int incr;
334
335 /* Check #2. Increase window, if skb with such overhead
336 * will fit to rcvbuf in future.
337 */
338 if (tcp_win_from_space(skb->truesize) <= skb->len)
339 incr = 2 * tp->advmss;
340 else
341 incr = __tcp_grow_window(sk, skb);
342
343 if (incr) {
344 incr = max_t(int, incr, 2 * skb->len);
345 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
346 tp->window_clamp);
347 inet_csk(sk)->icsk_ack.quick |= 1;
348 }
349 }
350 }
351
352 /* 3. Tuning rcvbuf, when connection enters established state. */
353
354 static void tcp_fixup_rcvbuf(struct sock *sk)
355 {
356 u32 mss = tcp_sk(sk)->advmss;
357 u32 icwnd = sysctl_tcp_default_init_rwnd;
358 int rcvmem;
359
360 /* Limit to 10 segments if mss <= 1460,
361 * or 14600/mss segments, with a minimum of two segments.
362 */
363 if (mss > 1460)
364 icwnd = max_t(u32, (1460 * icwnd) / mss, 2);
365
366 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
367 while (tcp_win_from_space(rcvmem) < mss)
368 rcvmem += 128;
369
370 rcvmem *= icwnd;
371
372 if (sk->sk_rcvbuf < rcvmem)
373 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
374 }
375
376 /* 4. Try to fixup all. It is made immediately after connection enters
377 * established state.
378 */
379 void tcp_init_buffer_space(struct sock *sk)
380 {
381 struct tcp_sock *tp = tcp_sk(sk);
382 int maxwin;
383
384 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
385 tcp_fixup_rcvbuf(sk);
386 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
387 tcp_fixup_sndbuf(sk);
388
389 tp->rcvq_space.space = tp->rcv_wnd;
390
391 maxwin = tcp_full_space(sk);
392
393 if (tp->window_clamp >= maxwin) {
394 tp->window_clamp = maxwin;
395
396 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
397 tp->window_clamp = max(maxwin -
398 (maxwin >> sysctl_tcp_app_win),
399 4 * tp->advmss);
400 }
401
402 /* Force reservation of one segment. */
403 if (sysctl_tcp_app_win &&
404 tp->window_clamp > 2 * tp->advmss &&
405 tp->window_clamp + tp->advmss > maxwin)
406 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
407
408 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
409 tp->snd_cwnd_stamp = tcp_time_stamp;
410 }
411
412 /* 5. Recalculate window clamp after socket hit its memory bounds. */
413 static void tcp_clamp_window(struct sock *sk)
414 {
415 struct tcp_sock *tp = tcp_sk(sk);
416 struct inet_connection_sock *icsk = inet_csk(sk);
417
418 icsk->icsk_ack.quick = 0;
419
420 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
421 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
422 !sk_under_memory_pressure(sk) &&
423 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
424 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
425 sysctl_tcp_rmem[2]);
426 }
427 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
428 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
429 }
430
431 /* Initialize RCV_MSS value.
432 * RCV_MSS is an our guess about MSS used by the peer.
433 * We haven't any direct information about the MSS.
434 * It's better to underestimate the RCV_MSS rather than overestimate.
435 * Overestimations make us ACKing less frequently than needed.
436 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
437 */
438 void tcp_initialize_rcv_mss(struct sock *sk)
439 {
440 const struct tcp_sock *tp = tcp_sk(sk);
441 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
442
443 hint = min(hint, tp->rcv_wnd / 2);
444 hint = min(hint, TCP_MSS_DEFAULT);
445 hint = max(hint, TCP_MIN_MSS);
446
447 inet_csk(sk)->icsk_ack.rcv_mss = hint;
448 }
449 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
450
451 /* Receiver "autotuning" code.
452 *
453 * The algorithm for RTT estimation w/o timestamps is based on
454 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
455 * <http://public.lanl.gov/radiant/pubs.html#DRS>
456 *
457 * More detail on this code can be found at
458 * <http://staff.psc.edu/jheffner/>,
459 * though this reference is out of date. A new paper
460 * is pending.
461 */
462 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
463 {
464 u32 new_sample = tp->rcv_rtt_est.rtt;
465 long m = sample;
466
467 if (m == 0)
468 m = 1;
469
470 if (new_sample != 0) {
471 /* If we sample in larger samples in the non-timestamp
472 * case, we could grossly overestimate the RTT especially
473 * with chatty applications or bulk transfer apps which
474 * are stalled on filesystem I/O.
475 *
476 * Also, since we are only going for a minimum in the
477 * non-timestamp case, we do not smooth things out
478 * else with timestamps disabled convergence takes too
479 * long.
480 */
481 if (!win_dep) {
482 m -= (new_sample >> 3);
483 new_sample += m;
484 } else {
485 m <<= 3;
486 if (m < new_sample)
487 new_sample = m;
488 }
489 } else {
490 /* No previous measure. */
491 new_sample = m << 3;
492 }
493
494 if (tp->rcv_rtt_est.rtt != new_sample)
495 tp->rcv_rtt_est.rtt = new_sample;
496 }
497
498 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
499 {
500 if (tp->rcv_rtt_est.time == 0)
501 goto new_measure;
502 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
503 return;
504 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
505
506 new_measure:
507 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
508 tp->rcv_rtt_est.time = tcp_time_stamp;
509 }
510
511 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
512 const struct sk_buff *skb)
513 {
514 struct tcp_sock *tp = tcp_sk(sk);
515 if (tp->rx_opt.rcv_tsecr &&
516 (TCP_SKB_CB(skb)->end_seq -
517 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
518 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
519 }
520
521 /*
522 * This function should be called every time data is copied to user space.
523 * It calculates the appropriate TCP receive buffer space.
524 */
525 void tcp_rcv_space_adjust(struct sock *sk)
526 {
527 struct tcp_sock *tp = tcp_sk(sk);
528 int time;
529 int space;
530
531 if (tp->rcvq_space.time == 0)
532 goto new_measure;
533
534 time = tcp_time_stamp - tp->rcvq_space.time;
535 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
536 return;
537
538 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
539
540 space = max(tp->rcvq_space.space, space);
541
542 if (tp->rcvq_space.space != space) {
543 int rcvmem;
544
545 tp->rcvq_space.space = space;
546
547 if (sysctl_tcp_moderate_rcvbuf &&
548 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
549 int new_clamp = space;
550
551 /* Receive space grows, normalize in order to
552 * take into account packet headers and sk_buff
553 * structure overhead.
554 */
555 space /= tp->advmss;
556 if (!space)
557 space = 1;
558 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
559 while (tcp_win_from_space(rcvmem) < tp->advmss)
560 rcvmem += 128;
561 space *= rcvmem;
562 space = min(space, sysctl_tcp_rmem[2]);
563 if (space > sk->sk_rcvbuf) {
564 sk->sk_rcvbuf = space;
565
566 /* Make the window clamp follow along. */
567 tp->window_clamp = new_clamp;
568 }
569 }
570 }
571
572 new_measure:
573 tp->rcvq_space.seq = tp->copied_seq;
574 tp->rcvq_space.time = tcp_time_stamp;
575 }
576
577 /* There is something which you must keep in mind when you analyze the
578 * behavior of the tp->ato delayed ack timeout interval. When a
579 * connection starts up, we want to ack as quickly as possible. The
580 * problem is that "good" TCP's do slow start at the beginning of data
581 * transmission. The means that until we send the first few ACK's the
582 * sender will sit on his end and only queue most of his data, because
583 * he can only send snd_cwnd unacked packets at any given time. For
584 * each ACK we send, he increments snd_cwnd and transmits more of his
585 * queue. -DaveM
586 */
587 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
588 {
589 struct tcp_sock *tp = tcp_sk(sk);
590 struct inet_connection_sock *icsk = inet_csk(sk);
591 u32 now;
592
593 inet_csk_schedule_ack(sk);
594
595 tcp_measure_rcv_mss(sk, skb);
596
597 tcp_rcv_rtt_measure(tp);
598
599 now = tcp_time_stamp;
600
601 if (!icsk->icsk_ack.ato) {
602 /* The _first_ data packet received, initialize
603 * delayed ACK engine.
604 */
605 tcp_incr_quickack(sk);
606 icsk->icsk_ack.ato = TCP_ATO_MIN;
607 } else {
608 int m = now - icsk->icsk_ack.lrcvtime;
609
610 if (m <= TCP_ATO_MIN / 2) {
611 /* The fastest case is the first. */
612 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
613 } else if (m < icsk->icsk_ack.ato) {
614 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
615 if (icsk->icsk_ack.ato > icsk->icsk_rto)
616 icsk->icsk_ack.ato = icsk->icsk_rto;
617 } else if (m > icsk->icsk_rto) {
618 /* Too long gap. Apparently sender failed to
619 * restart window, so that we send ACKs quickly.
620 */
621 tcp_incr_quickack(sk);
622 sk_mem_reclaim(sk);
623 }
624 }
625 icsk->icsk_ack.lrcvtime = now;
626
627 TCP_ECN_check_ce(tp, skb);
628
629 if (skb->len >= 128)
630 tcp_grow_window(sk, skb);
631 }
632
633 /* Called to compute a smoothed rtt estimate. The data fed to this
634 * routine either comes from timestamps, or from segments that were
635 * known _not_ to have been retransmitted [see Karn/Partridge
636 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
637 * piece by Van Jacobson.
638 * NOTE: the next three routines used to be one big routine.
639 * To save cycles in the RFC 1323 implementation it was better to break
640 * it up into three procedures. -- erics
641 */
642 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
643 {
644 struct tcp_sock *tp = tcp_sk(sk);
645 long m = mrtt; /* RTT */
646
647 /* The following amusing code comes from Jacobson's
648 * article in SIGCOMM '88. Note that rtt and mdev
649 * are scaled versions of rtt and mean deviation.
650 * This is designed to be as fast as possible
651 * m stands for "measurement".
652 *
653 * On a 1990 paper the rto value is changed to:
654 * RTO = rtt + 4 * mdev
655 *
656 * Funny. This algorithm seems to be very broken.
657 * These formulae increase RTO, when it should be decreased, increase
658 * too slowly, when it should be increased quickly, decrease too quickly
659 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
660 * does not matter how to _calculate_ it. Seems, it was trap
661 * that VJ failed to avoid. 8)
662 */
663 if (m == 0)
664 m = 1;
665 if (tp->srtt != 0) {
666 m -= (tp->srtt >> 3); /* m is now error in rtt est */
667 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
668 if (m < 0) {
669 m = -m; /* m is now abs(error) */
670 m -= (tp->mdev >> 2); /* similar update on mdev */
671 /* This is similar to one of Eifel findings.
672 * Eifel blocks mdev updates when rtt decreases.
673 * This solution is a bit different: we use finer gain
674 * for mdev in this case (alpha*beta).
675 * Like Eifel it also prevents growth of rto,
676 * but also it limits too fast rto decreases,
677 * happening in pure Eifel.
678 */
679 if (m > 0)
680 m >>= 3;
681 } else {
682 m -= (tp->mdev >> 2); /* similar update on mdev */
683 }
684 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
685 if (tp->mdev > tp->mdev_max) {
686 tp->mdev_max = tp->mdev;
687 if (tp->mdev_max > tp->rttvar)
688 tp->rttvar = tp->mdev_max;
689 }
690 if (after(tp->snd_una, tp->rtt_seq)) {
691 if (tp->mdev_max < tp->rttvar)
692 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
693 tp->rtt_seq = tp->snd_nxt;
694 tp->mdev_max = tcp_rto_min(sk);
695 }
696 } else {
697 /* no previous measure. */
698 tp->srtt = m << 3; /* take the measured time to be rtt */
699 tp->mdev = m << 1; /* make sure rto = 3*rtt */
700 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
701 tp->rtt_seq = tp->snd_nxt;
702 }
703 }
704
705 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
706 * Note: TCP stack does not yet implement pacing.
707 * FQ packet scheduler can be used to implement cheap but effective
708 * TCP pacing, to smooth the burst on large writes when packets
709 * in flight is significantly lower than cwnd (or rwin)
710 */
711 static void tcp_update_pacing_rate(struct sock *sk)
712 {
713 const struct tcp_sock *tp = tcp_sk(sk);
714 u64 rate;
715
716 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
717 rate = (u64)tp->mss_cache * 2 * (HZ << 3);
718
719 rate *= max(tp->snd_cwnd, tp->packets_out);
720
721 /* Correction for small srtt : minimum srtt being 8 (1 jiffy << 3),
722 * be conservative and assume srtt = 1 (125 us instead of 1.25 ms)
723 * We probably need usec resolution in the future.
724 * Note: This also takes care of possible srtt=0 case,
725 * when tcp_rtt_estimator() was not yet called.
726 */
727 if (tp->srtt > 8 + 2)
728 do_div(rate, tp->srtt);
729
730 sk->sk_pacing_rate = min_t(u64, rate, ~0U);
731 }
732
733 /* Calculate rto without backoff. This is the second half of Van Jacobson's
734 * routine referred to above.
735 */
736 void tcp_set_rto(struct sock *sk)
737 {
738 const struct tcp_sock *tp = tcp_sk(sk);
739 /* Old crap is replaced with new one. 8)
740 *
741 * More seriously:
742 * 1. If rtt variance happened to be less 50msec, it is hallucination.
743 * It cannot be less due to utterly erratic ACK generation made
744 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
745 * to do with delayed acks, because at cwnd>2 true delack timeout
746 * is invisible. Actually, Linux-2.4 also generates erratic
747 * ACKs in some circumstances.
748 */
749 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
750
751 /* 2. Fixups made earlier cannot be right.
752 * If we do not estimate RTO correctly without them,
753 * all the algo is pure shit and should be replaced
754 * with correct one. It is exactly, which we pretend to do.
755 */
756
757 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
758 * guarantees that rto is higher.
759 */
760 tcp_bound_rto(sk);
761 }
762
763 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
764 {
765 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
766
767 if (!cwnd)
768 cwnd = TCP_INIT_CWND;
769 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
770 }
771
772 /*
773 * Packet counting of FACK is based on in-order assumptions, therefore TCP
774 * disables it when reordering is detected
775 */
776 void tcp_disable_fack(struct tcp_sock *tp)
777 {
778 /* RFC3517 uses different metric in lost marker => reset on change */
779 if (tcp_is_fack(tp))
780 tp->lost_skb_hint = NULL;
781 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
782 }
783
784 /* Take a notice that peer is sending D-SACKs */
785 static void tcp_dsack_seen(struct tcp_sock *tp)
786 {
787 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
788 }
789
790 static void tcp_update_reordering(struct sock *sk, const int metric,
791 const int ts)
792 {
793 struct tcp_sock *tp = tcp_sk(sk);
794 if (metric > tp->reordering) {
795 int mib_idx;
796
797 tp->reordering = min(TCP_MAX_REORDERING, metric);
798
799 /* This exciting event is worth to be remembered. 8) */
800 if (ts)
801 mib_idx = LINUX_MIB_TCPTSREORDER;
802 else if (tcp_is_reno(tp))
803 mib_idx = LINUX_MIB_TCPRENOREORDER;
804 else if (tcp_is_fack(tp))
805 mib_idx = LINUX_MIB_TCPFACKREORDER;
806 else
807 mib_idx = LINUX_MIB_TCPSACKREORDER;
808
809 NET_INC_STATS_BH(sock_net(sk), mib_idx);
810 #if FASTRETRANS_DEBUG > 1
811 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
812 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
813 tp->reordering,
814 tp->fackets_out,
815 tp->sacked_out,
816 tp->undo_marker ? tp->undo_retrans : 0);
817 #endif
818 tcp_disable_fack(tp);
819 }
820
821 if (metric > 0)
822 tcp_disable_early_retrans(tp);
823 }
824
825 /* This must be called before lost_out is incremented */
826 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
827 {
828 if ((tp->retransmit_skb_hint == NULL) ||
829 before(TCP_SKB_CB(skb)->seq,
830 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
831 tp->retransmit_skb_hint = skb;
832
833 if (!tp->lost_out ||
834 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
835 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
836 }
837
838 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
839 {
840 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
841 tcp_verify_retransmit_hint(tp, skb);
842
843 tp->lost_out += tcp_skb_pcount(skb);
844 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
845 }
846 }
847
848 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
849 struct sk_buff *skb)
850 {
851 tcp_verify_retransmit_hint(tp, skb);
852
853 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
854 tp->lost_out += tcp_skb_pcount(skb);
855 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
856 }
857 }
858
859 /* This procedure tags the retransmission queue when SACKs arrive.
860 *
861 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
862 * Packets in queue with these bits set are counted in variables
863 * sacked_out, retrans_out and lost_out, correspondingly.
864 *
865 * Valid combinations are:
866 * Tag InFlight Description
867 * 0 1 - orig segment is in flight.
868 * S 0 - nothing flies, orig reached receiver.
869 * L 0 - nothing flies, orig lost by net.
870 * R 2 - both orig and retransmit are in flight.
871 * L|R 1 - orig is lost, retransmit is in flight.
872 * S|R 1 - orig reached receiver, retrans is still in flight.
873 * (L|S|R is logically valid, it could occur when L|R is sacked,
874 * but it is equivalent to plain S and code short-curcuits it to S.
875 * L|S is logically invalid, it would mean -1 packet in flight 8))
876 *
877 * These 6 states form finite state machine, controlled by the following events:
878 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
879 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
880 * 3. Loss detection event of two flavors:
881 * A. Scoreboard estimator decided the packet is lost.
882 * A'. Reno "three dupacks" marks head of queue lost.
883 * A''. Its FACK modification, head until snd.fack is lost.
884 * B. SACK arrives sacking SND.NXT at the moment, when the
885 * segment was retransmitted.
886 * 4. D-SACK added new rule: D-SACK changes any tag to S.
887 *
888 * It is pleasant to note, that state diagram turns out to be commutative,
889 * so that we are allowed not to be bothered by order of our actions,
890 * when multiple events arrive simultaneously. (see the function below).
891 *
892 * Reordering detection.
893 * --------------------
894 * Reordering metric is maximal distance, which a packet can be displaced
895 * in packet stream. With SACKs we can estimate it:
896 *
897 * 1. SACK fills old hole and the corresponding segment was not
898 * ever retransmitted -> reordering. Alas, we cannot use it
899 * when segment was retransmitted.
900 * 2. The last flaw is solved with D-SACK. D-SACK arrives
901 * for retransmitted and already SACKed segment -> reordering..
902 * Both of these heuristics are not used in Loss state, when we cannot
903 * account for retransmits accurately.
904 *
905 * SACK block validation.
906 * ----------------------
907 *
908 * SACK block range validation checks that the received SACK block fits to
909 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
910 * Note that SND.UNA is not included to the range though being valid because
911 * it means that the receiver is rather inconsistent with itself reporting
912 * SACK reneging when it should advance SND.UNA. Such SACK block this is
913 * perfectly valid, however, in light of RFC2018 which explicitly states
914 * that "SACK block MUST reflect the newest segment. Even if the newest
915 * segment is going to be discarded ...", not that it looks very clever
916 * in case of head skb. Due to potentional receiver driven attacks, we
917 * choose to avoid immediate execution of a walk in write queue due to
918 * reneging and defer head skb's loss recovery to standard loss recovery
919 * procedure that will eventually trigger (nothing forbids us doing this).
920 *
921 * Implements also blockage to start_seq wrap-around. Problem lies in the
922 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
923 * there's no guarantee that it will be before snd_nxt (n). The problem
924 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
925 * wrap (s_w):
926 *
927 * <- outs wnd -> <- wrapzone ->
928 * u e n u_w e_w s n_w
929 * | | | | | | |
930 * |<------------+------+----- TCP seqno space --------------+---------->|
931 * ...-- <2^31 ->| |<--------...
932 * ...---- >2^31 ------>| |<--------...
933 *
934 * Current code wouldn't be vulnerable but it's better still to discard such
935 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
936 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
937 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
938 * equal to the ideal case (infinite seqno space without wrap caused issues).
939 *
940 * With D-SACK the lower bound is extended to cover sequence space below
941 * SND.UNA down to undo_marker, which is the last point of interest. Yet
942 * again, D-SACK block must not to go across snd_una (for the same reason as
943 * for the normal SACK blocks, explained above). But there all simplicity
944 * ends, TCP might receive valid D-SACKs below that. As long as they reside
945 * fully below undo_marker they do not affect behavior in anyway and can
946 * therefore be safely ignored. In rare cases (which are more or less
947 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
948 * fragmentation and packet reordering past skb's retransmission. To consider
949 * them correctly, the acceptable range must be extended even more though
950 * the exact amount is rather hard to quantify. However, tp->max_window can
951 * be used as an exaggerated estimate.
952 */
953 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
954 u32 start_seq, u32 end_seq)
955 {
956 /* Too far in future, or reversed (interpretation is ambiguous) */
957 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
958 return false;
959
960 /* Nasty start_seq wrap-around check (see comments above) */
961 if (!before(start_seq, tp->snd_nxt))
962 return false;
963
964 /* In outstanding window? ...This is valid exit for D-SACKs too.
965 * start_seq == snd_una is non-sensical (see comments above)
966 */
967 if (after(start_seq, tp->snd_una))
968 return true;
969
970 if (!is_dsack || !tp->undo_marker)
971 return false;
972
973 /* ...Then it's D-SACK, and must reside below snd_una completely */
974 if (after(end_seq, tp->snd_una))
975 return false;
976
977 if (!before(start_seq, tp->undo_marker))
978 return true;
979
980 /* Too old */
981 if (!after(end_seq, tp->undo_marker))
982 return false;
983
984 /* Undo_marker boundary crossing (overestimates a lot). Known already:
985 * start_seq < undo_marker and end_seq >= undo_marker.
986 */
987 return !before(start_seq, end_seq - tp->max_window);
988 }
989
990 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
991 * Event "B". Later note: FACK people cheated me again 8), we have to account
992 * for reordering! Ugly, but should help.
993 *
994 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
995 * less than what is now known to be received by the other end (derived from
996 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
997 * retransmitted skbs to avoid some costly processing per ACKs.
998 */
999 static void tcp_mark_lost_retrans(struct sock *sk)
1000 {
1001 const struct inet_connection_sock *icsk = inet_csk(sk);
1002 struct tcp_sock *tp = tcp_sk(sk);
1003 struct sk_buff *skb;
1004 int cnt = 0;
1005 u32 new_low_seq = tp->snd_nxt;
1006 u32 received_upto = tcp_highest_sack_seq(tp);
1007
1008 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1009 !after(received_upto, tp->lost_retrans_low) ||
1010 icsk->icsk_ca_state != TCP_CA_Recovery)
1011 return;
1012
1013 tcp_for_write_queue(skb, sk) {
1014 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1015
1016 if (skb == tcp_send_head(sk))
1017 break;
1018 if (cnt == tp->retrans_out)
1019 break;
1020 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1021 continue;
1022
1023 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1024 continue;
1025
1026 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1027 * constraint here (see above) but figuring out that at
1028 * least tp->reordering SACK blocks reside between ack_seq
1029 * and received_upto is not easy task to do cheaply with
1030 * the available datastructures.
1031 *
1032 * Whether FACK should check here for tp->reordering segs
1033 * in-between one could argue for either way (it would be
1034 * rather simple to implement as we could count fack_count
1035 * during the walk and do tp->fackets_out - fack_count).
1036 */
1037 if (after(received_upto, ack_seq)) {
1038 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1039 tp->retrans_out -= tcp_skb_pcount(skb);
1040
1041 tcp_skb_mark_lost_uncond_verify(tp, skb);
1042 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1043 } else {
1044 if (before(ack_seq, new_low_seq))
1045 new_low_seq = ack_seq;
1046 cnt += tcp_skb_pcount(skb);
1047 }
1048 }
1049
1050 if (tp->retrans_out)
1051 tp->lost_retrans_low = new_low_seq;
1052 }
1053
1054 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1055 struct tcp_sack_block_wire *sp, int num_sacks,
1056 u32 prior_snd_una)
1057 {
1058 struct tcp_sock *tp = tcp_sk(sk);
1059 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1060 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1061 bool dup_sack = false;
1062
1063 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1064 dup_sack = true;
1065 tcp_dsack_seen(tp);
1066 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1067 } else if (num_sacks > 1) {
1068 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1069 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1070
1071 if (!after(end_seq_0, end_seq_1) &&
1072 !before(start_seq_0, start_seq_1)) {
1073 dup_sack = true;
1074 tcp_dsack_seen(tp);
1075 NET_INC_STATS_BH(sock_net(sk),
1076 LINUX_MIB_TCPDSACKOFORECV);
1077 }
1078 }
1079
1080 /* D-SACK for already forgotten data... Do dumb counting. */
1081 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1082 !after(end_seq_0, prior_snd_una) &&
1083 after(end_seq_0, tp->undo_marker))
1084 tp->undo_retrans--;
1085
1086 return dup_sack;
1087 }
1088
1089 struct tcp_sacktag_state {
1090 int reord;
1091 int fack_count;
1092 int flag;
1093 };
1094
1095 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1096 * the incoming SACK may not exactly match but we can find smaller MSS
1097 * aligned portion of it that matches. Therefore we might need to fragment
1098 * which may fail and creates some hassle (caller must handle error case
1099 * returns).
1100 *
1101 * FIXME: this could be merged to shift decision code
1102 */
1103 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1104 u32 start_seq, u32 end_seq)
1105 {
1106 int err;
1107 bool in_sack;
1108 unsigned int pkt_len;
1109 unsigned int mss;
1110
1111 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1112 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1113
1114 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1115 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1116 mss = tcp_skb_mss(skb);
1117 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1118
1119 if (!in_sack) {
1120 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1121 if (pkt_len < mss)
1122 pkt_len = mss;
1123 } else {
1124 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1125 if (pkt_len < mss)
1126 return -EINVAL;
1127 }
1128
1129 /* Round if necessary so that SACKs cover only full MSSes
1130 * and/or the remaining small portion (if present)
1131 */
1132 if (pkt_len > mss) {
1133 unsigned int new_len = (pkt_len / mss) * mss;
1134 if (!in_sack && new_len < pkt_len) {
1135 new_len += mss;
1136 if (new_len >= skb->len)
1137 return 0;
1138 }
1139 pkt_len = new_len;
1140 }
1141 err = tcp_fragment(sk, skb, pkt_len, mss);
1142 if (err < 0)
1143 return err;
1144 }
1145
1146 return in_sack;
1147 }
1148
1149 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1150 static u8 tcp_sacktag_one(struct sock *sk,
1151 struct tcp_sacktag_state *state, u8 sacked,
1152 u32 start_seq, u32 end_seq,
1153 bool dup_sack, int pcount)
1154 {
1155 struct tcp_sock *tp = tcp_sk(sk);
1156 int fack_count = state->fack_count;
1157
1158 /* Account D-SACK for retransmitted packet. */
1159 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1160 if (tp->undo_marker && tp->undo_retrans > 0 &&
1161 after(end_seq, tp->undo_marker))
1162 tp->undo_retrans--;
1163 if (sacked & TCPCB_SACKED_ACKED)
1164 state->reord = min(fack_count, state->reord);
1165 }
1166
1167 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1168 if (!after(end_seq, tp->snd_una))
1169 return sacked;
1170
1171 if (!(sacked & TCPCB_SACKED_ACKED)) {
1172 if (sacked & TCPCB_SACKED_RETRANS) {
1173 /* If the segment is not tagged as lost,
1174 * we do not clear RETRANS, believing
1175 * that retransmission is still in flight.
1176 */
1177 if (sacked & TCPCB_LOST) {
1178 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1179 tp->lost_out -= pcount;
1180 tp->retrans_out -= pcount;
1181 }
1182 } else {
1183 if (!(sacked & TCPCB_RETRANS)) {
1184 /* New sack for not retransmitted frame,
1185 * which was in hole. It is reordering.
1186 */
1187 if (before(start_seq,
1188 tcp_highest_sack_seq(tp)))
1189 state->reord = min(fack_count,
1190 state->reord);
1191 if (!after(end_seq, tp->high_seq))
1192 state->flag |= FLAG_ORIG_SACK_ACKED;
1193 }
1194
1195 if (sacked & TCPCB_LOST) {
1196 sacked &= ~TCPCB_LOST;
1197 tp->lost_out -= pcount;
1198 }
1199 }
1200
1201 sacked |= TCPCB_SACKED_ACKED;
1202 state->flag |= FLAG_DATA_SACKED;
1203 tp->sacked_out += pcount;
1204
1205 fack_count += pcount;
1206
1207 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1208 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1209 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1210 tp->lost_cnt_hint += pcount;
1211
1212 if (fack_count > tp->fackets_out)
1213 tp->fackets_out = fack_count;
1214 }
1215
1216 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1217 * frames and clear it. undo_retrans is decreased above, L|R frames
1218 * are accounted above as well.
1219 */
1220 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1221 sacked &= ~TCPCB_SACKED_RETRANS;
1222 tp->retrans_out -= pcount;
1223 }
1224
1225 return sacked;
1226 }
1227
1228 /* Shift newly-SACKed bytes from this skb to the immediately previous
1229 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1230 */
1231 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1232 struct tcp_sacktag_state *state,
1233 unsigned int pcount, int shifted, int mss,
1234 bool dup_sack)
1235 {
1236 struct tcp_sock *tp = tcp_sk(sk);
1237 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1238 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1239 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1240
1241 BUG_ON(!pcount);
1242
1243 /* Adjust counters and hints for the newly sacked sequence
1244 * range but discard the return value since prev is already
1245 * marked. We must tag the range first because the seq
1246 * advancement below implicitly advances
1247 * tcp_highest_sack_seq() when skb is highest_sack.
1248 */
1249 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1250 start_seq, end_seq, dup_sack, pcount);
1251
1252 if (skb == tp->lost_skb_hint)
1253 tp->lost_cnt_hint += pcount;
1254
1255 TCP_SKB_CB(prev)->end_seq += shifted;
1256 TCP_SKB_CB(skb)->seq += shifted;
1257
1258 skb_shinfo(prev)->gso_segs += pcount;
1259 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1260 skb_shinfo(skb)->gso_segs -= pcount;
1261
1262 /* When we're adding to gso_segs == 1, gso_size will be zero,
1263 * in theory this shouldn't be necessary but as long as DSACK
1264 * code can come after this skb later on it's better to keep
1265 * setting gso_size to something.
1266 */
1267 if (!skb_shinfo(prev)->gso_size) {
1268 skb_shinfo(prev)->gso_size = mss;
1269 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1270 }
1271
1272 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1273 if (skb_shinfo(skb)->gso_segs <= 1) {
1274 skb_shinfo(skb)->gso_size = 0;
1275 skb_shinfo(skb)->gso_type = 0;
1276 }
1277
1278 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1279 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1280
1281 if (skb->len > 0) {
1282 BUG_ON(!tcp_skb_pcount(skb));
1283 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1284 return false;
1285 }
1286
1287 /* Whole SKB was eaten :-) */
1288
1289 if (skb == tp->retransmit_skb_hint)
1290 tp->retransmit_skb_hint = prev;
1291 if (skb == tp->scoreboard_skb_hint)
1292 tp->scoreboard_skb_hint = prev;
1293 if (skb == tp->lost_skb_hint) {
1294 tp->lost_skb_hint = prev;
1295 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1296 }
1297
1298 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1299 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1300 TCP_SKB_CB(prev)->end_seq++;
1301
1302 if (skb == tcp_highest_sack(sk))
1303 tcp_advance_highest_sack(sk, skb);
1304
1305 tcp_unlink_write_queue(skb, sk);
1306 sk_wmem_free_skb(sk, skb);
1307
1308 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1309
1310 return true;
1311 }
1312
1313 /* I wish gso_size would have a bit more sane initialization than
1314 * something-or-zero which complicates things
1315 */
1316 static int tcp_skb_seglen(const struct sk_buff *skb)
1317 {
1318 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1319 }
1320
1321 /* Shifting pages past head area doesn't work */
1322 static int skb_can_shift(const struct sk_buff *skb)
1323 {
1324 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1325 }
1326
1327 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1328 * skb.
1329 */
1330 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1331 struct tcp_sacktag_state *state,
1332 u32 start_seq, u32 end_seq,
1333 bool dup_sack)
1334 {
1335 struct tcp_sock *tp = tcp_sk(sk);
1336 struct sk_buff *prev;
1337 int mss;
1338 int pcount = 0;
1339 int len;
1340 int in_sack;
1341
1342 if (!sk_can_gso(sk))
1343 goto fallback;
1344
1345 /* Normally R but no L won't result in plain S */
1346 if (!dup_sack &&
1347 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1348 goto fallback;
1349 if (!skb_can_shift(skb))
1350 goto fallback;
1351 /* This frame is about to be dropped (was ACKed). */
1352 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1353 goto fallback;
1354
1355 /* Can only happen with delayed DSACK + discard craziness */
1356 if (unlikely(skb == tcp_write_queue_head(sk)))
1357 goto fallback;
1358 prev = tcp_write_queue_prev(sk, skb);
1359
1360 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1361 goto fallback;
1362
1363 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1364 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1365
1366 if (in_sack) {
1367 len = skb->len;
1368 pcount = tcp_skb_pcount(skb);
1369 mss = tcp_skb_seglen(skb);
1370
1371 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1372 * drop this restriction as unnecessary
1373 */
1374 if (mss != tcp_skb_seglen(prev))
1375 goto fallback;
1376 } else {
1377 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1378 goto noop;
1379 /* CHECKME: This is non-MSS split case only?, this will
1380 * cause skipped skbs due to advancing loop btw, original
1381 * has that feature too
1382 */
1383 if (tcp_skb_pcount(skb) <= 1)
1384 goto noop;
1385
1386 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1387 if (!in_sack) {
1388 /* TODO: head merge to next could be attempted here
1389 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1390 * though it might not be worth of the additional hassle
1391 *
1392 * ...we can probably just fallback to what was done
1393 * previously. We could try merging non-SACKed ones
1394 * as well but it probably isn't going to buy off
1395 * because later SACKs might again split them, and
1396 * it would make skb timestamp tracking considerably
1397 * harder problem.
1398 */
1399 goto fallback;
1400 }
1401
1402 len = end_seq - TCP_SKB_CB(skb)->seq;
1403 BUG_ON(len < 0);
1404 BUG_ON(len > skb->len);
1405
1406 /* MSS boundaries should be honoured or else pcount will
1407 * severely break even though it makes things bit trickier.
1408 * Optimize common case to avoid most of the divides
1409 */
1410 mss = tcp_skb_mss(skb);
1411
1412 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1413 * drop this restriction as unnecessary
1414 */
1415 if (mss != tcp_skb_seglen(prev))
1416 goto fallback;
1417
1418 if (len == mss) {
1419 pcount = 1;
1420 } else if (len < mss) {
1421 goto noop;
1422 } else {
1423 pcount = len / mss;
1424 len = pcount * mss;
1425 }
1426 }
1427
1428 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1429 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1430 goto fallback;
1431
1432 if (!skb_shift(prev, skb, len))
1433 goto fallback;
1434 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1435 goto out;
1436
1437 /* Hole filled allows collapsing with the next as well, this is very
1438 * useful when hole on every nth skb pattern happens
1439 */
1440 if (prev == tcp_write_queue_tail(sk))
1441 goto out;
1442 skb = tcp_write_queue_next(sk, prev);
1443
1444 if (!skb_can_shift(skb) ||
1445 (skb == tcp_send_head(sk)) ||
1446 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1447 (mss != tcp_skb_seglen(skb)))
1448 goto out;
1449
1450 len = skb->len;
1451 if (skb_shift(prev, skb, len)) {
1452 pcount += tcp_skb_pcount(skb);
1453 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1454 }
1455
1456 out:
1457 state->fack_count += pcount;
1458 return prev;
1459
1460 noop:
1461 return skb;
1462
1463 fallback:
1464 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1465 return NULL;
1466 }
1467
1468 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1469 struct tcp_sack_block *next_dup,
1470 struct tcp_sacktag_state *state,
1471 u32 start_seq, u32 end_seq,
1472 bool dup_sack_in)
1473 {
1474 struct tcp_sock *tp = tcp_sk(sk);
1475 struct sk_buff *tmp;
1476
1477 tcp_for_write_queue_from(skb, sk) {
1478 int in_sack = 0;
1479 bool dup_sack = dup_sack_in;
1480
1481 if (skb == tcp_send_head(sk))
1482 break;
1483
1484 /* queue is in-order => we can short-circuit the walk early */
1485 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1486 break;
1487
1488 if ((next_dup != NULL) &&
1489 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1490 in_sack = tcp_match_skb_to_sack(sk, skb,
1491 next_dup->start_seq,
1492 next_dup->end_seq);
1493 if (in_sack > 0)
1494 dup_sack = true;
1495 }
1496
1497 /* skb reference here is a bit tricky to get right, since
1498 * shifting can eat and free both this skb and the next,
1499 * so not even _safe variant of the loop is enough.
1500 */
1501 if (in_sack <= 0) {
1502 tmp = tcp_shift_skb_data(sk, skb, state,
1503 start_seq, end_seq, dup_sack);
1504 if (tmp != NULL) {
1505 if (tmp != skb) {
1506 skb = tmp;
1507 continue;
1508 }
1509
1510 in_sack = 0;
1511 } else {
1512 in_sack = tcp_match_skb_to_sack(sk, skb,
1513 start_seq,
1514 end_seq);
1515 }
1516 }
1517
1518 if (unlikely(in_sack < 0))
1519 break;
1520
1521 if (in_sack) {
1522 TCP_SKB_CB(skb)->sacked =
1523 tcp_sacktag_one(sk,
1524 state,
1525 TCP_SKB_CB(skb)->sacked,
1526 TCP_SKB_CB(skb)->seq,
1527 TCP_SKB_CB(skb)->end_seq,
1528 dup_sack,
1529 tcp_skb_pcount(skb));
1530
1531 if (!before(TCP_SKB_CB(skb)->seq,
1532 tcp_highest_sack_seq(tp)))
1533 tcp_advance_highest_sack(sk, skb);
1534 }
1535
1536 state->fack_count += tcp_skb_pcount(skb);
1537 }
1538 return skb;
1539 }
1540
1541 /* Avoid all extra work that is being done by sacktag while walking in
1542 * a normal way
1543 */
1544 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1545 struct tcp_sacktag_state *state,
1546 u32 skip_to_seq)
1547 {
1548 tcp_for_write_queue_from(skb, sk) {
1549 if (skb == tcp_send_head(sk))
1550 break;
1551
1552 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1553 break;
1554
1555 state->fack_count += tcp_skb_pcount(skb);
1556 }
1557 return skb;
1558 }
1559
1560 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1561 struct sock *sk,
1562 struct tcp_sack_block *next_dup,
1563 struct tcp_sacktag_state *state,
1564 u32 skip_to_seq)
1565 {
1566 if (next_dup == NULL)
1567 return skb;
1568
1569 if (before(next_dup->start_seq, skip_to_seq)) {
1570 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1571 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1572 next_dup->start_seq, next_dup->end_seq,
1573 1);
1574 }
1575
1576 return skb;
1577 }
1578
1579 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1580 {
1581 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1582 }
1583
1584 static int
1585 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1586 u32 prior_snd_una)
1587 {
1588 struct tcp_sock *tp = tcp_sk(sk);
1589 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1590 TCP_SKB_CB(ack_skb)->sacked);
1591 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1592 struct tcp_sack_block sp[TCP_NUM_SACKS];
1593 struct tcp_sack_block *cache;
1594 struct tcp_sacktag_state state;
1595 struct sk_buff *skb;
1596 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1597 int used_sacks;
1598 bool found_dup_sack = false;
1599 int i, j;
1600 int first_sack_index;
1601
1602 state.flag = 0;
1603 state.reord = tp->packets_out;
1604
1605 if (!tp->sacked_out) {
1606 if (WARN_ON(tp->fackets_out))
1607 tp->fackets_out = 0;
1608 tcp_highest_sack_reset(sk);
1609 }
1610
1611 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1612 num_sacks, prior_snd_una);
1613 if (found_dup_sack)
1614 state.flag |= FLAG_DSACKING_ACK;
1615
1616 /* Eliminate too old ACKs, but take into
1617 * account more or less fresh ones, they can
1618 * contain valid SACK info.
1619 */
1620 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1621 return 0;
1622
1623 if (!tp->packets_out)
1624 goto out;
1625
1626 used_sacks = 0;
1627 first_sack_index = 0;
1628 for (i = 0; i < num_sacks; i++) {
1629 bool dup_sack = !i && found_dup_sack;
1630
1631 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1632 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1633
1634 if (!tcp_is_sackblock_valid(tp, dup_sack,
1635 sp[used_sacks].start_seq,
1636 sp[used_sacks].end_seq)) {
1637 int mib_idx;
1638
1639 if (dup_sack) {
1640 if (!tp->undo_marker)
1641 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1642 else
1643 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1644 } else {
1645 /* Don't count olds caused by ACK reordering */
1646 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1647 !after(sp[used_sacks].end_seq, tp->snd_una))
1648 continue;
1649 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1650 }
1651
1652 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1653 if (i == 0)
1654 first_sack_index = -1;
1655 continue;
1656 }
1657
1658 /* Ignore very old stuff early */
1659 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1660 continue;
1661
1662 used_sacks++;
1663 }
1664
1665 /* order SACK blocks to allow in order walk of the retrans queue */
1666 for (i = used_sacks - 1; i > 0; i--) {
1667 for (j = 0; j < i; j++) {
1668 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1669 swap(sp[j], sp[j + 1]);
1670
1671 /* Track where the first SACK block goes to */
1672 if (j == first_sack_index)
1673 first_sack_index = j + 1;
1674 }
1675 }
1676 }
1677
1678 skb = tcp_write_queue_head(sk);
1679 state.fack_count = 0;
1680 i = 0;
1681
1682 if (!tp->sacked_out) {
1683 /* It's already past, so skip checking against it */
1684 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1685 } else {
1686 cache = tp->recv_sack_cache;
1687 /* Skip empty blocks in at head of the cache */
1688 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1689 !cache->end_seq)
1690 cache++;
1691 }
1692
1693 while (i < used_sacks) {
1694 u32 start_seq = sp[i].start_seq;
1695 u32 end_seq = sp[i].end_seq;
1696 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1697 struct tcp_sack_block *next_dup = NULL;
1698
1699 if (found_dup_sack && ((i + 1) == first_sack_index))
1700 next_dup = &sp[i + 1];
1701
1702 /* Skip too early cached blocks */
1703 while (tcp_sack_cache_ok(tp, cache) &&
1704 !before(start_seq, cache->end_seq))
1705 cache++;
1706
1707 /* Can skip some work by looking recv_sack_cache? */
1708 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1709 after(end_seq, cache->start_seq)) {
1710
1711 /* Head todo? */
1712 if (before(start_seq, cache->start_seq)) {
1713 skb = tcp_sacktag_skip(skb, sk, &state,
1714 start_seq);
1715 skb = tcp_sacktag_walk(skb, sk, next_dup,
1716 &state,
1717 start_seq,
1718 cache->start_seq,
1719 dup_sack);
1720 }
1721
1722 /* Rest of the block already fully processed? */
1723 if (!after(end_seq, cache->end_seq))
1724 goto advance_sp;
1725
1726 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1727 &state,
1728 cache->end_seq);
1729
1730 /* ...tail remains todo... */
1731 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1732 /* ...but better entrypoint exists! */
1733 skb = tcp_highest_sack(sk);
1734 if (skb == NULL)
1735 break;
1736 state.fack_count = tp->fackets_out;
1737 cache++;
1738 goto walk;
1739 }
1740
1741 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1742 /* Check overlap against next cached too (past this one already) */
1743 cache++;
1744 continue;
1745 }
1746
1747 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1748 skb = tcp_highest_sack(sk);
1749 if (skb == NULL)
1750 break;
1751 state.fack_count = tp->fackets_out;
1752 }
1753 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1754
1755 walk:
1756 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1757 start_seq, end_seq, dup_sack);
1758
1759 advance_sp:
1760 i++;
1761 }
1762
1763 /* Clear the head of the cache sack blocks so we can skip it next time */
1764 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1765 tp->recv_sack_cache[i].start_seq = 0;
1766 tp->recv_sack_cache[i].end_seq = 0;
1767 }
1768 for (j = 0; j < used_sacks; j++)
1769 tp->recv_sack_cache[i++] = sp[j];
1770
1771 tcp_mark_lost_retrans(sk);
1772
1773 tcp_verify_left_out(tp);
1774
1775 if ((state.reord < tp->fackets_out) &&
1776 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1777 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1778
1779 out:
1780
1781 #if FASTRETRANS_DEBUG > 0
1782 WARN_ON((int)tp->sacked_out < 0);
1783 WARN_ON((int)tp->lost_out < 0);
1784 WARN_ON((int)tp->retrans_out < 0);
1785 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1786 #endif
1787 return state.flag;
1788 }
1789
1790 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1791 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1792 */
1793 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1794 {
1795 u32 holes;
1796
1797 holes = max(tp->lost_out, 1U);
1798 holes = min(holes, tp->packets_out);
1799
1800 if ((tp->sacked_out + holes) > tp->packets_out) {
1801 tp->sacked_out = tp->packets_out - holes;
1802 return true;
1803 }
1804 return false;
1805 }
1806
1807 /* If we receive more dupacks than we expected counting segments
1808 * in assumption of absent reordering, interpret this as reordering.
1809 * The only another reason could be bug in receiver TCP.
1810 */
1811 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1812 {
1813 struct tcp_sock *tp = tcp_sk(sk);
1814 if (tcp_limit_reno_sacked(tp))
1815 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1816 }
1817
1818 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1819
1820 static void tcp_add_reno_sack(struct sock *sk)
1821 {
1822 struct tcp_sock *tp = tcp_sk(sk);
1823 tp->sacked_out++;
1824 tcp_check_reno_reordering(sk, 0);
1825 tcp_verify_left_out(tp);
1826 }
1827
1828 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1829
1830 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1831 {
1832 struct tcp_sock *tp = tcp_sk(sk);
1833
1834 if (acked > 0) {
1835 /* One ACK acked hole. The rest eat duplicate ACKs. */
1836 if (acked - 1 >= tp->sacked_out)
1837 tp->sacked_out = 0;
1838 else
1839 tp->sacked_out -= acked - 1;
1840 }
1841 tcp_check_reno_reordering(sk, acked);
1842 tcp_verify_left_out(tp);
1843 }
1844
1845 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1846 {
1847 tp->sacked_out = 0;
1848 }
1849
1850 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1851 {
1852 tp->retrans_out = 0;
1853 tp->lost_out = 0;
1854
1855 tp->undo_marker = 0;
1856 tp->undo_retrans = -1;
1857 }
1858
1859 void tcp_clear_retrans(struct tcp_sock *tp)
1860 {
1861 tcp_clear_retrans_partial(tp);
1862
1863 tp->fackets_out = 0;
1864 tp->sacked_out = 0;
1865 }
1866
1867 /* Enter Loss state. If "how" is not zero, forget all SACK information
1868 * and reset tags completely, otherwise preserve SACKs. If receiver
1869 * dropped its ofo queue, we will know this due to reneging detection.
1870 */
1871 void tcp_enter_loss(struct sock *sk, int how)
1872 {
1873 const struct inet_connection_sock *icsk = inet_csk(sk);
1874 struct inet_connection_sock *icsk1 = inet_csk(sk);
1875 struct tcp_sock *tp = tcp_sk(sk);
1876 struct sk_buff *skb;
1877 bool new_recovery = false;
1878
1879 /* Reduce ssthresh if it has not yet been made inside this window. */
1880 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1881 !after(tp->high_seq, tp->snd_una) ||
1882 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1883 new_recovery = true;
1884 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1885 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1886 tcp_ca_event(sk, CA_EVENT_LOSS);
1887 }
1888 if (icsk->icsk_MMSRB == 1)
1889 {
1890 #ifdef CONFIG_MTK_NET_LOGGING
1891 printk("[mtk_net][mmspb] tcp_enter_loss snd_cwnd=%u, snd_cwnd_cnt=%u\n", tp->snd_cwnd, tp->snd_cwnd_cnt);
1892 #endif
1893 if (tp->mss_cache != 0)
1894 tp->snd_cwnd = (tp->rcv_wnd / tp->mss_cache);
1895 else
1896 {
1897 tp->snd_cwnd = (tp->rcv_wnd / tp->advmss);
1898 }
1899
1900 if (tp->snd_ssthresh > 16)
1901 {
1902 tp->snd_cwnd = tp->snd_ssthresh / 2;//set snd_cwnd is half of default snd_ssthresh
1903 }
1904 else
1905 {
1906 tp->snd_cwnd = tp->snd_ssthresh / 2 + 4;
1907 }
1908 #ifdef CONFIG_MTK_NET_LOGGING
1909 printk("[mtk_net][mmspb] tcp_enter_loss update snd_cwnd=%u\n", tp->snd_cwnd);
1910 #endif
1911 icsk1->icsk_MMSRB = 0;
1912 #ifdef CONFIG_MTK_NET_LOGGING
1913 printk("[mtk_net][mmspb] tcp_enter_loss set icsk_MMSRB=0\n");
1914 #endif
1915 }
1916 else
1917 {
1918 tp->snd_cwnd = 1;
1919 }
1920
1921 //tp->snd_cwnd = 1;
1922 tp->snd_cwnd_cnt = 0;
1923 tp->snd_cwnd_stamp = tcp_time_stamp;
1924
1925 tcp_clear_retrans_partial(tp);
1926
1927 if (tcp_is_reno(tp))
1928 tcp_reset_reno_sack(tp);
1929
1930 tp->undo_marker = tp->snd_una;
1931 if (how) {
1932 tp->sacked_out = 0;
1933 tp->fackets_out = 0;
1934 }
1935 tcp_clear_all_retrans_hints(tp);
1936
1937 tcp_for_write_queue(skb, sk) {
1938 if (skb == tcp_send_head(sk))
1939 break;
1940
1941 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1942 tp->undo_marker = 0;
1943 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1944 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1945 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1946 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1947 tp->lost_out += tcp_skb_pcount(skb);
1948 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1949 }
1950 }
1951 tcp_verify_left_out(tp);
1952
1953 tp->reordering = min_t(unsigned int, tp->reordering,
1954 sysctl_tcp_reordering);
1955 tcp_set_ca_state(sk, TCP_CA_Loss);
1956 tp->high_seq = tp->snd_nxt;
1957 TCP_ECN_queue_cwr(tp);
1958
1959 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1960 * loss recovery is underway except recurring timeout(s) on
1961 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1962 */
1963 tp->frto = sysctl_tcp_frto &&
1964 (new_recovery || icsk->icsk_retransmits) &&
1965 !inet_csk(sk)->icsk_mtup.probe_size;
1966 }
1967
1968 /* If ACK arrived pointing to a remembered SACK, it means that our
1969 * remembered SACKs do not reflect real state of receiver i.e.
1970 * receiver _host_ is heavily congested (or buggy).
1971 *
1972 * Do processing similar to RTO timeout.
1973 */
1974 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1975 {
1976 if (flag & FLAG_SACK_RENEGING) {
1977 struct inet_connection_sock *icsk = inet_csk(sk);
1978 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1979
1980 tcp_enter_loss(sk, 1);
1981 icsk->icsk_retransmits++;
1982 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1983 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1984 icsk->icsk_rto, sysctl_tcp_rto_max);
1985 return true;
1986 }
1987 return false;
1988 }
1989
1990 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1991 {
1992 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1993 }
1994
1995 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1996 * counter when SACK is enabled (without SACK, sacked_out is used for
1997 * that purpose).
1998 *
1999 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2000 * segments up to the highest received SACK block so far and holes in
2001 * between them.
2002 *
2003 * With reordering, holes may still be in flight, so RFC3517 recovery
2004 * uses pure sacked_out (total number of SACKed segments) even though
2005 * it violates the RFC that uses duplicate ACKs, often these are equal
2006 * but when e.g. out-of-window ACKs or packet duplication occurs,
2007 * they differ. Since neither occurs due to loss, TCP should really
2008 * ignore them.
2009 */
2010 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2011 {
2012 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2013 }
2014
2015 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2016 {
2017 struct tcp_sock *tp = tcp_sk(sk);
2018 unsigned long delay;
2019
2020 /* Delay early retransmit and entering fast recovery for
2021 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2022 * available, or RTO is scheduled to fire first.
2023 */
2024 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2025 (flag & FLAG_ECE) || !tp->srtt)
2026 return false;
2027
2028 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2029 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2030 return false;
2031
2032 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2033 sysctl_tcp_rto_max);
2034 return true;
2035 }
2036
2037 static inline int tcp_skb_timedout(const struct sock *sk,
2038 const struct sk_buff *skb)
2039 {
2040 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2041 }
2042
2043 static inline int tcp_head_timedout(const struct sock *sk)
2044 {
2045 const struct tcp_sock *tp = tcp_sk(sk);
2046
2047 return tp->packets_out &&
2048 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2049 }
2050
2051 /* Linux NewReno/SACK/FACK/ECN state machine.
2052 * --------------------------------------
2053 *
2054 * "Open" Normal state, no dubious events, fast path.
2055 * "Disorder" In all the respects it is "Open",
2056 * but requires a bit more attention. It is entered when
2057 * we see some SACKs or dupacks. It is split of "Open"
2058 * mainly to move some processing from fast path to slow one.
2059 * "CWR" CWND was reduced due to some Congestion Notification event.
2060 * It can be ECN, ICMP source quench, local device congestion.
2061 * "Recovery" CWND was reduced, we are fast-retransmitting.
2062 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2063 *
2064 * tcp_fastretrans_alert() is entered:
2065 * - each incoming ACK, if state is not "Open"
2066 * - when arrived ACK is unusual, namely:
2067 * * SACK
2068 * * Duplicate ACK.
2069 * * ECN ECE.
2070 *
2071 * Counting packets in flight is pretty simple.
2072 *
2073 * in_flight = packets_out - left_out + retrans_out
2074 *
2075 * packets_out is SND.NXT-SND.UNA counted in packets.
2076 *
2077 * retrans_out is number of retransmitted segments.
2078 *
2079 * left_out is number of segments left network, but not ACKed yet.
2080 *
2081 * left_out = sacked_out + lost_out
2082 *
2083 * sacked_out: Packets, which arrived to receiver out of order
2084 * and hence not ACKed. With SACKs this number is simply
2085 * amount of SACKed data. Even without SACKs
2086 * it is easy to give pretty reliable estimate of this number,
2087 * counting duplicate ACKs.
2088 *
2089 * lost_out: Packets lost by network. TCP has no explicit
2090 * "loss notification" feedback from network (for now).
2091 * It means that this number can be only _guessed_.
2092 * Actually, it is the heuristics to predict lossage that
2093 * distinguishes different algorithms.
2094 *
2095 * F.e. after RTO, when all the queue is considered as lost,
2096 * lost_out = packets_out and in_flight = retrans_out.
2097 *
2098 * Essentially, we have now two algorithms counting
2099 * lost packets.
2100 *
2101 * FACK: It is the simplest heuristics. As soon as we decided
2102 * that something is lost, we decide that _all_ not SACKed
2103 * packets until the most forward SACK are lost. I.e.
2104 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2105 * It is absolutely correct estimate, if network does not reorder
2106 * packets. And it loses any connection to reality when reordering
2107 * takes place. We use FACK by default until reordering
2108 * is suspected on the path to this destination.
2109 *
2110 * NewReno: when Recovery is entered, we assume that one segment
2111 * is lost (classic Reno). While we are in Recovery and
2112 * a partial ACK arrives, we assume that one more packet
2113 * is lost (NewReno). This heuristics are the same in NewReno
2114 * and SACK.
2115 *
2116 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2117 * deflation etc. CWND is real congestion window, never inflated, changes
2118 * only according to classic VJ rules.
2119 *
2120 * Really tricky (and requiring careful tuning) part of algorithm
2121 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2122 * The first determines the moment _when_ we should reduce CWND and,
2123 * hence, slow down forward transmission. In fact, it determines the moment
2124 * when we decide that hole is caused by loss, rather than by a reorder.
2125 *
2126 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2127 * holes, caused by lost packets.
2128 *
2129 * And the most logically complicated part of algorithm is undo
2130 * heuristics. We detect false retransmits due to both too early
2131 * fast retransmit (reordering) and underestimated RTO, analyzing
2132 * timestamps and D-SACKs. When we detect that some segments were
2133 * retransmitted by mistake and CWND reduction was wrong, we undo
2134 * window reduction and abort recovery phase. This logic is hidden
2135 * inside several functions named tcp_try_undo_<something>.
2136 */
2137
2138 /* This function decides, when we should leave Disordered state
2139 * and enter Recovery phase, reducing congestion window.
2140 *
2141 * Main question: may we further continue forward transmission
2142 * with the same cwnd?
2143 */
2144 static bool tcp_time_to_recover(struct sock *sk, int flag)
2145 {
2146 struct tcp_sock *tp = tcp_sk(sk);
2147 __u32 packets_out;
2148
2149 /* Trick#1: The loss is proven. */
2150 if (tp->lost_out)
2151 return true;
2152
2153 /* Not-A-Trick#2 : Classic rule... */
2154 if (tcp_dupack_heuristics(tp) > tp->reordering)
2155 return true;
2156
2157 /* Trick#3 : when we use RFC2988 timer restart, fast
2158 * retransmit can be triggered by timeout of queue head.
2159 */
2160 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2161 return true;
2162
2163 /* Trick#4: It is still not OK... But will it be useful to delay
2164 * recovery more?
2165 */
2166 packets_out = tp->packets_out;
2167 if (packets_out <= tp->reordering &&
2168 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2169 !tcp_may_send_now(sk)) {
2170 /* We have nothing to send. This connection is limited
2171 * either by receiver window or by application.
2172 */
2173 return true;
2174 }
2175
2176 /* If a thin stream is detected, retransmit after first
2177 * received dupack. Employ only if SACK is supported in order
2178 * to avoid possible corner-case series of spurious retransmissions
2179 * Use only if there are no unsent data.
2180 */
2181 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2182 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2183 tcp_is_sack(tp) && !tcp_send_head(sk))
2184 return true;
2185
2186 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2187 * retransmissions due to small network reorderings, we implement
2188 * Mitigation A.3 in the RFC and delay the retransmission for a short
2189 * interval if appropriate.
2190 */
2191 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2192 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2193 !tcp_may_send_now(sk))
2194 return !tcp_pause_early_retransmit(sk, flag);
2195
2196 return false;
2197 }
2198
2199 /* New heuristics: it is possible only after we switched to restart timer
2200 * each time when something is ACKed. Hence, we can detect timed out packets
2201 * during fast retransmit without falling to slow start.
2202 *
2203 * Usefulness of this as is very questionable, since we should know which of
2204 * the segments is the next to timeout which is relatively expensive to find
2205 * in general case unless we add some data structure just for that. The
2206 * current approach certainly won't find the right one too often and when it
2207 * finally does find _something_ it usually marks large part of the window
2208 * right away (because a retransmission with a larger timestamp blocks the
2209 * loop from advancing). -ij
2210 */
2211 static void tcp_timeout_skbs(struct sock *sk)
2212 {
2213 struct tcp_sock *tp = tcp_sk(sk);
2214 struct sk_buff *skb;
2215
2216 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2217 return;
2218
2219 skb = tp->scoreboard_skb_hint;
2220 if (tp->scoreboard_skb_hint == NULL)
2221 skb = tcp_write_queue_head(sk);
2222
2223 tcp_for_write_queue_from(skb, sk) {
2224 if (skb == tcp_send_head(sk))
2225 break;
2226 if (!tcp_skb_timedout(sk, skb))
2227 break;
2228
2229 tcp_skb_mark_lost(tp, skb);
2230 }
2231
2232 tp->scoreboard_skb_hint = skb;
2233
2234 tcp_verify_left_out(tp);
2235 }
2236
2237 /* Detect loss in event "A" above by marking head of queue up as lost.
2238 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2239 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2240 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2241 * the maximum SACKed segments to pass before reaching this limit.
2242 */
2243 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2244 {
2245 struct tcp_sock *tp = tcp_sk(sk);
2246 struct sk_buff *skb;
2247 int cnt, oldcnt;
2248 int err;
2249 unsigned int mss;
2250 /* Use SACK to deduce losses of new sequences sent during recovery */
2251 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2252
2253 WARN_ON(packets > tp->packets_out);
2254 if (tp->lost_skb_hint) {
2255 skb = tp->lost_skb_hint;
2256 cnt = tp->lost_cnt_hint;
2257 /* Head already handled? */
2258 if (mark_head && skb != tcp_write_queue_head(sk))
2259 return;
2260 } else {
2261 skb = tcp_write_queue_head(sk);
2262 cnt = 0;
2263 }
2264
2265 tcp_for_write_queue_from(skb, sk) {
2266 if (skb == tcp_send_head(sk))
2267 break;
2268 /* TODO: do this better */
2269 /* this is not the most efficient way to do this... */
2270 tp->lost_skb_hint = skb;
2271 tp->lost_cnt_hint = cnt;
2272
2273 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2274 break;
2275
2276 oldcnt = cnt;
2277 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2278 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2279 cnt += tcp_skb_pcount(skb);
2280
2281 if (cnt > packets) {
2282 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2283 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2284 (oldcnt >= packets))
2285 break;
2286
2287 mss = skb_shinfo(skb)->gso_size;
2288 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2289 if (err < 0)
2290 break;
2291 cnt = packets;
2292 }
2293
2294 tcp_skb_mark_lost(tp, skb);
2295
2296 if (mark_head)
2297 break;
2298 }
2299 tcp_verify_left_out(tp);
2300 }
2301
2302 /* Account newly detected lost packet(s) */
2303
2304 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2305 {
2306 struct tcp_sock *tp = tcp_sk(sk);
2307
2308 if (tcp_is_reno(tp)) {
2309 tcp_mark_head_lost(sk, 1, 1);
2310 } else if (tcp_is_fack(tp)) {
2311 int lost = tp->fackets_out - tp->reordering;
2312 if (lost <= 0)
2313 lost = 1;
2314 tcp_mark_head_lost(sk, lost, 0);
2315 } else {
2316 int sacked_upto = tp->sacked_out - tp->reordering;
2317 if (sacked_upto >= 0)
2318 tcp_mark_head_lost(sk, sacked_upto, 0);
2319 else if (fast_rexmit)
2320 tcp_mark_head_lost(sk, 1, 1);
2321 }
2322
2323 tcp_timeout_skbs(sk);
2324 }
2325
2326 /* CWND moderation, preventing bursts due to too big ACKs
2327 * in dubious situations.
2328 */
2329 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2330 {
2331 tp->snd_cwnd = min(tp->snd_cwnd,
2332 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2333 tp->snd_cwnd_stamp = tcp_time_stamp;
2334 }
2335
2336 /* Nothing was retransmitted or returned timestamp is less
2337 * than timestamp of the first retransmission.
2338 */
2339 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2340 {
2341 return !tp->retrans_stamp ||
2342 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2343 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2344 }
2345
2346 /* Undo procedures. */
2347
2348 #if FASTRETRANS_DEBUG > 1
2349 static void DBGUNDO(struct sock *sk, const char *msg)
2350 {
2351 struct tcp_sock *tp = tcp_sk(sk);
2352 struct inet_sock *inet = inet_sk(sk);
2353
2354 if (sk->sk_family == AF_INET) {
2355 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2356 msg,
2357 &inet->inet_daddr, ntohs(inet->inet_dport),
2358 tp->snd_cwnd, tcp_left_out(tp),
2359 tp->snd_ssthresh, tp->prior_ssthresh,
2360 tp->packets_out);
2361 }
2362 #if IS_ENABLED(CONFIG_IPV6)
2363 else if (sk->sk_family == AF_INET6) {
2364 struct ipv6_pinfo *np = inet6_sk(sk);
2365 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2366 msg,
2367 &np->daddr, ntohs(inet->inet_dport),
2368 tp->snd_cwnd, tcp_left_out(tp),
2369 tp->snd_ssthresh, tp->prior_ssthresh,
2370 tp->packets_out);
2371 }
2372 #endif
2373 }
2374 #else
2375 #define DBGUNDO(x...) do { } while (0)
2376 #endif
2377
2378 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2379 {
2380 struct tcp_sock *tp = tcp_sk(sk);
2381
2382 if (tp->prior_ssthresh) {
2383 const struct inet_connection_sock *icsk = inet_csk(sk);
2384
2385 if (icsk->icsk_ca_ops->undo_cwnd)
2386 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2387 else
2388 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2389
2390 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2391 tp->snd_ssthresh = tp->prior_ssthresh;
2392 TCP_ECN_withdraw_cwr(tp);
2393 }
2394 } else {
2395 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2396 }
2397 tp->snd_cwnd_stamp = tcp_time_stamp;
2398 }
2399
2400 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2401 {
2402 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2403 }
2404
2405 /* People celebrate: "We love our President!" */
2406 static bool tcp_try_undo_recovery(struct sock *sk)
2407 {
2408 struct tcp_sock *tp = tcp_sk(sk);
2409
2410 if (tcp_may_undo(tp)) {
2411 int mib_idx;
2412
2413 /* Happy end! We did not retransmit anything
2414 * or our original transmission succeeded.
2415 */
2416 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2417 tcp_undo_cwr(sk, true);
2418 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2419 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2420 else
2421 mib_idx = LINUX_MIB_TCPFULLUNDO;
2422
2423 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2424 tp->undo_marker = 0;
2425 }
2426 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2427 /* Hold old state until something *above* high_seq
2428 * is ACKed. For Reno it is MUST to prevent false
2429 * fast retransmits (RFC2582). SACK TCP is safe. */
2430 tcp_moderate_cwnd(tp);
2431 return true;
2432 }
2433 tcp_set_ca_state(sk, TCP_CA_Open);
2434 return false;
2435 }
2436
2437 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2438 static void tcp_try_undo_dsack(struct sock *sk)
2439 {
2440 struct tcp_sock *tp = tcp_sk(sk);
2441
2442 if (tp->undo_marker && !tp->undo_retrans) {
2443 DBGUNDO(sk, "D-SACK");
2444 tcp_undo_cwr(sk, true);
2445 tp->undo_marker = 0;
2446 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2447 }
2448 }
2449
2450 /* We can clear retrans_stamp when there are no retransmissions in the
2451 * window. It would seem that it is trivially available for us in
2452 * tp->retrans_out, however, that kind of assumptions doesn't consider
2453 * what will happen if errors occur when sending retransmission for the
2454 * second time. ...It could the that such segment has only
2455 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2456 * the head skb is enough except for some reneging corner cases that
2457 * are not worth the effort.
2458 *
2459 * Main reason for all this complexity is the fact that connection dying
2460 * time now depends on the validity of the retrans_stamp, in particular,
2461 * that successive retransmissions of a segment must not advance
2462 * retrans_stamp under any conditions.
2463 */
2464 static bool tcp_any_retrans_done(const struct sock *sk)
2465 {
2466 const struct tcp_sock *tp = tcp_sk(sk);
2467 struct sk_buff *skb;
2468
2469 if (tp->retrans_out)
2470 return true;
2471
2472 skb = tcp_write_queue_head(sk);
2473 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2474 return true;
2475
2476 return false;
2477 }
2478
2479 /* Undo during fast recovery after partial ACK. */
2480
2481 static int tcp_try_undo_partial(struct sock *sk, int acked)
2482 {
2483 struct tcp_sock *tp = tcp_sk(sk);
2484 /* Partial ACK arrived. Force Hoe's retransmit. */
2485 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2486
2487 if (tcp_may_undo(tp)) {
2488 /* Plain luck! Hole if filled with delayed
2489 * packet, rather than with a retransmit.
2490 */
2491 if (!tcp_any_retrans_done(sk))
2492 tp->retrans_stamp = 0;
2493
2494 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2495
2496 DBGUNDO(sk, "Hoe");
2497 tcp_undo_cwr(sk, false);
2498 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2499
2500 /* So... Do not make Hoe's retransmit yet.
2501 * If the first packet was delayed, the rest
2502 * ones are most probably delayed as well.
2503 */
2504 failed = 0;
2505 }
2506 return failed;
2507 }
2508
2509 /* Undo during loss recovery after partial ACK or using F-RTO. */
2510 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2511 {
2512 struct tcp_sock *tp = tcp_sk(sk);
2513
2514 if (frto_undo || tcp_may_undo(tp)) {
2515 struct sk_buff *skb;
2516 tcp_for_write_queue(skb, sk) {
2517 if (skb == tcp_send_head(sk))
2518 break;
2519 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2520 }
2521
2522 tcp_clear_all_retrans_hints(tp);
2523
2524 DBGUNDO(sk, "partial loss");
2525 tp->lost_out = 0;
2526 tcp_undo_cwr(sk, true);
2527 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2528 if (frto_undo)
2529 NET_INC_STATS_BH(sock_net(sk),
2530 LINUX_MIB_TCPSPURIOUSRTOS);
2531 inet_csk(sk)->icsk_retransmits = 0;
2532 tp->undo_marker = 0;
2533 if (frto_undo || tcp_is_sack(tp))
2534 tcp_set_ca_state(sk, TCP_CA_Open);
2535 return true;
2536 }
2537 return false;
2538 }
2539
2540 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2541 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2542 * It computes the number of packets to send (sndcnt) based on packets newly
2543 * delivered:
2544 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2545 * cwnd reductions across a full RTT.
2546 * 2) If packets in flight is lower than ssthresh (such as due to excess
2547 * losses and/or application stalls), do not perform any further cwnd
2548 * reductions, but instead slow start up to ssthresh.
2549 */
2550 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2551 {
2552 struct tcp_sock *tp = tcp_sk(sk);
2553
2554 tp->high_seq = tp->snd_nxt;
2555 tp->tlp_high_seq = 0;
2556 tp->snd_cwnd_cnt = 0;
2557 tp->prior_cwnd = tp->snd_cwnd;
2558 tp->prr_delivered = 0;
2559 tp->prr_out = 0;
2560 if (set_ssthresh)
2561 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2562 TCP_ECN_queue_cwr(tp);
2563 }
2564
2565 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2566 int fast_rexmit)
2567 {
2568 struct tcp_sock *tp = tcp_sk(sk);
2569 int sndcnt = 0;
2570 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2571
2572 tp->prr_delivered += newly_acked_sacked;
2573 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2574 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2575 tp->prior_cwnd - 1;
2576 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2577 } else {
2578 sndcnt = min_t(int, delta,
2579 max_t(int, tp->prr_delivered - tp->prr_out,
2580 newly_acked_sacked) + 1);
2581 }
2582
2583 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2584 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2585 }
2586
2587 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2588 {
2589 struct tcp_sock *tp = tcp_sk(sk);
2590
2591 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2592 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2593 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2594 tp->snd_cwnd = tp->snd_ssthresh;
2595 tp->snd_cwnd_stamp = tcp_time_stamp;
2596 }
2597 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2598 }
2599
2600 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2601 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2602 {
2603 struct tcp_sock *tp = tcp_sk(sk);
2604
2605 tp->prior_ssthresh = 0;
2606 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2607 tp->undo_marker = 0;
2608 tcp_init_cwnd_reduction(sk, set_ssthresh);
2609 tcp_set_ca_state(sk, TCP_CA_CWR);
2610 }
2611 }
2612
2613 static void tcp_try_keep_open(struct sock *sk)
2614 {
2615 struct tcp_sock *tp = tcp_sk(sk);
2616 int state = TCP_CA_Open;
2617
2618 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2619 state = TCP_CA_Disorder;
2620
2621 if (inet_csk(sk)->icsk_ca_state != state) {
2622 tcp_set_ca_state(sk, state);
2623 tp->high_seq = tp->snd_nxt;
2624 }
2625 }
2626
2627 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2628 {
2629 struct tcp_sock *tp = tcp_sk(sk);
2630
2631 tcp_verify_left_out(tp);
2632
2633 if (!tcp_any_retrans_done(sk))
2634 tp->retrans_stamp = 0;
2635
2636 if (flag & FLAG_ECE)
2637 tcp_enter_cwr(sk, 1);
2638
2639 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2640 tcp_try_keep_open(sk);
2641 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2642 tcp_moderate_cwnd(tp);
2643 } else {
2644 tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2645 }
2646 }
2647
2648 static void tcp_mtup_probe_failed(struct sock *sk)
2649 {
2650 struct inet_connection_sock *icsk = inet_csk(sk);
2651
2652 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2653 icsk->icsk_mtup.probe_size = 0;
2654 }
2655
2656 static void tcp_mtup_probe_success(struct sock *sk)
2657 {
2658 struct tcp_sock *tp = tcp_sk(sk);
2659 struct inet_connection_sock *icsk = inet_csk(sk);
2660
2661 /* FIXME: breaks with very large cwnd */
2662 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2663 tp->snd_cwnd = tp->snd_cwnd *
2664 tcp_mss_to_mtu(sk, tp->mss_cache) /
2665 icsk->icsk_mtup.probe_size;
2666 tp->snd_cwnd_cnt = 0;
2667 tp->snd_cwnd_stamp = tcp_time_stamp;
2668 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2669
2670 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2671 icsk->icsk_mtup.probe_size = 0;
2672 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2673 }
2674
2675 /* Do a simple retransmit without using the backoff mechanisms in
2676 * tcp_timer. This is used for path mtu discovery.
2677 * The socket is already locked here.
2678 */
2679 void tcp_simple_retransmit(struct sock *sk)
2680 {
2681 const struct inet_connection_sock *icsk = inet_csk(sk);
2682 struct tcp_sock *tp = tcp_sk(sk);
2683 struct sk_buff *skb;
2684 unsigned int mss = tcp_current_mss(sk);
2685 u32 prior_lost = tp->lost_out;
2686
2687 tcp_for_write_queue(skb, sk) {
2688 if (skb == tcp_send_head(sk))
2689 break;
2690 if (tcp_skb_seglen(skb) > mss &&
2691 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2692 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2693 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2694 tp->retrans_out -= tcp_skb_pcount(skb);
2695 }
2696 tcp_skb_mark_lost_uncond_verify(tp, skb);
2697 }
2698 }
2699
2700 tcp_clear_retrans_hints_partial(tp);
2701
2702 if (prior_lost == tp->lost_out)
2703 return;
2704
2705 if (tcp_is_reno(tp))
2706 tcp_limit_reno_sacked(tp);
2707
2708 tcp_verify_left_out(tp);
2709
2710 /* Don't muck with the congestion window here.
2711 * Reason is that we do not increase amount of _data_
2712 * in network, but units changed and effective
2713 * cwnd/ssthresh really reduced now.
2714 */
2715 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2716 tp->high_seq = tp->snd_nxt;
2717 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2718 tp->prior_ssthresh = 0;
2719 tp->undo_marker = 0;
2720 tcp_set_ca_state(sk, TCP_CA_Loss);
2721 }
2722 tcp_xmit_retransmit_queue(sk);
2723 }
2724 EXPORT_SYMBOL(tcp_simple_retransmit);
2725
2726 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2727 {
2728 struct tcp_sock *tp = tcp_sk(sk);
2729 int mib_idx;
2730
2731 if (tcp_is_reno(tp))
2732 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2733 else
2734 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2735
2736 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2737
2738 tp->prior_ssthresh = 0;
2739 tp->undo_marker = tp->snd_una;
2740 tp->undo_retrans = tp->retrans_out ? : -1;
2741
2742 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2743 if (!ece_ack)
2744 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2745 tcp_init_cwnd_reduction(sk, true);
2746 }
2747 tcp_set_ca_state(sk, TCP_CA_Recovery);
2748 }
2749
2750 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2751 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2752 */
2753 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2754 {
2755 struct inet_connection_sock *icsk = inet_csk(sk);
2756 struct tcp_sock *tp = tcp_sk(sk);
2757 bool recovered = !before(tp->snd_una, tp->high_seq);
2758
2759 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2760 /* Step 3.b. A timeout is spurious if not all data are
2761 * lost, i.e., never-retransmitted data are (s)acked.
2762 */
2763 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2764 return;
2765
2766 if (after(tp->snd_nxt, tp->high_seq) &&
2767 (flag & FLAG_DATA_SACKED || is_dupack)) {
2768 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2769 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2770 tp->high_seq = tp->snd_nxt;
2771 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2772 TCP_NAGLE_OFF);
2773 if (after(tp->snd_nxt, tp->high_seq))
2774 return; /* Step 2.b */
2775 tp->frto = 0;
2776 }
2777 }
2778
2779 if (recovered) {
2780 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2781 icsk->icsk_retransmits = 0;
2782 tcp_try_undo_recovery(sk);
2783 return;
2784 }
2785 if (flag & FLAG_DATA_ACKED)
2786 icsk->icsk_retransmits = 0;
2787 if (tcp_is_reno(tp)) {
2788 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2789 * delivered. Lower inflight to clock out (re)tranmissions.
2790 */
2791 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2792 tcp_add_reno_sack(sk);
2793 else if (flag & FLAG_SND_UNA_ADVANCED)
2794 tcp_reset_reno_sack(tp);
2795 }
2796 if (tcp_try_undo_loss(sk, false))
2797 return;
2798 tcp_xmit_retransmit_queue(sk);
2799 }
2800
2801 /* Process an event, which can update packets-in-flight not trivially.
2802 * Main goal of this function is to calculate new estimate for left_out,
2803 * taking into account both packets sitting in receiver's buffer and
2804 * packets lost by network.
2805 *
2806 * Besides that it does CWND reduction, when packet loss is detected
2807 * and changes state of machine.
2808 *
2809 * It does _not_ decide what to send, it is made in function
2810 * tcp_xmit_retransmit_queue().
2811 */
2812 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2813 int prior_sacked, int prior_packets,
2814 bool is_dupack, int flag)
2815 {
2816 struct inet_connection_sock *icsk = inet_csk(sk);
2817 struct tcp_sock *tp = tcp_sk(sk);
2818 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2819 (tcp_fackets_out(tp) > tp->reordering));
2820 int newly_acked_sacked = 0;
2821 int fast_rexmit = 0;
2822
2823 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2824 tp->sacked_out = 0;
2825 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2826 tp->fackets_out = 0;
2827
2828 /* Now state machine starts.
2829 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2830 if (flag & FLAG_ECE)
2831 tp->prior_ssthresh = 0;
2832
2833 /* B. In all the states check for reneging SACKs. */
2834 if (tcp_check_sack_reneging(sk, flag))
2835 return;
2836
2837 /* C. Check consistency of the current state. */
2838 tcp_verify_left_out(tp);
2839
2840 /* D. Check state exit conditions. State can be terminated
2841 * when high_seq is ACKed. */
2842 if (icsk->icsk_ca_state == TCP_CA_Open) {
2843 WARN_ON(tp->retrans_out != 0);
2844 tp->retrans_stamp = 0;
2845 } else if (!before(tp->snd_una, tp->high_seq)) {
2846 switch (icsk->icsk_ca_state) {
2847 case TCP_CA_CWR:
2848 /* CWR is to be held something *above* high_seq
2849 * is ACKed for CWR bit to reach receiver. */
2850 if (tp->snd_una != tp->high_seq) {
2851 tcp_end_cwnd_reduction(sk);
2852 tcp_set_ca_state(sk, TCP_CA_Open);
2853 }
2854 break;
2855
2856 case TCP_CA_Recovery:
2857 if (tcp_is_reno(tp))
2858 tcp_reset_reno_sack(tp);
2859 if (tcp_try_undo_recovery(sk))
2860 return;
2861 tcp_end_cwnd_reduction(sk);
2862 break;
2863 }
2864 }
2865
2866 /* E. Process state. */
2867 switch (icsk->icsk_ca_state) {
2868 case TCP_CA_Recovery:
2869 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2870 if (tcp_is_reno(tp) && is_dupack)
2871 tcp_add_reno_sack(sk);
2872 } else
2873 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2874 newly_acked_sacked = prior_packets - tp->packets_out +
2875 tp->sacked_out - prior_sacked;
2876 break;
2877 case TCP_CA_Loss:
2878 tcp_process_loss(sk, flag, is_dupack);
2879 if (icsk->icsk_ca_state != TCP_CA_Open)
2880 return;
2881 /* Fall through to processing in Open state. */
2882 default:
2883 if (tcp_is_reno(tp)) {
2884 if (flag & FLAG_SND_UNA_ADVANCED)
2885 tcp_reset_reno_sack(tp);
2886 if (is_dupack)
2887 tcp_add_reno_sack(sk);
2888 }
2889 newly_acked_sacked = prior_packets - tp->packets_out +
2890 tp->sacked_out - prior_sacked;
2891
2892 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2893 tcp_try_undo_dsack(sk);
2894
2895 if (!tcp_time_to_recover(sk, flag)) {
2896 tcp_try_to_open(sk, flag, newly_acked_sacked);
2897 return;
2898 }
2899
2900 /* MTU probe failure: don't reduce cwnd */
2901 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2902 icsk->icsk_mtup.probe_size &&
2903 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2904 tcp_mtup_probe_failed(sk);
2905 /* Restores the reduction we did in tcp_mtup_probe() */
2906 tp->snd_cwnd++;
2907 tcp_simple_retransmit(sk);
2908 return;
2909 }
2910
2911 /* Otherwise enter Recovery state */
2912 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2913 fast_rexmit = 1;
2914 }
2915
2916 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2917 tcp_update_scoreboard(sk, fast_rexmit);
2918 tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
2919 tcp_xmit_retransmit_queue(sk);
2920 }
2921
2922 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
2923 {
2924 tcp_rtt_estimator(sk, seq_rtt);
2925 tcp_set_rto(sk);
2926 inet_csk(sk)->icsk_backoff = 0;
2927 }
2928 EXPORT_SYMBOL(tcp_valid_rtt_meas);
2929
2930 /* Read draft-ietf-tcplw-high-performance before mucking
2931 * with this code. (Supersedes RFC1323)
2932 */
2933 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2934 {
2935 /* RTTM Rule: A TSecr value received in a segment is used to
2936 * update the averaged RTT measurement only if the segment
2937 * acknowledges some new data, i.e., only if it advances the
2938 * left edge of the send window.
2939 *
2940 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2941 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2942 *
2943 * Changed: reset backoff as soon as we see the first valid sample.
2944 * If we do not, we get strongly overestimated rto. With timestamps
2945 * samples are accepted even from very old segments: f.e., when rtt=1
2946 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2947 * answer arrives rto becomes 120 seconds! If at least one of segments
2948 * in window is lost... Voila. --ANK (010210)
2949 */
2950 struct tcp_sock *tp = tcp_sk(sk);
2951
2952 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2953 }
2954
2955 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2956 {
2957 /* We don't have a timestamp. Can only use
2958 * packets that are not retransmitted to determine
2959 * rtt estimates. Also, we must not reset the
2960 * backoff for rto until we get a non-retransmitted
2961 * packet. This allows us to deal with a situation
2962 * where the network delay has increased suddenly.
2963 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2964 */
2965
2966 if (flag & FLAG_RETRANS_DATA_ACKED)
2967 return;
2968
2969 tcp_valid_rtt_meas(sk, seq_rtt);
2970 }
2971
2972 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2973 const s32 seq_rtt)
2974 {
2975 const struct tcp_sock *tp = tcp_sk(sk);
2976 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2977 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2978 tcp_ack_saw_tstamp(sk, flag);
2979 else if (seq_rtt >= 0)
2980 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2981 }
2982
2983 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2984 {
2985 const struct inet_connection_sock *icsk = inet_csk(sk);
2986 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2987 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2988 }
2989
2990 /* Restart timer after forward progress on connection.
2991 * RFC2988 recommends to restart timer to now+rto.
2992 */
2993 void tcp_rearm_rto(struct sock *sk)
2994 {
2995 const struct inet_connection_sock *icsk = inet_csk(sk);
2996 struct tcp_sock *tp = tcp_sk(sk);
2997
2998 /* If the retrans timer is currently being used by Fast Open
2999 * for SYN-ACK retrans purpose, stay put.
3000 */
3001 if (tp->fastopen_rsk)
3002 return;
3003
3004 if (!tp->packets_out) {
3005 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3006 } else {
3007 u32 rto = inet_csk(sk)->icsk_rto;
3008 /* Offset the time elapsed after installing regular RTO */
3009 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3010 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3011 s32 delta = tcp_rto_delta(sk);
3012 /* delta may not be positive if the socket is locked
3013 * when the retrans timer fires and is rescheduled.
3014 */
3015 rto = max_t(int, delta, 1);
3016 }
3017 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3018 sysctl_tcp_rto_max);
3019 }
3020 }
3021
3022 /* This function is called when the delayed ER timer fires. TCP enters
3023 * fast recovery and performs fast-retransmit.
3024 */
3025 void tcp_resume_early_retransmit(struct sock *sk)
3026 {
3027 struct tcp_sock *tp = tcp_sk(sk);
3028
3029 tcp_rearm_rto(sk);
3030
3031 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3032 if (!tp->do_early_retrans)
3033 return;
3034
3035 tcp_enter_recovery(sk, false);
3036 tcp_update_scoreboard(sk, 1);
3037 tcp_xmit_retransmit_queue(sk);
3038 }
3039
3040 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3041 static void tcp_set_xmit_timer(struct sock *sk)
3042 {
3043 if (!tcp_schedule_loss_probe(sk))
3044 tcp_rearm_rto(sk);
3045 }
3046
3047 /* If we get here, the whole TSO packet has not been acked. */
3048 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3049 {
3050 struct tcp_sock *tp = tcp_sk(sk);
3051 u32 packets_acked;
3052
3053 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3054
3055 packets_acked = tcp_skb_pcount(skb);
3056 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3057 return 0;
3058 packets_acked -= tcp_skb_pcount(skb);
3059
3060 if (packets_acked) {
3061 BUG_ON(tcp_skb_pcount(skb) == 0);
3062 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3063 }
3064
3065 return packets_acked;
3066 }
3067
3068 /* Remove acknowledged frames from the retransmission queue. If our packet
3069 * is before the ack sequence we can discard it as it's confirmed to have
3070 * arrived at the other end.
3071 */
3072 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3073 u32 prior_snd_una)
3074 {
3075 struct tcp_sock *tp = tcp_sk(sk);
3076 const struct inet_connection_sock *icsk = inet_csk(sk);
3077 struct sk_buff *skb;
3078 u32 now = tcp_time_stamp;
3079 int fully_acked = true;
3080 int flag = 0;
3081 u32 pkts_acked = 0;
3082 u32 reord = tp->packets_out;
3083 u32 prior_sacked = tp->sacked_out;
3084 s32 seq_rtt = -1;
3085 s32 ca_seq_rtt = -1;
3086 ktime_t last_ackt = net_invalid_timestamp();
3087
3088 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3089 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3090 u32 acked_pcount;
3091 u8 sacked = scb->sacked;
3092
3093 /* Determine how many packets and what bytes were acked, tso and else */
3094 if (after(scb->end_seq, tp->snd_una)) {
3095 if (tcp_skb_pcount(skb) == 1 ||
3096 !after(tp->snd_una, scb->seq))
3097 break;
3098
3099 acked_pcount = tcp_tso_acked(sk, skb);
3100 if (!acked_pcount)
3101 break;
3102
3103 fully_acked = false;
3104 } else {
3105 acked_pcount = tcp_skb_pcount(skb);
3106 }
3107
3108 if (sacked & TCPCB_RETRANS) {
3109 if (sacked & TCPCB_SACKED_RETRANS)
3110 tp->retrans_out -= acked_pcount;
3111 flag |= FLAG_RETRANS_DATA_ACKED;
3112 ca_seq_rtt = -1;
3113 seq_rtt = -1;
3114 } else {
3115 ca_seq_rtt = now - scb->when;
3116 last_ackt = skb->tstamp;
3117 if (seq_rtt < 0) {
3118 seq_rtt = ca_seq_rtt;
3119 }
3120 if (!(sacked & TCPCB_SACKED_ACKED)) {
3121 reord = min(pkts_acked, reord);
3122 if (!after(scb->end_seq, tp->high_seq))
3123 flag |= FLAG_ORIG_SACK_ACKED;
3124 }
3125 }
3126
3127 if (sacked & TCPCB_SACKED_ACKED)
3128 tp->sacked_out -= acked_pcount;
3129 if (sacked & TCPCB_LOST)
3130 tp->lost_out -= acked_pcount;
3131
3132 tp->packets_out -= acked_pcount;
3133 pkts_acked += acked_pcount;
3134
3135 /* Initial outgoing SYN's get put onto the write_queue
3136 * just like anything else we transmit. It is not
3137 * true data, and if we misinform our callers that
3138 * this ACK acks real data, we will erroneously exit
3139 * connection startup slow start one packet too
3140 * quickly. This is severely frowned upon behavior.
3141 */
3142 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3143 flag |= FLAG_DATA_ACKED;
3144 } else {
3145 flag |= FLAG_SYN_ACKED;
3146 tp->retrans_stamp = 0;
3147 }
3148
3149 if (!fully_acked)
3150 break;
3151
3152 tcp_unlink_write_queue(skb, sk);
3153 sk_wmem_free_skb(sk, skb);
3154 tp->scoreboard_skb_hint = NULL;
3155 if (skb == tp->retransmit_skb_hint)
3156 tp->retransmit_skb_hint = NULL;
3157 if (skb == tp->lost_skb_hint)
3158 tp->lost_skb_hint = NULL;
3159 }
3160
3161 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3162 tp->snd_up = tp->snd_una;
3163
3164 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3165 flag |= FLAG_SACK_RENEGING;
3166
3167 if (flag & FLAG_ACKED) {
3168 const struct tcp_congestion_ops *ca_ops
3169 = inet_csk(sk)->icsk_ca_ops;
3170
3171 if (unlikely(icsk->icsk_mtup.probe_size &&
3172 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3173 tcp_mtup_probe_success(sk);
3174 }
3175
3176 tcp_ack_update_rtt(sk, flag, seq_rtt);
3177 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3178
3179 if (tcp_is_reno(tp)) {
3180 tcp_remove_reno_sacks(sk, pkts_acked);
3181 } else {
3182 int delta;
3183
3184 /* Non-retransmitted hole got filled? That's reordering */
3185 if (reord < prior_fackets)
3186 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3187
3188 delta = tcp_is_fack(tp) ? pkts_acked :
3189 prior_sacked - tp->sacked_out;
3190 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3191 }
3192
3193 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3194
3195 if (ca_ops->pkts_acked) {
3196 s32 rtt_us = -1;
3197
3198 /* Is the ACK triggering packet unambiguous? */
3199 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3200 /* High resolution needed and available? */
3201 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3202 !ktime_equal(last_ackt,
3203 net_invalid_timestamp()))
3204 rtt_us = ktime_us_delta(ktime_get_real(),
3205 last_ackt);
3206 else if (ca_seq_rtt >= 0)
3207 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3208 }
3209
3210 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3211 }
3212 }
3213
3214 #if FASTRETRANS_DEBUG > 0
3215 WARN_ON((int)tp->sacked_out < 0);
3216 WARN_ON((int)tp->lost_out < 0);
3217 WARN_ON((int)tp->retrans_out < 0);
3218 if (!tp->packets_out && tcp_is_sack(tp)) {
3219 icsk = inet_csk(sk);
3220 if (tp->lost_out) {
3221 pr_debug("Leak l=%u %d\n",
3222 tp->lost_out, icsk->icsk_ca_state);
3223 tp->lost_out = 0;
3224 }
3225 if (tp->sacked_out) {
3226 pr_debug("Leak s=%u %d\n",
3227 tp->sacked_out, icsk->icsk_ca_state);
3228 tp->sacked_out = 0;
3229 }
3230 if (tp->retrans_out) {
3231 pr_debug("Leak r=%u %d\n",
3232 tp->retrans_out, icsk->icsk_ca_state);
3233 tp->retrans_out = 0;
3234 }
3235 }
3236 #endif
3237 return flag;
3238 }
3239
3240 static void tcp_ack_probe(struct sock *sk)
3241 {
3242 const struct tcp_sock *tp = tcp_sk(sk);
3243 struct inet_connection_sock *icsk = inet_csk(sk);
3244
3245 /* Was it a usable window open? */
3246
3247 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3248 icsk->icsk_backoff = 0;
3249 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3250 /* Socket must be waked up by subsequent tcp_data_snd_check().
3251 * This function is not for random using!
3252 */
3253 } else {
3254 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3255 min_t(unsigned int, icsk->icsk_rto << icsk->icsk_backoff, sysctl_tcp_rto_max),
3256 sysctl_tcp_rto_max);
3257 }
3258 }
3259
3260 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3261 {
3262 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3263 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3264 }
3265
3266 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3267 {
3268 const struct tcp_sock *tp = tcp_sk(sk);
3269 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3270 !tcp_in_cwnd_reduction(sk);
3271 }
3272
3273 /* Check that window update is acceptable.
3274 * The function assumes that snd_una<=ack<=snd_next.
3275 */
3276 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3277 const u32 ack, const u32 ack_seq,
3278 const u32 nwin)
3279 {
3280 return after(ack, tp->snd_una) ||
3281 after(ack_seq, tp->snd_wl1) ||
3282 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3283 }
3284
3285 /* Update our send window.
3286 *
3287 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3288 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3289 */
3290 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3291 u32 ack_seq)
3292 {
3293 struct tcp_sock *tp = tcp_sk(sk);
3294 int flag = 0;
3295 u32 nwin = ntohs(tcp_hdr(skb)->window);
3296
3297 if (likely(!tcp_hdr(skb)->syn))
3298 nwin <<= tp->rx_opt.snd_wscale;
3299
3300 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3301 flag |= FLAG_WIN_UPDATE;
3302 tcp_update_wl(tp, ack_seq);
3303
3304 if (tp->snd_wnd != nwin) {
3305 tp->snd_wnd = nwin;
3306
3307 /* Note, it is the only place, where
3308 * fast path is recovered for sending TCP.
3309 */
3310 tp->pred_flags = 0;
3311 tcp_fast_path_check(sk);
3312
3313 if (nwin > tp->max_window) {
3314 tp->max_window = nwin;
3315 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3316 }
3317 }
3318 }
3319
3320 tp->snd_una = ack;
3321
3322 return flag;
3323 }
3324
3325 /* RFC 5961 7 [ACK Throttling] */
3326 static void tcp_send_challenge_ack(struct sock *sk)
3327 {
3328 /* unprotected vars, we dont care of overwrites */
3329 static u32 challenge_timestamp;
3330 static unsigned int challenge_count;
3331 u32 now = jiffies / HZ;
3332 u32 count;
3333
3334 if (now != challenge_timestamp) {
3335 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3336
3337 challenge_timestamp = now;
3338 ACCESS_ONCE(challenge_count) = half +
3339 reciprocal_divide(prandom_u32(),
3340 sysctl_tcp_challenge_ack_limit);
3341 }
3342 count = ACCESS_ONCE(challenge_count);
3343 if (count > 0) {
3344 ACCESS_ONCE(challenge_count) = count - 1;
3345 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3346 tcp_send_ack(sk);
3347 }
3348 }
3349
3350 static void tcp_store_ts_recent(struct tcp_sock *tp)
3351 {
3352 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3353 tp->rx_opt.ts_recent_stamp = get_seconds();
3354 }
3355
3356 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3357 {
3358 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3359 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3360 * extra check below makes sure this can only happen
3361 * for pure ACK frames. -DaveM
3362 *
3363 * Not only, also it occurs for expired timestamps.
3364 */
3365
3366 if (tcp_paws_check(&tp->rx_opt, 0))
3367 tcp_store_ts_recent(tp);
3368 }
3369 }
3370
3371 /* This routine deals with acks during a TLP episode.
3372 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3373 */
3374 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3375 {
3376 struct tcp_sock *tp = tcp_sk(sk);
3377 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3378 !(flag & (FLAG_SND_UNA_ADVANCED |
3379 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3380
3381 /* Mark the end of TLP episode on receiving TLP dupack or when
3382 * ack is after tlp_high_seq.
3383 */
3384 if (is_tlp_dupack) {
3385 tp->tlp_high_seq = 0;
3386 return;
3387 }
3388
3389 if (after(ack, tp->tlp_high_seq)) {
3390 tp->tlp_high_seq = 0;
3391 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3392 if (!(flag & FLAG_DSACKING_ACK)) {
3393 tcp_init_cwnd_reduction(sk, true);
3394 tcp_set_ca_state(sk, TCP_CA_CWR);
3395 tcp_end_cwnd_reduction(sk);
3396 tcp_try_keep_open(sk);
3397 NET_INC_STATS_BH(sock_net(sk),
3398 LINUX_MIB_TCPLOSSPROBERECOVERY);
3399 }
3400 }
3401 }
3402
3403 /* This routine deals with incoming acks, but not outgoing ones. */
3404 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3405 {
3406 struct inet_connection_sock *icsk = inet_csk(sk);
3407 struct tcp_sock *tp = tcp_sk(sk);
3408 u32 prior_snd_una = tp->snd_una;
3409 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3410 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3411 bool is_dupack = false;
3412 u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt;
3413 u32 prior_fackets;
3414 int prior_packets = tp->packets_out;
3415 int prior_sacked = tp->sacked_out;
3416 int pkts_acked = 0;
3417 int previous_packets_out = 0;
3418
3419 /* If the ack is older than previous acks
3420 * then we can probably ignore it.
3421 */
3422 if (before(ack, prior_snd_una)) {
3423 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3424 if (before(ack, prior_snd_una - tp->max_window)) {
3425 tcp_send_challenge_ack(sk);
3426 return -1;
3427 }
3428 goto old_ack;
3429 }
3430
3431 /* If the ack includes data we haven't sent yet, discard
3432 * this segment (RFC793 Section 3.9).
3433 */
3434 if (after(ack, tp->snd_nxt))
3435 goto invalid_ack;
3436
3437 if (after(ack, prior_snd_una))
3438 flag |= FLAG_SND_UNA_ADVANCED;
3439
3440 prior_fackets = tp->fackets_out;
3441 prior_in_flight = tcp_packets_in_flight(tp);
3442
3443 /* ts_recent update must be made after we are sure that the packet
3444 * is in window.
3445 */
3446 if (flag & FLAG_UPDATE_TS_RECENT)
3447 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3448
3449 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3450 /* Window is constant, pure forward advance.
3451 * No more checks are required.
3452 * Note, we use the fact that SND.UNA>=SND.WL2.
3453 */
3454 tcp_update_wl(tp, ack_seq);
3455 tp->snd_una = ack;
3456 flag |= FLAG_WIN_UPDATE;
3457
3458 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3459
3460 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3461 } else {
3462 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3463 flag |= FLAG_DATA;
3464 else
3465 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3466
3467 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3468
3469 if (TCP_SKB_CB(skb)->sacked)
3470 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3471
3472 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3473 flag |= FLAG_ECE;
3474
3475 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3476 }
3477
3478 /* We passed data and got it acked, remove any soft error
3479 * log. Something worked...
3480 */
3481 sk->sk_err_soft = 0;
3482 icsk->icsk_probes_out = 0;
3483 tp->rcv_tstamp = tcp_time_stamp;
3484 if (!prior_packets)
3485 goto no_queue;
3486
3487 /* See if we can take anything off of the retransmit queue. */
3488 previous_packets_out = tp->packets_out;
3489 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3490
3491 pkts_acked = previous_packets_out - tp->packets_out;
3492
3493 if (tp->tlp_high_seq)
3494 tcp_process_tlp_ack(sk, ack, flag);
3495 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3496 if (flag & FLAG_SET_XMIT_TIMER)
3497 tcp_set_xmit_timer(sk);
3498
3499 if (tcp_ack_is_dubious(sk, flag)) {
3500 /* Advance CWND, if state allows this. */
3501 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
3502 tcp_cong_avoid(sk, ack, prior_in_flight);
3503 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3504 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3505 prior_packets, is_dupack, flag);
3506 } else {
3507 if (flag & FLAG_DATA_ACKED)
3508 tcp_cong_avoid(sk, ack, prior_in_flight);
3509 }
3510
3511 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3512 struct dst_entry *dst = __sk_dst_get(sk);
3513 if (dst)
3514 dst_confirm(dst);
3515 }
3516
3517 if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd)
3518 tcp_update_pacing_rate(sk);
3519 return 1;
3520
3521 no_queue:
3522 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3523 if (flag & FLAG_DSACKING_ACK)
3524 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3525 prior_packets, is_dupack, flag);
3526 /* If this ack opens up a zero window, clear backoff. It was
3527 * being used to time the probes, and is probably far higher than
3528 * it needs to be for normal retransmission.
3529 */
3530 if (tcp_send_head(sk))
3531 tcp_ack_probe(sk);
3532
3533 if (tp->tlp_high_seq)
3534 tcp_process_tlp_ack(sk, ack, flag);
3535 return 1;
3536
3537 invalid_ack:
3538 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3539 return -1;
3540
3541 old_ack:
3542 /* If data was SACKed, tag it and see if we should send more data.
3543 * If data was DSACKed, see if we can undo a cwnd reduction.
3544 */
3545 if (TCP_SKB_CB(skb)->sacked) {
3546 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3547 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3548 prior_packets, is_dupack, flag);
3549 }
3550
3551 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3552 return 0;
3553 }
3554
3555 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3556 * But, this can also be called on packets in the established flow when
3557 * the fast version below fails.
3558 */
3559 void tcp_parse_options(const struct sk_buff *skb,
3560 struct tcp_options_received *opt_rx, int estab,
3561 struct tcp_fastopen_cookie *foc)
3562 {
3563 const unsigned char *ptr;
3564 const struct tcphdr *th = tcp_hdr(skb);
3565 int length = (th->doff * 4) - sizeof(struct tcphdr);
3566
3567 ptr = (const unsigned char *)(th + 1);
3568 opt_rx->saw_tstamp = 0;
3569
3570 while (length > 0) {
3571 int opcode = *ptr++;
3572 int opsize;
3573
3574 switch (opcode) {
3575 case TCPOPT_EOL:
3576 return;
3577 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3578 length--;
3579 continue;
3580 default:
3581 opsize = *ptr++;
3582 if (opsize < 2) /* "silly options" */
3583 return;
3584 if (opsize > length)
3585 return; /* don't parse partial options */
3586 switch (opcode) {
3587 case TCPOPT_MSS:
3588 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3589 u16 in_mss = get_unaligned_be16(ptr);
3590 if (in_mss) {
3591 if (opt_rx->user_mss &&
3592 opt_rx->user_mss < in_mss)
3593 in_mss = opt_rx->user_mss;
3594 opt_rx->mss_clamp = in_mss;
3595 }
3596 }
3597 break;
3598 case TCPOPT_WINDOW:
3599 if (opsize == TCPOLEN_WINDOW && th->syn &&
3600 !estab && sysctl_tcp_window_scaling) {
3601 __u8 snd_wscale = *(__u8 *)ptr;
3602 opt_rx->wscale_ok = 1;
3603 if (snd_wscale > 14) {
3604 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3605 __func__,
3606 snd_wscale);
3607 snd_wscale = 14;
3608 }
3609 opt_rx->snd_wscale = snd_wscale;
3610 }
3611 break;
3612 case TCPOPT_TIMESTAMP:
3613 if ((opsize == TCPOLEN_TIMESTAMP) &&
3614 ((estab && opt_rx->tstamp_ok) ||
3615 (!estab && sysctl_tcp_timestamps))) {
3616 opt_rx->saw_tstamp = 1;
3617 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3618 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3619 }
3620 break;
3621 case TCPOPT_SACK_PERM:
3622 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3623 !estab && sysctl_tcp_sack) {
3624 opt_rx->sack_ok = TCP_SACK_SEEN;
3625 tcp_sack_reset(opt_rx);
3626 }
3627 break;
3628
3629 case TCPOPT_SACK:
3630 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3631 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3632 opt_rx->sack_ok) {
3633 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3634 }
3635 break;
3636 #ifdef CONFIG_TCP_MD5SIG
3637 case TCPOPT_MD5SIG:
3638 /*
3639 * The MD5 Hash has already been
3640 * checked (see tcp_v{4,6}_do_rcv()).
3641 */
3642 break;
3643 #endif
3644 case TCPOPT_EXP:
3645 /* Fast Open option shares code 254 using a
3646 * 16 bits magic number. It's valid only in
3647 * SYN or SYN-ACK with an even size.
3648 */
3649 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3650 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3651 foc == NULL || !th->syn || (opsize & 1))
3652 break;
3653 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3654 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3655 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3656 memcpy(foc->val, ptr + 2, foc->len);
3657 else if (foc->len != 0)
3658 foc->len = -1;
3659 break;
3660
3661 }
3662 ptr += opsize-2;
3663 length -= opsize;
3664 }
3665 }
3666 }
3667 EXPORT_SYMBOL(tcp_parse_options);
3668
3669 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3670 {
3671 const __be32 *ptr = (const __be32 *)(th + 1);
3672
3673 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3674 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3675 tp->rx_opt.saw_tstamp = 1;
3676 ++ptr;
3677 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3678 ++ptr;
3679 if (*ptr)
3680 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3681 else
3682 tp->rx_opt.rcv_tsecr = 0;
3683 return true;
3684 }
3685 return false;
3686 }
3687
3688 /* Fast parse options. This hopes to only see timestamps.
3689 * If it is wrong it falls back on tcp_parse_options().
3690 */
3691 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3692 const struct tcphdr *th, struct tcp_sock *tp)
3693 {
3694 /* In the spirit of fast parsing, compare doff directly to constant
3695 * values. Because equality is used, short doff can be ignored here.
3696 */
3697 if (th->doff == (sizeof(*th) / 4)) {
3698 tp->rx_opt.saw_tstamp = 0;
3699 return false;
3700 } else if (tp->rx_opt.tstamp_ok &&
3701 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3702 if (tcp_parse_aligned_timestamp(tp, th))
3703 return true;
3704 }
3705
3706 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3707 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3708 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3709
3710 return true;
3711 }
3712
3713 #ifdef CONFIG_TCP_MD5SIG
3714 /*
3715 * Parse MD5 Signature option
3716 */
3717 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3718 {
3719 int length = (th->doff << 2) - sizeof(*th);
3720 const u8 *ptr = (const u8 *)(th + 1);
3721
3722 /* If the TCP option is too short, we can short cut */
3723 if (length < TCPOLEN_MD5SIG)
3724 return NULL;
3725
3726 while (length > 0) {
3727 int opcode = *ptr++;
3728 int opsize;
3729
3730 switch(opcode) {
3731 case TCPOPT_EOL:
3732 return NULL;
3733 case TCPOPT_NOP:
3734 length--;
3735 continue;
3736 default:
3737 opsize = *ptr++;
3738 if (opsize < 2 || opsize > length)
3739 return NULL;
3740 if (opcode == TCPOPT_MD5SIG)
3741 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3742 }
3743 ptr += opsize - 2;
3744 length -= opsize;
3745 }
3746 return NULL;
3747 }
3748 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3749 #endif
3750
3751 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3752 *
3753 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3754 * it can pass through stack. So, the following predicate verifies that
3755 * this segment is not used for anything but congestion avoidance or
3756 * fast retransmit. Moreover, we even are able to eliminate most of such
3757 * second order effects, if we apply some small "replay" window (~RTO)
3758 * to timestamp space.
3759 *
3760 * All these measures still do not guarantee that we reject wrapped ACKs
3761 * on networks with high bandwidth, when sequence space is recycled fastly,
3762 * but it guarantees that such events will be very rare and do not affect
3763 * connection seriously. This doesn't look nice, but alas, PAWS is really
3764 * buggy extension.
3765 *
3766 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3767 * states that events when retransmit arrives after original data are rare.
3768 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3769 * the biggest problem on large power networks even with minor reordering.
3770 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3771 * up to bandwidth of 18Gigabit/sec. 8) ]
3772 */
3773
3774 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3775 {
3776 const struct tcp_sock *tp = tcp_sk(sk);
3777 const struct tcphdr *th = tcp_hdr(skb);
3778 u32 seq = TCP_SKB_CB(skb)->seq;
3779 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3780
3781 return (/* 1. Pure ACK with correct sequence number. */
3782 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3783
3784 /* 2. ... and duplicate ACK. */
3785 ack == tp->snd_una &&
3786
3787 /* 3. ... and does not update window. */
3788 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3789
3790 /* 4. ... and sits in replay window. */
3791 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3792 }
3793
3794 static inline bool tcp_paws_discard(const struct sock *sk,
3795 const struct sk_buff *skb)
3796 {
3797 const struct tcp_sock *tp = tcp_sk(sk);
3798
3799 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3800 !tcp_disordered_ack(sk, skb);
3801 }
3802
3803 /* Check segment sequence number for validity.
3804 *
3805 * Segment controls are considered valid, if the segment
3806 * fits to the window after truncation to the window. Acceptability
3807 * of data (and SYN, FIN, of course) is checked separately.
3808 * See tcp_data_queue(), for example.
3809 *
3810 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3811 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3812 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3813 * (borrowed from freebsd)
3814 */
3815
3816 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3817 {
3818 return !before(end_seq, tp->rcv_wup) &&
3819 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3820 }
3821
3822 /* When we get a reset we do this. */
3823 void tcp_reset(struct sock *sk)
3824 {
3825 /* We want the right error as BSD sees it (and indeed as we do). */
3826 switch (sk->sk_state) {
3827 case TCP_SYN_SENT:
3828 sk->sk_err = ECONNREFUSED;
3829 break;
3830 case TCP_CLOSE_WAIT:
3831 sk->sk_err = EPIPE;
3832 break;
3833 case TCP_CLOSE:
3834 return;
3835 default:
3836 sk->sk_err = ECONNRESET;
3837 }
3838 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3839 smp_wmb();
3840
3841 if (!sock_flag(sk, SOCK_DEAD))
3842 sk->sk_error_report(sk);
3843
3844 tcp_done(sk);
3845 }
3846
3847 /*
3848 * Process the FIN bit. This now behaves as it is supposed to work
3849 * and the FIN takes effect when it is validly part of sequence
3850 * space. Not before when we get holes.
3851 *
3852 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3853 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3854 * TIME-WAIT)
3855 *
3856 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3857 * close and we go into CLOSING (and later onto TIME-WAIT)
3858 *
3859 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3860 */
3861 static void tcp_fin(struct sock *sk)
3862 {
3863 struct tcp_sock *tp = tcp_sk(sk);
3864
3865 inet_csk_schedule_ack(sk);
3866
3867 sk->sk_shutdown |= RCV_SHUTDOWN;
3868 sock_set_flag(sk, SOCK_DONE);
3869
3870 switch (sk->sk_state) {
3871 case TCP_SYN_RECV:
3872 case TCP_ESTABLISHED:
3873 /* Move to CLOSE_WAIT */
3874 tcp_set_state(sk, TCP_CLOSE_WAIT);
3875 inet_csk(sk)->icsk_ack.pingpong = 1;
3876 break;
3877
3878 case TCP_CLOSE_WAIT:
3879 case TCP_CLOSING:
3880 /* Received a retransmission of the FIN, do
3881 * nothing.
3882 */
3883 break;
3884 case TCP_LAST_ACK:
3885 /* RFC793: Remain in the LAST-ACK state. */
3886 break;
3887
3888 case TCP_FIN_WAIT1:
3889 /* This case occurs when a simultaneous close
3890 * happens, we must ack the received FIN and
3891 * enter the CLOSING state.
3892 */
3893 tcp_send_ack(sk);
3894 tcp_set_state(sk, TCP_CLOSING);
3895 break;
3896 case TCP_FIN_WAIT2:
3897 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3898 tcp_send_ack(sk);
3899 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3900 break;
3901 default:
3902 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3903 * cases we should never reach this piece of code.
3904 */
3905 pr_err("%s: Impossible, sk->sk_state=%d\n",
3906 __func__, sk->sk_state);
3907 break;
3908 }
3909
3910 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3911 * Probably, we should reset in this case. For now drop them.
3912 */
3913 __skb_queue_purge(&tp->out_of_order_queue);
3914 if (tcp_is_sack(tp))
3915 tcp_sack_reset(&tp->rx_opt);
3916 sk_mem_reclaim(sk);
3917
3918 if (!sock_flag(sk, SOCK_DEAD)) {
3919 sk->sk_state_change(sk);
3920
3921 /* Do not send POLL_HUP for half duplex close. */
3922 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3923 sk->sk_state == TCP_CLOSE)
3924 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3925 else
3926 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3927 }
3928 }
3929
3930 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3931 u32 end_seq)
3932 {
3933 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3934 if (before(seq, sp->start_seq))
3935 sp->start_seq = seq;
3936 if (after(end_seq, sp->end_seq))
3937 sp->end_seq = end_seq;
3938 return true;
3939 }
3940 return false;
3941 }
3942
3943 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3944 {
3945 struct tcp_sock *tp = tcp_sk(sk);
3946
3947 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3948 int mib_idx;
3949
3950 if (before(seq, tp->rcv_nxt))
3951 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3952 else
3953 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3954
3955 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3956
3957 tp->rx_opt.dsack = 1;
3958 tp->duplicate_sack[0].start_seq = seq;
3959 tp->duplicate_sack[0].end_seq = end_seq;
3960 }
3961 }
3962
3963 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3964 {
3965 struct tcp_sock *tp = tcp_sk(sk);
3966
3967 if (!tp->rx_opt.dsack)
3968 tcp_dsack_set(sk, seq, end_seq);
3969 else
3970 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3971 }
3972
3973 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3974 {
3975 struct tcp_sock *tp = tcp_sk(sk);
3976
3977 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3978 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3979 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3980 tcp_enter_quickack_mode(sk);
3981
3982 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3983 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3984
3985 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3986 end_seq = tp->rcv_nxt;
3987 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3988 }
3989 }
3990
3991 tcp_send_ack(sk);
3992 }
3993
3994 /* These routines update the SACK block as out-of-order packets arrive or
3995 * in-order packets close up the sequence space.
3996 */
3997 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3998 {
3999 int this_sack;
4000 struct tcp_sack_block *sp = &tp->selective_acks[0];
4001 struct tcp_sack_block *swalk = sp + 1;
4002
4003 /* See if the recent change to the first SACK eats into
4004 * or hits the sequence space of other SACK blocks, if so coalesce.
4005 */
4006 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4007 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4008 int i;
4009
4010 /* Zap SWALK, by moving every further SACK up by one slot.
4011 * Decrease num_sacks.
4012 */
4013 tp->rx_opt.num_sacks--;
4014 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4015 sp[i] = sp[i + 1];
4016 continue;
4017 }
4018 this_sack++, swalk++;
4019 }
4020 }
4021
4022 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4023 {
4024 struct tcp_sock *tp = tcp_sk(sk);
4025 struct tcp_sack_block *sp = &tp->selective_acks[0];
4026 int cur_sacks = tp->rx_opt.num_sacks;
4027 int this_sack;
4028
4029 if (!cur_sacks)
4030 goto new_sack;
4031
4032 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4033 if (tcp_sack_extend(sp, seq, end_seq)) {
4034 /* Rotate this_sack to the first one. */
4035 for (; this_sack > 0; this_sack--, sp--)
4036 swap(*sp, *(sp - 1));
4037 if (cur_sacks > 1)
4038 tcp_sack_maybe_coalesce(tp);
4039 return;
4040 }
4041 }
4042
4043 /* Could not find an adjacent existing SACK, build a new one,
4044 * put it at the front, and shift everyone else down. We
4045 * always know there is at least one SACK present already here.
4046 *
4047 * If the sack array is full, forget about the last one.
4048 */
4049 if (this_sack >= TCP_NUM_SACKS) {
4050 this_sack--;
4051 tp->rx_opt.num_sacks--;
4052 sp--;
4053 }
4054 for (; this_sack > 0; this_sack--, sp--)
4055 *sp = *(sp - 1);
4056
4057 new_sack:
4058 /* Build the new head SACK, and we're done. */
4059 sp->start_seq = seq;
4060 sp->end_seq = end_seq;
4061 tp->rx_opt.num_sacks++;
4062 }
4063
4064 /* RCV.NXT advances, some SACKs should be eaten. */
4065
4066 static void tcp_sack_remove(struct tcp_sock *tp)
4067 {
4068 struct tcp_sack_block *sp = &tp->selective_acks[0];
4069 int num_sacks = tp->rx_opt.num_sacks;
4070 int this_sack;
4071
4072 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4073 if (skb_queue_empty(&tp->out_of_order_queue)) {
4074 tp->rx_opt.num_sacks = 0;
4075 return;
4076 }
4077
4078 for (this_sack = 0; this_sack < num_sacks;) {
4079 /* Check if the start of the sack is covered by RCV.NXT. */
4080 if (!before(tp->rcv_nxt, sp->start_seq)) {
4081 int i;
4082
4083 /* RCV.NXT must cover all the block! */
4084 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4085
4086 /* Zap this SACK, by moving forward any other SACKS. */
4087 for (i=this_sack+1; i < num_sacks; i++)
4088 tp->selective_acks[i-1] = tp->selective_acks[i];
4089 num_sacks--;
4090 continue;
4091 }
4092 this_sack++;
4093 sp++;
4094 }
4095 tp->rx_opt.num_sacks = num_sacks;
4096 }
4097
4098 /* This one checks to see if we can put data from the
4099 * out_of_order queue into the receive_queue.
4100 */
4101 static void tcp_ofo_queue(struct sock *sk)
4102 {
4103 struct tcp_sock *tp = tcp_sk(sk);
4104 __u32 dsack_high = tp->rcv_nxt;
4105 struct sk_buff *skb;
4106
4107 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4108 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4109 break;
4110
4111 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4112 __u32 dsack = dsack_high;
4113 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4114 dsack_high = TCP_SKB_CB(skb)->end_seq;
4115 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4116 }
4117
4118 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4119 SOCK_DEBUG(sk, "ofo packet was already received\n");
4120 __skb_unlink(skb, &tp->out_of_order_queue);
4121 __kfree_skb(skb);
4122 continue;
4123 }
4124 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4125 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4126 TCP_SKB_CB(skb)->end_seq);
4127
4128 __skb_unlink(skb, &tp->out_of_order_queue);
4129 __skb_queue_tail(&sk->sk_receive_queue, skb);
4130 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4131 if (tcp_hdr(skb)->fin)
4132 tcp_fin(sk);
4133 }
4134 }
4135
4136 static bool tcp_prune_ofo_queue(struct sock *sk);
4137 static int tcp_prune_queue(struct sock *sk);
4138
4139 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4140 unsigned int size)
4141 {
4142 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4143 !sk_rmem_schedule(sk, skb, size)) {
4144
4145 if (tcp_prune_queue(sk) < 0)
4146 return -1;
4147
4148 if (!sk_rmem_schedule(sk, skb, size)) {
4149 if (!tcp_prune_ofo_queue(sk))
4150 return -1;
4151
4152 if (!sk_rmem_schedule(sk, skb, size))
4153 return -1;
4154 }
4155 }
4156 return 0;
4157 }
4158
4159 /**
4160 * tcp_try_coalesce - try to merge skb to prior one
4161 * @sk: socket
4162 * @to: prior buffer
4163 * @from: buffer to add in queue
4164 * @fragstolen: pointer to boolean
4165 *
4166 * Before queueing skb @from after @to, try to merge them
4167 * to reduce overall memory use and queue lengths, if cost is small.
4168 * Packets in ofo or receive queues can stay a long time.
4169 * Better try to coalesce them right now to avoid future collapses.
4170 * Returns true if caller should free @from instead of queueing it
4171 */
4172 static bool tcp_try_coalesce(struct sock *sk,
4173 struct sk_buff *to,
4174 struct sk_buff *from,
4175 bool *fragstolen)
4176 {
4177 int delta;
4178
4179 *fragstolen = false;
4180
4181 if (tcp_hdr(from)->fin)
4182 return false;
4183
4184 /* Its possible this segment overlaps with prior segment in queue */
4185 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4186 return false;
4187
4188 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4189 return false;
4190
4191 atomic_add(delta, &sk->sk_rmem_alloc);
4192 sk_mem_charge(sk, delta);
4193 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4194 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4195 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4196 return true;
4197 }
4198
4199 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4200 {
4201 struct tcp_sock *tp = tcp_sk(sk);
4202 struct sk_buff *skb1;
4203 u32 seq, end_seq;
4204
4205 TCP_ECN_check_ce(tp, skb);
4206
4207 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4208 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4209 __kfree_skb(skb);
4210 return;
4211 }
4212
4213 /* Disable header prediction. */
4214 tp->pred_flags = 0;
4215 inet_csk_schedule_ack(sk);
4216
4217 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4218 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4219 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4220
4221 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4222 if (!skb1) {
4223 /* Initial out of order segment, build 1 SACK. */
4224 if (tcp_is_sack(tp)) {
4225 tp->rx_opt.num_sacks = 1;
4226 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4227 tp->selective_acks[0].end_seq =
4228 TCP_SKB_CB(skb)->end_seq;
4229 }
4230 __skb_queue_head(&tp->out_of_order_queue, skb);
4231 goto end;
4232 }
4233
4234 seq = TCP_SKB_CB(skb)->seq;
4235 end_seq = TCP_SKB_CB(skb)->end_seq;
4236
4237 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4238 bool fragstolen;
4239
4240 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4241 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4242 } else {
4243 kfree_skb_partial(skb, fragstolen);
4244 skb = NULL;
4245 }
4246
4247 if (!tp->rx_opt.num_sacks ||
4248 tp->selective_acks[0].end_seq != seq)
4249 goto add_sack;
4250
4251 /* Common case: data arrive in order after hole. */
4252 tp->selective_acks[0].end_seq = end_seq;
4253 goto end;
4254 }
4255
4256 /* Find place to insert this segment. */
4257 while (1) {
4258 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4259 break;
4260 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4261 skb1 = NULL;
4262 break;
4263 }
4264 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4265 }
4266
4267 /* Do skb overlap to previous one? */
4268 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4269 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4270 /* All the bits are present. Drop. */
4271 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4272 __kfree_skb(skb);
4273 skb = NULL;
4274 tcp_dsack_set(sk, seq, end_seq);
4275 goto add_sack;
4276 }
4277 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4278 /* Partial overlap. */
4279 tcp_dsack_set(sk, seq,
4280 TCP_SKB_CB(skb1)->end_seq);
4281 } else {
4282 if (skb_queue_is_first(&tp->out_of_order_queue,
4283 skb1))
4284 skb1 = NULL;
4285 else
4286 skb1 = skb_queue_prev(
4287 &tp->out_of_order_queue,
4288 skb1);
4289 }
4290 }
4291 if (!skb1)
4292 __skb_queue_head(&tp->out_of_order_queue, skb);
4293 else
4294 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4295
4296 /* And clean segments covered by new one as whole. */
4297 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4298 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4299
4300 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4301 break;
4302 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4303 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4304 end_seq);
4305 break;
4306 }
4307 __skb_unlink(skb1, &tp->out_of_order_queue);
4308 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4309 TCP_SKB_CB(skb1)->end_seq);
4310 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4311 __kfree_skb(skb1);
4312 }
4313
4314 add_sack:
4315 if (tcp_is_sack(tp))
4316 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4317 end:
4318 if (skb)
4319 skb_set_owner_r(skb, sk);
4320 }
4321
4322 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4323 bool *fragstolen)
4324 {
4325 int eaten;
4326 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4327
4328 __skb_pull(skb, hdrlen);
4329 eaten = (tail &&
4330 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4331 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4332 if (!eaten) {
4333 __skb_queue_tail(&sk->sk_receive_queue, skb);
4334 skb_set_owner_r(skb, sk);
4335 }
4336 return eaten;
4337 }
4338
4339 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4340 {
4341 struct sk_buff *skb = NULL;
4342 struct tcphdr *th;
4343 bool fragstolen;
4344
4345 if (size == 0)
4346 return 0;
4347
4348 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4349 if (!skb)
4350 goto err;
4351
4352 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4353 goto err_free;
4354
4355 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4356 skb_reset_transport_header(skb);
4357 memset(th, 0, sizeof(*th));
4358
4359 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4360 goto err_free;
4361
4362 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4363 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4364 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4365
4366 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4367 WARN_ON_ONCE(fragstolen); /* should not happen */
4368 __kfree_skb(skb);
4369 }
4370 return size;
4371
4372 err_free:
4373 kfree_skb(skb);
4374 err:
4375 return -ENOMEM;
4376 }
4377
4378 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4379 {
4380 const struct tcphdr *th = tcp_hdr(skb);
4381 struct tcp_sock *tp = tcp_sk(sk);
4382 int eaten = -1;
4383 bool fragstolen = false;
4384
4385 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4386 goto drop;
4387
4388 skb_dst_drop(skb);
4389 __skb_pull(skb, th->doff * 4);
4390
4391 TCP_ECN_accept_cwr(tp, skb);
4392
4393 tp->rx_opt.dsack = 0;
4394
4395 /* Queue data for delivery to the user.
4396 * Packets in sequence go to the receive queue.
4397 * Out of sequence packets to the out_of_order_queue.
4398 */
4399 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4400 if (tcp_receive_window(tp) == 0)
4401 goto out_of_window;
4402
4403 /* Ok. In sequence. In window. */
4404 if (tp->ucopy.task == current &&
4405 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4406 sock_owned_by_user(sk) && !tp->urg_data) {
4407 int chunk = min_t(unsigned int, skb->len,
4408 tp->ucopy.len);
4409
4410 __set_current_state(TASK_RUNNING);
4411
4412 local_bh_enable();
4413 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4414 tp->ucopy.len -= chunk;
4415 tp->copied_seq += chunk;
4416 eaten = (chunk == skb->len);
4417 tcp_rcv_space_adjust(sk);
4418 }
4419 local_bh_disable();
4420 }
4421
4422 if (eaten <= 0) {
4423 queue_and_out:
4424 if (eaten < 0 &&
4425 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4426 goto drop;
4427
4428 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4429 }
4430 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4431 if (skb->len)
4432 tcp_event_data_recv(sk, skb);
4433 if (th->fin)
4434 tcp_fin(sk);
4435
4436 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4437 tcp_ofo_queue(sk);
4438
4439 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4440 * gap in queue is filled.
4441 */
4442 if (skb_queue_empty(&tp->out_of_order_queue))
4443 inet_csk(sk)->icsk_ack.pingpong = 0;
4444 }
4445
4446 if (tp->rx_opt.num_sacks)
4447 tcp_sack_remove(tp);
4448
4449 tcp_fast_path_check(sk);
4450
4451 if (eaten > 0)
4452 kfree_skb_partial(skb, fragstolen);
4453 if (!sock_flag(sk, SOCK_DEAD))
4454 sk->sk_data_ready(sk, 0);
4455 return;
4456 }
4457
4458 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4459 /* A retransmit, 2nd most common case. Force an immediate ack. */
4460 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4461 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4462
4463 out_of_window:
4464 tcp_enter_quickack_mode(sk);
4465 inet_csk_schedule_ack(sk);
4466 drop:
4467 __kfree_skb(skb);
4468 return;
4469 }
4470
4471 /* Out of window. F.e. zero window probe. */
4472 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4473 goto out_of_window;
4474
4475 tcp_enter_quickack_mode(sk);
4476
4477 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4478 /* Partial packet, seq < rcv_next < end_seq */
4479 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4480 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4481 TCP_SKB_CB(skb)->end_seq);
4482
4483 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4484
4485 /* If window is closed, drop tail of packet. But after
4486 * remembering D-SACK for its head made in previous line.
4487 */
4488 if (!tcp_receive_window(tp))
4489 goto out_of_window;
4490 goto queue_and_out;
4491 }
4492
4493 tcp_data_queue_ofo(sk, skb);
4494 }
4495
4496 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4497 struct sk_buff_head *list)
4498 {
4499 struct sk_buff *next = NULL;
4500
4501 if (!skb_queue_is_last(list, skb))
4502 next = skb_queue_next(list, skb);
4503
4504 __skb_unlink(skb, list);
4505 __kfree_skb(skb);
4506 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4507
4508 return next;
4509 }
4510
4511 /* Collapse contiguous sequence of skbs head..tail with
4512 * sequence numbers start..end.
4513 *
4514 * If tail is NULL, this means until the end of the list.
4515 *
4516 * Segments with FIN/SYN are not collapsed (only because this
4517 * simplifies code)
4518 */
4519 static void
4520 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4521 struct sk_buff *head, struct sk_buff *tail,
4522 u32 start, u32 end)
4523 {
4524 struct sk_buff *skb, *n;
4525 bool end_of_skbs;
4526
4527 /* First, check that queue is collapsible and find
4528 * the point where collapsing can be useful. */
4529 skb = head;
4530 restart:
4531 end_of_skbs = true;
4532 skb_queue_walk_from_safe(list, skb, n) {
4533 if (skb == tail)
4534 break;
4535 /* No new bits? It is possible on ofo queue. */
4536 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4537 skb = tcp_collapse_one(sk, skb, list);
4538 if (!skb)
4539 break;
4540 goto restart;
4541 }
4542
4543 /* The first skb to collapse is:
4544 * - not SYN/FIN and
4545 * - bloated or contains data before "start" or
4546 * overlaps to the next one.
4547 */
4548 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4549 (tcp_win_from_space(skb->truesize) > skb->len ||
4550 before(TCP_SKB_CB(skb)->seq, start))) {
4551 end_of_skbs = false;
4552 break;
4553 }
4554
4555 if (!skb_queue_is_last(list, skb)) {
4556 struct sk_buff *next = skb_queue_next(list, skb);
4557 if (next != tail &&
4558 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4559 end_of_skbs = false;
4560 break;
4561 }
4562 }
4563
4564 /* Decided to skip this, advance start seq. */
4565 start = TCP_SKB_CB(skb)->end_seq;
4566 }
4567 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4568 return;
4569
4570 while (before(start, end)) {
4571 struct sk_buff *nskb;
4572 unsigned int header = skb_headroom(skb);
4573 int copy = SKB_MAX_ORDER(header, 0);
4574
4575 /* Too big header? This can happen with IPv6. */
4576 if (copy < 0)
4577 return;
4578 if (end - start < copy)
4579 copy = end - start;
4580 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4581 if (!nskb)
4582 return;
4583
4584 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4585 skb_set_network_header(nskb, (skb_network_header(skb) -
4586 skb->head));
4587 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4588 skb->head));
4589 skb_reserve(nskb, header);
4590 memcpy(nskb->head, skb->head, header);
4591 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4592 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4593 __skb_queue_before(list, skb, nskb);
4594 skb_set_owner_r(nskb, sk);
4595
4596 /* Copy data, releasing collapsed skbs. */
4597 while (copy > 0) {
4598 int offset = start - TCP_SKB_CB(skb)->seq;
4599 int size = TCP_SKB_CB(skb)->end_seq - start;
4600
4601 BUG_ON(offset < 0);
4602 if (size > 0) {
4603 size = min(copy, size);
4604 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4605 BUG();
4606 TCP_SKB_CB(nskb)->end_seq += size;
4607 copy -= size;
4608 start += size;
4609 }
4610 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4611 skb = tcp_collapse_one(sk, skb, list);
4612 if (!skb ||
4613 skb == tail ||
4614 tcp_hdr(skb)->syn ||
4615 tcp_hdr(skb)->fin)
4616 return;
4617 }
4618 }
4619 }
4620 }
4621
4622 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4623 * and tcp_collapse() them until all the queue is collapsed.
4624 */
4625 static void tcp_collapse_ofo_queue(struct sock *sk)
4626 {
4627 struct tcp_sock *tp = tcp_sk(sk);
4628 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4629 struct sk_buff *head;
4630 u32 start, end;
4631
4632 if (skb == NULL)
4633 return;
4634
4635 start = TCP_SKB_CB(skb)->seq;
4636 end = TCP_SKB_CB(skb)->end_seq;
4637 head = skb;
4638
4639 for (;;) {
4640 struct sk_buff *next = NULL;
4641
4642 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4643 next = skb_queue_next(&tp->out_of_order_queue, skb);
4644 skb = next;
4645
4646 /* Segment is terminated when we see gap or when
4647 * we are at the end of all the queue. */
4648 if (!skb ||
4649 after(TCP_SKB_CB(skb)->seq, end) ||
4650 before(TCP_SKB_CB(skb)->end_seq, start)) {
4651 tcp_collapse(sk, &tp->out_of_order_queue,
4652 head, skb, start, end);
4653 head = skb;
4654 if (!skb)
4655 break;
4656 /* Start new segment */
4657 start = TCP_SKB_CB(skb)->seq;
4658 end = TCP_SKB_CB(skb)->end_seq;
4659 } else {
4660 if (before(TCP_SKB_CB(skb)->seq, start))
4661 start = TCP_SKB_CB(skb)->seq;
4662 if (after(TCP_SKB_CB(skb)->end_seq, end))
4663 end = TCP_SKB_CB(skb)->end_seq;
4664 }
4665 }
4666 }
4667
4668 /*
4669 * Purge the out-of-order queue.
4670 * Return true if queue was pruned.
4671 */
4672 static bool tcp_prune_ofo_queue(struct sock *sk)
4673 {
4674 struct tcp_sock *tp = tcp_sk(sk);
4675 bool res = false;
4676
4677 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4678 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4679 __skb_queue_purge(&tp->out_of_order_queue);
4680
4681 /* Reset SACK state. A conforming SACK implementation will
4682 * do the same at a timeout based retransmit. When a connection
4683 * is in a sad state like this, we care only about integrity
4684 * of the connection not performance.
4685 */
4686 if (tp->rx_opt.sack_ok)
4687 tcp_sack_reset(&tp->rx_opt);
4688 sk_mem_reclaim(sk);
4689 res = true;
4690 }
4691 return res;
4692 }
4693
4694 /* Reduce allocated memory if we can, trying to get
4695 * the socket within its memory limits again.
4696 *
4697 * Return less than zero if we should start dropping frames
4698 * until the socket owning process reads some of the data
4699 * to stabilize the situation.
4700 */
4701 static int tcp_prune_queue(struct sock *sk)
4702 {
4703 struct tcp_sock *tp = tcp_sk(sk);
4704
4705 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4706
4707 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4708
4709 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4710 tcp_clamp_window(sk);
4711 else if (sk_under_memory_pressure(sk))
4712 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4713
4714 tcp_collapse_ofo_queue(sk);
4715 if (!skb_queue_empty(&sk->sk_receive_queue))
4716 tcp_collapse(sk, &sk->sk_receive_queue,
4717 skb_peek(&sk->sk_receive_queue),
4718 NULL,
4719 tp->copied_seq, tp->rcv_nxt);
4720 sk_mem_reclaim(sk);
4721
4722 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4723 return 0;
4724
4725 /* Collapsing did not help, destructive actions follow.
4726 * This must not ever occur. */
4727
4728 tcp_prune_ofo_queue(sk);
4729
4730 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4731 return 0;
4732
4733 /* If we are really being abused, tell the caller to silently
4734 * drop receive data on the floor. It will get retransmitted
4735 * and hopefully then we'll have sufficient space.
4736 */
4737 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4738
4739 /* Massive buffer overcommit. */
4740 tp->pred_flags = 0;
4741 return -1;
4742 }
4743
4744 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4745 * As additional protections, we do not touch cwnd in retransmission phases,
4746 * and if application hit its sndbuf limit recently.
4747 */
4748 void tcp_cwnd_application_limited(struct sock *sk)
4749 {
4750 struct tcp_sock *tp = tcp_sk(sk);
4751
4752 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4753 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4754 /* Limited by application or receiver window. */
4755 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4756 u32 win_used = max(tp->snd_cwnd_used, init_win);
4757 if (win_used < tp->snd_cwnd) {
4758 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4759 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4760 }
4761 tp->snd_cwnd_used = 0;
4762 }
4763 tp->snd_cwnd_stamp = tcp_time_stamp;
4764 }
4765
4766 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4767 {
4768 const struct tcp_sock *tp = tcp_sk(sk);
4769
4770 /* If the user specified a specific send buffer setting, do
4771 * not modify it.
4772 */
4773 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4774 return false;
4775
4776 /* If we are under global TCP memory pressure, do not expand. */
4777 if (sk_under_memory_pressure(sk))
4778 return false;
4779
4780 /* If we are under soft global TCP memory pressure, do not expand. */
4781 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4782 return false;
4783
4784 /* If we filled the congestion window, do not expand. */
4785 if (tp->packets_out >= tp->snd_cwnd)
4786 return false;
4787
4788 return true;
4789 }
4790
4791 /* When incoming ACK allowed to free some skb from write_queue,
4792 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4793 * on the exit from tcp input handler.
4794 *
4795 * PROBLEM: sndbuf expansion does not work well with largesend.
4796 */
4797 static void tcp_new_space(struct sock *sk)
4798 {
4799 struct tcp_sock *tp = tcp_sk(sk);
4800
4801 if (tcp_should_expand_sndbuf(sk)) {
4802 int sndmem = SKB_TRUESIZE(max_t(u32,
4803 tp->rx_opt.mss_clamp,
4804 tp->mss_cache) +
4805 MAX_TCP_HEADER);
4806 int demanded = max_t(unsigned int, tp->snd_cwnd,
4807 tp->reordering + 1);
4808 sndmem *= 2 * demanded;
4809 if (sndmem > sk->sk_sndbuf)
4810 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4811 tp->snd_cwnd_stamp = tcp_time_stamp;
4812 }
4813
4814 sk->sk_write_space(sk);
4815 }
4816
4817 static void tcp_check_space(struct sock *sk)
4818 {
4819 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4820 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4821 if (sk->sk_socket &&
4822 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4823 tcp_new_space(sk);
4824 }
4825 }
4826
4827 static inline void tcp_data_snd_check(struct sock *sk)
4828 {
4829 tcp_push_pending_frames(sk);
4830 tcp_check_space(sk);
4831 }
4832
4833 /*
4834 * Check if sending an ack is needed.
4835 */
4836 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4837 {
4838 struct tcp_sock *tp = tcp_sk(sk);
4839
4840 /* More than one full frame received... */
4841 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4842 /* ... and right edge of window advances far enough.
4843 * (tcp_recvmsg() will send ACK otherwise). Or...
4844 */
4845 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4846 /* We ACK each frame or... */
4847 tcp_in_quickack_mode(sk) ||
4848 /* We have out of order data. */
4849 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4850 /* Then ack it now */
4851 tcp_send_ack(sk);
4852 } else {
4853 /* Else, send delayed ack. */
4854 tcp_send_delayed_ack(sk);
4855 }
4856 }
4857
4858 static inline void tcp_ack_snd_check(struct sock *sk)
4859 {
4860 if (!inet_csk_ack_scheduled(sk)) {
4861 /* We sent a data segment already. */
4862 return;
4863 }
4864 __tcp_ack_snd_check(sk, 1);
4865 }
4866
4867 /*
4868 * This routine is only called when we have urgent data
4869 * signaled. Its the 'slow' part of tcp_urg. It could be
4870 * moved inline now as tcp_urg is only called from one
4871 * place. We handle URGent data wrong. We have to - as
4872 * BSD still doesn't use the correction from RFC961.
4873 * For 1003.1g we should support a new option TCP_STDURG to permit
4874 * either form (or just set the sysctl tcp_stdurg).
4875 */
4876
4877 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4878 {
4879 struct tcp_sock *tp = tcp_sk(sk);
4880 u32 ptr = ntohs(th->urg_ptr);
4881
4882 if (ptr && !sysctl_tcp_stdurg)
4883 ptr--;
4884 ptr += ntohl(th->seq);
4885
4886 /* Ignore urgent data that we've already seen and read. */
4887 if (after(tp->copied_seq, ptr))
4888 return;
4889
4890 /* Do not replay urg ptr.
4891 *
4892 * NOTE: interesting situation not covered by specs.
4893 * Misbehaving sender may send urg ptr, pointing to segment,
4894 * which we already have in ofo queue. We are not able to fetch
4895 * such data and will stay in TCP_URG_NOTYET until will be eaten
4896 * by recvmsg(). Seems, we are not obliged to handle such wicked
4897 * situations. But it is worth to think about possibility of some
4898 * DoSes using some hypothetical application level deadlock.
4899 */
4900 if (before(ptr, tp->rcv_nxt))
4901 return;
4902
4903 /* Do we already have a newer (or duplicate) urgent pointer? */
4904 if (tp->urg_data && !after(ptr, tp->urg_seq))
4905 return;
4906
4907 /* Tell the world about our new urgent pointer. */
4908 sk_send_sigurg(sk);
4909
4910 /* We may be adding urgent data when the last byte read was
4911 * urgent. To do this requires some care. We cannot just ignore
4912 * tp->copied_seq since we would read the last urgent byte again
4913 * as data, nor can we alter copied_seq until this data arrives
4914 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4915 *
4916 * NOTE. Double Dutch. Rendering to plain English: author of comment
4917 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4918 * and expect that both A and B disappear from stream. This is _wrong_.
4919 * Though this happens in BSD with high probability, this is occasional.
4920 * Any application relying on this is buggy. Note also, that fix "works"
4921 * only in this artificial test. Insert some normal data between A and B and we will
4922 * decline of BSD again. Verdict: it is better to remove to trap
4923 * buggy users.
4924 */
4925 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4926 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4927 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4928 tp->copied_seq++;
4929 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4930 __skb_unlink(skb, &sk->sk_receive_queue);
4931 __kfree_skb(skb);
4932 }
4933 }
4934
4935 tp->urg_data = TCP_URG_NOTYET;
4936 tp->urg_seq = ptr;
4937
4938 /* Disable header prediction. */
4939 tp->pred_flags = 0;
4940 }
4941
4942 /* This is the 'fast' part of urgent handling. */
4943 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4944 {
4945 struct tcp_sock *tp = tcp_sk(sk);
4946
4947 /* Check if we get a new urgent pointer - normally not. */
4948 if (th->urg)
4949 tcp_check_urg(sk, th);
4950
4951 /* Do we wait for any urgent data? - normally not... */
4952 if (tp->urg_data == TCP_URG_NOTYET) {
4953 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4954 th->syn;
4955
4956 /* Is the urgent pointer pointing into this packet? */
4957 if (ptr < skb->len) {
4958 u8 tmp;
4959 if (skb_copy_bits(skb, ptr, &tmp, 1))
4960 BUG();
4961 tp->urg_data = TCP_URG_VALID | tmp;
4962 if (!sock_flag(sk, SOCK_DEAD))
4963 sk->sk_data_ready(sk, 0);
4964 }
4965 }
4966 }
4967
4968 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4969 {
4970 struct tcp_sock *tp = tcp_sk(sk);
4971 int chunk = skb->len - hlen;
4972 int err;
4973
4974 local_bh_enable();
4975 if (skb_csum_unnecessary(skb))
4976 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4977 else
4978 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4979 tp->ucopy.iov);
4980
4981 if (!err) {
4982 tp->ucopy.len -= chunk;
4983 tp->copied_seq += chunk;
4984 tcp_rcv_space_adjust(sk);
4985 }
4986
4987 local_bh_disable();
4988 return err;
4989 }
4990
4991 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4992 struct sk_buff *skb)
4993 {
4994 __sum16 result;
4995
4996 if (sock_owned_by_user(sk)) {
4997 local_bh_enable();
4998 result = __tcp_checksum_complete(skb);
4999 local_bh_disable();
5000 } else {
5001 result = __tcp_checksum_complete(skb);
5002 }
5003 return result;
5004 }
5005
5006 static inline bool tcp_checksum_complete_user(struct sock *sk,
5007 struct sk_buff *skb)
5008 {
5009 return !skb_csum_unnecessary(skb) &&
5010 __tcp_checksum_complete_user(sk, skb);
5011 }
5012
5013 #ifdef CONFIG_NET_DMA
5014 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5015 int hlen)
5016 {
5017 struct tcp_sock *tp = tcp_sk(sk);
5018 int chunk = skb->len - hlen;
5019 int dma_cookie;
5020 bool copied_early = false;
5021
5022 if (tp->ucopy.wakeup)
5023 return false;
5024
5025 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5026 tp->ucopy.dma_chan = net_dma_find_channel();
5027
5028 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5029
5030 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5031 skb, hlen,
5032 tp->ucopy.iov, chunk,
5033 tp->ucopy.pinned_list);
5034
5035 if (dma_cookie < 0)
5036 goto out;
5037
5038 tp->ucopy.dma_cookie = dma_cookie;
5039 copied_early = true;
5040
5041 tp->ucopy.len -= chunk;
5042 tp->copied_seq += chunk;
5043 tcp_rcv_space_adjust(sk);
5044
5045 if ((tp->ucopy.len == 0) ||
5046 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5047 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5048 tp->ucopy.wakeup = 1;
5049 sk->sk_data_ready(sk, 0);
5050 }
5051 } else if (chunk > 0) {
5052 tp->ucopy.wakeup = 1;
5053 sk->sk_data_ready(sk, 0);
5054 }
5055 out:
5056 return copied_early;
5057 }
5058 #endif /* CONFIG_NET_DMA */
5059
5060 /* Does PAWS and seqno based validation of an incoming segment, flags will
5061 * play significant role here.
5062 */
5063 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5064 const struct tcphdr *th, int syn_inerr)
5065 {
5066 struct tcp_sock *tp = tcp_sk(sk);
5067
5068 /* RFC1323: H1. Apply PAWS check first. */
5069 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5070 tcp_paws_discard(sk, skb)) {
5071 if (!th->rst) {
5072 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5073 tcp_send_dupack(sk, skb);
5074 goto discard;
5075 }
5076 /* Reset is accepted even if it did not pass PAWS. */
5077 }
5078
5079 /* Step 1: check sequence number */
5080 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5081 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5082 * (RST) segments are validated by checking their SEQ-fields."
5083 * And page 69: "If an incoming segment is not acceptable,
5084 * an acknowledgment should be sent in reply (unless the RST
5085 * bit is set, if so drop the segment and return)".
5086 */
5087 if (!th->rst) {
5088 if (th->syn)
5089 goto syn_challenge;
5090 tcp_send_dupack(sk, skb);
5091 }
5092 goto discard;
5093 }
5094
5095 /* Step 2: check RST bit */
5096 if (th->rst) {
5097 /* RFC 5961 3.2 :
5098 * If sequence number exactly matches RCV.NXT, then
5099 * RESET the connection
5100 * else
5101 * Send a challenge ACK
5102 */
5103 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5104 tcp_reset(sk);
5105 else
5106 tcp_send_challenge_ack(sk);
5107 goto discard;
5108 }
5109
5110 /* step 3: check security and precedence [ignored] */
5111
5112 /* step 4: Check for a SYN
5113 * RFC 5691 4.2 : Send a challenge ack
5114 */
5115 if (th->syn) {
5116 syn_challenge:
5117 if (syn_inerr)
5118 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5119 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5120 tcp_send_challenge_ack(sk);
5121 goto discard;
5122 }
5123
5124 return true;
5125
5126 discard:
5127 __kfree_skb(skb);
5128 return false;
5129 }
5130
5131 /*
5132 * TCP receive function for the ESTABLISHED state.
5133 *
5134 * It is split into a fast path and a slow path. The fast path is
5135 * disabled when:
5136 * - A zero window was announced from us - zero window probing
5137 * is only handled properly in the slow path.
5138 * - Out of order segments arrived.
5139 * - Urgent data is expected.
5140 * - There is no buffer space left
5141 * - Unexpected TCP flags/window values/header lengths are received
5142 * (detected by checking the TCP header against pred_flags)
5143 * - Data is sent in both directions. Fast path only supports pure senders
5144 * or pure receivers (this means either the sequence number or the ack
5145 * value must stay constant)
5146 * - Unexpected TCP option.
5147 *
5148 * When these conditions are not satisfied it drops into a standard
5149 * receive procedure patterned after RFC793 to handle all cases.
5150 * The first three cases are guaranteed by proper pred_flags setting,
5151 * the rest is checked inline. Fast processing is turned on in
5152 * tcp_data_queue when everything is OK.
5153 */
5154 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5155 const struct tcphdr *th, unsigned int len)
5156 {
5157 struct tcp_sock *tp = tcp_sk(sk);
5158
5159 if (unlikely(sk->sk_rx_dst == NULL))
5160 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5161 /*
5162 * Header prediction.
5163 * The code loosely follows the one in the famous
5164 * "30 instruction TCP receive" Van Jacobson mail.
5165 *
5166 * Van's trick is to deposit buffers into socket queue
5167 * on a device interrupt, to call tcp_recv function
5168 * on the receive process context and checksum and copy
5169 * the buffer to user space. smart...
5170 *
5171 * Our current scheme is not silly either but we take the
5172 * extra cost of the net_bh soft interrupt processing...
5173 * We do checksum and copy also but from device to kernel.
5174 */
5175
5176 tp->rx_opt.saw_tstamp = 0;
5177
5178 /* pred_flags is 0xS?10 << 16 + snd_wnd
5179 * if header_prediction is to be made
5180 * 'S' will always be tp->tcp_header_len >> 2
5181 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5182 * turn it off (when there are holes in the receive
5183 * space for instance)
5184 * PSH flag is ignored.
5185 */
5186
5187 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5188 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5189 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5190 int tcp_header_len = tp->tcp_header_len;
5191
5192 /* Timestamp header prediction: tcp_header_len
5193 * is automatically equal to th->doff*4 due to pred_flags
5194 * match.
5195 */
5196
5197 /* Check timestamp */
5198 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5199 /* No? Slow path! */
5200 if (!tcp_parse_aligned_timestamp(tp, th))
5201 goto slow_path;
5202
5203 /* If PAWS failed, check it more carefully in slow path */
5204 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5205 goto slow_path;
5206
5207 /* DO NOT update ts_recent here, if checksum fails
5208 * and timestamp was corrupted part, it will result
5209 * in a hung connection since we will drop all
5210 * future packets due to the PAWS test.
5211 */
5212 }
5213
5214 if (len <= tcp_header_len) {
5215 /* Bulk data transfer: sender */
5216 if (len == tcp_header_len) {
5217 /* Predicted packet is in window by definition.
5218 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5219 * Hence, check seq<=rcv_wup reduces to:
5220 */
5221 if (tcp_header_len ==
5222 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5223 tp->rcv_nxt == tp->rcv_wup)
5224 tcp_store_ts_recent(tp);
5225
5226 /* We know that such packets are checksummed
5227 * on entry.
5228 */
5229 tcp_ack(sk, skb, 0);
5230 __kfree_skb(skb);
5231 tcp_data_snd_check(sk);
5232 return 0;
5233 } else { /* Header too small */
5234 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5235 goto discard;
5236 }
5237 } else {
5238 int eaten = 0;
5239 int copied_early = 0;
5240 bool fragstolen = false;
5241
5242 if (tp->copied_seq == tp->rcv_nxt &&
5243 len - tcp_header_len <= tp->ucopy.len) {
5244 #ifdef CONFIG_NET_DMA
5245 if (tp->ucopy.task == current &&
5246 sock_owned_by_user(sk) &&
5247 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5248 copied_early = 1;
5249 eaten = 1;
5250 }
5251 #endif
5252 if (tp->ucopy.task == current &&
5253 sock_owned_by_user(sk) && !copied_early) {
5254 __set_current_state(TASK_RUNNING);
5255
5256 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5257 eaten = 1;
5258 }
5259 if (eaten) {
5260 /* Predicted packet is in window by definition.
5261 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5262 * Hence, check seq<=rcv_wup reduces to:
5263 */
5264 if (tcp_header_len ==
5265 (sizeof(struct tcphdr) +
5266 TCPOLEN_TSTAMP_ALIGNED) &&
5267 tp->rcv_nxt == tp->rcv_wup)
5268 tcp_store_ts_recent(tp);
5269
5270 tcp_rcv_rtt_measure_ts(sk, skb);
5271
5272 __skb_pull(skb, tcp_header_len);
5273 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5275 }
5276 if (copied_early)
5277 tcp_cleanup_rbuf(sk, skb->len);
5278 }
5279 if (!eaten) {
5280 if (tcp_checksum_complete_user(sk, skb))
5281 goto csum_error;
5282
5283 if ((int)skb->truesize > sk->sk_forward_alloc)
5284 goto step5;
5285
5286 /* Predicted packet is in window by definition.
5287 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5288 * Hence, check seq<=rcv_wup reduces to:
5289 */
5290 if (tcp_header_len ==
5291 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5292 tp->rcv_nxt == tp->rcv_wup)
5293 tcp_store_ts_recent(tp);
5294
5295 tcp_rcv_rtt_measure_ts(sk, skb);
5296
5297 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5298
5299 /* Bulk data transfer: receiver */
5300 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5301 &fragstolen);
5302 }
5303
5304 tcp_event_data_recv(sk, skb);
5305
5306 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5307 /* Well, only one small jumplet in fast path... */
5308 tcp_ack(sk, skb, FLAG_DATA);
5309 tcp_data_snd_check(sk);
5310 if (!inet_csk_ack_scheduled(sk))
5311 goto no_ack;
5312 }
5313
5314 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5315 __tcp_ack_snd_check(sk, 0);
5316 no_ack:
5317 #ifdef CONFIG_NET_DMA
5318 if (copied_early)
5319 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5320 else
5321 #endif
5322 if (eaten)
5323 kfree_skb_partial(skb, fragstolen);
5324 sk->sk_data_ready(sk, 0);
5325 return 0;
5326 }
5327 }
5328
5329 slow_path:
5330 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5331 goto csum_error;
5332
5333 if (!th->ack && !th->rst)
5334 goto discard;
5335
5336 /*
5337 * Standard slow path.
5338 */
5339
5340 if (!tcp_validate_incoming(sk, skb, th, 1))
5341 return 0;
5342
5343 step5:
5344 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5345 goto discard;
5346
5347 tcp_rcv_rtt_measure_ts(sk, skb);
5348
5349 /* Process urgent data. */
5350 tcp_urg(sk, skb, th);
5351
5352 /* step 7: process the segment text */
5353 tcp_data_queue(sk, skb);
5354
5355 tcp_data_snd_check(sk);
5356 tcp_ack_snd_check(sk);
5357 return 0;
5358
5359 csum_error:
5360 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5361 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5362
5363 discard:
5364 __kfree_skb(skb);
5365 return 0;
5366 }
5367 EXPORT_SYMBOL(tcp_rcv_established);
5368
5369 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5370 {
5371 struct tcp_sock *tp = tcp_sk(sk);
5372 struct inet_connection_sock *icsk = inet_csk(sk);
5373
5374 tcp_set_state(sk, TCP_ESTABLISHED);
5375 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5376
5377 if (skb != NULL) {
5378 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5379 security_inet_conn_established(sk, skb);
5380 }
5381
5382 /* Make sure socket is routed, for correct metrics. */
5383 icsk->icsk_af_ops->rebuild_header(sk);
5384
5385 tcp_init_metrics(sk);
5386
5387 tcp_init_congestion_control(sk);
5388
5389 /* Prevent spurious tcp_cwnd_restart() on first data
5390 * packet.
5391 */
5392 tp->lsndtime = tcp_time_stamp;
5393
5394 tcp_init_buffer_space(sk);
5395
5396 if (sock_flag(sk, SOCK_KEEPOPEN))
5397 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5398
5399 if (!tp->rx_opt.snd_wscale)
5400 __tcp_fast_path_on(tp, tp->snd_wnd);
5401 else
5402 tp->pred_flags = 0;
5403
5404 if (!sock_flag(sk, SOCK_DEAD)) {
5405 sk->sk_state_change(sk);
5406 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5407 }
5408 }
5409
5410 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5411 struct tcp_fastopen_cookie *cookie)
5412 {
5413 struct tcp_sock *tp = tcp_sk(sk);
5414 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5415 u16 mss = tp->rx_opt.mss_clamp;
5416 bool syn_drop;
5417
5418 if (mss == tp->rx_opt.user_mss) {
5419 struct tcp_options_received opt;
5420
5421 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5422 tcp_clear_options(&opt);
5423 opt.user_mss = opt.mss_clamp = 0;
5424 tcp_parse_options(synack, &opt, 0, NULL);
5425 mss = opt.mss_clamp;
5426 }
5427
5428 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5429 cookie->len = -1;
5430
5431 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5432 * the remote receives only the retransmitted (regular) SYNs: either
5433 * the original SYN-data or the corresponding SYN-ACK is lost.
5434 */
5435 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5436
5437 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5438
5439 if (data) { /* Retransmit unacked data in SYN */
5440 tcp_for_write_queue_from(data, sk) {
5441 if (data == tcp_send_head(sk) ||
5442 __tcp_retransmit_skb(sk, data))
5443 break;
5444 }
5445 tcp_rearm_rto(sk);
5446 return true;
5447 }
5448 tp->syn_data_acked = tp->syn_data;
5449 return false;
5450 }
5451
5452 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5453 const struct tcphdr *th, unsigned int len)
5454 {
5455 struct inet_connection_sock *icsk = inet_csk(sk);
5456 struct tcp_sock *tp = tcp_sk(sk);
5457 struct tcp_fastopen_cookie foc = { .len = -1 };
5458 int saved_clamp = tp->rx_opt.mss_clamp;
5459
5460 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5461 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5462 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5463
5464 if (th->ack) {
5465 /* rfc793:
5466 * "If the state is SYN-SENT then
5467 * first check the ACK bit
5468 * If the ACK bit is set
5469 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5470 * a reset (unless the RST bit is set, if so drop
5471 * the segment and return)"
5472 */
5473 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5474 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5475 goto reset_and_undo;
5476
5477 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5478 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5479 tcp_time_stamp)) {
5480 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5481 goto reset_and_undo;
5482 }
5483
5484 /* Now ACK is acceptable.
5485 *
5486 * "If the RST bit is set
5487 * If the ACK was acceptable then signal the user "error:
5488 * connection reset", drop the segment, enter CLOSED state,
5489 * delete TCB, and return."
5490 */
5491
5492 if (th->rst) {
5493 tcp_reset(sk);
5494 goto discard;
5495 }
5496
5497 /* rfc793:
5498 * "fifth, if neither of the SYN or RST bits is set then
5499 * drop the segment and return."
5500 *
5501 * See note below!
5502 * --ANK(990513)
5503 */
5504 if (!th->syn)
5505 goto discard_and_undo;
5506
5507 /* rfc793:
5508 * "If the SYN bit is on ...
5509 * are acceptable then ...
5510 * (our SYN has been ACKed), change the connection
5511 * state to ESTABLISHED..."
5512 */
5513
5514 TCP_ECN_rcv_synack(tp, th);
5515
5516 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5517 tcp_ack(sk, skb, FLAG_SLOWPATH);
5518
5519 /* Ok.. it's good. Set up sequence numbers and
5520 * move to established.
5521 */
5522 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5523 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5524
5525 /* RFC1323: The window in SYN & SYN/ACK segments is
5526 * never scaled.
5527 */
5528 tp->snd_wnd = ntohs(th->window);
5529
5530 if (!tp->rx_opt.wscale_ok) {
5531 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5532 tp->window_clamp = min(tp->window_clamp, 65535U);
5533 }
5534
5535 if (tp->rx_opt.saw_tstamp) {
5536 tp->rx_opt.tstamp_ok = 1;
5537 tp->tcp_header_len =
5538 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5539 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5540 tcp_store_ts_recent(tp);
5541 } else {
5542 tp->tcp_header_len = sizeof(struct tcphdr);
5543 }
5544
5545 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5546 tcp_enable_fack(tp);
5547
5548 tcp_mtup_init(sk);
5549 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5550 tcp_initialize_rcv_mss(sk);
5551
5552 /* Remember, tcp_poll() does not lock socket!
5553 * Change state from SYN-SENT only after copied_seq
5554 * is initialized. */
5555 tp->copied_seq = tp->rcv_nxt;
5556
5557 smp_mb();
5558
5559 tcp_finish_connect(sk, skb);
5560
5561 if ((tp->syn_fastopen || tp->syn_data) &&
5562 tcp_rcv_fastopen_synack(sk, skb, &foc))
5563 return -1;
5564
5565 if (sk->sk_write_pending ||
5566 icsk->icsk_accept_queue.rskq_defer_accept ||
5567 icsk->icsk_ack.pingpong) {
5568 /* Save one ACK. Data will be ready after
5569 * several ticks, if write_pending is set.
5570 *
5571 * It may be deleted, but with this feature tcpdumps
5572 * look so _wonderfully_ clever, that I was not able
5573 * to stand against the temptation 8) --ANK
5574 */
5575 inet_csk_schedule_ack(sk);
5576 tcp_enter_quickack_mode(sk);
5577 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5578 TCP_DELACK_MAX, sysctl_tcp_rto_max);
5579
5580 discard:
5581 __kfree_skb(skb);
5582 return 0;
5583 } else {
5584 tcp_send_ack(sk);
5585 }
5586 return -1;
5587 }
5588
5589 /* No ACK in the segment */
5590
5591 if (th->rst) {
5592 /* rfc793:
5593 * "If the RST bit is set
5594 *
5595 * Otherwise (no ACK) drop the segment and return."
5596 */
5597
5598 goto discard_and_undo;
5599 }
5600
5601 /* PAWS check. */
5602 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5603 tcp_paws_reject(&tp->rx_opt, 0))
5604 goto discard_and_undo;
5605
5606 if (th->syn) {
5607 /* We see SYN without ACK. It is attempt of
5608 * simultaneous connect with crossed SYNs.
5609 * Particularly, it can be connect to self.
5610 */
5611 tcp_set_state(sk, TCP_SYN_RECV);
5612
5613 if (tp->rx_opt.saw_tstamp) {
5614 tp->rx_opt.tstamp_ok = 1;
5615 tcp_store_ts_recent(tp);
5616 tp->tcp_header_len =
5617 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5618 } else {
5619 tp->tcp_header_len = sizeof(struct tcphdr);
5620 }
5621
5622 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5623 tp->copied_seq = tp->rcv_nxt;
5624 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5625
5626 /* RFC1323: The window in SYN & SYN/ACK segments is
5627 * never scaled.
5628 */
5629 tp->snd_wnd = ntohs(th->window);
5630 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5631 tp->max_window = tp->snd_wnd;
5632
5633 TCP_ECN_rcv_syn(tp, th);
5634
5635 tcp_mtup_init(sk);
5636 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5637 tcp_initialize_rcv_mss(sk);
5638
5639 tcp_send_synack(sk);
5640 #if 0
5641 /* Note, we could accept data and URG from this segment.
5642 * There are no obstacles to make this (except that we must
5643 * either change tcp_recvmsg() to prevent it from returning data
5644 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5645 *
5646 * However, if we ignore data in ACKless segments sometimes,
5647 * we have no reasons to accept it sometimes.
5648 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5649 * is not flawless. So, discard packet for sanity.
5650 * Uncomment this return to process the data.
5651 */
5652 return -1;
5653 #else
5654 goto discard;
5655 #endif
5656 }
5657 /* "fifth, if neither of the SYN or RST bits is set then
5658 * drop the segment and return."
5659 */
5660
5661 discard_and_undo:
5662 tcp_clear_options(&tp->rx_opt);
5663 tp->rx_opt.mss_clamp = saved_clamp;
5664 goto discard;
5665
5666 reset_and_undo:
5667 tcp_clear_options(&tp->rx_opt);
5668 tp->rx_opt.mss_clamp = saved_clamp;
5669 return 1;
5670 }
5671
5672 /*
5673 * This function implements the receiving procedure of RFC 793 for
5674 * all states except ESTABLISHED and TIME_WAIT.
5675 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5676 * address independent.
5677 */
5678
5679 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5680 const struct tcphdr *th, unsigned int len)
5681 {
5682 struct tcp_sock *tp = tcp_sk(sk);
5683 struct inet_connection_sock *icsk = inet_csk(sk);
5684 struct request_sock *req;
5685 int queued = 0;
5686
5687 tp->rx_opt.saw_tstamp = 0;
5688
5689 switch (sk->sk_state) {
5690 case TCP_CLOSE:
5691 goto discard;
5692
5693 case TCP_LISTEN:
5694 if (th->ack)
5695 return 1;
5696
5697 if (th->rst)
5698 goto discard;
5699
5700 if (th->syn) {
5701 if (th->fin)
5702 goto discard;
5703 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5704 return 1;
5705
5706 /* Now we have several options: In theory there is
5707 * nothing else in the frame. KA9Q has an option to
5708 * send data with the syn, BSD accepts data with the
5709 * syn up to the [to be] advertised window and
5710 * Solaris 2.1 gives you a protocol error. For now
5711 * we just ignore it, that fits the spec precisely
5712 * and avoids incompatibilities. It would be nice in
5713 * future to drop through and process the data.
5714 *
5715 * Now that TTCP is starting to be used we ought to
5716 * queue this data.
5717 * But, this leaves one open to an easy denial of
5718 * service attack, and SYN cookies can't defend
5719 * against this problem. So, we drop the data
5720 * in the interest of security over speed unless
5721 * it's still in use.
5722 */
5723 kfree_skb(skb);
5724 return 0;
5725 }
5726 goto discard;
5727
5728 case TCP_SYN_SENT:
5729 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5730 if (queued >= 0)
5731 return queued;
5732
5733 /* Do step6 onward by hand. */
5734 tcp_urg(sk, skb, th);
5735 __kfree_skb(skb);
5736 tcp_data_snd_check(sk);
5737 return 0;
5738 }
5739
5740 req = tp->fastopen_rsk;
5741 if (req != NULL) {
5742 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5743 sk->sk_state != TCP_FIN_WAIT1);
5744
5745 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5746 goto discard;
5747 }
5748
5749 if (!th->ack && !th->rst)
5750 goto discard;
5751
5752 if (!tcp_validate_incoming(sk, skb, th, 0))
5753 return 0;
5754
5755 /* step 5: check the ACK field */
5756 if (true) {
5757 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5758 FLAG_UPDATE_TS_RECENT) > 0;
5759
5760 switch (sk->sk_state) {
5761 case TCP_SYN_RECV:
5762 if (acceptable) {
5763 /* Once we leave TCP_SYN_RECV, we no longer
5764 * need req so release it.
5765 */
5766 if (req) {
5767 tcp_synack_rtt_meas(sk, req);
5768 tp->total_retrans = req->num_retrans;
5769
5770 reqsk_fastopen_remove(sk, req, false);
5771 } else {
5772 /* Make sure socket is routed, for
5773 * correct metrics.
5774 */
5775 icsk->icsk_af_ops->rebuild_header(sk);
5776 tcp_init_congestion_control(sk);
5777
5778 tcp_mtup_init(sk);
5779 tcp_init_buffer_space(sk);
5780 tp->copied_seq = tp->rcv_nxt;
5781 }
5782 smp_mb();
5783 tcp_set_state(sk, TCP_ESTABLISHED);
5784 sk->sk_state_change(sk);
5785
5786 /* Note, that this wakeup is only for marginal
5787 * crossed SYN case. Passively open sockets
5788 * are not waked up, because sk->sk_sleep ==
5789 * NULL and sk->sk_socket == NULL.
5790 */
5791 if (sk->sk_socket)
5792 sk_wake_async(sk,
5793 SOCK_WAKE_IO, POLL_OUT);
5794
5795 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5796 tp->snd_wnd = ntohs(th->window) <<
5797 tp->rx_opt.snd_wscale;
5798 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5799
5800 if (tp->rx_opt.tstamp_ok)
5801 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5802
5803 if (req) {
5804 /* Re-arm the timer because data may
5805 * have been sent out. This is similar
5806 * to the regular data transmission case
5807 * when new data has just been ack'ed.
5808 *
5809 * (TFO) - we could try to be more
5810 * aggressive and retranmitting any data
5811 * sooner based on when they were sent
5812 * out.
5813 */
5814 tcp_rearm_rto(sk);
5815 } else
5816 tcp_init_metrics(sk);
5817
5818 tcp_update_pacing_rate(sk);
5819
5820 /* Prevent spurious tcp_cwnd_restart() on
5821 * first data packet.
5822 */
5823 tp->lsndtime = tcp_time_stamp;
5824
5825 tcp_initialize_rcv_mss(sk);
5826 tcp_fast_path_on(tp);
5827 } else {
5828 return 1;
5829 }
5830 break;
5831
5832 case TCP_FIN_WAIT1:
5833 /* If we enter the TCP_FIN_WAIT1 state and we are a
5834 * Fast Open socket and this is the first acceptable
5835 * ACK we have received, this would have acknowledged
5836 * our SYNACK so stop the SYNACK timer.
5837 */
5838 if (req != NULL) {
5839 /* Return RST if ack_seq is invalid.
5840 * Note that RFC793 only says to generate a
5841 * DUPACK for it but for TCP Fast Open it seems
5842 * better to treat this case like TCP_SYN_RECV
5843 * above.
5844 */
5845 if (!acceptable)
5846 return 1;
5847 /* We no longer need the request sock. */
5848 reqsk_fastopen_remove(sk, req, false);
5849 tcp_rearm_rto(sk);
5850 }
5851 if (tp->snd_una == tp->write_seq) {
5852 struct dst_entry *dst;
5853
5854 tcp_set_state(sk, TCP_FIN_WAIT2);
5855 sk->sk_shutdown |= SEND_SHUTDOWN;
5856
5857 dst = __sk_dst_get(sk);
5858 if (dst)
5859 dst_confirm(dst);
5860
5861 if (!sock_flag(sk, SOCK_DEAD))
5862 /* Wake up lingering close() */
5863 sk->sk_state_change(sk);
5864 else {
5865 int tmo;
5866
5867 if (tp->linger2 < 0 ||
5868 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5869 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5870 tcp_done(sk);
5871 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5872 return 1;
5873 }
5874
5875 tmo = tcp_fin_time(sk);
5876 if (tmo > TCP_TIMEWAIT_LEN) {
5877 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5878 } else if (th->fin || sock_owned_by_user(sk)) {
5879 /* Bad case. We could lose such FIN otherwise.
5880 * It is not a big problem, but it looks confusing
5881 * and not so rare event. We still can lose it now,
5882 * if it spins in bh_lock_sock(), but it is really
5883 * marginal case.
5884 */
5885 inet_csk_reset_keepalive_timer(sk, tmo);
5886 } else {
5887 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5888 goto discard;
5889 }
5890 }
5891 }
5892 break;
5893
5894 case TCP_CLOSING:
5895 if (tp->snd_una == tp->write_seq) {
5896 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5897 goto discard;
5898 }
5899 break;
5900
5901 case TCP_LAST_ACK:
5902 if (tp->snd_una == tp->write_seq) {
5903 tcp_update_metrics(sk);
5904 tcp_done(sk);
5905 goto discard;
5906 }
5907 break;
5908 }
5909 }
5910
5911 /* step 6: check the URG bit */
5912 tcp_urg(sk, skb, th);
5913
5914 /* step 7: process the segment text */
5915 switch (sk->sk_state) {
5916 case TCP_CLOSE_WAIT:
5917 case TCP_CLOSING:
5918 case TCP_LAST_ACK:
5919 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5920 break;
5921 case TCP_FIN_WAIT1:
5922 case TCP_FIN_WAIT2:
5923 /* RFC 793 says to queue data in these states,
5924 * RFC 1122 says we MUST send a reset.
5925 * BSD 4.4 also does reset.
5926 */
5927 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5928 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5929 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5930 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5931 tcp_reset(sk);
5932 return 1;
5933 }
5934 }
5935 /* Fall through */
5936 case TCP_ESTABLISHED:
5937 tcp_data_queue(sk, skb);
5938 queued = 1;
5939 break;
5940 }
5941
5942 /* tcp_data could move socket to TIME-WAIT */
5943 if (sk->sk_state != TCP_CLOSE) {
5944 tcp_data_snd_check(sk);
5945 tcp_ack_snd_check(sk);
5946 }
5947
5948 if (!queued) {
5949 discard:
5950 __kfree_skb(skb);
5951 }
5952 return 0;
5953 }
5954 EXPORT_SYMBOL(tcp_rcv_state_process);