[IPV4]: struct fib_config IPv4 address fields annotated
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / fib_frontend.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * IPv4 Forwarding Information Base: FIB frontend.
7 *
8 * Version: $Id: fib_frontend.c,v 1.26 2001/10/31 21:55:54 davem Exp $
9 *
10 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18 #include <linux/module.h>
19 #include <asm/uaccess.h>
20 #include <asm/system.h>
21 #include <linux/bitops.h>
22 #include <linux/capability.h>
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/mm.h>
27 #include <linux/string.h>
28 #include <linux/socket.h>
29 #include <linux/sockios.h>
30 #include <linux/errno.h>
31 #include <linux/in.h>
32 #include <linux/inet.h>
33 #include <linux/inetdevice.h>
34 #include <linux/netdevice.h>
35 #include <linux/if_addr.h>
36 #include <linux/if_arp.h>
37 #include <linux/skbuff.h>
38 #include <linux/netlink.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41
42 #include <net/ip.h>
43 #include <net/protocol.h>
44 #include <net/route.h>
45 #include <net/tcp.h>
46 #include <net/sock.h>
47 #include <net/icmp.h>
48 #include <net/arp.h>
49 #include <net/ip_fib.h>
50
51 #define FFprint(a...) printk(KERN_DEBUG a)
52
53 #ifndef CONFIG_IP_MULTIPLE_TABLES
54
55 struct fib_table *ip_fib_local_table;
56 struct fib_table *ip_fib_main_table;
57
58 #define FIB_TABLE_HASHSZ 1
59 static struct hlist_head fib_table_hash[FIB_TABLE_HASHSZ];
60
61 #else
62
63 #define FIB_TABLE_HASHSZ 256
64 static struct hlist_head fib_table_hash[FIB_TABLE_HASHSZ];
65
66 struct fib_table *fib_new_table(u32 id)
67 {
68 struct fib_table *tb;
69 unsigned int h;
70
71 if (id == 0)
72 id = RT_TABLE_MAIN;
73 tb = fib_get_table(id);
74 if (tb)
75 return tb;
76 tb = fib_hash_init(id);
77 if (!tb)
78 return NULL;
79 h = id & (FIB_TABLE_HASHSZ - 1);
80 hlist_add_head_rcu(&tb->tb_hlist, &fib_table_hash[h]);
81 return tb;
82 }
83
84 struct fib_table *fib_get_table(u32 id)
85 {
86 struct fib_table *tb;
87 struct hlist_node *node;
88 unsigned int h;
89
90 if (id == 0)
91 id = RT_TABLE_MAIN;
92 h = id & (FIB_TABLE_HASHSZ - 1);
93 rcu_read_lock();
94 hlist_for_each_entry_rcu(tb, node, &fib_table_hash[h], tb_hlist) {
95 if (tb->tb_id == id) {
96 rcu_read_unlock();
97 return tb;
98 }
99 }
100 rcu_read_unlock();
101 return NULL;
102 }
103 #endif /* CONFIG_IP_MULTIPLE_TABLES */
104
105 static void fib_flush(void)
106 {
107 int flushed = 0;
108 struct fib_table *tb;
109 struct hlist_node *node;
110 unsigned int h;
111
112 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
113 hlist_for_each_entry(tb, node, &fib_table_hash[h], tb_hlist)
114 flushed += tb->tb_flush(tb);
115 }
116
117 if (flushed)
118 rt_cache_flush(-1);
119 }
120
121 /*
122 * Find the first device with a given source address.
123 */
124
125 struct net_device * ip_dev_find(u32 addr)
126 {
127 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = addr } } };
128 struct fib_result res;
129 struct net_device *dev = NULL;
130
131 #ifdef CONFIG_IP_MULTIPLE_TABLES
132 res.r = NULL;
133 #endif
134
135 if (!ip_fib_local_table ||
136 ip_fib_local_table->tb_lookup(ip_fib_local_table, &fl, &res))
137 return NULL;
138 if (res.type != RTN_LOCAL)
139 goto out;
140 dev = FIB_RES_DEV(res);
141
142 if (dev)
143 dev_hold(dev);
144 out:
145 fib_res_put(&res);
146 return dev;
147 }
148
149 unsigned inet_addr_type(u32 addr)
150 {
151 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = addr } } };
152 struct fib_result res;
153 unsigned ret = RTN_BROADCAST;
154
155 if (ZERONET(addr) || BADCLASS(addr))
156 return RTN_BROADCAST;
157 if (MULTICAST(addr))
158 return RTN_MULTICAST;
159
160 #ifdef CONFIG_IP_MULTIPLE_TABLES
161 res.r = NULL;
162 #endif
163
164 if (ip_fib_local_table) {
165 ret = RTN_UNICAST;
166 if (!ip_fib_local_table->tb_lookup(ip_fib_local_table,
167 &fl, &res)) {
168 ret = res.type;
169 fib_res_put(&res);
170 }
171 }
172 return ret;
173 }
174
175 /* Given (packet source, input interface) and optional (dst, oif, tos):
176 - (main) check, that source is valid i.e. not broadcast or our local
177 address.
178 - figure out what "logical" interface this packet arrived
179 and calculate "specific destination" address.
180 - check, that packet arrived from expected physical interface.
181 */
182
183 int fib_validate_source(__be32 src, __be32 dst, u8 tos, int oif,
184 struct net_device *dev, __be32 *spec_dst, u32 *itag)
185 {
186 struct in_device *in_dev;
187 struct flowi fl = { .nl_u = { .ip4_u =
188 { .daddr = src,
189 .saddr = dst,
190 .tos = tos } },
191 .iif = oif };
192 struct fib_result res;
193 int no_addr, rpf;
194 int ret;
195
196 no_addr = rpf = 0;
197 rcu_read_lock();
198 in_dev = __in_dev_get_rcu(dev);
199 if (in_dev) {
200 no_addr = in_dev->ifa_list == NULL;
201 rpf = IN_DEV_RPFILTER(in_dev);
202 }
203 rcu_read_unlock();
204
205 if (in_dev == NULL)
206 goto e_inval;
207
208 if (fib_lookup(&fl, &res))
209 goto last_resort;
210 if (res.type != RTN_UNICAST)
211 goto e_inval_res;
212 *spec_dst = FIB_RES_PREFSRC(res);
213 fib_combine_itag(itag, &res);
214 #ifdef CONFIG_IP_ROUTE_MULTIPATH
215 if (FIB_RES_DEV(res) == dev || res.fi->fib_nhs > 1)
216 #else
217 if (FIB_RES_DEV(res) == dev)
218 #endif
219 {
220 ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
221 fib_res_put(&res);
222 return ret;
223 }
224 fib_res_put(&res);
225 if (no_addr)
226 goto last_resort;
227 if (rpf)
228 goto e_inval;
229 fl.oif = dev->ifindex;
230
231 ret = 0;
232 if (fib_lookup(&fl, &res) == 0) {
233 if (res.type == RTN_UNICAST) {
234 *spec_dst = FIB_RES_PREFSRC(res);
235 ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
236 }
237 fib_res_put(&res);
238 }
239 return ret;
240
241 last_resort:
242 if (rpf)
243 goto e_inval;
244 *spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
245 *itag = 0;
246 return 0;
247
248 e_inval_res:
249 fib_res_put(&res);
250 e_inval:
251 return -EINVAL;
252 }
253
254 #ifndef CONFIG_IP_NOSIOCRT
255
256 static inline u32 sk_extract_addr(struct sockaddr *addr)
257 {
258 return ((struct sockaddr_in *) addr)->sin_addr.s_addr;
259 }
260
261 static int put_rtax(struct nlattr *mx, int len, int type, u32 value)
262 {
263 struct nlattr *nla;
264
265 nla = (struct nlattr *) ((char *) mx + len);
266 nla->nla_type = type;
267 nla->nla_len = nla_attr_size(4);
268 *(u32 *) nla_data(nla) = value;
269
270 return len + nla_total_size(4);
271 }
272
273 static int rtentry_to_fib_config(int cmd, struct rtentry *rt,
274 struct fib_config *cfg)
275 {
276 __be32 addr;
277 int plen;
278
279 memset(cfg, 0, sizeof(*cfg));
280
281 if (rt->rt_dst.sa_family != AF_INET)
282 return -EAFNOSUPPORT;
283
284 /*
285 * Check mask for validity:
286 * a) it must be contiguous.
287 * b) destination must have all host bits clear.
288 * c) if application forgot to set correct family (AF_INET),
289 * reject request unless it is absolutely clear i.e.
290 * both family and mask are zero.
291 */
292 plen = 32;
293 addr = sk_extract_addr(&rt->rt_dst);
294 if (!(rt->rt_flags & RTF_HOST)) {
295 u32 mask = sk_extract_addr(&rt->rt_genmask);
296
297 if (rt->rt_genmask.sa_family != AF_INET) {
298 if (mask || rt->rt_genmask.sa_family)
299 return -EAFNOSUPPORT;
300 }
301
302 if (bad_mask(mask, addr))
303 return -EINVAL;
304
305 plen = inet_mask_len(mask);
306 }
307
308 cfg->fc_dst_len = plen;
309 cfg->fc_dst = addr;
310
311 if (cmd != SIOCDELRT) {
312 cfg->fc_nlflags = NLM_F_CREATE;
313 cfg->fc_protocol = RTPROT_BOOT;
314 }
315
316 if (rt->rt_metric)
317 cfg->fc_priority = rt->rt_metric - 1;
318
319 if (rt->rt_flags & RTF_REJECT) {
320 cfg->fc_scope = RT_SCOPE_HOST;
321 cfg->fc_type = RTN_UNREACHABLE;
322 return 0;
323 }
324
325 cfg->fc_scope = RT_SCOPE_NOWHERE;
326 cfg->fc_type = RTN_UNICAST;
327
328 if (rt->rt_dev) {
329 char *colon;
330 struct net_device *dev;
331 char devname[IFNAMSIZ];
332
333 if (copy_from_user(devname, rt->rt_dev, IFNAMSIZ-1))
334 return -EFAULT;
335
336 devname[IFNAMSIZ-1] = 0;
337 colon = strchr(devname, ':');
338 if (colon)
339 *colon = 0;
340 dev = __dev_get_by_name(devname);
341 if (!dev)
342 return -ENODEV;
343 cfg->fc_oif = dev->ifindex;
344 if (colon) {
345 struct in_ifaddr *ifa;
346 struct in_device *in_dev = __in_dev_get_rtnl(dev);
347 if (!in_dev)
348 return -ENODEV;
349 *colon = ':';
350 for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next)
351 if (strcmp(ifa->ifa_label, devname) == 0)
352 break;
353 if (ifa == NULL)
354 return -ENODEV;
355 cfg->fc_prefsrc = ifa->ifa_local;
356 }
357 }
358
359 addr = sk_extract_addr(&rt->rt_gateway);
360 if (rt->rt_gateway.sa_family == AF_INET && addr) {
361 cfg->fc_gw = addr;
362 if (rt->rt_flags & RTF_GATEWAY &&
363 inet_addr_type(addr) == RTN_UNICAST)
364 cfg->fc_scope = RT_SCOPE_UNIVERSE;
365 }
366
367 if (cmd == SIOCDELRT)
368 return 0;
369
370 if (rt->rt_flags & RTF_GATEWAY && !cfg->fc_gw)
371 return -EINVAL;
372
373 if (cfg->fc_scope == RT_SCOPE_NOWHERE)
374 cfg->fc_scope = RT_SCOPE_LINK;
375
376 if (rt->rt_flags & (RTF_MTU | RTF_WINDOW | RTF_IRTT)) {
377 struct nlattr *mx;
378 int len = 0;
379
380 mx = kzalloc(3 * nla_total_size(4), GFP_KERNEL);
381 if (mx == NULL)
382 return -ENOMEM;
383
384 if (rt->rt_flags & RTF_MTU)
385 len = put_rtax(mx, len, RTAX_ADVMSS, rt->rt_mtu - 40);
386
387 if (rt->rt_flags & RTF_WINDOW)
388 len = put_rtax(mx, len, RTAX_WINDOW, rt->rt_window);
389
390 if (rt->rt_flags & RTF_IRTT)
391 len = put_rtax(mx, len, RTAX_RTT, rt->rt_irtt << 3);
392
393 cfg->fc_mx = mx;
394 cfg->fc_mx_len = len;
395 }
396
397 return 0;
398 }
399
400 /*
401 * Handle IP routing ioctl calls. These are used to manipulate the routing tables
402 */
403
404 int ip_rt_ioctl(unsigned int cmd, void __user *arg)
405 {
406 struct fib_config cfg;
407 struct rtentry rt;
408 int err;
409
410 switch (cmd) {
411 case SIOCADDRT: /* Add a route */
412 case SIOCDELRT: /* Delete a route */
413 if (!capable(CAP_NET_ADMIN))
414 return -EPERM;
415
416 if (copy_from_user(&rt, arg, sizeof(rt)))
417 return -EFAULT;
418
419 rtnl_lock();
420 err = rtentry_to_fib_config(cmd, &rt, &cfg);
421 if (err == 0) {
422 struct fib_table *tb;
423
424 if (cmd == SIOCDELRT) {
425 tb = fib_get_table(cfg.fc_table);
426 if (tb)
427 err = tb->tb_delete(tb, &cfg);
428 else
429 err = -ESRCH;
430 } else {
431 tb = fib_new_table(cfg.fc_table);
432 if (tb)
433 err = tb->tb_insert(tb, &cfg);
434 else
435 err = -ENOBUFS;
436 }
437
438 /* allocated by rtentry_to_fib_config() */
439 kfree(cfg.fc_mx);
440 }
441 rtnl_unlock();
442 return err;
443 }
444 return -EINVAL;
445 }
446
447 #else
448
449 int ip_rt_ioctl(unsigned int cmd, void *arg)
450 {
451 return -EINVAL;
452 }
453
454 #endif
455
456 struct nla_policy rtm_ipv4_policy[RTA_MAX+1] __read_mostly = {
457 [RTA_DST] = { .type = NLA_U32 },
458 [RTA_SRC] = { .type = NLA_U32 },
459 [RTA_IIF] = { .type = NLA_U32 },
460 [RTA_OIF] = { .type = NLA_U32 },
461 [RTA_GATEWAY] = { .type = NLA_U32 },
462 [RTA_PRIORITY] = { .type = NLA_U32 },
463 [RTA_PREFSRC] = { .type = NLA_U32 },
464 [RTA_METRICS] = { .type = NLA_NESTED },
465 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
466 [RTA_PROTOINFO] = { .type = NLA_U32 },
467 [RTA_FLOW] = { .type = NLA_U32 },
468 [RTA_MP_ALGO] = { .type = NLA_U32 },
469 };
470
471 static int rtm_to_fib_config(struct sk_buff *skb, struct nlmsghdr *nlh,
472 struct fib_config *cfg)
473 {
474 struct nlattr *attr;
475 int err, remaining;
476 struct rtmsg *rtm;
477
478 err = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipv4_policy);
479 if (err < 0)
480 goto errout;
481
482 memset(cfg, 0, sizeof(*cfg));
483
484 rtm = nlmsg_data(nlh);
485 cfg->fc_family = rtm->rtm_family;
486 cfg->fc_dst_len = rtm->rtm_dst_len;
487 cfg->fc_src_len = rtm->rtm_src_len;
488 cfg->fc_tos = rtm->rtm_tos;
489 cfg->fc_table = rtm->rtm_table;
490 cfg->fc_protocol = rtm->rtm_protocol;
491 cfg->fc_scope = rtm->rtm_scope;
492 cfg->fc_type = rtm->rtm_type;
493 cfg->fc_flags = rtm->rtm_flags;
494 cfg->fc_nlflags = nlh->nlmsg_flags;
495
496 cfg->fc_nlinfo.pid = NETLINK_CB(skb).pid;
497 cfg->fc_nlinfo.nlh = nlh;
498
499 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), remaining) {
500 switch (attr->nla_type) {
501 case RTA_DST:
502 cfg->fc_dst = nla_get_be32(attr);
503 break;
504 case RTA_SRC:
505 cfg->fc_src = nla_get_be32(attr);
506 break;
507 case RTA_OIF:
508 cfg->fc_oif = nla_get_u32(attr);
509 break;
510 case RTA_GATEWAY:
511 cfg->fc_gw = nla_get_be32(attr);
512 break;
513 case RTA_PRIORITY:
514 cfg->fc_priority = nla_get_u32(attr);
515 break;
516 case RTA_PREFSRC:
517 cfg->fc_prefsrc = nla_get_be32(attr);
518 break;
519 case RTA_METRICS:
520 cfg->fc_mx = nla_data(attr);
521 cfg->fc_mx_len = nla_len(attr);
522 break;
523 case RTA_MULTIPATH:
524 cfg->fc_mp = nla_data(attr);
525 cfg->fc_mp_len = nla_len(attr);
526 break;
527 case RTA_FLOW:
528 cfg->fc_flow = nla_get_u32(attr);
529 break;
530 case RTA_MP_ALGO:
531 cfg->fc_mp_alg = nla_get_u32(attr);
532 break;
533 case RTA_TABLE:
534 cfg->fc_table = nla_get_u32(attr);
535 break;
536 }
537 }
538
539 return 0;
540 errout:
541 return err;
542 }
543
544 int inet_rtm_delroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
545 {
546 struct fib_config cfg;
547 struct fib_table *tb;
548 int err;
549
550 err = rtm_to_fib_config(skb, nlh, &cfg);
551 if (err < 0)
552 goto errout;
553
554 tb = fib_get_table(cfg.fc_table);
555 if (tb == NULL) {
556 err = -ESRCH;
557 goto errout;
558 }
559
560 err = tb->tb_delete(tb, &cfg);
561 errout:
562 return err;
563 }
564
565 int inet_rtm_newroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
566 {
567 struct fib_config cfg;
568 struct fib_table *tb;
569 int err;
570
571 err = rtm_to_fib_config(skb, nlh, &cfg);
572 if (err < 0)
573 goto errout;
574
575 tb = fib_new_table(cfg.fc_table);
576 if (tb == NULL) {
577 err = -ENOBUFS;
578 goto errout;
579 }
580
581 err = tb->tb_insert(tb, &cfg);
582 errout:
583 return err;
584 }
585
586 int inet_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
587 {
588 unsigned int h, s_h;
589 unsigned int e = 0, s_e;
590 struct fib_table *tb;
591 struct hlist_node *node;
592 int dumped = 0;
593
594 if (nlmsg_len(cb->nlh) >= sizeof(struct rtmsg) &&
595 ((struct rtmsg *) nlmsg_data(cb->nlh))->rtm_flags & RTM_F_CLONED)
596 return ip_rt_dump(skb, cb);
597
598 s_h = cb->args[0];
599 s_e = cb->args[1];
600
601 for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
602 e = 0;
603 hlist_for_each_entry(tb, node, &fib_table_hash[h], tb_hlist) {
604 if (e < s_e)
605 goto next;
606 if (dumped)
607 memset(&cb->args[2], 0, sizeof(cb->args) -
608 2 * sizeof(cb->args[0]));
609 if (tb->tb_dump(tb, skb, cb) < 0)
610 goto out;
611 dumped = 1;
612 next:
613 e++;
614 }
615 }
616 out:
617 cb->args[1] = e;
618 cb->args[0] = h;
619
620 return skb->len;
621 }
622
623 /* Prepare and feed intra-kernel routing request.
624 Really, it should be netlink message, but :-( netlink
625 can be not configured, so that we feed it directly
626 to fib engine. It is legal, because all events occur
627 only when netlink is already locked.
628 */
629
630 static void fib_magic(int cmd, int type, u32 dst, int dst_len,
631 struct in_ifaddr *ifa)
632 {
633 struct fib_table *tb;
634 struct fib_config cfg = {
635 .fc_protocol = RTPROT_KERNEL,
636 .fc_type = type,
637 .fc_dst = dst,
638 .fc_dst_len = dst_len,
639 .fc_prefsrc = ifa->ifa_local,
640 .fc_oif = ifa->ifa_dev->dev->ifindex,
641 .fc_nlflags = NLM_F_CREATE | NLM_F_APPEND,
642 };
643
644 if (type == RTN_UNICAST)
645 tb = fib_new_table(RT_TABLE_MAIN);
646 else
647 tb = fib_new_table(RT_TABLE_LOCAL);
648
649 if (tb == NULL)
650 return;
651
652 cfg.fc_table = tb->tb_id;
653
654 if (type != RTN_LOCAL)
655 cfg.fc_scope = RT_SCOPE_LINK;
656 else
657 cfg.fc_scope = RT_SCOPE_HOST;
658
659 if (cmd == RTM_NEWROUTE)
660 tb->tb_insert(tb, &cfg);
661 else
662 tb->tb_delete(tb, &cfg);
663 }
664
665 void fib_add_ifaddr(struct in_ifaddr *ifa)
666 {
667 struct in_device *in_dev = ifa->ifa_dev;
668 struct net_device *dev = in_dev->dev;
669 struct in_ifaddr *prim = ifa;
670 u32 mask = ifa->ifa_mask;
671 u32 addr = ifa->ifa_local;
672 u32 prefix = ifa->ifa_address&mask;
673
674 if (ifa->ifa_flags&IFA_F_SECONDARY) {
675 prim = inet_ifa_byprefix(in_dev, prefix, mask);
676 if (prim == NULL) {
677 printk(KERN_DEBUG "fib_add_ifaddr: bug: prim == NULL\n");
678 return;
679 }
680 }
681
682 fib_magic(RTM_NEWROUTE, RTN_LOCAL, addr, 32, prim);
683
684 if (!(dev->flags&IFF_UP))
685 return;
686
687 /* Add broadcast address, if it is explicitly assigned. */
688 if (ifa->ifa_broadcast && ifa->ifa_broadcast != 0xFFFFFFFF)
689 fib_magic(RTM_NEWROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
690
691 if (!ZERONET(prefix) && !(ifa->ifa_flags&IFA_F_SECONDARY) &&
692 (prefix != addr || ifa->ifa_prefixlen < 32)) {
693 fib_magic(RTM_NEWROUTE, dev->flags&IFF_LOOPBACK ? RTN_LOCAL :
694 RTN_UNICAST, prefix, ifa->ifa_prefixlen, prim);
695
696 /* Add network specific broadcasts, when it takes a sense */
697 if (ifa->ifa_prefixlen < 31) {
698 fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix, 32, prim);
699 fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix|~mask, 32, prim);
700 }
701 }
702 }
703
704 static void fib_del_ifaddr(struct in_ifaddr *ifa)
705 {
706 struct in_device *in_dev = ifa->ifa_dev;
707 struct net_device *dev = in_dev->dev;
708 struct in_ifaddr *ifa1;
709 struct in_ifaddr *prim = ifa;
710 u32 brd = ifa->ifa_address|~ifa->ifa_mask;
711 u32 any = ifa->ifa_address&ifa->ifa_mask;
712 #define LOCAL_OK 1
713 #define BRD_OK 2
714 #define BRD0_OK 4
715 #define BRD1_OK 8
716 unsigned ok = 0;
717
718 if (!(ifa->ifa_flags&IFA_F_SECONDARY))
719 fib_magic(RTM_DELROUTE, dev->flags&IFF_LOOPBACK ? RTN_LOCAL :
720 RTN_UNICAST, any, ifa->ifa_prefixlen, prim);
721 else {
722 prim = inet_ifa_byprefix(in_dev, any, ifa->ifa_mask);
723 if (prim == NULL) {
724 printk(KERN_DEBUG "fib_del_ifaddr: bug: prim == NULL\n");
725 return;
726 }
727 }
728
729 /* Deletion is more complicated than add.
730 We should take care of not to delete too much :-)
731
732 Scan address list to be sure that addresses are really gone.
733 */
734
735 for (ifa1 = in_dev->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
736 if (ifa->ifa_local == ifa1->ifa_local)
737 ok |= LOCAL_OK;
738 if (ifa->ifa_broadcast == ifa1->ifa_broadcast)
739 ok |= BRD_OK;
740 if (brd == ifa1->ifa_broadcast)
741 ok |= BRD1_OK;
742 if (any == ifa1->ifa_broadcast)
743 ok |= BRD0_OK;
744 }
745
746 if (!(ok&BRD_OK))
747 fib_magic(RTM_DELROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
748 if (!(ok&BRD1_OK))
749 fib_magic(RTM_DELROUTE, RTN_BROADCAST, brd, 32, prim);
750 if (!(ok&BRD0_OK))
751 fib_magic(RTM_DELROUTE, RTN_BROADCAST, any, 32, prim);
752 if (!(ok&LOCAL_OK)) {
753 fib_magic(RTM_DELROUTE, RTN_LOCAL, ifa->ifa_local, 32, prim);
754
755 /* Check, that this local address finally disappeared. */
756 if (inet_addr_type(ifa->ifa_local) != RTN_LOCAL) {
757 /* And the last, but not the least thing.
758 We must flush stray FIB entries.
759
760 First of all, we scan fib_info list searching
761 for stray nexthop entries, then ignite fib_flush.
762 */
763 if (fib_sync_down(ifa->ifa_local, NULL, 0))
764 fib_flush();
765 }
766 }
767 #undef LOCAL_OK
768 #undef BRD_OK
769 #undef BRD0_OK
770 #undef BRD1_OK
771 }
772
773 static void nl_fib_lookup(struct fib_result_nl *frn, struct fib_table *tb )
774 {
775
776 struct fib_result res;
777 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = frn->fl_addr,
778 .fwmark = frn->fl_fwmark,
779 .tos = frn->fl_tos,
780 .scope = frn->fl_scope } } };
781 if (tb) {
782 local_bh_disable();
783
784 frn->tb_id = tb->tb_id;
785 frn->err = tb->tb_lookup(tb, &fl, &res);
786
787 if (!frn->err) {
788 frn->prefixlen = res.prefixlen;
789 frn->nh_sel = res.nh_sel;
790 frn->type = res.type;
791 frn->scope = res.scope;
792 }
793 local_bh_enable();
794 }
795 }
796
797 static void nl_fib_input(struct sock *sk, int len)
798 {
799 struct sk_buff *skb = NULL;
800 struct nlmsghdr *nlh = NULL;
801 struct fib_result_nl *frn;
802 u32 pid;
803 struct fib_table *tb;
804
805 skb = skb_dequeue(&sk->sk_receive_queue);
806 nlh = (struct nlmsghdr *)skb->data;
807 if (skb->len < NLMSG_SPACE(0) || skb->len < nlh->nlmsg_len ||
808 nlh->nlmsg_len < NLMSG_LENGTH(sizeof(*frn))) {
809 kfree_skb(skb);
810 return;
811 }
812
813 frn = (struct fib_result_nl *) NLMSG_DATA(nlh);
814 tb = fib_get_table(frn->tb_id_in);
815
816 nl_fib_lookup(frn, tb);
817
818 pid = nlh->nlmsg_pid; /*pid of sending process */
819 NETLINK_CB(skb).pid = 0; /* from kernel */
820 NETLINK_CB(skb).dst_pid = pid;
821 NETLINK_CB(skb).dst_group = 0; /* unicast */
822 netlink_unicast(sk, skb, pid, MSG_DONTWAIT);
823 }
824
825 static void nl_fib_lookup_init(void)
826 {
827 netlink_kernel_create(NETLINK_FIB_LOOKUP, 0, nl_fib_input, THIS_MODULE);
828 }
829
830 static void fib_disable_ip(struct net_device *dev, int force)
831 {
832 if (fib_sync_down(0, dev, force))
833 fib_flush();
834 rt_cache_flush(0);
835 arp_ifdown(dev);
836 }
837
838 static int fib_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
839 {
840 struct in_ifaddr *ifa = (struct in_ifaddr*)ptr;
841
842 switch (event) {
843 case NETDEV_UP:
844 fib_add_ifaddr(ifa);
845 #ifdef CONFIG_IP_ROUTE_MULTIPATH
846 fib_sync_up(ifa->ifa_dev->dev);
847 #endif
848 rt_cache_flush(-1);
849 break;
850 case NETDEV_DOWN:
851 fib_del_ifaddr(ifa);
852 if (ifa->ifa_dev->ifa_list == NULL) {
853 /* Last address was deleted from this interface.
854 Disable IP.
855 */
856 fib_disable_ip(ifa->ifa_dev->dev, 1);
857 } else {
858 rt_cache_flush(-1);
859 }
860 break;
861 }
862 return NOTIFY_DONE;
863 }
864
865 static int fib_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
866 {
867 struct net_device *dev = ptr;
868 struct in_device *in_dev = __in_dev_get_rtnl(dev);
869
870 if (event == NETDEV_UNREGISTER) {
871 fib_disable_ip(dev, 2);
872 return NOTIFY_DONE;
873 }
874
875 if (!in_dev)
876 return NOTIFY_DONE;
877
878 switch (event) {
879 case NETDEV_UP:
880 for_ifa(in_dev) {
881 fib_add_ifaddr(ifa);
882 } endfor_ifa(in_dev);
883 #ifdef CONFIG_IP_ROUTE_MULTIPATH
884 fib_sync_up(dev);
885 #endif
886 rt_cache_flush(-1);
887 break;
888 case NETDEV_DOWN:
889 fib_disable_ip(dev, 0);
890 break;
891 case NETDEV_CHANGEMTU:
892 case NETDEV_CHANGE:
893 rt_cache_flush(0);
894 break;
895 }
896 return NOTIFY_DONE;
897 }
898
899 static struct notifier_block fib_inetaddr_notifier = {
900 .notifier_call =fib_inetaddr_event,
901 };
902
903 static struct notifier_block fib_netdev_notifier = {
904 .notifier_call =fib_netdev_event,
905 };
906
907 void __init ip_fib_init(void)
908 {
909 unsigned int i;
910
911 for (i = 0; i < FIB_TABLE_HASHSZ; i++)
912 INIT_HLIST_HEAD(&fib_table_hash[i]);
913 #ifndef CONFIG_IP_MULTIPLE_TABLES
914 ip_fib_local_table = fib_hash_init(RT_TABLE_LOCAL);
915 hlist_add_head_rcu(&ip_fib_local_table->tb_hlist, &fib_table_hash[0]);
916 ip_fib_main_table = fib_hash_init(RT_TABLE_MAIN);
917 hlist_add_head_rcu(&ip_fib_main_table->tb_hlist, &fib_table_hash[0]);
918 #else
919 fib4_rules_init();
920 #endif
921
922 register_netdevice_notifier(&fib_netdev_notifier);
923 register_inetaddr_notifier(&fib_inetaddr_notifier);
924 nl_fib_lookup_init();
925 }
926
927 EXPORT_SYMBOL(inet_addr_type);
928 EXPORT_SYMBOL(ip_dev_find);