import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / arp.c
1 /* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
74 */
75
76 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77
78 #include <linux/module.h>
79 #include <linux/types.h>
80 #include <linux/string.h>
81 #include <linux/kernel.h>
82 #include <linux/capability.h>
83 #include <linux/socket.h>
84 #include <linux/sockios.h>
85 #include <linux/errno.h>
86 #include <linux/in.h>
87 #include <linux/mm.h>
88 #include <linux/inet.h>
89 #include <linux/inetdevice.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/fddidevice.h>
93 #include <linux/if_arp.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116
117 #include <linux/uaccess.h>
118
119 #include <linux/netfilter_arp.h>
120
121 /*
122 * Interface to generic neighbour cache.
123 */
124 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
125 static int arp_constructor(struct neighbour *neigh);
126 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
127 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
128 static void parp_redo(struct sk_buff *skb);
129
130 static const struct neigh_ops arp_generic_ops = {
131 .family = AF_INET,
132 .solicit = arp_solicit,
133 .error_report = arp_error_report,
134 .output = neigh_resolve_output,
135 .connected_output = neigh_connected_output,
136 };
137
138 static const struct neigh_ops arp_hh_ops = {
139 .family = AF_INET,
140 .solicit = arp_solicit,
141 .error_report = arp_error_report,
142 .output = neigh_resolve_output,
143 .connected_output = neigh_resolve_output,
144 };
145
146 static const struct neigh_ops arp_direct_ops = {
147 .family = AF_INET,
148 .output = neigh_direct_output,
149 .connected_output = neigh_direct_output,
150 };
151
152 static const struct neigh_ops arp_broken_ops = {
153 .family = AF_INET,
154 .solicit = arp_solicit,
155 .error_report = arp_error_report,
156 .output = neigh_compat_output,
157 .connected_output = neigh_compat_output,
158 };
159
160 /* MTK_NET_CHANGES */
161 struct neigh_table arp_tbl = {
162 .family = AF_INET,
163 .key_len = 4,
164 .hash = arp_hash,
165 .constructor = arp_constructor,
166 .proxy_redo = parp_redo,
167 .id = "arp_cache",
168 .parms = {
169 .tbl = &arp_tbl,
170 .base_reachable_time = 300 * HZ,
171 .retrans_time = 1 * HZ,
172 .gc_staletime = 60 * HZ,
173 .reachable_time = 300 * HZ,
174 .delay_probe_time = 5 * HZ,
175 .queue_len_bytes = 64*1024,
176 .ucast_probes = 3,
177 .mcast_probes = 3,
178 .anycast_delay = 1 * HZ,
179 .proxy_delay = (8 * HZ) / 10,
180 .proxy_qlen = 64,
181 .locktime = 1 * HZ,
182 },
183 .gc_interval = 30 * HZ,
184 .gc_thresh1 = 512,
185 .gc_thresh2 = 1024,
186 .gc_thresh3 = 2048,
187 };
188 EXPORT_SYMBOL(arp_tbl);
189
190 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
191 {
192 switch (dev->type) {
193 case ARPHRD_ETHER:
194 case ARPHRD_FDDI:
195 case ARPHRD_IEEE802:
196 ip_eth_mc_map(addr, haddr);
197 return 0;
198 case ARPHRD_INFINIBAND:
199 ip_ib_mc_map(addr, dev->broadcast, haddr);
200 return 0;
201 case ARPHRD_IPGRE:
202 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
203 return 0;
204 default:
205 if (dir) {
206 memcpy(haddr, dev->broadcast, dev->addr_len);
207 return 0;
208 }
209 }
210 return -EINVAL;
211 }
212
213
214 static u32 arp_hash(const void *pkey,
215 const struct net_device *dev,
216 __u32 *hash_rnd)
217 {
218 return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
219 }
220
221 static int arp_constructor(struct neighbour *neigh)
222 {
223 __be32 addr = *(__be32 *)neigh->primary_key;
224 struct net_device *dev = neigh->dev;
225 struct in_device *in_dev;
226 struct neigh_parms *parms;
227
228 rcu_read_lock();
229 in_dev = __in_dev_get_rcu(dev);
230 if (in_dev == NULL) {
231 rcu_read_unlock();
232 return -EINVAL;
233 }
234
235 neigh->type = inet_addr_type(dev_net(dev), addr);
236
237 parms = in_dev->arp_parms;
238 __neigh_parms_put(neigh->parms);
239 neigh->parms = neigh_parms_clone(parms);
240 rcu_read_unlock();
241
242 if (!dev->header_ops) {
243 neigh->nud_state = NUD_NOARP;
244 neigh->ops = &arp_direct_ops;
245 neigh->output = neigh_direct_output;
246 } else {
247 /* Good devices (checked by reading texts, but only Ethernet is
248 tested)
249
250 ARPHRD_ETHER: (ethernet, apfddi)
251 ARPHRD_FDDI: (fddi)
252 ARPHRD_IEEE802: (tr)
253 ARPHRD_METRICOM: (strip)
254 ARPHRD_ARCNET:
255 etc. etc. etc.
256
257 ARPHRD_IPDDP will also work, if author repairs it.
258 I did not it, because this driver does not work even
259 in old paradigm.
260 */
261
262 #if 1
263 /* So... these "amateur" devices are hopeless.
264 The only thing, that I can say now:
265 It is very sad that we need to keep ugly obsolete
266 code to make them happy.
267
268 They should be moved to more reasonable state, now
269 they use rebuild_header INSTEAD OF hard_start_xmit!!!
270 Besides that, they are sort of out of date
271 (a lot of redundant clones/copies, useless in 2.1),
272 I wonder why people believe that they work.
273 */
274 switch (dev->type) {
275 default:
276 break;
277 case ARPHRD_ROSE:
278 #if IS_ENABLED(CONFIG_AX25)
279 case ARPHRD_AX25:
280 #if IS_ENABLED(CONFIG_NETROM)
281 case ARPHRD_NETROM:
282 #endif
283 neigh->ops = &arp_broken_ops;
284 neigh->output = neigh->ops->output;
285 return 0;
286 #else
287 break;
288 #endif
289 }
290 #endif
291 if (neigh->type == RTN_MULTICAST) {
292 neigh->nud_state = NUD_NOARP;
293 arp_mc_map(addr, neigh->ha, dev, 1);
294 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
295 neigh->nud_state = NUD_NOARP;
296 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
297 } else if (neigh->type == RTN_BROADCAST ||
298 (dev->flags & IFF_POINTOPOINT)) {
299 neigh->nud_state = NUD_NOARP;
300 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
301 }
302
303 if (dev->header_ops->cache)
304 neigh->ops = &arp_hh_ops;
305 else
306 neigh->ops = &arp_generic_ops;
307
308 if (neigh->nud_state & NUD_VALID)
309 neigh->output = neigh->ops->connected_output;
310 else
311 neigh->output = neigh->ops->output;
312 }
313 return 0;
314 }
315
316 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
317 {
318 dst_link_failure(skb);
319 kfree_skb(skb);
320 }
321
322 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
323 {
324 __be32 saddr = 0;
325 u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
326 struct net_device *dev = neigh->dev;
327 __be32 target = *(__be32 *)neigh->primary_key;
328 int probes = atomic_read(&neigh->probes);
329 struct in_device *in_dev;
330
331 rcu_read_lock();
332 in_dev = __in_dev_get_rcu(dev);
333 if (!in_dev) {
334 rcu_read_unlock();
335 return;
336 }
337 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
338 default:
339 case 0: /* By default announce any local IP */
340 if (skb && inet_addr_type(dev_net(dev),
341 ip_hdr(skb)->saddr) == RTN_LOCAL)
342 saddr = ip_hdr(skb)->saddr;
343 break;
344 case 1: /* Restrict announcements of saddr in same subnet */
345 if (!skb)
346 break;
347 saddr = ip_hdr(skb)->saddr;
348 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
349 /* saddr should be known to target */
350 if (inet_addr_onlink(in_dev, target, saddr))
351 break;
352 }
353 saddr = 0;
354 break;
355 case 2: /* Avoid secondary IPs, get a primary/preferred one */
356 break;
357 }
358 rcu_read_unlock();
359
360 if (!saddr)
361 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
362
363 probes -= neigh->parms->ucast_probes;
364 if (probes < 0) {
365 if (!(neigh->nud_state & NUD_VALID))
366 pr_debug("trying to ucast probe in NUD_INVALID\n");
367 neigh_ha_snapshot(dst_ha, neigh, dev);
368 dst_hw = dst_ha;
369 } else {
370 probes -= neigh->parms->app_probes;
371 if (probes < 0) {
372 #ifdef CONFIG_ARPD
373 neigh_app_ns(neigh);
374 #endif
375 return;
376 }
377 }
378
379 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
380 dst_hw, dev->dev_addr, NULL);
381 }
382
383 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
384 {
385 int scope;
386
387 switch (IN_DEV_ARP_IGNORE(in_dev)) {
388 case 0: /* Reply, the tip is already validated */
389 return 0;
390 case 1: /* Reply only if tip is configured on the incoming interface */
391 sip = 0;
392 scope = RT_SCOPE_HOST;
393 break;
394 case 2: /*
395 * Reply only if tip is configured on the incoming interface
396 * and is in same subnet as sip
397 */
398 scope = RT_SCOPE_HOST;
399 break;
400 case 3: /* Do not reply for scope host addresses */
401 sip = 0;
402 scope = RT_SCOPE_LINK;
403 break;
404 case 4: /* Reserved */
405 case 5:
406 case 6:
407 case 7:
408 return 0;
409 case 8: /* Do not reply */
410 return 1;
411 default:
412 return 0;
413 }
414 return !inet_confirm_addr(in_dev, sip, tip, scope);
415 }
416
417 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
418 {
419 struct rtable *rt;
420 int flag = 0;
421 /*unsigned long now; */
422 struct net *net = dev_net(dev);
423
424 rt = ip_route_output(net, sip, tip, 0, 0);
425 if (IS_ERR(rt))
426 return 1;
427 if (rt->dst.dev != dev) {
428 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
429 flag = 1;
430 }
431 ip_rt_put(rt);
432 return flag;
433 }
434
435 /* OBSOLETE FUNCTIONS */
436
437 /*
438 * Find an arp mapping in the cache. If not found, post a request.
439 *
440 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
441 * even if it exists. It is supposed that skb->dev was mangled
442 * by a virtual device (eql, shaper). Nobody but broken devices
443 * is allowed to use this function, it is scheduled to be removed. --ANK
444 */
445
446 static int arp_set_predefined(int addr_hint, unsigned char *haddr,
447 __be32 paddr, struct net_device *dev)
448 {
449 switch (addr_hint) {
450 case RTN_LOCAL:
451 pr_debug("arp called for own IP address\n");
452 memcpy(haddr, dev->dev_addr, dev->addr_len);
453 return 1;
454 case RTN_MULTICAST:
455 arp_mc_map(paddr, haddr, dev, 1);
456 return 1;
457 case RTN_BROADCAST:
458 memcpy(haddr, dev->broadcast, dev->addr_len);
459 return 1;
460 }
461 return 0;
462 }
463
464
465 int arp_find(unsigned char *haddr, struct sk_buff *skb)
466 {
467 struct net_device *dev = skb->dev;
468 __be32 paddr;
469 struct neighbour *n;
470
471 if (!skb_dst(skb)) {
472 pr_debug("arp_find is called with dst==NULL\n");
473 kfree_skb(skb);
474 return 1;
475 }
476
477 paddr = rt_nexthop(skb_rtable(skb), ip_hdr(skb)->daddr);
478 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
479 paddr, dev))
480 return 0;
481
482 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
483
484 if (n) {
485 n->used = jiffies;
486 if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
487 neigh_ha_snapshot(haddr, n, dev);
488 neigh_release(n);
489 return 0;
490 }
491 neigh_release(n);
492 } else
493 kfree_skb(skb);
494 return 1;
495 }
496 EXPORT_SYMBOL(arp_find);
497
498 /* END OF OBSOLETE FUNCTIONS */
499
500 /*
501 * Check if we can use proxy ARP for this path
502 */
503 static inline int arp_fwd_proxy(struct in_device *in_dev,
504 struct net_device *dev, struct rtable *rt)
505 {
506 struct in_device *out_dev;
507 int imi, omi = -1;
508
509 if (rt->dst.dev == dev)
510 return 0;
511
512 if (!IN_DEV_PROXY_ARP(in_dev))
513 return 0;
514 imi = IN_DEV_MEDIUM_ID(in_dev);
515 if (imi == 0)
516 return 1;
517 if (imi == -1)
518 return 0;
519
520 /* place to check for proxy_arp for routes */
521
522 out_dev = __in_dev_get_rcu(rt->dst.dev);
523 if (out_dev)
524 omi = IN_DEV_MEDIUM_ID(out_dev);
525
526 return omi != imi && omi != -1;
527 }
528
529 /*
530 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
531 *
532 * RFC3069 supports proxy arp replies back to the same interface. This
533 * is done to support (ethernet) switch features, like RFC 3069, where
534 * the individual ports are not allowed to communicate with each
535 * other, BUT they are allowed to talk to the upstream router. As
536 * described in RFC 3069, it is possible to allow these hosts to
537 * communicate through the upstream router, by proxy_arp'ing.
538 *
539 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
540 *
541 * This technology is known by different names:
542 * In RFC 3069 it is called VLAN Aggregation.
543 * Cisco and Allied Telesyn call it Private VLAN.
544 * Hewlett-Packard call it Source-Port filtering or port-isolation.
545 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
546 *
547 */
548 static inline int arp_fwd_pvlan(struct in_device *in_dev,
549 struct net_device *dev, struct rtable *rt,
550 __be32 sip, __be32 tip)
551 {
552 /* Private VLAN is only concerned about the same ethernet segment */
553 if (rt->dst.dev != dev)
554 return 0;
555
556 /* Don't reply on self probes (often done by windowz boxes)*/
557 if (sip == tip)
558 return 0;
559
560 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
561 return 1;
562 else
563 return 0;
564 }
565
566 /*
567 * Interface to link layer: send routine and receive handler.
568 */
569
570 /*
571 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
572 * message.
573 */
574 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
575 struct net_device *dev, __be32 src_ip,
576 const unsigned char *dest_hw,
577 const unsigned char *src_hw,
578 const unsigned char *target_hw)
579 {
580 struct sk_buff *skb;
581 struct arphdr *arp;
582 unsigned char *arp_ptr;
583 int hlen = LL_RESERVED_SPACE(dev);
584 int tlen = dev->needed_tailroom;
585
586 /*
587 * Allocate a buffer
588 */
589
590 skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
591 if (skb == NULL)
592 return NULL;
593
594 skb_reserve(skb, hlen);
595 skb_reset_network_header(skb);
596 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
597 skb->dev = dev;
598 skb->protocol = htons(ETH_P_ARP);
599 if (src_hw == NULL)
600 src_hw = dev->dev_addr;
601 if (dest_hw == NULL)
602 dest_hw = dev->broadcast;
603
604 /*
605 * Fill the device header for the ARP frame
606 */
607 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
608 goto out;
609
610 /*
611 * Fill out the arp protocol part.
612 *
613 * The arp hardware type should match the device type, except for FDDI,
614 * which (according to RFC 1390) should always equal 1 (Ethernet).
615 */
616 /*
617 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
618 * DIX code for the protocol. Make these device structure fields.
619 */
620 switch (dev->type) {
621 default:
622 arp->ar_hrd = htons(dev->type);
623 arp->ar_pro = htons(ETH_P_IP);
624 break;
625
626 #if IS_ENABLED(CONFIG_AX25)
627 case ARPHRD_AX25:
628 arp->ar_hrd = htons(ARPHRD_AX25);
629 arp->ar_pro = htons(AX25_P_IP);
630 break;
631
632 #if IS_ENABLED(CONFIG_NETROM)
633 case ARPHRD_NETROM:
634 arp->ar_hrd = htons(ARPHRD_NETROM);
635 arp->ar_pro = htons(AX25_P_IP);
636 break;
637 #endif
638 #endif
639
640 #if IS_ENABLED(CONFIG_FDDI)
641 case ARPHRD_FDDI:
642 arp->ar_hrd = htons(ARPHRD_ETHER);
643 arp->ar_pro = htons(ETH_P_IP);
644 break;
645 #endif
646 }
647
648 arp->ar_hln = dev->addr_len;
649 arp->ar_pln = 4;
650 arp->ar_op = htons(type);
651
652 arp_ptr = (unsigned char *)(arp + 1);
653
654 memcpy(arp_ptr, src_hw, dev->addr_len);
655 arp_ptr += dev->addr_len;
656 memcpy(arp_ptr, &src_ip, 4);
657 arp_ptr += 4;
658
659 switch (dev->type) {
660 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
661 case ARPHRD_IEEE1394:
662 break;
663 #endif
664 default:
665 if (target_hw != NULL)
666 memcpy(arp_ptr, target_hw, dev->addr_len);
667 else
668 memset(arp_ptr, 0, dev->addr_len);
669 arp_ptr += dev->addr_len;
670 }
671 memcpy(arp_ptr, &dest_ip, 4);
672
673 return skb;
674
675 out:
676 kfree_skb(skb);
677 return NULL;
678 }
679 EXPORT_SYMBOL(arp_create);
680
681 /*
682 * Send an arp packet.
683 */
684 void arp_xmit(struct sk_buff *skb)
685 {
686 /* Send it off, maybe filter it using firewalling first. */
687 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
688 }
689 EXPORT_SYMBOL(arp_xmit);
690
691 /*
692 * Create and send an arp packet.
693 */
694 void arp_send(int type, int ptype, __be32 dest_ip,
695 struct net_device *dev, __be32 src_ip,
696 const unsigned char *dest_hw, const unsigned char *src_hw,
697 const unsigned char *target_hw)
698 {
699 struct sk_buff *skb;
700
701 /*
702 * No arp on this interface.
703 */
704
705 if (dev->flags&IFF_NOARP)
706 return;
707 #ifdef CONFIG_MTK_NET_LOGGING
708 printk(KERN_INFO "[mtk_net][arp]arp_send type = %d, dev = %s\n", type, dev->name);
709 #endif
710 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
711 dest_hw, src_hw, target_hw);
712 if (skb == NULL)
713 return;
714
715 arp_xmit(skb);
716 }
717 EXPORT_SYMBOL(arp_send);
718
719 /*
720 * Process an arp request.
721 */
722
723 static int arp_process(struct sk_buff *skb)
724 {
725 struct net_device *dev = skb->dev;
726 struct in_device *in_dev = __in_dev_get_rcu(dev);
727 struct arphdr *arp;
728 unsigned char *arp_ptr;
729 struct rtable *rt;
730 unsigned char *sha;
731 __be32 sip, tip;
732 u16 dev_type = dev->type;
733 int addr_type;
734 struct neighbour *n;
735 struct net *net = dev_net(dev);
736
737 /* arp_rcv below verifies the ARP header and verifies the device
738 * is ARP'able.
739 */
740
741 if (in_dev == NULL)
742 goto out;
743
744 arp = arp_hdr(skb);
745
746 switch (dev_type) {
747 default:
748 if (arp->ar_pro != htons(ETH_P_IP) ||
749 htons(dev_type) != arp->ar_hrd)
750 goto out;
751 break;
752 case ARPHRD_ETHER:
753 case ARPHRD_FDDI:
754 case ARPHRD_IEEE802:
755 /*
756 * ETHERNET, and Fibre Channel (which are IEEE 802
757 * devices, according to RFC 2625) devices will accept ARP
758 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
759 * This is the case also of FDDI, where the RFC 1390 says that
760 * FDDI devices should accept ARP hardware of (1) Ethernet,
761 * however, to be more robust, we'll accept both 1 (Ethernet)
762 * or 6 (IEEE 802.2)
763 */
764 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
765 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
766 arp->ar_pro != htons(ETH_P_IP))
767 goto out;
768 break;
769 case ARPHRD_AX25:
770 if (arp->ar_pro != htons(AX25_P_IP) ||
771 arp->ar_hrd != htons(ARPHRD_AX25))
772 goto out;
773 break;
774 case ARPHRD_NETROM:
775 if (arp->ar_pro != htons(AX25_P_IP) ||
776 arp->ar_hrd != htons(ARPHRD_NETROM))
777 goto out;
778 break;
779 }
780
781 /* Understand only these message types */
782
783 if (arp->ar_op != htons(ARPOP_REPLY) &&
784 arp->ar_op != htons(ARPOP_REQUEST))
785 goto out;
786
787 /*
788 * Extract fields
789 */
790 arp_ptr = (unsigned char *)(arp + 1);
791 sha = arp_ptr;
792 arp_ptr += dev->addr_len;
793 memcpy(&sip, arp_ptr, 4);
794 arp_ptr += 4;
795 switch (dev_type) {
796 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
797 case ARPHRD_IEEE1394:
798 break;
799 #endif
800 default:
801 arp_ptr += dev->addr_len;
802 }
803 memcpy(&tip, arp_ptr, 4);
804 /*
805 * Check for bad requests for 127.x.x.x and requests for multicast
806 * addresses. If this is one such, delete it.
807 */
808 if (ipv4_is_multicast(tip) ||
809 (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
810 goto out;
811
812 /*
813 * Special case: We must set Frame Relay source Q.922 address
814 */
815 if (dev_type == ARPHRD_DLCI)
816 sha = dev->broadcast;
817
818 /*
819 * Process entry. The idea here is we want to send a reply if it is a
820 * request for us or if it is a request for someone else that we hold
821 * a proxy for. We want to add an entry to our cache if it is a reply
822 * to us or if it is a request for our address.
823 * (The assumption for this last is that if someone is requesting our
824 * address, they are probably intending to talk to us, so it saves time
825 * if we cache their address. Their address is also probably not in
826 * our cache, since ours is not in their cache.)
827 *
828 * Putting this another way, we only care about replies if they are to
829 * us, in which case we add them to the cache. For requests, we care
830 * about those for us and those for our proxies. We reply to both,
831 * and in the case of requests for us we add the requester to the arp
832 * cache.
833 */
834
835 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
836 if (sip == 0) {
837 if (arp->ar_op == htons(ARPOP_REQUEST) &&
838 inet_addr_type(net, tip) == RTN_LOCAL &&
839 !arp_ignore(in_dev, sip, tip))
840 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
841 dev->dev_addr, sha);
842 goto out;
843 }
844
845 if (arp->ar_op == htons(ARPOP_REQUEST) &&
846 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
847
848 rt = skb_rtable(skb);
849 addr_type = rt->rt_type;
850
851 if (addr_type == RTN_LOCAL) {
852 int dont_send;
853
854 dont_send = arp_ignore(in_dev, sip, tip);
855 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
856 dont_send = arp_filter(sip, tip, dev);
857 if (!dont_send) {
858 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
859 if (n) {
860 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
861 dev, tip, sha, dev->dev_addr,
862 sha);
863 neigh_release(n);
864 }
865 }
866 goto out;
867 } else if (IN_DEV_FORWARD(in_dev)) {
868 if (addr_type == RTN_UNICAST &&
869 (arp_fwd_proxy(in_dev, dev, rt) ||
870 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
871 (rt->dst.dev != dev &&
872 pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
873 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
874 if (n)
875 neigh_release(n);
876
877 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
878 skb->pkt_type == PACKET_HOST ||
879 in_dev->arp_parms->proxy_delay == 0) {
880 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
881 dev, tip, sha, dev->dev_addr,
882 sha);
883 } else {
884 pneigh_enqueue(&arp_tbl,
885 in_dev->arp_parms, skb);
886 return 0;
887 }
888 goto out;
889 }
890 }
891 }
892
893 /* Update our ARP tables */
894
895 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
896
897 if (IN_DEV_ARP_ACCEPT(in_dev)) {
898 /* Unsolicited ARP is not accepted by default.
899 It is possible, that this option should be enabled for some
900 devices (strip is candidate)
901 */
902 if (n == NULL &&
903 (arp->ar_op == htons(ARPOP_REPLY) ||
904 (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
905 inet_addr_type(net, sip) == RTN_UNICAST)
906 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
907 }
908
909 if (n) {
910 int state = NUD_REACHABLE;
911 int override;
912
913 /* If several different ARP replies follows back-to-back,
914 use the FIRST one. It is possible, if several proxy
915 agents are active. Taking the first reply prevents
916 arp trashing and chooses the fastest router.
917 */
918 override = time_after(jiffies, n->updated + n->parms->locktime);
919
920 /* Broadcast replies and request packets
921 do not assert neighbour reachability.
922 */
923 if (arp->ar_op != htons(ARPOP_REPLY) ||
924 skb->pkt_type != PACKET_HOST)
925 state = NUD_STALE;
926 neigh_update(n, sha, state,
927 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
928 neigh_release(n);
929 }
930
931 out:
932 consume_skb(skb);
933 return 0;
934 }
935
936 static void parp_redo(struct sk_buff *skb)
937 {
938 arp_process(skb);
939 }
940
941
942 /*
943 * Receive an arp request from the device layer.
944 */
945
946 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
947 struct packet_type *pt, struct net_device *orig_dev)
948 {
949 const struct arphdr *arp;
950
951 if (dev->flags & IFF_NOARP ||
952 skb->pkt_type == PACKET_OTHERHOST ||
953 skb->pkt_type == PACKET_LOOPBACK)
954 goto freeskb;
955
956 skb = skb_share_check(skb, GFP_ATOMIC);
957 if (!skb)
958 goto out_of_mem;
959
960 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
961 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
962 goto freeskb;
963
964 arp = arp_hdr(skb);
965 if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
966 goto freeskb;
967
968 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
969
970 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
971
972 freeskb:
973 kfree_skb(skb);
974 out_of_mem:
975 return 0;
976 }
977
978 /*
979 * User level interface (ioctl)
980 */
981
982 /*
983 * Set (create) an ARP cache entry.
984 */
985
986 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
987 {
988 if (dev == NULL) {
989 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
990 return 0;
991 }
992 if (__in_dev_get_rtnl(dev)) {
993 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
994 return 0;
995 }
996 return -ENXIO;
997 }
998
999 static int arp_req_set_public(struct net *net, struct arpreq *r,
1000 struct net_device *dev)
1001 {
1002 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1003 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1004
1005 if (mask && mask != htonl(0xFFFFFFFF))
1006 return -EINVAL;
1007 if (!dev && (r->arp_flags & ATF_COM)) {
1008 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1009 r->arp_ha.sa_data);
1010 if (!dev)
1011 return -ENODEV;
1012 }
1013 if (mask) {
1014 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1015 return -ENOBUFS;
1016 return 0;
1017 }
1018
1019 return arp_req_set_proxy(net, dev, 1);
1020 }
1021
1022 static int arp_req_set(struct net *net, struct arpreq *r,
1023 struct net_device *dev)
1024 {
1025 __be32 ip;
1026 struct neighbour *neigh;
1027 int err;
1028
1029 if (r->arp_flags & ATF_PUBL)
1030 return arp_req_set_public(net, r, dev);
1031
1032 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1033 if (r->arp_flags & ATF_PERM)
1034 r->arp_flags |= ATF_COM;
1035 if (dev == NULL) {
1036 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1037
1038 if (IS_ERR(rt))
1039 return PTR_ERR(rt);
1040 dev = rt->dst.dev;
1041 ip_rt_put(rt);
1042 if (!dev)
1043 return -EINVAL;
1044 }
1045 switch (dev->type) {
1046 #if IS_ENABLED(CONFIG_FDDI)
1047 case ARPHRD_FDDI:
1048 /*
1049 * According to RFC 1390, FDDI devices should accept ARP
1050 * hardware types of 1 (Ethernet). However, to be more
1051 * robust, we'll accept hardware types of either 1 (Ethernet)
1052 * or 6 (IEEE 802.2).
1053 */
1054 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1055 r->arp_ha.sa_family != ARPHRD_ETHER &&
1056 r->arp_ha.sa_family != ARPHRD_IEEE802)
1057 return -EINVAL;
1058 break;
1059 #endif
1060 default:
1061 if (r->arp_ha.sa_family != dev->type)
1062 return -EINVAL;
1063 break;
1064 }
1065
1066 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1067 err = PTR_ERR(neigh);
1068 if (!IS_ERR(neigh)) {
1069 unsigned int state = NUD_STALE;
1070 if (r->arp_flags & ATF_PERM)
1071 state = NUD_PERMANENT;
1072 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1073 r->arp_ha.sa_data : NULL, state,
1074 NEIGH_UPDATE_F_OVERRIDE |
1075 NEIGH_UPDATE_F_ADMIN);
1076 neigh_release(neigh);
1077 }
1078 return err;
1079 }
1080
1081 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1082 {
1083 if (neigh->nud_state&NUD_PERMANENT)
1084 return ATF_PERM | ATF_COM;
1085 else if (neigh->nud_state&NUD_VALID)
1086 return ATF_COM;
1087 else
1088 return 0;
1089 }
1090
1091 /*
1092 * Get an ARP cache entry.
1093 */
1094
1095 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1096 {
1097 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1098 struct neighbour *neigh;
1099 int err = -ENXIO;
1100
1101 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1102 if (neigh) {
1103 read_lock_bh(&neigh->lock);
1104 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1105 r->arp_flags = arp_state_to_flags(neigh);
1106 read_unlock_bh(&neigh->lock);
1107 r->arp_ha.sa_family = dev->type;
1108 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1109 neigh_release(neigh);
1110 err = 0;
1111 }
1112 return err;
1113 }
1114
1115 int arp_invalidate(struct net_device *dev, __be32 ip)
1116 {
1117 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1118 int err = -ENXIO;
1119
1120 if (neigh) {
1121 if (neigh->nud_state & ~NUD_NOARP)
1122 err = neigh_update(neigh, NULL, NUD_FAILED,
1123 NEIGH_UPDATE_F_OVERRIDE|
1124 NEIGH_UPDATE_F_ADMIN);
1125 neigh_release(neigh);
1126 }
1127
1128 return err;
1129 }
1130 EXPORT_SYMBOL(arp_invalidate);
1131
1132 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1133 struct net_device *dev)
1134 {
1135 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1136 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1137
1138 if (mask == htonl(0xFFFFFFFF))
1139 return pneigh_delete(&arp_tbl, net, &ip, dev);
1140
1141 if (mask)
1142 return -EINVAL;
1143
1144 return arp_req_set_proxy(net, dev, 0);
1145 }
1146
1147 static int arp_req_delete(struct net *net, struct arpreq *r,
1148 struct net_device *dev)
1149 {
1150 __be32 ip;
1151
1152 if (r->arp_flags & ATF_PUBL)
1153 return arp_req_delete_public(net, r, dev);
1154
1155 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1156 if (dev == NULL) {
1157 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1158 if (IS_ERR(rt))
1159 return PTR_ERR(rt);
1160 dev = rt->dst.dev;
1161 ip_rt_put(rt);
1162 if (!dev)
1163 return -EINVAL;
1164 }
1165 return arp_invalidate(dev, ip);
1166 }
1167
1168 /*
1169 * Handle an ARP layer I/O control request.
1170 */
1171
1172 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1173 {
1174 int err;
1175 struct arpreq r;
1176 struct net_device *dev = NULL;
1177
1178 switch (cmd) {
1179 case SIOCDARP:
1180 case SIOCSARP:
1181 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1182 return -EPERM;
1183 case SIOCGARP:
1184 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1185 if (err)
1186 return -EFAULT;
1187 break;
1188 default:
1189 return -EINVAL;
1190 }
1191
1192 if (r.arp_pa.sa_family != AF_INET)
1193 return -EPFNOSUPPORT;
1194
1195 if (!(r.arp_flags & ATF_PUBL) &&
1196 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1197 return -EINVAL;
1198 if (!(r.arp_flags & ATF_NETMASK))
1199 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1200 htonl(0xFFFFFFFFUL);
1201 rtnl_lock();
1202 if (r.arp_dev[0]) {
1203 err = -ENODEV;
1204 dev = __dev_get_by_name(net, r.arp_dev);
1205 if (dev == NULL)
1206 goto out;
1207
1208 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1209 if (!r.arp_ha.sa_family)
1210 r.arp_ha.sa_family = dev->type;
1211 err = -EINVAL;
1212 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1213 goto out;
1214 } else if (cmd == SIOCGARP) {
1215 err = -ENODEV;
1216 goto out;
1217 }
1218
1219 switch (cmd) {
1220 case SIOCDARP:
1221 err = arp_req_delete(net, &r, dev);
1222 break;
1223 case SIOCSARP:
1224 err = arp_req_set(net, &r, dev);
1225 break;
1226 case SIOCGARP:
1227 err = arp_req_get(&r, dev);
1228 break;
1229 }
1230 out:
1231 rtnl_unlock();
1232 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1233 err = -EFAULT;
1234 return err;
1235 }
1236
1237 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1238 void *ptr)
1239 {
1240 struct net_device *dev = ptr;
1241
1242 switch (event) {
1243 case NETDEV_CHANGEADDR:
1244 neigh_changeaddr(&arp_tbl, dev);
1245 rt_cache_flush(dev_net(dev));
1246 break;
1247 default:
1248 break;
1249 }
1250
1251 return NOTIFY_DONE;
1252 }
1253
1254 static struct notifier_block arp_netdev_notifier = {
1255 .notifier_call = arp_netdev_event,
1256 };
1257
1258 /* Note, that it is not on notifier chain.
1259 It is necessary, that this routine was called after route cache will be
1260 flushed.
1261 */
1262 void arp_ifdown(struct net_device *dev)
1263 {
1264 neigh_ifdown(&arp_tbl, dev);
1265 }
1266
1267
1268 /*
1269 * Called once on startup.
1270 */
1271
1272 static struct packet_type arp_packet_type __read_mostly = {
1273 .type = cpu_to_be16(ETH_P_ARP),
1274 .func = arp_rcv,
1275 };
1276
1277 static int arp_proc_init(void);
1278
1279 void __init arp_init(void)
1280 {
1281 neigh_table_init(&arp_tbl);
1282
1283 dev_add_pack(&arp_packet_type);
1284 arp_proc_init();
1285 #ifdef CONFIG_SYSCTL
1286 neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1287 #endif
1288 register_netdevice_notifier(&arp_netdev_notifier);
1289 }
1290
1291 #ifdef CONFIG_PROC_FS
1292 #if IS_ENABLED(CONFIG_AX25)
1293
1294 /* ------------------------------------------------------------------------ */
1295 /*
1296 * ax25 -> ASCII conversion
1297 */
1298 static char *ax2asc2(ax25_address *a, char *buf)
1299 {
1300 char c, *s;
1301 int n;
1302
1303 for (n = 0, s = buf; n < 6; n++) {
1304 c = (a->ax25_call[n] >> 1) & 0x7F;
1305
1306 if (c != ' ')
1307 *s++ = c;
1308 }
1309
1310 *s++ = '-';
1311 n = (a->ax25_call[6] >> 1) & 0x0F;
1312 if (n > 9) {
1313 *s++ = '1';
1314 n -= 10;
1315 }
1316
1317 *s++ = n + '0';
1318 *s++ = '\0';
1319
1320 if (*buf == '\0' || *buf == '-')
1321 return "*";
1322
1323 return buf;
1324 }
1325 #endif /* CONFIG_AX25 */
1326
1327 #define HBUFFERLEN 30
1328
1329 static void arp_format_neigh_entry(struct seq_file *seq,
1330 struct neighbour *n)
1331 {
1332 char hbuffer[HBUFFERLEN];
1333 int k, j;
1334 char tbuf[16];
1335 struct net_device *dev = n->dev;
1336 int hatype = dev->type;
1337
1338 read_lock(&n->lock);
1339 /* Convert hardware address to XX:XX:XX:XX ... form. */
1340 #if IS_ENABLED(CONFIG_AX25)
1341 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1342 ax2asc2((ax25_address *)n->ha, hbuffer);
1343 else {
1344 #endif
1345 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1346 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1347 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1348 hbuffer[k++] = ':';
1349 }
1350 if (k != 0)
1351 --k;
1352 hbuffer[k] = 0;
1353 #if IS_ENABLED(CONFIG_AX25)
1354 }
1355 #endif
1356 sprintf(tbuf, "%pI4", n->primary_key);
1357 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1358 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1359 read_unlock(&n->lock);
1360 }
1361
1362 static void arp_format_pneigh_entry(struct seq_file *seq,
1363 struct pneigh_entry *n)
1364 {
1365 struct net_device *dev = n->dev;
1366 int hatype = dev ? dev->type : 0;
1367 char tbuf[16];
1368
1369 sprintf(tbuf, "%pI4", n->key);
1370 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1371 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1372 dev ? dev->name : "*");
1373 }
1374
1375 static int arp_seq_show(struct seq_file *seq, void *v)
1376 {
1377 if (v == SEQ_START_TOKEN) {
1378 seq_puts(seq, "IP address HW type Flags "
1379 "HW address Mask Device\n");
1380 } else {
1381 struct neigh_seq_state *state = seq->private;
1382
1383 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1384 arp_format_pneigh_entry(seq, v);
1385 else
1386 arp_format_neigh_entry(seq, v);
1387 }
1388
1389 return 0;
1390 }
1391
1392 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1393 {
1394 /* Don't want to confuse "arp -a" w/ magic entries,
1395 * so we tell the generic iterator to skip NUD_NOARP.
1396 */
1397 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1398 }
1399
1400 /* ------------------------------------------------------------------------ */
1401
1402 static const struct seq_operations arp_seq_ops = {
1403 .start = arp_seq_start,
1404 .next = neigh_seq_next,
1405 .stop = neigh_seq_stop,
1406 .show = arp_seq_show,
1407 };
1408
1409 static int arp_seq_open(struct inode *inode, struct file *file)
1410 {
1411 return seq_open_net(inode, file, &arp_seq_ops,
1412 sizeof(struct neigh_seq_state));
1413 }
1414
1415 static const struct file_operations arp_seq_fops = {
1416 .owner = THIS_MODULE,
1417 .open = arp_seq_open,
1418 .read = seq_read,
1419 .llseek = seq_lseek,
1420 .release = seq_release_net,
1421 };
1422
1423
1424 static int __net_init arp_net_init(struct net *net)
1425 {
1426 if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1427 return -ENOMEM;
1428 return 0;
1429 }
1430
1431 static void __net_exit arp_net_exit(struct net *net)
1432 {
1433 remove_proc_entry("arp", net->proc_net);
1434 }
1435
1436 static struct pernet_operations arp_net_ops = {
1437 .init = arp_net_init,
1438 .exit = arp_net_exit,
1439 };
1440
1441 static int __init arp_proc_init(void)
1442 {
1443 return register_pernet_subsys(&arp_net_ops);
1444 }
1445
1446 #else /* CONFIG_PROC_FS */
1447
1448 static int __init arp_proc_init(void)
1449 {
1450 return 0;
1451 }
1452
1453 #endif /* CONFIG_PROC_FS */