cgroup: make css->refcnt clearing on cgroup removal optional
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114 #include <linux/static_key.h>
115 #include <linux/memcontrol.h>
116
117 #include <asm/uaccess.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <linux/net_tstamp.h>
126 #include <net/xfrm.h>
127 #include <linux/ipsec.h>
128 #include <net/cls_cgroup.h>
129 #include <net/netprio_cgroup.h>
130
131 #include <linux/filter.h>
132
133 #include <trace/events/sock.h>
134
135 #ifdef CONFIG_INET
136 #include <net/tcp.h>
137 #endif
138
139 static DEFINE_MUTEX(proto_list_mutex);
140 static LIST_HEAD(proto_list);
141
142 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
143 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
144 {
145 struct proto *proto;
146 int ret = 0;
147
148 mutex_lock(&proto_list_mutex);
149 list_for_each_entry(proto, &proto_list, node) {
150 if (proto->init_cgroup) {
151 ret = proto->init_cgroup(cgrp, ss);
152 if (ret)
153 goto out;
154 }
155 }
156
157 mutex_unlock(&proto_list_mutex);
158 return ret;
159 out:
160 list_for_each_entry_continue_reverse(proto, &proto_list, node)
161 if (proto->destroy_cgroup)
162 proto->destroy_cgroup(cgrp);
163 mutex_unlock(&proto_list_mutex);
164 return ret;
165 }
166
167 void mem_cgroup_sockets_destroy(struct cgroup *cgrp)
168 {
169 struct proto *proto;
170
171 mutex_lock(&proto_list_mutex);
172 list_for_each_entry_reverse(proto, &proto_list, node)
173 if (proto->destroy_cgroup)
174 proto->destroy_cgroup(cgrp);
175 mutex_unlock(&proto_list_mutex);
176 }
177 #endif
178
179 /*
180 * Each address family might have different locking rules, so we have
181 * one slock key per address family:
182 */
183 static struct lock_class_key af_family_keys[AF_MAX];
184 static struct lock_class_key af_family_slock_keys[AF_MAX];
185
186 struct static_key memcg_socket_limit_enabled;
187 EXPORT_SYMBOL(memcg_socket_limit_enabled);
188
189 /*
190 * Make lock validator output more readable. (we pre-construct these
191 * strings build-time, so that runtime initialization of socket
192 * locks is fast):
193 */
194 static const char *const af_family_key_strings[AF_MAX+1] = {
195 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
196 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
197 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
198 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
199 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
200 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
201 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
202 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
203 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
204 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
205 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
206 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
207 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
208 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
209 };
210 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
211 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
212 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
213 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
214 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
215 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
216 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
217 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
218 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
219 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
220 "slock-27" , "slock-28" , "slock-AF_CAN" ,
221 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
222 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
223 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
224 "slock-AF_NFC" , "slock-AF_MAX"
225 };
226 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
227 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
228 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
229 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
230 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
231 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
232 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
233 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
234 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
235 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
236 "clock-27" , "clock-28" , "clock-AF_CAN" ,
237 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
238 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
239 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
240 "clock-AF_NFC" , "clock-AF_MAX"
241 };
242
243 /*
244 * sk_callback_lock locking rules are per-address-family,
245 * so split the lock classes by using a per-AF key:
246 */
247 static struct lock_class_key af_callback_keys[AF_MAX];
248
249 /* Take into consideration the size of the struct sk_buff overhead in the
250 * determination of these values, since that is non-constant across
251 * platforms. This makes socket queueing behavior and performance
252 * not depend upon such differences.
253 */
254 #define _SK_MEM_PACKETS 256
255 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
256 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
257 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
258
259 /* Run time adjustable parameters. */
260 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
261 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
262 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
263 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
264
265 /* Maximal space eaten by iovec or ancillary data plus some space */
266 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
267 EXPORT_SYMBOL(sysctl_optmem_max);
268
269 #if defined(CONFIG_CGROUPS)
270 #if !defined(CONFIG_NET_CLS_CGROUP)
271 int net_cls_subsys_id = -1;
272 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
273 #endif
274 #if !defined(CONFIG_NETPRIO_CGROUP)
275 int net_prio_subsys_id = -1;
276 EXPORT_SYMBOL_GPL(net_prio_subsys_id);
277 #endif
278 #endif
279
280 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
281 {
282 struct timeval tv;
283
284 if (optlen < sizeof(tv))
285 return -EINVAL;
286 if (copy_from_user(&tv, optval, sizeof(tv)))
287 return -EFAULT;
288 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
289 return -EDOM;
290
291 if (tv.tv_sec < 0) {
292 static int warned __read_mostly;
293
294 *timeo_p = 0;
295 if (warned < 10 && net_ratelimit()) {
296 warned++;
297 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
298 "tries to set negative timeout\n",
299 current->comm, task_pid_nr(current));
300 }
301 return 0;
302 }
303 *timeo_p = MAX_SCHEDULE_TIMEOUT;
304 if (tv.tv_sec == 0 && tv.tv_usec == 0)
305 return 0;
306 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
307 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
308 return 0;
309 }
310
311 static void sock_warn_obsolete_bsdism(const char *name)
312 {
313 static int warned;
314 static char warncomm[TASK_COMM_LEN];
315 if (strcmp(warncomm, current->comm) && warned < 5) {
316 strcpy(warncomm, current->comm);
317 printk(KERN_WARNING "process `%s' is using obsolete "
318 "%s SO_BSDCOMPAT\n", warncomm, name);
319 warned++;
320 }
321 }
322
323 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
324
325 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
326 {
327 if (sk->sk_flags & flags) {
328 sk->sk_flags &= ~flags;
329 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
330 net_disable_timestamp();
331 }
332 }
333
334
335 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
336 {
337 int err;
338 int skb_len;
339 unsigned long flags;
340 struct sk_buff_head *list = &sk->sk_receive_queue;
341
342 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
343 atomic_inc(&sk->sk_drops);
344 trace_sock_rcvqueue_full(sk, skb);
345 return -ENOMEM;
346 }
347
348 err = sk_filter(sk, skb);
349 if (err)
350 return err;
351
352 if (!sk_rmem_schedule(sk, skb->truesize)) {
353 atomic_inc(&sk->sk_drops);
354 return -ENOBUFS;
355 }
356
357 skb->dev = NULL;
358 skb_set_owner_r(skb, sk);
359
360 /* Cache the SKB length before we tack it onto the receive
361 * queue. Once it is added it no longer belongs to us and
362 * may be freed by other threads of control pulling packets
363 * from the queue.
364 */
365 skb_len = skb->len;
366
367 /* we escape from rcu protected region, make sure we dont leak
368 * a norefcounted dst
369 */
370 skb_dst_force(skb);
371
372 spin_lock_irqsave(&list->lock, flags);
373 skb->dropcount = atomic_read(&sk->sk_drops);
374 __skb_queue_tail(list, skb);
375 spin_unlock_irqrestore(&list->lock, flags);
376
377 if (!sock_flag(sk, SOCK_DEAD))
378 sk->sk_data_ready(sk, skb_len);
379 return 0;
380 }
381 EXPORT_SYMBOL(sock_queue_rcv_skb);
382
383 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
384 {
385 int rc = NET_RX_SUCCESS;
386
387 if (sk_filter(sk, skb))
388 goto discard_and_relse;
389
390 skb->dev = NULL;
391
392 if (sk_rcvqueues_full(sk, skb)) {
393 atomic_inc(&sk->sk_drops);
394 goto discard_and_relse;
395 }
396 if (nested)
397 bh_lock_sock_nested(sk);
398 else
399 bh_lock_sock(sk);
400 if (!sock_owned_by_user(sk)) {
401 /*
402 * trylock + unlock semantics:
403 */
404 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
405
406 rc = sk_backlog_rcv(sk, skb);
407
408 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
409 } else if (sk_add_backlog(sk, skb)) {
410 bh_unlock_sock(sk);
411 atomic_inc(&sk->sk_drops);
412 goto discard_and_relse;
413 }
414
415 bh_unlock_sock(sk);
416 out:
417 sock_put(sk);
418 return rc;
419 discard_and_relse:
420 kfree_skb(skb);
421 goto out;
422 }
423 EXPORT_SYMBOL(sk_receive_skb);
424
425 void sk_reset_txq(struct sock *sk)
426 {
427 sk_tx_queue_clear(sk);
428 }
429 EXPORT_SYMBOL(sk_reset_txq);
430
431 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
432 {
433 struct dst_entry *dst = __sk_dst_get(sk);
434
435 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
436 sk_tx_queue_clear(sk);
437 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
438 dst_release(dst);
439 return NULL;
440 }
441
442 return dst;
443 }
444 EXPORT_SYMBOL(__sk_dst_check);
445
446 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
447 {
448 struct dst_entry *dst = sk_dst_get(sk);
449
450 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
451 sk_dst_reset(sk);
452 dst_release(dst);
453 return NULL;
454 }
455
456 return dst;
457 }
458 EXPORT_SYMBOL(sk_dst_check);
459
460 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
461 {
462 int ret = -ENOPROTOOPT;
463 #ifdef CONFIG_NETDEVICES
464 struct net *net = sock_net(sk);
465 char devname[IFNAMSIZ];
466 int index;
467
468 /* Sorry... */
469 ret = -EPERM;
470 if (!capable(CAP_NET_RAW))
471 goto out;
472
473 ret = -EINVAL;
474 if (optlen < 0)
475 goto out;
476
477 /* Bind this socket to a particular device like "eth0",
478 * as specified in the passed interface name. If the
479 * name is "" or the option length is zero the socket
480 * is not bound.
481 */
482 if (optlen > IFNAMSIZ - 1)
483 optlen = IFNAMSIZ - 1;
484 memset(devname, 0, sizeof(devname));
485
486 ret = -EFAULT;
487 if (copy_from_user(devname, optval, optlen))
488 goto out;
489
490 index = 0;
491 if (devname[0] != '\0') {
492 struct net_device *dev;
493
494 rcu_read_lock();
495 dev = dev_get_by_name_rcu(net, devname);
496 if (dev)
497 index = dev->ifindex;
498 rcu_read_unlock();
499 ret = -ENODEV;
500 if (!dev)
501 goto out;
502 }
503
504 lock_sock(sk);
505 sk->sk_bound_dev_if = index;
506 sk_dst_reset(sk);
507 release_sock(sk);
508
509 ret = 0;
510
511 out:
512 #endif
513
514 return ret;
515 }
516
517 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
518 {
519 if (valbool)
520 sock_set_flag(sk, bit);
521 else
522 sock_reset_flag(sk, bit);
523 }
524
525 /*
526 * This is meant for all protocols to use and covers goings on
527 * at the socket level. Everything here is generic.
528 */
529
530 int sock_setsockopt(struct socket *sock, int level, int optname,
531 char __user *optval, unsigned int optlen)
532 {
533 struct sock *sk = sock->sk;
534 int val;
535 int valbool;
536 struct linger ling;
537 int ret = 0;
538
539 /*
540 * Options without arguments
541 */
542
543 if (optname == SO_BINDTODEVICE)
544 return sock_bindtodevice(sk, optval, optlen);
545
546 if (optlen < sizeof(int))
547 return -EINVAL;
548
549 if (get_user(val, (int __user *)optval))
550 return -EFAULT;
551
552 valbool = val ? 1 : 0;
553
554 lock_sock(sk);
555
556 switch (optname) {
557 case SO_DEBUG:
558 if (val && !capable(CAP_NET_ADMIN))
559 ret = -EACCES;
560 else
561 sock_valbool_flag(sk, SOCK_DBG, valbool);
562 break;
563 case SO_REUSEADDR:
564 sk->sk_reuse = valbool;
565 break;
566 case SO_TYPE:
567 case SO_PROTOCOL:
568 case SO_DOMAIN:
569 case SO_ERROR:
570 ret = -ENOPROTOOPT;
571 break;
572 case SO_DONTROUTE:
573 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
574 break;
575 case SO_BROADCAST:
576 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
577 break;
578 case SO_SNDBUF:
579 /* Don't error on this BSD doesn't and if you think
580 about it this is right. Otherwise apps have to
581 play 'guess the biggest size' games. RCVBUF/SNDBUF
582 are treated in BSD as hints */
583
584 if (val > sysctl_wmem_max)
585 val = sysctl_wmem_max;
586 set_sndbuf:
587 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
588 if ((val * 2) < SOCK_MIN_SNDBUF)
589 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
590 else
591 sk->sk_sndbuf = val * 2;
592
593 /*
594 * Wake up sending tasks if we
595 * upped the value.
596 */
597 sk->sk_write_space(sk);
598 break;
599
600 case SO_SNDBUFFORCE:
601 if (!capable(CAP_NET_ADMIN)) {
602 ret = -EPERM;
603 break;
604 }
605 goto set_sndbuf;
606
607 case SO_RCVBUF:
608 /* Don't error on this BSD doesn't and if you think
609 about it this is right. Otherwise apps have to
610 play 'guess the biggest size' games. RCVBUF/SNDBUF
611 are treated in BSD as hints */
612
613 if (val > sysctl_rmem_max)
614 val = sysctl_rmem_max;
615 set_rcvbuf:
616 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
617 /*
618 * We double it on the way in to account for
619 * "struct sk_buff" etc. overhead. Applications
620 * assume that the SO_RCVBUF setting they make will
621 * allow that much actual data to be received on that
622 * socket.
623 *
624 * Applications are unaware that "struct sk_buff" and
625 * other overheads allocate from the receive buffer
626 * during socket buffer allocation.
627 *
628 * And after considering the possible alternatives,
629 * returning the value we actually used in getsockopt
630 * is the most desirable behavior.
631 */
632 if ((val * 2) < SOCK_MIN_RCVBUF)
633 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
634 else
635 sk->sk_rcvbuf = val * 2;
636 break;
637
638 case SO_RCVBUFFORCE:
639 if (!capable(CAP_NET_ADMIN)) {
640 ret = -EPERM;
641 break;
642 }
643 goto set_rcvbuf;
644
645 case SO_KEEPALIVE:
646 #ifdef CONFIG_INET
647 if (sk->sk_protocol == IPPROTO_TCP)
648 tcp_set_keepalive(sk, valbool);
649 #endif
650 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
651 break;
652
653 case SO_OOBINLINE:
654 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
655 break;
656
657 case SO_NO_CHECK:
658 sk->sk_no_check = valbool;
659 break;
660
661 case SO_PRIORITY:
662 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
663 sk->sk_priority = val;
664 else
665 ret = -EPERM;
666 break;
667
668 case SO_LINGER:
669 if (optlen < sizeof(ling)) {
670 ret = -EINVAL; /* 1003.1g */
671 break;
672 }
673 if (copy_from_user(&ling, optval, sizeof(ling))) {
674 ret = -EFAULT;
675 break;
676 }
677 if (!ling.l_onoff)
678 sock_reset_flag(sk, SOCK_LINGER);
679 else {
680 #if (BITS_PER_LONG == 32)
681 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
682 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
683 else
684 #endif
685 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
686 sock_set_flag(sk, SOCK_LINGER);
687 }
688 break;
689
690 case SO_BSDCOMPAT:
691 sock_warn_obsolete_bsdism("setsockopt");
692 break;
693
694 case SO_PASSCRED:
695 if (valbool)
696 set_bit(SOCK_PASSCRED, &sock->flags);
697 else
698 clear_bit(SOCK_PASSCRED, &sock->flags);
699 break;
700
701 case SO_TIMESTAMP:
702 case SO_TIMESTAMPNS:
703 if (valbool) {
704 if (optname == SO_TIMESTAMP)
705 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
706 else
707 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
708 sock_set_flag(sk, SOCK_RCVTSTAMP);
709 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
710 } else {
711 sock_reset_flag(sk, SOCK_RCVTSTAMP);
712 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
713 }
714 break;
715
716 case SO_TIMESTAMPING:
717 if (val & ~SOF_TIMESTAMPING_MASK) {
718 ret = -EINVAL;
719 break;
720 }
721 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
722 val & SOF_TIMESTAMPING_TX_HARDWARE);
723 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
724 val & SOF_TIMESTAMPING_TX_SOFTWARE);
725 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
726 val & SOF_TIMESTAMPING_RX_HARDWARE);
727 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
728 sock_enable_timestamp(sk,
729 SOCK_TIMESTAMPING_RX_SOFTWARE);
730 else
731 sock_disable_timestamp(sk,
732 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
733 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
734 val & SOF_TIMESTAMPING_SOFTWARE);
735 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
736 val & SOF_TIMESTAMPING_SYS_HARDWARE);
737 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
738 val & SOF_TIMESTAMPING_RAW_HARDWARE);
739 break;
740
741 case SO_RCVLOWAT:
742 if (val < 0)
743 val = INT_MAX;
744 sk->sk_rcvlowat = val ? : 1;
745 break;
746
747 case SO_RCVTIMEO:
748 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
749 break;
750
751 case SO_SNDTIMEO:
752 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
753 break;
754
755 case SO_ATTACH_FILTER:
756 ret = -EINVAL;
757 if (optlen == sizeof(struct sock_fprog)) {
758 struct sock_fprog fprog;
759
760 ret = -EFAULT;
761 if (copy_from_user(&fprog, optval, sizeof(fprog)))
762 break;
763
764 ret = sk_attach_filter(&fprog, sk);
765 }
766 break;
767
768 case SO_DETACH_FILTER:
769 ret = sk_detach_filter(sk);
770 break;
771
772 case SO_PASSSEC:
773 if (valbool)
774 set_bit(SOCK_PASSSEC, &sock->flags);
775 else
776 clear_bit(SOCK_PASSSEC, &sock->flags);
777 break;
778 case SO_MARK:
779 if (!capable(CAP_NET_ADMIN))
780 ret = -EPERM;
781 else
782 sk->sk_mark = val;
783 break;
784
785 /* We implement the SO_SNDLOWAT etc to
786 not be settable (1003.1g 5.3) */
787 case SO_RXQ_OVFL:
788 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
789 break;
790
791 case SO_WIFI_STATUS:
792 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
793 break;
794
795 case SO_PEEK_OFF:
796 if (sock->ops->set_peek_off)
797 sock->ops->set_peek_off(sk, val);
798 else
799 ret = -EOPNOTSUPP;
800 break;
801
802 case SO_NOFCS:
803 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
804 break;
805
806 default:
807 ret = -ENOPROTOOPT;
808 break;
809 }
810 release_sock(sk);
811 return ret;
812 }
813 EXPORT_SYMBOL(sock_setsockopt);
814
815
816 void cred_to_ucred(struct pid *pid, const struct cred *cred,
817 struct ucred *ucred)
818 {
819 ucred->pid = pid_vnr(pid);
820 ucred->uid = ucred->gid = -1;
821 if (cred) {
822 struct user_namespace *current_ns = current_user_ns();
823
824 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
825 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
826 }
827 }
828 EXPORT_SYMBOL_GPL(cred_to_ucred);
829
830 int sock_getsockopt(struct socket *sock, int level, int optname,
831 char __user *optval, int __user *optlen)
832 {
833 struct sock *sk = sock->sk;
834
835 union {
836 int val;
837 struct linger ling;
838 struct timeval tm;
839 } v;
840
841 int lv = sizeof(int);
842 int len;
843
844 if (get_user(len, optlen))
845 return -EFAULT;
846 if (len < 0)
847 return -EINVAL;
848
849 memset(&v, 0, sizeof(v));
850
851 switch (optname) {
852 case SO_DEBUG:
853 v.val = sock_flag(sk, SOCK_DBG);
854 break;
855
856 case SO_DONTROUTE:
857 v.val = sock_flag(sk, SOCK_LOCALROUTE);
858 break;
859
860 case SO_BROADCAST:
861 v.val = !!sock_flag(sk, SOCK_BROADCAST);
862 break;
863
864 case SO_SNDBUF:
865 v.val = sk->sk_sndbuf;
866 break;
867
868 case SO_RCVBUF:
869 v.val = sk->sk_rcvbuf;
870 break;
871
872 case SO_REUSEADDR:
873 v.val = sk->sk_reuse;
874 break;
875
876 case SO_KEEPALIVE:
877 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
878 break;
879
880 case SO_TYPE:
881 v.val = sk->sk_type;
882 break;
883
884 case SO_PROTOCOL:
885 v.val = sk->sk_protocol;
886 break;
887
888 case SO_DOMAIN:
889 v.val = sk->sk_family;
890 break;
891
892 case SO_ERROR:
893 v.val = -sock_error(sk);
894 if (v.val == 0)
895 v.val = xchg(&sk->sk_err_soft, 0);
896 break;
897
898 case SO_OOBINLINE:
899 v.val = !!sock_flag(sk, SOCK_URGINLINE);
900 break;
901
902 case SO_NO_CHECK:
903 v.val = sk->sk_no_check;
904 break;
905
906 case SO_PRIORITY:
907 v.val = sk->sk_priority;
908 break;
909
910 case SO_LINGER:
911 lv = sizeof(v.ling);
912 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
913 v.ling.l_linger = sk->sk_lingertime / HZ;
914 break;
915
916 case SO_BSDCOMPAT:
917 sock_warn_obsolete_bsdism("getsockopt");
918 break;
919
920 case SO_TIMESTAMP:
921 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
922 !sock_flag(sk, SOCK_RCVTSTAMPNS);
923 break;
924
925 case SO_TIMESTAMPNS:
926 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
927 break;
928
929 case SO_TIMESTAMPING:
930 v.val = 0;
931 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
932 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
933 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
934 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
935 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
936 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
937 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
938 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
939 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
940 v.val |= SOF_TIMESTAMPING_SOFTWARE;
941 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
942 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
943 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
944 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
945 break;
946
947 case SO_RCVTIMEO:
948 lv = sizeof(struct timeval);
949 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
950 v.tm.tv_sec = 0;
951 v.tm.tv_usec = 0;
952 } else {
953 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
954 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
955 }
956 break;
957
958 case SO_SNDTIMEO:
959 lv = sizeof(struct timeval);
960 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
961 v.tm.tv_sec = 0;
962 v.tm.tv_usec = 0;
963 } else {
964 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
965 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
966 }
967 break;
968
969 case SO_RCVLOWAT:
970 v.val = sk->sk_rcvlowat;
971 break;
972
973 case SO_SNDLOWAT:
974 v.val = 1;
975 break;
976
977 case SO_PASSCRED:
978 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
979 break;
980
981 case SO_PEERCRED:
982 {
983 struct ucred peercred;
984 if (len > sizeof(peercred))
985 len = sizeof(peercred);
986 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
987 if (copy_to_user(optval, &peercred, len))
988 return -EFAULT;
989 goto lenout;
990 }
991
992 case SO_PEERNAME:
993 {
994 char address[128];
995
996 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
997 return -ENOTCONN;
998 if (lv < len)
999 return -EINVAL;
1000 if (copy_to_user(optval, address, len))
1001 return -EFAULT;
1002 goto lenout;
1003 }
1004
1005 /* Dubious BSD thing... Probably nobody even uses it, but
1006 * the UNIX standard wants it for whatever reason... -DaveM
1007 */
1008 case SO_ACCEPTCONN:
1009 v.val = sk->sk_state == TCP_LISTEN;
1010 break;
1011
1012 case SO_PASSSEC:
1013 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
1014 break;
1015
1016 case SO_PEERSEC:
1017 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1018
1019 case SO_MARK:
1020 v.val = sk->sk_mark;
1021 break;
1022
1023 case SO_RXQ_OVFL:
1024 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
1025 break;
1026
1027 case SO_WIFI_STATUS:
1028 v.val = !!sock_flag(sk, SOCK_WIFI_STATUS);
1029 break;
1030
1031 case SO_PEEK_OFF:
1032 if (!sock->ops->set_peek_off)
1033 return -EOPNOTSUPP;
1034
1035 v.val = sk->sk_peek_off;
1036 break;
1037 case SO_NOFCS:
1038 v.val = !!sock_flag(sk, SOCK_NOFCS);
1039 break;
1040 default:
1041 return -ENOPROTOOPT;
1042 }
1043
1044 if (len > lv)
1045 len = lv;
1046 if (copy_to_user(optval, &v, len))
1047 return -EFAULT;
1048 lenout:
1049 if (put_user(len, optlen))
1050 return -EFAULT;
1051 return 0;
1052 }
1053
1054 /*
1055 * Initialize an sk_lock.
1056 *
1057 * (We also register the sk_lock with the lock validator.)
1058 */
1059 static inline void sock_lock_init(struct sock *sk)
1060 {
1061 sock_lock_init_class_and_name(sk,
1062 af_family_slock_key_strings[sk->sk_family],
1063 af_family_slock_keys + sk->sk_family,
1064 af_family_key_strings[sk->sk_family],
1065 af_family_keys + sk->sk_family);
1066 }
1067
1068 /*
1069 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1070 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1071 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1072 */
1073 static void sock_copy(struct sock *nsk, const struct sock *osk)
1074 {
1075 #ifdef CONFIG_SECURITY_NETWORK
1076 void *sptr = nsk->sk_security;
1077 #endif
1078 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1079
1080 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1081 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1082
1083 #ifdef CONFIG_SECURITY_NETWORK
1084 nsk->sk_security = sptr;
1085 security_sk_clone(osk, nsk);
1086 #endif
1087 }
1088
1089 /*
1090 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1091 * un-modified. Special care is taken when initializing object to zero.
1092 */
1093 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1094 {
1095 if (offsetof(struct sock, sk_node.next) != 0)
1096 memset(sk, 0, offsetof(struct sock, sk_node.next));
1097 memset(&sk->sk_node.pprev, 0,
1098 size - offsetof(struct sock, sk_node.pprev));
1099 }
1100
1101 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1102 {
1103 unsigned long nulls1, nulls2;
1104
1105 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1106 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1107 if (nulls1 > nulls2)
1108 swap(nulls1, nulls2);
1109
1110 if (nulls1 != 0)
1111 memset((char *)sk, 0, nulls1);
1112 memset((char *)sk + nulls1 + sizeof(void *), 0,
1113 nulls2 - nulls1 - sizeof(void *));
1114 memset((char *)sk + nulls2 + sizeof(void *), 0,
1115 size - nulls2 - sizeof(void *));
1116 }
1117 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1118
1119 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1120 int family)
1121 {
1122 struct sock *sk;
1123 struct kmem_cache *slab;
1124
1125 slab = prot->slab;
1126 if (slab != NULL) {
1127 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1128 if (!sk)
1129 return sk;
1130 if (priority & __GFP_ZERO) {
1131 if (prot->clear_sk)
1132 prot->clear_sk(sk, prot->obj_size);
1133 else
1134 sk_prot_clear_nulls(sk, prot->obj_size);
1135 }
1136 } else
1137 sk = kmalloc(prot->obj_size, priority);
1138
1139 if (sk != NULL) {
1140 kmemcheck_annotate_bitfield(sk, flags);
1141
1142 if (security_sk_alloc(sk, family, priority))
1143 goto out_free;
1144
1145 if (!try_module_get(prot->owner))
1146 goto out_free_sec;
1147 sk_tx_queue_clear(sk);
1148 }
1149
1150 return sk;
1151
1152 out_free_sec:
1153 security_sk_free(sk);
1154 out_free:
1155 if (slab != NULL)
1156 kmem_cache_free(slab, sk);
1157 else
1158 kfree(sk);
1159 return NULL;
1160 }
1161
1162 static void sk_prot_free(struct proto *prot, struct sock *sk)
1163 {
1164 struct kmem_cache *slab;
1165 struct module *owner;
1166
1167 owner = prot->owner;
1168 slab = prot->slab;
1169
1170 security_sk_free(sk);
1171 if (slab != NULL)
1172 kmem_cache_free(slab, sk);
1173 else
1174 kfree(sk);
1175 module_put(owner);
1176 }
1177
1178 #ifdef CONFIG_CGROUPS
1179 void sock_update_classid(struct sock *sk)
1180 {
1181 u32 classid;
1182
1183 rcu_read_lock(); /* doing current task, which cannot vanish. */
1184 classid = task_cls_classid(current);
1185 rcu_read_unlock();
1186 if (classid && classid != sk->sk_classid)
1187 sk->sk_classid = classid;
1188 }
1189 EXPORT_SYMBOL(sock_update_classid);
1190
1191 void sock_update_netprioidx(struct sock *sk)
1192 {
1193 if (in_interrupt())
1194 return;
1195
1196 sk->sk_cgrp_prioidx = task_netprioidx(current);
1197 }
1198 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1199 #endif
1200
1201 /**
1202 * sk_alloc - All socket objects are allocated here
1203 * @net: the applicable net namespace
1204 * @family: protocol family
1205 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1206 * @prot: struct proto associated with this new sock instance
1207 */
1208 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1209 struct proto *prot)
1210 {
1211 struct sock *sk;
1212
1213 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1214 if (sk) {
1215 sk->sk_family = family;
1216 /*
1217 * See comment in struct sock definition to understand
1218 * why we need sk_prot_creator -acme
1219 */
1220 sk->sk_prot = sk->sk_prot_creator = prot;
1221 sock_lock_init(sk);
1222 sock_net_set(sk, get_net(net));
1223 atomic_set(&sk->sk_wmem_alloc, 1);
1224
1225 sock_update_classid(sk);
1226 sock_update_netprioidx(sk);
1227 }
1228
1229 return sk;
1230 }
1231 EXPORT_SYMBOL(sk_alloc);
1232
1233 static void __sk_free(struct sock *sk)
1234 {
1235 struct sk_filter *filter;
1236
1237 if (sk->sk_destruct)
1238 sk->sk_destruct(sk);
1239
1240 filter = rcu_dereference_check(sk->sk_filter,
1241 atomic_read(&sk->sk_wmem_alloc) == 0);
1242 if (filter) {
1243 sk_filter_uncharge(sk, filter);
1244 RCU_INIT_POINTER(sk->sk_filter, NULL);
1245 }
1246
1247 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1248
1249 if (atomic_read(&sk->sk_omem_alloc))
1250 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1251 __func__, atomic_read(&sk->sk_omem_alloc));
1252
1253 if (sk->sk_peer_cred)
1254 put_cred(sk->sk_peer_cred);
1255 put_pid(sk->sk_peer_pid);
1256 put_net(sock_net(sk));
1257 sk_prot_free(sk->sk_prot_creator, sk);
1258 }
1259
1260 void sk_free(struct sock *sk)
1261 {
1262 /*
1263 * We subtract one from sk_wmem_alloc and can know if
1264 * some packets are still in some tx queue.
1265 * If not null, sock_wfree() will call __sk_free(sk) later
1266 */
1267 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1268 __sk_free(sk);
1269 }
1270 EXPORT_SYMBOL(sk_free);
1271
1272 /*
1273 * Last sock_put should drop reference to sk->sk_net. It has already
1274 * been dropped in sk_change_net. Taking reference to stopping namespace
1275 * is not an option.
1276 * Take reference to a socket to remove it from hash _alive_ and after that
1277 * destroy it in the context of init_net.
1278 */
1279 void sk_release_kernel(struct sock *sk)
1280 {
1281 if (sk == NULL || sk->sk_socket == NULL)
1282 return;
1283
1284 sock_hold(sk);
1285 sock_release(sk->sk_socket);
1286 release_net(sock_net(sk));
1287 sock_net_set(sk, get_net(&init_net));
1288 sock_put(sk);
1289 }
1290 EXPORT_SYMBOL(sk_release_kernel);
1291
1292 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1293 {
1294 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1295 sock_update_memcg(newsk);
1296 }
1297
1298 /**
1299 * sk_clone_lock - clone a socket, and lock its clone
1300 * @sk: the socket to clone
1301 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1302 *
1303 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1304 */
1305 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1306 {
1307 struct sock *newsk;
1308
1309 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1310 if (newsk != NULL) {
1311 struct sk_filter *filter;
1312
1313 sock_copy(newsk, sk);
1314
1315 /* SANITY */
1316 get_net(sock_net(newsk));
1317 sk_node_init(&newsk->sk_node);
1318 sock_lock_init(newsk);
1319 bh_lock_sock(newsk);
1320 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1321 newsk->sk_backlog.len = 0;
1322
1323 atomic_set(&newsk->sk_rmem_alloc, 0);
1324 /*
1325 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1326 */
1327 atomic_set(&newsk->sk_wmem_alloc, 1);
1328 atomic_set(&newsk->sk_omem_alloc, 0);
1329 skb_queue_head_init(&newsk->sk_receive_queue);
1330 skb_queue_head_init(&newsk->sk_write_queue);
1331 #ifdef CONFIG_NET_DMA
1332 skb_queue_head_init(&newsk->sk_async_wait_queue);
1333 #endif
1334
1335 spin_lock_init(&newsk->sk_dst_lock);
1336 rwlock_init(&newsk->sk_callback_lock);
1337 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1338 af_callback_keys + newsk->sk_family,
1339 af_family_clock_key_strings[newsk->sk_family]);
1340
1341 newsk->sk_dst_cache = NULL;
1342 newsk->sk_wmem_queued = 0;
1343 newsk->sk_forward_alloc = 0;
1344 newsk->sk_send_head = NULL;
1345 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1346
1347 sock_reset_flag(newsk, SOCK_DONE);
1348 skb_queue_head_init(&newsk->sk_error_queue);
1349
1350 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1351 if (filter != NULL)
1352 sk_filter_charge(newsk, filter);
1353
1354 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1355 /* It is still raw copy of parent, so invalidate
1356 * destructor and make plain sk_free() */
1357 newsk->sk_destruct = NULL;
1358 bh_unlock_sock(newsk);
1359 sk_free(newsk);
1360 newsk = NULL;
1361 goto out;
1362 }
1363
1364 newsk->sk_err = 0;
1365 newsk->sk_priority = 0;
1366 /*
1367 * Before updating sk_refcnt, we must commit prior changes to memory
1368 * (Documentation/RCU/rculist_nulls.txt for details)
1369 */
1370 smp_wmb();
1371 atomic_set(&newsk->sk_refcnt, 2);
1372
1373 /*
1374 * Increment the counter in the same struct proto as the master
1375 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1376 * is the same as sk->sk_prot->socks, as this field was copied
1377 * with memcpy).
1378 *
1379 * This _changes_ the previous behaviour, where
1380 * tcp_create_openreq_child always was incrementing the
1381 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1382 * to be taken into account in all callers. -acme
1383 */
1384 sk_refcnt_debug_inc(newsk);
1385 sk_set_socket(newsk, NULL);
1386 newsk->sk_wq = NULL;
1387
1388 sk_update_clone(sk, newsk);
1389
1390 if (newsk->sk_prot->sockets_allocated)
1391 sk_sockets_allocated_inc(newsk);
1392
1393 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1394 net_enable_timestamp();
1395 }
1396 out:
1397 return newsk;
1398 }
1399 EXPORT_SYMBOL_GPL(sk_clone_lock);
1400
1401 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1402 {
1403 __sk_dst_set(sk, dst);
1404 sk->sk_route_caps = dst->dev->features;
1405 if (sk->sk_route_caps & NETIF_F_GSO)
1406 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1407 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1408 if (sk_can_gso(sk)) {
1409 if (dst->header_len) {
1410 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1411 } else {
1412 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1413 sk->sk_gso_max_size = dst->dev->gso_max_size;
1414 }
1415 }
1416 }
1417 EXPORT_SYMBOL_GPL(sk_setup_caps);
1418
1419 void __init sk_init(void)
1420 {
1421 if (totalram_pages <= 4096) {
1422 sysctl_wmem_max = 32767;
1423 sysctl_rmem_max = 32767;
1424 sysctl_wmem_default = 32767;
1425 sysctl_rmem_default = 32767;
1426 } else if (totalram_pages >= 131072) {
1427 sysctl_wmem_max = 131071;
1428 sysctl_rmem_max = 131071;
1429 }
1430 }
1431
1432 /*
1433 * Simple resource managers for sockets.
1434 */
1435
1436
1437 /*
1438 * Write buffer destructor automatically called from kfree_skb.
1439 */
1440 void sock_wfree(struct sk_buff *skb)
1441 {
1442 struct sock *sk = skb->sk;
1443 unsigned int len = skb->truesize;
1444
1445 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1446 /*
1447 * Keep a reference on sk_wmem_alloc, this will be released
1448 * after sk_write_space() call
1449 */
1450 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1451 sk->sk_write_space(sk);
1452 len = 1;
1453 }
1454 /*
1455 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1456 * could not do because of in-flight packets
1457 */
1458 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1459 __sk_free(sk);
1460 }
1461 EXPORT_SYMBOL(sock_wfree);
1462
1463 /*
1464 * Read buffer destructor automatically called from kfree_skb.
1465 */
1466 void sock_rfree(struct sk_buff *skb)
1467 {
1468 struct sock *sk = skb->sk;
1469 unsigned int len = skb->truesize;
1470
1471 atomic_sub(len, &sk->sk_rmem_alloc);
1472 sk_mem_uncharge(sk, len);
1473 }
1474 EXPORT_SYMBOL(sock_rfree);
1475
1476
1477 int sock_i_uid(struct sock *sk)
1478 {
1479 int uid;
1480
1481 read_lock_bh(&sk->sk_callback_lock);
1482 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1483 read_unlock_bh(&sk->sk_callback_lock);
1484 return uid;
1485 }
1486 EXPORT_SYMBOL(sock_i_uid);
1487
1488 unsigned long sock_i_ino(struct sock *sk)
1489 {
1490 unsigned long ino;
1491
1492 read_lock_bh(&sk->sk_callback_lock);
1493 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1494 read_unlock_bh(&sk->sk_callback_lock);
1495 return ino;
1496 }
1497 EXPORT_SYMBOL(sock_i_ino);
1498
1499 /*
1500 * Allocate a skb from the socket's send buffer.
1501 */
1502 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1503 gfp_t priority)
1504 {
1505 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1506 struct sk_buff *skb = alloc_skb(size, priority);
1507 if (skb) {
1508 skb_set_owner_w(skb, sk);
1509 return skb;
1510 }
1511 }
1512 return NULL;
1513 }
1514 EXPORT_SYMBOL(sock_wmalloc);
1515
1516 /*
1517 * Allocate a skb from the socket's receive buffer.
1518 */
1519 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1520 gfp_t priority)
1521 {
1522 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1523 struct sk_buff *skb = alloc_skb(size, priority);
1524 if (skb) {
1525 skb_set_owner_r(skb, sk);
1526 return skb;
1527 }
1528 }
1529 return NULL;
1530 }
1531
1532 /*
1533 * Allocate a memory block from the socket's option memory buffer.
1534 */
1535 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1536 {
1537 if ((unsigned)size <= sysctl_optmem_max &&
1538 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1539 void *mem;
1540 /* First do the add, to avoid the race if kmalloc
1541 * might sleep.
1542 */
1543 atomic_add(size, &sk->sk_omem_alloc);
1544 mem = kmalloc(size, priority);
1545 if (mem)
1546 return mem;
1547 atomic_sub(size, &sk->sk_omem_alloc);
1548 }
1549 return NULL;
1550 }
1551 EXPORT_SYMBOL(sock_kmalloc);
1552
1553 /*
1554 * Free an option memory block.
1555 */
1556 void sock_kfree_s(struct sock *sk, void *mem, int size)
1557 {
1558 kfree(mem);
1559 atomic_sub(size, &sk->sk_omem_alloc);
1560 }
1561 EXPORT_SYMBOL(sock_kfree_s);
1562
1563 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1564 I think, these locks should be removed for datagram sockets.
1565 */
1566 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1567 {
1568 DEFINE_WAIT(wait);
1569
1570 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1571 for (;;) {
1572 if (!timeo)
1573 break;
1574 if (signal_pending(current))
1575 break;
1576 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1577 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1578 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1579 break;
1580 if (sk->sk_shutdown & SEND_SHUTDOWN)
1581 break;
1582 if (sk->sk_err)
1583 break;
1584 timeo = schedule_timeout(timeo);
1585 }
1586 finish_wait(sk_sleep(sk), &wait);
1587 return timeo;
1588 }
1589
1590
1591 /*
1592 * Generic send/receive buffer handlers
1593 */
1594
1595 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1596 unsigned long data_len, int noblock,
1597 int *errcode)
1598 {
1599 struct sk_buff *skb;
1600 gfp_t gfp_mask;
1601 long timeo;
1602 int err;
1603
1604 gfp_mask = sk->sk_allocation;
1605 if (gfp_mask & __GFP_WAIT)
1606 gfp_mask |= __GFP_REPEAT;
1607
1608 timeo = sock_sndtimeo(sk, noblock);
1609 while (1) {
1610 err = sock_error(sk);
1611 if (err != 0)
1612 goto failure;
1613
1614 err = -EPIPE;
1615 if (sk->sk_shutdown & SEND_SHUTDOWN)
1616 goto failure;
1617
1618 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1619 skb = alloc_skb(header_len, gfp_mask);
1620 if (skb) {
1621 int npages;
1622 int i;
1623
1624 /* No pages, we're done... */
1625 if (!data_len)
1626 break;
1627
1628 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1629 skb->truesize += data_len;
1630 skb_shinfo(skb)->nr_frags = npages;
1631 for (i = 0; i < npages; i++) {
1632 struct page *page;
1633
1634 page = alloc_pages(sk->sk_allocation, 0);
1635 if (!page) {
1636 err = -ENOBUFS;
1637 skb_shinfo(skb)->nr_frags = i;
1638 kfree_skb(skb);
1639 goto failure;
1640 }
1641
1642 __skb_fill_page_desc(skb, i,
1643 page, 0,
1644 (data_len >= PAGE_SIZE ?
1645 PAGE_SIZE :
1646 data_len));
1647 data_len -= PAGE_SIZE;
1648 }
1649
1650 /* Full success... */
1651 break;
1652 }
1653 err = -ENOBUFS;
1654 goto failure;
1655 }
1656 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1657 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1658 err = -EAGAIN;
1659 if (!timeo)
1660 goto failure;
1661 if (signal_pending(current))
1662 goto interrupted;
1663 timeo = sock_wait_for_wmem(sk, timeo);
1664 }
1665
1666 skb_set_owner_w(skb, sk);
1667 return skb;
1668
1669 interrupted:
1670 err = sock_intr_errno(timeo);
1671 failure:
1672 *errcode = err;
1673 return NULL;
1674 }
1675 EXPORT_SYMBOL(sock_alloc_send_pskb);
1676
1677 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1678 int noblock, int *errcode)
1679 {
1680 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1681 }
1682 EXPORT_SYMBOL(sock_alloc_send_skb);
1683
1684 static void __lock_sock(struct sock *sk)
1685 __releases(&sk->sk_lock.slock)
1686 __acquires(&sk->sk_lock.slock)
1687 {
1688 DEFINE_WAIT(wait);
1689
1690 for (;;) {
1691 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1692 TASK_UNINTERRUPTIBLE);
1693 spin_unlock_bh(&sk->sk_lock.slock);
1694 schedule();
1695 spin_lock_bh(&sk->sk_lock.slock);
1696 if (!sock_owned_by_user(sk))
1697 break;
1698 }
1699 finish_wait(&sk->sk_lock.wq, &wait);
1700 }
1701
1702 static void __release_sock(struct sock *sk)
1703 __releases(&sk->sk_lock.slock)
1704 __acquires(&sk->sk_lock.slock)
1705 {
1706 struct sk_buff *skb = sk->sk_backlog.head;
1707
1708 do {
1709 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1710 bh_unlock_sock(sk);
1711
1712 do {
1713 struct sk_buff *next = skb->next;
1714
1715 WARN_ON_ONCE(skb_dst_is_noref(skb));
1716 skb->next = NULL;
1717 sk_backlog_rcv(sk, skb);
1718
1719 /*
1720 * We are in process context here with softirqs
1721 * disabled, use cond_resched_softirq() to preempt.
1722 * This is safe to do because we've taken the backlog
1723 * queue private:
1724 */
1725 cond_resched_softirq();
1726
1727 skb = next;
1728 } while (skb != NULL);
1729
1730 bh_lock_sock(sk);
1731 } while ((skb = sk->sk_backlog.head) != NULL);
1732
1733 /*
1734 * Doing the zeroing here guarantee we can not loop forever
1735 * while a wild producer attempts to flood us.
1736 */
1737 sk->sk_backlog.len = 0;
1738 }
1739
1740 /**
1741 * sk_wait_data - wait for data to arrive at sk_receive_queue
1742 * @sk: sock to wait on
1743 * @timeo: for how long
1744 *
1745 * Now socket state including sk->sk_err is changed only under lock,
1746 * hence we may omit checks after joining wait queue.
1747 * We check receive queue before schedule() only as optimization;
1748 * it is very likely that release_sock() added new data.
1749 */
1750 int sk_wait_data(struct sock *sk, long *timeo)
1751 {
1752 int rc;
1753 DEFINE_WAIT(wait);
1754
1755 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1756 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1757 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1758 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1759 finish_wait(sk_sleep(sk), &wait);
1760 return rc;
1761 }
1762 EXPORT_SYMBOL(sk_wait_data);
1763
1764 /**
1765 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1766 * @sk: socket
1767 * @size: memory size to allocate
1768 * @kind: allocation type
1769 *
1770 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1771 * rmem allocation. This function assumes that protocols which have
1772 * memory_pressure use sk_wmem_queued as write buffer accounting.
1773 */
1774 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1775 {
1776 struct proto *prot = sk->sk_prot;
1777 int amt = sk_mem_pages(size);
1778 long allocated;
1779 int parent_status = UNDER_LIMIT;
1780
1781 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1782
1783 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1784
1785 /* Under limit. */
1786 if (parent_status == UNDER_LIMIT &&
1787 allocated <= sk_prot_mem_limits(sk, 0)) {
1788 sk_leave_memory_pressure(sk);
1789 return 1;
1790 }
1791
1792 /* Under pressure. (we or our parents) */
1793 if ((parent_status > SOFT_LIMIT) ||
1794 allocated > sk_prot_mem_limits(sk, 1))
1795 sk_enter_memory_pressure(sk);
1796
1797 /* Over hard limit (we or our parents) */
1798 if ((parent_status == OVER_LIMIT) ||
1799 (allocated > sk_prot_mem_limits(sk, 2)))
1800 goto suppress_allocation;
1801
1802 /* guarantee minimum buffer size under pressure */
1803 if (kind == SK_MEM_RECV) {
1804 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1805 return 1;
1806
1807 } else { /* SK_MEM_SEND */
1808 if (sk->sk_type == SOCK_STREAM) {
1809 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1810 return 1;
1811 } else if (atomic_read(&sk->sk_wmem_alloc) <
1812 prot->sysctl_wmem[0])
1813 return 1;
1814 }
1815
1816 if (sk_has_memory_pressure(sk)) {
1817 int alloc;
1818
1819 if (!sk_under_memory_pressure(sk))
1820 return 1;
1821 alloc = sk_sockets_allocated_read_positive(sk);
1822 if (sk_prot_mem_limits(sk, 2) > alloc *
1823 sk_mem_pages(sk->sk_wmem_queued +
1824 atomic_read(&sk->sk_rmem_alloc) +
1825 sk->sk_forward_alloc))
1826 return 1;
1827 }
1828
1829 suppress_allocation:
1830
1831 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1832 sk_stream_moderate_sndbuf(sk);
1833
1834 /* Fail only if socket is _under_ its sndbuf.
1835 * In this case we cannot block, so that we have to fail.
1836 */
1837 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1838 return 1;
1839 }
1840
1841 trace_sock_exceed_buf_limit(sk, prot, allocated);
1842
1843 /* Alas. Undo changes. */
1844 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1845
1846 sk_memory_allocated_sub(sk, amt);
1847
1848 return 0;
1849 }
1850 EXPORT_SYMBOL(__sk_mem_schedule);
1851
1852 /**
1853 * __sk_reclaim - reclaim memory_allocated
1854 * @sk: socket
1855 */
1856 void __sk_mem_reclaim(struct sock *sk)
1857 {
1858 sk_memory_allocated_sub(sk,
1859 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1860 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1861
1862 if (sk_under_memory_pressure(sk) &&
1863 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1864 sk_leave_memory_pressure(sk);
1865 }
1866 EXPORT_SYMBOL(__sk_mem_reclaim);
1867
1868
1869 /*
1870 * Set of default routines for initialising struct proto_ops when
1871 * the protocol does not support a particular function. In certain
1872 * cases where it makes no sense for a protocol to have a "do nothing"
1873 * function, some default processing is provided.
1874 */
1875
1876 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1877 {
1878 return -EOPNOTSUPP;
1879 }
1880 EXPORT_SYMBOL(sock_no_bind);
1881
1882 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1883 int len, int flags)
1884 {
1885 return -EOPNOTSUPP;
1886 }
1887 EXPORT_SYMBOL(sock_no_connect);
1888
1889 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1890 {
1891 return -EOPNOTSUPP;
1892 }
1893 EXPORT_SYMBOL(sock_no_socketpair);
1894
1895 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1896 {
1897 return -EOPNOTSUPP;
1898 }
1899 EXPORT_SYMBOL(sock_no_accept);
1900
1901 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1902 int *len, int peer)
1903 {
1904 return -EOPNOTSUPP;
1905 }
1906 EXPORT_SYMBOL(sock_no_getname);
1907
1908 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1909 {
1910 return 0;
1911 }
1912 EXPORT_SYMBOL(sock_no_poll);
1913
1914 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1915 {
1916 return -EOPNOTSUPP;
1917 }
1918 EXPORT_SYMBOL(sock_no_ioctl);
1919
1920 int sock_no_listen(struct socket *sock, int backlog)
1921 {
1922 return -EOPNOTSUPP;
1923 }
1924 EXPORT_SYMBOL(sock_no_listen);
1925
1926 int sock_no_shutdown(struct socket *sock, int how)
1927 {
1928 return -EOPNOTSUPP;
1929 }
1930 EXPORT_SYMBOL(sock_no_shutdown);
1931
1932 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1933 char __user *optval, unsigned int optlen)
1934 {
1935 return -EOPNOTSUPP;
1936 }
1937 EXPORT_SYMBOL(sock_no_setsockopt);
1938
1939 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1940 char __user *optval, int __user *optlen)
1941 {
1942 return -EOPNOTSUPP;
1943 }
1944 EXPORT_SYMBOL(sock_no_getsockopt);
1945
1946 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1947 size_t len)
1948 {
1949 return -EOPNOTSUPP;
1950 }
1951 EXPORT_SYMBOL(sock_no_sendmsg);
1952
1953 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1954 size_t len, int flags)
1955 {
1956 return -EOPNOTSUPP;
1957 }
1958 EXPORT_SYMBOL(sock_no_recvmsg);
1959
1960 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1961 {
1962 /* Mirror missing mmap method error code */
1963 return -ENODEV;
1964 }
1965 EXPORT_SYMBOL(sock_no_mmap);
1966
1967 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1968 {
1969 ssize_t res;
1970 struct msghdr msg = {.msg_flags = flags};
1971 struct kvec iov;
1972 char *kaddr = kmap(page);
1973 iov.iov_base = kaddr + offset;
1974 iov.iov_len = size;
1975 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1976 kunmap(page);
1977 return res;
1978 }
1979 EXPORT_SYMBOL(sock_no_sendpage);
1980
1981 /*
1982 * Default Socket Callbacks
1983 */
1984
1985 static void sock_def_wakeup(struct sock *sk)
1986 {
1987 struct socket_wq *wq;
1988
1989 rcu_read_lock();
1990 wq = rcu_dereference(sk->sk_wq);
1991 if (wq_has_sleeper(wq))
1992 wake_up_interruptible_all(&wq->wait);
1993 rcu_read_unlock();
1994 }
1995
1996 static void sock_def_error_report(struct sock *sk)
1997 {
1998 struct socket_wq *wq;
1999
2000 rcu_read_lock();
2001 wq = rcu_dereference(sk->sk_wq);
2002 if (wq_has_sleeper(wq))
2003 wake_up_interruptible_poll(&wq->wait, POLLERR);
2004 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2005 rcu_read_unlock();
2006 }
2007
2008 static void sock_def_readable(struct sock *sk, int len)
2009 {
2010 struct socket_wq *wq;
2011
2012 rcu_read_lock();
2013 wq = rcu_dereference(sk->sk_wq);
2014 if (wq_has_sleeper(wq))
2015 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2016 POLLRDNORM | POLLRDBAND);
2017 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2018 rcu_read_unlock();
2019 }
2020
2021 static void sock_def_write_space(struct sock *sk)
2022 {
2023 struct socket_wq *wq;
2024
2025 rcu_read_lock();
2026
2027 /* Do not wake up a writer until he can make "significant"
2028 * progress. --DaveM
2029 */
2030 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2031 wq = rcu_dereference(sk->sk_wq);
2032 if (wq_has_sleeper(wq))
2033 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2034 POLLWRNORM | POLLWRBAND);
2035
2036 /* Should agree with poll, otherwise some programs break */
2037 if (sock_writeable(sk))
2038 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2039 }
2040
2041 rcu_read_unlock();
2042 }
2043
2044 static void sock_def_destruct(struct sock *sk)
2045 {
2046 kfree(sk->sk_protinfo);
2047 }
2048
2049 void sk_send_sigurg(struct sock *sk)
2050 {
2051 if (sk->sk_socket && sk->sk_socket->file)
2052 if (send_sigurg(&sk->sk_socket->file->f_owner))
2053 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2054 }
2055 EXPORT_SYMBOL(sk_send_sigurg);
2056
2057 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2058 unsigned long expires)
2059 {
2060 if (!mod_timer(timer, expires))
2061 sock_hold(sk);
2062 }
2063 EXPORT_SYMBOL(sk_reset_timer);
2064
2065 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2066 {
2067 if (timer_pending(timer) && del_timer(timer))
2068 __sock_put(sk);
2069 }
2070 EXPORT_SYMBOL(sk_stop_timer);
2071
2072 void sock_init_data(struct socket *sock, struct sock *sk)
2073 {
2074 skb_queue_head_init(&sk->sk_receive_queue);
2075 skb_queue_head_init(&sk->sk_write_queue);
2076 skb_queue_head_init(&sk->sk_error_queue);
2077 #ifdef CONFIG_NET_DMA
2078 skb_queue_head_init(&sk->sk_async_wait_queue);
2079 #endif
2080
2081 sk->sk_send_head = NULL;
2082
2083 init_timer(&sk->sk_timer);
2084
2085 sk->sk_allocation = GFP_KERNEL;
2086 sk->sk_rcvbuf = sysctl_rmem_default;
2087 sk->sk_sndbuf = sysctl_wmem_default;
2088 sk->sk_state = TCP_CLOSE;
2089 sk_set_socket(sk, sock);
2090
2091 sock_set_flag(sk, SOCK_ZAPPED);
2092
2093 if (sock) {
2094 sk->sk_type = sock->type;
2095 sk->sk_wq = sock->wq;
2096 sock->sk = sk;
2097 } else
2098 sk->sk_wq = NULL;
2099
2100 spin_lock_init(&sk->sk_dst_lock);
2101 rwlock_init(&sk->sk_callback_lock);
2102 lockdep_set_class_and_name(&sk->sk_callback_lock,
2103 af_callback_keys + sk->sk_family,
2104 af_family_clock_key_strings[sk->sk_family]);
2105
2106 sk->sk_state_change = sock_def_wakeup;
2107 sk->sk_data_ready = sock_def_readable;
2108 sk->sk_write_space = sock_def_write_space;
2109 sk->sk_error_report = sock_def_error_report;
2110 sk->sk_destruct = sock_def_destruct;
2111
2112 sk->sk_sndmsg_page = NULL;
2113 sk->sk_sndmsg_off = 0;
2114 sk->sk_peek_off = -1;
2115
2116 sk->sk_peer_pid = NULL;
2117 sk->sk_peer_cred = NULL;
2118 sk->sk_write_pending = 0;
2119 sk->sk_rcvlowat = 1;
2120 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2121 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2122
2123 sk->sk_stamp = ktime_set(-1L, 0);
2124
2125 /*
2126 * Before updating sk_refcnt, we must commit prior changes to memory
2127 * (Documentation/RCU/rculist_nulls.txt for details)
2128 */
2129 smp_wmb();
2130 atomic_set(&sk->sk_refcnt, 1);
2131 atomic_set(&sk->sk_drops, 0);
2132 }
2133 EXPORT_SYMBOL(sock_init_data);
2134
2135 void lock_sock_nested(struct sock *sk, int subclass)
2136 {
2137 might_sleep();
2138 spin_lock_bh(&sk->sk_lock.slock);
2139 if (sk->sk_lock.owned)
2140 __lock_sock(sk);
2141 sk->sk_lock.owned = 1;
2142 spin_unlock(&sk->sk_lock.slock);
2143 /*
2144 * The sk_lock has mutex_lock() semantics here:
2145 */
2146 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2147 local_bh_enable();
2148 }
2149 EXPORT_SYMBOL(lock_sock_nested);
2150
2151 void release_sock(struct sock *sk)
2152 {
2153 /*
2154 * The sk_lock has mutex_unlock() semantics:
2155 */
2156 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2157
2158 spin_lock_bh(&sk->sk_lock.slock);
2159 if (sk->sk_backlog.tail)
2160 __release_sock(sk);
2161 sk->sk_lock.owned = 0;
2162 if (waitqueue_active(&sk->sk_lock.wq))
2163 wake_up(&sk->sk_lock.wq);
2164 spin_unlock_bh(&sk->sk_lock.slock);
2165 }
2166 EXPORT_SYMBOL(release_sock);
2167
2168 /**
2169 * lock_sock_fast - fast version of lock_sock
2170 * @sk: socket
2171 *
2172 * This version should be used for very small section, where process wont block
2173 * return false if fast path is taken
2174 * sk_lock.slock locked, owned = 0, BH disabled
2175 * return true if slow path is taken
2176 * sk_lock.slock unlocked, owned = 1, BH enabled
2177 */
2178 bool lock_sock_fast(struct sock *sk)
2179 {
2180 might_sleep();
2181 spin_lock_bh(&sk->sk_lock.slock);
2182
2183 if (!sk->sk_lock.owned)
2184 /*
2185 * Note : We must disable BH
2186 */
2187 return false;
2188
2189 __lock_sock(sk);
2190 sk->sk_lock.owned = 1;
2191 spin_unlock(&sk->sk_lock.slock);
2192 /*
2193 * The sk_lock has mutex_lock() semantics here:
2194 */
2195 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2196 local_bh_enable();
2197 return true;
2198 }
2199 EXPORT_SYMBOL(lock_sock_fast);
2200
2201 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2202 {
2203 struct timeval tv;
2204 if (!sock_flag(sk, SOCK_TIMESTAMP))
2205 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2206 tv = ktime_to_timeval(sk->sk_stamp);
2207 if (tv.tv_sec == -1)
2208 return -ENOENT;
2209 if (tv.tv_sec == 0) {
2210 sk->sk_stamp = ktime_get_real();
2211 tv = ktime_to_timeval(sk->sk_stamp);
2212 }
2213 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2214 }
2215 EXPORT_SYMBOL(sock_get_timestamp);
2216
2217 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2218 {
2219 struct timespec ts;
2220 if (!sock_flag(sk, SOCK_TIMESTAMP))
2221 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2222 ts = ktime_to_timespec(sk->sk_stamp);
2223 if (ts.tv_sec == -1)
2224 return -ENOENT;
2225 if (ts.tv_sec == 0) {
2226 sk->sk_stamp = ktime_get_real();
2227 ts = ktime_to_timespec(sk->sk_stamp);
2228 }
2229 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2230 }
2231 EXPORT_SYMBOL(sock_get_timestampns);
2232
2233 void sock_enable_timestamp(struct sock *sk, int flag)
2234 {
2235 if (!sock_flag(sk, flag)) {
2236 unsigned long previous_flags = sk->sk_flags;
2237
2238 sock_set_flag(sk, flag);
2239 /*
2240 * we just set one of the two flags which require net
2241 * time stamping, but time stamping might have been on
2242 * already because of the other one
2243 */
2244 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2245 net_enable_timestamp();
2246 }
2247 }
2248
2249 /*
2250 * Get a socket option on an socket.
2251 *
2252 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2253 * asynchronous errors should be reported by getsockopt. We assume
2254 * this means if you specify SO_ERROR (otherwise whats the point of it).
2255 */
2256 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2257 char __user *optval, int __user *optlen)
2258 {
2259 struct sock *sk = sock->sk;
2260
2261 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2262 }
2263 EXPORT_SYMBOL(sock_common_getsockopt);
2264
2265 #ifdef CONFIG_COMPAT
2266 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2267 char __user *optval, int __user *optlen)
2268 {
2269 struct sock *sk = sock->sk;
2270
2271 if (sk->sk_prot->compat_getsockopt != NULL)
2272 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2273 optval, optlen);
2274 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2275 }
2276 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2277 #endif
2278
2279 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2280 struct msghdr *msg, size_t size, int flags)
2281 {
2282 struct sock *sk = sock->sk;
2283 int addr_len = 0;
2284 int err;
2285
2286 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2287 flags & ~MSG_DONTWAIT, &addr_len);
2288 if (err >= 0)
2289 msg->msg_namelen = addr_len;
2290 return err;
2291 }
2292 EXPORT_SYMBOL(sock_common_recvmsg);
2293
2294 /*
2295 * Set socket options on an inet socket.
2296 */
2297 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2298 char __user *optval, unsigned int optlen)
2299 {
2300 struct sock *sk = sock->sk;
2301
2302 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2303 }
2304 EXPORT_SYMBOL(sock_common_setsockopt);
2305
2306 #ifdef CONFIG_COMPAT
2307 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2308 char __user *optval, unsigned int optlen)
2309 {
2310 struct sock *sk = sock->sk;
2311
2312 if (sk->sk_prot->compat_setsockopt != NULL)
2313 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2314 optval, optlen);
2315 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2316 }
2317 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2318 #endif
2319
2320 void sk_common_release(struct sock *sk)
2321 {
2322 if (sk->sk_prot->destroy)
2323 sk->sk_prot->destroy(sk);
2324
2325 /*
2326 * Observation: when sock_common_release is called, processes have
2327 * no access to socket. But net still has.
2328 * Step one, detach it from networking:
2329 *
2330 * A. Remove from hash tables.
2331 */
2332
2333 sk->sk_prot->unhash(sk);
2334
2335 /*
2336 * In this point socket cannot receive new packets, but it is possible
2337 * that some packets are in flight because some CPU runs receiver and
2338 * did hash table lookup before we unhashed socket. They will achieve
2339 * receive queue and will be purged by socket destructor.
2340 *
2341 * Also we still have packets pending on receive queue and probably,
2342 * our own packets waiting in device queues. sock_destroy will drain
2343 * receive queue, but transmitted packets will delay socket destruction
2344 * until the last reference will be released.
2345 */
2346
2347 sock_orphan(sk);
2348
2349 xfrm_sk_free_policy(sk);
2350
2351 sk_refcnt_debug_release(sk);
2352 sock_put(sk);
2353 }
2354 EXPORT_SYMBOL(sk_common_release);
2355
2356 #ifdef CONFIG_PROC_FS
2357 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2358 struct prot_inuse {
2359 int val[PROTO_INUSE_NR];
2360 };
2361
2362 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2363
2364 #ifdef CONFIG_NET_NS
2365 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2366 {
2367 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2368 }
2369 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2370
2371 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2372 {
2373 int cpu, idx = prot->inuse_idx;
2374 int res = 0;
2375
2376 for_each_possible_cpu(cpu)
2377 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2378
2379 return res >= 0 ? res : 0;
2380 }
2381 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2382
2383 static int __net_init sock_inuse_init_net(struct net *net)
2384 {
2385 net->core.inuse = alloc_percpu(struct prot_inuse);
2386 return net->core.inuse ? 0 : -ENOMEM;
2387 }
2388
2389 static void __net_exit sock_inuse_exit_net(struct net *net)
2390 {
2391 free_percpu(net->core.inuse);
2392 }
2393
2394 static struct pernet_operations net_inuse_ops = {
2395 .init = sock_inuse_init_net,
2396 .exit = sock_inuse_exit_net,
2397 };
2398
2399 static __init int net_inuse_init(void)
2400 {
2401 if (register_pernet_subsys(&net_inuse_ops))
2402 panic("Cannot initialize net inuse counters");
2403
2404 return 0;
2405 }
2406
2407 core_initcall(net_inuse_init);
2408 #else
2409 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2410
2411 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2412 {
2413 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2414 }
2415 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2416
2417 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2418 {
2419 int cpu, idx = prot->inuse_idx;
2420 int res = 0;
2421
2422 for_each_possible_cpu(cpu)
2423 res += per_cpu(prot_inuse, cpu).val[idx];
2424
2425 return res >= 0 ? res : 0;
2426 }
2427 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2428 #endif
2429
2430 static void assign_proto_idx(struct proto *prot)
2431 {
2432 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2433
2434 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2435 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2436 return;
2437 }
2438
2439 set_bit(prot->inuse_idx, proto_inuse_idx);
2440 }
2441
2442 static void release_proto_idx(struct proto *prot)
2443 {
2444 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2445 clear_bit(prot->inuse_idx, proto_inuse_idx);
2446 }
2447 #else
2448 static inline void assign_proto_idx(struct proto *prot)
2449 {
2450 }
2451
2452 static inline void release_proto_idx(struct proto *prot)
2453 {
2454 }
2455 #endif
2456
2457 int proto_register(struct proto *prot, int alloc_slab)
2458 {
2459 if (alloc_slab) {
2460 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2461 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2462 NULL);
2463
2464 if (prot->slab == NULL) {
2465 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2466 prot->name);
2467 goto out;
2468 }
2469
2470 if (prot->rsk_prot != NULL) {
2471 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2472 if (prot->rsk_prot->slab_name == NULL)
2473 goto out_free_sock_slab;
2474
2475 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2476 prot->rsk_prot->obj_size, 0,
2477 SLAB_HWCACHE_ALIGN, NULL);
2478
2479 if (prot->rsk_prot->slab == NULL) {
2480 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2481 prot->name);
2482 goto out_free_request_sock_slab_name;
2483 }
2484 }
2485
2486 if (prot->twsk_prot != NULL) {
2487 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2488
2489 if (prot->twsk_prot->twsk_slab_name == NULL)
2490 goto out_free_request_sock_slab;
2491
2492 prot->twsk_prot->twsk_slab =
2493 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2494 prot->twsk_prot->twsk_obj_size,
2495 0,
2496 SLAB_HWCACHE_ALIGN |
2497 prot->slab_flags,
2498 NULL);
2499 if (prot->twsk_prot->twsk_slab == NULL)
2500 goto out_free_timewait_sock_slab_name;
2501 }
2502 }
2503
2504 mutex_lock(&proto_list_mutex);
2505 list_add(&prot->node, &proto_list);
2506 assign_proto_idx(prot);
2507 mutex_unlock(&proto_list_mutex);
2508 return 0;
2509
2510 out_free_timewait_sock_slab_name:
2511 kfree(prot->twsk_prot->twsk_slab_name);
2512 out_free_request_sock_slab:
2513 if (prot->rsk_prot && prot->rsk_prot->slab) {
2514 kmem_cache_destroy(prot->rsk_prot->slab);
2515 prot->rsk_prot->slab = NULL;
2516 }
2517 out_free_request_sock_slab_name:
2518 if (prot->rsk_prot)
2519 kfree(prot->rsk_prot->slab_name);
2520 out_free_sock_slab:
2521 kmem_cache_destroy(prot->slab);
2522 prot->slab = NULL;
2523 out:
2524 return -ENOBUFS;
2525 }
2526 EXPORT_SYMBOL(proto_register);
2527
2528 void proto_unregister(struct proto *prot)
2529 {
2530 mutex_lock(&proto_list_mutex);
2531 release_proto_idx(prot);
2532 list_del(&prot->node);
2533 mutex_unlock(&proto_list_mutex);
2534
2535 if (prot->slab != NULL) {
2536 kmem_cache_destroy(prot->slab);
2537 prot->slab = NULL;
2538 }
2539
2540 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2541 kmem_cache_destroy(prot->rsk_prot->slab);
2542 kfree(prot->rsk_prot->slab_name);
2543 prot->rsk_prot->slab = NULL;
2544 }
2545
2546 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2547 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2548 kfree(prot->twsk_prot->twsk_slab_name);
2549 prot->twsk_prot->twsk_slab = NULL;
2550 }
2551 }
2552 EXPORT_SYMBOL(proto_unregister);
2553
2554 #ifdef CONFIG_PROC_FS
2555 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2556 __acquires(proto_list_mutex)
2557 {
2558 mutex_lock(&proto_list_mutex);
2559 return seq_list_start_head(&proto_list, *pos);
2560 }
2561
2562 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2563 {
2564 return seq_list_next(v, &proto_list, pos);
2565 }
2566
2567 static void proto_seq_stop(struct seq_file *seq, void *v)
2568 __releases(proto_list_mutex)
2569 {
2570 mutex_unlock(&proto_list_mutex);
2571 }
2572
2573 static char proto_method_implemented(const void *method)
2574 {
2575 return method == NULL ? 'n' : 'y';
2576 }
2577 static long sock_prot_memory_allocated(struct proto *proto)
2578 {
2579 return proto->memory_allocated != NULL ? proto_memory_allocated(proto): -1L;
2580 }
2581
2582 static char *sock_prot_memory_pressure(struct proto *proto)
2583 {
2584 return proto->memory_pressure != NULL ?
2585 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2586 }
2587
2588 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2589 {
2590
2591 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2592 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2593 proto->name,
2594 proto->obj_size,
2595 sock_prot_inuse_get(seq_file_net(seq), proto),
2596 sock_prot_memory_allocated(proto),
2597 sock_prot_memory_pressure(proto),
2598 proto->max_header,
2599 proto->slab == NULL ? "no" : "yes",
2600 module_name(proto->owner),
2601 proto_method_implemented(proto->close),
2602 proto_method_implemented(proto->connect),
2603 proto_method_implemented(proto->disconnect),
2604 proto_method_implemented(proto->accept),
2605 proto_method_implemented(proto->ioctl),
2606 proto_method_implemented(proto->init),
2607 proto_method_implemented(proto->destroy),
2608 proto_method_implemented(proto->shutdown),
2609 proto_method_implemented(proto->setsockopt),
2610 proto_method_implemented(proto->getsockopt),
2611 proto_method_implemented(proto->sendmsg),
2612 proto_method_implemented(proto->recvmsg),
2613 proto_method_implemented(proto->sendpage),
2614 proto_method_implemented(proto->bind),
2615 proto_method_implemented(proto->backlog_rcv),
2616 proto_method_implemented(proto->hash),
2617 proto_method_implemented(proto->unhash),
2618 proto_method_implemented(proto->get_port),
2619 proto_method_implemented(proto->enter_memory_pressure));
2620 }
2621
2622 static int proto_seq_show(struct seq_file *seq, void *v)
2623 {
2624 if (v == &proto_list)
2625 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2626 "protocol",
2627 "size",
2628 "sockets",
2629 "memory",
2630 "press",
2631 "maxhdr",
2632 "slab",
2633 "module",
2634 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2635 else
2636 proto_seq_printf(seq, list_entry(v, struct proto, node));
2637 return 0;
2638 }
2639
2640 static const struct seq_operations proto_seq_ops = {
2641 .start = proto_seq_start,
2642 .next = proto_seq_next,
2643 .stop = proto_seq_stop,
2644 .show = proto_seq_show,
2645 };
2646
2647 static int proto_seq_open(struct inode *inode, struct file *file)
2648 {
2649 return seq_open_net(inode, file, &proto_seq_ops,
2650 sizeof(struct seq_net_private));
2651 }
2652
2653 static const struct file_operations proto_seq_fops = {
2654 .owner = THIS_MODULE,
2655 .open = proto_seq_open,
2656 .read = seq_read,
2657 .llseek = seq_lseek,
2658 .release = seq_release_net,
2659 };
2660
2661 static __net_init int proto_init_net(struct net *net)
2662 {
2663 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2664 return -ENOMEM;
2665
2666 return 0;
2667 }
2668
2669 static __net_exit void proto_exit_net(struct net *net)
2670 {
2671 proc_net_remove(net, "protocols");
2672 }
2673
2674
2675 static __net_initdata struct pernet_operations proto_net_ops = {
2676 .init = proto_init_net,
2677 .exit = proto_exit_net,
2678 };
2679
2680 static int __init proto_init(void)
2681 {
2682 return register_pernet_subsys(&proto_net_ops);
2683 }
2684
2685 subsys_initcall(proto_init);
2686
2687 #endif /* PROC_FS */