4abdf71a23f8ea99c34623bcbc68a18acd0c3e5f
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
79 {
80 put_page(buf->page);
81 }
82
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
85 {
86 get_page(buf->page);
87 }
88
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
91 {
92 return 1;
93 }
94
95
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
105 };
106
107 /*
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
110 * reliable.
111 */
112
113 /**
114 * skb_over_panic - private function
115 * @skb: buffer
116 * @sz: size
117 * @here: address
118 *
119 * Out of line support code for skb_put(). Not user callable.
120 */
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
124 __func__, here, skb->len, sz, skb->head, skb->data,
125 (unsigned long)skb->tail, (unsigned long)skb->end,
126 skb->dev ? skb->dev->name : "<NULL>");
127 BUG();
128 }
129
130 /**
131 * skb_under_panic - private function
132 * @skb: buffer
133 * @sz: size
134 * @here: address
135 *
136 * Out of line support code for skb_push(). Not user callable.
137 */
138
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
142 __func__, here, skb->len, sz, skb->head, skb->data,
143 (unsigned long)skb->tail, (unsigned long)skb->end,
144 skb->dev ? skb->dev->name : "<NULL>");
145 BUG();
146 }
147
148
149 /*
150 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
151 * the caller if emergency pfmemalloc reserves are being used. If it is and
152 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
153 * may be used. Otherwise, the packet data may be discarded until enough
154 * memory is free
155 */
156 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
157 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
158 void *__kmalloc_reserve(size_t size, gfp_t flags, int node, unsigned long ip,
159 bool *pfmemalloc)
160 {
161 void *obj;
162 bool ret_pfmemalloc = false;
163
164 /*
165 * Try a regular allocation, when that fails and we're not entitled
166 * to the reserves, fail.
167 */
168 obj = kmalloc_node_track_caller(size,
169 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
170 node);
171 if (obj || !(gfp_pfmemalloc_allowed(flags)))
172 goto out;
173
174 /* Try again but now we are using pfmemalloc reserves */
175 ret_pfmemalloc = true;
176 obj = kmalloc_node_track_caller(size, flags, node);
177
178 out:
179 if (pfmemalloc)
180 *pfmemalloc = ret_pfmemalloc;
181
182 return obj;
183 }
184
185 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
186 * 'private' fields and also do memory statistics to find all the
187 * [BEEP] leaks.
188 *
189 */
190
191 /**
192 * __alloc_skb - allocate a network buffer
193 * @size: size to allocate
194 * @gfp_mask: allocation mask
195 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
196 * instead of head cache and allocate a cloned (child) skb.
197 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
198 * allocations in case the data is required for writeback
199 * @node: numa node to allocate memory on
200 *
201 * Allocate a new &sk_buff. The returned buffer has no headroom and a
202 * tail room of at least size bytes. The object has a reference count
203 * of one. The return is the buffer. On a failure the return is %NULL.
204 *
205 * Buffers may only be allocated from interrupts using a @gfp_mask of
206 * %GFP_ATOMIC.
207 */
208 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
209 int flags, int node)
210 {
211 struct kmem_cache *cache;
212 struct skb_shared_info *shinfo;
213 struct sk_buff *skb;
214 u8 *data;
215 bool pfmemalloc;
216
217 cache = (flags & SKB_ALLOC_FCLONE)
218 ? skbuff_fclone_cache : skbuff_head_cache;
219
220 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
221 gfp_mask |= __GFP_MEMALLOC;
222
223 /* Get the HEAD */
224 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
225 if (!skb)
226 goto out;
227 prefetchw(skb);
228
229 /* We do our best to align skb_shared_info on a separate cache
230 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
231 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
232 * Both skb->head and skb_shared_info are cache line aligned.
233 */
234 size = SKB_DATA_ALIGN(size);
235 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
236 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
237 if (!data)
238 goto nodata;
239 /* kmalloc(size) might give us more room than requested.
240 * Put skb_shared_info exactly at the end of allocated zone,
241 * to allow max possible filling before reallocation.
242 */
243 size = SKB_WITH_OVERHEAD(ksize(data));
244 prefetchw(data + size);
245
246 /*
247 * Only clear those fields we need to clear, not those that we will
248 * actually initialise below. Hence, don't put any more fields after
249 * the tail pointer in struct sk_buff!
250 */
251 memset(skb, 0, offsetof(struct sk_buff, tail));
252 /* Account for allocated memory : skb + skb->head */
253 skb->truesize = SKB_TRUESIZE(size);
254 skb->pfmemalloc = pfmemalloc;
255 atomic_set(&skb->users, 1);
256 skb->head = data;
257 skb->data = data;
258 skb_reset_tail_pointer(skb);
259 skb->end = skb->tail + size;
260 #ifdef NET_SKBUFF_DATA_USES_OFFSET
261 skb->mac_header = ~0U;
262 #endif
263
264 /* make sure we initialize shinfo sequentially */
265 shinfo = skb_shinfo(skb);
266 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
267 atomic_set(&shinfo->dataref, 1);
268 kmemcheck_annotate_variable(shinfo->destructor_arg);
269
270 if (flags & SKB_ALLOC_FCLONE) {
271 struct sk_buff *child = skb + 1;
272 atomic_t *fclone_ref = (atomic_t *) (child + 1);
273
274 kmemcheck_annotate_bitfield(child, flags1);
275 kmemcheck_annotate_bitfield(child, flags2);
276 skb->fclone = SKB_FCLONE_ORIG;
277 atomic_set(fclone_ref, 1);
278
279 child->fclone = SKB_FCLONE_UNAVAILABLE;
280 child->pfmemalloc = pfmemalloc;
281 }
282 out:
283 return skb;
284 nodata:
285 kmem_cache_free(cache, skb);
286 skb = NULL;
287 goto out;
288 }
289 EXPORT_SYMBOL(__alloc_skb);
290
291 /**
292 * build_skb - build a network buffer
293 * @data: data buffer provided by caller
294 * @frag_size: size of fragment, or 0 if head was kmalloced
295 *
296 * Allocate a new &sk_buff. Caller provides space holding head and
297 * skb_shared_info. @data must have been allocated by kmalloc()
298 * The return is the new skb buffer.
299 * On a failure the return is %NULL, and @data is not freed.
300 * Notes :
301 * Before IO, driver allocates only data buffer where NIC put incoming frame
302 * Driver should add room at head (NET_SKB_PAD) and
303 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
304 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
305 * before giving packet to stack.
306 * RX rings only contains data buffers, not full skbs.
307 */
308 struct sk_buff *build_skb(void *data, unsigned int frag_size)
309 {
310 struct skb_shared_info *shinfo;
311 struct sk_buff *skb;
312 unsigned int size = frag_size ? : ksize(data);
313
314 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
315 if (!skb)
316 return NULL;
317
318 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
319
320 memset(skb, 0, offsetof(struct sk_buff, tail));
321 skb->truesize = SKB_TRUESIZE(size);
322 skb->head_frag = frag_size != 0;
323 atomic_set(&skb->users, 1);
324 skb->head = data;
325 skb->data = data;
326 skb_reset_tail_pointer(skb);
327 skb->end = skb->tail + size;
328 #ifdef NET_SKBUFF_DATA_USES_OFFSET
329 skb->mac_header = ~0U;
330 #endif
331
332 /* make sure we initialize shinfo sequentially */
333 shinfo = skb_shinfo(skb);
334 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
335 atomic_set(&shinfo->dataref, 1);
336 kmemcheck_annotate_variable(shinfo->destructor_arg);
337
338 return skb;
339 }
340 EXPORT_SYMBOL(build_skb);
341
342 struct netdev_alloc_cache {
343 struct page_frag frag;
344 /* we maintain a pagecount bias, so that we dont dirty cache line
345 * containing page->_count every time we allocate a fragment.
346 */
347 unsigned int pagecnt_bias;
348 };
349 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
350
351 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
352 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
353 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
354
355 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
356 {
357 struct netdev_alloc_cache *nc;
358 void *data = NULL;
359 int order;
360 unsigned long flags;
361
362 local_irq_save(flags);
363 nc = &__get_cpu_var(netdev_alloc_cache);
364 if (unlikely(!nc->frag.page)) {
365 refill:
366 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
367 gfp_t gfp = gfp_mask;
368
369 if (order)
370 gfp |= __GFP_COMP | __GFP_NOWARN;
371 nc->frag.page = alloc_pages(gfp, order);
372 if (likely(nc->frag.page))
373 break;
374 if (--order < 0)
375 goto end;
376 }
377 nc->frag.size = PAGE_SIZE << order;
378 recycle:
379 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
380 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
381 nc->frag.offset = 0;
382 }
383
384 if (nc->frag.offset + fragsz > nc->frag.size) {
385 /* avoid unnecessary locked operations if possible */
386 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
387 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
388 goto recycle;
389 goto refill;
390 }
391
392 data = page_address(nc->frag.page) + nc->frag.offset;
393 nc->frag.offset += fragsz;
394 nc->pagecnt_bias--;
395 end:
396 local_irq_restore(flags);
397 return data;
398 }
399
400 /**
401 * netdev_alloc_frag - allocate a page fragment
402 * @fragsz: fragment size
403 *
404 * Allocates a frag from a page for receive buffer.
405 * Uses GFP_ATOMIC allocations.
406 */
407 void *netdev_alloc_frag(unsigned int fragsz)
408 {
409 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
410 }
411 EXPORT_SYMBOL(netdev_alloc_frag);
412
413 /**
414 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
415 * @dev: network device to receive on
416 * @length: length to allocate
417 * @gfp_mask: get_free_pages mask, passed to alloc_skb
418 *
419 * Allocate a new &sk_buff and assign it a usage count of one. The
420 * buffer has unspecified headroom built in. Users should allocate
421 * the headroom they think they need without accounting for the
422 * built in space. The built in space is used for optimisations.
423 *
424 * %NULL is returned if there is no free memory.
425 */
426 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
427 unsigned int length, gfp_t gfp_mask)
428 {
429 struct sk_buff *skb = NULL;
430 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
431 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
432
433 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
434 void *data;
435
436 if (sk_memalloc_socks())
437 gfp_mask |= __GFP_MEMALLOC;
438
439 data = __netdev_alloc_frag(fragsz, gfp_mask);
440
441 if (likely(data)) {
442 skb = build_skb(data, fragsz);
443 if (unlikely(!skb))
444 put_page(virt_to_head_page(data));
445 }
446 } else {
447 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
448 SKB_ALLOC_RX, NUMA_NO_NODE);
449 }
450 if (likely(skb)) {
451 skb_reserve(skb, NET_SKB_PAD);
452 skb->dev = dev;
453 }
454 return skb;
455 }
456 EXPORT_SYMBOL(__netdev_alloc_skb);
457
458 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
459 int size, unsigned int truesize)
460 {
461 skb_fill_page_desc(skb, i, page, off, size);
462 skb->len += size;
463 skb->data_len += size;
464 skb->truesize += truesize;
465 }
466 EXPORT_SYMBOL(skb_add_rx_frag);
467
468 static void skb_drop_list(struct sk_buff **listp)
469 {
470 struct sk_buff *list = *listp;
471
472 *listp = NULL;
473
474 do {
475 struct sk_buff *this = list;
476 list = list->next;
477 kfree_skb(this);
478 } while (list);
479 }
480
481 static inline void skb_drop_fraglist(struct sk_buff *skb)
482 {
483 skb_drop_list(&skb_shinfo(skb)->frag_list);
484 }
485
486 static void skb_clone_fraglist(struct sk_buff *skb)
487 {
488 struct sk_buff *list;
489
490 skb_walk_frags(skb, list)
491 skb_get(list);
492 }
493
494 static void skb_free_head(struct sk_buff *skb)
495 {
496 if (skb->head_frag)
497 put_page(virt_to_head_page(skb->head));
498 else
499 kfree(skb->head);
500 }
501
502 static void skb_release_data(struct sk_buff *skb)
503 {
504 if (!skb->cloned ||
505 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
506 &skb_shinfo(skb)->dataref)) {
507 if (skb_shinfo(skb)->nr_frags) {
508 int i;
509 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
510 skb_frag_unref(skb, i);
511 }
512
513 /*
514 * If skb buf is from userspace, we need to notify the caller
515 * the lower device DMA has done;
516 */
517 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
518 struct ubuf_info *uarg;
519
520 uarg = skb_shinfo(skb)->destructor_arg;
521 if (uarg->callback)
522 uarg->callback(uarg, true);
523 }
524
525 if (skb_has_frag_list(skb))
526 skb_drop_fraglist(skb);
527
528 skb_free_head(skb);
529 }
530 }
531
532 /*
533 * Free an skbuff by memory without cleaning the state.
534 */
535 static void kfree_skbmem(struct sk_buff *skb)
536 {
537 struct sk_buff *other;
538 atomic_t *fclone_ref;
539
540 switch (skb->fclone) {
541 case SKB_FCLONE_UNAVAILABLE:
542 kmem_cache_free(skbuff_head_cache, skb);
543 break;
544
545 case SKB_FCLONE_ORIG:
546 fclone_ref = (atomic_t *) (skb + 2);
547 if (atomic_dec_and_test(fclone_ref))
548 kmem_cache_free(skbuff_fclone_cache, skb);
549 break;
550
551 case SKB_FCLONE_CLONE:
552 fclone_ref = (atomic_t *) (skb + 1);
553 other = skb - 1;
554
555 /* The clone portion is available for
556 * fast-cloning again.
557 */
558 skb->fclone = SKB_FCLONE_UNAVAILABLE;
559
560 if (atomic_dec_and_test(fclone_ref))
561 kmem_cache_free(skbuff_fclone_cache, other);
562 break;
563 }
564 }
565
566 static void skb_release_head_state(struct sk_buff *skb)
567 {
568 skb_dst_drop(skb);
569 #ifdef CONFIG_XFRM
570 secpath_put(skb->sp);
571 #endif
572 if (skb->destructor) {
573 WARN_ON(in_irq());
574 skb->destructor(skb);
575 }
576 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
577 nf_conntrack_put(skb->nfct);
578 #endif
579 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
580 nf_conntrack_put_reasm(skb->nfct_reasm);
581 #endif
582 #ifdef CONFIG_BRIDGE_NETFILTER
583 nf_bridge_put(skb->nf_bridge);
584 #endif
585 /* XXX: IS this still necessary? - JHS */
586 #ifdef CONFIG_NET_SCHED
587 skb->tc_index = 0;
588 #ifdef CONFIG_NET_CLS_ACT
589 skb->tc_verd = 0;
590 #endif
591 #endif
592 }
593
594 /* Free everything but the sk_buff shell. */
595 static void skb_release_all(struct sk_buff *skb)
596 {
597 skb_release_head_state(skb);
598 skb_release_data(skb);
599 }
600
601 /**
602 * __kfree_skb - private function
603 * @skb: buffer
604 *
605 * Free an sk_buff. Release anything attached to the buffer.
606 * Clean the state. This is an internal helper function. Users should
607 * always call kfree_skb
608 */
609
610 void __kfree_skb(struct sk_buff *skb)
611 {
612 skb_release_all(skb);
613 kfree_skbmem(skb);
614 }
615 EXPORT_SYMBOL(__kfree_skb);
616
617 /**
618 * kfree_skb - free an sk_buff
619 * @skb: buffer to free
620 *
621 * Drop a reference to the buffer and free it if the usage count has
622 * hit zero.
623 */
624 void kfree_skb(struct sk_buff *skb)
625 {
626 if (unlikely(!skb))
627 return;
628 if (likely(atomic_read(&skb->users) == 1))
629 smp_rmb();
630 else if (likely(!atomic_dec_and_test(&skb->users)))
631 return;
632 trace_kfree_skb(skb, __builtin_return_address(0));
633 __kfree_skb(skb);
634 }
635 EXPORT_SYMBOL(kfree_skb);
636
637 /**
638 * consume_skb - free an skbuff
639 * @skb: buffer to free
640 *
641 * Drop a ref to the buffer and free it if the usage count has hit zero
642 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
643 * is being dropped after a failure and notes that
644 */
645 void consume_skb(struct sk_buff *skb)
646 {
647 if (unlikely(!skb))
648 return;
649 if (likely(atomic_read(&skb->users) == 1))
650 smp_rmb();
651 else if (likely(!atomic_dec_and_test(&skb->users)))
652 return;
653 trace_consume_skb(skb);
654 __kfree_skb(skb);
655 }
656 EXPORT_SYMBOL(consume_skb);
657
658 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
659 {
660 new->tstamp = old->tstamp;
661 new->dev = old->dev;
662 new->transport_header = old->transport_header;
663 new->network_header = old->network_header;
664 new->mac_header = old->mac_header;
665 skb_dst_copy(new, old);
666 new->rxhash = old->rxhash;
667 new->ooo_okay = old->ooo_okay;
668 new->l4_rxhash = old->l4_rxhash;
669 new->no_fcs = old->no_fcs;
670 #ifdef CONFIG_XFRM
671 new->sp = secpath_get(old->sp);
672 #endif
673 memcpy(new->cb, old->cb, sizeof(old->cb));
674 new->csum = old->csum;
675 new->local_df = old->local_df;
676 new->pkt_type = old->pkt_type;
677 new->ip_summed = old->ip_summed;
678 skb_copy_queue_mapping(new, old);
679 new->priority = old->priority;
680 #if IS_ENABLED(CONFIG_IP_VS)
681 new->ipvs_property = old->ipvs_property;
682 #endif
683 new->pfmemalloc = old->pfmemalloc;
684 new->protocol = old->protocol;
685 new->mark = old->mark;
686 new->skb_iif = old->skb_iif;
687 __nf_copy(new, old);
688 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
689 new->nf_trace = old->nf_trace;
690 #endif
691 #ifdef CONFIG_NET_SCHED
692 new->tc_index = old->tc_index;
693 #ifdef CONFIG_NET_CLS_ACT
694 new->tc_verd = old->tc_verd;
695 #endif
696 #endif
697 new->vlan_tci = old->vlan_tci;
698
699 skb_copy_secmark(new, old);
700 }
701
702 /*
703 * You should not add any new code to this function. Add it to
704 * __copy_skb_header above instead.
705 */
706 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
707 {
708 #define C(x) n->x = skb->x
709
710 n->next = n->prev = NULL;
711 n->sk = NULL;
712 __copy_skb_header(n, skb);
713
714 C(len);
715 C(data_len);
716 C(mac_len);
717 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
718 n->cloned = 1;
719 n->nohdr = 0;
720 n->destructor = NULL;
721 C(tail);
722 C(end);
723 C(head);
724 C(head_frag);
725 C(data);
726 C(truesize);
727 atomic_set(&n->users, 1);
728
729 atomic_inc(&(skb_shinfo(skb)->dataref));
730 skb->cloned = 1;
731
732 return n;
733 #undef C
734 }
735
736 /**
737 * skb_morph - morph one skb into another
738 * @dst: the skb to receive the contents
739 * @src: the skb to supply the contents
740 *
741 * This is identical to skb_clone except that the target skb is
742 * supplied by the user.
743 *
744 * The target skb is returned upon exit.
745 */
746 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
747 {
748 skb_release_all(dst);
749 return __skb_clone(dst, src);
750 }
751 EXPORT_SYMBOL_GPL(skb_morph);
752
753 /**
754 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
755 * @skb: the skb to modify
756 * @gfp_mask: allocation priority
757 *
758 * This must be called on SKBTX_DEV_ZEROCOPY skb.
759 * It will copy all frags into kernel and drop the reference
760 * to userspace pages.
761 *
762 * If this function is called from an interrupt gfp_mask() must be
763 * %GFP_ATOMIC.
764 *
765 * Returns 0 on success or a negative error code on failure
766 * to allocate kernel memory to copy to.
767 */
768 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
769 {
770 int i;
771 int num_frags = skb_shinfo(skb)->nr_frags;
772 struct page *page, *head = NULL;
773 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
774
775 for (i = 0; i < num_frags; i++) {
776 u8 *vaddr;
777 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
778
779 page = alloc_page(gfp_mask);
780 if (!page) {
781 while (head) {
782 struct page *next = (struct page *)head->private;
783 put_page(head);
784 head = next;
785 }
786 return -ENOMEM;
787 }
788 vaddr = kmap_atomic(skb_frag_page(f));
789 memcpy(page_address(page),
790 vaddr + f->page_offset, skb_frag_size(f));
791 kunmap_atomic(vaddr);
792 page->private = (unsigned long)head;
793 head = page;
794 }
795
796 /* skb frags release userspace buffers */
797 for (i = 0; i < num_frags; i++)
798 skb_frag_unref(skb, i);
799
800 uarg->callback(uarg, false);
801
802 /* skb frags point to kernel buffers */
803 for (i = num_frags - 1; i >= 0; i--) {
804 __skb_fill_page_desc(skb, i, head, 0,
805 skb_shinfo(skb)->frags[i].size);
806 head = (struct page *)head->private;
807 }
808
809 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
810 return 0;
811 }
812 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
813
814 /**
815 * skb_clone - duplicate an sk_buff
816 * @skb: buffer to clone
817 * @gfp_mask: allocation priority
818 *
819 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
820 * copies share the same packet data but not structure. The new
821 * buffer has a reference count of 1. If the allocation fails the
822 * function returns %NULL otherwise the new buffer is returned.
823 *
824 * If this function is called from an interrupt gfp_mask() must be
825 * %GFP_ATOMIC.
826 */
827
828 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
829 {
830 struct sk_buff *n;
831
832 if (skb_orphan_frags(skb, gfp_mask))
833 return NULL;
834
835 n = skb + 1;
836 if (skb->fclone == SKB_FCLONE_ORIG &&
837 n->fclone == SKB_FCLONE_UNAVAILABLE) {
838 atomic_t *fclone_ref = (atomic_t *) (n + 1);
839 n->fclone = SKB_FCLONE_CLONE;
840 atomic_inc(fclone_ref);
841 } else {
842 if (skb_pfmemalloc(skb))
843 gfp_mask |= __GFP_MEMALLOC;
844
845 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
846 if (!n)
847 return NULL;
848
849 kmemcheck_annotate_bitfield(n, flags1);
850 kmemcheck_annotate_bitfield(n, flags2);
851 n->fclone = SKB_FCLONE_UNAVAILABLE;
852 }
853
854 return __skb_clone(n, skb);
855 }
856 EXPORT_SYMBOL(skb_clone);
857
858 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
859 {
860 #ifndef NET_SKBUFF_DATA_USES_OFFSET
861 /*
862 * Shift between the two data areas in bytes
863 */
864 unsigned long offset = new->data - old->data;
865 #endif
866
867 __copy_skb_header(new, old);
868
869 #ifndef NET_SKBUFF_DATA_USES_OFFSET
870 /* {transport,network,mac}_header are relative to skb->head */
871 new->transport_header += offset;
872 new->network_header += offset;
873 if (skb_mac_header_was_set(new))
874 new->mac_header += offset;
875 #endif
876 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
877 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
878 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
879 }
880
881 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
882 {
883 if (skb_pfmemalloc(skb))
884 return SKB_ALLOC_RX;
885 return 0;
886 }
887
888 /**
889 * skb_copy - create private copy of an sk_buff
890 * @skb: buffer to copy
891 * @gfp_mask: allocation priority
892 *
893 * Make a copy of both an &sk_buff and its data. This is used when the
894 * caller wishes to modify the data and needs a private copy of the
895 * data to alter. Returns %NULL on failure or the pointer to the buffer
896 * on success. The returned buffer has a reference count of 1.
897 *
898 * As by-product this function converts non-linear &sk_buff to linear
899 * one, so that &sk_buff becomes completely private and caller is allowed
900 * to modify all the data of returned buffer. This means that this
901 * function is not recommended for use in circumstances when only
902 * header is going to be modified. Use pskb_copy() instead.
903 */
904
905 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
906 {
907 int headerlen = skb_headroom(skb);
908 unsigned int size = skb_end_offset(skb) + skb->data_len;
909 struct sk_buff *n = __alloc_skb(size, gfp_mask,
910 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
911
912 if (!n)
913 return NULL;
914
915 /* Set the data pointer */
916 skb_reserve(n, headerlen);
917 /* Set the tail pointer and length */
918 skb_put(n, skb->len);
919
920 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
921 BUG();
922
923 copy_skb_header(n, skb);
924 return n;
925 }
926 EXPORT_SYMBOL(skb_copy);
927
928 /**
929 * __pskb_copy - create copy of an sk_buff with private head.
930 * @skb: buffer to copy
931 * @headroom: headroom of new skb
932 * @gfp_mask: allocation priority
933 *
934 * Make a copy of both an &sk_buff and part of its data, located
935 * in header. Fragmented data remain shared. This is used when
936 * the caller wishes to modify only header of &sk_buff and needs
937 * private copy of the header to alter. Returns %NULL on failure
938 * or the pointer to the buffer on success.
939 * The returned buffer has a reference count of 1.
940 */
941
942 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
943 {
944 unsigned int size = skb_headlen(skb) + headroom;
945 struct sk_buff *n = __alloc_skb(size, gfp_mask,
946 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
947
948 if (!n)
949 goto out;
950
951 /* Set the data pointer */
952 skb_reserve(n, headroom);
953 /* Set the tail pointer and length */
954 skb_put(n, skb_headlen(skb));
955 /* Copy the bytes */
956 skb_copy_from_linear_data(skb, n->data, n->len);
957
958 n->truesize += skb->data_len;
959 n->data_len = skb->data_len;
960 n->len = skb->len;
961
962 if (skb_shinfo(skb)->nr_frags) {
963 int i;
964
965 if (skb_orphan_frags(skb, gfp_mask)) {
966 kfree_skb(n);
967 n = NULL;
968 goto out;
969 }
970 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
971 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
972 skb_frag_ref(skb, i);
973 }
974 skb_shinfo(n)->nr_frags = i;
975 }
976
977 if (skb_has_frag_list(skb)) {
978 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
979 skb_clone_fraglist(n);
980 }
981
982 copy_skb_header(n, skb);
983 out:
984 return n;
985 }
986 EXPORT_SYMBOL(__pskb_copy);
987
988 /**
989 * pskb_expand_head - reallocate header of &sk_buff
990 * @skb: buffer to reallocate
991 * @nhead: room to add at head
992 * @ntail: room to add at tail
993 * @gfp_mask: allocation priority
994 *
995 * Expands (or creates identical copy, if &nhead and &ntail are zero)
996 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
997 * reference count of 1. Returns zero in the case of success or error,
998 * if expansion failed. In the last case, &sk_buff is not changed.
999 *
1000 * All the pointers pointing into skb header may change and must be
1001 * reloaded after call to this function.
1002 */
1003
1004 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1005 gfp_t gfp_mask)
1006 {
1007 int i;
1008 u8 *data;
1009 int size = nhead + skb_end_offset(skb) + ntail;
1010 long off;
1011
1012 BUG_ON(nhead < 0);
1013
1014 if (skb_shared(skb))
1015 BUG();
1016
1017 size = SKB_DATA_ALIGN(size);
1018
1019 if (skb_pfmemalloc(skb))
1020 gfp_mask |= __GFP_MEMALLOC;
1021 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1022 gfp_mask, NUMA_NO_NODE, NULL);
1023 if (!data)
1024 goto nodata;
1025 size = SKB_WITH_OVERHEAD(ksize(data));
1026
1027 /* Copy only real data... and, alas, header. This should be
1028 * optimized for the cases when header is void.
1029 */
1030 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1031
1032 memcpy((struct skb_shared_info *)(data + size),
1033 skb_shinfo(skb),
1034 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1035
1036 /*
1037 * if shinfo is shared we must drop the old head gracefully, but if it
1038 * is not we can just drop the old head and let the existing refcount
1039 * be since all we did is relocate the values
1040 */
1041 if (skb_cloned(skb)) {
1042 /* copy this zero copy skb frags */
1043 if (skb_orphan_frags(skb, gfp_mask))
1044 goto nofrags;
1045 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1046 skb_frag_ref(skb, i);
1047
1048 if (skb_has_frag_list(skb))
1049 skb_clone_fraglist(skb);
1050
1051 skb_release_data(skb);
1052 } else {
1053 skb_free_head(skb);
1054 }
1055 off = (data + nhead) - skb->head;
1056
1057 skb->head = data;
1058 skb->head_frag = 0;
1059 skb->data += off;
1060 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1061 skb->end = size;
1062 off = nhead;
1063 #else
1064 skb->end = skb->head + size;
1065 #endif
1066 /* {transport,network,mac}_header and tail are relative to skb->head */
1067 skb->tail += off;
1068 skb->transport_header += off;
1069 skb->network_header += off;
1070 if (skb_mac_header_was_set(skb))
1071 skb->mac_header += off;
1072 /* Only adjust this if it actually is csum_start rather than csum */
1073 if (skb->ip_summed == CHECKSUM_PARTIAL)
1074 skb->csum_start += nhead;
1075 skb->cloned = 0;
1076 skb->hdr_len = 0;
1077 skb->nohdr = 0;
1078 atomic_set(&skb_shinfo(skb)->dataref, 1);
1079 return 0;
1080
1081 nofrags:
1082 kfree(data);
1083 nodata:
1084 return -ENOMEM;
1085 }
1086 EXPORT_SYMBOL(pskb_expand_head);
1087
1088 /* Make private copy of skb with writable head and some headroom */
1089
1090 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1091 {
1092 struct sk_buff *skb2;
1093 int delta = headroom - skb_headroom(skb);
1094
1095 if (delta <= 0)
1096 skb2 = pskb_copy(skb, GFP_ATOMIC);
1097 else {
1098 skb2 = skb_clone(skb, GFP_ATOMIC);
1099 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1100 GFP_ATOMIC)) {
1101 kfree_skb(skb2);
1102 skb2 = NULL;
1103 }
1104 }
1105 return skb2;
1106 }
1107 EXPORT_SYMBOL(skb_realloc_headroom);
1108
1109 /**
1110 * skb_copy_expand - copy and expand sk_buff
1111 * @skb: buffer to copy
1112 * @newheadroom: new free bytes at head
1113 * @newtailroom: new free bytes at tail
1114 * @gfp_mask: allocation priority
1115 *
1116 * Make a copy of both an &sk_buff and its data and while doing so
1117 * allocate additional space.
1118 *
1119 * This is used when the caller wishes to modify the data and needs a
1120 * private copy of the data to alter as well as more space for new fields.
1121 * Returns %NULL on failure or the pointer to the buffer
1122 * on success. The returned buffer has a reference count of 1.
1123 *
1124 * You must pass %GFP_ATOMIC as the allocation priority if this function
1125 * is called from an interrupt.
1126 */
1127 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1128 int newheadroom, int newtailroom,
1129 gfp_t gfp_mask)
1130 {
1131 /*
1132 * Allocate the copy buffer
1133 */
1134 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1135 gfp_mask, skb_alloc_rx_flag(skb),
1136 NUMA_NO_NODE);
1137 int oldheadroom = skb_headroom(skb);
1138 int head_copy_len, head_copy_off;
1139 int off;
1140
1141 if (!n)
1142 return NULL;
1143
1144 skb_reserve(n, newheadroom);
1145
1146 /* Set the tail pointer and length */
1147 skb_put(n, skb->len);
1148
1149 head_copy_len = oldheadroom;
1150 head_copy_off = 0;
1151 if (newheadroom <= head_copy_len)
1152 head_copy_len = newheadroom;
1153 else
1154 head_copy_off = newheadroom - head_copy_len;
1155
1156 /* Copy the linear header and data. */
1157 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1158 skb->len + head_copy_len))
1159 BUG();
1160
1161 copy_skb_header(n, skb);
1162
1163 off = newheadroom - oldheadroom;
1164 if (n->ip_summed == CHECKSUM_PARTIAL)
1165 n->csum_start += off;
1166 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1167 n->transport_header += off;
1168 n->network_header += off;
1169 if (skb_mac_header_was_set(skb))
1170 n->mac_header += off;
1171 #endif
1172
1173 return n;
1174 }
1175 EXPORT_SYMBOL(skb_copy_expand);
1176
1177 /**
1178 * skb_pad - zero pad the tail of an skb
1179 * @skb: buffer to pad
1180 * @pad: space to pad
1181 *
1182 * Ensure that a buffer is followed by a padding area that is zero
1183 * filled. Used by network drivers which may DMA or transfer data
1184 * beyond the buffer end onto the wire.
1185 *
1186 * May return error in out of memory cases. The skb is freed on error.
1187 */
1188
1189 int skb_pad(struct sk_buff *skb, int pad)
1190 {
1191 int err;
1192 int ntail;
1193
1194 /* If the skbuff is non linear tailroom is always zero.. */
1195 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1196 memset(skb->data+skb->len, 0, pad);
1197 return 0;
1198 }
1199
1200 ntail = skb->data_len + pad - (skb->end - skb->tail);
1201 if (likely(skb_cloned(skb) || ntail > 0)) {
1202 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1203 if (unlikely(err))
1204 goto free_skb;
1205 }
1206
1207 /* FIXME: The use of this function with non-linear skb's really needs
1208 * to be audited.
1209 */
1210 err = skb_linearize(skb);
1211 if (unlikely(err))
1212 goto free_skb;
1213
1214 memset(skb->data + skb->len, 0, pad);
1215 return 0;
1216
1217 free_skb:
1218 kfree_skb(skb);
1219 return err;
1220 }
1221 EXPORT_SYMBOL(skb_pad);
1222
1223 /**
1224 * skb_put - add data to a buffer
1225 * @skb: buffer to use
1226 * @len: amount of data to add
1227 *
1228 * This function extends the used data area of the buffer. If this would
1229 * exceed the total buffer size the kernel will panic. A pointer to the
1230 * first byte of the extra data is returned.
1231 */
1232 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1233 {
1234 unsigned char *tmp = skb_tail_pointer(skb);
1235 SKB_LINEAR_ASSERT(skb);
1236 skb->tail += len;
1237 skb->len += len;
1238 if (unlikely(skb->tail > skb->end))
1239 skb_over_panic(skb, len, __builtin_return_address(0));
1240 return tmp;
1241 }
1242 EXPORT_SYMBOL(skb_put);
1243
1244 /**
1245 * skb_push - add data to the start of a buffer
1246 * @skb: buffer to use
1247 * @len: amount of data to add
1248 *
1249 * This function extends the used data area of the buffer at the buffer
1250 * start. If this would exceed the total buffer headroom the kernel will
1251 * panic. A pointer to the first byte of the extra data is returned.
1252 */
1253 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1254 {
1255 skb->data -= len;
1256 skb->len += len;
1257 if (unlikely(skb->data<skb->head))
1258 skb_under_panic(skb, len, __builtin_return_address(0));
1259 return skb->data;
1260 }
1261 EXPORT_SYMBOL(skb_push);
1262
1263 /**
1264 * skb_pull - remove data from the start of a buffer
1265 * @skb: buffer to use
1266 * @len: amount of data to remove
1267 *
1268 * This function removes data from the start of a buffer, returning
1269 * the memory to the headroom. A pointer to the next data in the buffer
1270 * is returned. Once the data has been pulled future pushes will overwrite
1271 * the old data.
1272 */
1273 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1274 {
1275 return skb_pull_inline(skb, len);
1276 }
1277 EXPORT_SYMBOL(skb_pull);
1278
1279 /**
1280 * skb_trim - remove end from a buffer
1281 * @skb: buffer to alter
1282 * @len: new length
1283 *
1284 * Cut the length of a buffer down by removing data from the tail. If
1285 * the buffer is already under the length specified it is not modified.
1286 * The skb must be linear.
1287 */
1288 void skb_trim(struct sk_buff *skb, unsigned int len)
1289 {
1290 if (skb->len > len)
1291 __skb_trim(skb, len);
1292 }
1293 EXPORT_SYMBOL(skb_trim);
1294
1295 /* Trims skb to length len. It can change skb pointers.
1296 */
1297
1298 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1299 {
1300 struct sk_buff **fragp;
1301 struct sk_buff *frag;
1302 int offset = skb_headlen(skb);
1303 int nfrags = skb_shinfo(skb)->nr_frags;
1304 int i;
1305 int err;
1306
1307 if (skb_cloned(skb) &&
1308 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1309 return err;
1310
1311 i = 0;
1312 if (offset >= len)
1313 goto drop_pages;
1314
1315 for (; i < nfrags; i++) {
1316 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1317
1318 if (end < len) {
1319 offset = end;
1320 continue;
1321 }
1322
1323 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1324
1325 drop_pages:
1326 skb_shinfo(skb)->nr_frags = i;
1327
1328 for (; i < nfrags; i++)
1329 skb_frag_unref(skb, i);
1330
1331 if (skb_has_frag_list(skb))
1332 skb_drop_fraglist(skb);
1333 goto done;
1334 }
1335
1336 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1337 fragp = &frag->next) {
1338 int end = offset + frag->len;
1339
1340 if (skb_shared(frag)) {
1341 struct sk_buff *nfrag;
1342
1343 nfrag = skb_clone(frag, GFP_ATOMIC);
1344 if (unlikely(!nfrag))
1345 return -ENOMEM;
1346
1347 nfrag->next = frag->next;
1348 consume_skb(frag);
1349 frag = nfrag;
1350 *fragp = frag;
1351 }
1352
1353 if (end < len) {
1354 offset = end;
1355 continue;
1356 }
1357
1358 if (end > len &&
1359 unlikely((err = pskb_trim(frag, len - offset))))
1360 return err;
1361
1362 if (frag->next)
1363 skb_drop_list(&frag->next);
1364 break;
1365 }
1366
1367 done:
1368 if (len > skb_headlen(skb)) {
1369 skb->data_len -= skb->len - len;
1370 skb->len = len;
1371 } else {
1372 skb->len = len;
1373 skb->data_len = 0;
1374 skb_set_tail_pointer(skb, len);
1375 }
1376
1377 return 0;
1378 }
1379 EXPORT_SYMBOL(___pskb_trim);
1380
1381 /**
1382 * __pskb_pull_tail - advance tail of skb header
1383 * @skb: buffer to reallocate
1384 * @delta: number of bytes to advance tail
1385 *
1386 * The function makes a sense only on a fragmented &sk_buff,
1387 * it expands header moving its tail forward and copying necessary
1388 * data from fragmented part.
1389 *
1390 * &sk_buff MUST have reference count of 1.
1391 *
1392 * Returns %NULL (and &sk_buff does not change) if pull failed
1393 * or value of new tail of skb in the case of success.
1394 *
1395 * All the pointers pointing into skb header may change and must be
1396 * reloaded after call to this function.
1397 */
1398
1399 /* Moves tail of skb head forward, copying data from fragmented part,
1400 * when it is necessary.
1401 * 1. It may fail due to malloc failure.
1402 * 2. It may change skb pointers.
1403 *
1404 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1405 */
1406 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1407 {
1408 /* If skb has not enough free space at tail, get new one
1409 * plus 128 bytes for future expansions. If we have enough
1410 * room at tail, reallocate without expansion only if skb is cloned.
1411 */
1412 int i, k, eat = (skb->tail + delta) - skb->end;
1413
1414 if (eat > 0 || skb_cloned(skb)) {
1415 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1416 GFP_ATOMIC))
1417 return NULL;
1418 }
1419
1420 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1421 BUG();
1422
1423 /* Optimization: no fragments, no reasons to preestimate
1424 * size of pulled pages. Superb.
1425 */
1426 if (!skb_has_frag_list(skb))
1427 goto pull_pages;
1428
1429 /* Estimate size of pulled pages. */
1430 eat = delta;
1431 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1432 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1433
1434 if (size >= eat)
1435 goto pull_pages;
1436 eat -= size;
1437 }
1438
1439 /* If we need update frag list, we are in troubles.
1440 * Certainly, it possible to add an offset to skb data,
1441 * but taking into account that pulling is expected to
1442 * be very rare operation, it is worth to fight against
1443 * further bloating skb head and crucify ourselves here instead.
1444 * Pure masohism, indeed. 8)8)
1445 */
1446 if (eat) {
1447 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1448 struct sk_buff *clone = NULL;
1449 struct sk_buff *insp = NULL;
1450
1451 do {
1452 BUG_ON(!list);
1453
1454 if (list->len <= eat) {
1455 /* Eaten as whole. */
1456 eat -= list->len;
1457 list = list->next;
1458 insp = list;
1459 } else {
1460 /* Eaten partially. */
1461
1462 if (skb_shared(list)) {
1463 /* Sucks! We need to fork list. :-( */
1464 clone = skb_clone(list, GFP_ATOMIC);
1465 if (!clone)
1466 return NULL;
1467 insp = list->next;
1468 list = clone;
1469 } else {
1470 /* This may be pulled without
1471 * problems. */
1472 insp = list;
1473 }
1474 if (!pskb_pull(list, eat)) {
1475 kfree_skb(clone);
1476 return NULL;
1477 }
1478 break;
1479 }
1480 } while (eat);
1481
1482 /* Free pulled out fragments. */
1483 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1484 skb_shinfo(skb)->frag_list = list->next;
1485 kfree_skb(list);
1486 }
1487 /* And insert new clone at head. */
1488 if (clone) {
1489 clone->next = list;
1490 skb_shinfo(skb)->frag_list = clone;
1491 }
1492 }
1493 /* Success! Now we may commit changes to skb data. */
1494
1495 pull_pages:
1496 eat = delta;
1497 k = 0;
1498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1499 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1500
1501 if (size <= eat) {
1502 skb_frag_unref(skb, i);
1503 eat -= size;
1504 } else {
1505 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1506 if (eat) {
1507 skb_shinfo(skb)->frags[k].page_offset += eat;
1508 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1509 eat = 0;
1510 }
1511 k++;
1512 }
1513 }
1514 skb_shinfo(skb)->nr_frags = k;
1515
1516 skb->tail += delta;
1517 skb->data_len -= delta;
1518
1519 return skb_tail_pointer(skb);
1520 }
1521 EXPORT_SYMBOL(__pskb_pull_tail);
1522
1523 /**
1524 * skb_copy_bits - copy bits from skb to kernel buffer
1525 * @skb: source skb
1526 * @offset: offset in source
1527 * @to: destination buffer
1528 * @len: number of bytes to copy
1529 *
1530 * Copy the specified number of bytes from the source skb to the
1531 * destination buffer.
1532 *
1533 * CAUTION ! :
1534 * If its prototype is ever changed,
1535 * check arch/{*}/net/{*}.S files,
1536 * since it is called from BPF assembly code.
1537 */
1538 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1539 {
1540 int start = skb_headlen(skb);
1541 struct sk_buff *frag_iter;
1542 int i, copy;
1543
1544 if (offset > (int)skb->len - len)
1545 goto fault;
1546
1547 /* Copy header. */
1548 if ((copy = start - offset) > 0) {
1549 if (copy > len)
1550 copy = len;
1551 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1552 if ((len -= copy) == 0)
1553 return 0;
1554 offset += copy;
1555 to += copy;
1556 }
1557
1558 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1559 int end;
1560 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1561
1562 WARN_ON(start > offset + len);
1563
1564 end = start + skb_frag_size(f);
1565 if ((copy = end - offset) > 0) {
1566 u8 *vaddr;
1567
1568 if (copy > len)
1569 copy = len;
1570
1571 vaddr = kmap_atomic(skb_frag_page(f));
1572 memcpy(to,
1573 vaddr + f->page_offset + offset - start,
1574 copy);
1575 kunmap_atomic(vaddr);
1576
1577 if ((len -= copy) == 0)
1578 return 0;
1579 offset += copy;
1580 to += copy;
1581 }
1582 start = end;
1583 }
1584
1585 skb_walk_frags(skb, frag_iter) {
1586 int end;
1587
1588 WARN_ON(start > offset + len);
1589
1590 end = start + frag_iter->len;
1591 if ((copy = end - offset) > 0) {
1592 if (copy > len)
1593 copy = len;
1594 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1595 goto fault;
1596 if ((len -= copy) == 0)
1597 return 0;
1598 offset += copy;
1599 to += copy;
1600 }
1601 start = end;
1602 }
1603
1604 if (!len)
1605 return 0;
1606
1607 fault:
1608 return -EFAULT;
1609 }
1610 EXPORT_SYMBOL(skb_copy_bits);
1611
1612 /*
1613 * Callback from splice_to_pipe(), if we need to release some pages
1614 * at the end of the spd in case we error'ed out in filling the pipe.
1615 */
1616 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1617 {
1618 put_page(spd->pages[i]);
1619 }
1620
1621 static struct page *linear_to_page(struct page *page, unsigned int *len,
1622 unsigned int *offset,
1623 struct sk_buff *skb, struct sock *sk)
1624 {
1625 struct page_frag *pfrag = sk_page_frag(sk);
1626
1627 if (!sk_page_frag_refill(sk, pfrag))
1628 return NULL;
1629
1630 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1631
1632 memcpy(page_address(pfrag->page) + pfrag->offset,
1633 page_address(page) + *offset, *len);
1634 *offset = pfrag->offset;
1635 pfrag->offset += *len;
1636
1637 return pfrag->page;
1638 }
1639
1640 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1641 struct page *page,
1642 unsigned int offset)
1643 {
1644 return spd->nr_pages &&
1645 spd->pages[spd->nr_pages - 1] == page &&
1646 (spd->partial[spd->nr_pages - 1].offset +
1647 spd->partial[spd->nr_pages - 1].len == offset);
1648 }
1649
1650 /*
1651 * Fill page/offset/length into spd, if it can hold more pages.
1652 */
1653 static bool spd_fill_page(struct splice_pipe_desc *spd,
1654 struct pipe_inode_info *pipe, struct page *page,
1655 unsigned int *len, unsigned int offset,
1656 struct sk_buff *skb, bool linear,
1657 struct sock *sk)
1658 {
1659 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1660 return true;
1661
1662 if (linear) {
1663 page = linear_to_page(page, len, &offset, skb, sk);
1664 if (!page)
1665 return true;
1666 }
1667 if (spd_can_coalesce(spd, page, offset)) {
1668 spd->partial[spd->nr_pages - 1].len += *len;
1669 return false;
1670 }
1671 get_page(page);
1672 spd->pages[spd->nr_pages] = page;
1673 spd->partial[spd->nr_pages].len = *len;
1674 spd->partial[spd->nr_pages].offset = offset;
1675 spd->nr_pages++;
1676
1677 return false;
1678 }
1679
1680 static inline void __segment_seek(struct page **page, unsigned int *poff,
1681 unsigned int *plen, unsigned int off)
1682 {
1683 unsigned long n;
1684
1685 *poff += off;
1686 n = *poff / PAGE_SIZE;
1687 if (n)
1688 *page = nth_page(*page, n);
1689
1690 *poff = *poff % PAGE_SIZE;
1691 *plen -= off;
1692 }
1693
1694 static bool __splice_segment(struct page *page, unsigned int poff,
1695 unsigned int plen, unsigned int *off,
1696 unsigned int *len, struct sk_buff *skb,
1697 struct splice_pipe_desc *spd, bool linear,
1698 struct sock *sk,
1699 struct pipe_inode_info *pipe)
1700 {
1701 if (!*len)
1702 return true;
1703
1704 /* skip this segment if already processed */
1705 if (*off >= plen) {
1706 *off -= plen;
1707 return false;
1708 }
1709
1710 /* ignore any bits we already processed */
1711 if (*off) {
1712 __segment_seek(&page, &poff, &plen, *off);
1713 *off = 0;
1714 }
1715
1716 do {
1717 unsigned int flen = min(*len, plen);
1718
1719 /* the linear region may spread across several pages */
1720 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1721
1722 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1723 return true;
1724
1725 __segment_seek(&page, &poff, &plen, flen);
1726 *len -= flen;
1727
1728 } while (*len && plen);
1729
1730 return false;
1731 }
1732
1733 /*
1734 * Map linear and fragment data from the skb to spd. It reports true if the
1735 * pipe is full or if we already spliced the requested length.
1736 */
1737 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1738 unsigned int *offset, unsigned int *len,
1739 struct splice_pipe_desc *spd, struct sock *sk)
1740 {
1741 int seg;
1742
1743 /* map the linear part :
1744 * If skb->head_frag is set, this 'linear' part is backed by a
1745 * fragment, and if the head is not shared with any clones then
1746 * we can avoid a copy since we own the head portion of this page.
1747 */
1748 if (__splice_segment(virt_to_page(skb->data),
1749 (unsigned long) skb->data & (PAGE_SIZE - 1),
1750 skb_headlen(skb),
1751 offset, len, skb, spd,
1752 skb_head_is_locked(skb),
1753 sk, pipe))
1754 return true;
1755
1756 /*
1757 * then map the fragments
1758 */
1759 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1760 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1761
1762 if (__splice_segment(skb_frag_page(f),
1763 f->page_offset, skb_frag_size(f),
1764 offset, len, skb, spd, false, sk, pipe))
1765 return true;
1766 }
1767
1768 return false;
1769 }
1770
1771 /*
1772 * Map data from the skb to a pipe. Should handle both the linear part,
1773 * the fragments, and the frag list. It does NOT handle frag lists within
1774 * the frag list, if such a thing exists. We'd probably need to recurse to
1775 * handle that cleanly.
1776 */
1777 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1778 struct pipe_inode_info *pipe, unsigned int tlen,
1779 unsigned int flags)
1780 {
1781 struct partial_page partial[MAX_SKB_FRAGS];
1782 struct page *pages[MAX_SKB_FRAGS];
1783 struct splice_pipe_desc spd = {
1784 .pages = pages,
1785 .partial = partial,
1786 .nr_pages_max = MAX_SKB_FRAGS,
1787 .flags = flags,
1788 .ops = &sock_pipe_buf_ops,
1789 .spd_release = sock_spd_release,
1790 };
1791 struct sk_buff *frag_iter;
1792 struct sock *sk = skb->sk;
1793 int ret = 0;
1794
1795 /*
1796 * __skb_splice_bits() only fails if the output has no room left,
1797 * so no point in going over the frag_list for the error case.
1798 */
1799 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1800 goto done;
1801 else if (!tlen)
1802 goto done;
1803
1804 /*
1805 * now see if we have a frag_list to map
1806 */
1807 skb_walk_frags(skb, frag_iter) {
1808 if (!tlen)
1809 break;
1810 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1811 break;
1812 }
1813
1814 done:
1815 if (spd.nr_pages) {
1816 /*
1817 * Drop the socket lock, otherwise we have reverse
1818 * locking dependencies between sk_lock and i_mutex
1819 * here as compared to sendfile(). We enter here
1820 * with the socket lock held, and splice_to_pipe() will
1821 * grab the pipe inode lock. For sendfile() emulation,
1822 * we call into ->sendpage() with the i_mutex lock held
1823 * and networking will grab the socket lock.
1824 */
1825 release_sock(sk);
1826 ret = splice_to_pipe(pipe, &spd);
1827 lock_sock(sk);
1828 }
1829
1830 return ret;
1831 }
1832
1833 /**
1834 * skb_store_bits - store bits from kernel buffer to skb
1835 * @skb: destination buffer
1836 * @offset: offset in destination
1837 * @from: source buffer
1838 * @len: number of bytes to copy
1839 *
1840 * Copy the specified number of bytes from the source buffer to the
1841 * destination skb. This function handles all the messy bits of
1842 * traversing fragment lists and such.
1843 */
1844
1845 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1846 {
1847 int start = skb_headlen(skb);
1848 struct sk_buff *frag_iter;
1849 int i, copy;
1850
1851 if (offset > (int)skb->len - len)
1852 goto fault;
1853
1854 if ((copy = start - offset) > 0) {
1855 if (copy > len)
1856 copy = len;
1857 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1858 if ((len -= copy) == 0)
1859 return 0;
1860 offset += copy;
1861 from += copy;
1862 }
1863
1864 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1865 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1866 int end;
1867
1868 WARN_ON(start > offset + len);
1869
1870 end = start + skb_frag_size(frag);
1871 if ((copy = end - offset) > 0) {
1872 u8 *vaddr;
1873
1874 if (copy > len)
1875 copy = len;
1876
1877 vaddr = kmap_atomic(skb_frag_page(frag));
1878 memcpy(vaddr + frag->page_offset + offset - start,
1879 from, copy);
1880 kunmap_atomic(vaddr);
1881
1882 if ((len -= copy) == 0)
1883 return 0;
1884 offset += copy;
1885 from += copy;
1886 }
1887 start = end;
1888 }
1889
1890 skb_walk_frags(skb, frag_iter) {
1891 int end;
1892
1893 WARN_ON(start > offset + len);
1894
1895 end = start + frag_iter->len;
1896 if ((copy = end - offset) > 0) {
1897 if (copy > len)
1898 copy = len;
1899 if (skb_store_bits(frag_iter, offset - start,
1900 from, copy))
1901 goto fault;
1902 if ((len -= copy) == 0)
1903 return 0;
1904 offset += copy;
1905 from += copy;
1906 }
1907 start = end;
1908 }
1909 if (!len)
1910 return 0;
1911
1912 fault:
1913 return -EFAULT;
1914 }
1915 EXPORT_SYMBOL(skb_store_bits);
1916
1917 /* Checksum skb data. */
1918
1919 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1920 int len, __wsum csum)
1921 {
1922 int start = skb_headlen(skb);
1923 int i, copy = start - offset;
1924 struct sk_buff *frag_iter;
1925 int pos = 0;
1926
1927 /* Checksum header. */
1928 if (copy > 0) {
1929 if (copy > len)
1930 copy = len;
1931 csum = csum_partial(skb->data + offset, copy, csum);
1932 if ((len -= copy) == 0)
1933 return csum;
1934 offset += copy;
1935 pos = copy;
1936 }
1937
1938 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1939 int end;
1940 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1941
1942 WARN_ON(start > offset + len);
1943
1944 end = start + skb_frag_size(frag);
1945 if ((copy = end - offset) > 0) {
1946 __wsum csum2;
1947 u8 *vaddr;
1948
1949 if (copy > len)
1950 copy = len;
1951 vaddr = kmap_atomic(skb_frag_page(frag));
1952 csum2 = csum_partial(vaddr + frag->page_offset +
1953 offset - start, copy, 0);
1954 kunmap_atomic(vaddr);
1955 csum = csum_block_add(csum, csum2, pos);
1956 if (!(len -= copy))
1957 return csum;
1958 offset += copy;
1959 pos += copy;
1960 }
1961 start = end;
1962 }
1963
1964 skb_walk_frags(skb, frag_iter) {
1965 int end;
1966
1967 WARN_ON(start > offset + len);
1968
1969 end = start + frag_iter->len;
1970 if ((copy = end - offset) > 0) {
1971 __wsum csum2;
1972 if (copy > len)
1973 copy = len;
1974 csum2 = skb_checksum(frag_iter, offset - start,
1975 copy, 0);
1976 csum = csum_block_add(csum, csum2, pos);
1977 if ((len -= copy) == 0)
1978 return csum;
1979 offset += copy;
1980 pos += copy;
1981 }
1982 start = end;
1983 }
1984 BUG_ON(len);
1985
1986 return csum;
1987 }
1988 EXPORT_SYMBOL(skb_checksum);
1989
1990 /* Both of above in one bottle. */
1991
1992 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1993 u8 *to, int len, __wsum csum)
1994 {
1995 int start = skb_headlen(skb);
1996 int i, copy = start - offset;
1997 struct sk_buff *frag_iter;
1998 int pos = 0;
1999
2000 /* Copy header. */
2001 if (copy > 0) {
2002 if (copy > len)
2003 copy = len;
2004 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2005 copy, csum);
2006 if ((len -= copy) == 0)
2007 return csum;
2008 offset += copy;
2009 to += copy;
2010 pos = copy;
2011 }
2012
2013 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2014 int end;
2015
2016 WARN_ON(start > offset + len);
2017
2018 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2019 if ((copy = end - offset) > 0) {
2020 __wsum csum2;
2021 u8 *vaddr;
2022 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2023
2024 if (copy > len)
2025 copy = len;
2026 vaddr = kmap_atomic(skb_frag_page(frag));
2027 csum2 = csum_partial_copy_nocheck(vaddr +
2028 frag->page_offset +
2029 offset - start, to,
2030 copy, 0);
2031 kunmap_atomic(vaddr);
2032 csum = csum_block_add(csum, csum2, pos);
2033 if (!(len -= copy))
2034 return csum;
2035 offset += copy;
2036 to += copy;
2037 pos += copy;
2038 }
2039 start = end;
2040 }
2041
2042 skb_walk_frags(skb, frag_iter) {
2043 __wsum csum2;
2044 int end;
2045
2046 WARN_ON(start > offset + len);
2047
2048 end = start + frag_iter->len;
2049 if ((copy = end - offset) > 0) {
2050 if (copy > len)
2051 copy = len;
2052 csum2 = skb_copy_and_csum_bits(frag_iter,
2053 offset - start,
2054 to, copy, 0);
2055 csum = csum_block_add(csum, csum2, pos);
2056 if ((len -= copy) == 0)
2057 return csum;
2058 offset += copy;
2059 to += copy;
2060 pos += copy;
2061 }
2062 start = end;
2063 }
2064 BUG_ON(len);
2065 return csum;
2066 }
2067 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2068
2069 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2070 {
2071 __wsum csum;
2072 long csstart;
2073
2074 if (skb->ip_summed == CHECKSUM_PARTIAL)
2075 csstart = skb_checksum_start_offset(skb);
2076 else
2077 csstart = skb_headlen(skb);
2078
2079 BUG_ON(csstart > skb_headlen(skb));
2080
2081 skb_copy_from_linear_data(skb, to, csstart);
2082
2083 csum = 0;
2084 if (csstart != skb->len)
2085 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2086 skb->len - csstart, 0);
2087
2088 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2089 long csstuff = csstart + skb->csum_offset;
2090
2091 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2092 }
2093 }
2094 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2095
2096 /**
2097 * skb_dequeue - remove from the head of the queue
2098 * @list: list to dequeue from
2099 *
2100 * Remove the head of the list. The list lock is taken so the function
2101 * may be used safely with other locking list functions. The head item is
2102 * returned or %NULL if the list is empty.
2103 */
2104
2105 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2106 {
2107 unsigned long flags;
2108 struct sk_buff *result;
2109
2110 spin_lock_irqsave(&list->lock, flags);
2111 result = __skb_dequeue(list);
2112 spin_unlock_irqrestore(&list->lock, flags);
2113 return result;
2114 }
2115 EXPORT_SYMBOL(skb_dequeue);
2116
2117 /**
2118 * skb_dequeue_tail - remove from the tail of the queue
2119 * @list: list to dequeue from
2120 *
2121 * Remove the tail of the list. The list lock is taken so the function
2122 * may be used safely with other locking list functions. The tail item is
2123 * returned or %NULL if the list is empty.
2124 */
2125 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2126 {
2127 unsigned long flags;
2128 struct sk_buff *result;
2129
2130 spin_lock_irqsave(&list->lock, flags);
2131 result = __skb_dequeue_tail(list);
2132 spin_unlock_irqrestore(&list->lock, flags);
2133 return result;
2134 }
2135 EXPORT_SYMBOL(skb_dequeue_tail);
2136
2137 /**
2138 * skb_queue_purge - empty a list
2139 * @list: list to empty
2140 *
2141 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2142 * the list and one reference dropped. This function takes the list
2143 * lock and is atomic with respect to other list locking functions.
2144 */
2145 void skb_queue_purge(struct sk_buff_head *list)
2146 {
2147 struct sk_buff *skb;
2148 while ((skb = skb_dequeue(list)) != NULL)
2149 kfree_skb(skb);
2150 }
2151 EXPORT_SYMBOL(skb_queue_purge);
2152
2153 /**
2154 * skb_queue_head - queue a buffer at the list head
2155 * @list: list to use
2156 * @newsk: buffer to queue
2157 *
2158 * Queue a buffer at the start of the list. This function takes the
2159 * list lock and can be used safely with other locking &sk_buff functions
2160 * safely.
2161 *
2162 * A buffer cannot be placed on two lists at the same time.
2163 */
2164 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2165 {
2166 unsigned long flags;
2167
2168 spin_lock_irqsave(&list->lock, flags);
2169 __skb_queue_head(list, newsk);
2170 spin_unlock_irqrestore(&list->lock, flags);
2171 }
2172 EXPORT_SYMBOL(skb_queue_head);
2173
2174 /**
2175 * skb_queue_tail - queue a buffer at the list tail
2176 * @list: list to use
2177 * @newsk: buffer to queue
2178 *
2179 * Queue a buffer at the tail of the list. This function takes the
2180 * list lock and can be used safely with other locking &sk_buff functions
2181 * safely.
2182 *
2183 * A buffer cannot be placed on two lists at the same time.
2184 */
2185 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2186 {
2187 unsigned long flags;
2188
2189 spin_lock_irqsave(&list->lock, flags);
2190 __skb_queue_tail(list, newsk);
2191 spin_unlock_irqrestore(&list->lock, flags);
2192 }
2193 EXPORT_SYMBOL(skb_queue_tail);
2194
2195 /**
2196 * skb_unlink - remove a buffer from a list
2197 * @skb: buffer to remove
2198 * @list: list to use
2199 *
2200 * Remove a packet from a list. The list locks are taken and this
2201 * function is atomic with respect to other list locked calls
2202 *
2203 * You must know what list the SKB is on.
2204 */
2205 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2206 {
2207 unsigned long flags;
2208
2209 spin_lock_irqsave(&list->lock, flags);
2210 __skb_unlink(skb, list);
2211 spin_unlock_irqrestore(&list->lock, flags);
2212 }
2213 EXPORT_SYMBOL(skb_unlink);
2214
2215 /**
2216 * skb_append - append a buffer
2217 * @old: buffer to insert after
2218 * @newsk: buffer to insert
2219 * @list: list to use
2220 *
2221 * Place a packet after a given packet in a list. The list locks are taken
2222 * and this function is atomic with respect to other list locked calls.
2223 * A buffer cannot be placed on two lists at the same time.
2224 */
2225 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2226 {
2227 unsigned long flags;
2228
2229 spin_lock_irqsave(&list->lock, flags);
2230 __skb_queue_after(list, old, newsk);
2231 spin_unlock_irqrestore(&list->lock, flags);
2232 }
2233 EXPORT_SYMBOL(skb_append);
2234
2235 /**
2236 * skb_insert - insert a buffer
2237 * @old: buffer to insert before
2238 * @newsk: buffer to insert
2239 * @list: list to use
2240 *
2241 * Place a packet before a given packet in a list. The list locks are
2242 * taken and this function is atomic with respect to other list locked
2243 * calls.
2244 *
2245 * A buffer cannot be placed on two lists at the same time.
2246 */
2247 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2248 {
2249 unsigned long flags;
2250
2251 spin_lock_irqsave(&list->lock, flags);
2252 __skb_insert(newsk, old->prev, old, list);
2253 spin_unlock_irqrestore(&list->lock, flags);
2254 }
2255 EXPORT_SYMBOL(skb_insert);
2256
2257 static inline void skb_split_inside_header(struct sk_buff *skb,
2258 struct sk_buff* skb1,
2259 const u32 len, const int pos)
2260 {
2261 int i;
2262
2263 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2264 pos - len);
2265 /* And move data appendix as is. */
2266 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2267 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2268
2269 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2270 skb_shinfo(skb)->nr_frags = 0;
2271 skb1->data_len = skb->data_len;
2272 skb1->len += skb1->data_len;
2273 skb->data_len = 0;
2274 skb->len = len;
2275 skb_set_tail_pointer(skb, len);
2276 }
2277
2278 static inline void skb_split_no_header(struct sk_buff *skb,
2279 struct sk_buff* skb1,
2280 const u32 len, int pos)
2281 {
2282 int i, k = 0;
2283 const int nfrags = skb_shinfo(skb)->nr_frags;
2284
2285 skb_shinfo(skb)->nr_frags = 0;
2286 skb1->len = skb1->data_len = skb->len - len;
2287 skb->len = len;
2288 skb->data_len = len - pos;
2289
2290 for (i = 0; i < nfrags; i++) {
2291 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2292
2293 if (pos + size > len) {
2294 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2295
2296 if (pos < len) {
2297 /* Split frag.
2298 * We have two variants in this case:
2299 * 1. Move all the frag to the second
2300 * part, if it is possible. F.e.
2301 * this approach is mandatory for TUX,
2302 * where splitting is expensive.
2303 * 2. Split is accurately. We make this.
2304 */
2305 skb_frag_ref(skb, i);
2306 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2307 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2308 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2309 skb_shinfo(skb)->nr_frags++;
2310 }
2311 k++;
2312 } else
2313 skb_shinfo(skb)->nr_frags++;
2314 pos += size;
2315 }
2316 skb_shinfo(skb1)->nr_frags = k;
2317 }
2318
2319 /**
2320 * skb_split - Split fragmented skb to two parts at length len.
2321 * @skb: the buffer to split
2322 * @skb1: the buffer to receive the second part
2323 * @len: new length for skb
2324 */
2325 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2326 {
2327 int pos = skb_headlen(skb);
2328
2329 if (len < pos) /* Split line is inside header. */
2330 skb_split_inside_header(skb, skb1, len, pos);
2331 else /* Second chunk has no header, nothing to copy. */
2332 skb_split_no_header(skb, skb1, len, pos);
2333 }
2334 EXPORT_SYMBOL(skb_split);
2335
2336 /* Shifting from/to a cloned skb is a no-go.
2337 *
2338 * Caller cannot keep skb_shinfo related pointers past calling here!
2339 */
2340 static int skb_prepare_for_shift(struct sk_buff *skb)
2341 {
2342 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2343 }
2344
2345 /**
2346 * skb_shift - Shifts paged data partially from skb to another
2347 * @tgt: buffer into which tail data gets added
2348 * @skb: buffer from which the paged data comes from
2349 * @shiftlen: shift up to this many bytes
2350 *
2351 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2352 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2353 * It's up to caller to free skb if everything was shifted.
2354 *
2355 * If @tgt runs out of frags, the whole operation is aborted.
2356 *
2357 * Skb cannot include anything else but paged data while tgt is allowed
2358 * to have non-paged data as well.
2359 *
2360 * TODO: full sized shift could be optimized but that would need
2361 * specialized skb free'er to handle frags without up-to-date nr_frags.
2362 */
2363 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2364 {
2365 int from, to, merge, todo;
2366 struct skb_frag_struct *fragfrom, *fragto;
2367
2368 BUG_ON(shiftlen > skb->len);
2369 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2370
2371 todo = shiftlen;
2372 from = 0;
2373 to = skb_shinfo(tgt)->nr_frags;
2374 fragfrom = &skb_shinfo(skb)->frags[from];
2375
2376 /* Actual merge is delayed until the point when we know we can
2377 * commit all, so that we don't have to undo partial changes
2378 */
2379 if (!to ||
2380 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2381 fragfrom->page_offset)) {
2382 merge = -1;
2383 } else {
2384 merge = to - 1;
2385
2386 todo -= skb_frag_size(fragfrom);
2387 if (todo < 0) {
2388 if (skb_prepare_for_shift(skb) ||
2389 skb_prepare_for_shift(tgt))
2390 return 0;
2391
2392 /* All previous frag pointers might be stale! */
2393 fragfrom = &skb_shinfo(skb)->frags[from];
2394 fragto = &skb_shinfo(tgt)->frags[merge];
2395
2396 skb_frag_size_add(fragto, shiftlen);
2397 skb_frag_size_sub(fragfrom, shiftlen);
2398 fragfrom->page_offset += shiftlen;
2399
2400 goto onlymerged;
2401 }
2402
2403 from++;
2404 }
2405
2406 /* Skip full, not-fitting skb to avoid expensive operations */
2407 if ((shiftlen == skb->len) &&
2408 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2409 return 0;
2410
2411 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2412 return 0;
2413
2414 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2415 if (to == MAX_SKB_FRAGS)
2416 return 0;
2417
2418 fragfrom = &skb_shinfo(skb)->frags[from];
2419 fragto = &skb_shinfo(tgt)->frags[to];
2420
2421 if (todo >= skb_frag_size(fragfrom)) {
2422 *fragto = *fragfrom;
2423 todo -= skb_frag_size(fragfrom);
2424 from++;
2425 to++;
2426
2427 } else {
2428 __skb_frag_ref(fragfrom);
2429 fragto->page = fragfrom->page;
2430 fragto->page_offset = fragfrom->page_offset;
2431 skb_frag_size_set(fragto, todo);
2432
2433 fragfrom->page_offset += todo;
2434 skb_frag_size_sub(fragfrom, todo);
2435 todo = 0;
2436
2437 to++;
2438 break;
2439 }
2440 }
2441
2442 /* Ready to "commit" this state change to tgt */
2443 skb_shinfo(tgt)->nr_frags = to;
2444
2445 if (merge >= 0) {
2446 fragfrom = &skb_shinfo(skb)->frags[0];
2447 fragto = &skb_shinfo(tgt)->frags[merge];
2448
2449 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2450 __skb_frag_unref(fragfrom);
2451 }
2452
2453 /* Reposition in the original skb */
2454 to = 0;
2455 while (from < skb_shinfo(skb)->nr_frags)
2456 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2457 skb_shinfo(skb)->nr_frags = to;
2458
2459 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2460
2461 onlymerged:
2462 /* Most likely the tgt won't ever need its checksum anymore, skb on
2463 * the other hand might need it if it needs to be resent
2464 */
2465 tgt->ip_summed = CHECKSUM_PARTIAL;
2466 skb->ip_summed = CHECKSUM_PARTIAL;
2467
2468 /* Yak, is it really working this way? Some helper please? */
2469 skb->len -= shiftlen;
2470 skb->data_len -= shiftlen;
2471 skb->truesize -= shiftlen;
2472 tgt->len += shiftlen;
2473 tgt->data_len += shiftlen;
2474 tgt->truesize += shiftlen;
2475
2476 return shiftlen;
2477 }
2478
2479 /**
2480 * skb_prepare_seq_read - Prepare a sequential read of skb data
2481 * @skb: the buffer to read
2482 * @from: lower offset of data to be read
2483 * @to: upper offset of data to be read
2484 * @st: state variable
2485 *
2486 * Initializes the specified state variable. Must be called before
2487 * invoking skb_seq_read() for the first time.
2488 */
2489 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2490 unsigned int to, struct skb_seq_state *st)
2491 {
2492 st->lower_offset = from;
2493 st->upper_offset = to;
2494 st->root_skb = st->cur_skb = skb;
2495 st->frag_idx = st->stepped_offset = 0;
2496 st->frag_data = NULL;
2497 }
2498 EXPORT_SYMBOL(skb_prepare_seq_read);
2499
2500 /**
2501 * skb_seq_read - Sequentially read skb data
2502 * @consumed: number of bytes consumed by the caller so far
2503 * @data: destination pointer for data to be returned
2504 * @st: state variable
2505 *
2506 * Reads a block of skb data at &consumed relative to the
2507 * lower offset specified to skb_prepare_seq_read(). Assigns
2508 * the head of the data block to &data and returns the length
2509 * of the block or 0 if the end of the skb data or the upper
2510 * offset has been reached.
2511 *
2512 * The caller is not required to consume all of the data
2513 * returned, i.e. &consumed is typically set to the number
2514 * of bytes already consumed and the next call to
2515 * skb_seq_read() will return the remaining part of the block.
2516 *
2517 * Note 1: The size of each block of data returned can be arbitrary,
2518 * this limitation is the cost for zerocopy seqeuental
2519 * reads of potentially non linear data.
2520 *
2521 * Note 2: Fragment lists within fragments are not implemented
2522 * at the moment, state->root_skb could be replaced with
2523 * a stack for this purpose.
2524 */
2525 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2526 struct skb_seq_state *st)
2527 {
2528 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2529 skb_frag_t *frag;
2530
2531 if (unlikely(abs_offset >= st->upper_offset))
2532 return 0;
2533
2534 next_skb:
2535 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2536
2537 if (abs_offset < block_limit && !st->frag_data) {
2538 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2539 return block_limit - abs_offset;
2540 }
2541
2542 if (st->frag_idx == 0 && !st->frag_data)
2543 st->stepped_offset += skb_headlen(st->cur_skb);
2544
2545 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2546 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2547 block_limit = skb_frag_size(frag) + st->stepped_offset;
2548
2549 if (abs_offset < block_limit) {
2550 if (!st->frag_data)
2551 st->frag_data = kmap_atomic(skb_frag_page(frag));
2552
2553 *data = (u8 *) st->frag_data + frag->page_offset +
2554 (abs_offset - st->stepped_offset);
2555
2556 return block_limit - abs_offset;
2557 }
2558
2559 if (st->frag_data) {
2560 kunmap_atomic(st->frag_data);
2561 st->frag_data = NULL;
2562 }
2563
2564 st->frag_idx++;
2565 st->stepped_offset += skb_frag_size(frag);
2566 }
2567
2568 if (st->frag_data) {
2569 kunmap_atomic(st->frag_data);
2570 st->frag_data = NULL;
2571 }
2572
2573 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2574 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2575 st->frag_idx = 0;
2576 goto next_skb;
2577 } else if (st->cur_skb->next) {
2578 st->cur_skb = st->cur_skb->next;
2579 st->frag_idx = 0;
2580 goto next_skb;
2581 }
2582
2583 return 0;
2584 }
2585 EXPORT_SYMBOL(skb_seq_read);
2586
2587 /**
2588 * skb_abort_seq_read - Abort a sequential read of skb data
2589 * @st: state variable
2590 *
2591 * Must be called if skb_seq_read() was not called until it
2592 * returned 0.
2593 */
2594 void skb_abort_seq_read(struct skb_seq_state *st)
2595 {
2596 if (st->frag_data)
2597 kunmap_atomic(st->frag_data);
2598 }
2599 EXPORT_SYMBOL(skb_abort_seq_read);
2600
2601 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2602
2603 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2604 struct ts_config *conf,
2605 struct ts_state *state)
2606 {
2607 return skb_seq_read(offset, text, TS_SKB_CB(state));
2608 }
2609
2610 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2611 {
2612 skb_abort_seq_read(TS_SKB_CB(state));
2613 }
2614
2615 /**
2616 * skb_find_text - Find a text pattern in skb data
2617 * @skb: the buffer to look in
2618 * @from: search offset
2619 * @to: search limit
2620 * @config: textsearch configuration
2621 * @state: uninitialized textsearch state variable
2622 *
2623 * Finds a pattern in the skb data according to the specified
2624 * textsearch configuration. Use textsearch_next() to retrieve
2625 * subsequent occurrences of the pattern. Returns the offset
2626 * to the first occurrence or UINT_MAX if no match was found.
2627 */
2628 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2629 unsigned int to, struct ts_config *config,
2630 struct ts_state *state)
2631 {
2632 unsigned int ret;
2633
2634 config->get_next_block = skb_ts_get_next_block;
2635 config->finish = skb_ts_finish;
2636
2637 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2638
2639 ret = textsearch_find(config, state);
2640 return (ret <= to - from ? ret : UINT_MAX);
2641 }
2642 EXPORT_SYMBOL(skb_find_text);
2643
2644 /**
2645 * skb_append_datato_frags - append the user data to a skb
2646 * @sk: sock structure
2647 * @skb: skb structure to be appened with user data.
2648 * @getfrag: call back function to be used for getting the user data
2649 * @from: pointer to user message iov
2650 * @length: length of the iov message
2651 *
2652 * Description: This procedure append the user data in the fragment part
2653 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2654 */
2655 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2656 int (*getfrag)(void *from, char *to, int offset,
2657 int len, int odd, struct sk_buff *skb),
2658 void *from, int length)
2659 {
2660 int frg_cnt = 0;
2661 skb_frag_t *frag = NULL;
2662 struct page *page = NULL;
2663 int copy, left;
2664 int offset = 0;
2665 int ret;
2666
2667 do {
2668 /* Return error if we don't have space for new frag */
2669 frg_cnt = skb_shinfo(skb)->nr_frags;
2670 if (frg_cnt >= MAX_SKB_FRAGS)
2671 return -EFAULT;
2672
2673 /* allocate a new page for next frag */
2674 page = alloc_pages(sk->sk_allocation, 0);
2675
2676 /* If alloc_page fails just return failure and caller will
2677 * free previous allocated pages by doing kfree_skb()
2678 */
2679 if (page == NULL)
2680 return -ENOMEM;
2681
2682 /* initialize the next frag */
2683 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2684 skb->truesize += PAGE_SIZE;
2685 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2686
2687 /* get the new initialized frag */
2688 frg_cnt = skb_shinfo(skb)->nr_frags;
2689 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2690
2691 /* copy the user data to page */
2692 left = PAGE_SIZE - frag->page_offset;
2693 copy = (length > left)? left : length;
2694
2695 ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2696 offset, copy, 0, skb);
2697 if (ret < 0)
2698 return -EFAULT;
2699
2700 /* copy was successful so update the size parameters */
2701 skb_frag_size_add(frag, copy);
2702 skb->len += copy;
2703 skb->data_len += copy;
2704 offset += copy;
2705 length -= copy;
2706
2707 } while (length > 0);
2708
2709 return 0;
2710 }
2711 EXPORT_SYMBOL(skb_append_datato_frags);
2712
2713 /**
2714 * skb_pull_rcsum - pull skb and update receive checksum
2715 * @skb: buffer to update
2716 * @len: length of data pulled
2717 *
2718 * This function performs an skb_pull on the packet and updates
2719 * the CHECKSUM_COMPLETE checksum. It should be used on
2720 * receive path processing instead of skb_pull unless you know
2721 * that the checksum difference is zero (e.g., a valid IP header)
2722 * or you are setting ip_summed to CHECKSUM_NONE.
2723 */
2724 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2725 {
2726 BUG_ON(len > skb->len);
2727 skb->len -= len;
2728 BUG_ON(skb->len < skb->data_len);
2729 skb_postpull_rcsum(skb, skb->data, len);
2730 return skb->data += len;
2731 }
2732 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2733
2734 /**
2735 * skb_segment - Perform protocol segmentation on skb.
2736 * @skb: buffer to segment
2737 * @features: features for the output path (see dev->features)
2738 *
2739 * This function performs segmentation on the given skb. It returns
2740 * a pointer to the first in a list of new skbs for the segments.
2741 * In case of error it returns ERR_PTR(err).
2742 */
2743 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2744 {
2745 struct sk_buff *segs = NULL;
2746 struct sk_buff *tail = NULL;
2747 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2748 unsigned int mss = skb_shinfo(skb)->gso_size;
2749 unsigned int doffset = skb->data - skb_mac_header(skb);
2750 unsigned int offset = doffset;
2751 unsigned int headroom;
2752 unsigned int len;
2753 int sg = !!(features & NETIF_F_SG);
2754 int nfrags = skb_shinfo(skb)->nr_frags;
2755 int err = -ENOMEM;
2756 int i = 0;
2757 int pos;
2758
2759 __skb_push(skb, doffset);
2760 headroom = skb_headroom(skb);
2761 pos = skb_headlen(skb);
2762
2763 do {
2764 struct sk_buff *nskb;
2765 skb_frag_t *frag;
2766 int hsize;
2767 int size;
2768
2769 len = skb->len - offset;
2770 if (len > mss)
2771 len = mss;
2772
2773 hsize = skb_headlen(skb) - offset;
2774 if (hsize < 0)
2775 hsize = 0;
2776 if (hsize > len || !sg)
2777 hsize = len;
2778
2779 if (!hsize && i >= nfrags) {
2780 BUG_ON(fskb->len != len);
2781
2782 pos += len;
2783 nskb = skb_clone(fskb, GFP_ATOMIC);
2784 fskb = fskb->next;
2785
2786 if (unlikely(!nskb))
2787 goto err;
2788
2789 hsize = skb_end_offset(nskb);
2790 if (skb_cow_head(nskb, doffset + headroom)) {
2791 kfree_skb(nskb);
2792 goto err;
2793 }
2794
2795 nskb->truesize += skb_end_offset(nskb) - hsize;
2796 skb_release_head_state(nskb);
2797 __skb_push(nskb, doffset);
2798 } else {
2799 nskb = __alloc_skb(hsize + doffset + headroom,
2800 GFP_ATOMIC, skb_alloc_rx_flag(skb),
2801 NUMA_NO_NODE);
2802
2803 if (unlikely(!nskb))
2804 goto err;
2805
2806 skb_reserve(nskb, headroom);
2807 __skb_put(nskb, doffset);
2808 }
2809
2810 if (segs)
2811 tail->next = nskb;
2812 else
2813 segs = nskb;
2814 tail = nskb;
2815
2816 __copy_skb_header(nskb, skb);
2817 nskb->mac_len = skb->mac_len;
2818
2819 /* nskb and skb might have different headroom */
2820 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2821 nskb->csum_start += skb_headroom(nskb) - headroom;
2822
2823 skb_reset_mac_header(nskb);
2824 skb_set_network_header(nskb, skb->mac_len);
2825 nskb->transport_header = (nskb->network_header +
2826 skb_network_header_len(skb));
2827 skb_copy_from_linear_data(skb, nskb->data, doffset);
2828
2829 if (fskb != skb_shinfo(skb)->frag_list)
2830 continue;
2831
2832 if (!sg) {
2833 nskb->ip_summed = CHECKSUM_NONE;
2834 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2835 skb_put(nskb, len),
2836 len, 0);
2837 continue;
2838 }
2839
2840 frag = skb_shinfo(nskb)->frags;
2841
2842 skb_copy_from_linear_data_offset(skb, offset,
2843 skb_put(nskb, hsize), hsize);
2844
2845 while (pos < offset + len && i < nfrags) {
2846 *frag = skb_shinfo(skb)->frags[i];
2847 __skb_frag_ref(frag);
2848 size = skb_frag_size(frag);
2849
2850 if (pos < offset) {
2851 frag->page_offset += offset - pos;
2852 skb_frag_size_sub(frag, offset - pos);
2853 }
2854
2855 skb_shinfo(nskb)->nr_frags++;
2856
2857 if (pos + size <= offset + len) {
2858 i++;
2859 pos += size;
2860 } else {
2861 skb_frag_size_sub(frag, pos + size - (offset + len));
2862 goto skip_fraglist;
2863 }
2864
2865 frag++;
2866 }
2867
2868 if (pos < offset + len) {
2869 struct sk_buff *fskb2 = fskb;
2870
2871 BUG_ON(pos + fskb->len != offset + len);
2872
2873 pos += fskb->len;
2874 fskb = fskb->next;
2875
2876 if (fskb2->next) {
2877 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2878 if (!fskb2)
2879 goto err;
2880 } else
2881 skb_get(fskb2);
2882
2883 SKB_FRAG_ASSERT(nskb);
2884 skb_shinfo(nskb)->frag_list = fskb2;
2885 }
2886
2887 skip_fraglist:
2888 nskb->data_len = len - hsize;
2889 nskb->len += nskb->data_len;
2890 nskb->truesize += nskb->data_len;
2891 } while ((offset += len) < skb->len);
2892
2893 return segs;
2894
2895 err:
2896 while ((skb = segs)) {
2897 segs = skb->next;
2898 kfree_skb(skb);
2899 }
2900 return ERR_PTR(err);
2901 }
2902 EXPORT_SYMBOL_GPL(skb_segment);
2903
2904 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2905 {
2906 struct sk_buff *p = *head;
2907 struct sk_buff *nskb;
2908 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2909 struct skb_shared_info *pinfo = skb_shinfo(p);
2910 unsigned int headroom;
2911 unsigned int len = skb_gro_len(skb);
2912 unsigned int offset = skb_gro_offset(skb);
2913 unsigned int headlen = skb_headlen(skb);
2914 unsigned int delta_truesize;
2915
2916 if (p->len + len >= 65536)
2917 return -E2BIG;
2918
2919 if (pinfo->frag_list)
2920 goto merge;
2921 else if (headlen <= offset) {
2922 skb_frag_t *frag;
2923 skb_frag_t *frag2;
2924 int i = skbinfo->nr_frags;
2925 int nr_frags = pinfo->nr_frags + i;
2926
2927 offset -= headlen;
2928
2929 if (nr_frags > MAX_SKB_FRAGS)
2930 return -E2BIG;
2931
2932 pinfo->nr_frags = nr_frags;
2933 skbinfo->nr_frags = 0;
2934
2935 frag = pinfo->frags + nr_frags;
2936 frag2 = skbinfo->frags + i;
2937 do {
2938 *--frag = *--frag2;
2939 } while (--i);
2940
2941 frag->page_offset += offset;
2942 skb_frag_size_sub(frag, offset);
2943
2944 /* all fragments truesize : remove (head size + sk_buff) */
2945 delta_truesize = skb->truesize -
2946 SKB_TRUESIZE(skb_end_offset(skb));
2947
2948 skb->truesize -= skb->data_len;
2949 skb->len -= skb->data_len;
2950 skb->data_len = 0;
2951
2952 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2953 goto done;
2954 } else if (skb->head_frag) {
2955 int nr_frags = pinfo->nr_frags;
2956 skb_frag_t *frag = pinfo->frags + nr_frags;
2957 struct page *page = virt_to_head_page(skb->head);
2958 unsigned int first_size = headlen - offset;
2959 unsigned int first_offset;
2960
2961 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2962 return -E2BIG;
2963
2964 first_offset = skb->data -
2965 (unsigned char *)page_address(page) +
2966 offset;
2967
2968 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
2969
2970 frag->page.p = page;
2971 frag->page_offset = first_offset;
2972 skb_frag_size_set(frag, first_size);
2973
2974 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
2975 /* We dont need to clear skbinfo->nr_frags here */
2976
2977 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
2978 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
2979 goto done;
2980 } else if (skb_gro_len(p) != pinfo->gso_size)
2981 return -E2BIG;
2982
2983 headroom = skb_headroom(p);
2984 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2985 if (unlikely(!nskb))
2986 return -ENOMEM;
2987
2988 __copy_skb_header(nskb, p);
2989 nskb->mac_len = p->mac_len;
2990
2991 skb_reserve(nskb, headroom);
2992 __skb_put(nskb, skb_gro_offset(p));
2993
2994 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2995 skb_set_network_header(nskb, skb_network_offset(p));
2996 skb_set_transport_header(nskb, skb_transport_offset(p));
2997
2998 __skb_pull(p, skb_gro_offset(p));
2999 memcpy(skb_mac_header(nskb), skb_mac_header(p),
3000 p->data - skb_mac_header(p));
3001
3002 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
3003 skb_shinfo(nskb)->frag_list = p;
3004 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3005 pinfo->gso_size = 0;
3006 skb_header_release(p);
3007 nskb->prev = p;
3008
3009 nskb->data_len += p->len;
3010 nskb->truesize += p->truesize;
3011 nskb->len += p->len;
3012
3013 *head = nskb;
3014 nskb->next = p->next;
3015 p->next = NULL;
3016
3017 p = nskb;
3018
3019 merge:
3020 delta_truesize = skb->truesize;
3021 if (offset > headlen) {
3022 unsigned int eat = offset - headlen;
3023
3024 skbinfo->frags[0].page_offset += eat;
3025 skb_frag_size_sub(&skbinfo->frags[0], eat);
3026 skb->data_len -= eat;
3027 skb->len -= eat;
3028 offset = headlen;
3029 }
3030
3031 __skb_pull(skb, offset);
3032
3033 p->prev->next = skb;
3034 p->prev = skb;
3035 skb_header_release(skb);
3036
3037 done:
3038 NAPI_GRO_CB(p)->count++;
3039 p->data_len += len;
3040 p->truesize += delta_truesize;
3041 p->len += len;
3042
3043 NAPI_GRO_CB(skb)->same_flow = 1;
3044 return 0;
3045 }
3046 EXPORT_SYMBOL_GPL(skb_gro_receive);
3047
3048 void __init skb_init(void)
3049 {
3050 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3051 sizeof(struct sk_buff),
3052 0,
3053 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3054 NULL);
3055 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3056 (2*sizeof(struct sk_buff)) +
3057 sizeof(atomic_t),
3058 0,
3059 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3060 NULL);
3061 }
3062
3063 /**
3064 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3065 * @skb: Socket buffer containing the buffers to be mapped
3066 * @sg: The scatter-gather list to map into
3067 * @offset: The offset into the buffer's contents to start mapping
3068 * @len: Length of buffer space to be mapped
3069 *
3070 * Fill the specified scatter-gather list with mappings/pointers into a
3071 * region of the buffer space attached to a socket buffer.
3072 */
3073 static int
3074 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3075 {
3076 int start = skb_headlen(skb);
3077 int i, copy = start - offset;
3078 struct sk_buff *frag_iter;
3079 int elt = 0;
3080
3081 if (copy > 0) {
3082 if (copy > len)
3083 copy = len;
3084 sg_set_buf(sg, skb->data + offset, copy);
3085 elt++;
3086 if ((len -= copy) == 0)
3087 return elt;
3088 offset += copy;
3089 }
3090
3091 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3092 int end;
3093
3094 WARN_ON(start > offset + len);
3095
3096 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3097 if ((copy = end - offset) > 0) {
3098 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3099
3100 if (copy > len)
3101 copy = len;
3102 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3103 frag->page_offset+offset-start);
3104 elt++;
3105 if (!(len -= copy))
3106 return elt;
3107 offset += copy;
3108 }
3109 start = end;
3110 }
3111
3112 skb_walk_frags(skb, frag_iter) {
3113 int end;
3114
3115 WARN_ON(start > offset + len);
3116
3117 end = start + frag_iter->len;
3118 if ((copy = end - offset) > 0) {
3119 if (copy > len)
3120 copy = len;
3121 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3122 copy);
3123 if ((len -= copy) == 0)
3124 return elt;
3125 offset += copy;
3126 }
3127 start = end;
3128 }
3129 BUG_ON(len);
3130 return elt;
3131 }
3132
3133 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3134 {
3135 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3136
3137 sg_mark_end(&sg[nsg - 1]);
3138
3139 return nsg;
3140 }
3141 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3142
3143 /**
3144 * skb_cow_data - Check that a socket buffer's data buffers are writable
3145 * @skb: The socket buffer to check.
3146 * @tailbits: Amount of trailing space to be added
3147 * @trailer: Returned pointer to the skb where the @tailbits space begins
3148 *
3149 * Make sure that the data buffers attached to a socket buffer are
3150 * writable. If they are not, private copies are made of the data buffers
3151 * and the socket buffer is set to use these instead.
3152 *
3153 * If @tailbits is given, make sure that there is space to write @tailbits
3154 * bytes of data beyond current end of socket buffer. @trailer will be
3155 * set to point to the skb in which this space begins.
3156 *
3157 * The number of scatterlist elements required to completely map the
3158 * COW'd and extended socket buffer will be returned.
3159 */
3160 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3161 {
3162 int copyflag;
3163 int elt;
3164 struct sk_buff *skb1, **skb_p;
3165
3166 /* If skb is cloned or its head is paged, reallocate
3167 * head pulling out all the pages (pages are considered not writable
3168 * at the moment even if they are anonymous).
3169 */
3170 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3171 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3172 return -ENOMEM;
3173
3174 /* Easy case. Most of packets will go this way. */
3175 if (!skb_has_frag_list(skb)) {
3176 /* A little of trouble, not enough of space for trailer.
3177 * This should not happen, when stack is tuned to generate
3178 * good frames. OK, on miss we reallocate and reserve even more
3179 * space, 128 bytes is fair. */
3180
3181 if (skb_tailroom(skb) < tailbits &&
3182 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3183 return -ENOMEM;
3184
3185 /* Voila! */
3186 *trailer = skb;
3187 return 1;
3188 }
3189
3190 /* Misery. We are in troubles, going to mincer fragments... */
3191
3192 elt = 1;
3193 skb_p = &skb_shinfo(skb)->frag_list;
3194 copyflag = 0;
3195
3196 while ((skb1 = *skb_p) != NULL) {
3197 int ntail = 0;
3198
3199 /* The fragment is partially pulled by someone,
3200 * this can happen on input. Copy it and everything
3201 * after it. */
3202
3203 if (skb_shared(skb1))
3204 copyflag = 1;
3205
3206 /* If the skb is the last, worry about trailer. */
3207
3208 if (skb1->next == NULL && tailbits) {
3209 if (skb_shinfo(skb1)->nr_frags ||
3210 skb_has_frag_list(skb1) ||
3211 skb_tailroom(skb1) < tailbits)
3212 ntail = tailbits + 128;
3213 }
3214
3215 if (copyflag ||
3216 skb_cloned(skb1) ||
3217 ntail ||
3218 skb_shinfo(skb1)->nr_frags ||
3219 skb_has_frag_list(skb1)) {
3220 struct sk_buff *skb2;
3221
3222 /* Fuck, we are miserable poor guys... */
3223 if (ntail == 0)
3224 skb2 = skb_copy(skb1, GFP_ATOMIC);
3225 else
3226 skb2 = skb_copy_expand(skb1,
3227 skb_headroom(skb1),
3228 ntail,
3229 GFP_ATOMIC);
3230 if (unlikely(skb2 == NULL))
3231 return -ENOMEM;
3232
3233 if (skb1->sk)
3234 skb_set_owner_w(skb2, skb1->sk);
3235
3236 /* Looking around. Are we still alive?
3237 * OK, link new skb, drop old one */
3238
3239 skb2->next = skb1->next;
3240 *skb_p = skb2;
3241 kfree_skb(skb1);
3242 skb1 = skb2;
3243 }
3244 elt++;
3245 *trailer = skb1;
3246 skb_p = &skb1->next;
3247 }
3248
3249 return elt;
3250 }
3251 EXPORT_SYMBOL_GPL(skb_cow_data);
3252
3253 static void sock_rmem_free(struct sk_buff *skb)
3254 {
3255 struct sock *sk = skb->sk;
3256
3257 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3258 }
3259
3260 /*
3261 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3262 */
3263 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3264 {
3265 int len = skb->len;
3266
3267 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3268 (unsigned int)sk->sk_rcvbuf)
3269 return -ENOMEM;
3270
3271 skb_orphan(skb);
3272 skb->sk = sk;
3273 skb->destructor = sock_rmem_free;
3274 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3275
3276 /* before exiting rcu section, make sure dst is refcounted */
3277 skb_dst_force(skb);
3278
3279 skb_queue_tail(&sk->sk_error_queue, skb);
3280 if (!sock_flag(sk, SOCK_DEAD))
3281 sk->sk_data_ready(sk, len);
3282 return 0;
3283 }
3284 EXPORT_SYMBOL(sock_queue_err_skb);
3285
3286 void skb_tstamp_tx(struct sk_buff *orig_skb,
3287 struct skb_shared_hwtstamps *hwtstamps)
3288 {
3289 struct sock *sk = orig_skb->sk;
3290 struct sock_exterr_skb *serr;
3291 struct sk_buff *skb;
3292 int err;
3293
3294 if (!sk)
3295 return;
3296
3297 skb = skb_clone(orig_skb, GFP_ATOMIC);
3298 if (!skb)
3299 return;
3300
3301 if (hwtstamps) {
3302 *skb_hwtstamps(skb) =
3303 *hwtstamps;
3304 } else {
3305 /*
3306 * no hardware time stamps available,
3307 * so keep the shared tx_flags and only
3308 * store software time stamp
3309 */
3310 skb->tstamp = ktime_get_real();
3311 }
3312
3313 serr = SKB_EXT_ERR(skb);
3314 memset(serr, 0, sizeof(*serr));
3315 serr->ee.ee_errno = ENOMSG;
3316 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3317
3318 err = sock_queue_err_skb(sk, skb);
3319
3320 if (err)
3321 kfree_skb(skb);
3322 }
3323 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3324
3325 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3326 {
3327 struct sock *sk = skb->sk;
3328 struct sock_exterr_skb *serr;
3329 int err;
3330
3331 skb->wifi_acked_valid = 1;
3332 skb->wifi_acked = acked;
3333
3334 serr = SKB_EXT_ERR(skb);
3335 memset(serr, 0, sizeof(*serr));
3336 serr->ee.ee_errno = ENOMSG;
3337 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3338
3339 err = sock_queue_err_skb(sk, skb);
3340 if (err)
3341 kfree_skb(skb);
3342 }
3343 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3344
3345
3346 /**
3347 * skb_partial_csum_set - set up and verify partial csum values for packet
3348 * @skb: the skb to set
3349 * @start: the number of bytes after skb->data to start checksumming.
3350 * @off: the offset from start to place the checksum.
3351 *
3352 * For untrusted partially-checksummed packets, we need to make sure the values
3353 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3354 *
3355 * This function checks and sets those values and skb->ip_summed: if this
3356 * returns false you should drop the packet.
3357 */
3358 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3359 {
3360 if (unlikely(start > skb_headlen(skb)) ||
3361 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3362 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3363 start, off, skb_headlen(skb));
3364 return false;
3365 }
3366 skb->ip_summed = CHECKSUM_PARTIAL;
3367 skb->csum_start = skb_headroom(skb) + start;
3368 skb->csum_offset = off;
3369 return true;
3370 }
3371 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3372
3373 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3374 {
3375 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3376 skb->dev->name);
3377 }
3378 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3379
3380 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3381 {
3382 if (head_stolen)
3383 kmem_cache_free(skbuff_head_cache, skb);
3384 else
3385 __kfree_skb(skb);
3386 }
3387 EXPORT_SYMBOL(kfree_skb_partial);
3388
3389 /**
3390 * skb_try_coalesce - try to merge skb to prior one
3391 * @to: prior buffer
3392 * @from: buffer to add
3393 * @fragstolen: pointer to boolean
3394 * @delta_truesize: how much more was allocated than was requested
3395 */
3396 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3397 bool *fragstolen, int *delta_truesize)
3398 {
3399 int i, delta, len = from->len;
3400
3401 *fragstolen = false;
3402
3403 if (skb_cloned(to))
3404 return false;
3405
3406 if (len <= skb_tailroom(to)) {
3407 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3408 *delta_truesize = 0;
3409 return true;
3410 }
3411
3412 if (skb_has_frag_list(to) || skb_has_frag_list(from))
3413 return false;
3414
3415 if (skb_headlen(from) != 0) {
3416 struct page *page;
3417 unsigned int offset;
3418
3419 if (skb_shinfo(to)->nr_frags +
3420 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3421 return false;
3422
3423 if (skb_head_is_locked(from))
3424 return false;
3425
3426 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3427
3428 page = virt_to_head_page(from->head);
3429 offset = from->data - (unsigned char *)page_address(page);
3430
3431 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3432 page, offset, skb_headlen(from));
3433 *fragstolen = true;
3434 } else {
3435 if (skb_shinfo(to)->nr_frags +
3436 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3437 return false;
3438
3439 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3440 }
3441
3442 WARN_ON_ONCE(delta < len);
3443
3444 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3445 skb_shinfo(from)->frags,
3446 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3447 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3448
3449 if (!skb_cloned(from))
3450 skb_shinfo(from)->nr_frags = 0;
3451
3452 /* if the skb is not cloned this does nothing
3453 * since we set nr_frags to 0.
3454 */
3455 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3456 skb_frag_ref(from, i);
3457
3458 to->truesize += delta;
3459 to->len += len;
3460 to->data_len += len;
3461
3462 *delta_truesize = delta;
3463 return true;
3464 }
3465 EXPORT_SYMBOL(skb_try_coalesce);