net: neigh: guard against NULL solicit() method
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/slab.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/socket.h>
25 #include <linux/netdevice.h>
26 #include <linux/proc_fs.h>
27 #ifdef CONFIG_SYSCTL
28 #include <linux/sysctl.h>
29 #endif
30 #include <linux/times.h>
31 #include <net/net_namespace.h>
32 #include <net/neighbour.h>
33 #include <net/dst.h>
34 #include <net/sock.h>
35 #include <net/netevent.h>
36 #include <net/netlink.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/random.h>
39 #include <linux/string.h>
40 #include <linux/log2.h>
41
42 #define DEBUG
43 #define NEIGH_DEBUG 1
44 #define neigh_dbg(level, fmt, ...) \
45 do { \
46 if (level <= NEIGH_DEBUG) \
47 pr_debug(fmt, ##__VA_ARGS__); \
48 } while (0)
49
50 #define PNEIGH_HASHMASK 0xF
51
52 static void neigh_timer_handler(unsigned long arg);
53 static void __neigh_notify(struct neighbour *n, int type, int flags);
54 static void neigh_update_notify(struct neighbour *neigh);
55 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
56
57 static struct neigh_table *neigh_tables;
58 #ifdef CONFIG_PROC_FS
59 static const struct file_operations neigh_stat_seq_fops;
60 #endif
61
62 /*
63 Neighbour hash table buckets are protected with rwlock tbl->lock.
64
65 - All the scans/updates to hash buckets MUST be made under this lock.
66 - NOTHING clever should be made under this lock: no callbacks
67 to protocol backends, no attempts to send something to network.
68 It will result in deadlocks, if backend/driver wants to use neighbour
69 cache.
70 - If the entry requires some non-trivial actions, increase
71 its reference count and release table lock.
72
73 Neighbour entries are protected:
74 - with reference count.
75 - with rwlock neigh->lock
76
77 Reference count prevents destruction.
78
79 neigh->lock mainly serializes ll address data and its validity state.
80 However, the same lock is used to protect another entry fields:
81 - timer
82 - resolution queue
83
84 Again, nothing clever shall be made under neigh->lock,
85 the most complicated procedure, which we allow is dev->hard_header.
86 It is supposed, that dev->hard_header is simplistic and does
87 not make callbacks to neighbour tables.
88
89 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
90 list of neighbour tables. This list is used only in process context,
91 */
92
93 static DEFINE_RWLOCK(neigh_tbl_lock);
94
95 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
96 {
97 kfree_skb(skb);
98 return -ENETDOWN;
99 }
100
101 static void neigh_cleanup_and_release(struct neighbour *neigh)
102 {
103 if (neigh->parms->neigh_cleanup)
104 neigh->parms->neigh_cleanup(neigh);
105
106 __neigh_notify(neigh, RTM_DELNEIGH, 0);
107 neigh_release(neigh);
108 }
109
110 /*
111 * It is random distribution in the interval (1/2)*base...(3/2)*base.
112 * It corresponds to default IPv6 settings and is not overridable,
113 * because it is really reasonable choice.
114 */
115
116 unsigned long neigh_rand_reach_time(unsigned long base)
117 {
118 return base ? (net_random() % base) + (base >> 1) : 0;
119 }
120 EXPORT_SYMBOL(neigh_rand_reach_time);
121
122
123 static int neigh_forced_gc(struct neigh_table *tbl)
124 {
125 int shrunk = 0;
126 int i;
127 struct neigh_hash_table *nht;
128
129 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
130
131 write_lock_bh(&tbl->lock);
132 nht = rcu_dereference_protected(tbl->nht,
133 lockdep_is_held(&tbl->lock));
134 for (i = 0; i < (1 << nht->hash_shift); i++) {
135 struct neighbour *n;
136 struct neighbour __rcu **np;
137
138 np = &nht->hash_buckets[i];
139 while ((n = rcu_dereference_protected(*np,
140 lockdep_is_held(&tbl->lock))) != NULL) {
141 /* Neighbour record may be discarded if:
142 * - nobody refers to it.
143 * - it is not permanent
144 */
145 write_lock(&n->lock);
146 if (atomic_read(&n->refcnt) == 1 &&
147 !(n->nud_state & NUD_PERMANENT)) {
148 rcu_assign_pointer(*np,
149 rcu_dereference_protected(n->next,
150 lockdep_is_held(&tbl->lock)));
151 n->dead = 1;
152 shrunk = 1;
153 write_unlock(&n->lock);
154 neigh_cleanup_and_release(n);
155 continue;
156 }
157 write_unlock(&n->lock);
158 np = &n->next;
159 }
160 }
161
162 tbl->last_flush = jiffies;
163
164 write_unlock_bh(&tbl->lock);
165
166 return shrunk;
167 }
168
169 static void neigh_add_timer(struct neighbour *n, unsigned long when)
170 {
171 neigh_hold(n);
172 if (unlikely(mod_timer(&n->timer, when))) {
173 printk("NEIGH: BUG, double timer add, state is %x\n",
174 n->nud_state);
175 dump_stack();
176 }
177 }
178
179 static int neigh_del_timer(struct neighbour *n)
180 {
181 if ((n->nud_state & NUD_IN_TIMER) &&
182 del_timer(&n->timer)) {
183 neigh_release(n);
184 return 1;
185 }
186 return 0;
187 }
188
189 static void pneigh_queue_purge(struct sk_buff_head *list)
190 {
191 struct sk_buff *skb;
192
193 while ((skb = skb_dequeue(list)) != NULL) {
194 dev_put(skb->dev);
195 kfree_skb(skb);
196 }
197 }
198
199 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
200 {
201 int i;
202 struct neigh_hash_table *nht;
203
204 nht = rcu_dereference_protected(tbl->nht,
205 lockdep_is_held(&tbl->lock));
206
207 for (i = 0; i < (1 << nht->hash_shift); i++) {
208 struct neighbour *n;
209 struct neighbour __rcu **np = &nht->hash_buckets[i];
210
211 while ((n = rcu_dereference_protected(*np,
212 lockdep_is_held(&tbl->lock))) != NULL) {
213 if (dev && n->dev != dev) {
214 np = &n->next;
215 continue;
216 }
217 rcu_assign_pointer(*np,
218 rcu_dereference_protected(n->next,
219 lockdep_is_held(&tbl->lock)));
220 write_lock(&n->lock);
221 neigh_del_timer(n);
222 n->dead = 1;
223
224 if (atomic_read(&n->refcnt) != 1) {
225 /* The most unpleasant situation.
226 We must destroy neighbour entry,
227 but someone still uses it.
228
229 The destroy will be delayed until
230 the last user releases us, but
231 we must kill timers etc. and move
232 it to safe state.
233 */
234 __skb_queue_purge(&n->arp_queue);
235 n->arp_queue_len_bytes = 0;
236 n->output = neigh_blackhole;
237 if (n->nud_state & NUD_VALID)
238 n->nud_state = NUD_NOARP;
239 else
240 n->nud_state = NUD_NONE;
241 neigh_dbg(2, "neigh %p is stray\n", n);
242 }
243 write_unlock(&n->lock);
244 neigh_cleanup_and_release(n);
245 }
246 }
247 }
248
249 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
250 {
251 write_lock_bh(&tbl->lock);
252 neigh_flush_dev(tbl, dev);
253 write_unlock_bh(&tbl->lock);
254 }
255 EXPORT_SYMBOL(neigh_changeaddr);
256
257 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
258 {
259 write_lock_bh(&tbl->lock);
260 neigh_flush_dev(tbl, dev);
261 pneigh_ifdown(tbl, dev);
262 write_unlock_bh(&tbl->lock);
263
264 del_timer_sync(&tbl->proxy_timer);
265 pneigh_queue_purge(&tbl->proxy_queue);
266 return 0;
267 }
268 EXPORT_SYMBOL(neigh_ifdown);
269
270 static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
271 {
272 struct neighbour *n = NULL;
273 unsigned long now = jiffies;
274 int entries;
275
276 entries = atomic_inc_return(&tbl->entries) - 1;
277 if (entries >= tbl->gc_thresh3 ||
278 (entries >= tbl->gc_thresh2 &&
279 time_after(now, tbl->last_flush + 5 * HZ))) {
280 if (!neigh_forced_gc(tbl) &&
281 entries >= tbl->gc_thresh3)
282 goto out_entries;
283 }
284
285 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
286 if (!n)
287 goto out_entries;
288
289 __skb_queue_head_init(&n->arp_queue);
290 rwlock_init(&n->lock);
291 seqlock_init(&n->ha_lock);
292 n->updated = n->used = now;
293 n->nud_state = NUD_NONE;
294 n->output = neigh_blackhole;
295 seqlock_init(&n->hh.hh_lock);
296 n->parms = neigh_parms_clone(&tbl->parms);
297 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
298
299 NEIGH_CACHE_STAT_INC(tbl, allocs);
300 n->tbl = tbl;
301 atomic_set(&n->refcnt, 1);
302 n->dead = 1;
303 out:
304 return n;
305
306 out_entries:
307 atomic_dec(&tbl->entries);
308 goto out;
309 }
310
311 static void neigh_get_hash_rnd(u32 *x)
312 {
313 get_random_bytes(x, sizeof(*x));
314 *x |= 1;
315 }
316
317 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
318 {
319 size_t size = (1 << shift) * sizeof(struct neighbour *);
320 struct neigh_hash_table *ret;
321 struct neighbour __rcu **buckets;
322 int i;
323
324 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
325 if (!ret)
326 return NULL;
327 if (size <= PAGE_SIZE)
328 buckets = kzalloc(size, GFP_ATOMIC);
329 else
330 buckets = (struct neighbour __rcu **)
331 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
332 get_order(size));
333 if (!buckets) {
334 kfree(ret);
335 return NULL;
336 }
337 ret->hash_buckets = buckets;
338 ret->hash_shift = shift;
339 for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
340 neigh_get_hash_rnd(&ret->hash_rnd[i]);
341 return ret;
342 }
343
344 static void neigh_hash_free_rcu(struct rcu_head *head)
345 {
346 struct neigh_hash_table *nht = container_of(head,
347 struct neigh_hash_table,
348 rcu);
349 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
350 struct neighbour __rcu **buckets = nht->hash_buckets;
351
352 if (size <= PAGE_SIZE)
353 kfree(buckets);
354 else
355 free_pages((unsigned long)buckets, get_order(size));
356 kfree(nht);
357 }
358
359 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
360 unsigned long new_shift)
361 {
362 unsigned int i, hash;
363 struct neigh_hash_table *new_nht, *old_nht;
364
365 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
366
367 old_nht = rcu_dereference_protected(tbl->nht,
368 lockdep_is_held(&tbl->lock));
369 new_nht = neigh_hash_alloc(new_shift);
370 if (!new_nht)
371 return old_nht;
372
373 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
374 struct neighbour *n, *next;
375
376 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
377 lockdep_is_held(&tbl->lock));
378 n != NULL;
379 n = next) {
380 hash = tbl->hash(n->primary_key, n->dev,
381 new_nht->hash_rnd);
382
383 hash >>= (32 - new_nht->hash_shift);
384 next = rcu_dereference_protected(n->next,
385 lockdep_is_held(&tbl->lock));
386
387 rcu_assign_pointer(n->next,
388 rcu_dereference_protected(
389 new_nht->hash_buckets[hash],
390 lockdep_is_held(&tbl->lock)));
391 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
392 }
393 }
394
395 rcu_assign_pointer(tbl->nht, new_nht);
396 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
397 return new_nht;
398 }
399
400 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
401 struct net_device *dev)
402 {
403 struct neighbour *n;
404 int key_len = tbl->key_len;
405 u32 hash_val;
406 struct neigh_hash_table *nht;
407
408 NEIGH_CACHE_STAT_INC(tbl, lookups);
409
410 rcu_read_lock_bh();
411 nht = rcu_dereference_bh(tbl->nht);
412 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
413
414 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
415 n != NULL;
416 n = rcu_dereference_bh(n->next)) {
417 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
418 if (!atomic_inc_not_zero(&n->refcnt))
419 n = NULL;
420 NEIGH_CACHE_STAT_INC(tbl, hits);
421 break;
422 }
423 }
424
425 rcu_read_unlock_bh();
426 return n;
427 }
428 EXPORT_SYMBOL(neigh_lookup);
429
430 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
431 const void *pkey)
432 {
433 struct neighbour *n;
434 int key_len = tbl->key_len;
435 u32 hash_val;
436 struct neigh_hash_table *nht;
437
438 NEIGH_CACHE_STAT_INC(tbl, lookups);
439
440 rcu_read_lock_bh();
441 nht = rcu_dereference_bh(tbl->nht);
442 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
443
444 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
445 n != NULL;
446 n = rcu_dereference_bh(n->next)) {
447 if (!memcmp(n->primary_key, pkey, key_len) &&
448 net_eq(dev_net(n->dev), net)) {
449 if (!atomic_inc_not_zero(&n->refcnt))
450 n = NULL;
451 NEIGH_CACHE_STAT_INC(tbl, hits);
452 break;
453 }
454 }
455
456 rcu_read_unlock_bh();
457 return n;
458 }
459 EXPORT_SYMBOL(neigh_lookup_nodev);
460
461 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
462 struct net_device *dev, bool want_ref)
463 {
464 u32 hash_val;
465 int key_len = tbl->key_len;
466 int error;
467 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev);
468 struct neigh_hash_table *nht;
469
470 if (!n) {
471 rc = ERR_PTR(-ENOBUFS);
472 goto out;
473 }
474
475 memcpy(n->primary_key, pkey, key_len);
476 n->dev = dev;
477 dev_hold(dev);
478
479 /* Protocol specific setup. */
480 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
481 rc = ERR_PTR(error);
482 goto out_neigh_release;
483 }
484
485 if (dev->netdev_ops->ndo_neigh_construct) {
486 error = dev->netdev_ops->ndo_neigh_construct(n);
487 if (error < 0) {
488 rc = ERR_PTR(error);
489 goto out_neigh_release;
490 }
491 }
492
493 /* Device specific setup. */
494 if (n->parms->neigh_setup &&
495 (error = n->parms->neigh_setup(n)) < 0) {
496 rc = ERR_PTR(error);
497 goto out_neigh_release;
498 }
499
500 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
501
502 write_lock_bh(&tbl->lock);
503 nht = rcu_dereference_protected(tbl->nht,
504 lockdep_is_held(&tbl->lock));
505
506 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
507 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
508
509 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
510
511 if (n->parms->dead) {
512 rc = ERR_PTR(-EINVAL);
513 goto out_tbl_unlock;
514 }
515
516 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
517 lockdep_is_held(&tbl->lock));
518 n1 != NULL;
519 n1 = rcu_dereference_protected(n1->next,
520 lockdep_is_held(&tbl->lock))) {
521 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
522 if (want_ref)
523 neigh_hold(n1);
524 rc = n1;
525 goto out_tbl_unlock;
526 }
527 }
528
529 n->dead = 0;
530 if (want_ref)
531 neigh_hold(n);
532 rcu_assign_pointer(n->next,
533 rcu_dereference_protected(nht->hash_buckets[hash_val],
534 lockdep_is_held(&tbl->lock)));
535 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
536 write_unlock_bh(&tbl->lock);
537 neigh_dbg(2, "neigh %p is created\n", n);
538 rc = n;
539 out:
540 return rc;
541 out_tbl_unlock:
542 write_unlock_bh(&tbl->lock);
543 out_neigh_release:
544 neigh_release(n);
545 goto out;
546 }
547 EXPORT_SYMBOL(__neigh_create);
548
549 static u32 pneigh_hash(const void *pkey, int key_len)
550 {
551 u32 hash_val = *(u32 *)(pkey + key_len - 4);
552 hash_val ^= (hash_val >> 16);
553 hash_val ^= hash_val >> 8;
554 hash_val ^= hash_val >> 4;
555 hash_val &= PNEIGH_HASHMASK;
556 return hash_val;
557 }
558
559 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
560 struct net *net,
561 const void *pkey,
562 int key_len,
563 struct net_device *dev)
564 {
565 while (n) {
566 if (!memcmp(n->key, pkey, key_len) &&
567 net_eq(pneigh_net(n), net) &&
568 (n->dev == dev || !n->dev))
569 return n;
570 n = n->next;
571 }
572 return NULL;
573 }
574
575 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
576 struct net *net, const void *pkey, struct net_device *dev)
577 {
578 int key_len = tbl->key_len;
579 u32 hash_val = pneigh_hash(pkey, key_len);
580
581 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
582 net, pkey, key_len, dev);
583 }
584 EXPORT_SYMBOL_GPL(__pneigh_lookup);
585
586 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
587 struct net *net, const void *pkey,
588 struct net_device *dev, int creat)
589 {
590 struct pneigh_entry *n;
591 int key_len = tbl->key_len;
592 u32 hash_val = pneigh_hash(pkey, key_len);
593
594 read_lock_bh(&tbl->lock);
595 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
596 net, pkey, key_len, dev);
597 read_unlock_bh(&tbl->lock);
598
599 if (n || !creat)
600 goto out;
601
602 ASSERT_RTNL();
603
604 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
605 if (!n)
606 goto out;
607
608 write_pnet(&n->net, hold_net(net));
609 memcpy(n->key, pkey, key_len);
610 n->dev = dev;
611 if (dev)
612 dev_hold(dev);
613
614 if (tbl->pconstructor && tbl->pconstructor(n)) {
615 if (dev)
616 dev_put(dev);
617 release_net(net);
618 kfree(n);
619 n = NULL;
620 goto out;
621 }
622
623 write_lock_bh(&tbl->lock);
624 n->next = tbl->phash_buckets[hash_val];
625 tbl->phash_buckets[hash_val] = n;
626 write_unlock_bh(&tbl->lock);
627 out:
628 return n;
629 }
630 EXPORT_SYMBOL(pneigh_lookup);
631
632
633 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
634 struct net_device *dev)
635 {
636 struct pneigh_entry *n, **np;
637 int key_len = tbl->key_len;
638 u32 hash_val = pneigh_hash(pkey, key_len);
639
640 write_lock_bh(&tbl->lock);
641 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
642 np = &n->next) {
643 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
644 net_eq(pneigh_net(n), net)) {
645 *np = n->next;
646 write_unlock_bh(&tbl->lock);
647 if (tbl->pdestructor)
648 tbl->pdestructor(n);
649 if (n->dev)
650 dev_put(n->dev);
651 release_net(pneigh_net(n));
652 kfree(n);
653 return 0;
654 }
655 }
656 write_unlock_bh(&tbl->lock);
657 return -ENOENT;
658 }
659
660 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
661 {
662 struct pneigh_entry *n, **np;
663 u32 h;
664
665 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
666 np = &tbl->phash_buckets[h];
667 while ((n = *np) != NULL) {
668 if (!dev || n->dev == dev) {
669 *np = n->next;
670 if (tbl->pdestructor)
671 tbl->pdestructor(n);
672 if (n->dev)
673 dev_put(n->dev);
674 release_net(pneigh_net(n));
675 kfree(n);
676 continue;
677 }
678 np = &n->next;
679 }
680 }
681 return -ENOENT;
682 }
683
684 static void neigh_parms_destroy(struct neigh_parms *parms);
685
686 static inline void neigh_parms_put(struct neigh_parms *parms)
687 {
688 if (atomic_dec_and_test(&parms->refcnt))
689 neigh_parms_destroy(parms);
690 }
691
692 /*
693 * neighbour must already be out of the table;
694 *
695 */
696 void neigh_destroy(struct neighbour *neigh)
697 {
698 struct net_device *dev = neigh->dev;
699
700 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
701
702 if (!neigh->dead) {
703 pr_warn("Destroying alive neighbour %p\n", neigh);
704 dump_stack();
705 return;
706 }
707
708 if (neigh_del_timer(neigh))
709 pr_warn("Impossible event\n");
710
711 write_lock_bh(&neigh->lock);
712 __skb_queue_purge(&neigh->arp_queue);
713 write_unlock_bh(&neigh->lock);
714 neigh->arp_queue_len_bytes = 0;
715
716 if (dev->netdev_ops->ndo_neigh_destroy)
717 dev->netdev_ops->ndo_neigh_destroy(neigh);
718
719 dev_put(dev);
720 neigh_parms_put(neigh->parms);
721
722 neigh_dbg(2, "neigh %p is destroyed\n", neigh);
723
724 atomic_dec(&neigh->tbl->entries);
725 kfree_rcu(neigh, rcu);
726 }
727 EXPORT_SYMBOL(neigh_destroy);
728
729 /* Neighbour state is suspicious;
730 disable fast path.
731
732 Called with write_locked neigh.
733 */
734 static void neigh_suspect(struct neighbour *neigh)
735 {
736 neigh_dbg(2, "neigh %p is suspected\n", neigh);
737
738 neigh->output = neigh->ops->output;
739 }
740
741 /* Neighbour state is OK;
742 enable fast path.
743
744 Called with write_locked neigh.
745 */
746 static void neigh_connect(struct neighbour *neigh)
747 {
748 neigh_dbg(2, "neigh %p is connected\n", neigh);
749
750 neigh->output = neigh->ops->connected_output;
751 }
752
753 static void neigh_periodic_work(struct work_struct *work)
754 {
755 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
756 struct neighbour *n;
757 struct neighbour __rcu **np;
758 unsigned int i;
759 struct neigh_hash_table *nht;
760
761 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
762
763 write_lock_bh(&tbl->lock);
764 nht = rcu_dereference_protected(tbl->nht,
765 lockdep_is_held(&tbl->lock));
766
767 /*
768 * periodically recompute ReachableTime from random function
769 */
770
771 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
772 struct neigh_parms *p;
773 tbl->last_rand = jiffies;
774 for (p = &tbl->parms; p; p = p->next)
775 p->reachable_time =
776 neigh_rand_reach_time(p->base_reachable_time);
777 }
778
779 if (atomic_read(&tbl->entries) < tbl->gc_thresh1)
780 goto out;
781
782 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
783 np = &nht->hash_buckets[i];
784
785 while ((n = rcu_dereference_protected(*np,
786 lockdep_is_held(&tbl->lock))) != NULL) {
787 unsigned int state;
788
789 write_lock(&n->lock);
790
791 state = n->nud_state;
792 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
793 write_unlock(&n->lock);
794 goto next_elt;
795 }
796
797 if (time_before(n->used, n->confirmed))
798 n->used = n->confirmed;
799
800 if (atomic_read(&n->refcnt) == 1 &&
801 (state == NUD_FAILED ||
802 time_after(jiffies, n->used + n->parms->gc_staletime))) {
803 *np = n->next;
804 n->dead = 1;
805 write_unlock(&n->lock);
806 neigh_cleanup_and_release(n);
807 continue;
808 }
809 write_unlock(&n->lock);
810
811 next_elt:
812 np = &n->next;
813 }
814 /*
815 * It's fine to release lock here, even if hash table
816 * grows while we are preempted.
817 */
818 write_unlock_bh(&tbl->lock);
819 cond_resched();
820 write_lock_bh(&tbl->lock);
821 nht = rcu_dereference_protected(tbl->nht,
822 lockdep_is_held(&tbl->lock));
823 }
824 out:
825 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
826 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
827 * base_reachable_time.
828 */
829 schedule_delayed_work(&tbl->gc_work,
830 tbl->parms.base_reachable_time >> 1);
831 write_unlock_bh(&tbl->lock);
832 }
833
834 static __inline__ int neigh_max_probes(struct neighbour *n)
835 {
836 struct neigh_parms *p = n->parms;
837 return (n->nud_state & NUD_PROBE) ?
838 p->ucast_probes :
839 p->ucast_probes + p->app_probes + p->mcast_probes;
840 }
841
842 static void neigh_invalidate(struct neighbour *neigh)
843 __releases(neigh->lock)
844 __acquires(neigh->lock)
845 {
846 struct sk_buff *skb;
847
848 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
849 neigh_dbg(2, "neigh %p is failed\n", neigh);
850 neigh->updated = jiffies;
851
852 /* It is very thin place. report_unreachable is very complicated
853 routine. Particularly, it can hit the same neighbour entry!
854
855 So that, we try to be accurate and avoid dead loop. --ANK
856 */
857 while (neigh->nud_state == NUD_FAILED &&
858 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
859 write_unlock(&neigh->lock);
860 neigh->ops->error_report(neigh, skb);
861 write_lock(&neigh->lock);
862 }
863 __skb_queue_purge(&neigh->arp_queue);
864 neigh->arp_queue_len_bytes = 0;
865 }
866
867 static void neigh_probe(struct neighbour *neigh)
868 __releases(neigh->lock)
869 {
870 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
871 /* keep skb alive even if arp_queue overflows */
872 if (skb)
873 skb = skb_copy(skb, GFP_ATOMIC);
874 write_unlock(&neigh->lock);
875 if (neigh->ops->solicit)
876 neigh->ops->solicit(neigh, skb);
877 atomic_inc(&neigh->probes);
878 kfree_skb(skb);
879 }
880
881 /* Called when a timer expires for a neighbour entry. */
882
883 static void neigh_timer_handler(unsigned long arg)
884 {
885 unsigned long now, next;
886 struct neighbour *neigh = (struct neighbour *)arg;
887 unsigned int state;
888 int notify = 0;
889
890 write_lock(&neigh->lock);
891
892 state = neigh->nud_state;
893 now = jiffies;
894 next = now + HZ;
895
896 if (!(state & NUD_IN_TIMER))
897 goto out;
898
899 if (state & NUD_REACHABLE) {
900 if (time_before_eq(now,
901 neigh->confirmed + neigh->parms->reachable_time)) {
902 neigh_dbg(2, "neigh %p is still alive\n", neigh);
903 next = neigh->confirmed + neigh->parms->reachable_time;
904 } else if (time_before_eq(now,
905 neigh->used + neigh->parms->delay_probe_time)) {
906 neigh_dbg(2, "neigh %p is delayed\n", neigh);
907 neigh->nud_state = NUD_DELAY;
908 neigh->updated = jiffies;
909 neigh_suspect(neigh);
910 next = now + neigh->parms->delay_probe_time;
911 } else {
912 neigh_dbg(2, "neigh %p is suspected\n", neigh);
913 neigh->nud_state = NUD_STALE;
914 neigh->updated = jiffies;
915 neigh_suspect(neigh);
916 notify = 1;
917 }
918 } else if (state & NUD_DELAY) {
919 if (time_before_eq(now,
920 neigh->confirmed + neigh->parms->delay_probe_time)) {
921 neigh_dbg(2, "neigh %p is now reachable\n", neigh);
922 neigh->nud_state = NUD_REACHABLE;
923 neigh->updated = jiffies;
924 neigh_connect(neigh);
925 notify = 1;
926 next = neigh->confirmed + neigh->parms->reachable_time;
927 } else {
928 neigh_dbg(2, "neigh %p is probed\n", neigh);
929 neigh->nud_state = NUD_PROBE;
930 neigh->updated = jiffies;
931 atomic_set(&neigh->probes, 0);
932 next = now + neigh->parms->retrans_time;
933 }
934 } else {
935 /* NUD_PROBE|NUD_INCOMPLETE */
936 next = now + neigh->parms->retrans_time;
937 }
938
939 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
940 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
941 neigh->nud_state = NUD_FAILED;
942 notify = 1;
943 neigh_invalidate(neigh);
944 }
945
946 if (neigh->nud_state & NUD_IN_TIMER) {
947 if (time_before(next, jiffies + HZ/2))
948 next = jiffies + HZ/2;
949 if (!mod_timer(&neigh->timer, next))
950 neigh_hold(neigh);
951 }
952 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
953 neigh_probe(neigh);
954 } else {
955 out:
956 write_unlock(&neigh->lock);
957 }
958
959 if (notify)
960 neigh_update_notify(neigh);
961
962 neigh_release(neigh);
963 }
964
965 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
966 {
967 int rc;
968 bool immediate_probe = false;
969
970 write_lock_bh(&neigh->lock);
971
972 rc = 0;
973 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
974 goto out_unlock_bh;
975
976 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
977 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
978 unsigned long next, now = jiffies;
979
980 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
981 neigh->nud_state = NUD_INCOMPLETE;
982 neigh->updated = now;
983 next = now + max(neigh->parms->retrans_time, HZ/2);
984 neigh_add_timer(neigh, next);
985 immediate_probe = true;
986 } else {
987 neigh->nud_state = NUD_FAILED;
988 neigh->updated = jiffies;
989 write_unlock_bh(&neigh->lock);
990
991 kfree_skb(skb);
992 return 1;
993 }
994 } else if (neigh->nud_state & NUD_STALE) {
995 neigh_dbg(2, "neigh %p is delayed\n", neigh);
996 neigh->nud_state = NUD_DELAY;
997 neigh->updated = jiffies;
998 neigh_add_timer(neigh,
999 jiffies + neigh->parms->delay_probe_time);
1000 }
1001
1002 if (neigh->nud_state == NUD_INCOMPLETE) {
1003 if (skb) {
1004 while (neigh->arp_queue_len_bytes + skb->truesize >
1005 neigh->parms->queue_len_bytes) {
1006 struct sk_buff *buff;
1007
1008 buff = __skb_dequeue(&neigh->arp_queue);
1009 if (!buff)
1010 break;
1011 neigh->arp_queue_len_bytes -= buff->truesize;
1012 kfree_skb(buff);
1013 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1014 }
1015 skb_dst_force(skb);
1016 __skb_queue_tail(&neigh->arp_queue, skb);
1017 neigh->arp_queue_len_bytes += skb->truesize;
1018 }
1019 rc = 1;
1020 }
1021 out_unlock_bh:
1022 if (immediate_probe)
1023 neigh_probe(neigh);
1024 else
1025 write_unlock(&neigh->lock);
1026 local_bh_enable();
1027 return rc;
1028 }
1029 EXPORT_SYMBOL(__neigh_event_send);
1030
1031 static void neigh_update_hhs(struct neighbour *neigh)
1032 {
1033 struct hh_cache *hh;
1034 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1035 = NULL;
1036
1037 if (neigh->dev->header_ops)
1038 update = neigh->dev->header_ops->cache_update;
1039
1040 if (update) {
1041 hh = &neigh->hh;
1042 if (hh->hh_len) {
1043 write_seqlock_bh(&hh->hh_lock);
1044 update(hh, neigh->dev, neigh->ha);
1045 write_sequnlock_bh(&hh->hh_lock);
1046 }
1047 }
1048 }
1049
1050
1051
1052 /* Generic update routine.
1053 -- lladdr is new lladdr or NULL, if it is not supplied.
1054 -- new is new state.
1055 -- flags
1056 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1057 if it is different.
1058 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1059 lladdr instead of overriding it
1060 if it is different.
1061 It also allows to retain current state
1062 if lladdr is unchanged.
1063 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1064
1065 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1066 NTF_ROUTER flag.
1067 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1068 a router.
1069
1070 Caller MUST hold reference count on the entry.
1071 */
1072
1073 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1074 u32 flags)
1075 {
1076 u8 old;
1077 int err;
1078 int notify = 0;
1079 struct net_device *dev;
1080 int update_isrouter = 0;
1081
1082 write_lock_bh(&neigh->lock);
1083
1084 dev = neigh->dev;
1085 old = neigh->nud_state;
1086 err = -EPERM;
1087
1088 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1089 (old & (NUD_NOARP | NUD_PERMANENT)))
1090 goto out;
1091
1092 if (!(new & NUD_VALID)) {
1093 neigh_del_timer(neigh);
1094 if (old & NUD_CONNECTED)
1095 neigh_suspect(neigh);
1096 neigh->nud_state = new;
1097 err = 0;
1098 notify = old & NUD_VALID;
1099 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1100 (new & NUD_FAILED)) {
1101 neigh_invalidate(neigh);
1102 notify = 1;
1103 }
1104 goto out;
1105 }
1106
1107 /* Compare new lladdr with cached one */
1108 if (!dev->addr_len) {
1109 /* First case: device needs no address. */
1110 lladdr = neigh->ha;
1111 } else if (lladdr) {
1112 /* The second case: if something is already cached
1113 and a new address is proposed:
1114 - compare new & old
1115 - if they are different, check override flag
1116 */
1117 if ((old & NUD_VALID) &&
1118 !memcmp(lladdr, neigh->ha, dev->addr_len))
1119 lladdr = neigh->ha;
1120 } else {
1121 /* No address is supplied; if we know something,
1122 use it, otherwise discard the request.
1123 */
1124 err = -EINVAL;
1125 if (!(old & NUD_VALID))
1126 goto out;
1127 lladdr = neigh->ha;
1128 }
1129
1130 if (new & NUD_CONNECTED)
1131 neigh->confirmed = jiffies;
1132 neigh->updated = jiffies;
1133
1134 /* If entry was valid and address is not changed,
1135 do not change entry state, if new one is STALE.
1136 */
1137 err = 0;
1138 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1139 if (old & NUD_VALID) {
1140 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1141 update_isrouter = 0;
1142 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1143 (old & NUD_CONNECTED)) {
1144 lladdr = neigh->ha;
1145 new = NUD_STALE;
1146 } else
1147 goto out;
1148 } else {
1149 if (lladdr == neigh->ha && new == NUD_STALE &&
1150 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1151 (old & NUD_CONNECTED))
1152 )
1153 new = old;
1154 }
1155 }
1156
1157 if (new != old) {
1158 neigh_del_timer(neigh);
1159 if (new & NUD_IN_TIMER)
1160 neigh_add_timer(neigh, (jiffies +
1161 ((new & NUD_REACHABLE) ?
1162 neigh->parms->reachable_time :
1163 0)));
1164 neigh->nud_state = new;
1165 }
1166
1167 if (lladdr != neigh->ha) {
1168 write_seqlock(&neigh->ha_lock);
1169 memcpy(&neigh->ha, lladdr, dev->addr_len);
1170 write_sequnlock(&neigh->ha_lock);
1171 neigh_update_hhs(neigh);
1172 if (!(new & NUD_CONNECTED))
1173 neigh->confirmed = jiffies -
1174 (neigh->parms->base_reachable_time << 1);
1175 notify = 1;
1176 }
1177 if (new == old)
1178 goto out;
1179 if (new & NUD_CONNECTED)
1180 neigh_connect(neigh);
1181 else
1182 neigh_suspect(neigh);
1183 if (!(old & NUD_VALID)) {
1184 struct sk_buff *skb;
1185
1186 /* Again: avoid dead loop if something went wrong */
1187
1188 while (neigh->nud_state & NUD_VALID &&
1189 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1190 struct dst_entry *dst = skb_dst(skb);
1191 struct neighbour *n2, *n1 = neigh;
1192 write_unlock_bh(&neigh->lock);
1193
1194 rcu_read_lock();
1195
1196 /* Why not just use 'neigh' as-is? The problem is that
1197 * things such as shaper, eql, and sch_teql can end up
1198 * using alternative, different, neigh objects to output
1199 * the packet in the output path. So what we need to do
1200 * here is re-lookup the top-level neigh in the path so
1201 * we can reinject the packet there.
1202 */
1203 n2 = NULL;
1204 if (dst) {
1205 n2 = dst_neigh_lookup_skb(dst, skb);
1206 if (n2)
1207 n1 = n2;
1208 }
1209 n1->output(n1, skb);
1210 if (n2)
1211 neigh_release(n2);
1212 rcu_read_unlock();
1213
1214 write_lock_bh(&neigh->lock);
1215 }
1216 __skb_queue_purge(&neigh->arp_queue);
1217 neigh->arp_queue_len_bytes = 0;
1218 }
1219 out:
1220 if (update_isrouter) {
1221 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1222 (neigh->flags | NTF_ROUTER) :
1223 (neigh->flags & ~NTF_ROUTER);
1224 }
1225 write_unlock_bh(&neigh->lock);
1226
1227 if (notify)
1228 neigh_update_notify(neigh);
1229
1230 return err;
1231 }
1232 EXPORT_SYMBOL(neigh_update);
1233
1234 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1235 u8 *lladdr, void *saddr,
1236 struct net_device *dev)
1237 {
1238 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1239 lladdr || !dev->addr_len);
1240 if (neigh)
1241 neigh_update(neigh, lladdr, NUD_STALE,
1242 NEIGH_UPDATE_F_OVERRIDE);
1243 return neigh;
1244 }
1245 EXPORT_SYMBOL(neigh_event_ns);
1246
1247 /* called with read_lock_bh(&n->lock); */
1248 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1249 {
1250 struct net_device *dev = dst->dev;
1251 __be16 prot = dst->ops->protocol;
1252 struct hh_cache *hh = &n->hh;
1253
1254 write_lock_bh(&n->lock);
1255
1256 /* Only one thread can come in here and initialize the
1257 * hh_cache entry.
1258 */
1259 if (!hh->hh_len)
1260 dev->header_ops->cache(n, hh, prot);
1261
1262 write_unlock_bh(&n->lock);
1263 }
1264
1265 /* This function can be used in contexts, where only old dev_queue_xmit
1266 * worked, f.e. if you want to override normal output path (eql, shaper),
1267 * but resolution is not made yet.
1268 */
1269
1270 int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb)
1271 {
1272 struct net_device *dev = skb->dev;
1273
1274 __skb_pull(skb, skb_network_offset(skb));
1275
1276 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1277 skb->len) < 0 &&
1278 dev_rebuild_header(skb))
1279 return 0;
1280
1281 return dev_queue_xmit(skb);
1282 }
1283 EXPORT_SYMBOL(neigh_compat_output);
1284
1285 /* Slow and careful. */
1286
1287 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1288 {
1289 struct dst_entry *dst = skb_dst(skb);
1290 int rc = 0;
1291
1292 if (!dst)
1293 goto discard;
1294
1295 if (!neigh_event_send(neigh, skb)) {
1296 int err;
1297 struct net_device *dev = neigh->dev;
1298 unsigned int seq;
1299
1300 if (dev->header_ops->cache && !neigh->hh.hh_len)
1301 neigh_hh_init(neigh, dst);
1302
1303 do {
1304 __skb_pull(skb, skb_network_offset(skb));
1305 seq = read_seqbegin(&neigh->ha_lock);
1306 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1307 neigh->ha, NULL, skb->len);
1308 } while (read_seqretry(&neigh->ha_lock, seq));
1309
1310 if (err >= 0)
1311 rc = dev_queue_xmit(skb);
1312 else
1313 goto out_kfree_skb;
1314 }
1315 out:
1316 return rc;
1317 discard:
1318 neigh_dbg(1, "%s: dst=%p neigh=%p\n", __func__, dst, neigh);
1319 out_kfree_skb:
1320 rc = -EINVAL;
1321 kfree_skb(skb);
1322 goto out;
1323 }
1324 EXPORT_SYMBOL(neigh_resolve_output);
1325
1326 /* As fast as possible without hh cache */
1327
1328 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1329 {
1330 struct net_device *dev = neigh->dev;
1331 unsigned int seq;
1332 int err;
1333
1334 do {
1335 __skb_pull(skb, skb_network_offset(skb));
1336 seq = read_seqbegin(&neigh->ha_lock);
1337 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1338 neigh->ha, NULL, skb->len);
1339 } while (read_seqretry(&neigh->ha_lock, seq));
1340
1341 if (err >= 0)
1342 err = dev_queue_xmit(skb);
1343 else {
1344 err = -EINVAL;
1345 kfree_skb(skb);
1346 }
1347 return err;
1348 }
1349 EXPORT_SYMBOL(neigh_connected_output);
1350
1351 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1352 {
1353 return dev_queue_xmit(skb);
1354 }
1355 EXPORT_SYMBOL(neigh_direct_output);
1356
1357 static void neigh_proxy_process(unsigned long arg)
1358 {
1359 struct neigh_table *tbl = (struct neigh_table *)arg;
1360 long sched_next = 0;
1361 unsigned long now = jiffies;
1362 struct sk_buff *skb, *n;
1363
1364 spin_lock(&tbl->proxy_queue.lock);
1365
1366 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1367 long tdif = NEIGH_CB(skb)->sched_next - now;
1368
1369 if (tdif <= 0) {
1370 struct net_device *dev = skb->dev;
1371
1372 __skb_unlink(skb, &tbl->proxy_queue);
1373 if (tbl->proxy_redo && netif_running(dev)) {
1374 rcu_read_lock();
1375 tbl->proxy_redo(skb);
1376 rcu_read_unlock();
1377 } else {
1378 kfree_skb(skb);
1379 }
1380
1381 dev_put(dev);
1382 } else if (!sched_next || tdif < sched_next)
1383 sched_next = tdif;
1384 }
1385 del_timer(&tbl->proxy_timer);
1386 if (sched_next)
1387 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1388 spin_unlock(&tbl->proxy_queue.lock);
1389 }
1390
1391 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1392 struct sk_buff *skb)
1393 {
1394 unsigned long now = jiffies;
1395 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1396
1397 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1398 kfree_skb(skb);
1399 return;
1400 }
1401
1402 NEIGH_CB(skb)->sched_next = sched_next;
1403 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1404
1405 spin_lock(&tbl->proxy_queue.lock);
1406 if (del_timer(&tbl->proxy_timer)) {
1407 if (time_before(tbl->proxy_timer.expires, sched_next))
1408 sched_next = tbl->proxy_timer.expires;
1409 }
1410 skb_dst_drop(skb);
1411 dev_hold(skb->dev);
1412 __skb_queue_tail(&tbl->proxy_queue, skb);
1413 mod_timer(&tbl->proxy_timer, sched_next);
1414 spin_unlock(&tbl->proxy_queue.lock);
1415 }
1416 EXPORT_SYMBOL(pneigh_enqueue);
1417
1418 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1419 struct net *net, int ifindex)
1420 {
1421 struct neigh_parms *p;
1422
1423 for (p = &tbl->parms; p; p = p->next) {
1424 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1425 (!p->dev && !ifindex))
1426 return p;
1427 }
1428
1429 return NULL;
1430 }
1431
1432 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1433 struct neigh_table *tbl)
1434 {
1435 struct neigh_parms *p, *ref;
1436 struct net *net = dev_net(dev);
1437 const struct net_device_ops *ops = dev->netdev_ops;
1438
1439 ref = lookup_neigh_parms(tbl, net, 0);
1440 if (!ref)
1441 return NULL;
1442
1443 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1444 if (p) {
1445 p->tbl = tbl;
1446 atomic_set(&p->refcnt, 1);
1447 p->reachable_time =
1448 neigh_rand_reach_time(p->base_reachable_time);
1449 dev_hold(dev);
1450 p->dev = dev;
1451 write_pnet(&p->net, hold_net(net));
1452 p->sysctl_table = NULL;
1453
1454 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1455 release_net(net);
1456 dev_put(dev);
1457 kfree(p);
1458 return NULL;
1459 }
1460
1461 write_lock_bh(&tbl->lock);
1462 p->next = tbl->parms.next;
1463 tbl->parms.next = p;
1464 write_unlock_bh(&tbl->lock);
1465 }
1466 return p;
1467 }
1468 EXPORT_SYMBOL(neigh_parms_alloc);
1469
1470 static void neigh_rcu_free_parms(struct rcu_head *head)
1471 {
1472 struct neigh_parms *parms =
1473 container_of(head, struct neigh_parms, rcu_head);
1474
1475 neigh_parms_put(parms);
1476 }
1477
1478 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1479 {
1480 struct neigh_parms **p;
1481
1482 if (!parms || parms == &tbl->parms)
1483 return;
1484 write_lock_bh(&tbl->lock);
1485 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1486 if (*p == parms) {
1487 *p = parms->next;
1488 parms->dead = 1;
1489 write_unlock_bh(&tbl->lock);
1490 if (parms->dev)
1491 dev_put(parms->dev);
1492 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1493 return;
1494 }
1495 }
1496 write_unlock_bh(&tbl->lock);
1497 neigh_dbg(1, "%s: not found\n", __func__);
1498 }
1499 EXPORT_SYMBOL(neigh_parms_release);
1500
1501 static void neigh_parms_destroy(struct neigh_parms *parms)
1502 {
1503 release_net(neigh_parms_net(parms));
1504 kfree(parms);
1505 }
1506
1507 static struct lock_class_key neigh_table_proxy_queue_class;
1508
1509 static void neigh_table_init_no_netlink(struct neigh_table *tbl)
1510 {
1511 unsigned long now = jiffies;
1512 unsigned long phsize;
1513
1514 write_pnet(&tbl->parms.net, &init_net);
1515 atomic_set(&tbl->parms.refcnt, 1);
1516 tbl->parms.reachable_time =
1517 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1518
1519 tbl->stats = alloc_percpu(struct neigh_statistics);
1520 if (!tbl->stats)
1521 panic("cannot create neighbour cache statistics");
1522
1523 #ifdef CONFIG_PROC_FS
1524 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1525 &neigh_stat_seq_fops, tbl))
1526 panic("cannot create neighbour proc dir entry");
1527 #endif
1528
1529 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1530
1531 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1532 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1533
1534 if (!tbl->nht || !tbl->phash_buckets)
1535 panic("cannot allocate neighbour cache hashes");
1536
1537 if (!tbl->entry_size)
1538 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1539 tbl->key_len, NEIGH_PRIV_ALIGN);
1540 else
1541 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1542
1543 rwlock_init(&tbl->lock);
1544 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1545 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1546 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1547 skb_queue_head_init_class(&tbl->proxy_queue,
1548 &neigh_table_proxy_queue_class);
1549
1550 tbl->last_flush = now;
1551 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1552 }
1553
1554 void neigh_table_init(struct neigh_table *tbl)
1555 {
1556 struct neigh_table *tmp;
1557
1558 neigh_table_init_no_netlink(tbl);
1559 write_lock(&neigh_tbl_lock);
1560 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1561 if (tmp->family == tbl->family)
1562 break;
1563 }
1564 tbl->next = neigh_tables;
1565 neigh_tables = tbl;
1566 write_unlock(&neigh_tbl_lock);
1567
1568 if (unlikely(tmp)) {
1569 pr_err("Registering multiple tables for family %d\n",
1570 tbl->family);
1571 dump_stack();
1572 }
1573 }
1574 EXPORT_SYMBOL(neigh_table_init);
1575
1576 int neigh_table_clear(struct neigh_table *tbl)
1577 {
1578 struct neigh_table **tp;
1579
1580 /* It is not clean... Fix it to unload IPv6 module safely */
1581 cancel_delayed_work_sync(&tbl->gc_work);
1582 del_timer_sync(&tbl->proxy_timer);
1583 pneigh_queue_purge(&tbl->proxy_queue);
1584 neigh_ifdown(tbl, NULL);
1585 if (atomic_read(&tbl->entries))
1586 pr_crit("neighbour leakage\n");
1587 write_lock(&neigh_tbl_lock);
1588 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1589 if (*tp == tbl) {
1590 *tp = tbl->next;
1591 break;
1592 }
1593 }
1594 write_unlock(&neigh_tbl_lock);
1595
1596 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1597 neigh_hash_free_rcu);
1598 tbl->nht = NULL;
1599
1600 kfree(tbl->phash_buckets);
1601 tbl->phash_buckets = NULL;
1602
1603 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1604
1605 free_percpu(tbl->stats);
1606 tbl->stats = NULL;
1607
1608 return 0;
1609 }
1610 EXPORT_SYMBOL(neigh_table_clear);
1611
1612 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh)
1613 {
1614 struct net *net = sock_net(skb->sk);
1615 struct ndmsg *ndm;
1616 struct nlattr *dst_attr;
1617 struct neigh_table *tbl;
1618 struct net_device *dev = NULL;
1619 int err = -EINVAL;
1620
1621 ASSERT_RTNL();
1622 if (nlmsg_len(nlh) < sizeof(*ndm))
1623 goto out;
1624
1625 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1626 if (dst_attr == NULL)
1627 goto out;
1628
1629 ndm = nlmsg_data(nlh);
1630 if (ndm->ndm_ifindex) {
1631 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1632 if (dev == NULL) {
1633 err = -ENODEV;
1634 goto out;
1635 }
1636 }
1637
1638 read_lock(&neigh_tbl_lock);
1639 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1640 struct neighbour *neigh;
1641
1642 if (tbl->family != ndm->ndm_family)
1643 continue;
1644 read_unlock(&neigh_tbl_lock);
1645
1646 if (nla_len(dst_attr) < tbl->key_len)
1647 goto out;
1648
1649 if (ndm->ndm_flags & NTF_PROXY) {
1650 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1651 goto out;
1652 }
1653
1654 if (dev == NULL)
1655 goto out;
1656
1657 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1658 if (neigh == NULL) {
1659 err = -ENOENT;
1660 goto out;
1661 }
1662
1663 err = neigh_update(neigh, NULL, NUD_FAILED,
1664 NEIGH_UPDATE_F_OVERRIDE |
1665 NEIGH_UPDATE_F_ADMIN);
1666 neigh_release(neigh);
1667 goto out;
1668 }
1669 read_unlock(&neigh_tbl_lock);
1670 err = -EAFNOSUPPORT;
1671
1672 out:
1673 return err;
1674 }
1675
1676 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh)
1677 {
1678 struct net *net = sock_net(skb->sk);
1679 struct ndmsg *ndm;
1680 struct nlattr *tb[NDA_MAX+1];
1681 struct neigh_table *tbl;
1682 struct net_device *dev = NULL;
1683 int err;
1684
1685 ASSERT_RTNL();
1686 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1687 if (err < 0)
1688 goto out;
1689
1690 err = -EINVAL;
1691 if (tb[NDA_DST] == NULL)
1692 goto out;
1693
1694 ndm = nlmsg_data(nlh);
1695 if (ndm->ndm_ifindex) {
1696 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1697 if (dev == NULL) {
1698 err = -ENODEV;
1699 goto out;
1700 }
1701
1702 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1703 goto out;
1704 }
1705
1706 read_lock(&neigh_tbl_lock);
1707 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1708 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1709 struct neighbour *neigh;
1710 void *dst, *lladdr;
1711
1712 if (tbl->family != ndm->ndm_family)
1713 continue;
1714 read_unlock(&neigh_tbl_lock);
1715
1716 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1717 goto out;
1718 dst = nla_data(tb[NDA_DST]);
1719 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1720
1721 if (ndm->ndm_flags & NTF_PROXY) {
1722 struct pneigh_entry *pn;
1723
1724 err = -ENOBUFS;
1725 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1726 if (pn) {
1727 pn->flags = ndm->ndm_flags;
1728 err = 0;
1729 }
1730 goto out;
1731 }
1732
1733 if (dev == NULL)
1734 goto out;
1735
1736 neigh = neigh_lookup(tbl, dst, dev);
1737 if (neigh == NULL) {
1738 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1739 err = -ENOENT;
1740 goto out;
1741 }
1742
1743 neigh = __neigh_lookup_errno(tbl, dst, dev);
1744 if (IS_ERR(neigh)) {
1745 err = PTR_ERR(neigh);
1746 goto out;
1747 }
1748 } else {
1749 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1750 err = -EEXIST;
1751 neigh_release(neigh);
1752 goto out;
1753 }
1754
1755 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1756 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1757 }
1758
1759 if (ndm->ndm_flags & NTF_USE) {
1760 neigh_event_send(neigh, NULL);
1761 err = 0;
1762 } else
1763 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1764 neigh_release(neigh);
1765 goto out;
1766 }
1767
1768 read_unlock(&neigh_tbl_lock);
1769 err = -EAFNOSUPPORT;
1770 out:
1771 return err;
1772 }
1773
1774 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1775 {
1776 struct nlattr *nest;
1777
1778 nest = nla_nest_start(skb, NDTA_PARMS);
1779 if (nest == NULL)
1780 return -ENOBUFS;
1781
1782 if ((parms->dev &&
1783 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
1784 nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) ||
1785 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, parms->queue_len_bytes) ||
1786 /* approximative value for deprecated QUEUE_LEN (in packets) */
1787 nla_put_u32(skb, NDTPA_QUEUE_LEN,
1788 parms->queue_len_bytes / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
1789 nla_put_u32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen) ||
1790 nla_put_u32(skb, NDTPA_APP_PROBES, parms->app_probes) ||
1791 nla_put_u32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes) ||
1792 nla_put_u32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes) ||
1793 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time) ||
1794 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
1795 parms->base_reachable_time) ||
1796 nla_put_msecs(skb, NDTPA_GC_STALETIME, parms->gc_staletime) ||
1797 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
1798 parms->delay_probe_time) ||
1799 nla_put_msecs(skb, NDTPA_RETRANS_TIME, parms->retrans_time) ||
1800 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay) ||
1801 nla_put_msecs(skb, NDTPA_PROXY_DELAY, parms->proxy_delay) ||
1802 nla_put_msecs(skb, NDTPA_LOCKTIME, parms->locktime))
1803 goto nla_put_failure;
1804 return nla_nest_end(skb, nest);
1805
1806 nla_put_failure:
1807 nla_nest_cancel(skb, nest);
1808 return -EMSGSIZE;
1809 }
1810
1811 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1812 u32 pid, u32 seq, int type, int flags)
1813 {
1814 struct nlmsghdr *nlh;
1815 struct ndtmsg *ndtmsg;
1816
1817 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1818 if (nlh == NULL)
1819 return -EMSGSIZE;
1820
1821 ndtmsg = nlmsg_data(nlh);
1822
1823 read_lock_bh(&tbl->lock);
1824 ndtmsg->ndtm_family = tbl->family;
1825 ndtmsg->ndtm_pad1 = 0;
1826 ndtmsg->ndtm_pad2 = 0;
1827
1828 if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
1829 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval) ||
1830 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) ||
1831 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) ||
1832 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3))
1833 goto nla_put_failure;
1834 {
1835 unsigned long now = jiffies;
1836 unsigned int flush_delta = now - tbl->last_flush;
1837 unsigned int rand_delta = now - tbl->last_rand;
1838 struct neigh_hash_table *nht;
1839 struct ndt_config ndc = {
1840 .ndtc_key_len = tbl->key_len,
1841 .ndtc_entry_size = tbl->entry_size,
1842 .ndtc_entries = atomic_read(&tbl->entries),
1843 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1844 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1845 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1846 };
1847
1848 rcu_read_lock_bh();
1849 nht = rcu_dereference_bh(tbl->nht);
1850 ndc.ndtc_hash_rnd = nht->hash_rnd[0];
1851 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1852 rcu_read_unlock_bh();
1853
1854 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
1855 goto nla_put_failure;
1856 }
1857
1858 {
1859 int cpu;
1860 struct ndt_stats ndst;
1861
1862 memset(&ndst, 0, sizeof(ndst));
1863
1864 for_each_possible_cpu(cpu) {
1865 struct neigh_statistics *st;
1866
1867 st = per_cpu_ptr(tbl->stats, cpu);
1868 ndst.ndts_allocs += st->allocs;
1869 ndst.ndts_destroys += st->destroys;
1870 ndst.ndts_hash_grows += st->hash_grows;
1871 ndst.ndts_res_failed += st->res_failed;
1872 ndst.ndts_lookups += st->lookups;
1873 ndst.ndts_hits += st->hits;
1874 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1875 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1876 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1877 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1878 }
1879
1880 if (nla_put(skb, NDTA_STATS, sizeof(ndst), &ndst))
1881 goto nla_put_failure;
1882 }
1883
1884 BUG_ON(tbl->parms.dev);
1885 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1886 goto nla_put_failure;
1887
1888 read_unlock_bh(&tbl->lock);
1889 return nlmsg_end(skb, nlh);
1890
1891 nla_put_failure:
1892 read_unlock_bh(&tbl->lock);
1893 nlmsg_cancel(skb, nlh);
1894 return -EMSGSIZE;
1895 }
1896
1897 static int neightbl_fill_param_info(struct sk_buff *skb,
1898 struct neigh_table *tbl,
1899 struct neigh_parms *parms,
1900 u32 pid, u32 seq, int type,
1901 unsigned int flags)
1902 {
1903 struct ndtmsg *ndtmsg;
1904 struct nlmsghdr *nlh;
1905
1906 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1907 if (nlh == NULL)
1908 return -EMSGSIZE;
1909
1910 ndtmsg = nlmsg_data(nlh);
1911
1912 read_lock_bh(&tbl->lock);
1913 ndtmsg->ndtm_family = tbl->family;
1914 ndtmsg->ndtm_pad1 = 0;
1915 ndtmsg->ndtm_pad2 = 0;
1916
1917 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1918 neightbl_fill_parms(skb, parms) < 0)
1919 goto errout;
1920
1921 read_unlock_bh(&tbl->lock);
1922 return nlmsg_end(skb, nlh);
1923 errout:
1924 read_unlock_bh(&tbl->lock);
1925 nlmsg_cancel(skb, nlh);
1926 return -EMSGSIZE;
1927 }
1928
1929 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1930 [NDTA_NAME] = { .type = NLA_STRING },
1931 [NDTA_THRESH1] = { .type = NLA_U32 },
1932 [NDTA_THRESH2] = { .type = NLA_U32 },
1933 [NDTA_THRESH3] = { .type = NLA_U32 },
1934 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1935 [NDTA_PARMS] = { .type = NLA_NESTED },
1936 };
1937
1938 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1939 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1940 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1941 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1942 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1943 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1944 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1945 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1946 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1947 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1948 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1949 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1950 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1951 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1952 };
1953
1954 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh)
1955 {
1956 struct net *net = sock_net(skb->sk);
1957 struct neigh_table *tbl;
1958 struct ndtmsg *ndtmsg;
1959 struct nlattr *tb[NDTA_MAX+1];
1960 int err;
1961
1962 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1963 nl_neightbl_policy);
1964 if (err < 0)
1965 goto errout;
1966
1967 if (tb[NDTA_NAME] == NULL) {
1968 err = -EINVAL;
1969 goto errout;
1970 }
1971
1972 ndtmsg = nlmsg_data(nlh);
1973 read_lock(&neigh_tbl_lock);
1974 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1975 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1976 continue;
1977
1978 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1979 break;
1980 }
1981
1982 if (tbl == NULL) {
1983 err = -ENOENT;
1984 goto errout_locked;
1985 }
1986
1987 /*
1988 * We acquire tbl->lock to be nice to the periodic timers and
1989 * make sure they always see a consistent set of values.
1990 */
1991 write_lock_bh(&tbl->lock);
1992
1993 if (tb[NDTA_PARMS]) {
1994 struct nlattr *tbp[NDTPA_MAX+1];
1995 struct neigh_parms *p;
1996 int i, ifindex = 0;
1997
1998 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1999 nl_ntbl_parm_policy);
2000 if (err < 0)
2001 goto errout_tbl_lock;
2002
2003 if (tbp[NDTPA_IFINDEX])
2004 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
2005
2006 p = lookup_neigh_parms(tbl, net, ifindex);
2007 if (p == NULL) {
2008 err = -ENOENT;
2009 goto errout_tbl_lock;
2010 }
2011
2012 for (i = 1; i <= NDTPA_MAX; i++) {
2013 if (tbp[i] == NULL)
2014 continue;
2015
2016 switch (i) {
2017 case NDTPA_QUEUE_LEN:
2018 p->queue_len_bytes = nla_get_u32(tbp[i]) *
2019 SKB_TRUESIZE(ETH_FRAME_LEN);
2020 break;
2021 case NDTPA_QUEUE_LENBYTES:
2022 p->queue_len_bytes = nla_get_u32(tbp[i]);
2023 break;
2024 case NDTPA_PROXY_QLEN:
2025 p->proxy_qlen = nla_get_u32(tbp[i]);
2026 break;
2027 case NDTPA_APP_PROBES:
2028 p->app_probes = nla_get_u32(tbp[i]);
2029 break;
2030 case NDTPA_UCAST_PROBES:
2031 p->ucast_probes = nla_get_u32(tbp[i]);
2032 break;
2033 case NDTPA_MCAST_PROBES:
2034 p->mcast_probes = nla_get_u32(tbp[i]);
2035 break;
2036 case NDTPA_BASE_REACHABLE_TIME:
2037 p->base_reachable_time = nla_get_msecs(tbp[i]);
2038 break;
2039 case NDTPA_GC_STALETIME:
2040 p->gc_staletime = nla_get_msecs(tbp[i]);
2041 break;
2042 case NDTPA_DELAY_PROBE_TIME:
2043 p->delay_probe_time = nla_get_msecs(tbp[i]);
2044 break;
2045 case NDTPA_RETRANS_TIME:
2046 p->retrans_time = nla_get_msecs(tbp[i]);
2047 break;
2048 case NDTPA_ANYCAST_DELAY:
2049 p->anycast_delay = nla_get_msecs(tbp[i]);
2050 break;
2051 case NDTPA_PROXY_DELAY:
2052 p->proxy_delay = nla_get_msecs(tbp[i]);
2053 break;
2054 case NDTPA_LOCKTIME:
2055 p->locktime = nla_get_msecs(tbp[i]);
2056 break;
2057 }
2058 }
2059 }
2060
2061 if (tb[NDTA_THRESH1])
2062 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2063
2064 if (tb[NDTA_THRESH2])
2065 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2066
2067 if (tb[NDTA_THRESH3])
2068 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2069
2070 if (tb[NDTA_GC_INTERVAL])
2071 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2072
2073 err = 0;
2074
2075 errout_tbl_lock:
2076 write_unlock_bh(&tbl->lock);
2077 errout_locked:
2078 read_unlock(&neigh_tbl_lock);
2079 errout:
2080 return err;
2081 }
2082
2083 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2084 {
2085 struct net *net = sock_net(skb->sk);
2086 int family, tidx, nidx = 0;
2087 int tbl_skip = cb->args[0];
2088 int neigh_skip = cb->args[1];
2089 struct neigh_table *tbl;
2090
2091 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2092
2093 read_lock(&neigh_tbl_lock);
2094 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2095 struct neigh_parms *p;
2096
2097 if (tidx < tbl_skip || (family && tbl->family != family))
2098 continue;
2099
2100 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2101 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2102 NLM_F_MULTI) <= 0)
2103 break;
2104
2105 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2106 if (!net_eq(neigh_parms_net(p), net))
2107 continue;
2108
2109 if (nidx < neigh_skip)
2110 goto next;
2111
2112 if (neightbl_fill_param_info(skb, tbl, p,
2113 NETLINK_CB(cb->skb).portid,
2114 cb->nlh->nlmsg_seq,
2115 RTM_NEWNEIGHTBL,
2116 NLM_F_MULTI) <= 0)
2117 goto out;
2118 next:
2119 nidx++;
2120 }
2121
2122 neigh_skip = 0;
2123 }
2124 out:
2125 read_unlock(&neigh_tbl_lock);
2126 cb->args[0] = tidx;
2127 cb->args[1] = nidx;
2128
2129 return skb->len;
2130 }
2131
2132 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2133 u32 pid, u32 seq, int type, unsigned int flags)
2134 {
2135 unsigned long now = jiffies;
2136 struct nda_cacheinfo ci;
2137 struct nlmsghdr *nlh;
2138 struct ndmsg *ndm;
2139
2140 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2141 if (nlh == NULL)
2142 return -EMSGSIZE;
2143
2144 ndm = nlmsg_data(nlh);
2145 ndm->ndm_family = neigh->ops->family;
2146 ndm->ndm_pad1 = 0;
2147 ndm->ndm_pad2 = 0;
2148 ndm->ndm_flags = neigh->flags;
2149 ndm->ndm_type = neigh->type;
2150 ndm->ndm_ifindex = neigh->dev->ifindex;
2151
2152 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2153 goto nla_put_failure;
2154
2155 read_lock_bh(&neigh->lock);
2156 ndm->ndm_state = neigh->nud_state;
2157 if (neigh->nud_state & NUD_VALID) {
2158 char haddr[MAX_ADDR_LEN];
2159
2160 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2161 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2162 read_unlock_bh(&neigh->lock);
2163 goto nla_put_failure;
2164 }
2165 }
2166
2167 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2168 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2169 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2170 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2171 read_unlock_bh(&neigh->lock);
2172
2173 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2174 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2175 goto nla_put_failure;
2176
2177 return nlmsg_end(skb, nlh);
2178
2179 nla_put_failure:
2180 nlmsg_cancel(skb, nlh);
2181 return -EMSGSIZE;
2182 }
2183
2184 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2185 u32 pid, u32 seq, int type, unsigned int flags,
2186 struct neigh_table *tbl)
2187 {
2188 struct nlmsghdr *nlh;
2189 struct ndmsg *ndm;
2190
2191 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2192 if (nlh == NULL)
2193 return -EMSGSIZE;
2194
2195 ndm = nlmsg_data(nlh);
2196 ndm->ndm_family = tbl->family;
2197 ndm->ndm_pad1 = 0;
2198 ndm->ndm_pad2 = 0;
2199 ndm->ndm_flags = pn->flags | NTF_PROXY;
2200 ndm->ndm_type = NDA_DST;
2201 ndm->ndm_ifindex = pn->dev->ifindex;
2202 ndm->ndm_state = NUD_NONE;
2203
2204 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2205 goto nla_put_failure;
2206
2207 return nlmsg_end(skb, nlh);
2208
2209 nla_put_failure:
2210 nlmsg_cancel(skb, nlh);
2211 return -EMSGSIZE;
2212 }
2213
2214 static void neigh_update_notify(struct neighbour *neigh)
2215 {
2216 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2217 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2218 }
2219
2220 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2221 struct netlink_callback *cb)
2222 {
2223 struct net *net = sock_net(skb->sk);
2224 struct neighbour *n;
2225 int rc, h, s_h = cb->args[1];
2226 int idx, s_idx = idx = cb->args[2];
2227 struct neigh_hash_table *nht;
2228
2229 rcu_read_lock_bh();
2230 nht = rcu_dereference_bh(tbl->nht);
2231
2232 for (h = s_h; h < (1 << nht->hash_shift); h++) {
2233 if (h > s_h)
2234 s_idx = 0;
2235 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2236 n != NULL;
2237 n = rcu_dereference_bh(n->next)) {
2238 if (!net_eq(dev_net(n->dev), net))
2239 continue;
2240 if (idx < s_idx)
2241 goto next;
2242 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2243 cb->nlh->nlmsg_seq,
2244 RTM_NEWNEIGH,
2245 NLM_F_MULTI) <= 0) {
2246 rc = -1;
2247 goto out;
2248 }
2249 next:
2250 idx++;
2251 }
2252 }
2253 rc = skb->len;
2254 out:
2255 rcu_read_unlock_bh();
2256 cb->args[1] = h;
2257 cb->args[2] = idx;
2258 return rc;
2259 }
2260
2261 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2262 struct netlink_callback *cb)
2263 {
2264 struct pneigh_entry *n;
2265 struct net *net = sock_net(skb->sk);
2266 int rc, h, s_h = cb->args[3];
2267 int idx, s_idx = idx = cb->args[4];
2268
2269 read_lock_bh(&tbl->lock);
2270
2271 for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2272 if (h > s_h)
2273 s_idx = 0;
2274 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2275 if (dev_net(n->dev) != net)
2276 continue;
2277 if (idx < s_idx)
2278 goto next;
2279 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2280 cb->nlh->nlmsg_seq,
2281 RTM_NEWNEIGH,
2282 NLM_F_MULTI, tbl) <= 0) {
2283 read_unlock_bh(&tbl->lock);
2284 rc = -1;
2285 goto out;
2286 }
2287 next:
2288 idx++;
2289 }
2290 }
2291
2292 read_unlock_bh(&tbl->lock);
2293 rc = skb->len;
2294 out:
2295 cb->args[3] = h;
2296 cb->args[4] = idx;
2297 return rc;
2298
2299 }
2300
2301 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2302 {
2303 struct neigh_table *tbl;
2304 int t, family, s_t;
2305 int proxy = 0;
2306 int err;
2307
2308 read_lock(&neigh_tbl_lock);
2309 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2310
2311 /* check for full ndmsg structure presence, family member is
2312 * the same for both structures
2313 */
2314 if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) &&
2315 ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY)
2316 proxy = 1;
2317
2318 s_t = cb->args[0];
2319
2320 for (tbl = neigh_tables, t = 0; tbl;
2321 tbl = tbl->next, t++) {
2322 if (t < s_t || (family && tbl->family != family))
2323 continue;
2324 if (t > s_t)
2325 memset(&cb->args[1], 0, sizeof(cb->args) -
2326 sizeof(cb->args[0]));
2327 if (proxy)
2328 err = pneigh_dump_table(tbl, skb, cb);
2329 else
2330 err = neigh_dump_table(tbl, skb, cb);
2331 if (err < 0)
2332 break;
2333 }
2334 read_unlock(&neigh_tbl_lock);
2335
2336 cb->args[0] = t;
2337 return skb->len;
2338 }
2339
2340 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2341 {
2342 int chain;
2343 struct neigh_hash_table *nht;
2344
2345 rcu_read_lock_bh();
2346 nht = rcu_dereference_bh(tbl->nht);
2347
2348 read_lock(&tbl->lock); /* avoid resizes */
2349 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2350 struct neighbour *n;
2351
2352 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2353 n != NULL;
2354 n = rcu_dereference_bh(n->next))
2355 cb(n, cookie);
2356 }
2357 read_unlock(&tbl->lock);
2358 rcu_read_unlock_bh();
2359 }
2360 EXPORT_SYMBOL(neigh_for_each);
2361
2362 /* The tbl->lock must be held as a writer and BH disabled. */
2363 void __neigh_for_each_release(struct neigh_table *tbl,
2364 int (*cb)(struct neighbour *))
2365 {
2366 int chain;
2367 struct neigh_hash_table *nht;
2368
2369 nht = rcu_dereference_protected(tbl->nht,
2370 lockdep_is_held(&tbl->lock));
2371 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2372 struct neighbour *n;
2373 struct neighbour __rcu **np;
2374
2375 np = &nht->hash_buckets[chain];
2376 while ((n = rcu_dereference_protected(*np,
2377 lockdep_is_held(&tbl->lock))) != NULL) {
2378 int release;
2379
2380 write_lock(&n->lock);
2381 release = cb(n);
2382 if (release) {
2383 rcu_assign_pointer(*np,
2384 rcu_dereference_protected(n->next,
2385 lockdep_is_held(&tbl->lock)));
2386 n->dead = 1;
2387 } else
2388 np = &n->next;
2389 write_unlock(&n->lock);
2390 if (release)
2391 neigh_cleanup_and_release(n);
2392 }
2393 }
2394 }
2395 EXPORT_SYMBOL(__neigh_for_each_release);
2396
2397 #ifdef CONFIG_PROC_FS
2398
2399 static struct neighbour *neigh_get_first(struct seq_file *seq)
2400 {
2401 struct neigh_seq_state *state = seq->private;
2402 struct net *net = seq_file_net(seq);
2403 struct neigh_hash_table *nht = state->nht;
2404 struct neighbour *n = NULL;
2405 int bucket = state->bucket;
2406
2407 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2408 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2409 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2410
2411 while (n) {
2412 if (!net_eq(dev_net(n->dev), net))
2413 goto next;
2414 if (state->neigh_sub_iter) {
2415 loff_t fakep = 0;
2416 void *v;
2417
2418 v = state->neigh_sub_iter(state, n, &fakep);
2419 if (!v)
2420 goto next;
2421 }
2422 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2423 break;
2424 if (n->nud_state & ~NUD_NOARP)
2425 break;
2426 next:
2427 n = rcu_dereference_bh(n->next);
2428 }
2429
2430 if (n)
2431 break;
2432 }
2433 state->bucket = bucket;
2434
2435 return n;
2436 }
2437
2438 static struct neighbour *neigh_get_next(struct seq_file *seq,
2439 struct neighbour *n,
2440 loff_t *pos)
2441 {
2442 struct neigh_seq_state *state = seq->private;
2443 struct net *net = seq_file_net(seq);
2444 struct neigh_hash_table *nht = state->nht;
2445
2446 if (state->neigh_sub_iter) {
2447 void *v = state->neigh_sub_iter(state, n, pos);
2448 if (v)
2449 return n;
2450 }
2451 n = rcu_dereference_bh(n->next);
2452
2453 while (1) {
2454 while (n) {
2455 if (!net_eq(dev_net(n->dev), net))
2456 goto next;
2457 if (state->neigh_sub_iter) {
2458 void *v = state->neigh_sub_iter(state, n, pos);
2459 if (v)
2460 return n;
2461 goto next;
2462 }
2463 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2464 break;
2465
2466 if (n->nud_state & ~NUD_NOARP)
2467 break;
2468 next:
2469 n = rcu_dereference_bh(n->next);
2470 }
2471
2472 if (n)
2473 break;
2474
2475 if (++state->bucket >= (1 << nht->hash_shift))
2476 break;
2477
2478 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2479 }
2480
2481 if (n && pos)
2482 --(*pos);
2483 return n;
2484 }
2485
2486 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2487 {
2488 struct neighbour *n = neigh_get_first(seq);
2489
2490 if (n) {
2491 --(*pos);
2492 while (*pos) {
2493 n = neigh_get_next(seq, n, pos);
2494 if (!n)
2495 break;
2496 }
2497 }
2498 return *pos ? NULL : n;
2499 }
2500
2501 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2502 {
2503 struct neigh_seq_state *state = seq->private;
2504 struct net *net = seq_file_net(seq);
2505 struct neigh_table *tbl = state->tbl;
2506 struct pneigh_entry *pn = NULL;
2507 int bucket = state->bucket;
2508
2509 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2510 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2511 pn = tbl->phash_buckets[bucket];
2512 while (pn && !net_eq(pneigh_net(pn), net))
2513 pn = pn->next;
2514 if (pn)
2515 break;
2516 }
2517 state->bucket = bucket;
2518
2519 return pn;
2520 }
2521
2522 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2523 struct pneigh_entry *pn,
2524 loff_t *pos)
2525 {
2526 struct neigh_seq_state *state = seq->private;
2527 struct net *net = seq_file_net(seq);
2528 struct neigh_table *tbl = state->tbl;
2529
2530 do {
2531 pn = pn->next;
2532 } while (pn && !net_eq(pneigh_net(pn), net));
2533
2534 while (!pn) {
2535 if (++state->bucket > PNEIGH_HASHMASK)
2536 break;
2537 pn = tbl->phash_buckets[state->bucket];
2538 while (pn && !net_eq(pneigh_net(pn), net))
2539 pn = pn->next;
2540 if (pn)
2541 break;
2542 }
2543
2544 if (pn && pos)
2545 --(*pos);
2546
2547 return pn;
2548 }
2549
2550 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2551 {
2552 struct pneigh_entry *pn = pneigh_get_first(seq);
2553
2554 if (pn) {
2555 --(*pos);
2556 while (*pos) {
2557 pn = pneigh_get_next(seq, pn, pos);
2558 if (!pn)
2559 break;
2560 }
2561 }
2562 return *pos ? NULL : pn;
2563 }
2564
2565 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2566 {
2567 struct neigh_seq_state *state = seq->private;
2568 void *rc;
2569 loff_t idxpos = *pos;
2570
2571 rc = neigh_get_idx(seq, &idxpos);
2572 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2573 rc = pneigh_get_idx(seq, &idxpos);
2574
2575 return rc;
2576 }
2577
2578 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2579 __acquires(rcu_bh)
2580 {
2581 struct neigh_seq_state *state = seq->private;
2582
2583 state->tbl = tbl;
2584 state->bucket = 0;
2585 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2586
2587 rcu_read_lock_bh();
2588 state->nht = rcu_dereference_bh(tbl->nht);
2589
2590 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2591 }
2592 EXPORT_SYMBOL(neigh_seq_start);
2593
2594 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2595 {
2596 struct neigh_seq_state *state;
2597 void *rc;
2598
2599 if (v == SEQ_START_TOKEN) {
2600 rc = neigh_get_first(seq);
2601 goto out;
2602 }
2603
2604 state = seq->private;
2605 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2606 rc = neigh_get_next(seq, v, NULL);
2607 if (rc)
2608 goto out;
2609 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2610 rc = pneigh_get_first(seq);
2611 } else {
2612 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2613 rc = pneigh_get_next(seq, v, NULL);
2614 }
2615 out:
2616 ++(*pos);
2617 return rc;
2618 }
2619 EXPORT_SYMBOL(neigh_seq_next);
2620
2621 void neigh_seq_stop(struct seq_file *seq, void *v)
2622 __releases(rcu_bh)
2623 {
2624 rcu_read_unlock_bh();
2625 }
2626 EXPORT_SYMBOL(neigh_seq_stop);
2627
2628 /* statistics via seq_file */
2629
2630 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2631 {
2632 struct neigh_table *tbl = seq->private;
2633 int cpu;
2634
2635 if (*pos == 0)
2636 return SEQ_START_TOKEN;
2637
2638 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2639 if (!cpu_possible(cpu))
2640 continue;
2641 *pos = cpu+1;
2642 return per_cpu_ptr(tbl->stats, cpu);
2643 }
2644 return NULL;
2645 }
2646
2647 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2648 {
2649 struct neigh_table *tbl = seq->private;
2650 int cpu;
2651
2652 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2653 if (!cpu_possible(cpu))
2654 continue;
2655 *pos = cpu+1;
2656 return per_cpu_ptr(tbl->stats, cpu);
2657 }
2658 return NULL;
2659 }
2660
2661 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2662 {
2663
2664 }
2665
2666 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2667 {
2668 struct neigh_table *tbl = seq->private;
2669 struct neigh_statistics *st = v;
2670
2671 if (v == SEQ_START_TOKEN) {
2672 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2673 return 0;
2674 }
2675
2676 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2677 "%08lx %08lx %08lx %08lx %08lx\n",
2678 atomic_read(&tbl->entries),
2679
2680 st->allocs,
2681 st->destroys,
2682 st->hash_grows,
2683
2684 st->lookups,
2685 st->hits,
2686
2687 st->res_failed,
2688
2689 st->rcv_probes_mcast,
2690 st->rcv_probes_ucast,
2691
2692 st->periodic_gc_runs,
2693 st->forced_gc_runs,
2694 st->unres_discards
2695 );
2696
2697 return 0;
2698 }
2699
2700 static const struct seq_operations neigh_stat_seq_ops = {
2701 .start = neigh_stat_seq_start,
2702 .next = neigh_stat_seq_next,
2703 .stop = neigh_stat_seq_stop,
2704 .show = neigh_stat_seq_show,
2705 };
2706
2707 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2708 {
2709 int ret = seq_open(file, &neigh_stat_seq_ops);
2710
2711 if (!ret) {
2712 struct seq_file *sf = file->private_data;
2713 sf->private = PDE_DATA(inode);
2714 }
2715 return ret;
2716 };
2717
2718 static const struct file_operations neigh_stat_seq_fops = {
2719 .owner = THIS_MODULE,
2720 .open = neigh_stat_seq_open,
2721 .read = seq_read,
2722 .llseek = seq_lseek,
2723 .release = seq_release,
2724 };
2725
2726 #endif /* CONFIG_PROC_FS */
2727
2728 static inline size_t neigh_nlmsg_size(void)
2729 {
2730 return NLMSG_ALIGN(sizeof(struct ndmsg))
2731 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2732 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2733 + nla_total_size(sizeof(struct nda_cacheinfo))
2734 + nla_total_size(4); /* NDA_PROBES */
2735 }
2736
2737 static void __neigh_notify(struct neighbour *n, int type, int flags)
2738 {
2739 struct net *net = dev_net(n->dev);
2740 struct sk_buff *skb;
2741 int err = -ENOBUFS;
2742
2743 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2744 if (skb == NULL)
2745 goto errout;
2746
2747 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2748 if (err < 0) {
2749 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2750 WARN_ON(err == -EMSGSIZE);
2751 kfree_skb(skb);
2752 goto errout;
2753 }
2754 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2755 return;
2756 errout:
2757 if (err < 0)
2758 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2759 }
2760
2761 #ifdef CONFIG_ARPD
2762 void neigh_app_ns(struct neighbour *n)
2763 {
2764 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2765 }
2766 EXPORT_SYMBOL(neigh_app_ns);
2767 #endif /* CONFIG_ARPD */
2768
2769 #ifdef CONFIG_SYSCTL
2770 static int zero;
2771 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
2772
2773 static int proc_unres_qlen(ctl_table *ctl, int write, void __user *buffer,
2774 size_t *lenp, loff_t *ppos)
2775 {
2776 int size, ret;
2777 ctl_table tmp = *ctl;
2778
2779 tmp.extra1 = &zero;
2780 tmp.extra2 = &unres_qlen_max;
2781 tmp.data = &size;
2782
2783 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
2784 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2785
2786 if (write && !ret)
2787 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
2788 return ret;
2789 }
2790
2791 enum {
2792 NEIGH_VAR_MCAST_PROBE,
2793 NEIGH_VAR_UCAST_PROBE,
2794 NEIGH_VAR_APP_PROBE,
2795 NEIGH_VAR_RETRANS_TIME,
2796 NEIGH_VAR_BASE_REACHABLE_TIME,
2797 NEIGH_VAR_DELAY_PROBE_TIME,
2798 NEIGH_VAR_GC_STALETIME,
2799 NEIGH_VAR_QUEUE_LEN,
2800 NEIGH_VAR_QUEUE_LEN_BYTES,
2801 NEIGH_VAR_PROXY_QLEN,
2802 NEIGH_VAR_ANYCAST_DELAY,
2803 NEIGH_VAR_PROXY_DELAY,
2804 NEIGH_VAR_LOCKTIME,
2805 NEIGH_VAR_RETRANS_TIME_MS,
2806 NEIGH_VAR_BASE_REACHABLE_TIME_MS,
2807 NEIGH_VAR_GC_INTERVAL,
2808 NEIGH_VAR_GC_THRESH1,
2809 NEIGH_VAR_GC_THRESH2,
2810 NEIGH_VAR_GC_THRESH3,
2811 NEIGH_VAR_MAX
2812 };
2813
2814 static struct neigh_sysctl_table {
2815 struct ctl_table_header *sysctl_header;
2816 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
2817 } neigh_sysctl_template __read_mostly = {
2818 .neigh_vars = {
2819 [NEIGH_VAR_MCAST_PROBE] = {
2820 .procname = "mcast_solicit",
2821 .maxlen = sizeof(int),
2822 .mode = 0644,
2823 .proc_handler = proc_dointvec,
2824 },
2825 [NEIGH_VAR_UCAST_PROBE] = {
2826 .procname = "ucast_solicit",
2827 .maxlen = sizeof(int),
2828 .mode = 0644,
2829 .proc_handler = proc_dointvec,
2830 },
2831 [NEIGH_VAR_APP_PROBE] = {
2832 .procname = "app_solicit",
2833 .maxlen = sizeof(int),
2834 .mode = 0644,
2835 .proc_handler = proc_dointvec,
2836 },
2837 [NEIGH_VAR_RETRANS_TIME] = {
2838 .procname = "retrans_time",
2839 .maxlen = sizeof(int),
2840 .mode = 0644,
2841 .proc_handler = proc_dointvec_userhz_jiffies,
2842 },
2843 [NEIGH_VAR_BASE_REACHABLE_TIME] = {
2844 .procname = "base_reachable_time",
2845 .maxlen = sizeof(int),
2846 .mode = 0644,
2847 .proc_handler = proc_dointvec_jiffies,
2848 },
2849 [NEIGH_VAR_DELAY_PROBE_TIME] = {
2850 .procname = "delay_first_probe_time",
2851 .maxlen = sizeof(int),
2852 .mode = 0644,
2853 .proc_handler = proc_dointvec_jiffies,
2854 },
2855 [NEIGH_VAR_GC_STALETIME] = {
2856 .procname = "gc_stale_time",
2857 .maxlen = sizeof(int),
2858 .mode = 0644,
2859 .proc_handler = proc_dointvec_jiffies,
2860 },
2861 [NEIGH_VAR_QUEUE_LEN] = {
2862 .procname = "unres_qlen",
2863 .maxlen = sizeof(int),
2864 .mode = 0644,
2865 .proc_handler = proc_unres_qlen,
2866 },
2867 [NEIGH_VAR_QUEUE_LEN_BYTES] = {
2868 .procname = "unres_qlen_bytes",
2869 .maxlen = sizeof(int),
2870 .mode = 0644,
2871 .extra1 = &zero,
2872 .proc_handler = proc_dointvec_minmax,
2873 },
2874 [NEIGH_VAR_PROXY_QLEN] = {
2875 .procname = "proxy_qlen",
2876 .maxlen = sizeof(int),
2877 .mode = 0644,
2878 .proc_handler = proc_dointvec,
2879 },
2880 [NEIGH_VAR_ANYCAST_DELAY] = {
2881 .procname = "anycast_delay",
2882 .maxlen = sizeof(int),
2883 .mode = 0644,
2884 .proc_handler = proc_dointvec_userhz_jiffies,
2885 },
2886 [NEIGH_VAR_PROXY_DELAY] = {
2887 .procname = "proxy_delay",
2888 .maxlen = sizeof(int),
2889 .mode = 0644,
2890 .proc_handler = proc_dointvec_userhz_jiffies,
2891 },
2892 [NEIGH_VAR_LOCKTIME] = {
2893 .procname = "locktime",
2894 .maxlen = sizeof(int),
2895 .mode = 0644,
2896 .proc_handler = proc_dointvec_userhz_jiffies,
2897 },
2898 [NEIGH_VAR_RETRANS_TIME_MS] = {
2899 .procname = "retrans_time_ms",
2900 .maxlen = sizeof(int),
2901 .mode = 0644,
2902 .proc_handler = proc_dointvec_ms_jiffies,
2903 },
2904 [NEIGH_VAR_BASE_REACHABLE_TIME_MS] = {
2905 .procname = "base_reachable_time_ms",
2906 .maxlen = sizeof(int),
2907 .mode = 0644,
2908 .proc_handler = proc_dointvec_ms_jiffies,
2909 },
2910 [NEIGH_VAR_GC_INTERVAL] = {
2911 .procname = "gc_interval",
2912 .maxlen = sizeof(int),
2913 .mode = 0644,
2914 .proc_handler = proc_dointvec_jiffies,
2915 },
2916 [NEIGH_VAR_GC_THRESH1] = {
2917 .procname = "gc_thresh1",
2918 .maxlen = sizeof(int),
2919 .mode = 0644,
2920 .proc_handler = proc_dointvec,
2921 },
2922 [NEIGH_VAR_GC_THRESH2] = {
2923 .procname = "gc_thresh2",
2924 .maxlen = sizeof(int),
2925 .mode = 0644,
2926 .proc_handler = proc_dointvec,
2927 },
2928 [NEIGH_VAR_GC_THRESH3] = {
2929 .procname = "gc_thresh3",
2930 .maxlen = sizeof(int),
2931 .mode = 0644,
2932 .proc_handler = proc_dointvec,
2933 },
2934 {},
2935 },
2936 };
2937
2938 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2939 char *p_name, proc_handler *handler)
2940 {
2941 struct neigh_sysctl_table *t;
2942 const char *dev_name_source = NULL;
2943 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
2944
2945 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2946 if (!t)
2947 goto err;
2948
2949 t->neigh_vars[NEIGH_VAR_MCAST_PROBE].data = &p->mcast_probes;
2950 t->neigh_vars[NEIGH_VAR_UCAST_PROBE].data = &p->ucast_probes;
2951 t->neigh_vars[NEIGH_VAR_APP_PROBE].data = &p->app_probes;
2952 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].data = &p->retrans_time;
2953 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].data = &p->base_reachable_time;
2954 t->neigh_vars[NEIGH_VAR_DELAY_PROBE_TIME].data = &p->delay_probe_time;
2955 t->neigh_vars[NEIGH_VAR_GC_STALETIME].data = &p->gc_staletime;
2956 t->neigh_vars[NEIGH_VAR_QUEUE_LEN].data = &p->queue_len_bytes;
2957 t->neigh_vars[NEIGH_VAR_QUEUE_LEN_BYTES].data = &p->queue_len_bytes;
2958 t->neigh_vars[NEIGH_VAR_PROXY_QLEN].data = &p->proxy_qlen;
2959 t->neigh_vars[NEIGH_VAR_ANYCAST_DELAY].data = &p->anycast_delay;
2960 t->neigh_vars[NEIGH_VAR_PROXY_DELAY].data = &p->proxy_delay;
2961 t->neigh_vars[NEIGH_VAR_LOCKTIME].data = &p->locktime;
2962 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].data = &p->retrans_time;
2963 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].data = &p->base_reachable_time;
2964
2965 if (dev) {
2966 dev_name_source = dev->name;
2967 /* Terminate the table early */
2968 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
2969 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
2970 } else {
2971 dev_name_source = "default";
2972 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = (int *)(p + 1);
2973 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = (int *)(p + 1) + 1;
2974 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = (int *)(p + 1) + 2;
2975 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = (int *)(p + 1) + 3;
2976 }
2977
2978
2979 if (handler) {
2980 /* RetransTime */
2981 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
2982 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].extra1 = dev;
2983 /* ReachableTime */
2984 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
2985 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].extra1 = dev;
2986 /* RetransTime (in milliseconds)*/
2987 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
2988 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].extra1 = dev;
2989 /* ReachableTime (in milliseconds) */
2990 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
2991 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].extra1 = dev;
2992 }
2993
2994 /* Don't export sysctls to unprivileged users */
2995 if (neigh_parms_net(p)->user_ns != &init_user_ns)
2996 t->neigh_vars[0].procname = NULL;
2997
2998 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
2999 p_name, dev_name_source);
3000 t->sysctl_header =
3001 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars);
3002 if (!t->sysctl_header)
3003 goto free;
3004
3005 p->sysctl_table = t;
3006 return 0;
3007
3008 free:
3009 kfree(t);
3010 err:
3011 return -ENOBUFS;
3012 }
3013 EXPORT_SYMBOL(neigh_sysctl_register);
3014
3015 void neigh_sysctl_unregister(struct neigh_parms *p)
3016 {
3017 if (p->sysctl_table) {
3018 struct neigh_sysctl_table *t = p->sysctl_table;
3019 p->sysctl_table = NULL;
3020 unregister_net_sysctl_table(t->sysctl_header);
3021 kfree(t);
3022 }
3023 }
3024 EXPORT_SYMBOL(neigh_sysctl_unregister);
3025
3026 #endif /* CONFIG_SYSCTL */
3027
3028 static int __init neigh_init(void)
3029 {
3030 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
3031 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
3032 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
3033
3034 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3035 NULL);
3036 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
3037
3038 return 0;
3039 }
3040
3041 subsys_initcall(neigh_init);
3042