c978bd1cd6592d7bf91b83f03ff24df56ebea9a5
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/socket.h>
22 #include <linux/netdevice.h>
23 #include <linux/proc_fs.h>
24 #ifdef CONFIG_SYSCTL
25 #include <linux/sysctl.h>
26 #endif
27 #include <linux/times.h>
28 #include <net/net_namespace.h>
29 #include <net/neighbour.h>
30 #include <net/dst.h>
31 #include <net/sock.h>
32 #include <net/netevent.h>
33 #include <net/netlink.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/random.h>
36 #include <linux/string.h>
37 #include <linux/log2.h>
38
39 #define NEIGH_DEBUG 1
40
41 #define NEIGH_PRINTK(x...) printk(x)
42 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
43 #define NEIGH_PRINTK0 NEIGH_PRINTK
44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
46
47 #if NEIGH_DEBUG >= 1
48 #undef NEIGH_PRINTK1
49 #define NEIGH_PRINTK1 NEIGH_PRINTK
50 #endif
51 #if NEIGH_DEBUG >= 2
52 #undef NEIGH_PRINTK2
53 #define NEIGH_PRINTK2 NEIGH_PRINTK
54 #endif
55
56 #define PNEIGH_HASHMASK 0xF
57
58 static void neigh_timer_handler(unsigned long arg);
59 static void __neigh_notify(struct neighbour *n, int type, int flags);
60 static void neigh_update_notify(struct neighbour *neigh);
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62
63 static struct neigh_table *neigh_tables;
64 #ifdef CONFIG_PROC_FS
65 static const struct file_operations neigh_stat_seq_fops;
66 #endif
67
68 /*
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
70
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
75 cache.
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
78
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
82
83 Reference count prevents destruction.
84
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
87 - timer
88 - resolution queue
89
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
94
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
97 */
98
99 static DEFINE_RWLOCK(neigh_tbl_lock);
100
101 static int neigh_blackhole(struct sk_buff *skb)
102 {
103 kfree_skb(skb);
104 return -ENETDOWN;
105 }
106
107 static void neigh_cleanup_and_release(struct neighbour *neigh)
108 {
109 if (neigh->parms->neigh_cleanup)
110 neigh->parms->neigh_cleanup(neigh);
111
112 __neigh_notify(neigh, RTM_DELNEIGH, 0);
113 neigh_release(neigh);
114 }
115
116 /*
117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
118 * It corresponds to default IPv6 settings and is not overridable,
119 * because it is really reasonable choice.
120 */
121
122 unsigned long neigh_rand_reach_time(unsigned long base)
123 {
124 return (base ? (net_random() % base) + (base >> 1) : 0);
125 }
126
127
128 static int neigh_forced_gc(struct neigh_table *tbl)
129 {
130 int shrunk = 0;
131 int i;
132
133 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
134
135 write_lock_bh(&tbl->lock);
136 for (i = 0; i <= tbl->hash_mask; i++) {
137 struct neighbour *n, **np;
138
139 np = &tbl->hash_buckets[i];
140 while ((n = *np) != NULL) {
141 /* Neighbour record may be discarded if:
142 * - nobody refers to it.
143 * - it is not permanent
144 */
145 write_lock(&n->lock);
146 if (atomic_read(&n->refcnt) == 1 &&
147 !(n->nud_state & NUD_PERMANENT)) {
148 *np = n->next;
149 n->dead = 1;
150 shrunk = 1;
151 write_unlock(&n->lock);
152 neigh_cleanup_and_release(n);
153 continue;
154 }
155 write_unlock(&n->lock);
156 np = &n->next;
157 }
158 }
159
160 tbl->last_flush = jiffies;
161
162 write_unlock_bh(&tbl->lock);
163
164 return shrunk;
165 }
166
167 static void neigh_add_timer(struct neighbour *n, unsigned long when)
168 {
169 neigh_hold(n);
170 if (unlikely(mod_timer(&n->timer, when))) {
171 printk("NEIGH: BUG, double timer add, state is %x\n",
172 n->nud_state);
173 dump_stack();
174 }
175 }
176
177 static int neigh_del_timer(struct neighbour *n)
178 {
179 if ((n->nud_state & NUD_IN_TIMER) &&
180 del_timer(&n->timer)) {
181 neigh_release(n);
182 return 1;
183 }
184 return 0;
185 }
186
187 static void pneigh_queue_purge(struct sk_buff_head *list)
188 {
189 struct sk_buff *skb;
190
191 while ((skb = skb_dequeue(list)) != NULL) {
192 dev_put(skb->dev);
193 kfree_skb(skb);
194 }
195 }
196
197 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
198 {
199 int i;
200
201 for (i = 0; i <= tbl->hash_mask; i++) {
202 struct neighbour *n, **np = &tbl->hash_buckets[i];
203
204 while ((n = *np) != NULL) {
205 if (dev && n->dev != dev) {
206 np = &n->next;
207 continue;
208 }
209 *np = n->next;
210 write_lock(&n->lock);
211 neigh_del_timer(n);
212 n->dead = 1;
213
214 if (atomic_read(&n->refcnt) != 1) {
215 /* The most unpleasant situation.
216 We must destroy neighbour entry,
217 but someone still uses it.
218
219 The destroy will be delayed until
220 the last user releases us, but
221 we must kill timers etc. and move
222 it to safe state.
223 */
224 skb_queue_purge(&n->arp_queue);
225 n->output = neigh_blackhole;
226 if (n->nud_state & NUD_VALID)
227 n->nud_state = NUD_NOARP;
228 else
229 n->nud_state = NUD_NONE;
230 NEIGH_PRINTK2("neigh %p is stray.\n", n);
231 }
232 write_unlock(&n->lock);
233 neigh_cleanup_and_release(n);
234 }
235 }
236 }
237
238 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
239 {
240 write_lock_bh(&tbl->lock);
241 neigh_flush_dev(tbl, dev);
242 write_unlock_bh(&tbl->lock);
243 }
244
245 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
246 {
247 write_lock_bh(&tbl->lock);
248 neigh_flush_dev(tbl, dev);
249 pneigh_ifdown(tbl, dev);
250 write_unlock_bh(&tbl->lock);
251
252 del_timer_sync(&tbl->proxy_timer);
253 pneigh_queue_purge(&tbl->proxy_queue);
254 return 0;
255 }
256
257 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
258 {
259 struct neighbour *n = NULL;
260 unsigned long now = jiffies;
261 int entries;
262
263 entries = atomic_inc_return(&tbl->entries) - 1;
264 if (entries >= tbl->gc_thresh3 ||
265 (entries >= tbl->gc_thresh2 &&
266 time_after(now, tbl->last_flush + 5 * HZ))) {
267 if (!neigh_forced_gc(tbl) &&
268 entries >= tbl->gc_thresh3)
269 goto out_entries;
270 }
271
272 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
273 if (!n)
274 goto out_entries;
275
276 skb_queue_head_init(&n->arp_queue);
277 rwlock_init(&n->lock);
278 n->updated = n->used = now;
279 n->nud_state = NUD_NONE;
280 n->output = neigh_blackhole;
281 n->parms = neigh_parms_clone(&tbl->parms);
282 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
283
284 NEIGH_CACHE_STAT_INC(tbl, allocs);
285 n->tbl = tbl;
286 atomic_set(&n->refcnt, 1);
287 n->dead = 1;
288 out:
289 return n;
290
291 out_entries:
292 atomic_dec(&tbl->entries);
293 goto out;
294 }
295
296 static struct neighbour **neigh_hash_alloc(unsigned int entries)
297 {
298 unsigned long size = entries * sizeof(struct neighbour *);
299 struct neighbour **ret;
300
301 if (size <= PAGE_SIZE) {
302 ret = kzalloc(size, GFP_ATOMIC);
303 } else {
304 ret = (struct neighbour **)
305 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
306 }
307 return ret;
308 }
309
310 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
311 {
312 unsigned long size = entries * sizeof(struct neighbour *);
313
314 if (size <= PAGE_SIZE)
315 kfree(hash);
316 else
317 free_pages((unsigned long)hash, get_order(size));
318 }
319
320 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
321 {
322 struct neighbour **new_hash, **old_hash;
323 unsigned int i, new_hash_mask, old_entries;
324
325 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
326
327 BUG_ON(!is_power_of_2(new_entries));
328 new_hash = neigh_hash_alloc(new_entries);
329 if (!new_hash)
330 return;
331
332 old_entries = tbl->hash_mask + 1;
333 new_hash_mask = new_entries - 1;
334 old_hash = tbl->hash_buckets;
335
336 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
337 for (i = 0; i < old_entries; i++) {
338 struct neighbour *n, *next;
339
340 for (n = old_hash[i]; n; n = next) {
341 unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
342
343 hash_val &= new_hash_mask;
344 next = n->next;
345
346 n->next = new_hash[hash_val];
347 new_hash[hash_val] = n;
348 }
349 }
350 tbl->hash_buckets = new_hash;
351 tbl->hash_mask = new_hash_mask;
352
353 neigh_hash_free(old_hash, old_entries);
354 }
355
356 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
357 struct net_device *dev)
358 {
359 struct neighbour *n;
360 int key_len = tbl->key_len;
361 u32 hash_val;
362
363 NEIGH_CACHE_STAT_INC(tbl, lookups);
364
365 read_lock_bh(&tbl->lock);
366 hash_val = tbl->hash(pkey, dev);
367 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
368 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
369 neigh_hold(n);
370 NEIGH_CACHE_STAT_INC(tbl, hits);
371 break;
372 }
373 }
374 read_unlock_bh(&tbl->lock);
375 return n;
376 }
377
378 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
379 const void *pkey)
380 {
381 struct neighbour *n;
382 int key_len = tbl->key_len;
383 u32 hash_val;
384
385 NEIGH_CACHE_STAT_INC(tbl, lookups);
386
387 read_lock_bh(&tbl->lock);
388 hash_val = tbl->hash(pkey, NULL);
389 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
390 if (!memcmp(n->primary_key, pkey, key_len) &&
391 dev_net(n->dev) == net) {
392 neigh_hold(n);
393 NEIGH_CACHE_STAT_INC(tbl, hits);
394 break;
395 }
396 }
397 read_unlock_bh(&tbl->lock);
398 return n;
399 }
400
401 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
402 struct net_device *dev)
403 {
404 u32 hash_val;
405 int key_len = tbl->key_len;
406 int error;
407 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
408
409 if (!n) {
410 rc = ERR_PTR(-ENOBUFS);
411 goto out;
412 }
413
414 memcpy(n->primary_key, pkey, key_len);
415 n->dev = dev;
416 dev_hold(dev);
417
418 /* Protocol specific setup. */
419 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
420 rc = ERR_PTR(error);
421 goto out_neigh_release;
422 }
423
424 /* Device specific setup. */
425 if (n->parms->neigh_setup &&
426 (error = n->parms->neigh_setup(n)) < 0) {
427 rc = ERR_PTR(error);
428 goto out_neigh_release;
429 }
430
431 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
432
433 write_lock_bh(&tbl->lock);
434
435 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
436 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
437
438 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
439
440 if (n->parms->dead) {
441 rc = ERR_PTR(-EINVAL);
442 goto out_tbl_unlock;
443 }
444
445 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
446 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
447 neigh_hold(n1);
448 rc = n1;
449 goto out_tbl_unlock;
450 }
451 }
452
453 n->next = tbl->hash_buckets[hash_val];
454 tbl->hash_buckets[hash_val] = n;
455 n->dead = 0;
456 neigh_hold(n);
457 write_unlock_bh(&tbl->lock);
458 NEIGH_PRINTK2("neigh %p is created.\n", n);
459 rc = n;
460 out:
461 return rc;
462 out_tbl_unlock:
463 write_unlock_bh(&tbl->lock);
464 out_neigh_release:
465 neigh_release(n);
466 goto out;
467 }
468
469 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
470 struct net *net, const void *pkey,
471 struct net_device *dev, int creat)
472 {
473 struct pneigh_entry *n;
474 int key_len = tbl->key_len;
475 u32 hash_val = *(u32 *)(pkey + key_len - 4);
476
477 hash_val ^= (hash_val >> 16);
478 hash_val ^= hash_val >> 8;
479 hash_val ^= hash_val >> 4;
480 hash_val &= PNEIGH_HASHMASK;
481
482 read_lock_bh(&tbl->lock);
483
484 for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
485 if (!memcmp(n->key, pkey, key_len) &&
486 (n->net == net) &&
487 (n->dev == dev || !n->dev)) {
488 read_unlock_bh(&tbl->lock);
489 goto out;
490 }
491 }
492 read_unlock_bh(&tbl->lock);
493 n = NULL;
494 if (!creat)
495 goto out;
496
497 ASSERT_RTNL();
498
499 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
500 if (!n)
501 goto out;
502
503 n->net = hold_net(net);
504 memcpy(n->key, pkey, key_len);
505 n->dev = dev;
506 if (dev)
507 dev_hold(dev);
508
509 if (tbl->pconstructor && tbl->pconstructor(n)) {
510 if (dev)
511 dev_put(dev);
512 release_net(net);
513 kfree(n);
514 n = NULL;
515 goto out;
516 }
517
518 write_lock_bh(&tbl->lock);
519 n->next = tbl->phash_buckets[hash_val];
520 tbl->phash_buckets[hash_val] = n;
521 write_unlock_bh(&tbl->lock);
522 out:
523 return n;
524 }
525
526
527 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
528 struct net_device *dev)
529 {
530 struct pneigh_entry *n, **np;
531 int key_len = tbl->key_len;
532 u32 hash_val = *(u32 *)(pkey + key_len - 4);
533
534 hash_val ^= (hash_val >> 16);
535 hash_val ^= hash_val >> 8;
536 hash_val ^= hash_val >> 4;
537 hash_val &= PNEIGH_HASHMASK;
538
539 write_lock_bh(&tbl->lock);
540 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
541 np = &n->next) {
542 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
543 (n->net == net)) {
544 *np = n->next;
545 write_unlock_bh(&tbl->lock);
546 if (tbl->pdestructor)
547 tbl->pdestructor(n);
548 if (n->dev)
549 dev_put(n->dev);
550 release_net(n->net);
551 kfree(n);
552 return 0;
553 }
554 }
555 write_unlock_bh(&tbl->lock);
556 return -ENOENT;
557 }
558
559 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
560 {
561 struct pneigh_entry *n, **np;
562 u32 h;
563
564 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
565 np = &tbl->phash_buckets[h];
566 while ((n = *np) != NULL) {
567 if (!dev || n->dev == dev) {
568 *np = n->next;
569 if (tbl->pdestructor)
570 tbl->pdestructor(n);
571 if (n->dev)
572 dev_put(n->dev);
573 release_net(n->net);
574 kfree(n);
575 continue;
576 }
577 np = &n->next;
578 }
579 }
580 return -ENOENT;
581 }
582
583 static void neigh_parms_destroy(struct neigh_parms *parms);
584
585 static inline void neigh_parms_put(struct neigh_parms *parms)
586 {
587 if (atomic_dec_and_test(&parms->refcnt))
588 neigh_parms_destroy(parms);
589 }
590
591 /*
592 * neighbour must already be out of the table;
593 *
594 */
595 void neigh_destroy(struct neighbour *neigh)
596 {
597 struct hh_cache *hh;
598
599 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
600
601 if (!neigh->dead) {
602 printk(KERN_WARNING
603 "Destroying alive neighbour %p\n", neigh);
604 dump_stack();
605 return;
606 }
607
608 if (neigh_del_timer(neigh))
609 printk(KERN_WARNING "Impossible event.\n");
610
611 while ((hh = neigh->hh) != NULL) {
612 neigh->hh = hh->hh_next;
613 hh->hh_next = NULL;
614
615 write_seqlock_bh(&hh->hh_lock);
616 hh->hh_output = neigh_blackhole;
617 write_sequnlock_bh(&hh->hh_lock);
618 if (atomic_dec_and_test(&hh->hh_refcnt))
619 kfree(hh);
620 }
621
622 skb_queue_purge(&neigh->arp_queue);
623
624 dev_put(neigh->dev);
625 neigh_parms_put(neigh->parms);
626
627 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
628
629 atomic_dec(&neigh->tbl->entries);
630 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
631 }
632
633 /* Neighbour state is suspicious;
634 disable fast path.
635
636 Called with write_locked neigh.
637 */
638 static void neigh_suspect(struct neighbour *neigh)
639 {
640 struct hh_cache *hh;
641
642 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
643
644 neigh->output = neigh->ops->output;
645
646 for (hh = neigh->hh; hh; hh = hh->hh_next)
647 hh->hh_output = neigh->ops->output;
648 }
649
650 /* Neighbour state is OK;
651 enable fast path.
652
653 Called with write_locked neigh.
654 */
655 static void neigh_connect(struct neighbour *neigh)
656 {
657 struct hh_cache *hh;
658
659 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
660
661 neigh->output = neigh->ops->connected_output;
662
663 for (hh = neigh->hh; hh; hh = hh->hh_next)
664 hh->hh_output = neigh->ops->hh_output;
665 }
666
667 static void neigh_periodic_timer(unsigned long arg)
668 {
669 struct neigh_table *tbl = (struct neigh_table *)arg;
670 struct neighbour *n, **np;
671 unsigned long expire, now = jiffies;
672
673 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
674
675 write_lock(&tbl->lock);
676
677 /*
678 * periodically recompute ReachableTime from random function
679 */
680
681 if (time_after(now, tbl->last_rand + 300 * HZ)) {
682 struct neigh_parms *p;
683 tbl->last_rand = now;
684 for (p = &tbl->parms; p; p = p->next)
685 p->reachable_time =
686 neigh_rand_reach_time(p->base_reachable_time);
687 }
688
689 np = &tbl->hash_buckets[tbl->hash_chain_gc];
690 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
691
692 while ((n = *np) != NULL) {
693 unsigned int state;
694
695 write_lock(&n->lock);
696
697 state = n->nud_state;
698 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
699 write_unlock(&n->lock);
700 goto next_elt;
701 }
702
703 if (time_before(n->used, n->confirmed))
704 n->used = n->confirmed;
705
706 if (atomic_read(&n->refcnt) == 1 &&
707 (state == NUD_FAILED ||
708 time_after(now, n->used + n->parms->gc_staletime))) {
709 *np = n->next;
710 n->dead = 1;
711 write_unlock(&n->lock);
712 neigh_cleanup_and_release(n);
713 continue;
714 }
715 write_unlock(&n->lock);
716
717 next_elt:
718 np = &n->next;
719 }
720
721 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
722 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
723 * base_reachable_time.
724 */
725 expire = tbl->parms.base_reachable_time >> 1;
726 expire /= (tbl->hash_mask + 1);
727 if (!expire)
728 expire = 1;
729
730 if (expire>HZ)
731 mod_timer(&tbl->gc_timer, round_jiffies(now + expire));
732 else
733 mod_timer(&tbl->gc_timer, now + expire);
734
735 write_unlock(&tbl->lock);
736 }
737
738 static __inline__ int neigh_max_probes(struct neighbour *n)
739 {
740 struct neigh_parms *p = n->parms;
741 return (n->nud_state & NUD_PROBE ?
742 p->ucast_probes :
743 p->ucast_probes + p->app_probes + p->mcast_probes);
744 }
745
746 /* Called when a timer expires for a neighbour entry. */
747
748 static void neigh_timer_handler(unsigned long arg)
749 {
750 unsigned long now, next;
751 struct neighbour *neigh = (struct neighbour *)arg;
752 unsigned state;
753 int notify = 0;
754
755 write_lock(&neigh->lock);
756
757 state = neigh->nud_state;
758 now = jiffies;
759 next = now + HZ;
760
761 if (!(state & NUD_IN_TIMER)) {
762 #ifndef CONFIG_SMP
763 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
764 #endif
765 goto out;
766 }
767
768 if (state & NUD_REACHABLE) {
769 if (time_before_eq(now,
770 neigh->confirmed + neigh->parms->reachable_time)) {
771 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
772 next = neigh->confirmed + neigh->parms->reachable_time;
773 } else if (time_before_eq(now,
774 neigh->used + neigh->parms->delay_probe_time)) {
775 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
776 neigh->nud_state = NUD_DELAY;
777 neigh->updated = jiffies;
778 neigh_suspect(neigh);
779 next = now + neigh->parms->delay_probe_time;
780 } else {
781 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
782 neigh->nud_state = NUD_STALE;
783 neigh->updated = jiffies;
784 neigh_suspect(neigh);
785 notify = 1;
786 }
787 } else if (state & NUD_DELAY) {
788 if (time_before_eq(now,
789 neigh->confirmed + neigh->parms->delay_probe_time)) {
790 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
791 neigh->nud_state = NUD_REACHABLE;
792 neigh->updated = jiffies;
793 neigh_connect(neigh);
794 notify = 1;
795 next = neigh->confirmed + neigh->parms->reachable_time;
796 } else {
797 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
798 neigh->nud_state = NUD_PROBE;
799 neigh->updated = jiffies;
800 atomic_set(&neigh->probes, 0);
801 next = now + neigh->parms->retrans_time;
802 }
803 } else {
804 /* NUD_PROBE|NUD_INCOMPLETE */
805 next = now + neigh->parms->retrans_time;
806 }
807
808 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
809 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
810 struct sk_buff *skb;
811
812 neigh->nud_state = NUD_FAILED;
813 neigh->updated = jiffies;
814 notify = 1;
815 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
816 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
817
818 /* It is very thin place. report_unreachable is very complicated
819 routine. Particularly, it can hit the same neighbour entry!
820
821 So that, we try to be accurate and avoid dead loop. --ANK
822 */
823 while (neigh->nud_state == NUD_FAILED &&
824 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
825 write_unlock(&neigh->lock);
826 neigh->ops->error_report(neigh, skb);
827 write_lock(&neigh->lock);
828 }
829 skb_queue_purge(&neigh->arp_queue);
830 }
831
832 if (neigh->nud_state & NUD_IN_TIMER) {
833 if (time_before(next, jiffies + HZ/2))
834 next = jiffies + HZ/2;
835 if (!mod_timer(&neigh->timer, next))
836 neigh_hold(neigh);
837 }
838 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
839 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
840 /* keep skb alive even if arp_queue overflows */
841 if (skb)
842 skb = skb_copy(skb, GFP_ATOMIC);
843 write_unlock(&neigh->lock);
844 neigh->ops->solicit(neigh, skb);
845 atomic_inc(&neigh->probes);
846 if (skb)
847 kfree_skb(skb);
848 } else {
849 out:
850 write_unlock(&neigh->lock);
851 }
852
853 if (notify)
854 neigh_update_notify(neigh);
855
856 neigh_release(neigh);
857 }
858
859 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
860 {
861 int rc;
862 unsigned long now;
863
864 write_lock_bh(&neigh->lock);
865
866 rc = 0;
867 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
868 goto out_unlock_bh;
869
870 now = jiffies;
871
872 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
873 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
874 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
875 neigh->nud_state = NUD_INCOMPLETE;
876 neigh->updated = jiffies;
877 neigh_add_timer(neigh, now + 1);
878 } else {
879 neigh->nud_state = NUD_FAILED;
880 neigh->updated = jiffies;
881 write_unlock_bh(&neigh->lock);
882
883 if (skb)
884 kfree_skb(skb);
885 return 1;
886 }
887 } else if (neigh->nud_state & NUD_STALE) {
888 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
889 neigh->nud_state = NUD_DELAY;
890 neigh->updated = jiffies;
891 neigh_add_timer(neigh,
892 jiffies + neigh->parms->delay_probe_time);
893 }
894
895 if (neigh->nud_state == NUD_INCOMPLETE) {
896 if (skb) {
897 if (skb_queue_len(&neigh->arp_queue) >=
898 neigh->parms->queue_len) {
899 struct sk_buff *buff;
900 buff = neigh->arp_queue.next;
901 __skb_unlink(buff, &neigh->arp_queue);
902 kfree_skb(buff);
903 }
904 __skb_queue_tail(&neigh->arp_queue, skb);
905 }
906 rc = 1;
907 }
908 out_unlock_bh:
909 write_unlock_bh(&neigh->lock);
910 return rc;
911 }
912
913 static void neigh_update_hhs(struct neighbour *neigh)
914 {
915 struct hh_cache *hh;
916 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
917 = neigh->dev->header_ops->cache_update;
918
919 if (update) {
920 for (hh = neigh->hh; hh; hh = hh->hh_next) {
921 write_seqlock_bh(&hh->hh_lock);
922 update(hh, neigh->dev, neigh->ha);
923 write_sequnlock_bh(&hh->hh_lock);
924 }
925 }
926 }
927
928
929
930 /* Generic update routine.
931 -- lladdr is new lladdr or NULL, if it is not supplied.
932 -- new is new state.
933 -- flags
934 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
935 if it is different.
936 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
937 lladdr instead of overriding it
938 if it is different.
939 It also allows to retain current state
940 if lladdr is unchanged.
941 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
942
943 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
944 NTF_ROUTER flag.
945 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
946 a router.
947
948 Caller MUST hold reference count on the entry.
949 */
950
951 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
952 u32 flags)
953 {
954 u8 old;
955 int err;
956 int notify = 0;
957 struct net_device *dev;
958 int update_isrouter = 0;
959
960 write_lock_bh(&neigh->lock);
961
962 dev = neigh->dev;
963 old = neigh->nud_state;
964 err = -EPERM;
965
966 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
967 (old & (NUD_NOARP | NUD_PERMANENT)))
968 goto out;
969
970 if (!(new & NUD_VALID)) {
971 neigh_del_timer(neigh);
972 if (old & NUD_CONNECTED)
973 neigh_suspect(neigh);
974 neigh->nud_state = new;
975 err = 0;
976 notify = old & NUD_VALID;
977 goto out;
978 }
979
980 /* Compare new lladdr with cached one */
981 if (!dev->addr_len) {
982 /* First case: device needs no address. */
983 lladdr = neigh->ha;
984 } else if (lladdr) {
985 /* The second case: if something is already cached
986 and a new address is proposed:
987 - compare new & old
988 - if they are different, check override flag
989 */
990 if ((old & NUD_VALID) &&
991 !memcmp(lladdr, neigh->ha, dev->addr_len))
992 lladdr = neigh->ha;
993 } else {
994 /* No address is supplied; if we know something,
995 use it, otherwise discard the request.
996 */
997 err = -EINVAL;
998 if (!(old & NUD_VALID))
999 goto out;
1000 lladdr = neigh->ha;
1001 }
1002
1003 if (new & NUD_CONNECTED)
1004 neigh->confirmed = jiffies;
1005 neigh->updated = jiffies;
1006
1007 /* If entry was valid and address is not changed,
1008 do not change entry state, if new one is STALE.
1009 */
1010 err = 0;
1011 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1012 if (old & NUD_VALID) {
1013 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1014 update_isrouter = 0;
1015 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1016 (old & NUD_CONNECTED)) {
1017 lladdr = neigh->ha;
1018 new = NUD_STALE;
1019 } else
1020 goto out;
1021 } else {
1022 if (lladdr == neigh->ha && new == NUD_STALE &&
1023 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1024 (old & NUD_CONNECTED))
1025 )
1026 new = old;
1027 }
1028 }
1029
1030 if (new != old) {
1031 neigh_del_timer(neigh);
1032 if (new & NUD_IN_TIMER)
1033 neigh_add_timer(neigh, (jiffies +
1034 ((new & NUD_REACHABLE) ?
1035 neigh->parms->reachable_time :
1036 0)));
1037 neigh->nud_state = new;
1038 }
1039
1040 if (lladdr != neigh->ha) {
1041 memcpy(&neigh->ha, lladdr, dev->addr_len);
1042 neigh_update_hhs(neigh);
1043 if (!(new & NUD_CONNECTED))
1044 neigh->confirmed = jiffies -
1045 (neigh->parms->base_reachable_time << 1);
1046 notify = 1;
1047 }
1048 if (new == old)
1049 goto out;
1050 if (new & NUD_CONNECTED)
1051 neigh_connect(neigh);
1052 else
1053 neigh_suspect(neigh);
1054 if (!(old & NUD_VALID)) {
1055 struct sk_buff *skb;
1056
1057 /* Again: avoid dead loop if something went wrong */
1058
1059 while (neigh->nud_state & NUD_VALID &&
1060 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1061 struct neighbour *n1 = neigh;
1062 write_unlock_bh(&neigh->lock);
1063 /* On shaper/eql skb->dst->neighbour != neigh :( */
1064 if (skb->dst && skb->dst->neighbour)
1065 n1 = skb->dst->neighbour;
1066 n1->output(skb);
1067 write_lock_bh(&neigh->lock);
1068 }
1069 skb_queue_purge(&neigh->arp_queue);
1070 }
1071 out:
1072 if (update_isrouter) {
1073 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1074 (neigh->flags | NTF_ROUTER) :
1075 (neigh->flags & ~NTF_ROUTER);
1076 }
1077 write_unlock_bh(&neigh->lock);
1078
1079 if (notify)
1080 neigh_update_notify(neigh);
1081
1082 return err;
1083 }
1084
1085 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1086 u8 *lladdr, void *saddr,
1087 struct net_device *dev)
1088 {
1089 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1090 lladdr || !dev->addr_len);
1091 if (neigh)
1092 neigh_update(neigh, lladdr, NUD_STALE,
1093 NEIGH_UPDATE_F_OVERRIDE);
1094 return neigh;
1095 }
1096
1097 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1098 __be16 protocol)
1099 {
1100 struct hh_cache *hh;
1101 struct net_device *dev = dst->dev;
1102
1103 for (hh = n->hh; hh; hh = hh->hh_next)
1104 if (hh->hh_type == protocol)
1105 break;
1106
1107 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1108 seqlock_init(&hh->hh_lock);
1109 hh->hh_type = protocol;
1110 atomic_set(&hh->hh_refcnt, 0);
1111 hh->hh_next = NULL;
1112
1113 if (dev->header_ops->cache(n, hh)) {
1114 kfree(hh);
1115 hh = NULL;
1116 } else {
1117 atomic_inc(&hh->hh_refcnt);
1118 hh->hh_next = n->hh;
1119 n->hh = hh;
1120 if (n->nud_state & NUD_CONNECTED)
1121 hh->hh_output = n->ops->hh_output;
1122 else
1123 hh->hh_output = n->ops->output;
1124 }
1125 }
1126 if (hh) {
1127 atomic_inc(&hh->hh_refcnt);
1128 dst->hh = hh;
1129 }
1130 }
1131
1132 /* This function can be used in contexts, where only old dev_queue_xmit
1133 worked, f.e. if you want to override normal output path (eql, shaper),
1134 but resolution is not made yet.
1135 */
1136
1137 int neigh_compat_output(struct sk_buff *skb)
1138 {
1139 struct net_device *dev = skb->dev;
1140
1141 __skb_pull(skb, skb_network_offset(skb));
1142
1143 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1144 skb->len) < 0 &&
1145 dev->header_ops->rebuild(skb))
1146 return 0;
1147
1148 return dev_queue_xmit(skb);
1149 }
1150
1151 /* Slow and careful. */
1152
1153 int neigh_resolve_output(struct sk_buff *skb)
1154 {
1155 struct dst_entry *dst = skb->dst;
1156 struct neighbour *neigh;
1157 int rc = 0;
1158
1159 if (!dst || !(neigh = dst->neighbour))
1160 goto discard;
1161
1162 __skb_pull(skb, skb_network_offset(skb));
1163
1164 if (!neigh_event_send(neigh, skb)) {
1165 int err;
1166 struct net_device *dev = neigh->dev;
1167 if (dev->header_ops->cache && !dst->hh) {
1168 write_lock_bh(&neigh->lock);
1169 if (!dst->hh)
1170 neigh_hh_init(neigh, dst, dst->ops->protocol);
1171 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1172 neigh->ha, NULL, skb->len);
1173 write_unlock_bh(&neigh->lock);
1174 } else {
1175 read_lock_bh(&neigh->lock);
1176 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1177 neigh->ha, NULL, skb->len);
1178 read_unlock_bh(&neigh->lock);
1179 }
1180 if (err >= 0)
1181 rc = neigh->ops->queue_xmit(skb);
1182 else
1183 goto out_kfree_skb;
1184 }
1185 out:
1186 return rc;
1187 discard:
1188 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1189 dst, dst ? dst->neighbour : NULL);
1190 out_kfree_skb:
1191 rc = -EINVAL;
1192 kfree_skb(skb);
1193 goto out;
1194 }
1195
1196 /* As fast as possible without hh cache */
1197
1198 int neigh_connected_output(struct sk_buff *skb)
1199 {
1200 int err;
1201 struct dst_entry *dst = skb->dst;
1202 struct neighbour *neigh = dst->neighbour;
1203 struct net_device *dev = neigh->dev;
1204
1205 __skb_pull(skb, skb_network_offset(skb));
1206
1207 read_lock_bh(&neigh->lock);
1208 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1209 neigh->ha, NULL, skb->len);
1210 read_unlock_bh(&neigh->lock);
1211 if (err >= 0)
1212 err = neigh->ops->queue_xmit(skb);
1213 else {
1214 err = -EINVAL;
1215 kfree_skb(skb);
1216 }
1217 return err;
1218 }
1219
1220 static void neigh_proxy_process(unsigned long arg)
1221 {
1222 struct neigh_table *tbl = (struct neigh_table *)arg;
1223 long sched_next = 0;
1224 unsigned long now = jiffies;
1225 struct sk_buff *skb;
1226
1227 spin_lock(&tbl->proxy_queue.lock);
1228
1229 skb = tbl->proxy_queue.next;
1230
1231 while (skb != (struct sk_buff *)&tbl->proxy_queue) {
1232 struct sk_buff *back = skb;
1233 long tdif = NEIGH_CB(back)->sched_next - now;
1234
1235 skb = skb->next;
1236 if (tdif <= 0) {
1237 struct net_device *dev = back->dev;
1238 __skb_unlink(back, &tbl->proxy_queue);
1239 if (tbl->proxy_redo && netif_running(dev))
1240 tbl->proxy_redo(back);
1241 else
1242 kfree_skb(back);
1243
1244 dev_put(dev);
1245 } else if (!sched_next || tdif < sched_next)
1246 sched_next = tdif;
1247 }
1248 del_timer(&tbl->proxy_timer);
1249 if (sched_next)
1250 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1251 spin_unlock(&tbl->proxy_queue.lock);
1252 }
1253
1254 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1255 struct sk_buff *skb)
1256 {
1257 unsigned long now = jiffies;
1258 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1259
1260 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1261 kfree_skb(skb);
1262 return;
1263 }
1264
1265 NEIGH_CB(skb)->sched_next = sched_next;
1266 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1267
1268 spin_lock(&tbl->proxy_queue.lock);
1269 if (del_timer(&tbl->proxy_timer)) {
1270 if (time_before(tbl->proxy_timer.expires, sched_next))
1271 sched_next = tbl->proxy_timer.expires;
1272 }
1273 dst_release(skb->dst);
1274 skb->dst = NULL;
1275 dev_hold(skb->dev);
1276 __skb_queue_tail(&tbl->proxy_queue, skb);
1277 mod_timer(&tbl->proxy_timer, sched_next);
1278 spin_unlock(&tbl->proxy_queue.lock);
1279 }
1280
1281 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl,
1282 struct net *net, int ifindex)
1283 {
1284 struct neigh_parms *p;
1285
1286 for (p = &tbl->parms; p; p = p->next) {
1287 if ((p->dev && p->dev->ifindex == ifindex && p->net == net) ||
1288 (!p->dev && !ifindex))
1289 return p;
1290 }
1291
1292 return NULL;
1293 }
1294
1295 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1296 struct neigh_table *tbl)
1297 {
1298 struct neigh_parms *p, *ref;
1299 struct net *net;
1300
1301 net = dev_net(dev);
1302 ref = lookup_neigh_params(tbl, net, 0);
1303 if (!ref)
1304 return NULL;
1305
1306 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1307 if (p) {
1308 p->tbl = tbl;
1309 atomic_set(&p->refcnt, 1);
1310 INIT_RCU_HEAD(&p->rcu_head);
1311 p->reachable_time =
1312 neigh_rand_reach_time(p->base_reachable_time);
1313
1314 if (dev->neigh_setup && dev->neigh_setup(dev, p)) {
1315 kfree(p);
1316 return NULL;
1317 }
1318
1319 dev_hold(dev);
1320 p->dev = dev;
1321 p->net = hold_net(net);
1322 p->sysctl_table = NULL;
1323 write_lock_bh(&tbl->lock);
1324 p->next = tbl->parms.next;
1325 tbl->parms.next = p;
1326 write_unlock_bh(&tbl->lock);
1327 }
1328 return p;
1329 }
1330
1331 static void neigh_rcu_free_parms(struct rcu_head *head)
1332 {
1333 struct neigh_parms *parms =
1334 container_of(head, struct neigh_parms, rcu_head);
1335
1336 neigh_parms_put(parms);
1337 }
1338
1339 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1340 {
1341 struct neigh_parms **p;
1342
1343 if (!parms || parms == &tbl->parms)
1344 return;
1345 write_lock_bh(&tbl->lock);
1346 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1347 if (*p == parms) {
1348 *p = parms->next;
1349 parms->dead = 1;
1350 write_unlock_bh(&tbl->lock);
1351 if (parms->dev)
1352 dev_put(parms->dev);
1353 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1354 return;
1355 }
1356 }
1357 write_unlock_bh(&tbl->lock);
1358 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1359 }
1360
1361 static void neigh_parms_destroy(struct neigh_parms *parms)
1362 {
1363 release_net(parms->net);
1364 kfree(parms);
1365 }
1366
1367 static struct lock_class_key neigh_table_proxy_queue_class;
1368
1369 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1370 {
1371 unsigned long now = jiffies;
1372 unsigned long phsize;
1373
1374 tbl->parms.net = &init_net;
1375 atomic_set(&tbl->parms.refcnt, 1);
1376 INIT_RCU_HEAD(&tbl->parms.rcu_head);
1377 tbl->parms.reachable_time =
1378 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1379
1380 if (!tbl->kmem_cachep)
1381 tbl->kmem_cachep =
1382 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1383 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1384 NULL);
1385 tbl->stats = alloc_percpu(struct neigh_statistics);
1386 if (!tbl->stats)
1387 panic("cannot create neighbour cache statistics");
1388
1389 #ifdef CONFIG_PROC_FS
1390 tbl->pde = proc_create(tbl->id, 0, init_net.proc_net_stat,
1391 &neigh_stat_seq_fops);
1392 if (!tbl->pde)
1393 panic("cannot create neighbour proc dir entry");
1394 tbl->pde->data = tbl;
1395 #endif
1396
1397 tbl->hash_mask = 1;
1398 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1399
1400 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1401 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1402
1403 if (!tbl->hash_buckets || !tbl->phash_buckets)
1404 panic("cannot allocate neighbour cache hashes");
1405
1406 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1407
1408 rwlock_init(&tbl->lock);
1409 setup_timer(&tbl->gc_timer, neigh_periodic_timer, (unsigned long)tbl);
1410 tbl->gc_timer.expires = now + 1;
1411 add_timer(&tbl->gc_timer);
1412
1413 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1414 skb_queue_head_init_class(&tbl->proxy_queue,
1415 &neigh_table_proxy_queue_class);
1416
1417 tbl->last_flush = now;
1418 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1419 }
1420
1421 void neigh_table_init(struct neigh_table *tbl)
1422 {
1423 struct neigh_table *tmp;
1424
1425 neigh_table_init_no_netlink(tbl);
1426 write_lock(&neigh_tbl_lock);
1427 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1428 if (tmp->family == tbl->family)
1429 break;
1430 }
1431 tbl->next = neigh_tables;
1432 neigh_tables = tbl;
1433 write_unlock(&neigh_tbl_lock);
1434
1435 if (unlikely(tmp)) {
1436 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1437 "family %d\n", tbl->family);
1438 dump_stack();
1439 }
1440 }
1441
1442 int neigh_table_clear(struct neigh_table *tbl)
1443 {
1444 struct neigh_table **tp;
1445
1446 /* It is not clean... Fix it to unload IPv6 module safely */
1447 del_timer_sync(&tbl->gc_timer);
1448 del_timer_sync(&tbl->proxy_timer);
1449 pneigh_queue_purge(&tbl->proxy_queue);
1450 neigh_ifdown(tbl, NULL);
1451 if (atomic_read(&tbl->entries))
1452 printk(KERN_CRIT "neighbour leakage\n");
1453 write_lock(&neigh_tbl_lock);
1454 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1455 if (*tp == tbl) {
1456 *tp = tbl->next;
1457 break;
1458 }
1459 }
1460 write_unlock(&neigh_tbl_lock);
1461
1462 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1463 tbl->hash_buckets = NULL;
1464
1465 kfree(tbl->phash_buckets);
1466 tbl->phash_buckets = NULL;
1467
1468 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1469
1470 free_percpu(tbl->stats);
1471 tbl->stats = NULL;
1472
1473 kmem_cache_destroy(tbl->kmem_cachep);
1474 tbl->kmem_cachep = NULL;
1475
1476 return 0;
1477 }
1478
1479 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1480 {
1481 struct net *net = skb->sk->sk_net;
1482 struct ndmsg *ndm;
1483 struct nlattr *dst_attr;
1484 struct neigh_table *tbl;
1485 struct net_device *dev = NULL;
1486 int err = -EINVAL;
1487
1488 if (nlmsg_len(nlh) < sizeof(*ndm))
1489 goto out;
1490
1491 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1492 if (dst_attr == NULL)
1493 goto out;
1494
1495 ndm = nlmsg_data(nlh);
1496 if (ndm->ndm_ifindex) {
1497 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1498 if (dev == NULL) {
1499 err = -ENODEV;
1500 goto out;
1501 }
1502 }
1503
1504 read_lock(&neigh_tbl_lock);
1505 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1506 struct neighbour *neigh;
1507
1508 if (tbl->family != ndm->ndm_family)
1509 continue;
1510 read_unlock(&neigh_tbl_lock);
1511
1512 if (nla_len(dst_attr) < tbl->key_len)
1513 goto out_dev_put;
1514
1515 if (ndm->ndm_flags & NTF_PROXY) {
1516 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1517 goto out_dev_put;
1518 }
1519
1520 if (dev == NULL)
1521 goto out_dev_put;
1522
1523 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1524 if (neigh == NULL) {
1525 err = -ENOENT;
1526 goto out_dev_put;
1527 }
1528
1529 err = neigh_update(neigh, NULL, NUD_FAILED,
1530 NEIGH_UPDATE_F_OVERRIDE |
1531 NEIGH_UPDATE_F_ADMIN);
1532 neigh_release(neigh);
1533 goto out_dev_put;
1534 }
1535 read_unlock(&neigh_tbl_lock);
1536 err = -EAFNOSUPPORT;
1537
1538 out_dev_put:
1539 if (dev)
1540 dev_put(dev);
1541 out:
1542 return err;
1543 }
1544
1545 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1546 {
1547 struct net *net = skb->sk->sk_net;
1548 struct ndmsg *ndm;
1549 struct nlattr *tb[NDA_MAX+1];
1550 struct neigh_table *tbl;
1551 struct net_device *dev = NULL;
1552 int err;
1553
1554 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1555 if (err < 0)
1556 goto out;
1557
1558 err = -EINVAL;
1559 if (tb[NDA_DST] == NULL)
1560 goto out;
1561
1562 ndm = nlmsg_data(nlh);
1563 if (ndm->ndm_ifindex) {
1564 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1565 if (dev == NULL) {
1566 err = -ENODEV;
1567 goto out;
1568 }
1569
1570 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1571 goto out_dev_put;
1572 }
1573
1574 read_lock(&neigh_tbl_lock);
1575 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1576 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1577 struct neighbour *neigh;
1578 void *dst, *lladdr;
1579
1580 if (tbl->family != ndm->ndm_family)
1581 continue;
1582 read_unlock(&neigh_tbl_lock);
1583
1584 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1585 goto out_dev_put;
1586 dst = nla_data(tb[NDA_DST]);
1587 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1588
1589 if (ndm->ndm_flags & NTF_PROXY) {
1590 struct pneigh_entry *pn;
1591
1592 err = -ENOBUFS;
1593 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1594 if (pn) {
1595 pn->flags = ndm->ndm_flags;
1596 err = 0;
1597 }
1598 goto out_dev_put;
1599 }
1600
1601 if (dev == NULL)
1602 goto out_dev_put;
1603
1604 neigh = neigh_lookup(tbl, dst, dev);
1605 if (neigh == NULL) {
1606 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1607 err = -ENOENT;
1608 goto out_dev_put;
1609 }
1610
1611 neigh = __neigh_lookup_errno(tbl, dst, dev);
1612 if (IS_ERR(neigh)) {
1613 err = PTR_ERR(neigh);
1614 goto out_dev_put;
1615 }
1616 } else {
1617 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1618 err = -EEXIST;
1619 neigh_release(neigh);
1620 goto out_dev_put;
1621 }
1622
1623 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1624 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1625 }
1626
1627 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1628 neigh_release(neigh);
1629 goto out_dev_put;
1630 }
1631
1632 read_unlock(&neigh_tbl_lock);
1633 err = -EAFNOSUPPORT;
1634
1635 out_dev_put:
1636 if (dev)
1637 dev_put(dev);
1638 out:
1639 return err;
1640 }
1641
1642 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1643 {
1644 struct nlattr *nest;
1645
1646 nest = nla_nest_start(skb, NDTA_PARMS);
1647 if (nest == NULL)
1648 return -ENOBUFS;
1649
1650 if (parms->dev)
1651 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1652
1653 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1654 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1655 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1656 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1657 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1658 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1659 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1660 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1661 parms->base_reachable_time);
1662 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1663 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1664 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1665 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1666 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1667 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1668
1669 return nla_nest_end(skb, nest);
1670
1671 nla_put_failure:
1672 return nla_nest_cancel(skb, nest);
1673 }
1674
1675 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1676 u32 pid, u32 seq, int type, int flags)
1677 {
1678 struct nlmsghdr *nlh;
1679 struct ndtmsg *ndtmsg;
1680
1681 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1682 if (nlh == NULL)
1683 return -EMSGSIZE;
1684
1685 ndtmsg = nlmsg_data(nlh);
1686
1687 read_lock_bh(&tbl->lock);
1688 ndtmsg->ndtm_family = tbl->family;
1689 ndtmsg->ndtm_pad1 = 0;
1690 ndtmsg->ndtm_pad2 = 0;
1691
1692 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1693 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1694 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1695 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1696 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1697
1698 {
1699 unsigned long now = jiffies;
1700 unsigned int flush_delta = now - tbl->last_flush;
1701 unsigned int rand_delta = now - tbl->last_rand;
1702
1703 struct ndt_config ndc = {
1704 .ndtc_key_len = tbl->key_len,
1705 .ndtc_entry_size = tbl->entry_size,
1706 .ndtc_entries = atomic_read(&tbl->entries),
1707 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1708 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1709 .ndtc_hash_rnd = tbl->hash_rnd,
1710 .ndtc_hash_mask = tbl->hash_mask,
1711 .ndtc_hash_chain_gc = tbl->hash_chain_gc,
1712 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1713 };
1714
1715 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1716 }
1717
1718 {
1719 int cpu;
1720 struct ndt_stats ndst;
1721
1722 memset(&ndst, 0, sizeof(ndst));
1723
1724 for_each_possible_cpu(cpu) {
1725 struct neigh_statistics *st;
1726
1727 st = per_cpu_ptr(tbl->stats, cpu);
1728 ndst.ndts_allocs += st->allocs;
1729 ndst.ndts_destroys += st->destroys;
1730 ndst.ndts_hash_grows += st->hash_grows;
1731 ndst.ndts_res_failed += st->res_failed;
1732 ndst.ndts_lookups += st->lookups;
1733 ndst.ndts_hits += st->hits;
1734 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1735 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1736 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1737 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1738 }
1739
1740 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1741 }
1742
1743 BUG_ON(tbl->parms.dev);
1744 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1745 goto nla_put_failure;
1746
1747 read_unlock_bh(&tbl->lock);
1748 return nlmsg_end(skb, nlh);
1749
1750 nla_put_failure:
1751 read_unlock_bh(&tbl->lock);
1752 nlmsg_cancel(skb, nlh);
1753 return -EMSGSIZE;
1754 }
1755
1756 static int neightbl_fill_param_info(struct sk_buff *skb,
1757 struct neigh_table *tbl,
1758 struct neigh_parms *parms,
1759 u32 pid, u32 seq, int type,
1760 unsigned int flags)
1761 {
1762 struct ndtmsg *ndtmsg;
1763 struct nlmsghdr *nlh;
1764
1765 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1766 if (nlh == NULL)
1767 return -EMSGSIZE;
1768
1769 ndtmsg = nlmsg_data(nlh);
1770
1771 read_lock_bh(&tbl->lock);
1772 ndtmsg->ndtm_family = tbl->family;
1773 ndtmsg->ndtm_pad1 = 0;
1774 ndtmsg->ndtm_pad2 = 0;
1775
1776 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1777 neightbl_fill_parms(skb, parms) < 0)
1778 goto errout;
1779
1780 read_unlock_bh(&tbl->lock);
1781 return nlmsg_end(skb, nlh);
1782 errout:
1783 read_unlock_bh(&tbl->lock);
1784 nlmsg_cancel(skb, nlh);
1785 return -EMSGSIZE;
1786 }
1787
1788 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1789 [NDTA_NAME] = { .type = NLA_STRING },
1790 [NDTA_THRESH1] = { .type = NLA_U32 },
1791 [NDTA_THRESH2] = { .type = NLA_U32 },
1792 [NDTA_THRESH3] = { .type = NLA_U32 },
1793 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1794 [NDTA_PARMS] = { .type = NLA_NESTED },
1795 };
1796
1797 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1798 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1799 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1800 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1801 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1802 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1803 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1804 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1805 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1806 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1807 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1808 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1809 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1810 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1811 };
1812
1813 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1814 {
1815 struct net *net = skb->sk->sk_net;
1816 struct neigh_table *tbl;
1817 struct ndtmsg *ndtmsg;
1818 struct nlattr *tb[NDTA_MAX+1];
1819 int err;
1820
1821 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1822 nl_neightbl_policy);
1823 if (err < 0)
1824 goto errout;
1825
1826 if (tb[NDTA_NAME] == NULL) {
1827 err = -EINVAL;
1828 goto errout;
1829 }
1830
1831 ndtmsg = nlmsg_data(nlh);
1832 read_lock(&neigh_tbl_lock);
1833 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1834 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1835 continue;
1836
1837 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1838 break;
1839 }
1840
1841 if (tbl == NULL) {
1842 err = -ENOENT;
1843 goto errout_locked;
1844 }
1845
1846 /*
1847 * We acquire tbl->lock to be nice to the periodic timers and
1848 * make sure they always see a consistent set of values.
1849 */
1850 write_lock_bh(&tbl->lock);
1851
1852 if (tb[NDTA_PARMS]) {
1853 struct nlattr *tbp[NDTPA_MAX+1];
1854 struct neigh_parms *p;
1855 int i, ifindex = 0;
1856
1857 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1858 nl_ntbl_parm_policy);
1859 if (err < 0)
1860 goto errout_tbl_lock;
1861
1862 if (tbp[NDTPA_IFINDEX])
1863 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1864
1865 p = lookup_neigh_params(tbl, net, ifindex);
1866 if (p == NULL) {
1867 err = -ENOENT;
1868 goto errout_tbl_lock;
1869 }
1870
1871 for (i = 1; i <= NDTPA_MAX; i++) {
1872 if (tbp[i] == NULL)
1873 continue;
1874
1875 switch (i) {
1876 case NDTPA_QUEUE_LEN:
1877 p->queue_len = nla_get_u32(tbp[i]);
1878 break;
1879 case NDTPA_PROXY_QLEN:
1880 p->proxy_qlen = nla_get_u32(tbp[i]);
1881 break;
1882 case NDTPA_APP_PROBES:
1883 p->app_probes = nla_get_u32(tbp[i]);
1884 break;
1885 case NDTPA_UCAST_PROBES:
1886 p->ucast_probes = nla_get_u32(tbp[i]);
1887 break;
1888 case NDTPA_MCAST_PROBES:
1889 p->mcast_probes = nla_get_u32(tbp[i]);
1890 break;
1891 case NDTPA_BASE_REACHABLE_TIME:
1892 p->base_reachable_time = nla_get_msecs(tbp[i]);
1893 break;
1894 case NDTPA_GC_STALETIME:
1895 p->gc_staletime = nla_get_msecs(tbp[i]);
1896 break;
1897 case NDTPA_DELAY_PROBE_TIME:
1898 p->delay_probe_time = nla_get_msecs(tbp[i]);
1899 break;
1900 case NDTPA_RETRANS_TIME:
1901 p->retrans_time = nla_get_msecs(tbp[i]);
1902 break;
1903 case NDTPA_ANYCAST_DELAY:
1904 p->anycast_delay = nla_get_msecs(tbp[i]);
1905 break;
1906 case NDTPA_PROXY_DELAY:
1907 p->proxy_delay = nla_get_msecs(tbp[i]);
1908 break;
1909 case NDTPA_LOCKTIME:
1910 p->locktime = nla_get_msecs(tbp[i]);
1911 break;
1912 }
1913 }
1914 }
1915
1916 if (tb[NDTA_THRESH1])
1917 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
1918
1919 if (tb[NDTA_THRESH2])
1920 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
1921
1922 if (tb[NDTA_THRESH3])
1923 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
1924
1925 if (tb[NDTA_GC_INTERVAL])
1926 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
1927
1928 err = 0;
1929
1930 errout_tbl_lock:
1931 write_unlock_bh(&tbl->lock);
1932 errout_locked:
1933 read_unlock(&neigh_tbl_lock);
1934 errout:
1935 return err;
1936 }
1937
1938 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1939 {
1940 struct net *net = skb->sk->sk_net;
1941 int family, tidx, nidx = 0;
1942 int tbl_skip = cb->args[0];
1943 int neigh_skip = cb->args[1];
1944 struct neigh_table *tbl;
1945
1946 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
1947
1948 read_lock(&neigh_tbl_lock);
1949 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
1950 struct neigh_parms *p;
1951
1952 if (tidx < tbl_skip || (family && tbl->family != family))
1953 continue;
1954
1955 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
1956 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
1957 NLM_F_MULTI) <= 0)
1958 break;
1959
1960 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
1961 if (net != p->net)
1962 continue;
1963
1964 if (nidx++ < neigh_skip)
1965 continue;
1966
1967 if (neightbl_fill_param_info(skb, tbl, p,
1968 NETLINK_CB(cb->skb).pid,
1969 cb->nlh->nlmsg_seq,
1970 RTM_NEWNEIGHTBL,
1971 NLM_F_MULTI) <= 0)
1972 goto out;
1973 }
1974
1975 neigh_skip = 0;
1976 }
1977 out:
1978 read_unlock(&neigh_tbl_lock);
1979 cb->args[0] = tidx;
1980 cb->args[1] = nidx;
1981
1982 return skb->len;
1983 }
1984
1985 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
1986 u32 pid, u32 seq, int type, unsigned int flags)
1987 {
1988 unsigned long now = jiffies;
1989 struct nda_cacheinfo ci;
1990 struct nlmsghdr *nlh;
1991 struct ndmsg *ndm;
1992
1993 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
1994 if (nlh == NULL)
1995 return -EMSGSIZE;
1996
1997 ndm = nlmsg_data(nlh);
1998 ndm->ndm_family = neigh->ops->family;
1999 ndm->ndm_pad1 = 0;
2000 ndm->ndm_pad2 = 0;
2001 ndm->ndm_flags = neigh->flags;
2002 ndm->ndm_type = neigh->type;
2003 ndm->ndm_ifindex = neigh->dev->ifindex;
2004
2005 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2006
2007 read_lock_bh(&neigh->lock);
2008 ndm->ndm_state = neigh->nud_state;
2009 if ((neigh->nud_state & NUD_VALID) &&
2010 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
2011 read_unlock_bh(&neigh->lock);
2012 goto nla_put_failure;
2013 }
2014
2015 ci.ndm_used = now - neigh->used;
2016 ci.ndm_confirmed = now - neigh->confirmed;
2017 ci.ndm_updated = now - neigh->updated;
2018 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2019 read_unlock_bh(&neigh->lock);
2020
2021 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2022 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2023
2024 return nlmsg_end(skb, nlh);
2025
2026 nla_put_failure:
2027 nlmsg_cancel(skb, nlh);
2028 return -EMSGSIZE;
2029 }
2030
2031 static void neigh_update_notify(struct neighbour *neigh)
2032 {
2033 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2034 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2035 }
2036
2037 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2038 struct netlink_callback *cb)
2039 {
2040 struct net * net = skb->sk->sk_net;
2041 struct neighbour *n;
2042 int rc, h, s_h = cb->args[1];
2043 int idx, s_idx = idx = cb->args[2];
2044
2045 read_lock_bh(&tbl->lock);
2046 for (h = 0; h <= tbl->hash_mask; h++) {
2047 if (h < s_h)
2048 continue;
2049 if (h > s_h)
2050 s_idx = 0;
2051 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next) {
2052 int lidx;
2053 if (dev_net(n->dev) != net)
2054 continue;
2055 lidx = idx++;
2056 if (lidx < s_idx)
2057 continue;
2058 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2059 cb->nlh->nlmsg_seq,
2060 RTM_NEWNEIGH,
2061 NLM_F_MULTI) <= 0) {
2062 read_unlock_bh(&tbl->lock);
2063 rc = -1;
2064 goto out;
2065 }
2066 }
2067 }
2068 read_unlock_bh(&tbl->lock);
2069 rc = skb->len;
2070 out:
2071 cb->args[1] = h;
2072 cb->args[2] = idx;
2073 return rc;
2074 }
2075
2076 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2077 {
2078 struct neigh_table *tbl;
2079 int t, family, s_t;
2080
2081 read_lock(&neigh_tbl_lock);
2082 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2083 s_t = cb->args[0];
2084
2085 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2086 if (t < s_t || (family && tbl->family != family))
2087 continue;
2088 if (t > s_t)
2089 memset(&cb->args[1], 0, sizeof(cb->args) -
2090 sizeof(cb->args[0]));
2091 if (neigh_dump_table(tbl, skb, cb) < 0)
2092 break;
2093 }
2094 read_unlock(&neigh_tbl_lock);
2095
2096 cb->args[0] = t;
2097 return skb->len;
2098 }
2099
2100 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2101 {
2102 int chain;
2103
2104 read_lock_bh(&tbl->lock);
2105 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2106 struct neighbour *n;
2107
2108 for (n = tbl->hash_buckets[chain]; n; n = n->next)
2109 cb(n, cookie);
2110 }
2111 read_unlock_bh(&tbl->lock);
2112 }
2113 EXPORT_SYMBOL(neigh_for_each);
2114
2115 /* The tbl->lock must be held as a writer and BH disabled. */
2116 void __neigh_for_each_release(struct neigh_table *tbl,
2117 int (*cb)(struct neighbour *))
2118 {
2119 int chain;
2120
2121 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2122 struct neighbour *n, **np;
2123
2124 np = &tbl->hash_buckets[chain];
2125 while ((n = *np) != NULL) {
2126 int release;
2127
2128 write_lock(&n->lock);
2129 release = cb(n);
2130 if (release) {
2131 *np = n->next;
2132 n->dead = 1;
2133 } else
2134 np = &n->next;
2135 write_unlock(&n->lock);
2136 if (release)
2137 neigh_cleanup_and_release(n);
2138 }
2139 }
2140 }
2141 EXPORT_SYMBOL(__neigh_for_each_release);
2142
2143 #ifdef CONFIG_PROC_FS
2144
2145 static struct neighbour *neigh_get_first(struct seq_file *seq)
2146 {
2147 struct neigh_seq_state *state = seq->private;
2148 struct net *net = state->p.net;
2149 struct neigh_table *tbl = state->tbl;
2150 struct neighbour *n = NULL;
2151 int bucket = state->bucket;
2152
2153 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2154 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2155 n = tbl->hash_buckets[bucket];
2156
2157 while (n) {
2158 if (dev_net(n->dev) != net)
2159 goto next;
2160 if (state->neigh_sub_iter) {
2161 loff_t fakep = 0;
2162 void *v;
2163
2164 v = state->neigh_sub_iter(state, n, &fakep);
2165 if (!v)
2166 goto next;
2167 }
2168 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2169 break;
2170 if (n->nud_state & ~NUD_NOARP)
2171 break;
2172 next:
2173 n = n->next;
2174 }
2175
2176 if (n)
2177 break;
2178 }
2179 state->bucket = bucket;
2180
2181 return n;
2182 }
2183
2184 static struct neighbour *neigh_get_next(struct seq_file *seq,
2185 struct neighbour *n,
2186 loff_t *pos)
2187 {
2188 struct neigh_seq_state *state = seq->private;
2189 struct net *net = state->p.net;
2190 struct neigh_table *tbl = state->tbl;
2191
2192 if (state->neigh_sub_iter) {
2193 void *v = state->neigh_sub_iter(state, n, pos);
2194 if (v)
2195 return n;
2196 }
2197 n = n->next;
2198
2199 while (1) {
2200 while (n) {
2201 if (dev_net(n->dev) != net)
2202 goto next;
2203 if (state->neigh_sub_iter) {
2204 void *v = state->neigh_sub_iter(state, n, pos);
2205 if (v)
2206 return n;
2207 goto next;
2208 }
2209 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2210 break;
2211
2212 if (n->nud_state & ~NUD_NOARP)
2213 break;
2214 next:
2215 n = n->next;
2216 }
2217
2218 if (n)
2219 break;
2220
2221 if (++state->bucket > tbl->hash_mask)
2222 break;
2223
2224 n = tbl->hash_buckets[state->bucket];
2225 }
2226
2227 if (n && pos)
2228 --(*pos);
2229 return n;
2230 }
2231
2232 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2233 {
2234 struct neighbour *n = neigh_get_first(seq);
2235
2236 if (n) {
2237 while (*pos) {
2238 n = neigh_get_next(seq, n, pos);
2239 if (!n)
2240 break;
2241 }
2242 }
2243 return *pos ? NULL : n;
2244 }
2245
2246 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2247 {
2248 struct neigh_seq_state *state = seq->private;
2249 struct net * net = state->p.net;
2250 struct neigh_table *tbl = state->tbl;
2251 struct pneigh_entry *pn = NULL;
2252 int bucket = state->bucket;
2253
2254 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2255 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2256 pn = tbl->phash_buckets[bucket];
2257 while (pn && (pn->net != net))
2258 pn = pn->next;
2259 if (pn)
2260 break;
2261 }
2262 state->bucket = bucket;
2263
2264 return pn;
2265 }
2266
2267 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2268 struct pneigh_entry *pn,
2269 loff_t *pos)
2270 {
2271 struct neigh_seq_state *state = seq->private;
2272 struct net * net = state->p.net;
2273 struct neigh_table *tbl = state->tbl;
2274
2275 pn = pn->next;
2276 while (!pn) {
2277 if (++state->bucket > PNEIGH_HASHMASK)
2278 break;
2279 pn = tbl->phash_buckets[state->bucket];
2280 while (pn && (pn->net != net))
2281 pn = pn->next;
2282 if (pn)
2283 break;
2284 }
2285
2286 if (pn && pos)
2287 --(*pos);
2288
2289 return pn;
2290 }
2291
2292 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2293 {
2294 struct pneigh_entry *pn = pneigh_get_first(seq);
2295
2296 if (pn) {
2297 while (*pos) {
2298 pn = pneigh_get_next(seq, pn, pos);
2299 if (!pn)
2300 break;
2301 }
2302 }
2303 return *pos ? NULL : pn;
2304 }
2305
2306 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2307 {
2308 struct neigh_seq_state *state = seq->private;
2309 void *rc;
2310
2311 rc = neigh_get_idx(seq, pos);
2312 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2313 rc = pneigh_get_idx(seq, pos);
2314
2315 return rc;
2316 }
2317
2318 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2319 __acquires(tbl->lock)
2320 {
2321 struct neigh_seq_state *state = seq->private;
2322 loff_t pos_minus_one;
2323
2324 state->tbl = tbl;
2325 state->bucket = 0;
2326 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2327
2328 read_lock_bh(&tbl->lock);
2329
2330 pos_minus_one = *pos - 1;
2331 return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
2332 }
2333 EXPORT_SYMBOL(neigh_seq_start);
2334
2335 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2336 {
2337 struct neigh_seq_state *state;
2338 void *rc;
2339
2340 if (v == SEQ_START_TOKEN) {
2341 rc = neigh_get_idx(seq, pos);
2342 goto out;
2343 }
2344
2345 state = seq->private;
2346 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2347 rc = neigh_get_next(seq, v, NULL);
2348 if (rc)
2349 goto out;
2350 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2351 rc = pneigh_get_first(seq);
2352 } else {
2353 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2354 rc = pneigh_get_next(seq, v, NULL);
2355 }
2356 out:
2357 ++(*pos);
2358 return rc;
2359 }
2360 EXPORT_SYMBOL(neigh_seq_next);
2361
2362 void neigh_seq_stop(struct seq_file *seq, void *v)
2363 __releases(tbl->lock)
2364 {
2365 struct neigh_seq_state *state = seq->private;
2366 struct neigh_table *tbl = state->tbl;
2367
2368 read_unlock_bh(&tbl->lock);
2369 }
2370 EXPORT_SYMBOL(neigh_seq_stop);
2371
2372 /* statistics via seq_file */
2373
2374 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2375 {
2376 struct proc_dir_entry *pde = seq->private;
2377 struct neigh_table *tbl = pde->data;
2378 int cpu;
2379
2380 if (*pos == 0)
2381 return SEQ_START_TOKEN;
2382
2383 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
2384 if (!cpu_possible(cpu))
2385 continue;
2386 *pos = cpu+1;
2387 return per_cpu_ptr(tbl->stats, cpu);
2388 }
2389 return NULL;
2390 }
2391
2392 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2393 {
2394 struct proc_dir_entry *pde = seq->private;
2395 struct neigh_table *tbl = pde->data;
2396 int cpu;
2397
2398 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
2399 if (!cpu_possible(cpu))
2400 continue;
2401 *pos = cpu+1;
2402 return per_cpu_ptr(tbl->stats, cpu);
2403 }
2404 return NULL;
2405 }
2406
2407 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2408 {
2409
2410 }
2411
2412 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2413 {
2414 struct proc_dir_entry *pde = seq->private;
2415 struct neigh_table *tbl = pde->data;
2416 struct neigh_statistics *st = v;
2417
2418 if (v == SEQ_START_TOKEN) {
2419 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n");
2420 return 0;
2421 }
2422
2423 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2424 "%08lx %08lx %08lx %08lx\n",
2425 atomic_read(&tbl->entries),
2426
2427 st->allocs,
2428 st->destroys,
2429 st->hash_grows,
2430
2431 st->lookups,
2432 st->hits,
2433
2434 st->res_failed,
2435
2436 st->rcv_probes_mcast,
2437 st->rcv_probes_ucast,
2438
2439 st->periodic_gc_runs,
2440 st->forced_gc_runs
2441 );
2442
2443 return 0;
2444 }
2445
2446 static const struct seq_operations neigh_stat_seq_ops = {
2447 .start = neigh_stat_seq_start,
2448 .next = neigh_stat_seq_next,
2449 .stop = neigh_stat_seq_stop,
2450 .show = neigh_stat_seq_show,
2451 };
2452
2453 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2454 {
2455 int ret = seq_open(file, &neigh_stat_seq_ops);
2456
2457 if (!ret) {
2458 struct seq_file *sf = file->private_data;
2459 sf->private = PDE(inode);
2460 }
2461 return ret;
2462 };
2463
2464 static const struct file_operations neigh_stat_seq_fops = {
2465 .owner = THIS_MODULE,
2466 .open = neigh_stat_seq_open,
2467 .read = seq_read,
2468 .llseek = seq_lseek,
2469 .release = seq_release,
2470 };
2471
2472 #endif /* CONFIG_PROC_FS */
2473
2474 static inline size_t neigh_nlmsg_size(void)
2475 {
2476 return NLMSG_ALIGN(sizeof(struct ndmsg))
2477 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2478 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2479 + nla_total_size(sizeof(struct nda_cacheinfo))
2480 + nla_total_size(4); /* NDA_PROBES */
2481 }
2482
2483 static void __neigh_notify(struct neighbour *n, int type, int flags)
2484 {
2485 struct net *net = dev_net(n->dev);
2486 struct sk_buff *skb;
2487 int err = -ENOBUFS;
2488
2489 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2490 if (skb == NULL)
2491 goto errout;
2492
2493 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2494 if (err < 0) {
2495 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2496 WARN_ON(err == -EMSGSIZE);
2497 kfree_skb(skb);
2498 goto errout;
2499 }
2500 err = rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2501 errout:
2502 if (err < 0)
2503 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2504 }
2505
2506 #ifdef CONFIG_ARPD
2507 void neigh_app_ns(struct neighbour *n)
2508 {
2509 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2510 }
2511 #endif /* CONFIG_ARPD */
2512
2513 #ifdef CONFIG_SYSCTL
2514
2515 static struct neigh_sysctl_table {
2516 struct ctl_table_header *sysctl_header;
2517 struct ctl_table neigh_vars[__NET_NEIGH_MAX];
2518 char *dev_name;
2519 } neigh_sysctl_template __read_mostly = {
2520 .neigh_vars = {
2521 {
2522 .ctl_name = NET_NEIGH_MCAST_SOLICIT,
2523 .procname = "mcast_solicit",
2524 .maxlen = sizeof(int),
2525 .mode = 0644,
2526 .proc_handler = &proc_dointvec,
2527 },
2528 {
2529 .ctl_name = NET_NEIGH_UCAST_SOLICIT,
2530 .procname = "ucast_solicit",
2531 .maxlen = sizeof(int),
2532 .mode = 0644,
2533 .proc_handler = &proc_dointvec,
2534 },
2535 {
2536 .ctl_name = NET_NEIGH_APP_SOLICIT,
2537 .procname = "app_solicit",
2538 .maxlen = sizeof(int),
2539 .mode = 0644,
2540 .proc_handler = &proc_dointvec,
2541 },
2542 {
2543 .procname = "retrans_time",
2544 .maxlen = sizeof(int),
2545 .mode = 0644,
2546 .proc_handler = &proc_dointvec_userhz_jiffies,
2547 },
2548 {
2549 .ctl_name = NET_NEIGH_REACHABLE_TIME,
2550 .procname = "base_reachable_time",
2551 .maxlen = sizeof(int),
2552 .mode = 0644,
2553 .proc_handler = &proc_dointvec_jiffies,
2554 .strategy = &sysctl_jiffies,
2555 },
2556 {
2557 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME,
2558 .procname = "delay_first_probe_time",
2559 .maxlen = sizeof(int),
2560 .mode = 0644,
2561 .proc_handler = &proc_dointvec_jiffies,
2562 .strategy = &sysctl_jiffies,
2563 },
2564 {
2565 .ctl_name = NET_NEIGH_GC_STALE_TIME,
2566 .procname = "gc_stale_time",
2567 .maxlen = sizeof(int),
2568 .mode = 0644,
2569 .proc_handler = &proc_dointvec_jiffies,
2570 .strategy = &sysctl_jiffies,
2571 },
2572 {
2573 .ctl_name = NET_NEIGH_UNRES_QLEN,
2574 .procname = "unres_qlen",
2575 .maxlen = sizeof(int),
2576 .mode = 0644,
2577 .proc_handler = &proc_dointvec,
2578 },
2579 {
2580 .ctl_name = NET_NEIGH_PROXY_QLEN,
2581 .procname = "proxy_qlen",
2582 .maxlen = sizeof(int),
2583 .mode = 0644,
2584 .proc_handler = &proc_dointvec,
2585 },
2586 {
2587 .procname = "anycast_delay",
2588 .maxlen = sizeof(int),
2589 .mode = 0644,
2590 .proc_handler = &proc_dointvec_userhz_jiffies,
2591 },
2592 {
2593 .procname = "proxy_delay",
2594 .maxlen = sizeof(int),
2595 .mode = 0644,
2596 .proc_handler = &proc_dointvec_userhz_jiffies,
2597 },
2598 {
2599 .procname = "locktime",
2600 .maxlen = sizeof(int),
2601 .mode = 0644,
2602 .proc_handler = &proc_dointvec_userhz_jiffies,
2603 },
2604 {
2605 .ctl_name = NET_NEIGH_RETRANS_TIME_MS,
2606 .procname = "retrans_time_ms",
2607 .maxlen = sizeof(int),
2608 .mode = 0644,
2609 .proc_handler = &proc_dointvec_ms_jiffies,
2610 .strategy = &sysctl_ms_jiffies,
2611 },
2612 {
2613 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS,
2614 .procname = "base_reachable_time_ms",
2615 .maxlen = sizeof(int),
2616 .mode = 0644,
2617 .proc_handler = &proc_dointvec_ms_jiffies,
2618 .strategy = &sysctl_ms_jiffies,
2619 },
2620 {
2621 .ctl_name = NET_NEIGH_GC_INTERVAL,
2622 .procname = "gc_interval",
2623 .maxlen = sizeof(int),
2624 .mode = 0644,
2625 .proc_handler = &proc_dointvec_jiffies,
2626 .strategy = &sysctl_jiffies,
2627 },
2628 {
2629 .ctl_name = NET_NEIGH_GC_THRESH1,
2630 .procname = "gc_thresh1",
2631 .maxlen = sizeof(int),
2632 .mode = 0644,
2633 .proc_handler = &proc_dointvec,
2634 },
2635 {
2636 .ctl_name = NET_NEIGH_GC_THRESH2,
2637 .procname = "gc_thresh2",
2638 .maxlen = sizeof(int),
2639 .mode = 0644,
2640 .proc_handler = &proc_dointvec,
2641 },
2642 {
2643 .ctl_name = NET_NEIGH_GC_THRESH3,
2644 .procname = "gc_thresh3",
2645 .maxlen = sizeof(int),
2646 .mode = 0644,
2647 .proc_handler = &proc_dointvec,
2648 },
2649 {},
2650 },
2651 };
2652
2653 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2654 int p_id, int pdev_id, char *p_name,
2655 proc_handler *handler, ctl_handler *strategy)
2656 {
2657 struct neigh_sysctl_table *t;
2658 const char *dev_name_source = NULL;
2659
2660 #define NEIGH_CTL_PATH_ROOT 0
2661 #define NEIGH_CTL_PATH_PROTO 1
2662 #define NEIGH_CTL_PATH_NEIGH 2
2663 #define NEIGH_CTL_PATH_DEV 3
2664
2665 struct ctl_path neigh_path[] = {
2666 { .procname = "net", .ctl_name = CTL_NET, },
2667 { .procname = "proto", .ctl_name = 0, },
2668 { .procname = "neigh", .ctl_name = 0, },
2669 { .procname = "default", .ctl_name = NET_PROTO_CONF_DEFAULT, },
2670 { },
2671 };
2672
2673 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2674 if (!t)
2675 goto err;
2676
2677 t->neigh_vars[0].data = &p->mcast_probes;
2678 t->neigh_vars[1].data = &p->ucast_probes;
2679 t->neigh_vars[2].data = &p->app_probes;
2680 t->neigh_vars[3].data = &p->retrans_time;
2681 t->neigh_vars[4].data = &p->base_reachable_time;
2682 t->neigh_vars[5].data = &p->delay_probe_time;
2683 t->neigh_vars[6].data = &p->gc_staletime;
2684 t->neigh_vars[7].data = &p->queue_len;
2685 t->neigh_vars[8].data = &p->proxy_qlen;
2686 t->neigh_vars[9].data = &p->anycast_delay;
2687 t->neigh_vars[10].data = &p->proxy_delay;
2688 t->neigh_vars[11].data = &p->locktime;
2689 t->neigh_vars[12].data = &p->retrans_time;
2690 t->neigh_vars[13].data = &p->base_reachable_time;
2691
2692 if (dev) {
2693 dev_name_source = dev->name;
2694 neigh_path[NEIGH_CTL_PATH_DEV].ctl_name = dev->ifindex;
2695 /* Terminate the table early */
2696 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2697 } else {
2698 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2699 t->neigh_vars[14].data = (int *)(p + 1);
2700 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2701 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2702 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2703 }
2704
2705
2706 if (handler || strategy) {
2707 /* RetransTime */
2708 t->neigh_vars[3].proc_handler = handler;
2709 t->neigh_vars[3].strategy = strategy;
2710 t->neigh_vars[3].extra1 = dev;
2711 if (!strategy)
2712 t->neigh_vars[3].ctl_name = CTL_UNNUMBERED;
2713 /* ReachableTime */
2714 t->neigh_vars[4].proc_handler = handler;
2715 t->neigh_vars[4].strategy = strategy;
2716 t->neigh_vars[4].extra1 = dev;
2717 if (!strategy)
2718 t->neigh_vars[4].ctl_name = CTL_UNNUMBERED;
2719 /* RetransTime (in milliseconds)*/
2720 t->neigh_vars[12].proc_handler = handler;
2721 t->neigh_vars[12].strategy = strategy;
2722 t->neigh_vars[12].extra1 = dev;
2723 if (!strategy)
2724 t->neigh_vars[12].ctl_name = CTL_UNNUMBERED;
2725 /* ReachableTime (in milliseconds) */
2726 t->neigh_vars[13].proc_handler = handler;
2727 t->neigh_vars[13].strategy = strategy;
2728 t->neigh_vars[13].extra1 = dev;
2729 if (!strategy)
2730 t->neigh_vars[13].ctl_name = CTL_UNNUMBERED;
2731 }
2732
2733 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2734 if (!t->dev_name)
2735 goto free;
2736
2737 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2738 neigh_path[NEIGH_CTL_PATH_NEIGH].ctl_name = pdev_id;
2739 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2740 neigh_path[NEIGH_CTL_PATH_PROTO].ctl_name = p_id;
2741
2742 t->sysctl_header =
2743 register_net_sysctl_table(p->net, neigh_path, t->neigh_vars);
2744 if (!t->sysctl_header)
2745 goto free_procname;
2746
2747 p->sysctl_table = t;
2748 return 0;
2749
2750 free_procname:
2751 kfree(t->dev_name);
2752 free:
2753 kfree(t);
2754 err:
2755 return -ENOBUFS;
2756 }
2757
2758 void neigh_sysctl_unregister(struct neigh_parms *p)
2759 {
2760 if (p->sysctl_table) {
2761 struct neigh_sysctl_table *t = p->sysctl_table;
2762 p->sysctl_table = NULL;
2763 unregister_sysctl_table(t->sysctl_header);
2764 kfree(t->dev_name);
2765 kfree(t);
2766 }
2767 }
2768
2769 #endif /* CONFIG_SYSCTL */
2770
2771 static int __init neigh_init(void)
2772 {
2773 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2774 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2775 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2776
2777 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2778 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2779
2780 return 0;
2781 }
2782
2783 subsys_initcall(neigh_init);
2784
2785 EXPORT_SYMBOL(__neigh_event_send);
2786 EXPORT_SYMBOL(neigh_changeaddr);
2787 EXPORT_SYMBOL(neigh_compat_output);
2788 EXPORT_SYMBOL(neigh_connected_output);
2789 EXPORT_SYMBOL(neigh_create);
2790 EXPORT_SYMBOL(neigh_destroy);
2791 EXPORT_SYMBOL(neigh_event_ns);
2792 EXPORT_SYMBOL(neigh_ifdown);
2793 EXPORT_SYMBOL(neigh_lookup);
2794 EXPORT_SYMBOL(neigh_lookup_nodev);
2795 EXPORT_SYMBOL(neigh_parms_alloc);
2796 EXPORT_SYMBOL(neigh_parms_release);
2797 EXPORT_SYMBOL(neigh_rand_reach_time);
2798 EXPORT_SYMBOL(neigh_resolve_output);
2799 EXPORT_SYMBOL(neigh_table_clear);
2800 EXPORT_SYMBOL(neigh_table_init);
2801 EXPORT_SYMBOL(neigh_table_init_no_netlink);
2802 EXPORT_SYMBOL(neigh_update);
2803 EXPORT_SYMBOL(pneigh_enqueue);
2804 EXPORT_SYMBOL(pneigh_lookup);
2805
2806 #ifdef CONFIG_ARPD
2807 EXPORT_SYMBOL(neigh_app_ns);
2808 #endif
2809 #ifdef CONFIG_SYSCTL
2810 EXPORT_SYMBOL(neigh_sysctl_register);
2811 EXPORT_SYMBOL(neigh_sysctl_unregister);
2812 #endif