neigh: __rcu annotations
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/netdevice.h>
24 #include <linux/proc_fs.h>
25 #ifdef CONFIG_SYSCTL
26 #include <linux/sysctl.h>
27 #endif
28 #include <linux/times.h>
29 #include <net/net_namespace.h>
30 #include <net/neighbour.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <net/netevent.h>
34 #include <net/netlink.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/random.h>
37 #include <linux/string.h>
38 #include <linux/log2.h>
39
40 #define NEIGH_DEBUG 1
41
42 #define NEIGH_PRINTK(x...) printk(x)
43 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
46
47 #if NEIGH_DEBUG >= 1
48 #undef NEIGH_PRINTK1
49 #define NEIGH_PRINTK1 NEIGH_PRINTK
50 #endif
51 #if NEIGH_DEBUG >= 2
52 #undef NEIGH_PRINTK2
53 #define NEIGH_PRINTK2 NEIGH_PRINTK
54 #endif
55
56 #define PNEIGH_HASHMASK 0xF
57
58 static void neigh_timer_handler(unsigned long arg);
59 static void __neigh_notify(struct neighbour *n, int type, int flags);
60 static void neigh_update_notify(struct neighbour *neigh);
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62
63 static struct neigh_table *neigh_tables;
64 #ifdef CONFIG_PROC_FS
65 static const struct file_operations neigh_stat_seq_fops;
66 #endif
67
68 /*
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
70
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
75 cache.
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
78
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
82
83 Reference count prevents destruction.
84
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
87 - timer
88 - resolution queue
89
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
94
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
97 */
98
99 static DEFINE_RWLOCK(neigh_tbl_lock);
100
101 static int neigh_blackhole(struct sk_buff *skb)
102 {
103 kfree_skb(skb);
104 return -ENETDOWN;
105 }
106
107 static void neigh_cleanup_and_release(struct neighbour *neigh)
108 {
109 if (neigh->parms->neigh_cleanup)
110 neigh->parms->neigh_cleanup(neigh);
111
112 __neigh_notify(neigh, RTM_DELNEIGH, 0);
113 neigh_release(neigh);
114 }
115
116 /*
117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
118 * It corresponds to default IPv6 settings and is not overridable,
119 * because it is really reasonable choice.
120 */
121
122 unsigned long neigh_rand_reach_time(unsigned long base)
123 {
124 return base ? (net_random() % base) + (base >> 1) : 0;
125 }
126 EXPORT_SYMBOL(neigh_rand_reach_time);
127
128
129 static int neigh_forced_gc(struct neigh_table *tbl)
130 {
131 int shrunk = 0;
132 int i;
133 struct neigh_hash_table *nht;
134
135 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
136
137 write_lock_bh(&tbl->lock);
138 nht = rcu_dereference_protected(tbl->nht,
139 lockdep_is_held(&tbl->lock));
140 for (i = 0; i <= nht->hash_mask; i++) {
141 struct neighbour *n;
142 struct neighbour __rcu **np;
143
144 np = &nht->hash_buckets[i];
145 while ((n = rcu_dereference_protected(*np,
146 lockdep_is_held(&tbl->lock))) != NULL) {
147 /* Neighbour record may be discarded if:
148 * - nobody refers to it.
149 * - it is not permanent
150 */
151 write_lock(&n->lock);
152 if (atomic_read(&n->refcnt) == 1 &&
153 !(n->nud_state & NUD_PERMANENT)) {
154 rcu_assign_pointer(*np,
155 rcu_dereference_protected(n->next,
156 lockdep_is_held(&tbl->lock)));
157 n->dead = 1;
158 shrunk = 1;
159 write_unlock(&n->lock);
160 neigh_cleanup_and_release(n);
161 continue;
162 }
163 write_unlock(&n->lock);
164 np = &n->next;
165 }
166 }
167
168 tbl->last_flush = jiffies;
169
170 write_unlock_bh(&tbl->lock);
171
172 return shrunk;
173 }
174
175 static void neigh_add_timer(struct neighbour *n, unsigned long when)
176 {
177 neigh_hold(n);
178 if (unlikely(mod_timer(&n->timer, when))) {
179 printk("NEIGH: BUG, double timer add, state is %x\n",
180 n->nud_state);
181 dump_stack();
182 }
183 }
184
185 static int neigh_del_timer(struct neighbour *n)
186 {
187 if ((n->nud_state & NUD_IN_TIMER) &&
188 del_timer(&n->timer)) {
189 neigh_release(n);
190 return 1;
191 }
192 return 0;
193 }
194
195 static void pneigh_queue_purge(struct sk_buff_head *list)
196 {
197 struct sk_buff *skb;
198
199 while ((skb = skb_dequeue(list)) != NULL) {
200 dev_put(skb->dev);
201 kfree_skb(skb);
202 }
203 }
204
205 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
206 {
207 int i;
208 struct neigh_hash_table *nht;
209
210 nht = rcu_dereference_protected(tbl->nht,
211 lockdep_is_held(&tbl->lock));
212
213 for (i = 0; i <= nht->hash_mask; i++) {
214 struct neighbour *n;
215 struct neighbour __rcu **np = &nht->hash_buckets[i];
216
217 while ((n = rcu_dereference_protected(*np,
218 lockdep_is_held(&tbl->lock))) != NULL) {
219 if (dev && n->dev != dev) {
220 np = &n->next;
221 continue;
222 }
223 rcu_assign_pointer(*np,
224 rcu_dereference_protected(n->next,
225 lockdep_is_held(&tbl->lock)));
226 write_lock(&n->lock);
227 neigh_del_timer(n);
228 n->dead = 1;
229
230 if (atomic_read(&n->refcnt) != 1) {
231 /* The most unpleasant situation.
232 We must destroy neighbour entry,
233 but someone still uses it.
234
235 The destroy will be delayed until
236 the last user releases us, but
237 we must kill timers etc. and move
238 it to safe state.
239 */
240 skb_queue_purge(&n->arp_queue);
241 n->output = neigh_blackhole;
242 if (n->nud_state & NUD_VALID)
243 n->nud_state = NUD_NOARP;
244 else
245 n->nud_state = NUD_NONE;
246 NEIGH_PRINTK2("neigh %p is stray.\n", n);
247 }
248 write_unlock(&n->lock);
249 neigh_cleanup_and_release(n);
250 }
251 }
252 }
253
254 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
255 {
256 write_lock_bh(&tbl->lock);
257 neigh_flush_dev(tbl, dev);
258 write_unlock_bh(&tbl->lock);
259 }
260 EXPORT_SYMBOL(neigh_changeaddr);
261
262 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
263 {
264 write_lock_bh(&tbl->lock);
265 neigh_flush_dev(tbl, dev);
266 pneigh_ifdown(tbl, dev);
267 write_unlock_bh(&tbl->lock);
268
269 del_timer_sync(&tbl->proxy_timer);
270 pneigh_queue_purge(&tbl->proxy_queue);
271 return 0;
272 }
273 EXPORT_SYMBOL(neigh_ifdown);
274
275 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
276 {
277 struct neighbour *n = NULL;
278 unsigned long now = jiffies;
279 int entries;
280
281 entries = atomic_inc_return(&tbl->entries) - 1;
282 if (entries >= tbl->gc_thresh3 ||
283 (entries >= tbl->gc_thresh2 &&
284 time_after(now, tbl->last_flush + 5 * HZ))) {
285 if (!neigh_forced_gc(tbl) &&
286 entries >= tbl->gc_thresh3)
287 goto out_entries;
288 }
289
290 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
291 if (!n)
292 goto out_entries;
293
294 skb_queue_head_init(&n->arp_queue);
295 rwlock_init(&n->lock);
296 seqlock_init(&n->ha_lock);
297 n->updated = n->used = now;
298 n->nud_state = NUD_NONE;
299 n->output = neigh_blackhole;
300 n->parms = neigh_parms_clone(&tbl->parms);
301 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
302
303 NEIGH_CACHE_STAT_INC(tbl, allocs);
304 n->tbl = tbl;
305 atomic_set(&n->refcnt, 1);
306 n->dead = 1;
307 out:
308 return n;
309
310 out_entries:
311 atomic_dec(&tbl->entries);
312 goto out;
313 }
314
315 static struct neigh_hash_table *neigh_hash_alloc(unsigned int entries)
316 {
317 size_t size = entries * sizeof(struct neighbour *);
318 struct neigh_hash_table *ret;
319 struct neighbour __rcu **buckets;
320
321 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
322 if (!ret)
323 return NULL;
324 if (size <= PAGE_SIZE)
325 buckets = kzalloc(size, GFP_ATOMIC);
326 else
327 buckets = (struct neighbour __rcu **)
328 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
329 get_order(size));
330 if (!buckets) {
331 kfree(ret);
332 return NULL;
333 }
334 ret->hash_buckets = buckets;
335 ret->hash_mask = entries - 1;
336 get_random_bytes(&ret->hash_rnd, sizeof(ret->hash_rnd));
337 return ret;
338 }
339
340 static void neigh_hash_free_rcu(struct rcu_head *head)
341 {
342 struct neigh_hash_table *nht = container_of(head,
343 struct neigh_hash_table,
344 rcu);
345 size_t size = (nht->hash_mask + 1) * sizeof(struct neighbour *);
346 struct neighbour __rcu **buckets = nht->hash_buckets;
347
348 if (size <= PAGE_SIZE)
349 kfree(buckets);
350 else
351 free_pages((unsigned long)buckets, get_order(size));
352 kfree(nht);
353 }
354
355 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
356 unsigned long new_entries)
357 {
358 unsigned int i, hash;
359 struct neigh_hash_table *new_nht, *old_nht;
360
361 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
362
363 BUG_ON(!is_power_of_2(new_entries));
364 old_nht = rcu_dereference_protected(tbl->nht,
365 lockdep_is_held(&tbl->lock));
366 new_nht = neigh_hash_alloc(new_entries);
367 if (!new_nht)
368 return old_nht;
369
370 for (i = 0; i <= old_nht->hash_mask; i++) {
371 struct neighbour *n, *next;
372
373 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
374 lockdep_is_held(&tbl->lock));
375 n != NULL;
376 n = next) {
377 hash = tbl->hash(n->primary_key, n->dev,
378 new_nht->hash_rnd);
379
380 hash &= new_nht->hash_mask;
381 next = rcu_dereference_protected(n->next,
382 lockdep_is_held(&tbl->lock));
383
384 rcu_assign_pointer(n->next,
385 rcu_dereference_protected(
386 new_nht->hash_buckets[hash],
387 lockdep_is_held(&tbl->lock)));
388 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
389 }
390 }
391
392 rcu_assign_pointer(tbl->nht, new_nht);
393 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
394 return new_nht;
395 }
396
397 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
398 struct net_device *dev)
399 {
400 struct neighbour *n;
401 int key_len = tbl->key_len;
402 u32 hash_val;
403 struct neigh_hash_table *nht;
404
405 NEIGH_CACHE_STAT_INC(tbl, lookups);
406
407 rcu_read_lock_bh();
408 nht = rcu_dereference_bh(tbl->nht);
409 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) & nht->hash_mask;
410
411 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
412 n != NULL;
413 n = rcu_dereference_bh(n->next)) {
414 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
415 if (!atomic_inc_not_zero(&n->refcnt))
416 n = NULL;
417 NEIGH_CACHE_STAT_INC(tbl, hits);
418 break;
419 }
420 }
421
422 rcu_read_unlock_bh();
423 return n;
424 }
425 EXPORT_SYMBOL(neigh_lookup);
426
427 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
428 const void *pkey)
429 {
430 struct neighbour *n;
431 int key_len = tbl->key_len;
432 u32 hash_val;
433 struct neigh_hash_table *nht;
434
435 NEIGH_CACHE_STAT_INC(tbl, lookups);
436
437 rcu_read_lock_bh();
438 nht = rcu_dereference_bh(tbl->nht);
439 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) & nht->hash_mask;
440
441 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
442 n != NULL;
443 n = rcu_dereference_bh(n->next)) {
444 if (!memcmp(n->primary_key, pkey, key_len) &&
445 net_eq(dev_net(n->dev), net)) {
446 if (!atomic_inc_not_zero(&n->refcnt))
447 n = NULL;
448 NEIGH_CACHE_STAT_INC(tbl, hits);
449 break;
450 }
451 }
452
453 rcu_read_unlock_bh();
454 return n;
455 }
456 EXPORT_SYMBOL(neigh_lookup_nodev);
457
458 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
459 struct net_device *dev)
460 {
461 u32 hash_val;
462 int key_len = tbl->key_len;
463 int error;
464 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
465 struct neigh_hash_table *nht;
466
467 if (!n) {
468 rc = ERR_PTR(-ENOBUFS);
469 goto out;
470 }
471
472 memcpy(n->primary_key, pkey, key_len);
473 n->dev = dev;
474 dev_hold(dev);
475
476 /* Protocol specific setup. */
477 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
478 rc = ERR_PTR(error);
479 goto out_neigh_release;
480 }
481
482 /* Device specific setup. */
483 if (n->parms->neigh_setup &&
484 (error = n->parms->neigh_setup(n)) < 0) {
485 rc = ERR_PTR(error);
486 goto out_neigh_release;
487 }
488
489 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
490
491 write_lock_bh(&tbl->lock);
492 nht = rcu_dereference_protected(tbl->nht,
493 lockdep_is_held(&tbl->lock));
494
495 if (atomic_read(&tbl->entries) > (nht->hash_mask + 1))
496 nht = neigh_hash_grow(tbl, (nht->hash_mask + 1) << 1);
497
498 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) & nht->hash_mask;
499
500 if (n->parms->dead) {
501 rc = ERR_PTR(-EINVAL);
502 goto out_tbl_unlock;
503 }
504
505 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
506 lockdep_is_held(&tbl->lock));
507 n1 != NULL;
508 n1 = rcu_dereference_protected(n1->next,
509 lockdep_is_held(&tbl->lock))) {
510 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
511 neigh_hold(n1);
512 rc = n1;
513 goto out_tbl_unlock;
514 }
515 }
516
517 n->dead = 0;
518 neigh_hold(n);
519 rcu_assign_pointer(n->next,
520 rcu_dereference_protected(nht->hash_buckets[hash_val],
521 lockdep_is_held(&tbl->lock)));
522 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
523 write_unlock_bh(&tbl->lock);
524 NEIGH_PRINTK2("neigh %p is created.\n", n);
525 rc = n;
526 out:
527 return rc;
528 out_tbl_unlock:
529 write_unlock_bh(&tbl->lock);
530 out_neigh_release:
531 neigh_release(n);
532 goto out;
533 }
534 EXPORT_SYMBOL(neigh_create);
535
536 static u32 pneigh_hash(const void *pkey, int key_len)
537 {
538 u32 hash_val = *(u32 *)(pkey + key_len - 4);
539 hash_val ^= (hash_val >> 16);
540 hash_val ^= hash_val >> 8;
541 hash_val ^= hash_val >> 4;
542 hash_val &= PNEIGH_HASHMASK;
543 return hash_val;
544 }
545
546 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
547 struct net *net,
548 const void *pkey,
549 int key_len,
550 struct net_device *dev)
551 {
552 while (n) {
553 if (!memcmp(n->key, pkey, key_len) &&
554 net_eq(pneigh_net(n), net) &&
555 (n->dev == dev || !n->dev))
556 return n;
557 n = n->next;
558 }
559 return NULL;
560 }
561
562 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
563 struct net *net, const void *pkey, struct net_device *dev)
564 {
565 int key_len = tbl->key_len;
566 u32 hash_val = pneigh_hash(pkey, key_len);
567
568 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
569 net, pkey, key_len, dev);
570 }
571 EXPORT_SYMBOL_GPL(__pneigh_lookup);
572
573 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
574 struct net *net, const void *pkey,
575 struct net_device *dev, int creat)
576 {
577 struct pneigh_entry *n;
578 int key_len = tbl->key_len;
579 u32 hash_val = pneigh_hash(pkey, key_len);
580
581 read_lock_bh(&tbl->lock);
582 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
583 net, pkey, key_len, dev);
584 read_unlock_bh(&tbl->lock);
585
586 if (n || !creat)
587 goto out;
588
589 ASSERT_RTNL();
590
591 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
592 if (!n)
593 goto out;
594
595 write_pnet(&n->net, hold_net(net));
596 memcpy(n->key, pkey, key_len);
597 n->dev = dev;
598 if (dev)
599 dev_hold(dev);
600
601 if (tbl->pconstructor && tbl->pconstructor(n)) {
602 if (dev)
603 dev_put(dev);
604 release_net(net);
605 kfree(n);
606 n = NULL;
607 goto out;
608 }
609
610 write_lock_bh(&tbl->lock);
611 n->next = tbl->phash_buckets[hash_val];
612 tbl->phash_buckets[hash_val] = n;
613 write_unlock_bh(&tbl->lock);
614 out:
615 return n;
616 }
617 EXPORT_SYMBOL(pneigh_lookup);
618
619
620 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
621 struct net_device *dev)
622 {
623 struct pneigh_entry *n, **np;
624 int key_len = tbl->key_len;
625 u32 hash_val = pneigh_hash(pkey, key_len);
626
627 write_lock_bh(&tbl->lock);
628 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
629 np = &n->next) {
630 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
631 net_eq(pneigh_net(n), net)) {
632 *np = n->next;
633 write_unlock_bh(&tbl->lock);
634 if (tbl->pdestructor)
635 tbl->pdestructor(n);
636 if (n->dev)
637 dev_put(n->dev);
638 release_net(pneigh_net(n));
639 kfree(n);
640 return 0;
641 }
642 }
643 write_unlock_bh(&tbl->lock);
644 return -ENOENT;
645 }
646
647 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
648 {
649 struct pneigh_entry *n, **np;
650 u32 h;
651
652 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
653 np = &tbl->phash_buckets[h];
654 while ((n = *np) != NULL) {
655 if (!dev || n->dev == dev) {
656 *np = n->next;
657 if (tbl->pdestructor)
658 tbl->pdestructor(n);
659 if (n->dev)
660 dev_put(n->dev);
661 release_net(pneigh_net(n));
662 kfree(n);
663 continue;
664 }
665 np = &n->next;
666 }
667 }
668 return -ENOENT;
669 }
670
671 static void neigh_parms_destroy(struct neigh_parms *parms);
672
673 static inline void neigh_parms_put(struct neigh_parms *parms)
674 {
675 if (atomic_dec_and_test(&parms->refcnt))
676 neigh_parms_destroy(parms);
677 }
678
679 static void neigh_destroy_rcu(struct rcu_head *head)
680 {
681 struct neighbour *neigh = container_of(head, struct neighbour, rcu);
682
683 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
684 }
685 /*
686 * neighbour must already be out of the table;
687 *
688 */
689 void neigh_destroy(struct neighbour *neigh)
690 {
691 struct hh_cache *hh;
692
693 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
694
695 if (!neigh->dead) {
696 printk(KERN_WARNING
697 "Destroying alive neighbour %p\n", neigh);
698 dump_stack();
699 return;
700 }
701
702 if (neigh_del_timer(neigh))
703 printk(KERN_WARNING "Impossible event.\n");
704
705 while ((hh = neigh->hh) != NULL) {
706 neigh->hh = hh->hh_next;
707 hh->hh_next = NULL;
708
709 write_seqlock_bh(&hh->hh_lock);
710 hh->hh_output = neigh_blackhole;
711 write_sequnlock_bh(&hh->hh_lock);
712 hh_cache_put(hh);
713 }
714
715 skb_queue_purge(&neigh->arp_queue);
716
717 dev_put(neigh->dev);
718 neigh_parms_put(neigh->parms);
719
720 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
721
722 atomic_dec(&neigh->tbl->entries);
723 call_rcu(&neigh->rcu, neigh_destroy_rcu);
724 }
725 EXPORT_SYMBOL(neigh_destroy);
726
727 /* Neighbour state is suspicious;
728 disable fast path.
729
730 Called with write_locked neigh.
731 */
732 static void neigh_suspect(struct neighbour *neigh)
733 {
734 struct hh_cache *hh;
735
736 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
737
738 neigh->output = neigh->ops->output;
739
740 for (hh = neigh->hh; hh; hh = hh->hh_next)
741 hh->hh_output = neigh->ops->output;
742 }
743
744 /* Neighbour state is OK;
745 enable fast path.
746
747 Called with write_locked neigh.
748 */
749 static void neigh_connect(struct neighbour *neigh)
750 {
751 struct hh_cache *hh;
752
753 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
754
755 neigh->output = neigh->ops->connected_output;
756
757 for (hh = neigh->hh; hh; hh = hh->hh_next)
758 hh->hh_output = neigh->ops->hh_output;
759 }
760
761 static void neigh_periodic_work(struct work_struct *work)
762 {
763 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
764 struct neighbour *n;
765 struct neighbour __rcu **np;
766 unsigned int i;
767 struct neigh_hash_table *nht;
768
769 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
770
771 write_lock_bh(&tbl->lock);
772 nht = rcu_dereference_protected(tbl->nht,
773 lockdep_is_held(&tbl->lock));
774
775 /*
776 * periodically recompute ReachableTime from random function
777 */
778
779 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
780 struct neigh_parms *p;
781 tbl->last_rand = jiffies;
782 for (p = &tbl->parms; p; p = p->next)
783 p->reachable_time =
784 neigh_rand_reach_time(p->base_reachable_time);
785 }
786
787 for (i = 0 ; i <= nht->hash_mask; i++) {
788 np = &nht->hash_buckets[i];
789
790 while ((n = rcu_dereference_protected(*np,
791 lockdep_is_held(&tbl->lock))) != NULL) {
792 unsigned int state;
793
794 write_lock(&n->lock);
795
796 state = n->nud_state;
797 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
798 write_unlock(&n->lock);
799 goto next_elt;
800 }
801
802 if (time_before(n->used, n->confirmed))
803 n->used = n->confirmed;
804
805 if (atomic_read(&n->refcnt) == 1 &&
806 (state == NUD_FAILED ||
807 time_after(jiffies, n->used + n->parms->gc_staletime))) {
808 *np = n->next;
809 n->dead = 1;
810 write_unlock(&n->lock);
811 neigh_cleanup_and_release(n);
812 continue;
813 }
814 write_unlock(&n->lock);
815
816 next_elt:
817 np = &n->next;
818 }
819 /*
820 * It's fine to release lock here, even if hash table
821 * grows while we are preempted.
822 */
823 write_unlock_bh(&tbl->lock);
824 cond_resched();
825 write_lock_bh(&tbl->lock);
826 }
827 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
828 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
829 * base_reachable_time.
830 */
831 schedule_delayed_work(&tbl->gc_work,
832 tbl->parms.base_reachable_time >> 1);
833 write_unlock_bh(&tbl->lock);
834 }
835
836 static __inline__ int neigh_max_probes(struct neighbour *n)
837 {
838 struct neigh_parms *p = n->parms;
839 return (n->nud_state & NUD_PROBE) ?
840 p->ucast_probes :
841 p->ucast_probes + p->app_probes + p->mcast_probes;
842 }
843
844 static void neigh_invalidate(struct neighbour *neigh)
845 __releases(neigh->lock)
846 __acquires(neigh->lock)
847 {
848 struct sk_buff *skb;
849
850 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
851 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
852 neigh->updated = jiffies;
853
854 /* It is very thin place. report_unreachable is very complicated
855 routine. Particularly, it can hit the same neighbour entry!
856
857 So that, we try to be accurate and avoid dead loop. --ANK
858 */
859 while (neigh->nud_state == NUD_FAILED &&
860 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
861 write_unlock(&neigh->lock);
862 neigh->ops->error_report(neigh, skb);
863 write_lock(&neigh->lock);
864 }
865 skb_queue_purge(&neigh->arp_queue);
866 }
867
868 /* Called when a timer expires for a neighbour entry. */
869
870 static void neigh_timer_handler(unsigned long arg)
871 {
872 unsigned long now, next;
873 struct neighbour *neigh = (struct neighbour *)arg;
874 unsigned state;
875 int notify = 0;
876
877 write_lock(&neigh->lock);
878
879 state = neigh->nud_state;
880 now = jiffies;
881 next = now + HZ;
882
883 if (!(state & NUD_IN_TIMER)) {
884 #ifndef CONFIG_SMP
885 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
886 #endif
887 goto out;
888 }
889
890 if (state & NUD_REACHABLE) {
891 if (time_before_eq(now,
892 neigh->confirmed + neigh->parms->reachable_time)) {
893 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
894 next = neigh->confirmed + neigh->parms->reachable_time;
895 } else if (time_before_eq(now,
896 neigh->used + neigh->parms->delay_probe_time)) {
897 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
898 neigh->nud_state = NUD_DELAY;
899 neigh->updated = jiffies;
900 neigh_suspect(neigh);
901 next = now + neigh->parms->delay_probe_time;
902 } else {
903 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
904 neigh->nud_state = NUD_STALE;
905 neigh->updated = jiffies;
906 neigh_suspect(neigh);
907 notify = 1;
908 }
909 } else if (state & NUD_DELAY) {
910 if (time_before_eq(now,
911 neigh->confirmed + neigh->parms->delay_probe_time)) {
912 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
913 neigh->nud_state = NUD_REACHABLE;
914 neigh->updated = jiffies;
915 neigh_connect(neigh);
916 notify = 1;
917 next = neigh->confirmed + neigh->parms->reachable_time;
918 } else {
919 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
920 neigh->nud_state = NUD_PROBE;
921 neigh->updated = jiffies;
922 atomic_set(&neigh->probes, 0);
923 next = now + neigh->parms->retrans_time;
924 }
925 } else {
926 /* NUD_PROBE|NUD_INCOMPLETE */
927 next = now + neigh->parms->retrans_time;
928 }
929
930 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
931 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
932 neigh->nud_state = NUD_FAILED;
933 notify = 1;
934 neigh_invalidate(neigh);
935 }
936
937 if (neigh->nud_state & NUD_IN_TIMER) {
938 if (time_before(next, jiffies + HZ/2))
939 next = jiffies + HZ/2;
940 if (!mod_timer(&neigh->timer, next))
941 neigh_hold(neigh);
942 }
943 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
944 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
945 /* keep skb alive even if arp_queue overflows */
946 if (skb)
947 skb = skb_copy(skb, GFP_ATOMIC);
948 write_unlock(&neigh->lock);
949 neigh->ops->solicit(neigh, skb);
950 atomic_inc(&neigh->probes);
951 kfree_skb(skb);
952 } else {
953 out:
954 write_unlock(&neigh->lock);
955 }
956
957 if (notify)
958 neigh_update_notify(neigh);
959
960 neigh_release(neigh);
961 }
962
963 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
964 {
965 int rc;
966 unsigned long now;
967
968 write_lock_bh(&neigh->lock);
969
970 rc = 0;
971 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
972 goto out_unlock_bh;
973
974 now = jiffies;
975
976 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
977 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
978 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
979 neigh->nud_state = NUD_INCOMPLETE;
980 neigh->updated = jiffies;
981 neigh_add_timer(neigh, now + 1);
982 } else {
983 neigh->nud_state = NUD_FAILED;
984 neigh->updated = jiffies;
985 write_unlock_bh(&neigh->lock);
986
987 kfree_skb(skb);
988 return 1;
989 }
990 } else if (neigh->nud_state & NUD_STALE) {
991 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
992 neigh->nud_state = NUD_DELAY;
993 neigh->updated = jiffies;
994 neigh_add_timer(neigh,
995 jiffies + neigh->parms->delay_probe_time);
996 }
997
998 if (neigh->nud_state == NUD_INCOMPLETE) {
999 if (skb) {
1000 if (skb_queue_len(&neigh->arp_queue) >=
1001 neigh->parms->queue_len) {
1002 struct sk_buff *buff;
1003 buff = __skb_dequeue(&neigh->arp_queue);
1004 kfree_skb(buff);
1005 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1006 }
1007 skb_dst_force(skb);
1008 __skb_queue_tail(&neigh->arp_queue, skb);
1009 }
1010 rc = 1;
1011 }
1012 out_unlock_bh:
1013 write_unlock_bh(&neigh->lock);
1014 return rc;
1015 }
1016 EXPORT_SYMBOL(__neigh_event_send);
1017
1018 static void neigh_update_hhs(const struct neighbour *neigh)
1019 {
1020 struct hh_cache *hh;
1021 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1022 = NULL;
1023
1024 if (neigh->dev->header_ops)
1025 update = neigh->dev->header_ops->cache_update;
1026
1027 if (update) {
1028 for (hh = neigh->hh; hh; hh = hh->hh_next) {
1029 write_seqlock_bh(&hh->hh_lock);
1030 update(hh, neigh->dev, neigh->ha);
1031 write_sequnlock_bh(&hh->hh_lock);
1032 }
1033 }
1034 }
1035
1036
1037
1038 /* Generic update routine.
1039 -- lladdr is new lladdr or NULL, if it is not supplied.
1040 -- new is new state.
1041 -- flags
1042 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1043 if it is different.
1044 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1045 lladdr instead of overriding it
1046 if it is different.
1047 It also allows to retain current state
1048 if lladdr is unchanged.
1049 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1050
1051 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1052 NTF_ROUTER flag.
1053 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1054 a router.
1055
1056 Caller MUST hold reference count on the entry.
1057 */
1058
1059 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1060 u32 flags)
1061 {
1062 u8 old;
1063 int err;
1064 int notify = 0;
1065 struct net_device *dev;
1066 int update_isrouter = 0;
1067
1068 write_lock_bh(&neigh->lock);
1069
1070 dev = neigh->dev;
1071 old = neigh->nud_state;
1072 err = -EPERM;
1073
1074 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1075 (old & (NUD_NOARP | NUD_PERMANENT)))
1076 goto out;
1077
1078 if (!(new & NUD_VALID)) {
1079 neigh_del_timer(neigh);
1080 if (old & NUD_CONNECTED)
1081 neigh_suspect(neigh);
1082 neigh->nud_state = new;
1083 err = 0;
1084 notify = old & NUD_VALID;
1085 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1086 (new & NUD_FAILED)) {
1087 neigh_invalidate(neigh);
1088 notify = 1;
1089 }
1090 goto out;
1091 }
1092
1093 /* Compare new lladdr with cached one */
1094 if (!dev->addr_len) {
1095 /* First case: device needs no address. */
1096 lladdr = neigh->ha;
1097 } else if (lladdr) {
1098 /* The second case: if something is already cached
1099 and a new address is proposed:
1100 - compare new & old
1101 - if they are different, check override flag
1102 */
1103 if ((old & NUD_VALID) &&
1104 !memcmp(lladdr, neigh->ha, dev->addr_len))
1105 lladdr = neigh->ha;
1106 } else {
1107 /* No address is supplied; if we know something,
1108 use it, otherwise discard the request.
1109 */
1110 err = -EINVAL;
1111 if (!(old & NUD_VALID))
1112 goto out;
1113 lladdr = neigh->ha;
1114 }
1115
1116 if (new & NUD_CONNECTED)
1117 neigh->confirmed = jiffies;
1118 neigh->updated = jiffies;
1119
1120 /* If entry was valid and address is not changed,
1121 do not change entry state, if new one is STALE.
1122 */
1123 err = 0;
1124 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1125 if (old & NUD_VALID) {
1126 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1127 update_isrouter = 0;
1128 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1129 (old & NUD_CONNECTED)) {
1130 lladdr = neigh->ha;
1131 new = NUD_STALE;
1132 } else
1133 goto out;
1134 } else {
1135 if (lladdr == neigh->ha && new == NUD_STALE &&
1136 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1137 (old & NUD_CONNECTED))
1138 )
1139 new = old;
1140 }
1141 }
1142
1143 if (new != old) {
1144 neigh_del_timer(neigh);
1145 if (new & NUD_IN_TIMER)
1146 neigh_add_timer(neigh, (jiffies +
1147 ((new & NUD_REACHABLE) ?
1148 neigh->parms->reachable_time :
1149 0)));
1150 neigh->nud_state = new;
1151 }
1152
1153 if (lladdr != neigh->ha) {
1154 write_seqlock(&neigh->ha_lock);
1155 memcpy(&neigh->ha, lladdr, dev->addr_len);
1156 write_sequnlock(&neigh->ha_lock);
1157 neigh_update_hhs(neigh);
1158 if (!(new & NUD_CONNECTED))
1159 neigh->confirmed = jiffies -
1160 (neigh->parms->base_reachable_time << 1);
1161 notify = 1;
1162 }
1163 if (new == old)
1164 goto out;
1165 if (new & NUD_CONNECTED)
1166 neigh_connect(neigh);
1167 else
1168 neigh_suspect(neigh);
1169 if (!(old & NUD_VALID)) {
1170 struct sk_buff *skb;
1171
1172 /* Again: avoid dead loop if something went wrong */
1173
1174 while (neigh->nud_state & NUD_VALID &&
1175 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1176 struct neighbour *n1 = neigh;
1177 write_unlock_bh(&neigh->lock);
1178 /* On shaper/eql skb->dst->neighbour != neigh :( */
1179 if (skb_dst(skb) && skb_dst(skb)->neighbour)
1180 n1 = skb_dst(skb)->neighbour;
1181 n1->output(skb);
1182 write_lock_bh(&neigh->lock);
1183 }
1184 skb_queue_purge(&neigh->arp_queue);
1185 }
1186 out:
1187 if (update_isrouter) {
1188 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1189 (neigh->flags | NTF_ROUTER) :
1190 (neigh->flags & ~NTF_ROUTER);
1191 }
1192 write_unlock_bh(&neigh->lock);
1193
1194 if (notify)
1195 neigh_update_notify(neigh);
1196
1197 return err;
1198 }
1199 EXPORT_SYMBOL(neigh_update);
1200
1201 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1202 u8 *lladdr, void *saddr,
1203 struct net_device *dev)
1204 {
1205 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1206 lladdr || !dev->addr_len);
1207 if (neigh)
1208 neigh_update(neigh, lladdr, NUD_STALE,
1209 NEIGH_UPDATE_F_OVERRIDE);
1210 return neigh;
1211 }
1212 EXPORT_SYMBOL(neigh_event_ns);
1213
1214 static inline bool neigh_hh_lookup(struct neighbour *n, struct dst_entry *dst,
1215 __be16 protocol)
1216 {
1217 struct hh_cache *hh;
1218
1219 smp_rmb(); /* paired with smp_wmb() in neigh_hh_init() */
1220 for (hh = n->hh; hh; hh = hh->hh_next) {
1221 if (hh->hh_type == protocol) {
1222 atomic_inc(&hh->hh_refcnt);
1223 if (unlikely(cmpxchg(&dst->hh, NULL, hh) != NULL))
1224 hh_cache_put(hh);
1225 return true;
1226 }
1227 }
1228 return false;
1229 }
1230
1231 /* called with read_lock_bh(&n->lock); */
1232 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1233 __be16 protocol)
1234 {
1235 struct hh_cache *hh;
1236 struct net_device *dev = dst->dev;
1237
1238 if (likely(neigh_hh_lookup(n, dst, protocol)))
1239 return;
1240
1241 /* slow path */
1242 hh = kzalloc(sizeof(*hh), GFP_ATOMIC);
1243 if (!hh)
1244 return;
1245
1246 seqlock_init(&hh->hh_lock);
1247 hh->hh_type = protocol;
1248 atomic_set(&hh->hh_refcnt, 2);
1249
1250 if (dev->header_ops->cache(n, hh)) {
1251 kfree(hh);
1252 return;
1253 }
1254
1255 write_lock_bh(&n->lock);
1256
1257 /* must check if another thread already did the insert */
1258 if (neigh_hh_lookup(n, dst, protocol)) {
1259 kfree(hh);
1260 goto end;
1261 }
1262
1263 if (n->nud_state & NUD_CONNECTED)
1264 hh->hh_output = n->ops->hh_output;
1265 else
1266 hh->hh_output = n->ops->output;
1267
1268 hh->hh_next = n->hh;
1269 smp_wmb(); /* paired with smp_rmb() in neigh_hh_lookup() */
1270 n->hh = hh;
1271
1272 if (unlikely(cmpxchg(&dst->hh, NULL, hh) != NULL))
1273 hh_cache_put(hh);
1274 end:
1275 write_unlock_bh(&n->lock);
1276 }
1277
1278 /* This function can be used in contexts, where only old dev_queue_xmit
1279 * worked, f.e. if you want to override normal output path (eql, shaper),
1280 * but resolution is not made yet.
1281 */
1282
1283 int neigh_compat_output(struct sk_buff *skb)
1284 {
1285 struct net_device *dev = skb->dev;
1286
1287 __skb_pull(skb, skb_network_offset(skb));
1288
1289 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1290 skb->len) < 0 &&
1291 dev->header_ops->rebuild(skb))
1292 return 0;
1293
1294 return dev_queue_xmit(skb);
1295 }
1296 EXPORT_SYMBOL(neigh_compat_output);
1297
1298 /* Slow and careful. */
1299
1300 int neigh_resolve_output(struct sk_buff *skb)
1301 {
1302 struct dst_entry *dst = skb_dst(skb);
1303 struct neighbour *neigh;
1304 int rc = 0;
1305
1306 if (!dst || !(neigh = dst->neighbour))
1307 goto discard;
1308
1309 __skb_pull(skb, skb_network_offset(skb));
1310
1311 if (!neigh_event_send(neigh, skb)) {
1312 int err;
1313 struct net_device *dev = neigh->dev;
1314 unsigned int seq;
1315
1316 if (dev->header_ops->cache &&
1317 !dst->hh &&
1318 !(dst->flags & DST_NOCACHE))
1319 neigh_hh_init(neigh, dst, dst->ops->protocol);
1320
1321 do {
1322 seq = read_seqbegin(&neigh->ha_lock);
1323 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1324 neigh->ha, NULL, skb->len);
1325 } while (read_seqretry(&neigh->ha_lock, seq));
1326
1327 if (err >= 0)
1328 rc = neigh->ops->queue_xmit(skb);
1329 else
1330 goto out_kfree_skb;
1331 }
1332 out:
1333 return rc;
1334 discard:
1335 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1336 dst, dst ? dst->neighbour : NULL);
1337 out_kfree_skb:
1338 rc = -EINVAL;
1339 kfree_skb(skb);
1340 goto out;
1341 }
1342 EXPORT_SYMBOL(neigh_resolve_output);
1343
1344 /* As fast as possible without hh cache */
1345
1346 int neigh_connected_output(struct sk_buff *skb)
1347 {
1348 int err;
1349 struct dst_entry *dst = skb_dst(skb);
1350 struct neighbour *neigh = dst->neighbour;
1351 struct net_device *dev = neigh->dev;
1352 unsigned int seq;
1353
1354 __skb_pull(skb, skb_network_offset(skb));
1355
1356 do {
1357 seq = read_seqbegin(&neigh->ha_lock);
1358 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1359 neigh->ha, NULL, skb->len);
1360 } while (read_seqretry(&neigh->ha_lock, seq));
1361
1362 if (err >= 0)
1363 err = neigh->ops->queue_xmit(skb);
1364 else {
1365 err = -EINVAL;
1366 kfree_skb(skb);
1367 }
1368 return err;
1369 }
1370 EXPORT_SYMBOL(neigh_connected_output);
1371
1372 static void neigh_proxy_process(unsigned long arg)
1373 {
1374 struct neigh_table *tbl = (struct neigh_table *)arg;
1375 long sched_next = 0;
1376 unsigned long now = jiffies;
1377 struct sk_buff *skb, *n;
1378
1379 spin_lock(&tbl->proxy_queue.lock);
1380
1381 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1382 long tdif = NEIGH_CB(skb)->sched_next - now;
1383
1384 if (tdif <= 0) {
1385 struct net_device *dev = skb->dev;
1386 __skb_unlink(skb, &tbl->proxy_queue);
1387 if (tbl->proxy_redo && netif_running(dev))
1388 tbl->proxy_redo(skb);
1389 else
1390 kfree_skb(skb);
1391
1392 dev_put(dev);
1393 } else if (!sched_next || tdif < sched_next)
1394 sched_next = tdif;
1395 }
1396 del_timer(&tbl->proxy_timer);
1397 if (sched_next)
1398 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1399 spin_unlock(&tbl->proxy_queue.lock);
1400 }
1401
1402 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1403 struct sk_buff *skb)
1404 {
1405 unsigned long now = jiffies;
1406 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1407
1408 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1409 kfree_skb(skb);
1410 return;
1411 }
1412
1413 NEIGH_CB(skb)->sched_next = sched_next;
1414 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1415
1416 spin_lock(&tbl->proxy_queue.lock);
1417 if (del_timer(&tbl->proxy_timer)) {
1418 if (time_before(tbl->proxy_timer.expires, sched_next))
1419 sched_next = tbl->proxy_timer.expires;
1420 }
1421 skb_dst_drop(skb);
1422 dev_hold(skb->dev);
1423 __skb_queue_tail(&tbl->proxy_queue, skb);
1424 mod_timer(&tbl->proxy_timer, sched_next);
1425 spin_unlock(&tbl->proxy_queue.lock);
1426 }
1427 EXPORT_SYMBOL(pneigh_enqueue);
1428
1429 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1430 struct net *net, int ifindex)
1431 {
1432 struct neigh_parms *p;
1433
1434 for (p = &tbl->parms; p; p = p->next) {
1435 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1436 (!p->dev && !ifindex))
1437 return p;
1438 }
1439
1440 return NULL;
1441 }
1442
1443 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1444 struct neigh_table *tbl)
1445 {
1446 struct neigh_parms *p, *ref;
1447 struct net *net = dev_net(dev);
1448 const struct net_device_ops *ops = dev->netdev_ops;
1449
1450 ref = lookup_neigh_parms(tbl, net, 0);
1451 if (!ref)
1452 return NULL;
1453
1454 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1455 if (p) {
1456 p->tbl = tbl;
1457 atomic_set(&p->refcnt, 1);
1458 p->reachable_time =
1459 neigh_rand_reach_time(p->base_reachable_time);
1460
1461 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1462 kfree(p);
1463 return NULL;
1464 }
1465
1466 dev_hold(dev);
1467 p->dev = dev;
1468 write_pnet(&p->net, hold_net(net));
1469 p->sysctl_table = NULL;
1470 write_lock_bh(&tbl->lock);
1471 p->next = tbl->parms.next;
1472 tbl->parms.next = p;
1473 write_unlock_bh(&tbl->lock);
1474 }
1475 return p;
1476 }
1477 EXPORT_SYMBOL(neigh_parms_alloc);
1478
1479 static void neigh_rcu_free_parms(struct rcu_head *head)
1480 {
1481 struct neigh_parms *parms =
1482 container_of(head, struct neigh_parms, rcu_head);
1483
1484 neigh_parms_put(parms);
1485 }
1486
1487 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1488 {
1489 struct neigh_parms **p;
1490
1491 if (!parms || parms == &tbl->parms)
1492 return;
1493 write_lock_bh(&tbl->lock);
1494 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1495 if (*p == parms) {
1496 *p = parms->next;
1497 parms->dead = 1;
1498 write_unlock_bh(&tbl->lock);
1499 if (parms->dev)
1500 dev_put(parms->dev);
1501 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1502 return;
1503 }
1504 }
1505 write_unlock_bh(&tbl->lock);
1506 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1507 }
1508 EXPORT_SYMBOL(neigh_parms_release);
1509
1510 static void neigh_parms_destroy(struct neigh_parms *parms)
1511 {
1512 release_net(neigh_parms_net(parms));
1513 kfree(parms);
1514 }
1515
1516 static struct lock_class_key neigh_table_proxy_queue_class;
1517
1518 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1519 {
1520 unsigned long now = jiffies;
1521 unsigned long phsize;
1522
1523 write_pnet(&tbl->parms.net, &init_net);
1524 atomic_set(&tbl->parms.refcnt, 1);
1525 tbl->parms.reachable_time =
1526 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1527
1528 if (!tbl->kmem_cachep)
1529 tbl->kmem_cachep =
1530 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1531 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1532 NULL);
1533 tbl->stats = alloc_percpu(struct neigh_statistics);
1534 if (!tbl->stats)
1535 panic("cannot create neighbour cache statistics");
1536
1537 #ifdef CONFIG_PROC_FS
1538 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1539 &neigh_stat_seq_fops, tbl))
1540 panic("cannot create neighbour proc dir entry");
1541 #endif
1542
1543 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(8));
1544
1545 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1546 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1547
1548 if (!tbl->nht || !tbl->phash_buckets)
1549 panic("cannot allocate neighbour cache hashes");
1550
1551 rwlock_init(&tbl->lock);
1552 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1553 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1554 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1555 skb_queue_head_init_class(&tbl->proxy_queue,
1556 &neigh_table_proxy_queue_class);
1557
1558 tbl->last_flush = now;
1559 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1560 }
1561 EXPORT_SYMBOL(neigh_table_init_no_netlink);
1562
1563 void neigh_table_init(struct neigh_table *tbl)
1564 {
1565 struct neigh_table *tmp;
1566
1567 neigh_table_init_no_netlink(tbl);
1568 write_lock(&neigh_tbl_lock);
1569 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1570 if (tmp->family == tbl->family)
1571 break;
1572 }
1573 tbl->next = neigh_tables;
1574 neigh_tables = tbl;
1575 write_unlock(&neigh_tbl_lock);
1576
1577 if (unlikely(tmp)) {
1578 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1579 "family %d\n", tbl->family);
1580 dump_stack();
1581 }
1582 }
1583 EXPORT_SYMBOL(neigh_table_init);
1584
1585 int neigh_table_clear(struct neigh_table *tbl)
1586 {
1587 struct neigh_table **tp;
1588
1589 /* It is not clean... Fix it to unload IPv6 module safely */
1590 cancel_delayed_work_sync(&tbl->gc_work);
1591 del_timer_sync(&tbl->proxy_timer);
1592 pneigh_queue_purge(&tbl->proxy_queue);
1593 neigh_ifdown(tbl, NULL);
1594 if (atomic_read(&tbl->entries))
1595 printk(KERN_CRIT "neighbour leakage\n");
1596 write_lock(&neigh_tbl_lock);
1597 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1598 if (*tp == tbl) {
1599 *tp = tbl->next;
1600 break;
1601 }
1602 }
1603 write_unlock(&neigh_tbl_lock);
1604
1605 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1606 neigh_hash_free_rcu);
1607 tbl->nht = NULL;
1608
1609 kfree(tbl->phash_buckets);
1610 tbl->phash_buckets = NULL;
1611
1612 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1613
1614 free_percpu(tbl->stats);
1615 tbl->stats = NULL;
1616
1617 kmem_cache_destroy(tbl->kmem_cachep);
1618 tbl->kmem_cachep = NULL;
1619
1620 return 0;
1621 }
1622 EXPORT_SYMBOL(neigh_table_clear);
1623
1624 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1625 {
1626 struct net *net = sock_net(skb->sk);
1627 struct ndmsg *ndm;
1628 struct nlattr *dst_attr;
1629 struct neigh_table *tbl;
1630 struct net_device *dev = NULL;
1631 int err = -EINVAL;
1632
1633 ASSERT_RTNL();
1634 if (nlmsg_len(nlh) < sizeof(*ndm))
1635 goto out;
1636
1637 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1638 if (dst_attr == NULL)
1639 goto out;
1640
1641 ndm = nlmsg_data(nlh);
1642 if (ndm->ndm_ifindex) {
1643 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1644 if (dev == NULL) {
1645 err = -ENODEV;
1646 goto out;
1647 }
1648 }
1649
1650 read_lock(&neigh_tbl_lock);
1651 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1652 struct neighbour *neigh;
1653
1654 if (tbl->family != ndm->ndm_family)
1655 continue;
1656 read_unlock(&neigh_tbl_lock);
1657
1658 if (nla_len(dst_attr) < tbl->key_len)
1659 goto out;
1660
1661 if (ndm->ndm_flags & NTF_PROXY) {
1662 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1663 goto out;
1664 }
1665
1666 if (dev == NULL)
1667 goto out;
1668
1669 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1670 if (neigh == NULL) {
1671 err = -ENOENT;
1672 goto out;
1673 }
1674
1675 err = neigh_update(neigh, NULL, NUD_FAILED,
1676 NEIGH_UPDATE_F_OVERRIDE |
1677 NEIGH_UPDATE_F_ADMIN);
1678 neigh_release(neigh);
1679 goto out;
1680 }
1681 read_unlock(&neigh_tbl_lock);
1682 err = -EAFNOSUPPORT;
1683
1684 out:
1685 return err;
1686 }
1687
1688 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1689 {
1690 struct net *net = sock_net(skb->sk);
1691 struct ndmsg *ndm;
1692 struct nlattr *tb[NDA_MAX+1];
1693 struct neigh_table *tbl;
1694 struct net_device *dev = NULL;
1695 int err;
1696
1697 ASSERT_RTNL();
1698 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1699 if (err < 0)
1700 goto out;
1701
1702 err = -EINVAL;
1703 if (tb[NDA_DST] == NULL)
1704 goto out;
1705
1706 ndm = nlmsg_data(nlh);
1707 if (ndm->ndm_ifindex) {
1708 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1709 if (dev == NULL) {
1710 err = -ENODEV;
1711 goto out;
1712 }
1713
1714 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1715 goto out;
1716 }
1717
1718 read_lock(&neigh_tbl_lock);
1719 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1720 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1721 struct neighbour *neigh;
1722 void *dst, *lladdr;
1723
1724 if (tbl->family != ndm->ndm_family)
1725 continue;
1726 read_unlock(&neigh_tbl_lock);
1727
1728 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1729 goto out;
1730 dst = nla_data(tb[NDA_DST]);
1731 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1732
1733 if (ndm->ndm_flags & NTF_PROXY) {
1734 struct pneigh_entry *pn;
1735
1736 err = -ENOBUFS;
1737 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1738 if (pn) {
1739 pn->flags = ndm->ndm_flags;
1740 err = 0;
1741 }
1742 goto out;
1743 }
1744
1745 if (dev == NULL)
1746 goto out;
1747
1748 neigh = neigh_lookup(tbl, dst, dev);
1749 if (neigh == NULL) {
1750 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1751 err = -ENOENT;
1752 goto out;
1753 }
1754
1755 neigh = __neigh_lookup_errno(tbl, dst, dev);
1756 if (IS_ERR(neigh)) {
1757 err = PTR_ERR(neigh);
1758 goto out;
1759 }
1760 } else {
1761 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1762 err = -EEXIST;
1763 neigh_release(neigh);
1764 goto out;
1765 }
1766
1767 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1768 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1769 }
1770
1771 if (ndm->ndm_flags & NTF_USE) {
1772 neigh_event_send(neigh, NULL);
1773 err = 0;
1774 } else
1775 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1776 neigh_release(neigh);
1777 goto out;
1778 }
1779
1780 read_unlock(&neigh_tbl_lock);
1781 err = -EAFNOSUPPORT;
1782 out:
1783 return err;
1784 }
1785
1786 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1787 {
1788 struct nlattr *nest;
1789
1790 nest = nla_nest_start(skb, NDTA_PARMS);
1791 if (nest == NULL)
1792 return -ENOBUFS;
1793
1794 if (parms->dev)
1795 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1796
1797 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1798 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1799 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1800 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1801 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1802 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1803 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1804 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1805 parms->base_reachable_time);
1806 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1807 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1808 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1809 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1810 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1811 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1812
1813 return nla_nest_end(skb, nest);
1814
1815 nla_put_failure:
1816 nla_nest_cancel(skb, nest);
1817 return -EMSGSIZE;
1818 }
1819
1820 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1821 u32 pid, u32 seq, int type, int flags)
1822 {
1823 struct nlmsghdr *nlh;
1824 struct ndtmsg *ndtmsg;
1825
1826 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1827 if (nlh == NULL)
1828 return -EMSGSIZE;
1829
1830 ndtmsg = nlmsg_data(nlh);
1831
1832 read_lock_bh(&tbl->lock);
1833 ndtmsg->ndtm_family = tbl->family;
1834 ndtmsg->ndtm_pad1 = 0;
1835 ndtmsg->ndtm_pad2 = 0;
1836
1837 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1838 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1839 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1840 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1841 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1842
1843 {
1844 unsigned long now = jiffies;
1845 unsigned int flush_delta = now - tbl->last_flush;
1846 unsigned int rand_delta = now - tbl->last_rand;
1847 struct neigh_hash_table *nht;
1848 struct ndt_config ndc = {
1849 .ndtc_key_len = tbl->key_len,
1850 .ndtc_entry_size = tbl->entry_size,
1851 .ndtc_entries = atomic_read(&tbl->entries),
1852 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1853 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1854 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1855 };
1856
1857 rcu_read_lock_bh();
1858 nht = rcu_dereference_bh(tbl->nht);
1859 ndc.ndtc_hash_rnd = nht->hash_rnd;
1860 ndc.ndtc_hash_mask = nht->hash_mask;
1861 rcu_read_unlock_bh();
1862
1863 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1864 }
1865
1866 {
1867 int cpu;
1868 struct ndt_stats ndst;
1869
1870 memset(&ndst, 0, sizeof(ndst));
1871
1872 for_each_possible_cpu(cpu) {
1873 struct neigh_statistics *st;
1874
1875 st = per_cpu_ptr(tbl->stats, cpu);
1876 ndst.ndts_allocs += st->allocs;
1877 ndst.ndts_destroys += st->destroys;
1878 ndst.ndts_hash_grows += st->hash_grows;
1879 ndst.ndts_res_failed += st->res_failed;
1880 ndst.ndts_lookups += st->lookups;
1881 ndst.ndts_hits += st->hits;
1882 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1883 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1884 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1885 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1886 }
1887
1888 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1889 }
1890
1891 BUG_ON(tbl->parms.dev);
1892 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1893 goto nla_put_failure;
1894
1895 read_unlock_bh(&tbl->lock);
1896 return nlmsg_end(skb, nlh);
1897
1898 nla_put_failure:
1899 read_unlock_bh(&tbl->lock);
1900 nlmsg_cancel(skb, nlh);
1901 return -EMSGSIZE;
1902 }
1903
1904 static int neightbl_fill_param_info(struct sk_buff *skb,
1905 struct neigh_table *tbl,
1906 struct neigh_parms *parms,
1907 u32 pid, u32 seq, int type,
1908 unsigned int flags)
1909 {
1910 struct ndtmsg *ndtmsg;
1911 struct nlmsghdr *nlh;
1912
1913 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1914 if (nlh == NULL)
1915 return -EMSGSIZE;
1916
1917 ndtmsg = nlmsg_data(nlh);
1918
1919 read_lock_bh(&tbl->lock);
1920 ndtmsg->ndtm_family = tbl->family;
1921 ndtmsg->ndtm_pad1 = 0;
1922 ndtmsg->ndtm_pad2 = 0;
1923
1924 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1925 neightbl_fill_parms(skb, parms) < 0)
1926 goto errout;
1927
1928 read_unlock_bh(&tbl->lock);
1929 return nlmsg_end(skb, nlh);
1930 errout:
1931 read_unlock_bh(&tbl->lock);
1932 nlmsg_cancel(skb, nlh);
1933 return -EMSGSIZE;
1934 }
1935
1936 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1937 [NDTA_NAME] = { .type = NLA_STRING },
1938 [NDTA_THRESH1] = { .type = NLA_U32 },
1939 [NDTA_THRESH2] = { .type = NLA_U32 },
1940 [NDTA_THRESH3] = { .type = NLA_U32 },
1941 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1942 [NDTA_PARMS] = { .type = NLA_NESTED },
1943 };
1944
1945 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1946 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1947 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1948 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1949 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1950 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1951 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1952 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1953 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1954 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1955 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1956 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1957 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1958 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1959 };
1960
1961 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1962 {
1963 struct net *net = sock_net(skb->sk);
1964 struct neigh_table *tbl;
1965 struct ndtmsg *ndtmsg;
1966 struct nlattr *tb[NDTA_MAX+1];
1967 int err;
1968
1969 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1970 nl_neightbl_policy);
1971 if (err < 0)
1972 goto errout;
1973
1974 if (tb[NDTA_NAME] == NULL) {
1975 err = -EINVAL;
1976 goto errout;
1977 }
1978
1979 ndtmsg = nlmsg_data(nlh);
1980 read_lock(&neigh_tbl_lock);
1981 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1982 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1983 continue;
1984
1985 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1986 break;
1987 }
1988
1989 if (tbl == NULL) {
1990 err = -ENOENT;
1991 goto errout_locked;
1992 }
1993
1994 /*
1995 * We acquire tbl->lock to be nice to the periodic timers and
1996 * make sure they always see a consistent set of values.
1997 */
1998 write_lock_bh(&tbl->lock);
1999
2000 if (tb[NDTA_PARMS]) {
2001 struct nlattr *tbp[NDTPA_MAX+1];
2002 struct neigh_parms *p;
2003 int i, ifindex = 0;
2004
2005 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
2006 nl_ntbl_parm_policy);
2007 if (err < 0)
2008 goto errout_tbl_lock;
2009
2010 if (tbp[NDTPA_IFINDEX])
2011 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
2012
2013 p = lookup_neigh_parms(tbl, net, ifindex);
2014 if (p == NULL) {
2015 err = -ENOENT;
2016 goto errout_tbl_lock;
2017 }
2018
2019 for (i = 1; i <= NDTPA_MAX; i++) {
2020 if (tbp[i] == NULL)
2021 continue;
2022
2023 switch (i) {
2024 case NDTPA_QUEUE_LEN:
2025 p->queue_len = nla_get_u32(tbp[i]);
2026 break;
2027 case NDTPA_PROXY_QLEN:
2028 p->proxy_qlen = nla_get_u32(tbp[i]);
2029 break;
2030 case NDTPA_APP_PROBES:
2031 p->app_probes = nla_get_u32(tbp[i]);
2032 break;
2033 case NDTPA_UCAST_PROBES:
2034 p->ucast_probes = nla_get_u32(tbp[i]);
2035 break;
2036 case NDTPA_MCAST_PROBES:
2037 p->mcast_probes = nla_get_u32(tbp[i]);
2038 break;
2039 case NDTPA_BASE_REACHABLE_TIME:
2040 p->base_reachable_time = nla_get_msecs(tbp[i]);
2041 break;
2042 case NDTPA_GC_STALETIME:
2043 p->gc_staletime = nla_get_msecs(tbp[i]);
2044 break;
2045 case NDTPA_DELAY_PROBE_TIME:
2046 p->delay_probe_time = nla_get_msecs(tbp[i]);
2047 break;
2048 case NDTPA_RETRANS_TIME:
2049 p->retrans_time = nla_get_msecs(tbp[i]);
2050 break;
2051 case NDTPA_ANYCAST_DELAY:
2052 p->anycast_delay = nla_get_msecs(tbp[i]);
2053 break;
2054 case NDTPA_PROXY_DELAY:
2055 p->proxy_delay = nla_get_msecs(tbp[i]);
2056 break;
2057 case NDTPA_LOCKTIME:
2058 p->locktime = nla_get_msecs(tbp[i]);
2059 break;
2060 }
2061 }
2062 }
2063
2064 if (tb[NDTA_THRESH1])
2065 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2066
2067 if (tb[NDTA_THRESH2])
2068 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2069
2070 if (tb[NDTA_THRESH3])
2071 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2072
2073 if (tb[NDTA_GC_INTERVAL])
2074 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2075
2076 err = 0;
2077
2078 errout_tbl_lock:
2079 write_unlock_bh(&tbl->lock);
2080 errout_locked:
2081 read_unlock(&neigh_tbl_lock);
2082 errout:
2083 return err;
2084 }
2085
2086 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2087 {
2088 struct net *net = sock_net(skb->sk);
2089 int family, tidx, nidx = 0;
2090 int tbl_skip = cb->args[0];
2091 int neigh_skip = cb->args[1];
2092 struct neigh_table *tbl;
2093
2094 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2095
2096 read_lock(&neigh_tbl_lock);
2097 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2098 struct neigh_parms *p;
2099
2100 if (tidx < tbl_skip || (family && tbl->family != family))
2101 continue;
2102
2103 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2104 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2105 NLM_F_MULTI) <= 0)
2106 break;
2107
2108 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2109 if (!net_eq(neigh_parms_net(p), net))
2110 continue;
2111
2112 if (nidx < neigh_skip)
2113 goto next;
2114
2115 if (neightbl_fill_param_info(skb, tbl, p,
2116 NETLINK_CB(cb->skb).pid,
2117 cb->nlh->nlmsg_seq,
2118 RTM_NEWNEIGHTBL,
2119 NLM_F_MULTI) <= 0)
2120 goto out;
2121 next:
2122 nidx++;
2123 }
2124
2125 neigh_skip = 0;
2126 }
2127 out:
2128 read_unlock(&neigh_tbl_lock);
2129 cb->args[0] = tidx;
2130 cb->args[1] = nidx;
2131
2132 return skb->len;
2133 }
2134
2135 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2136 u32 pid, u32 seq, int type, unsigned int flags)
2137 {
2138 unsigned long now = jiffies;
2139 struct nda_cacheinfo ci;
2140 struct nlmsghdr *nlh;
2141 struct ndmsg *ndm;
2142
2143 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2144 if (nlh == NULL)
2145 return -EMSGSIZE;
2146
2147 ndm = nlmsg_data(nlh);
2148 ndm->ndm_family = neigh->ops->family;
2149 ndm->ndm_pad1 = 0;
2150 ndm->ndm_pad2 = 0;
2151 ndm->ndm_flags = neigh->flags;
2152 ndm->ndm_type = neigh->type;
2153 ndm->ndm_ifindex = neigh->dev->ifindex;
2154
2155 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2156
2157 read_lock_bh(&neigh->lock);
2158 ndm->ndm_state = neigh->nud_state;
2159 if (neigh->nud_state & NUD_VALID) {
2160 char haddr[MAX_ADDR_LEN];
2161
2162 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2163 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2164 read_unlock_bh(&neigh->lock);
2165 goto nla_put_failure;
2166 }
2167 }
2168
2169 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2170 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2171 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2172 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2173 read_unlock_bh(&neigh->lock);
2174
2175 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2176 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2177
2178 return nlmsg_end(skb, nlh);
2179
2180 nla_put_failure:
2181 nlmsg_cancel(skb, nlh);
2182 return -EMSGSIZE;
2183 }
2184
2185 static void neigh_update_notify(struct neighbour *neigh)
2186 {
2187 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2188 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2189 }
2190
2191 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2192 struct netlink_callback *cb)
2193 {
2194 struct net *net = sock_net(skb->sk);
2195 struct neighbour *n;
2196 int rc, h, s_h = cb->args[1];
2197 int idx, s_idx = idx = cb->args[2];
2198 struct neigh_hash_table *nht;
2199
2200 rcu_read_lock_bh();
2201 nht = rcu_dereference_bh(tbl->nht);
2202
2203 for (h = 0; h <= nht->hash_mask; h++) {
2204 if (h < s_h)
2205 continue;
2206 if (h > s_h)
2207 s_idx = 0;
2208 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2209 n != NULL;
2210 n = rcu_dereference_bh(n->next)) {
2211 if (!net_eq(dev_net(n->dev), net))
2212 continue;
2213 if (idx < s_idx)
2214 goto next;
2215 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2216 cb->nlh->nlmsg_seq,
2217 RTM_NEWNEIGH,
2218 NLM_F_MULTI) <= 0) {
2219 rc = -1;
2220 goto out;
2221 }
2222 next:
2223 idx++;
2224 }
2225 }
2226 rc = skb->len;
2227 out:
2228 rcu_read_unlock_bh();
2229 cb->args[1] = h;
2230 cb->args[2] = idx;
2231 return rc;
2232 }
2233
2234 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2235 {
2236 struct neigh_table *tbl;
2237 int t, family, s_t;
2238
2239 read_lock(&neigh_tbl_lock);
2240 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2241 s_t = cb->args[0];
2242
2243 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2244 if (t < s_t || (family && tbl->family != family))
2245 continue;
2246 if (t > s_t)
2247 memset(&cb->args[1], 0, sizeof(cb->args) -
2248 sizeof(cb->args[0]));
2249 if (neigh_dump_table(tbl, skb, cb) < 0)
2250 break;
2251 }
2252 read_unlock(&neigh_tbl_lock);
2253
2254 cb->args[0] = t;
2255 return skb->len;
2256 }
2257
2258 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2259 {
2260 int chain;
2261 struct neigh_hash_table *nht;
2262
2263 rcu_read_lock_bh();
2264 nht = rcu_dereference_bh(tbl->nht);
2265
2266 read_lock(&tbl->lock); /* avoid resizes */
2267 for (chain = 0; chain <= nht->hash_mask; chain++) {
2268 struct neighbour *n;
2269
2270 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2271 n != NULL;
2272 n = rcu_dereference_bh(n->next))
2273 cb(n, cookie);
2274 }
2275 read_unlock(&tbl->lock);
2276 rcu_read_unlock_bh();
2277 }
2278 EXPORT_SYMBOL(neigh_for_each);
2279
2280 /* The tbl->lock must be held as a writer and BH disabled. */
2281 void __neigh_for_each_release(struct neigh_table *tbl,
2282 int (*cb)(struct neighbour *))
2283 {
2284 int chain;
2285 struct neigh_hash_table *nht;
2286
2287 nht = rcu_dereference_protected(tbl->nht,
2288 lockdep_is_held(&tbl->lock));
2289 for (chain = 0; chain <= nht->hash_mask; chain++) {
2290 struct neighbour *n;
2291 struct neighbour __rcu **np;
2292
2293 np = &nht->hash_buckets[chain];
2294 while ((n = rcu_dereference_protected(*np,
2295 lockdep_is_held(&tbl->lock))) != NULL) {
2296 int release;
2297
2298 write_lock(&n->lock);
2299 release = cb(n);
2300 if (release) {
2301 rcu_assign_pointer(*np,
2302 rcu_dereference_protected(n->next,
2303 lockdep_is_held(&tbl->lock)));
2304 n->dead = 1;
2305 } else
2306 np = &n->next;
2307 write_unlock(&n->lock);
2308 if (release)
2309 neigh_cleanup_and_release(n);
2310 }
2311 }
2312 }
2313 EXPORT_SYMBOL(__neigh_for_each_release);
2314
2315 #ifdef CONFIG_PROC_FS
2316
2317 static struct neighbour *neigh_get_first(struct seq_file *seq)
2318 {
2319 struct neigh_seq_state *state = seq->private;
2320 struct net *net = seq_file_net(seq);
2321 struct neigh_hash_table *nht = state->nht;
2322 struct neighbour *n = NULL;
2323 int bucket = state->bucket;
2324
2325 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2326 for (bucket = 0; bucket <= nht->hash_mask; bucket++) {
2327 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2328
2329 while (n) {
2330 if (!net_eq(dev_net(n->dev), net))
2331 goto next;
2332 if (state->neigh_sub_iter) {
2333 loff_t fakep = 0;
2334 void *v;
2335
2336 v = state->neigh_sub_iter(state, n, &fakep);
2337 if (!v)
2338 goto next;
2339 }
2340 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2341 break;
2342 if (n->nud_state & ~NUD_NOARP)
2343 break;
2344 next:
2345 n = rcu_dereference_bh(n->next);
2346 }
2347
2348 if (n)
2349 break;
2350 }
2351 state->bucket = bucket;
2352
2353 return n;
2354 }
2355
2356 static struct neighbour *neigh_get_next(struct seq_file *seq,
2357 struct neighbour *n,
2358 loff_t *pos)
2359 {
2360 struct neigh_seq_state *state = seq->private;
2361 struct net *net = seq_file_net(seq);
2362 struct neigh_hash_table *nht = state->nht;
2363
2364 if (state->neigh_sub_iter) {
2365 void *v = state->neigh_sub_iter(state, n, pos);
2366 if (v)
2367 return n;
2368 }
2369 n = rcu_dereference_bh(n->next);
2370
2371 while (1) {
2372 while (n) {
2373 if (!net_eq(dev_net(n->dev), net))
2374 goto next;
2375 if (state->neigh_sub_iter) {
2376 void *v = state->neigh_sub_iter(state, n, pos);
2377 if (v)
2378 return n;
2379 goto next;
2380 }
2381 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2382 break;
2383
2384 if (n->nud_state & ~NUD_NOARP)
2385 break;
2386 next:
2387 n = rcu_dereference_bh(n->next);
2388 }
2389
2390 if (n)
2391 break;
2392
2393 if (++state->bucket > nht->hash_mask)
2394 break;
2395
2396 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2397 }
2398
2399 if (n && pos)
2400 --(*pos);
2401 return n;
2402 }
2403
2404 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2405 {
2406 struct neighbour *n = neigh_get_first(seq);
2407
2408 if (n) {
2409 --(*pos);
2410 while (*pos) {
2411 n = neigh_get_next(seq, n, pos);
2412 if (!n)
2413 break;
2414 }
2415 }
2416 return *pos ? NULL : n;
2417 }
2418
2419 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2420 {
2421 struct neigh_seq_state *state = seq->private;
2422 struct net *net = seq_file_net(seq);
2423 struct neigh_table *tbl = state->tbl;
2424 struct pneigh_entry *pn = NULL;
2425 int bucket = state->bucket;
2426
2427 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2428 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2429 pn = tbl->phash_buckets[bucket];
2430 while (pn && !net_eq(pneigh_net(pn), net))
2431 pn = pn->next;
2432 if (pn)
2433 break;
2434 }
2435 state->bucket = bucket;
2436
2437 return pn;
2438 }
2439
2440 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2441 struct pneigh_entry *pn,
2442 loff_t *pos)
2443 {
2444 struct neigh_seq_state *state = seq->private;
2445 struct net *net = seq_file_net(seq);
2446 struct neigh_table *tbl = state->tbl;
2447
2448 pn = pn->next;
2449 while (!pn) {
2450 if (++state->bucket > PNEIGH_HASHMASK)
2451 break;
2452 pn = tbl->phash_buckets[state->bucket];
2453 while (pn && !net_eq(pneigh_net(pn), net))
2454 pn = pn->next;
2455 if (pn)
2456 break;
2457 }
2458
2459 if (pn && pos)
2460 --(*pos);
2461
2462 return pn;
2463 }
2464
2465 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2466 {
2467 struct pneigh_entry *pn = pneigh_get_first(seq);
2468
2469 if (pn) {
2470 --(*pos);
2471 while (*pos) {
2472 pn = pneigh_get_next(seq, pn, pos);
2473 if (!pn)
2474 break;
2475 }
2476 }
2477 return *pos ? NULL : pn;
2478 }
2479
2480 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2481 {
2482 struct neigh_seq_state *state = seq->private;
2483 void *rc;
2484 loff_t idxpos = *pos;
2485
2486 rc = neigh_get_idx(seq, &idxpos);
2487 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2488 rc = pneigh_get_idx(seq, &idxpos);
2489
2490 return rc;
2491 }
2492
2493 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2494 __acquires(rcu_bh)
2495 {
2496 struct neigh_seq_state *state = seq->private;
2497
2498 state->tbl = tbl;
2499 state->bucket = 0;
2500 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2501
2502 rcu_read_lock_bh();
2503 state->nht = rcu_dereference_bh(tbl->nht);
2504
2505 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2506 }
2507 EXPORT_SYMBOL(neigh_seq_start);
2508
2509 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2510 {
2511 struct neigh_seq_state *state;
2512 void *rc;
2513
2514 if (v == SEQ_START_TOKEN) {
2515 rc = neigh_get_first(seq);
2516 goto out;
2517 }
2518
2519 state = seq->private;
2520 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2521 rc = neigh_get_next(seq, v, NULL);
2522 if (rc)
2523 goto out;
2524 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2525 rc = pneigh_get_first(seq);
2526 } else {
2527 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2528 rc = pneigh_get_next(seq, v, NULL);
2529 }
2530 out:
2531 ++(*pos);
2532 return rc;
2533 }
2534 EXPORT_SYMBOL(neigh_seq_next);
2535
2536 void neigh_seq_stop(struct seq_file *seq, void *v)
2537 __releases(rcu_bh)
2538 {
2539 rcu_read_unlock_bh();
2540 }
2541 EXPORT_SYMBOL(neigh_seq_stop);
2542
2543 /* statistics via seq_file */
2544
2545 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2546 {
2547 struct neigh_table *tbl = seq->private;
2548 int cpu;
2549
2550 if (*pos == 0)
2551 return SEQ_START_TOKEN;
2552
2553 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2554 if (!cpu_possible(cpu))
2555 continue;
2556 *pos = cpu+1;
2557 return per_cpu_ptr(tbl->stats, cpu);
2558 }
2559 return NULL;
2560 }
2561
2562 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2563 {
2564 struct neigh_table *tbl = seq->private;
2565 int cpu;
2566
2567 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2568 if (!cpu_possible(cpu))
2569 continue;
2570 *pos = cpu+1;
2571 return per_cpu_ptr(tbl->stats, cpu);
2572 }
2573 return NULL;
2574 }
2575
2576 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2577 {
2578
2579 }
2580
2581 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2582 {
2583 struct neigh_table *tbl = seq->private;
2584 struct neigh_statistics *st = v;
2585
2586 if (v == SEQ_START_TOKEN) {
2587 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2588 return 0;
2589 }
2590
2591 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2592 "%08lx %08lx %08lx %08lx %08lx\n",
2593 atomic_read(&tbl->entries),
2594
2595 st->allocs,
2596 st->destroys,
2597 st->hash_grows,
2598
2599 st->lookups,
2600 st->hits,
2601
2602 st->res_failed,
2603
2604 st->rcv_probes_mcast,
2605 st->rcv_probes_ucast,
2606
2607 st->periodic_gc_runs,
2608 st->forced_gc_runs,
2609 st->unres_discards
2610 );
2611
2612 return 0;
2613 }
2614
2615 static const struct seq_operations neigh_stat_seq_ops = {
2616 .start = neigh_stat_seq_start,
2617 .next = neigh_stat_seq_next,
2618 .stop = neigh_stat_seq_stop,
2619 .show = neigh_stat_seq_show,
2620 };
2621
2622 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2623 {
2624 int ret = seq_open(file, &neigh_stat_seq_ops);
2625
2626 if (!ret) {
2627 struct seq_file *sf = file->private_data;
2628 sf->private = PDE(inode)->data;
2629 }
2630 return ret;
2631 };
2632
2633 static const struct file_operations neigh_stat_seq_fops = {
2634 .owner = THIS_MODULE,
2635 .open = neigh_stat_seq_open,
2636 .read = seq_read,
2637 .llseek = seq_lseek,
2638 .release = seq_release,
2639 };
2640
2641 #endif /* CONFIG_PROC_FS */
2642
2643 static inline size_t neigh_nlmsg_size(void)
2644 {
2645 return NLMSG_ALIGN(sizeof(struct ndmsg))
2646 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2647 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2648 + nla_total_size(sizeof(struct nda_cacheinfo))
2649 + nla_total_size(4); /* NDA_PROBES */
2650 }
2651
2652 static void __neigh_notify(struct neighbour *n, int type, int flags)
2653 {
2654 struct net *net = dev_net(n->dev);
2655 struct sk_buff *skb;
2656 int err = -ENOBUFS;
2657
2658 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2659 if (skb == NULL)
2660 goto errout;
2661
2662 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2663 if (err < 0) {
2664 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2665 WARN_ON(err == -EMSGSIZE);
2666 kfree_skb(skb);
2667 goto errout;
2668 }
2669 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2670 return;
2671 errout:
2672 if (err < 0)
2673 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2674 }
2675
2676 #ifdef CONFIG_ARPD
2677 void neigh_app_ns(struct neighbour *n)
2678 {
2679 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2680 }
2681 EXPORT_SYMBOL(neigh_app_ns);
2682 #endif /* CONFIG_ARPD */
2683
2684 #ifdef CONFIG_SYSCTL
2685
2686 #define NEIGH_VARS_MAX 19
2687
2688 static struct neigh_sysctl_table {
2689 struct ctl_table_header *sysctl_header;
2690 struct ctl_table neigh_vars[NEIGH_VARS_MAX];
2691 char *dev_name;
2692 } neigh_sysctl_template __read_mostly = {
2693 .neigh_vars = {
2694 {
2695 .procname = "mcast_solicit",
2696 .maxlen = sizeof(int),
2697 .mode = 0644,
2698 .proc_handler = proc_dointvec,
2699 },
2700 {
2701 .procname = "ucast_solicit",
2702 .maxlen = sizeof(int),
2703 .mode = 0644,
2704 .proc_handler = proc_dointvec,
2705 },
2706 {
2707 .procname = "app_solicit",
2708 .maxlen = sizeof(int),
2709 .mode = 0644,
2710 .proc_handler = proc_dointvec,
2711 },
2712 {
2713 .procname = "retrans_time",
2714 .maxlen = sizeof(int),
2715 .mode = 0644,
2716 .proc_handler = proc_dointvec_userhz_jiffies,
2717 },
2718 {
2719 .procname = "base_reachable_time",
2720 .maxlen = sizeof(int),
2721 .mode = 0644,
2722 .proc_handler = proc_dointvec_jiffies,
2723 },
2724 {
2725 .procname = "delay_first_probe_time",
2726 .maxlen = sizeof(int),
2727 .mode = 0644,
2728 .proc_handler = proc_dointvec_jiffies,
2729 },
2730 {
2731 .procname = "gc_stale_time",
2732 .maxlen = sizeof(int),
2733 .mode = 0644,
2734 .proc_handler = proc_dointvec_jiffies,
2735 },
2736 {
2737 .procname = "unres_qlen",
2738 .maxlen = sizeof(int),
2739 .mode = 0644,
2740 .proc_handler = proc_dointvec,
2741 },
2742 {
2743 .procname = "proxy_qlen",
2744 .maxlen = sizeof(int),
2745 .mode = 0644,
2746 .proc_handler = proc_dointvec,
2747 },
2748 {
2749 .procname = "anycast_delay",
2750 .maxlen = sizeof(int),
2751 .mode = 0644,
2752 .proc_handler = proc_dointvec_userhz_jiffies,
2753 },
2754 {
2755 .procname = "proxy_delay",
2756 .maxlen = sizeof(int),
2757 .mode = 0644,
2758 .proc_handler = proc_dointvec_userhz_jiffies,
2759 },
2760 {
2761 .procname = "locktime",
2762 .maxlen = sizeof(int),
2763 .mode = 0644,
2764 .proc_handler = proc_dointvec_userhz_jiffies,
2765 },
2766 {
2767 .procname = "retrans_time_ms",
2768 .maxlen = sizeof(int),
2769 .mode = 0644,
2770 .proc_handler = proc_dointvec_ms_jiffies,
2771 },
2772 {
2773 .procname = "base_reachable_time_ms",
2774 .maxlen = sizeof(int),
2775 .mode = 0644,
2776 .proc_handler = proc_dointvec_ms_jiffies,
2777 },
2778 {
2779 .procname = "gc_interval",
2780 .maxlen = sizeof(int),
2781 .mode = 0644,
2782 .proc_handler = proc_dointvec_jiffies,
2783 },
2784 {
2785 .procname = "gc_thresh1",
2786 .maxlen = sizeof(int),
2787 .mode = 0644,
2788 .proc_handler = proc_dointvec,
2789 },
2790 {
2791 .procname = "gc_thresh2",
2792 .maxlen = sizeof(int),
2793 .mode = 0644,
2794 .proc_handler = proc_dointvec,
2795 },
2796 {
2797 .procname = "gc_thresh3",
2798 .maxlen = sizeof(int),
2799 .mode = 0644,
2800 .proc_handler = proc_dointvec,
2801 },
2802 {},
2803 },
2804 };
2805
2806 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2807 char *p_name, proc_handler *handler)
2808 {
2809 struct neigh_sysctl_table *t;
2810 const char *dev_name_source = NULL;
2811
2812 #define NEIGH_CTL_PATH_ROOT 0
2813 #define NEIGH_CTL_PATH_PROTO 1
2814 #define NEIGH_CTL_PATH_NEIGH 2
2815 #define NEIGH_CTL_PATH_DEV 3
2816
2817 struct ctl_path neigh_path[] = {
2818 { .procname = "net", },
2819 { .procname = "proto", },
2820 { .procname = "neigh", },
2821 { .procname = "default", },
2822 { },
2823 };
2824
2825 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2826 if (!t)
2827 goto err;
2828
2829 t->neigh_vars[0].data = &p->mcast_probes;
2830 t->neigh_vars[1].data = &p->ucast_probes;
2831 t->neigh_vars[2].data = &p->app_probes;
2832 t->neigh_vars[3].data = &p->retrans_time;
2833 t->neigh_vars[4].data = &p->base_reachable_time;
2834 t->neigh_vars[5].data = &p->delay_probe_time;
2835 t->neigh_vars[6].data = &p->gc_staletime;
2836 t->neigh_vars[7].data = &p->queue_len;
2837 t->neigh_vars[8].data = &p->proxy_qlen;
2838 t->neigh_vars[9].data = &p->anycast_delay;
2839 t->neigh_vars[10].data = &p->proxy_delay;
2840 t->neigh_vars[11].data = &p->locktime;
2841 t->neigh_vars[12].data = &p->retrans_time;
2842 t->neigh_vars[13].data = &p->base_reachable_time;
2843
2844 if (dev) {
2845 dev_name_source = dev->name;
2846 /* Terminate the table early */
2847 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2848 } else {
2849 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2850 t->neigh_vars[14].data = (int *)(p + 1);
2851 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2852 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2853 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2854 }
2855
2856
2857 if (handler) {
2858 /* RetransTime */
2859 t->neigh_vars[3].proc_handler = handler;
2860 t->neigh_vars[3].extra1 = dev;
2861 /* ReachableTime */
2862 t->neigh_vars[4].proc_handler = handler;
2863 t->neigh_vars[4].extra1 = dev;
2864 /* RetransTime (in milliseconds)*/
2865 t->neigh_vars[12].proc_handler = handler;
2866 t->neigh_vars[12].extra1 = dev;
2867 /* ReachableTime (in milliseconds) */
2868 t->neigh_vars[13].proc_handler = handler;
2869 t->neigh_vars[13].extra1 = dev;
2870 }
2871
2872 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2873 if (!t->dev_name)
2874 goto free;
2875
2876 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2877 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2878
2879 t->sysctl_header =
2880 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
2881 if (!t->sysctl_header)
2882 goto free_procname;
2883
2884 p->sysctl_table = t;
2885 return 0;
2886
2887 free_procname:
2888 kfree(t->dev_name);
2889 free:
2890 kfree(t);
2891 err:
2892 return -ENOBUFS;
2893 }
2894 EXPORT_SYMBOL(neigh_sysctl_register);
2895
2896 void neigh_sysctl_unregister(struct neigh_parms *p)
2897 {
2898 if (p->sysctl_table) {
2899 struct neigh_sysctl_table *t = p->sysctl_table;
2900 p->sysctl_table = NULL;
2901 unregister_sysctl_table(t->sysctl_header);
2902 kfree(t->dev_name);
2903 kfree(t);
2904 }
2905 }
2906 EXPORT_SYMBOL(neigh_sysctl_unregister);
2907
2908 #endif /* CONFIG_SYSCTL */
2909
2910 static int __init neigh_init(void)
2911 {
2912 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2913 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2914 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2915
2916 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2917 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2918
2919 return 0;
2920 }
2921
2922 subsys_initcall(neigh_init);
2923