Merge branch 'queue' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 static DEFINE_SPINLOCK(ptype_lock);
142 static DEFINE_SPINLOCK(offload_lock);
143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144 struct list_head ptype_all __read_mostly; /* Taps */
145 static struct list_head offload_base __read_mostly;
146
147 /*
148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
149 * semaphore.
150 *
151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
152 *
153 * Writers must hold the rtnl semaphore while they loop through the
154 * dev_base_head list, and hold dev_base_lock for writing when they do the
155 * actual updates. This allows pure readers to access the list even
156 * while a writer is preparing to update it.
157 *
158 * To put it another way, dev_base_lock is held for writing only to
159 * protect against pure readers; the rtnl semaphore provides the
160 * protection against other writers.
161 *
162 * See, for example usages, register_netdevice() and
163 * unregister_netdevice(), which must be called with the rtnl
164 * semaphore held.
165 */
166 DEFINE_RWLOCK(dev_base_lock);
167 EXPORT_SYMBOL(dev_base_lock);
168
169 seqcount_t devnet_rename_seq;
170
171 static inline void dev_base_seq_inc(struct net *net)
172 {
173 while (++net->dev_base_seq == 0);
174 }
175
176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
177 {
178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
179
180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
181 }
182
183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
184 {
185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
186 }
187
188 static inline void rps_lock(struct softnet_data *sd)
189 {
190 #ifdef CONFIG_RPS
191 spin_lock(&sd->input_pkt_queue.lock);
192 #endif
193 }
194
195 static inline void rps_unlock(struct softnet_data *sd)
196 {
197 #ifdef CONFIG_RPS
198 spin_unlock(&sd->input_pkt_queue.lock);
199 #endif
200 }
201
202 /* Device list insertion */
203 static void list_netdevice(struct net_device *dev)
204 {
205 struct net *net = dev_net(dev);
206
207 ASSERT_RTNL();
208
209 write_lock_bh(&dev_base_lock);
210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 hlist_add_head_rcu(&dev->index_hlist,
213 dev_index_hash(net, dev->ifindex));
214 write_unlock_bh(&dev_base_lock);
215
216 dev_base_seq_inc(net);
217 }
218
219 /* Device list removal
220 * caller must respect a RCU grace period before freeing/reusing dev
221 */
222 static void unlist_netdevice(struct net_device *dev)
223 {
224 ASSERT_RTNL();
225
226 /* Unlink dev from the device chain */
227 write_lock_bh(&dev_base_lock);
228 list_del_rcu(&dev->dev_list);
229 hlist_del_rcu(&dev->name_hlist);
230 hlist_del_rcu(&dev->index_hlist);
231 write_unlock_bh(&dev_base_lock);
232
233 dev_base_seq_inc(dev_net(dev));
234 }
235
236 /*
237 * Our notifier list
238 */
239
240 static RAW_NOTIFIER_HEAD(netdev_chain);
241
242 /*
243 * Device drivers call our routines to queue packets here. We empty the
244 * queue in the local softnet handler.
245 */
246
247 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
248 EXPORT_PER_CPU_SYMBOL(softnet_data);
249
250 #ifdef CONFIG_LOCKDEP
251 /*
252 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
253 * according to dev->type
254 */
255 static const unsigned short netdev_lock_type[] =
256 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
257 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
258 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
259 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
260 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
261 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
262 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
263 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
264 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
265 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
266 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
267 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
268 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
269 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
270 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
271
272 static const char *const netdev_lock_name[] =
273 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
274 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
275 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
276 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
277 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
278 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
279 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
280 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
281 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
282 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
283 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
284 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
285 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
286 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
287 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
288
289 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
290 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
291
292 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
293 {
294 int i;
295
296 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
297 if (netdev_lock_type[i] == dev_type)
298 return i;
299 /* the last key is used by default */
300 return ARRAY_SIZE(netdev_lock_type) - 1;
301 }
302
303 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
304 unsigned short dev_type)
305 {
306 int i;
307
308 i = netdev_lock_pos(dev_type);
309 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
310 netdev_lock_name[i]);
311 }
312
313 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
314 {
315 int i;
316
317 i = netdev_lock_pos(dev->type);
318 lockdep_set_class_and_name(&dev->addr_list_lock,
319 &netdev_addr_lock_key[i],
320 netdev_lock_name[i]);
321 }
322 #else
323 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
324 unsigned short dev_type)
325 {
326 }
327 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
328 {
329 }
330 #endif
331
332 /*******************************************************************************
333
334 Protocol management and registration routines
335
336 *******************************************************************************/
337
338 /*
339 * Add a protocol ID to the list. Now that the input handler is
340 * smarter we can dispense with all the messy stuff that used to be
341 * here.
342 *
343 * BEWARE!!! Protocol handlers, mangling input packets,
344 * MUST BE last in hash buckets and checking protocol handlers
345 * MUST start from promiscuous ptype_all chain in net_bh.
346 * It is true now, do not change it.
347 * Explanation follows: if protocol handler, mangling packet, will
348 * be the first on list, it is not able to sense, that packet
349 * is cloned and should be copied-on-write, so that it will
350 * change it and subsequent readers will get broken packet.
351 * --ANK (980803)
352 */
353
354 static inline struct list_head *ptype_head(const struct packet_type *pt)
355 {
356 if (pt->type == htons(ETH_P_ALL))
357 return &ptype_all;
358 else
359 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
360 }
361
362 /**
363 * dev_add_pack - add packet handler
364 * @pt: packet type declaration
365 *
366 * Add a protocol handler to the networking stack. The passed &packet_type
367 * is linked into kernel lists and may not be freed until it has been
368 * removed from the kernel lists.
369 *
370 * This call does not sleep therefore it can not
371 * guarantee all CPU's that are in middle of receiving packets
372 * will see the new packet type (until the next received packet).
373 */
374
375 void dev_add_pack(struct packet_type *pt)
376 {
377 struct list_head *head = ptype_head(pt);
378
379 spin_lock(&ptype_lock);
380 list_add_rcu(&pt->list, head);
381 spin_unlock(&ptype_lock);
382 }
383 EXPORT_SYMBOL(dev_add_pack);
384
385 /**
386 * __dev_remove_pack - remove packet handler
387 * @pt: packet type declaration
388 *
389 * Remove a protocol handler that was previously added to the kernel
390 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
391 * from the kernel lists and can be freed or reused once this function
392 * returns.
393 *
394 * The packet type might still be in use by receivers
395 * and must not be freed until after all the CPU's have gone
396 * through a quiescent state.
397 */
398 void __dev_remove_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401 struct packet_type *pt1;
402
403 spin_lock(&ptype_lock);
404
405 list_for_each_entry(pt1, head, list) {
406 if (pt == pt1) {
407 list_del_rcu(&pt->list);
408 goto out;
409 }
410 }
411
412 pr_warn("dev_remove_pack: %p not found\n", pt);
413 out:
414 spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(__dev_remove_pack);
417
418 /**
419 * dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * This call sleeps to guarantee that no CPU is looking at the packet
428 * type after return.
429 */
430 void dev_remove_pack(struct packet_type *pt)
431 {
432 __dev_remove_pack(pt);
433
434 synchronize_net();
435 }
436 EXPORT_SYMBOL(dev_remove_pack);
437
438
439 /**
440 * dev_add_offload - register offload handlers
441 * @po: protocol offload declaration
442 *
443 * Add protocol offload handlers to the networking stack. The passed
444 * &proto_offload is linked into kernel lists and may not be freed until
445 * it has been removed from the kernel lists.
446 *
447 * This call does not sleep therefore it can not
448 * guarantee all CPU's that are in middle of receiving packets
449 * will see the new offload handlers (until the next received packet).
450 */
451 void dev_add_offload(struct packet_offload *po)
452 {
453 struct list_head *head = &offload_base;
454
455 spin_lock(&offload_lock);
456 list_add_rcu(&po->list, head);
457 spin_unlock(&offload_lock);
458 }
459 EXPORT_SYMBOL(dev_add_offload);
460
461 /**
462 * __dev_remove_offload - remove offload handler
463 * @po: packet offload declaration
464 *
465 * Remove a protocol offload handler that was previously added to the
466 * kernel offload handlers by dev_add_offload(). The passed &offload_type
467 * is removed from the kernel lists and can be freed or reused once this
468 * function returns.
469 *
470 * The packet type might still be in use by receivers
471 * and must not be freed until after all the CPU's have gone
472 * through a quiescent state.
473 */
474 void __dev_remove_offload(struct packet_offload *po)
475 {
476 struct list_head *head = &offload_base;
477 struct packet_offload *po1;
478
479 spin_lock(&offload_lock);
480
481 list_for_each_entry(po1, head, list) {
482 if (po == po1) {
483 list_del_rcu(&po->list);
484 goto out;
485 }
486 }
487
488 pr_warn("dev_remove_offload: %p not found\n", po);
489 out:
490 spin_unlock(&offload_lock);
491 }
492 EXPORT_SYMBOL(__dev_remove_offload);
493
494 /**
495 * dev_remove_offload - remove packet offload handler
496 * @po: packet offload declaration
497 *
498 * Remove a packet offload handler that was previously added to the kernel
499 * offload handlers by dev_add_offload(). The passed &offload_type is
500 * removed from the kernel lists and can be freed or reused once this
501 * function returns.
502 *
503 * This call sleeps to guarantee that no CPU is looking at the packet
504 * type after return.
505 */
506 void dev_remove_offload(struct packet_offload *po)
507 {
508 __dev_remove_offload(po);
509
510 synchronize_net();
511 }
512 EXPORT_SYMBOL(dev_remove_offload);
513
514 /******************************************************************************
515
516 Device Boot-time Settings Routines
517
518 *******************************************************************************/
519
520 /* Boot time configuration table */
521 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
522
523 /**
524 * netdev_boot_setup_add - add new setup entry
525 * @name: name of the device
526 * @map: configured settings for the device
527 *
528 * Adds new setup entry to the dev_boot_setup list. The function
529 * returns 0 on error and 1 on success. This is a generic routine to
530 * all netdevices.
531 */
532 static int netdev_boot_setup_add(char *name, struct ifmap *map)
533 {
534 struct netdev_boot_setup *s;
535 int i;
536
537 s = dev_boot_setup;
538 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
539 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
540 memset(s[i].name, 0, sizeof(s[i].name));
541 strlcpy(s[i].name, name, IFNAMSIZ);
542 memcpy(&s[i].map, map, sizeof(s[i].map));
543 break;
544 }
545 }
546
547 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
548 }
549
550 /**
551 * netdev_boot_setup_check - check boot time settings
552 * @dev: the netdevice
553 *
554 * Check boot time settings for the device.
555 * The found settings are set for the device to be used
556 * later in the device probing.
557 * Returns 0 if no settings found, 1 if they are.
558 */
559 int netdev_boot_setup_check(struct net_device *dev)
560 {
561 struct netdev_boot_setup *s = dev_boot_setup;
562 int i;
563
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
566 !strcmp(dev->name, s[i].name)) {
567 dev->irq = s[i].map.irq;
568 dev->base_addr = s[i].map.base_addr;
569 dev->mem_start = s[i].map.mem_start;
570 dev->mem_end = s[i].map.mem_end;
571 return 1;
572 }
573 }
574 return 0;
575 }
576 EXPORT_SYMBOL(netdev_boot_setup_check);
577
578
579 /**
580 * netdev_boot_base - get address from boot time settings
581 * @prefix: prefix for network device
582 * @unit: id for network device
583 *
584 * Check boot time settings for the base address of device.
585 * The found settings are set for the device to be used
586 * later in the device probing.
587 * Returns 0 if no settings found.
588 */
589 unsigned long netdev_boot_base(const char *prefix, int unit)
590 {
591 const struct netdev_boot_setup *s = dev_boot_setup;
592 char name[IFNAMSIZ];
593 int i;
594
595 sprintf(name, "%s%d", prefix, unit);
596
597 /*
598 * If device already registered then return base of 1
599 * to indicate not to probe for this interface
600 */
601 if (__dev_get_by_name(&init_net, name))
602 return 1;
603
604 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
605 if (!strcmp(name, s[i].name))
606 return s[i].map.base_addr;
607 return 0;
608 }
609
610 /*
611 * Saves at boot time configured settings for any netdevice.
612 */
613 int __init netdev_boot_setup(char *str)
614 {
615 int ints[5];
616 struct ifmap map;
617
618 str = get_options(str, ARRAY_SIZE(ints), ints);
619 if (!str || !*str)
620 return 0;
621
622 /* Save settings */
623 memset(&map, 0, sizeof(map));
624 if (ints[0] > 0)
625 map.irq = ints[1];
626 if (ints[0] > 1)
627 map.base_addr = ints[2];
628 if (ints[0] > 2)
629 map.mem_start = ints[3];
630 if (ints[0] > 3)
631 map.mem_end = ints[4];
632
633 /* Add new entry to the list */
634 return netdev_boot_setup_add(str, &map);
635 }
636
637 __setup("netdev=", netdev_boot_setup);
638
639 /*******************************************************************************
640
641 Device Interface Subroutines
642
643 *******************************************************************************/
644
645 /**
646 * __dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. Must be called under RTNL semaphore
651 * or @dev_base_lock. If the name is found a pointer to the device
652 * is returned. If the name is not found then %NULL is returned. The
653 * reference counters are not incremented so the caller must be
654 * careful with locks.
655 */
656
657 struct net_device *__dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660 struct hlist_head *head = dev_name_hash(net, name);
661
662 hlist_for_each_entry(dev, head, name_hlist)
663 if (!strncmp(dev->name, name, IFNAMSIZ))
664 return dev;
665
666 return NULL;
667 }
668 EXPORT_SYMBOL(__dev_get_by_name);
669
670 /**
671 * dev_get_by_name_rcu - find a device by its name
672 * @net: the applicable net namespace
673 * @name: name to find
674 *
675 * Find an interface by name.
676 * If the name is found a pointer to the device is returned.
677 * If the name is not found then %NULL is returned.
678 * The reference counters are not incremented so the caller must be
679 * careful with locks. The caller must hold RCU lock.
680 */
681
682 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
683 {
684 struct net_device *dev;
685 struct hlist_head *head = dev_name_hash(net, name);
686
687 hlist_for_each_entry_rcu(dev, head, name_hlist)
688 if (!strncmp(dev->name, name, IFNAMSIZ))
689 return dev;
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(dev_get_by_name_rcu);
694
695 /**
696 * dev_get_by_name - find a device by its name
697 * @net: the applicable net namespace
698 * @name: name to find
699 *
700 * Find an interface by name. This can be called from any
701 * context and does its own locking. The returned handle has
702 * the usage count incremented and the caller must use dev_put() to
703 * release it when it is no longer needed. %NULL is returned if no
704 * matching device is found.
705 */
706
707 struct net_device *dev_get_by_name(struct net *net, const char *name)
708 {
709 struct net_device *dev;
710
711 rcu_read_lock();
712 dev = dev_get_by_name_rcu(net, name);
713 if (dev)
714 dev_hold(dev);
715 rcu_read_unlock();
716 return dev;
717 }
718 EXPORT_SYMBOL(dev_get_by_name);
719
720 /**
721 * __dev_get_by_index - find a device by its ifindex
722 * @net: the applicable net namespace
723 * @ifindex: index of device
724 *
725 * Search for an interface by index. Returns %NULL if the device
726 * is not found or a pointer to the device. The device has not
727 * had its reference counter increased so the caller must be careful
728 * about locking. The caller must hold either the RTNL semaphore
729 * or @dev_base_lock.
730 */
731
732 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
733 {
734 struct net_device *dev;
735 struct hlist_head *head = dev_index_hash(net, ifindex);
736
737 hlist_for_each_entry(dev, head, index_hlist)
738 if (dev->ifindex == ifindex)
739 return dev;
740
741 return NULL;
742 }
743 EXPORT_SYMBOL(__dev_get_by_index);
744
745 /**
746 * dev_get_by_index_rcu - find a device by its ifindex
747 * @net: the applicable net namespace
748 * @ifindex: index of device
749 *
750 * Search for an interface by index. Returns %NULL if the device
751 * is not found or a pointer to the device. The device has not
752 * had its reference counter increased so the caller must be careful
753 * about locking. The caller must hold RCU lock.
754 */
755
756 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
757 {
758 struct net_device *dev;
759 struct hlist_head *head = dev_index_hash(net, ifindex);
760
761 hlist_for_each_entry_rcu(dev, head, index_hlist)
762 if (dev->ifindex == ifindex)
763 return dev;
764
765 return NULL;
766 }
767 EXPORT_SYMBOL(dev_get_by_index_rcu);
768
769
770 /**
771 * dev_get_by_index - find a device by its ifindex
772 * @net: the applicable net namespace
773 * @ifindex: index of device
774 *
775 * Search for an interface by index. Returns NULL if the device
776 * is not found or a pointer to the device. The device returned has
777 * had a reference added and the pointer is safe until the user calls
778 * dev_put to indicate they have finished with it.
779 */
780
781 struct net_device *dev_get_by_index(struct net *net, int ifindex)
782 {
783 struct net_device *dev;
784
785 rcu_read_lock();
786 dev = dev_get_by_index_rcu(net, ifindex);
787 if (dev)
788 dev_hold(dev);
789 rcu_read_unlock();
790 return dev;
791 }
792 EXPORT_SYMBOL(dev_get_by_index);
793
794 /**
795 * dev_getbyhwaddr_rcu - find a device by its hardware address
796 * @net: the applicable net namespace
797 * @type: media type of device
798 * @ha: hardware address
799 *
800 * Search for an interface by MAC address. Returns NULL if the device
801 * is not found or a pointer to the device.
802 * The caller must hold RCU or RTNL.
803 * The returned device has not had its ref count increased
804 * and the caller must therefore be careful about locking
805 *
806 */
807
808 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
809 const char *ha)
810 {
811 struct net_device *dev;
812
813 for_each_netdev_rcu(net, dev)
814 if (dev->type == type &&
815 !memcmp(dev->dev_addr, ha, dev->addr_len))
816 return dev;
817
818 return NULL;
819 }
820 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
821
822 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
823 {
824 struct net_device *dev;
825
826 ASSERT_RTNL();
827 for_each_netdev(net, dev)
828 if (dev->type == type)
829 return dev;
830
831 return NULL;
832 }
833 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
834
835 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
836 {
837 struct net_device *dev, *ret = NULL;
838
839 rcu_read_lock();
840 for_each_netdev_rcu(net, dev)
841 if (dev->type == type) {
842 dev_hold(dev);
843 ret = dev;
844 break;
845 }
846 rcu_read_unlock();
847 return ret;
848 }
849 EXPORT_SYMBOL(dev_getfirstbyhwtype);
850
851 /**
852 * dev_get_by_flags_rcu - find any device with given flags
853 * @net: the applicable net namespace
854 * @if_flags: IFF_* values
855 * @mask: bitmask of bits in if_flags to check
856 *
857 * Search for any interface with the given flags. Returns NULL if a device
858 * is not found or a pointer to the device. Must be called inside
859 * rcu_read_lock(), and result refcount is unchanged.
860 */
861
862 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
863 unsigned short mask)
864 {
865 struct net_device *dev, *ret;
866
867 ret = NULL;
868 for_each_netdev_rcu(net, dev) {
869 if (((dev->flags ^ if_flags) & mask) == 0) {
870 ret = dev;
871 break;
872 }
873 }
874 return ret;
875 }
876 EXPORT_SYMBOL(dev_get_by_flags_rcu);
877
878 /**
879 * dev_valid_name - check if name is okay for network device
880 * @name: name string
881 *
882 * Network device names need to be valid file names to
883 * to allow sysfs to work. We also disallow any kind of
884 * whitespace.
885 */
886 bool dev_valid_name(const char *name)
887 {
888 if (*name == '\0')
889 return false;
890 if (strlen(name) >= IFNAMSIZ)
891 return false;
892 if (!strcmp(name, ".") || !strcmp(name, ".."))
893 return false;
894
895 while (*name) {
896 if (*name == '/' || isspace(*name))
897 return false;
898 name++;
899 }
900 return true;
901 }
902 EXPORT_SYMBOL(dev_valid_name);
903
904 /**
905 * __dev_alloc_name - allocate a name for a device
906 * @net: network namespace to allocate the device name in
907 * @name: name format string
908 * @buf: scratch buffer and result name string
909 *
910 * Passed a format string - eg "lt%d" it will try and find a suitable
911 * id. It scans list of devices to build up a free map, then chooses
912 * the first empty slot. The caller must hold the dev_base or rtnl lock
913 * while allocating the name and adding the device in order to avoid
914 * duplicates.
915 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
916 * Returns the number of the unit assigned or a negative errno code.
917 */
918
919 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
920 {
921 int i = 0;
922 const char *p;
923 const int max_netdevices = 8*PAGE_SIZE;
924 unsigned long *inuse;
925 struct net_device *d;
926
927 p = strnchr(name, IFNAMSIZ-1, '%');
928 if (p) {
929 /*
930 * Verify the string as this thing may have come from
931 * the user. There must be either one "%d" and no other "%"
932 * characters.
933 */
934 if (p[1] != 'd' || strchr(p + 2, '%'))
935 return -EINVAL;
936
937 /* Use one page as a bit array of possible slots */
938 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
939 if (!inuse)
940 return -ENOMEM;
941
942 for_each_netdev(net, d) {
943 if (!sscanf(d->name, name, &i))
944 continue;
945 if (i < 0 || i >= max_netdevices)
946 continue;
947
948 /* avoid cases where sscanf is not exact inverse of printf */
949 snprintf(buf, IFNAMSIZ, name, i);
950 if (!strncmp(buf, d->name, IFNAMSIZ))
951 set_bit(i, inuse);
952 }
953
954 i = find_first_zero_bit(inuse, max_netdevices);
955 free_page((unsigned long) inuse);
956 }
957
958 if (buf != name)
959 snprintf(buf, IFNAMSIZ, name, i);
960 if (!__dev_get_by_name(net, buf))
961 return i;
962
963 /* It is possible to run out of possible slots
964 * when the name is long and there isn't enough space left
965 * for the digits, or if all bits are used.
966 */
967 return -ENFILE;
968 }
969
970 /**
971 * dev_alloc_name - allocate a name for a device
972 * @dev: device
973 * @name: name format string
974 *
975 * Passed a format string - eg "lt%d" it will try and find a suitable
976 * id. It scans list of devices to build up a free map, then chooses
977 * the first empty slot. The caller must hold the dev_base or rtnl lock
978 * while allocating the name and adding the device in order to avoid
979 * duplicates.
980 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
981 * Returns the number of the unit assigned or a negative errno code.
982 */
983
984 int dev_alloc_name(struct net_device *dev, const char *name)
985 {
986 char buf[IFNAMSIZ];
987 struct net *net;
988 int ret;
989
990 BUG_ON(!dev_net(dev));
991 net = dev_net(dev);
992 ret = __dev_alloc_name(net, name, buf);
993 if (ret >= 0)
994 strlcpy(dev->name, buf, IFNAMSIZ);
995 return ret;
996 }
997 EXPORT_SYMBOL(dev_alloc_name);
998
999 static int dev_alloc_name_ns(struct net *net,
1000 struct net_device *dev,
1001 const char *name)
1002 {
1003 char buf[IFNAMSIZ];
1004 int ret;
1005
1006 ret = __dev_alloc_name(net, name, buf);
1007 if (ret >= 0)
1008 strlcpy(dev->name, buf, IFNAMSIZ);
1009 return ret;
1010 }
1011
1012 static int dev_get_valid_name(struct net *net,
1013 struct net_device *dev,
1014 const char *name)
1015 {
1016 BUG_ON(!net);
1017
1018 if (!dev_valid_name(name))
1019 return -EINVAL;
1020
1021 if (strchr(name, '%'))
1022 return dev_alloc_name_ns(net, dev, name);
1023 else if (__dev_get_by_name(net, name))
1024 return -EEXIST;
1025 else if (dev->name != name)
1026 strlcpy(dev->name, name, IFNAMSIZ);
1027
1028 return 0;
1029 }
1030
1031 /**
1032 * dev_change_name - change name of a device
1033 * @dev: device
1034 * @newname: name (or format string) must be at least IFNAMSIZ
1035 *
1036 * Change name of a device, can pass format strings "eth%d".
1037 * for wildcarding.
1038 */
1039 int dev_change_name(struct net_device *dev, const char *newname)
1040 {
1041 char oldname[IFNAMSIZ];
1042 int err = 0;
1043 int ret;
1044 struct net *net;
1045
1046 ASSERT_RTNL();
1047 BUG_ON(!dev_net(dev));
1048
1049 net = dev_net(dev);
1050 if (dev->flags & IFF_UP)
1051 return -EBUSY;
1052
1053 write_seqcount_begin(&devnet_rename_seq);
1054
1055 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1056 write_seqcount_end(&devnet_rename_seq);
1057 return 0;
1058 }
1059
1060 memcpy(oldname, dev->name, IFNAMSIZ);
1061
1062 err = dev_get_valid_name(net, dev, newname);
1063 if (err < 0) {
1064 write_seqcount_end(&devnet_rename_seq);
1065 return err;
1066 }
1067
1068 rollback:
1069 ret = device_rename(&dev->dev, dev->name);
1070 if (ret) {
1071 memcpy(dev->name, oldname, IFNAMSIZ);
1072 write_seqcount_end(&devnet_rename_seq);
1073 return ret;
1074 }
1075
1076 write_seqcount_end(&devnet_rename_seq);
1077
1078 write_lock_bh(&dev_base_lock);
1079 hlist_del_rcu(&dev->name_hlist);
1080 write_unlock_bh(&dev_base_lock);
1081
1082 synchronize_rcu();
1083
1084 write_lock_bh(&dev_base_lock);
1085 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1086 write_unlock_bh(&dev_base_lock);
1087
1088 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1089 ret = notifier_to_errno(ret);
1090
1091 if (ret) {
1092 /* err >= 0 after dev_alloc_name() or stores the first errno */
1093 if (err >= 0) {
1094 err = ret;
1095 write_seqcount_begin(&devnet_rename_seq);
1096 memcpy(dev->name, oldname, IFNAMSIZ);
1097 goto rollback;
1098 } else {
1099 pr_err("%s: name change rollback failed: %d\n",
1100 dev->name, ret);
1101 }
1102 }
1103
1104 return err;
1105 }
1106
1107 /**
1108 * dev_set_alias - change ifalias of a device
1109 * @dev: device
1110 * @alias: name up to IFALIASZ
1111 * @len: limit of bytes to copy from info
1112 *
1113 * Set ifalias for a device,
1114 */
1115 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1116 {
1117 char *new_ifalias;
1118
1119 ASSERT_RTNL();
1120
1121 if (len >= IFALIASZ)
1122 return -EINVAL;
1123
1124 if (!len) {
1125 kfree(dev->ifalias);
1126 dev->ifalias = NULL;
1127 return 0;
1128 }
1129
1130 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1131 if (!new_ifalias)
1132 return -ENOMEM;
1133 dev->ifalias = new_ifalias;
1134
1135 strlcpy(dev->ifalias, alias, len+1);
1136 return len;
1137 }
1138
1139
1140 /**
1141 * netdev_features_change - device changes features
1142 * @dev: device to cause notification
1143 *
1144 * Called to indicate a device has changed features.
1145 */
1146 void netdev_features_change(struct net_device *dev)
1147 {
1148 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1149 }
1150 EXPORT_SYMBOL(netdev_features_change);
1151
1152 /**
1153 * netdev_state_change - device changes state
1154 * @dev: device to cause notification
1155 *
1156 * Called to indicate a device has changed state. This function calls
1157 * the notifier chains for netdev_chain and sends a NEWLINK message
1158 * to the routing socket.
1159 */
1160 void netdev_state_change(struct net_device *dev)
1161 {
1162 if (dev->flags & IFF_UP) {
1163 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1164 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1165 }
1166 }
1167 EXPORT_SYMBOL(netdev_state_change);
1168
1169 /**
1170 * netdev_notify_peers - notify network peers about existence of @dev
1171 * @dev: network device
1172 *
1173 * Generate traffic such that interested network peers are aware of
1174 * @dev, such as by generating a gratuitous ARP. This may be used when
1175 * a device wants to inform the rest of the network about some sort of
1176 * reconfiguration such as a failover event or virtual machine
1177 * migration.
1178 */
1179 void netdev_notify_peers(struct net_device *dev)
1180 {
1181 rtnl_lock();
1182 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1183 rtnl_unlock();
1184 }
1185 EXPORT_SYMBOL(netdev_notify_peers);
1186
1187 static int __dev_open(struct net_device *dev)
1188 {
1189 const struct net_device_ops *ops = dev->netdev_ops;
1190 int ret;
1191
1192 ASSERT_RTNL();
1193
1194 if (!netif_device_present(dev))
1195 return -ENODEV;
1196
1197 /* Block netpoll from trying to do any rx path servicing.
1198 * If we don't do this there is a chance ndo_poll_controller
1199 * or ndo_poll may be running while we open the device
1200 */
1201 ret = netpoll_rx_disable(dev);
1202 if (ret)
1203 return ret;
1204
1205 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1206 ret = notifier_to_errno(ret);
1207 if (ret)
1208 return ret;
1209
1210 set_bit(__LINK_STATE_START, &dev->state);
1211
1212 if (ops->ndo_validate_addr)
1213 ret = ops->ndo_validate_addr(dev);
1214
1215 if (!ret && ops->ndo_open)
1216 ret = ops->ndo_open(dev);
1217
1218 netpoll_rx_enable(dev);
1219
1220 if (ret)
1221 clear_bit(__LINK_STATE_START, &dev->state);
1222 else {
1223 dev->flags |= IFF_UP;
1224 net_dmaengine_get();
1225 dev_set_rx_mode(dev);
1226 dev_activate(dev);
1227 add_device_randomness(dev->dev_addr, dev->addr_len);
1228 }
1229
1230 return ret;
1231 }
1232
1233 /**
1234 * dev_open - prepare an interface for use.
1235 * @dev: device to open
1236 *
1237 * Takes a device from down to up state. The device's private open
1238 * function is invoked and then the multicast lists are loaded. Finally
1239 * the device is moved into the up state and a %NETDEV_UP message is
1240 * sent to the netdev notifier chain.
1241 *
1242 * Calling this function on an active interface is a nop. On a failure
1243 * a negative errno code is returned.
1244 */
1245 int dev_open(struct net_device *dev)
1246 {
1247 int ret;
1248
1249 if (dev->flags & IFF_UP)
1250 return 0;
1251
1252 ret = __dev_open(dev);
1253 if (ret < 0)
1254 return ret;
1255
1256 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1257 call_netdevice_notifiers(NETDEV_UP, dev);
1258
1259 return ret;
1260 }
1261 EXPORT_SYMBOL(dev_open);
1262
1263 static int __dev_close_many(struct list_head *head)
1264 {
1265 struct net_device *dev;
1266
1267 ASSERT_RTNL();
1268 might_sleep();
1269
1270 list_for_each_entry(dev, head, unreg_list) {
1271 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1272
1273 clear_bit(__LINK_STATE_START, &dev->state);
1274
1275 /* Synchronize to scheduled poll. We cannot touch poll list, it
1276 * can be even on different cpu. So just clear netif_running().
1277 *
1278 * dev->stop() will invoke napi_disable() on all of it's
1279 * napi_struct instances on this device.
1280 */
1281 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1282 }
1283
1284 dev_deactivate_many(head);
1285
1286 list_for_each_entry(dev, head, unreg_list) {
1287 const struct net_device_ops *ops = dev->netdev_ops;
1288
1289 /*
1290 * Call the device specific close. This cannot fail.
1291 * Only if device is UP
1292 *
1293 * We allow it to be called even after a DETACH hot-plug
1294 * event.
1295 */
1296 if (ops->ndo_stop)
1297 ops->ndo_stop(dev);
1298
1299 dev->flags &= ~IFF_UP;
1300 net_dmaengine_put();
1301 }
1302
1303 return 0;
1304 }
1305
1306 static int __dev_close(struct net_device *dev)
1307 {
1308 int retval;
1309 LIST_HEAD(single);
1310
1311 /* Temporarily disable netpoll until the interface is down */
1312 retval = netpoll_rx_disable(dev);
1313 if (retval)
1314 return retval;
1315
1316 list_add(&dev->unreg_list, &single);
1317 retval = __dev_close_many(&single);
1318 list_del(&single);
1319
1320 netpoll_rx_enable(dev);
1321 return retval;
1322 }
1323
1324 static int dev_close_many(struct list_head *head)
1325 {
1326 struct net_device *dev, *tmp;
1327 LIST_HEAD(tmp_list);
1328
1329 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1330 if (!(dev->flags & IFF_UP))
1331 list_move(&dev->unreg_list, &tmp_list);
1332
1333 __dev_close_many(head);
1334
1335 list_for_each_entry(dev, head, unreg_list) {
1336 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1337 call_netdevice_notifiers(NETDEV_DOWN, dev);
1338 }
1339
1340 /* rollback_registered_many needs the complete original list */
1341 list_splice(&tmp_list, head);
1342 return 0;
1343 }
1344
1345 /**
1346 * dev_close - shutdown an interface.
1347 * @dev: device to shutdown
1348 *
1349 * This function moves an active device into down state. A
1350 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1351 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1352 * chain.
1353 */
1354 int dev_close(struct net_device *dev)
1355 {
1356 int ret = 0;
1357 if (dev->flags & IFF_UP) {
1358 LIST_HEAD(single);
1359
1360 /* Block netpoll rx while the interface is going down */
1361 ret = netpoll_rx_disable(dev);
1362 if (ret)
1363 return ret;
1364
1365 list_add(&dev->unreg_list, &single);
1366 dev_close_many(&single);
1367 list_del(&single);
1368
1369 netpoll_rx_enable(dev);
1370 }
1371 return ret;
1372 }
1373 EXPORT_SYMBOL(dev_close);
1374
1375
1376 /**
1377 * dev_disable_lro - disable Large Receive Offload on a device
1378 * @dev: device
1379 *
1380 * Disable Large Receive Offload (LRO) on a net device. Must be
1381 * called under RTNL. This is needed if received packets may be
1382 * forwarded to another interface.
1383 */
1384 void dev_disable_lro(struct net_device *dev)
1385 {
1386 /*
1387 * If we're trying to disable lro on a vlan device
1388 * use the underlying physical device instead
1389 */
1390 if (is_vlan_dev(dev))
1391 dev = vlan_dev_real_dev(dev);
1392
1393 dev->wanted_features &= ~NETIF_F_LRO;
1394 netdev_update_features(dev);
1395
1396 if (unlikely(dev->features & NETIF_F_LRO))
1397 netdev_WARN(dev, "failed to disable LRO!\n");
1398 }
1399 EXPORT_SYMBOL(dev_disable_lro);
1400
1401
1402 static int dev_boot_phase = 1;
1403
1404 /**
1405 * register_netdevice_notifier - register a network notifier block
1406 * @nb: notifier
1407 *
1408 * Register a notifier to be called when network device events occur.
1409 * The notifier passed is linked into the kernel structures and must
1410 * not be reused until it has been unregistered. A negative errno code
1411 * is returned on a failure.
1412 *
1413 * When registered all registration and up events are replayed
1414 * to the new notifier to allow device to have a race free
1415 * view of the network device list.
1416 */
1417
1418 int register_netdevice_notifier(struct notifier_block *nb)
1419 {
1420 struct net_device *dev;
1421 struct net_device *last;
1422 struct net *net;
1423 int err;
1424
1425 rtnl_lock();
1426 err = raw_notifier_chain_register(&netdev_chain, nb);
1427 if (err)
1428 goto unlock;
1429 if (dev_boot_phase)
1430 goto unlock;
1431 for_each_net(net) {
1432 for_each_netdev(net, dev) {
1433 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1434 err = notifier_to_errno(err);
1435 if (err)
1436 goto rollback;
1437
1438 if (!(dev->flags & IFF_UP))
1439 continue;
1440
1441 nb->notifier_call(nb, NETDEV_UP, dev);
1442 }
1443 }
1444
1445 unlock:
1446 rtnl_unlock();
1447 return err;
1448
1449 rollback:
1450 last = dev;
1451 for_each_net(net) {
1452 for_each_netdev(net, dev) {
1453 if (dev == last)
1454 goto outroll;
1455
1456 if (dev->flags & IFF_UP) {
1457 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1458 nb->notifier_call(nb, NETDEV_DOWN, dev);
1459 }
1460 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1461 }
1462 }
1463
1464 outroll:
1465 raw_notifier_chain_unregister(&netdev_chain, nb);
1466 goto unlock;
1467 }
1468 EXPORT_SYMBOL(register_netdevice_notifier);
1469
1470 /**
1471 * unregister_netdevice_notifier - unregister a network notifier block
1472 * @nb: notifier
1473 *
1474 * Unregister a notifier previously registered by
1475 * register_netdevice_notifier(). The notifier is unlinked into the
1476 * kernel structures and may then be reused. A negative errno code
1477 * is returned on a failure.
1478 *
1479 * After unregistering unregister and down device events are synthesized
1480 * for all devices on the device list to the removed notifier to remove
1481 * the need for special case cleanup code.
1482 */
1483
1484 int unregister_netdevice_notifier(struct notifier_block *nb)
1485 {
1486 struct net_device *dev;
1487 struct net *net;
1488 int err;
1489
1490 rtnl_lock();
1491 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1492 if (err)
1493 goto unlock;
1494
1495 for_each_net(net) {
1496 for_each_netdev(net, dev) {
1497 if (dev->flags & IFF_UP) {
1498 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1499 nb->notifier_call(nb, NETDEV_DOWN, dev);
1500 }
1501 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1502 }
1503 }
1504 unlock:
1505 rtnl_unlock();
1506 return err;
1507 }
1508 EXPORT_SYMBOL(unregister_netdevice_notifier);
1509
1510 /**
1511 * call_netdevice_notifiers - call all network notifier blocks
1512 * @val: value passed unmodified to notifier function
1513 * @dev: net_device pointer passed unmodified to notifier function
1514 *
1515 * Call all network notifier blocks. Parameters and return value
1516 * are as for raw_notifier_call_chain().
1517 */
1518
1519 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1520 {
1521 ASSERT_RTNL();
1522 return raw_notifier_call_chain(&netdev_chain, val, dev);
1523 }
1524 EXPORT_SYMBOL(call_netdevice_notifiers);
1525
1526 static struct static_key netstamp_needed __read_mostly;
1527 #ifdef HAVE_JUMP_LABEL
1528 /* We are not allowed to call static_key_slow_dec() from irq context
1529 * If net_disable_timestamp() is called from irq context, defer the
1530 * static_key_slow_dec() calls.
1531 */
1532 static atomic_t netstamp_needed_deferred;
1533 #endif
1534
1535 void net_enable_timestamp(void)
1536 {
1537 #ifdef HAVE_JUMP_LABEL
1538 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1539
1540 if (deferred) {
1541 while (--deferred)
1542 static_key_slow_dec(&netstamp_needed);
1543 return;
1544 }
1545 #endif
1546 static_key_slow_inc(&netstamp_needed);
1547 }
1548 EXPORT_SYMBOL(net_enable_timestamp);
1549
1550 void net_disable_timestamp(void)
1551 {
1552 #ifdef HAVE_JUMP_LABEL
1553 if (in_interrupt()) {
1554 atomic_inc(&netstamp_needed_deferred);
1555 return;
1556 }
1557 #endif
1558 static_key_slow_dec(&netstamp_needed);
1559 }
1560 EXPORT_SYMBOL(net_disable_timestamp);
1561
1562 static inline void net_timestamp_set(struct sk_buff *skb)
1563 {
1564 skb->tstamp.tv64 = 0;
1565 if (static_key_false(&netstamp_needed))
1566 __net_timestamp(skb);
1567 }
1568
1569 #define net_timestamp_check(COND, SKB) \
1570 if (static_key_false(&netstamp_needed)) { \
1571 if ((COND) && !(SKB)->tstamp.tv64) \
1572 __net_timestamp(SKB); \
1573 } \
1574
1575 static inline bool is_skb_forwardable(struct net_device *dev,
1576 struct sk_buff *skb)
1577 {
1578 unsigned int len;
1579
1580 if (!(dev->flags & IFF_UP))
1581 return false;
1582
1583 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1584 if (skb->len <= len)
1585 return true;
1586
1587 /* if TSO is enabled, we don't care about the length as the packet
1588 * could be forwarded without being segmented before
1589 */
1590 if (skb_is_gso(skb))
1591 return true;
1592
1593 return false;
1594 }
1595
1596 /**
1597 * dev_forward_skb - loopback an skb to another netif
1598 *
1599 * @dev: destination network device
1600 * @skb: buffer to forward
1601 *
1602 * return values:
1603 * NET_RX_SUCCESS (no congestion)
1604 * NET_RX_DROP (packet was dropped, but freed)
1605 *
1606 * dev_forward_skb can be used for injecting an skb from the
1607 * start_xmit function of one device into the receive queue
1608 * of another device.
1609 *
1610 * The receiving device may be in another namespace, so
1611 * we have to clear all information in the skb that could
1612 * impact namespace isolation.
1613 */
1614 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1615 {
1616 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1617 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1618 atomic_long_inc(&dev->rx_dropped);
1619 kfree_skb(skb);
1620 return NET_RX_DROP;
1621 }
1622 }
1623
1624 skb_orphan(skb);
1625
1626 if (unlikely(!is_skb_forwardable(dev, skb))) {
1627 atomic_long_inc(&dev->rx_dropped);
1628 kfree_skb(skb);
1629 return NET_RX_DROP;
1630 }
1631 skb->skb_iif = 0;
1632 skb->dev = dev;
1633 skb_dst_drop(skb);
1634 skb->tstamp.tv64 = 0;
1635 skb->pkt_type = PACKET_HOST;
1636 skb->protocol = eth_type_trans(skb, dev);
1637 skb->mark = 0;
1638 secpath_reset(skb);
1639 nf_reset(skb);
1640 nf_reset_trace(skb);
1641 return netif_rx(skb);
1642 }
1643 EXPORT_SYMBOL_GPL(dev_forward_skb);
1644
1645 static inline int deliver_skb(struct sk_buff *skb,
1646 struct packet_type *pt_prev,
1647 struct net_device *orig_dev)
1648 {
1649 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1650 return -ENOMEM;
1651 atomic_inc(&skb->users);
1652 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1653 }
1654
1655 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1656 {
1657 if (!ptype->af_packet_priv || !skb->sk)
1658 return false;
1659
1660 if (ptype->id_match)
1661 return ptype->id_match(ptype, skb->sk);
1662 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1663 return true;
1664
1665 return false;
1666 }
1667
1668 /*
1669 * Support routine. Sends outgoing frames to any network
1670 * taps currently in use.
1671 */
1672
1673 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1674 {
1675 struct packet_type *ptype;
1676 struct sk_buff *skb2 = NULL;
1677 struct packet_type *pt_prev = NULL;
1678
1679 rcu_read_lock();
1680 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1681 /* Never send packets back to the socket
1682 * they originated from - MvS (miquels@drinkel.ow.org)
1683 */
1684 if ((ptype->dev == dev || !ptype->dev) &&
1685 (!skb_loop_sk(ptype, skb))) {
1686 if (pt_prev) {
1687 deliver_skb(skb2, pt_prev, skb->dev);
1688 pt_prev = ptype;
1689 continue;
1690 }
1691
1692 skb2 = skb_clone(skb, GFP_ATOMIC);
1693 if (!skb2)
1694 break;
1695
1696 net_timestamp_set(skb2);
1697
1698 /* skb->nh should be correctly
1699 set by sender, so that the second statement is
1700 just protection against buggy protocols.
1701 */
1702 skb_reset_mac_header(skb2);
1703
1704 if (skb_network_header(skb2) < skb2->data ||
1705 skb2->network_header > skb2->tail) {
1706 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1707 ntohs(skb2->protocol),
1708 dev->name);
1709 skb_reset_network_header(skb2);
1710 }
1711
1712 skb2->transport_header = skb2->network_header;
1713 skb2->pkt_type = PACKET_OUTGOING;
1714 pt_prev = ptype;
1715 }
1716 }
1717 if (pt_prev)
1718 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1719 rcu_read_unlock();
1720 }
1721
1722 /**
1723 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1724 * @dev: Network device
1725 * @txq: number of queues available
1726 *
1727 * If real_num_tx_queues is changed the tc mappings may no longer be
1728 * valid. To resolve this verify the tc mapping remains valid and if
1729 * not NULL the mapping. With no priorities mapping to this
1730 * offset/count pair it will no longer be used. In the worst case TC0
1731 * is invalid nothing can be done so disable priority mappings. If is
1732 * expected that drivers will fix this mapping if they can before
1733 * calling netif_set_real_num_tx_queues.
1734 */
1735 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1736 {
1737 int i;
1738 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1739
1740 /* If TC0 is invalidated disable TC mapping */
1741 if (tc->offset + tc->count > txq) {
1742 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1743 dev->num_tc = 0;
1744 return;
1745 }
1746
1747 /* Invalidated prio to tc mappings set to TC0 */
1748 for (i = 1; i < TC_BITMASK + 1; i++) {
1749 int q = netdev_get_prio_tc_map(dev, i);
1750
1751 tc = &dev->tc_to_txq[q];
1752 if (tc->offset + tc->count > txq) {
1753 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1754 i, q);
1755 netdev_set_prio_tc_map(dev, i, 0);
1756 }
1757 }
1758 }
1759
1760 #ifdef CONFIG_XPS
1761 static DEFINE_MUTEX(xps_map_mutex);
1762 #define xmap_dereference(P) \
1763 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1764
1765 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1766 int cpu, u16 index)
1767 {
1768 struct xps_map *map = NULL;
1769 int pos;
1770
1771 if (dev_maps)
1772 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1773
1774 for (pos = 0; map && pos < map->len; pos++) {
1775 if (map->queues[pos] == index) {
1776 if (map->len > 1) {
1777 map->queues[pos] = map->queues[--map->len];
1778 } else {
1779 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1780 kfree_rcu(map, rcu);
1781 map = NULL;
1782 }
1783 break;
1784 }
1785 }
1786
1787 return map;
1788 }
1789
1790 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1791 {
1792 struct xps_dev_maps *dev_maps;
1793 int cpu, i;
1794 bool active = false;
1795
1796 mutex_lock(&xps_map_mutex);
1797 dev_maps = xmap_dereference(dev->xps_maps);
1798
1799 if (!dev_maps)
1800 goto out_no_maps;
1801
1802 for_each_possible_cpu(cpu) {
1803 for (i = index; i < dev->num_tx_queues; i++) {
1804 if (!remove_xps_queue(dev_maps, cpu, i))
1805 break;
1806 }
1807 if (i == dev->num_tx_queues)
1808 active = true;
1809 }
1810
1811 if (!active) {
1812 RCU_INIT_POINTER(dev->xps_maps, NULL);
1813 kfree_rcu(dev_maps, rcu);
1814 }
1815
1816 for (i = index; i < dev->num_tx_queues; i++)
1817 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1818 NUMA_NO_NODE);
1819
1820 out_no_maps:
1821 mutex_unlock(&xps_map_mutex);
1822 }
1823
1824 static struct xps_map *expand_xps_map(struct xps_map *map,
1825 int cpu, u16 index)
1826 {
1827 struct xps_map *new_map;
1828 int alloc_len = XPS_MIN_MAP_ALLOC;
1829 int i, pos;
1830
1831 for (pos = 0; map && pos < map->len; pos++) {
1832 if (map->queues[pos] != index)
1833 continue;
1834 return map;
1835 }
1836
1837 /* Need to add queue to this CPU's existing map */
1838 if (map) {
1839 if (pos < map->alloc_len)
1840 return map;
1841
1842 alloc_len = map->alloc_len * 2;
1843 }
1844
1845 /* Need to allocate new map to store queue on this CPU's map */
1846 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1847 cpu_to_node(cpu));
1848 if (!new_map)
1849 return NULL;
1850
1851 for (i = 0; i < pos; i++)
1852 new_map->queues[i] = map->queues[i];
1853 new_map->alloc_len = alloc_len;
1854 new_map->len = pos;
1855
1856 return new_map;
1857 }
1858
1859 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1860 {
1861 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1862 struct xps_map *map, *new_map;
1863 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1864 int cpu, numa_node_id = -2;
1865 bool active = false;
1866
1867 mutex_lock(&xps_map_mutex);
1868
1869 dev_maps = xmap_dereference(dev->xps_maps);
1870
1871 /* allocate memory for queue storage */
1872 for_each_online_cpu(cpu) {
1873 if (!cpumask_test_cpu(cpu, mask))
1874 continue;
1875
1876 if (!new_dev_maps)
1877 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1878 if (!new_dev_maps) {
1879 mutex_unlock(&xps_map_mutex);
1880 return -ENOMEM;
1881 }
1882
1883 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1884 NULL;
1885
1886 map = expand_xps_map(map, cpu, index);
1887 if (!map)
1888 goto error;
1889
1890 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1891 }
1892
1893 if (!new_dev_maps)
1894 goto out_no_new_maps;
1895
1896 for_each_possible_cpu(cpu) {
1897 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1898 /* add queue to CPU maps */
1899 int pos = 0;
1900
1901 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1902 while ((pos < map->len) && (map->queues[pos] != index))
1903 pos++;
1904
1905 if (pos == map->len)
1906 map->queues[map->len++] = index;
1907 #ifdef CONFIG_NUMA
1908 if (numa_node_id == -2)
1909 numa_node_id = cpu_to_node(cpu);
1910 else if (numa_node_id != cpu_to_node(cpu))
1911 numa_node_id = -1;
1912 #endif
1913 } else if (dev_maps) {
1914 /* fill in the new device map from the old device map */
1915 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1916 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1917 }
1918
1919 }
1920
1921 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1922
1923 /* Cleanup old maps */
1924 if (dev_maps) {
1925 for_each_possible_cpu(cpu) {
1926 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1927 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1928 if (map && map != new_map)
1929 kfree_rcu(map, rcu);
1930 }
1931
1932 kfree_rcu(dev_maps, rcu);
1933 }
1934
1935 dev_maps = new_dev_maps;
1936 active = true;
1937
1938 out_no_new_maps:
1939 /* update Tx queue numa node */
1940 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1941 (numa_node_id >= 0) ? numa_node_id :
1942 NUMA_NO_NODE);
1943
1944 if (!dev_maps)
1945 goto out_no_maps;
1946
1947 /* removes queue from unused CPUs */
1948 for_each_possible_cpu(cpu) {
1949 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1950 continue;
1951
1952 if (remove_xps_queue(dev_maps, cpu, index))
1953 active = true;
1954 }
1955
1956 /* free map if not active */
1957 if (!active) {
1958 RCU_INIT_POINTER(dev->xps_maps, NULL);
1959 kfree_rcu(dev_maps, rcu);
1960 }
1961
1962 out_no_maps:
1963 mutex_unlock(&xps_map_mutex);
1964
1965 return 0;
1966 error:
1967 /* remove any maps that we added */
1968 for_each_possible_cpu(cpu) {
1969 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1970 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1971 NULL;
1972 if (new_map && new_map != map)
1973 kfree(new_map);
1974 }
1975
1976 mutex_unlock(&xps_map_mutex);
1977
1978 kfree(new_dev_maps);
1979 return -ENOMEM;
1980 }
1981 EXPORT_SYMBOL(netif_set_xps_queue);
1982
1983 #endif
1984 /*
1985 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1986 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1987 */
1988 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1989 {
1990 int rc;
1991
1992 if (txq < 1 || txq > dev->num_tx_queues)
1993 return -EINVAL;
1994
1995 if (dev->reg_state == NETREG_REGISTERED ||
1996 dev->reg_state == NETREG_UNREGISTERING) {
1997 ASSERT_RTNL();
1998
1999 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2000 txq);
2001 if (rc)
2002 return rc;
2003
2004 if (dev->num_tc)
2005 netif_setup_tc(dev, txq);
2006
2007 if (txq < dev->real_num_tx_queues) {
2008 qdisc_reset_all_tx_gt(dev, txq);
2009 #ifdef CONFIG_XPS
2010 netif_reset_xps_queues_gt(dev, txq);
2011 #endif
2012 }
2013 }
2014
2015 dev->real_num_tx_queues = txq;
2016 return 0;
2017 }
2018 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2019
2020 #ifdef CONFIG_RPS
2021 /**
2022 * netif_set_real_num_rx_queues - set actual number of RX queues used
2023 * @dev: Network device
2024 * @rxq: Actual number of RX queues
2025 *
2026 * This must be called either with the rtnl_lock held or before
2027 * registration of the net device. Returns 0 on success, or a
2028 * negative error code. If called before registration, it always
2029 * succeeds.
2030 */
2031 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2032 {
2033 int rc;
2034
2035 if (rxq < 1 || rxq > dev->num_rx_queues)
2036 return -EINVAL;
2037
2038 if (dev->reg_state == NETREG_REGISTERED) {
2039 ASSERT_RTNL();
2040
2041 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2042 rxq);
2043 if (rc)
2044 return rc;
2045 }
2046
2047 dev->real_num_rx_queues = rxq;
2048 return 0;
2049 }
2050 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2051 #endif
2052
2053 /**
2054 * netif_get_num_default_rss_queues - default number of RSS queues
2055 *
2056 * This routine should set an upper limit on the number of RSS queues
2057 * used by default by multiqueue devices.
2058 */
2059 int netif_get_num_default_rss_queues(void)
2060 {
2061 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2062 }
2063 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2064
2065 static inline void __netif_reschedule(struct Qdisc *q)
2066 {
2067 struct softnet_data *sd;
2068 unsigned long flags;
2069
2070 local_irq_save(flags);
2071 sd = &__get_cpu_var(softnet_data);
2072 q->next_sched = NULL;
2073 *sd->output_queue_tailp = q;
2074 sd->output_queue_tailp = &q->next_sched;
2075 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2076 local_irq_restore(flags);
2077 }
2078
2079 void __netif_schedule(struct Qdisc *q)
2080 {
2081 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2082 __netif_reschedule(q);
2083 }
2084 EXPORT_SYMBOL(__netif_schedule);
2085
2086 void dev_kfree_skb_irq(struct sk_buff *skb)
2087 {
2088 if (atomic_dec_and_test(&skb->users)) {
2089 struct softnet_data *sd;
2090 unsigned long flags;
2091
2092 local_irq_save(flags);
2093 sd = &__get_cpu_var(softnet_data);
2094 skb->next = sd->completion_queue;
2095 sd->completion_queue = skb;
2096 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2097 local_irq_restore(flags);
2098 }
2099 }
2100 EXPORT_SYMBOL(dev_kfree_skb_irq);
2101
2102 void dev_kfree_skb_any(struct sk_buff *skb)
2103 {
2104 if (in_irq() || irqs_disabled())
2105 dev_kfree_skb_irq(skb);
2106 else
2107 dev_kfree_skb(skb);
2108 }
2109 EXPORT_SYMBOL(dev_kfree_skb_any);
2110
2111
2112 /**
2113 * netif_device_detach - mark device as removed
2114 * @dev: network device
2115 *
2116 * Mark device as removed from system and therefore no longer available.
2117 */
2118 void netif_device_detach(struct net_device *dev)
2119 {
2120 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2121 netif_running(dev)) {
2122 netif_tx_stop_all_queues(dev);
2123 }
2124 }
2125 EXPORT_SYMBOL(netif_device_detach);
2126
2127 /**
2128 * netif_device_attach - mark device as attached
2129 * @dev: network device
2130 *
2131 * Mark device as attached from system and restart if needed.
2132 */
2133 void netif_device_attach(struct net_device *dev)
2134 {
2135 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2136 netif_running(dev)) {
2137 netif_tx_wake_all_queues(dev);
2138 __netdev_watchdog_up(dev);
2139 }
2140 }
2141 EXPORT_SYMBOL(netif_device_attach);
2142
2143 static void skb_warn_bad_offload(const struct sk_buff *skb)
2144 {
2145 static const netdev_features_t null_features = 0;
2146 struct net_device *dev = skb->dev;
2147 const char *driver = "";
2148
2149 if (!net_ratelimit())
2150 return;
2151
2152 if (dev && dev->dev.parent)
2153 driver = dev_driver_string(dev->dev.parent);
2154
2155 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2156 "gso_type=%d ip_summed=%d\n",
2157 driver, dev ? &dev->features : &null_features,
2158 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2159 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2160 skb_shinfo(skb)->gso_type, skb->ip_summed);
2161 }
2162
2163 /*
2164 * Invalidate hardware checksum when packet is to be mangled, and
2165 * complete checksum manually on outgoing path.
2166 */
2167 int skb_checksum_help(struct sk_buff *skb)
2168 {
2169 __wsum csum;
2170 int ret = 0, offset;
2171
2172 if (skb->ip_summed == CHECKSUM_COMPLETE)
2173 goto out_set_summed;
2174
2175 if (unlikely(skb_shinfo(skb)->gso_size)) {
2176 skb_warn_bad_offload(skb);
2177 return -EINVAL;
2178 }
2179
2180 /* Before computing a checksum, we should make sure no frag could
2181 * be modified by an external entity : checksum could be wrong.
2182 */
2183 if (skb_has_shared_frag(skb)) {
2184 ret = __skb_linearize(skb);
2185 if (ret)
2186 goto out;
2187 }
2188
2189 offset = skb_checksum_start_offset(skb);
2190 BUG_ON(offset >= skb_headlen(skb));
2191 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2192
2193 offset += skb->csum_offset;
2194 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2195
2196 if (skb_cloned(skb) &&
2197 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2198 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2199 if (ret)
2200 goto out;
2201 }
2202
2203 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2204 out_set_summed:
2205 skb->ip_summed = CHECKSUM_NONE;
2206 out:
2207 return ret;
2208 }
2209 EXPORT_SYMBOL(skb_checksum_help);
2210
2211 __be16 skb_network_protocol(struct sk_buff *skb)
2212 {
2213 __be16 type = skb->protocol;
2214 int vlan_depth = ETH_HLEN;
2215
2216 /* Tunnel gso handlers can set protocol to ethernet. */
2217 if (type == htons(ETH_P_TEB)) {
2218 struct ethhdr *eth;
2219
2220 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2221 return 0;
2222
2223 eth = (struct ethhdr *)skb_mac_header(skb);
2224 type = eth->h_proto;
2225 }
2226
2227 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2228 struct vlan_hdr *vh;
2229
2230 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2231 return 0;
2232
2233 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2234 type = vh->h_vlan_encapsulated_proto;
2235 vlan_depth += VLAN_HLEN;
2236 }
2237
2238 return type;
2239 }
2240
2241 /**
2242 * skb_mac_gso_segment - mac layer segmentation handler.
2243 * @skb: buffer to segment
2244 * @features: features for the output path (see dev->features)
2245 */
2246 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2247 netdev_features_t features)
2248 {
2249 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2250 struct packet_offload *ptype;
2251 __be16 type = skb_network_protocol(skb);
2252
2253 if (unlikely(!type))
2254 return ERR_PTR(-EINVAL);
2255
2256 __skb_pull(skb, skb->mac_len);
2257
2258 rcu_read_lock();
2259 list_for_each_entry_rcu(ptype, &offload_base, list) {
2260 if (ptype->type == type && ptype->callbacks.gso_segment) {
2261 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2262 int err;
2263
2264 err = ptype->callbacks.gso_send_check(skb);
2265 segs = ERR_PTR(err);
2266 if (err || skb_gso_ok(skb, features))
2267 break;
2268 __skb_push(skb, (skb->data -
2269 skb_network_header(skb)));
2270 }
2271 segs = ptype->callbacks.gso_segment(skb, features);
2272 break;
2273 }
2274 }
2275 rcu_read_unlock();
2276
2277 __skb_push(skb, skb->data - skb_mac_header(skb));
2278
2279 return segs;
2280 }
2281 EXPORT_SYMBOL(skb_mac_gso_segment);
2282
2283
2284 /* openvswitch calls this on rx path, so we need a different check.
2285 */
2286 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2287 {
2288 if (tx_path)
2289 return skb->ip_summed != CHECKSUM_PARTIAL;
2290 else
2291 return skb->ip_summed == CHECKSUM_NONE;
2292 }
2293
2294 /**
2295 * __skb_gso_segment - Perform segmentation on skb.
2296 * @skb: buffer to segment
2297 * @features: features for the output path (see dev->features)
2298 * @tx_path: whether it is called in TX path
2299 *
2300 * This function segments the given skb and returns a list of segments.
2301 *
2302 * It may return NULL if the skb requires no segmentation. This is
2303 * only possible when GSO is used for verifying header integrity.
2304 */
2305 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2306 netdev_features_t features, bool tx_path)
2307 {
2308 if (unlikely(skb_needs_check(skb, tx_path))) {
2309 int err;
2310
2311 skb_warn_bad_offload(skb);
2312
2313 if (skb_header_cloned(skb) &&
2314 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2315 return ERR_PTR(err);
2316 }
2317
2318 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2319 skb_reset_mac_header(skb);
2320 skb_reset_mac_len(skb);
2321
2322 return skb_mac_gso_segment(skb, features);
2323 }
2324 EXPORT_SYMBOL(__skb_gso_segment);
2325
2326 /* Take action when hardware reception checksum errors are detected. */
2327 #ifdef CONFIG_BUG
2328 void netdev_rx_csum_fault(struct net_device *dev)
2329 {
2330 if (net_ratelimit()) {
2331 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2332 dump_stack();
2333 }
2334 }
2335 EXPORT_SYMBOL(netdev_rx_csum_fault);
2336 #endif
2337
2338 /* Actually, we should eliminate this check as soon as we know, that:
2339 * 1. IOMMU is present and allows to map all the memory.
2340 * 2. No high memory really exists on this machine.
2341 */
2342
2343 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2344 {
2345 #ifdef CONFIG_HIGHMEM
2346 int i;
2347 if (!(dev->features & NETIF_F_HIGHDMA)) {
2348 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2349 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2350 if (PageHighMem(skb_frag_page(frag)))
2351 return 1;
2352 }
2353 }
2354
2355 if (PCI_DMA_BUS_IS_PHYS) {
2356 struct device *pdev = dev->dev.parent;
2357
2358 if (!pdev)
2359 return 0;
2360 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2361 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2362 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2363 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2364 return 1;
2365 }
2366 }
2367 #endif
2368 return 0;
2369 }
2370
2371 struct dev_gso_cb {
2372 void (*destructor)(struct sk_buff *skb);
2373 };
2374
2375 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2376
2377 static void dev_gso_skb_destructor(struct sk_buff *skb)
2378 {
2379 struct dev_gso_cb *cb;
2380
2381 do {
2382 struct sk_buff *nskb = skb->next;
2383
2384 skb->next = nskb->next;
2385 nskb->next = NULL;
2386 kfree_skb(nskb);
2387 } while (skb->next);
2388
2389 cb = DEV_GSO_CB(skb);
2390 if (cb->destructor)
2391 cb->destructor(skb);
2392 }
2393
2394 /**
2395 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2396 * @skb: buffer to segment
2397 * @features: device features as applicable to this skb
2398 *
2399 * This function segments the given skb and stores the list of segments
2400 * in skb->next.
2401 */
2402 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2403 {
2404 struct sk_buff *segs;
2405
2406 segs = skb_gso_segment(skb, features);
2407
2408 /* Verifying header integrity only. */
2409 if (!segs)
2410 return 0;
2411
2412 if (IS_ERR(segs))
2413 return PTR_ERR(segs);
2414
2415 skb->next = segs;
2416 DEV_GSO_CB(skb)->destructor = skb->destructor;
2417 skb->destructor = dev_gso_skb_destructor;
2418
2419 return 0;
2420 }
2421
2422 static netdev_features_t harmonize_features(struct sk_buff *skb,
2423 __be16 protocol, netdev_features_t features)
2424 {
2425 if (skb->ip_summed != CHECKSUM_NONE &&
2426 !can_checksum_protocol(features, protocol)) {
2427 features &= ~NETIF_F_ALL_CSUM;
2428 } else if (illegal_highdma(skb->dev, skb)) {
2429 features &= ~NETIF_F_SG;
2430 }
2431
2432 return features;
2433 }
2434
2435 netdev_features_t netif_skb_features(struct sk_buff *skb)
2436 {
2437 __be16 protocol = skb->protocol;
2438 netdev_features_t features = skb->dev->features;
2439
2440 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2441 features &= ~NETIF_F_GSO_MASK;
2442
2443 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2444 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2445 protocol = veh->h_vlan_encapsulated_proto;
2446 } else if (!vlan_tx_tag_present(skb)) {
2447 return harmonize_features(skb, protocol, features);
2448 }
2449
2450 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2451 NETIF_F_HW_VLAN_STAG_TX);
2452
2453 if (protocol != htons(ETH_P_8021Q) && protocol != htons(ETH_P_8021AD)) {
2454 return harmonize_features(skb, protocol, features);
2455 } else {
2456 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2457 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2458 NETIF_F_HW_VLAN_STAG_TX;
2459 return harmonize_features(skb, protocol, features);
2460 }
2461 }
2462 EXPORT_SYMBOL(netif_skb_features);
2463
2464 /*
2465 * Returns true if either:
2466 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2467 * 2. skb is fragmented and the device does not support SG.
2468 */
2469 static inline int skb_needs_linearize(struct sk_buff *skb,
2470 netdev_features_t features)
2471 {
2472 return skb_is_nonlinear(skb) &&
2473 ((skb_has_frag_list(skb) &&
2474 !(features & NETIF_F_FRAGLIST)) ||
2475 (skb_shinfo(skb)->nr_frags &&
2476 !(features & NETIF_F_SG)));
2477 }
2478
2479 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2480 struct netdev_queue *txq)
2481 {
2482 const struct net_device_ops *ops = dev->netdev_ops;
2483 int rc = NETDEV_TX_OK;
2484 unsigned int skb_len;
2485
2486 if (likely(!skb->next)) {
2487 netdev_features_t features;
2488
2489 /*
2490 * If device doesn't need skb->dst, release it right now while
2491 * its hot in this cpu cache
2492 */
2493 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2494 skb_dst_drop(skb);
2495
2496 features = netif_skb_features(skb);
2497
2498 if (vlan_tx_tag_present(skb) &&
2499 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2500 skb = __vlan_put_tag(skb, skb->vlan_proto,
2501 vlan_tx_tag_get(skb));
2502 if (unlikely(!skb))
2503 goto out;
2504
2505 skb->vlan_tci = 0;
2506 }
2507
2508 /* If encapsulation offload request, verify we are testing
2509 * hardware encapsulation features instead of standard
2510 * features for the netdev
2511 */
2512 if (skb->encapsulation)
2513 features &= dev->hw_enc_features;
2514
2515 if (netif_needs_gso(skb, features)) {
2516 if (unlikely(dev_gso_segment(skb, features)))
2517 goto out_kfree_skb;
2518 if (skb->next)
2519 goto gso;
2520 } else {
2521 if (skb_needs_linearize(skb, features) &&
2522 __skb_linearize(skb))
2523 goto out_kfree_skb;
2524
2525 /* If packet is not checksummed and device does not
2526 * support checksumming for this protocol, complete
2527 * checksumming here.
2528 */
2529 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2530 if (skb->encapsulation)
2531 skb_set_inner_transport_header(skb,
2532 skb_checksum_start_offset(skb));
2533 else
2534 skb_set_transport_header(skb,
2535 skb_checksum_start_offset(skb));
2536 if (!(features & NETIF_F_ALL_CSUM) &&
2537 skb_checksum_help(skb))
2538 goto out_kfree_skb;
2539 }
2540 }
2541
2542 if (!list_empty(&ptype_all))
2543 dev_queue_xmit_nit(skb, dev);
2544
2545 skb_len = skb->len;
2546 rc = ops->ndo_start_xmit(skb, dev);
2547 trace_net_dev_xmit(skb, rc, dev, skb_len);
2548 if (rc == NETDEV_TX_OK)
2549 txq_trans_update(txq);
2550 return rc;
2551 }
2552
2553 gso:
2554 do {
2555 struct sk_buff *nskb = skb->next;
2556
2557 skb->next = nskb->next;
2558 nskb->next = NULL;
2559
2560 if (!list_empty(&ptype_all))
2561 dev_queue_xmit_nit(nskb, dev);
2562
2563 skb_len = nskb->len;
2564 rc = ops->ndo_start_xmit(nskb, dev);
2565 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2566 if (unlikely(rc != NETDEV_TX_OK)) {
2567 if (rc & ~NETDEV_TX_MASK)
2568 goto out_kfree_gso_skb;
2569 nskb->next = skb->next;
2570 skb->next = nskb;
2571 return rc;
2572 }
2573 txq_trans_update(txq);
2574 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2575 return NETDEV_TX_BUSY;
2576 } while (skb->next);
2577
2578 out_kfree_gso_skb:
2579 if (likely(skb->next == NULL)) {
2580 skb->destructor = DEV_GSO_CB(skb)->destructor;
2581 consume_skb(skb);
2582 return rc;
2583 }
2584 out_kfree_skb:
2585 kfree_skb(skb);
2586 out:
2587 return rc;
2588 }
2589
2590 static void qdisc_pkt_len_init(struct sk_buff *skb)
2591 {
2592 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2593
2594 qdisc_skb_cb(skb)->pkt_len = skb->len;
2595
2596 /* To get more precise estimation of bytes sent on wire,
2597 * we add to pkt_len the headers size of all segments
2598 */
2599 if (shinfo->gso_size) {
2600 unsigned int hdr_len;
2601 u16 gso_segs = shinfo->gso_segs;
2602
2603 /* mac layer + network layer */
2604 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2605
2606 /* + transport layer */
2607 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2608 hdr_len += tcp_hdrlen(skb);
2609 else
2610 hdr_len += sizeof(struct udphdr);
2611
2612 if (shinfo->gso_type & SKB_GSO_DODGY)
2613 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2614 shinfo->gso_size);
2615
2616 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2617 }
2618 }
2619
2620 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2621 struct net_device *dev,
2622 struct netdev_queue *txq)
2623 {
2624 spinlock_t *root_lock = qdisc_lock(q);
2625 bool contended;
2626 int rc;
2627
2628 qdisc_pkt_len_init(skb);
2629 qdisc_calculate_pkt_len(skb, q);
2630 /*
2631 * Heuristic to force contended enqueues to serialize on a
2632 * separate lock before trying to get qdisc main lock.
2633 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2634 * and dequeue packets faster.
2635 */
2636 contended = qdisc_is_running(q);
2637 if (unlikely(contended))
2638 spin_lock(&q->busylock);
2639
2640 spin_lock(root_lock);
2641 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2642 kfree_skb(skb);
2643 rc = NET_XMIT_DROP;
2644 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2645 qdisc_run_begin(q)) {
2646 /*
2647 * This is a work-conserving queue; there are no old skbs
2648 * waiting to be sent out; and the qdisc is not running -
2649 * xmit the skb directly.
2650 */
2651 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2652 skb_dst_force(skb);
2653
2654 qdisc_bstats_update(q, skb);
2655
2656 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2657 if (unlikely(contended)) {
2658 spin_unlock(&q->busylock);
2659 contended = false;
2660 }
2661 __qdisc_run(q);
2662 } else
2663 qdisc_run_end(q);
2664
2665 rc = NET_XMIT_SUCCESS;
2666 } else {
2667 skb_dst_force(skb);
2668 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2669 if (qdisc_run_begin(q)) {
2670 if (unlikely(contended)) {
2671 spin_unlock(&q->busylock);
2672 contended = false;
2673 }
2674 __qdisc_run(q);
2675 }
2676 }
2677 spin_unlock(root_lock);
2678 if (unlikely(contended))
2679 spin_unlock(&q->busylock);
2680 return rc;
2681 }
2682
2683 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2684 static void skb_update_prio(struct sk_buff *skb)
2685 {
2686 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2687
2688 if (!skb->priority && skb->sk && map) {
2689 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2690
2691 if (prioidx < map->priomap_len)
2692 skb->priority = map->priomap[prioidx];
2693 }
2694 }
2695 #else
2696 #define skb_update_prio(skb)
2697 #endif
2698
2699 static DEFINE_PER_CPU(int, xmit_recursion);
2700 #define RECURSION_LIMIT 10
2701
2702 /**
2703 * dev_loopback_xmit - loop back @skb
2704 * @skb: buffer to transmit
2705 */
2706 int dev_loopback_xmit(struct sk_buff *skb)
2707 {
2708 skb_reset_mac_header(skb);
2709 __skb_pull(skb, skb_network_offset(skb));
2710 skb->pkt_type = PACKET_LOOPBACK;
2711 skb->ip_summed = CHECKSUM_UNNECESSARY;
2712 WARN_ON(!skb_dst(skb));
2713 skb_dst_force(skb);
2714 netif_rx_ni(skb);
2715 return 0;
2716 }
2717 EXPORT_SYMBOL(dev_loopback_xmit);
2718
2719 /**
2720 * dev_queue_xmit - transmit a buffer
2721 * @skb: buffer to transmit
2722 *
2723 * Queue a buffer for transmission to a network device. The caller must
2724 * have set the device and priority and built the buffer before calling
2725 * this function. The function can be called from an interrupt.
2726 *
2727 * A negative errno code is returned on a failure. A success does not
2728 * guarantee the frame will be transmitted as it may be dropped due
2729 * to congestion or traffic shaping.
2730 *
2731 * -----------------------------------------------------------------------------------
2732 * I notice this method can also return errors from the queue disciplines,
2733 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2734 * be positive.
2735 *
2736 * Regardless of the return value, the skb is consumed, so it is currently
2737 * difficult to retry a send to this method. (You can bump the ref count
2738 * before sending to hold a reference for retry if you are careful.)
2739 *
2740 * When calling this method, interrupts MUST be enabled. This is because
2741 * the BH enable code must have IRQs enabled so that it will not deadlock.
2742 * --BLG
2743 */
2744 int dev_queue_xmit(struct sk_buff *skb)
2745 {
2746 struct net_device *dev = skb->dev;
2747 struct netdev_queue *txq;
2748 struct Qdisc *q;
2749 int rc = -ENOMEM;
2750
2751 skb_reset_mac_header(skb);
2752
2753 /* Disable soft irqs for various locks below. Also
2754 * stops preemption for RCU.
2755 */
2756 rcu_read_lock_bh();
2757
2758 skb_update_prio(skb);
2759
2760 txq = netdev_pick_tx(dev, skb);
2761 q = rcu_dereference_bh(txq->qdisc);
2762
2763 #ifdef CONFIG_NET_CLS_ACT
2764 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2765 #endif
2766 trace_net_dev_queue(skb);
2767 if (q->enqueue) {
2768 rc = __dev_xmit_skb(skb, q, dev, txq);
2769 goto out;
2770 }
2771
2772 /* The device has no queue. Common case for software devices:
2773 loopback, all the sorts of tunnels...
2774
2775 Really, it is unlikely that netif_tx_lock protection is necessary
2776 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2777 counters.)
2778 However, it is possible, that they rely on protection
2779 made by us here.
2780
2781 Check this and shot the lock. It is not prone from deadlocks.
2782 Either shot noqueue qdisc, it is even simpler 8)
2783 */
2784 if (dev->flags & IFF_UP) {
2785 int cpu = smp_processor_id(); /* ok because BHs are off */
2786
2787 if (txq->xmit_lock_owner != cpu) {
2788
2789 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2790 goto recursion_alert;
2791
2792 HARD_TX_LOCK(dev, txq, cpu);
2793
2794 if (!netif_xmit_stopped(txq)) {
2795 __this_cpu_inc(xmit_recursion);
2796 rc = dev_hard_start_xmit(skb, dev, txq);
2797 __this_cpu_dec(xmit_recursion);
2798 if (dev_xmit_complete(rc)) {
2799 HARD_TX_UNLOCK(dev, txq);
2800 goto out;
2801 }
2802 }
2803 HARD_TX_UNLOCK(dev, txq);
2804 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2805 dev->name);
2806 } else {
2807 /* Recursion is detected! It is possible,
2808 * unfortunately
2809 */
2810 recursion_alert:
2811 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2812 dev->name);
2813 }
2814 }
2815
2816 rc = -ENETDOWN;
2817 rcu_read_unlock_bh();
2818
2819 kfree_skb(skb);
2820 return rc;
2821 out:
2822 rcu_read_unlock_bh();
2823 return rc;
2824 }
2825 EXPORT_SYMBOL(dev_queue_xmit);
2826
2827
2828 /*=======================================================================
2829 Receiver routines
2830 =======================================================================*/
2831
2832 int netdev_max_backlog __read_mostly = 1000;
2833 EXPORT_SYMBOL(netdev_max_backlog);
2834
2835 int netdev_tstamp_prequeue __read_mostly = 1;
2836 int netdev_budget __read_mostly = 300;
2837 int weight_p __read_mostly = 64; /* old backlog weight */
2838
2839 /* Called with irq disabled */
2840 static inline void ____napi_schedule(struct softnet_data *sd,
2841 struct napi_struct *napi)
2842 {
2843 list_add_tail(&napi->poll_list, &sd->poll_list);
2844 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2845 }
2846
2847 #ifdef CONFIG_RPS
2848
2849 /* One global table that all flow-based protocols share. */
2850 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2851 EXPORT_SYMBOL(rps_sock_flow_table);
2852
2853 struct static_key rps_needed __read_mostly;
2854
2855 static struct rps_dev_flow *
2856 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2857 struct rps_dev_flow *rflow, u16 next_cpu)
2858 {
2859 if (next_cpu != RPS_NO_CPU) {
2860 #ifdef CONFIG_RFS_ACCEL
2861 struct netdev_rx_queue *rxqueue;
2862 struct rps_dev_flow_table *flow_table;
2863 struct rps_dev_flow *old_rflow;
2864 u32 flow_id;
2865 u16 rxq_index;
2866 int rc;
2867
2868 /* Should we steer this flow to a different hardware queue? */
2869 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2870 !(dev->features & NETIF_F_NTUPLE))
2871 goto out;
2872 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2873 if (rxq_index == skb_get_rx_queue(skb))
2874 goto out;
2875
2876 rxqueue = dev->_rx + rxq_index;
2877 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2878 if (!flow_table)
2879 goto out;
2880 flow_id = skb->rxhash & flow_table->mask;
2881 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2882 rxq_index, flow_id);
2883 if (rc < 0)
2884 goto out;
2885 old_rflow = rflow;
2886 rflow = &flow_table->flows[flow_id];
2887 rflow->filter = rc;
2888 if (old_rflow->filter == rflow->filter)
2889 old_rflow->filter = RPS_NO_FILTER;
2890 out:
2891 #endif
2892 rflow->last_qtail =
2893 per_cpu(softnet_data, next_cpu).input_queue_head;
2894 }
2895
2896 rflow->cpu = next_cpu;
2897 return rflow;
2898 }
2899
2900 /*
2901 * get_rps_cpu is called from netif_receive_skb and returns the target
2902 * CPU from the RPS map of the receiving queue for a given skb.
2903 * rcu_read_lock must be held on entry.
2904 */
2905 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2906 struct rps_dev_flow **rflowp)
2907 {
2908 struct netdev_rx_queue *rxqueue;
2909 struct rps_map *map;
2910 struct rps_dev_flow_table *flow_table;
2911 struct rps_sock_flow_table *sock_flow_table;
2912 int cpu = -1;
2913 u16 tcpu;
2914
2915 if (skb_rx_queue_recorded(skb)) {
2916 u16 index = skb_get_rx_queue(skb);
2917 if (unlikely(index >= dev->real_num_rx_queues)) {
2918 WARN_ONCE(dev->real_num_rx_queues > 1,
2919 "%s received packet on queue %u, but number "
2920 "of RX queues is %u\n",
2921 dev->name, index, dev->real_num_rx_queues);
2922 goto done;
2923 }
2924 rxqueue = dev->_rx + index;
2925 } else
2926 rxqueue = dev->_rx;
2927
2928 map = rcu_dereference(rxqueue->rps_map);
2929 if (map) {
2930 if (map->len == 1 &&
2931 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2932 tcpu = map->cpus[0];
2933 if (cpu_online(tcpu))
2934 cpu = tcpu;
2935 goto done;
2936 }
2937 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2938 goto done;
2939 }
2940
2941 skb_reset_network_header(skb);
2942 if (!skb_get_rxhash(skb))
2943 goto done;
2944
2945 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2946 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2947 if (flow_table && sock_flow_table) {
2948 u16 next_cpu;
2949 struct rps_dev_flow *rflow;
2950
2951 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2952 tcpu = rflow->cpu;
2953
2954 next_cpu = sock_flow_table->ents[skb->rxhash &
2955 sock_flow_table->mask];
2956
2957 /*
2958 * If the desired CPU (where last recvmsg was done) is
2959 * different from current CPU (one in the rx-queue flow
2960 * table entry), switch if one of the following holds:
2961 * - Current CPU is unset (equal to RPS_NO_CPU).
2962 * - Current CPU is offline.
2963 * - The current CPU's queue tail has advanced beyond the
2964 * last packet that was enqueued using this table entry.
2965 * This guarantees that all previous packets for the flow
2966 * have been dequeued, thus preserving in order delivery.
2967 */
2968 if (unlikely(tcpu != next_cpu) &&
2969 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2970 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2971 rflow->last_qtail)) >= 0)) {
2972 tcpu = next_cpu;
2973 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2974 }
2975
2976 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2977 *rflowp = rflow;
2978 cpu = tcpu;
2979 goto done;
2980 }
2981 }
2982
2983 if (map) {
2984 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2985
2986 if (cpu_online(tcpu)) {
2987 cpu = tcpu;
2988 goto done;
2989 }
2990 }
2991
2992 done:
2993 return cpu;
2994 }
2995
2996 #ifdef CONFIG_RFS_ACCEL
2997
2998 /**
2999 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3000 * @dev: Device on which the filter was set
3001 * @rxq_index: RX queue index
3002 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3003 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3004 *
3005 * Drivers that implement ndo_rx_flow_steer() should periodically call
3006 * this function for each installed filter and remove the filters for
3007 * which it returns %true.
3008 */
3009 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3010 u32 flow_id, u16 filter_id)
3011 {
3012 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3013 struct rps_dev_flow_table *flow_table;
3014 struct rps_dev_flow *rflow;
3015 bool expire = true;
3016 int cpu;
3017
3018 rcu_read_lock();
3019 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3020 if (flow_table && flow_id <= flow_table->mask) {
3021 rflow = &flow_table->flows[flow_id];
3022 cpu = ACCESS_ONCE(rflow->cpu);
3023 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3024 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3025 rflow->last_qtail) <
3026 (int)(10 * flow_table->mask)))
3027 expire = false;
3028 }
3029 rcu_read_unlock();
3030 return expire;
3031 }
3032 EXPORT_SYMBOL(rps_may_expire_flow);
3033
3034 #endif /* CONFIG_RFS_ACCEL */
3035
3036 /* Called from hardirq (IPI) context */
3037 static void rps_trigger_softirq(void *data)
3038 {
3039 struct softnet_data *sd = data;
3040
3041 ____napi_schedule(sd, &sd->backlog);
3042 sd->received_rps++;
3043 }
3044
3045 #endif /* CONFIG_RPS */
3046
3047 /*
3048 * Check if this softnet_data structure is another cpu one
3049 * If yes, queue it to our IPI list and return 1
3050 * If no, return 0
3051 */
3052 static int rps_ipi_queued(struct softnet_data *sd)
3053 {
3054 #ifdef CONFIG_RPS
3055 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3056
3057 if (sd != mysd) {
3058 sd->rps_ipi_next = mysd->rps_ipi_list;
3059 mysd->rps_ipi_list = sd;
3060
3061 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3062 return 1;
3063 }
3064 #endif /* CONFIG_RPS */
3065 return 0;
3066 }
3067
3068 /*
3069 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3070 * queue (may be a remote CPU queue).
3071 */
3072 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3073 unsigned int *qtail)
3074 {
3075 struct softnet_data *sd;
3076 unsigned long flags;
3077
3078 sd = &per_cpu(softnet_data, cpu);
3079
3080 local_irq_save(flags);
3081
3082 rps_lock(sd);
3083 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3084 if (skb_queue_len(&sd->input_pkt_queue)) {
3085 enqueue:
3086 __skb_queue_tail(&sd->input_pkt_queue, skb);
3087 input_queue_tail_incr_save(sd, qtail);
3088 rps_unlock(sd);
3089 local_irq_restore(flags);
3090 return NET_RX_SUCCESS;
3091 }
3092
3093 /* Schedule NAPI for backlog device
3094 * We can use non atomic operation since we own the queue lock
3095 */
3096 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3097 if (!rps_ipi_queued(sd))
3098 ____napi_schedule(sd, &sd->backlog);
3099 }
3100 goto enqueue;
3101 }
3102
3103 sd->dropped++;
3104 rps_unlock(sd);
3105
3106 local_irq_restore(flags);
3107
3108 atomic_long_inc(&skb->dev->rx_dropped);
3109 kfree_skb(skb);
3110 return NET_RX_DROP;
3111 }
3112
3113 /**
3114 * netif_rx - post buffer to the network code
3115 * @skb: buffer to post
3116 *
3117 * This function receives a packet from a device driver and queues it for
3118 * the upper (protocol) levels to process. It always succeeds. The buffer
3119 * may be dropped during processing for congestion control or by the
3120 * protocol layers.
3121 *
3122 * return values:
3123 * NET_RX_SUCCESS (no congestion)
3124 * NET_RX_DROP (packet was dropped)
3125 *
3126 */
3127
3128 int netif_rx(struct sk_buff *skb)
3129 {
3130 int ret;
3131
3132 /* if netpoll wants it, pretend we never saw it */
3133 if (netpoll_rx(skb))
3134 return NET_RX_DROP;
3135
3136 net_timestamp_check(netdev_tstamp_prequeue, skb);
3137
3138 trace_netif_rx(skb);
3139 #ifdef CONFIG_RPS
3140 if (static_key_false(&rps_needed)) {
3141 struct rps_dev_flow voidflow, *rflow = &voidflow;
3142 int cpu;
3143
3144 preempt_disable();
3145 rcu_read_lock();
3146
3147 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3148 if (cpu < 0)
3149 cpu = smp_processor_id();
3150
3151 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3152
3153 rcu_read_unlock();
3154 preempt_enable();
3155 } else
3156 #endif
3157 {
3158 unsigned int qtail;
3159 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3160 put_cpu();
3161 }
3162 return ret;
3163 }
3164 EXPORT_SYMBOL(netif_rx);
3165
3166 int netif_rx_ni(struct sk_buff *skb)
3167 {
3168 int err;
3169
3170 preempt_disable();
3171 err = netif_rx(skb);
3172 if (local_softirq_pending())
3173 do_softirq();
3174 preempt_enable();
3175
3176 return err;
3177 }
3178 EXPORT_SYMBOL(netif_rx_ni);
3179
3180 static void net_tx_action(struct softirq_action *h)
3181 {
3182 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3183
3184 if (sd->completion_queue) {
3185 struct sk_buff *clist;
3186
3187 local_irq_disable();
3188 clist = sd->completion_queue;
3189 sd->completion_queue = NULL;
3190 local_irq_enable();
3191
3192 while (clist) {
3193 struct sk_buff *skb = clist;
3194 clist = clist->next;
3195
3196 WARN_ON(atomic_read(&skb->users));
3197 trace_kfree_skb(skb, net_tx_action);
3198 __kfree_skb(skb);
3199 }
3200 }
3201
3202 if (sd->output_queue) {
3203 struct Qdisc *head;
3204
3205 local_irq_disable();
3206 head = sd->output_queue;
3207 sd->output_queue = NULL;
3208 sd->output_queue_tailp = &sd->output_queue;
3209 local_irq_enable();
3210
3211 while (head) {
3212 struct Qdisc *q = head;
3213 spinlock_t *root_lock;
3214
3215 head = head->next_sched;
3216
3217 root_lock = qdisc_lock(q);
3218 if (spin_trylock(root_lock)) {
3219 smp_mb__before_clear_bit();
3220 clear_bit(__QDISC_STATE_SCHED,
3221 &q->state);
3222 qdisc_run(q);
3223 spin_unlock(root_lock);
3224 } else {
3225 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3226 &q->state)) {
3227 __netif_reschedule(q);
3228 } else {
3229 smp_mb__before_clear_bit();
3230 clear_bit(__QDISC_STATE_SCHED,
3231 &q->state);
3232 }
3233 }
3234 }
3235 }
3236 }
3237
3238 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3239 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3240 /* This hook is defined here for ATM LANE */
3241 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3242 unsigned char *addr) __read_mostly;
3243 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3244 #endif
3245
3246 #ifdef CONFIG_NET_CLS_ACT
3247 /* TODO: Maybe we should just force sch_ingress to be compiled in
3248 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3249 * a compare and 2 stores extra right now if we dont have it on
3250 * but have CONFIG_NET_CLS_ACT
3251 * NOTE: This doesn't stop any functionality; if you dont have
3252 * the ingress scheduler, you just can't add policies on ingress.
3253 *
3254 */
3255 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3256 {
3257 struct net_device *dev = skb->dev;
3258 u32 ttl = G_TC_RTTL(skb->tc_verd);
3259 int result = TC_ACT_OK;
3260 struct Qdisc *q;
3261
3262 if (unlikely(MAX_RED_LOOP < ttl++)) {
3263 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3264 skb->skb_iif, dev->ifindex);
3265 return TC_ACT_SHOT;
3266 }
3267
3268 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3269 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3270
3271 q = rxq->qdisc;
3272 if (q != &noop_qdisc) {
3273 spin_lock(qdisc_lock(q));
3274 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3275 result = qdisc_enqueue_root(skb, q);
3276 spin_unlock(qdisc_lock(q));
3277 }
3278
3279 return result;
3280 }
3281
3282 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3283 struct packet_type **pt_prev,
3284 int *ret, struct net_device *orig_dev)
3285 {
3286 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3287
3288 if (!rxq || rxq->qdisc == &noop_qdisc)
3289 goto out;
3290
3291 if (*pt_prev) {
3292 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3293 *pt_prev = NULL;
3294 }
3295
3296 switch (ing_filter(skb, rxq)) {
3297 case TC_ACT_SHOT:
3298 case TC_ACT_STOLEN:
3299 kfree_skb(skb);
3300 return NULL;
3301 }
3302
3303 out:
3304 skb->tc_verd = 0;
3305 return skb;
3306 }
3307 #endif
3308
3309 /**
3310 * netdev_rx_handler_register - register receive handler
3311 * @dev: device to register a handler for
3312 * @rx_handler: receive handler to register
3313 * @rx_handler_data: data pointer that is used by rx handler
3314 *
3315 * Register a receive hander for a device. This handler will then be
3316 * called from __netif_receive_skb. A negative errno code is returned
3317 * on a failure.
3318 *
3319 * The caller must hold the rtnl_mutex.
3320 *
3321 * For a general description of rx_handler, see enum rx_handler_result.
3322 */
3323 int netdev_rx_handler_register(struct net_device *dev,
3324 rx_handler_func_t *rx_handler,
3325 void *rx_handler_data)
3326 {
3327 ASSERT_RTNL();
3328
3329 if (dev->rx_handler)
3330 return -EBUSY;
3331
3332 /* Note: rx_handler_data must be set before rx_handler */
3333 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3334 rcu_assign_pointer(dev->rx_handler, rx_handler);
3335
3336 return 0;
3337 }
3338 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3339
3340 /**
3341 * netdev_rx_handler_unregister - unregister receive handler
3342 * @dev: device to unregister a handler from
3343 *
3344 * Unregister a receive handler from a device.
3345 *
3346 * The caller must hold the rtnl_mutex.
3347 */
3348 void netdev_rx_handler_unregister(struct net_device *dev)
3349 {
3350
3351 ASSERT_RTNL();
3352 RCU_INIT_POINTER(dev->rx_handler, NULL);
3353 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3354 * section has a guarantee to see a non NULL rx_handler_data
3355 * as well.
3356 */
3357 synchronize_net();
3358 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3359 }
3360 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3361
3362 /*
3363 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3364 * the special handling of PFMEMALLOC skbs.
3365 */
3366 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3367 {
3368 switch (skb->protocol) {
3369 case __constant_htons(ETH_P_ARP):
3370 case __constant_htons(ETH_P_IP):
3371 case __constant_htons(ETH_P_IPV6):
3372 case __constant_htons(ETH_P_8021Q):
3373 case __constant_htons(ETH_P_8021AD):
3374 return true;
3375 default:
3376 return false;
3377 }
3378 }
3379
3380 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3381 {
3382 struct packet_type *ptype, *pt_prev;
3383 rx_handler_func_t *rx_handler;
3384 struct net_device *orig_dev;
3385 struct net_device *null_or_dev;
3386 bool deliver_exact = false;
3387 int ret = NET_RX_DROP;
3388 __be16 type;
3389
3390 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3391
3392 trace_netif_receive_skb(skb);
3393
3394 /* if we've gotten here through NAPI, check netpoll */
3395 if (netpoll_receive_skb(skb))
3396 goto out;
3397
3398 orig_dev = skb->dev;
3399
3400 skb_reset_network_header(skb);
3401 if (!skb_transport_header_was_set(skb))
3402 skb_reset_transport_header(skb);
3403 skb_reset_mac_len(skb);
3404
3405 pt_prev = NULL;
3406
3407 rcu_read_lock();
3408
3409 another_round:
3410 skb->skb_iif = skb->dev->ifindex;
3411
3412 __this_cpu_inc(softnet_data.processed);
3413
3414 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3415 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3416 skb = vlan_untag(skb);
3417 if (unlikely(!skb))
3418 goto unlock;
3419 }
3420
3421 #ifdef CONFIG_NET_CLS_ACT
3422 if (skb->tc_verd & TC_NCLS) {
3423 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3424 goto ncls;
3425 }
3426 #endif
3427
3428 if (pfmemalloc)
3429 goto skip_taps;
3430
3431 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3432 if (!ptype->dev || ptype->dev == skb->dev) {
3433 if (pt_prev)
3434 ret = deliver_skb(skb, pt_prev, orig_dev);
3435 pt_prev = ptype;
3436 }
3437 }
3438
3439 skip_taps:
3440 #ifdef CONFIG_NET_CLS_ACT
3441 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3442 if (!skb)
3443 goto unlock;
3444 ncls:
3445 #endif
3446
3447 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3448 goto drop;
3449
3450 if (vlan_tx_tag_present(skb)) {
3451 if (pt_prev) {
3452 ret = deliver_skb(skb, pt_prev, orig_dev);
3453 pt_prev = NULL;
3454 }
3455 if (vlan_do_receive(&skb))
3456 goto another_round;
3457 else if (unlikely(!skb))
3458 goto unlock;
3459 }
3460
3461 rx_handler = rcu_dereference(skb->dev->rx_handler);
3462 if (rx_handler) {
3463 if (pt_prev) {
3464 ret = deliver_skb(skb, pt_prev, orig_dev);
3465 pt_prev = NULL;
3466 }
3467 switch (rx_handler(&skb)) {
3468 case RX_HANDLER_CONSUMED:
3469 ret = NET_RX_SUCCESS;
3470 goto unlock;
3471 case RX_HANDLER_ANOTHER:
3472 goto another_round;
3473 case RX_HANDLER_EXACT:
3474 deliver_exact = true;
3475 case RX_HANDLER_PASS:
3476 break;
3477 default:
3478 BUG();
3479 }
3480 }
3481
3482 if (vlan_tx_nonzero_tag_present(skb))
3483 skb->pkt_type = PACKET_OTHERHOST;
3484
3485 /* deliver only exact match when indicated */
3486 null_or_dev = deliver_exact ? skb->dev : NULL;
3487
3488 type = skb->protocol;
3489 list_for_each_entry_rcu(ptype,
3490 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3491 if (ptype->type == type &&
3492 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3493 ptype->dev == orig_dev)) {
3494 if (pt_prev)
3495 ret = deliver_skb(skb, pt_prev, orig_dev);
3496 pt_prev = ptype;
3497 }
3498 }
3499
3500 if (pt_prev) {
3501 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3502 goto drop;
3503 else
3504 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3505 } else {
3506 drop:
3507 atomic_long_inc(&skb->dev->rx_dropped);
3508 kfree_skb(skb);
3509 /* Jamal, now you will not able to escape explaining
3510 * me how you were going to use this. :-)
3511 */
3512 ret = NET_RX_DROP;
3513 }
3514
3515 unlock:
3516 rcu_read_unlock();
3517 out:
3518 return ret;
3519 }
3520
3521 static int __netif_receive_skb(struct sk_buff *skb)
3522 {
3523 int ret;
3524
3525 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3526 unsigned long pflags = current->flags;
3527
3528 /*
3529 * PFMEMALLOC skbs are special, they should
3530 * - be delivered to SOCK_MEMALLOC sockets only
3531 * - stay away from userspace
3532 * - have bounded memory usage
3533 *
3534 * Use PF_MEMALLOC as this saves us from propagating the allocation
3535 * context down to all allocation sites.
3536 */
3537 current->flags |= PF_MEMALLOC;
3538 ret = __netif_receive_skb_core(skb, true);
3539 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3540 } else
3541 ret = __netif_receive_skb_core(skb, false);
3542
3543 return ret;
3544 }
3545
3546 /**
3547 * netif_receive_skb - process receive buffer from network
3548 * @skb: buffer to process
3549 *
3550 * netif_receive_skb() is the main receive data processing function.
3551 * It always succeeds. The buffer may be dropped during processing
3552 * for congestion control or by the protocol layers.
3553 *
3554 * This function may only be called from softirq context and interrupts
3555 * should be enabled.
3556 *
3557 * Return values (usually ignored):
3558 * NET_RX_SUCCESS: no congestion
3559 * NET_RX_DROP: packet was dropped
3560 */
3561 int netif_receive_skb(struct sk_buff *skb)
3562 {
3563 net_timestamp_check(netdev_tstamp_prequeue, skb);
3564
3565 if (skb_defer_rx_timestamp(skb))
3566 return NET_RX_SUCCESS;
3567
3568 #ifdef CONFIG_RPS
3569 if (static_key_false(&rps_needed)) {
3570 struct rps_dev_flow voidflow, *rflow = &voidflow;
3571 int cpu, ret;
3572
3573 rcu_read_lock();
3574
3575 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3576
3577 if (cpu >= 0) {
3578 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3579 rcu_read_unlock();
3580 return ret;
3581 }
3582 rcu_read_unlock();
3583 }
3584 #endif
3585 return __netif_receive_skb(skb);
3586 }
3587 EXPORT_SYMBOL(netif_receive_skb);
3588
3589 /* Network device is going away, flush any packets still pending
3590 * Called with irqs disabled.
3591 */
3592 static void flush_backlog(void *arg)
3593 {
3594 struct net_device *dev = arg;
3595 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3596 struct sk_buff *skb, *tmp;
3597
3598 rps_lock(sd);
3599 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3600 if (skb->dev == dev) {
3601 __skb_unlink(skb, &sd->input_pkt_queue);
3602 kfree_skb(skb);
3603 input_queue_head_incr(sd);
3604 }
3605 }
3606 rps_unlock(sd);
3607
3608 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3609 if (skb->dev == dev) {
3610 __skb_unlink(skb, &sd->process_queue);
3611 kfree_skb(skb);
3612 input_queue_head_incr(sd);
3613 }
3614 }
3615 }
3616
3617 static int napi_gro_complete(struct sk_buff *skb)
3618 {
3619 struct packet_offload *ptype;
3620 __be16 type = skb->protocol;
3621 struct list_head *head = &offload_base;
3622 int err = -ENOENT;
3623
3624 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3625
3626 if (NAPI_GRO_CB(skb)->count == 1) {
3627 skb_shinfo(skb)->gso_size = 0;
3628 goto out;
3629 }
3630
3631 rcu_read_lock();
3632 list_for_each_entry_rcu(ptype, head, list) {
3633 if (ptype->type != type || !ptype->callbacks.gro_complete)
3634 continue;
3635
3636 err = ptype->callbacks.gro_complete(skb);
3637 break;
3638 }
3639 rcu_read_unlock();
3640
3641 if (err) {
3642 WARN_ON(&ptype->list == head);
3643 kfree_skb(skb);
3644 return NET_RX_SUCCESS;
3645 }
3646
3647 out:
3648 return netif_receive_skb(skb);
3649 }
3650
3651 /* napi->gro_list contains packets ordered by age.
3652 * youngest packets at the head of it.
3653 * Complete skbs in reverse order to reduce latencies.
3654 */
3655 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3656 {
3657 struct sk_buff *skb, *prev = NULL;
3658
3659 /* scan list and build reverse chain */
3660 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3661 skb->prev = prev;
3662 prev = skb;
3663 }
3664
3665 for (skb = prev; skb; skb = prev) {
3666 skb->next = NULL;
3667
3668 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3669 return;
3670
3671 prev = skb->prev;
3672 napi_gro_complete(skb);
3673 napi->gro_count--;
3674 }
3675
3676 napi->gro_list = NULL;
3677 }
3678 EXPORT_SYMBOL(napi_gro_flush);
3679
3680 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3681 {
3682 struct sk_buff *p;
3683 unsigned int maclen = skb->dev->hard_header_len;
3684
3685 for (p = napi->gro_list; p; p = p->next) {
3686 unsigned long diffs;
3687
3688 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3689 diffs |= p->vlan_tci ^ skb->vlan_tci;
3690 if (maclen == ETH_HLEN)
3691 diffs |= compare_ether_header(skb_mac_header(p),
3692 skb_gro_mac_header(skb));
3693 else if (!diffs)
3694 diffs = memcmp(skb_mac_header(p),
3695 skb_gro_mac_header(skb),
3696 maclen);
3697 NAPI_GRO_CB(p)->same_flow = !diffs;
3698 NAPI_GRO_CB(p)->flush = 0;
3699 }
3700 }
3701
3702 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3703 {
3704 struct sk_buff **pp = NULL;
3705 struct packet_offload *ptype;
3706 __be16 type = skb->protocol;
3707 struct list_head *head = &offload_base;
3708 int same_flow;
3709 enum gro_result ret;
3710
3711 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3712 goto normal;
3713
3714 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3715 goto normal;
3716
3717 gro_list_prepare(napi, skb);
3718
3719 rcu_read_lock();
3720 list_for_each_entry_rcu(ptype, head, list) {
3721 if (ptype->type != type || !ptype->callbacks.gro_receive)
3722 continue;
3723
3724 skb_set_network_header(skb, skb_gro_offset(skb));
3725 skb_reset_mac_len(skb);
3726 NAPI_GRO_CB(skb)->same_flow = 0;
3727 NAPI_GRO_CB(skb)->flush = 0;
3728 NAPI_GRO_CB(skb)->free = 0;
3729
3730 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3731 break;
3732 }
3733 rcu_read_unlock();
3734
3735 if (&ptype->list == head)
3736 goto normal;
3737
3738 same_flow = NAPI_GRO_CB(skb)->same_flow;
3739 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3740
3741 if (pp) {
3742 struct sk_buff *nskb = *pp;
3743
3744 *pp = nskb->next;
3745 nskb->next = NULL;
3746 napi_gro_complete(nskb);
3747 napi->gro_count--;
3748 }
3749
3750 if (same_flow)
3751 goto ok;
3752
3753 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3754 goto normal;
3755
3756 napi->gro_count++;
3757 NAPI_GRO_CB(skb)->count = 1;
3758 NAPI_GRO_CB(skb)->age = jiffies;
3759 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3760 skb->next = napi->gro_list;
3761 napi->gro_list = skb;
3762 ret = GRO_HELD;
3763
3764 pull:
3765 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3766 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3767
3768 BUG_ON(skb->end - skb->tail < grow);
3769
3770 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3771
3772 skb->tail += grow;
3773 skb->data_len -= grow;
3774
3775 skb_shinfo(skb)->frags[0].page_offset += grow;
3776 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3777
3778 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3779 skb_frag_unref(skb, 0);
3780 memmove(skb_shinfo(skb)->frags,
3781 skb_shinfo(skb)->frags + 1,
3782 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3783 }
3784 }
3785
3786 ok:
3787 return ret;
3788
3789 normal:
3790 ret = GRO_NORMAL;
3791 goto pull;
3792 }
3793
3794
3795 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3796 {
3797 switch (ret) {
3798 case GRO_NORMAL:
3799 if (netif_receive_skb(skb))
3800 ret = GRO_DROP;
3801 break;
3802
3803 case GRO_DROP:
3804 kfree_skb(skb);
3805 break;
3806
3807 case GRO_MERGED_FREE:
3808 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3809 kmem_cache_free(skbuff_head_cache, skb);
3810 else
3811 __kfree_skb(skb);
3812 break;
3813
3814 case GRO_HELD:
3815 case GRO_MERGED:
3816 break;
3817 }
3818
3819 return ret;
3820 }
3821
3822 static void skb_gro_reset_offset(struct sk_buff *skb)
3823 {
3824 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3825 const skb_frag_t *frag0 = &pinfo->frags[0];
3826
3827 NAPI_GRO_CB(skb)->data_offset = 0;
3828 NAPI_GRO_CB(skb)->frag0 = NULL;
3829 NAPI_GRO_CB(skb)->frag0_len = 0;
3830
3831 if (skb->mac_header == skb->tail &&
3832 pinfo->nr_frags &&
3833 !PageHighMem(skb_frag_page(frag0))) {
3834 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3835 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3836 }
3837 }
3838
3839 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3840 {
3841 skb_gro_reset_offset(skb);
3842
3843 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3844 }
3845 EXPORT_SYMBOL(napi_gro_receive);
3846
3847 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3848 {
3849 __skb_pull(skb, skb_headlen(skb));
3850 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3851 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3852 skb->vlan_tci = 0;
3853 skb->dev = napi->dev;
3854 skb->skb_iif = 0;
3855
3856 napi->skb = skb;
3857 }
3858
3859 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3860 {
3861 struct sk_buff *skb = napi->skb;
3862
3863 if (!skb) {
3864 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3865 if (skb)
3866 napi->skb = skb;
3867 }
3868 return skb;
3869 }
3870 EXPORT_SYMBOL(napi_get_frags);
3871
3872 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3873 gro_result_t ret)
3874 {
3875 switch (ret) {
3876 case GRO_NORMAL:
3877 case GRO_HELD:
3878 skb->protocol = eth_type_trans(skb, skb->dev);
3879
3880 if (ret == GRO_HELD)
3881 skb_gro_pull(skb, -ETH_HLEN);
3882 else if (netif_receive_skb(skb))
3883 ret = GRO_DROP;
3884 break;
3885
3886 case GRO_DROP:
3887 case GRO_MERGED_FREE:
3888 napi_reuse_skb(napi, skb);
3889 break;
3890
3891 case GRO_MERGED:
3892 break;
3893 }
3894
3895 return ret;
3896 }
3897
3898 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3899 {
3900 struct sk_buff *skb = napi->skb;
3901 struct ethhdr *eth;
3902 unsigned int hlen;
3903 unsigned int off;
3904
3905 napi->skb = NULL;
3906
3907 skb_reset_mac_header(skb);
3908 skb_gro_reset_offset(skb);
3909
3910 off = skb_gro_offset(skb);
3911 hlen = off + sizeof(*eth);
3912 eth = skb_gro_header_fast(skb, off);
3913 if (skb_gro_header_hard(skb, hlen)) {
3914 eth = skb_gro_header_slow(skb, hlen, off);
3915 if (unlikely(!eth)) {
3916 napi_reuse_skb(napi, skb);
3917 skb = NULL;
3918 goto out;
3919 }
3920 }
3921
3922 skb_gro_pull(skb, sizeof(*eth));
3923
3924 /*
3925 * This works because the only protocols we care about don't require
3926 * special handling. We'll fix it up properly at the end.
3927 */
3928 skb->protocol = eth->h_proto;
3929
3930 out:
3931 return skb;
3932 }
3933
3934 gro_result_t napi_gro_frags(struct napi_struct *napi)
3935 {
3936 struct sk_buff *skb = napi_frags_skb(napi);
3937
3938 if (!skb)
3939 return GRO_DROP;
3940
3941 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3942 }
3943 EXPORT_SYMBOL(napi_gro_frags);
3944
3945 /*
3946 * net_rps_action sends any pending IPI's for rps.
3947 * Note: called with local irq disabled, but exits with local irq enabled.
3948 */
3949 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3950 {
3951 #ifdef CONFIG_RPS
3952 struct softnet_data *remsd = sd->rps_ipi_list;
3953
3954 if (remsd) {
3955 sd->rps_ipi_list = NULL;
3956
3957 local_irq_enable();
3958
3959 /* Send pending IPI's to kick RPS processing on remote cpus. */
3960 while (remsd) {
3961 struct softnet_data *next = remsd->rps_ipi_next;
3962
3963 if (cpu_online(remsd->cpu))
3964 __smp_call_function_single(remsd->cpu,
3965 &remsd->csd, 0);
3966 remsd = next;
3967 }
3968 } else
3969 #endif
3970 local_irq_enable();
3971 }
3972
3973 static int process_backlog(struct napi_struct *napi, int quota)
3974 {
3975 int work = 0;
3976 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3977
3978 #ifdef CONFIG_RPS
3979 /* Check if we have pending ipi, its better to send them now,
3980 * not waiting net_rx_action() end.
3981 */
3982 if (sd->rps_ipi_list) {
3983 local_irq_disable();
3984 net_rps_action_and_irq_enable(sd);
3985 }
3986 #endif
3987 napi->weight = weight_p;
3988 local_irq_disable();
3989 while (work < quota) {
3990 struct sk_buff *skb;
3991 unsigned int qlen;
3992
3993 while ((skb = __skb_dequeue(&sd->process_queue))) {
3994 local_irq_enable();
3995 __netif_receive_skb(skb);
3996 local_irq_disable();
3997 input_queue_head_incr(sd);
3998 if (++work >= quota) {
3999 local_irq_enable();
4000 return work;
4001 }
4002 }
4003
4004 rps_lock(sd);
4005 qlen = skb_queue_len(&sd->input_pkt_queue);
4006 if (qlen)
4007 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4008 &sd->process_queue);
4009
4010 if (qlen < quota - work) {
4011 /*
4012 * Inline a custom version of __napi_complete().
4013 * only current cpu owns and manipulates this napi,
4014 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4015 * we can use a plain write instead of clear_bit(),
4016 * and we dont need an smp_mb() memory barrier.
4017 */
4018 list_del(&napi->poll_list);
4019 napi->state = 0;
4020
4021 quota = work + qlen;
4022 }
4023 rps_unlock(sd);
4024 }
4025 local_irq_enable();
4026
4027 return work;
4028 }
4029
4030 /**
4031 * __napi_schedule - schedule for receive
4032 * @n: entry to schedule
4033 *
4034 * The entry's receive function will be scheduled to run
4035 */
4036 void __napi_schedule(struct napi_struct *n)
4037 {
4038 unsigned long flags;
4039
4040 local_irq_save(flags);
4041 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4042 local_irq_restore(flags);
4043 }
4044 EXPORT_SYMBOL(__napi_schedule);
4045
4046 void __napi_complete(struct napi_struct *n)
4047 {
4048 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4049 BUG_ON(n->gro_list);
4050
4051 list_del(&n->poll_list);
4052 smp_mb__before_clear_bit();
4053 clear_bit(NAPI_STATE_SCHED, &n->state);
4054 }
4055 EXPORT_SYMBOL(__napi_complete);
4056
4057 void napi_complete(struct napi_struct *n)
4058 {
4059 unsigned long flags;
4060
4061 /*
4062 * don't let napi dequeue from the cpu poll list
4063 * just in case its running on a different cpu
4064 */
4065 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4066 return;
4067
4068 napi_gro_flush(n, false);
4069 local_irq_save(flags);
4070 __napi_complete(n);
4071 local_irq_restore(flags);
4072 }
4073 EXPORT_SYMBOL(napi_complete);
4074
4075 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4076 int (*poll)(struct napi_struct *, int), int weight)
4077 {
4078 INIT_LIST_HEAD(&napi->poll_list);
4079 napi->gro_count = 0;
4080 napi->gro_list = NULL;
4081 napi->skb = NULL;
4082 napi->poll = poll;
4083 if (weight > NAPI_POLL_WEIGHT)
4084 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4085 weight, dev->name);
4086 napi->weight = weight;
4087 list_add(&napi->dev_list, &dev->napi_list);
4088 napi->dev = dev;
4089 #ifdef CONFIG_NETPOLL
4090 spin_lock_init(&napi->poll_lock);
4091 napi->poll_owner = -1;
4092 #endif
4093 set_bit(NAPI_STATE_SCHED, &napi->state);
4094 }
4095 EXPORT_SYMBOL(netif_napi_add);
4096
4097 void netif_napi_del(struct napi_struct *napi)
4098 {
4099 struct sk_buff *skb, *next;
4100
4101 list_del_init(&napi->dev_list);
4102 napi_free_frags(napi);
4103
4104 for (skb = napi->gro_list; skb; skb = next) {
4105 next = skb->next;
4106 skb->next = NULL;
4107 kfree_skb(skb);
4108 }
4109
4110 napi->gro_list = NULL;
4111 napi->gro_count = 0;
4112 }
4113 EXPORT_SYMBOL(netif_napi_del);
4114
4115 static void net_rx_action(struct softirq_action *h)
4116 {
4117 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4118 unsigned long time_limit = jiffies + 2;
4119 int budget = netdev_budget;
4120 void *have;
4121
4122 local_irq_disable();
4123
4124 while (!list_empty(&sd->poll_list)) {
4125 struct napi_struct *n;
4126 int work, weight;
4127
4128 /* If softirq window is exhuasted then punt.
4129 * Allow this to run for 2 jiffies since which will allow
4130 * an average latency of 1.5/HZ.
4131 */
4132 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4133 goto softnet_break;
4134
4135 local_irq_enable();
4136
4137 /* Even though interrupts have been re-enabled, this
4138 * access is safe because interrupts can only add new
4139 * entries to the tail of this list, and only ->poll()
4140 * calls can remove this head entry from the list.
4141 */
4142 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4143
4144 have = netpoll_poll_lock(n);
4145
4146 weight = n->weight;
4147
4148 /* This NAPI_STATE_SCHED test is for avoiding a race
4149 * with netpoll's poll_napi(). Only the entity which
4150 * obtains the lock and sees NAPI_STATE_SCHED set will
4151 * actually make the ->poll() call. Therefore we avoid
4152 * accidentally calling ->poll() when NAPI is not scheduled.
4153 */
4154 work = 0;
4155 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4156 work = n->poll(n, weight);
4157 trace_napi_poll(n);
4158 }
4159
4160 WARN_ON_ONCE(work > weight);
4161
4162 budget -= work;
4163
4164 local_irq_disable();
4165
4166 /* Drivers must not modify the NAPI state if they
4167 * consume the entire weight. In such cases this code
4168 * still "owns" the NAPI instance and therefore can
4169 * move the instance around on the list at-will.
4170 */
4171 if (unlikely(work == weight)) {
4172 if (unlikely(napi_disable_pending(n))) {
4173 local_irq_enable();
4174 napi_complete(n);
4175 local_irq_disable();
4176 } else {
4177 if (n->gro_list) {
4178 /* flush too old packets
4179 * If HZ < 1000, flush all packets.
4180 */
4181 local_irq_enable();
4182 napi_gro_flush(n, HZ >= 1000);
4183 local_irq_disable();
4184 }
4185 list_move_tail(&n->poll_list, &sd->poll_list);
4186 }
4187 }
4188
4189 netpoll_poll_unlock(have);
4190 }
4191 out:
4192 net_rps_action_and_irq_enable(sd);
4193
4194 #ifdef CONFIG_NET_DMA
4195 /*
4196 * There may not be any more sk_buffs coming right now, so push
4197 * any pending DMA copies to hardware
4198 */
4199 dma_issue_pending_all();
4200 #endif
4201
4202 return;
4203
4204 softnet_break:
4205 sd->time_squeeze++;
4206 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4207 goto out;
4208 }
4209
4210 struct netdev_upper {
4211 struct net_device *dev;
4212 bool master;
4213 struct list_head list;
4214 struct rcu_head rcu;
4215 struct list_head search_list;
4216 };
4217
4218 static void __append_search_uppers(struct list_head *search_list,
4219 struct net_device *dev)
4220 {
4221 struct netdev_upper *upper;
4222
4223 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4224 /* check if this upper is not already in search list */
4225 if (list_empty(&upper->search_list))
4226 list_add_tail(&upper->search_list, search_list);
4227 }
4228 }
4229
4230 static bool __netdev_search_upper_dev(struct net_device *dev,
4231 struct net_device *upper_dev)
4232 {
4233 LIST_HEAD(search_list);
4234 struct netdev_upper *upper;
4235 struct netdev_upper *tmp;
4236 bool ret = false;
4237
4238 __append_search_uppers(&search_list, dev);
4239 list_for_each_entry(upper, &search_list, search_list) {
4240 if (upper->dev == upper_dev) {
4241 ret = true;
4242 break;
4243 }
4244 __append_search_uppers(&search_list, upper->dev);
4245 }
4246 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4247 INIT_LIST_HEAD(&upper->search_list);
4248 return ret;
4249 }
4250
4251 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4252 struct net_device *upper_dev)
4253 {
4254 struct netdev_upper *upper;
4255
4256 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4257 if (upper->dev == upper_dev)
4258 return upper;
4259 }
4260 return NULL;
4261 }
4262
4263 /**
4264 * netdev_has_upper_dev - Check if device is linked to an upper device
4265 * @dev: device
4266 * @upper_dev: upper device to check
4267 *
4268 * Find out if a device is linked to specified upper device and return true
4269 * in case it is. Note that this checks only immediate upper device,
4270 * not through a complete stack of devices. The caller must hold the RTNL lock.
4271 */
4272 bool netdev_has_upper_dev(struct net_device *dev,
4273 struct net_device *upper_dev)
4274 {
4275 ASSERT_RTNL();
4276
4277 return __netdev_find_upper(dev, upper_dev);
4278 }
4279 EXPORT_SYMBOL(netdev_has_upper_dev);
4280
4281 /**
4282 * netdev_has_any_upper_dev - Check if device is linked to some device
4283 * @dev: device
4284 *
4285 * Find out if a device is linked to an upper device and return true in case
4286 * it is. The caller must hold the RTNL lock.
4287 */
4288 bool netdev_has_any_upper_dev(struct net_device *dev)
4289 {
4290 ASSERT_RTNL();
4291
4292 return !list_empty(&dev->upper_dev_list);
4293 }
4294 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4295
4296 /**
4297 * netdev_master_upper_dev_get - Get master upper device
4298 * @dev: device
4299 *
4300 * Find a master upper device and return pointer to it or NULL in case
4301 * it's not there. The caller must hold the RTNL lock.
4302 */
4303 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4304 {
4305 struct netdev_upper *upper;
4306
4307 ASSERT_RTNL();
4308
4309 if (list_empty(&dev->upper_dev_list))
4310 return NULL;
4311
4312 upper = list_first_entry(&dev->upper_dev_list,
4313 struct netdev_upper, list);
4314 if (likely(upper->master))
4315 return upper->dev;
4316 return NULL;
4317 }
4318 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4319
4320 /**
4321 * netdev_master_upper_dev_get_rcu - Get master upper device
4322 * @dev: device
4323 *
4324 * Find a master upper device and return pointer to it or NULL in case
4325 * it's not there. The caller must hold the RCU read lock.
4326 */
4327 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4328 {
4329 struct netdev_upper *upper;
4330
4331 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4332 struct netdev_upper, list);
4333 if (upper && likely(upper->master))
4334 return upper->dev;
4335 return NULL;
4336 }
4337 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4338
4339 static int __netdev_upper_dev_link(struct net_device *dev,
4340 struct net_device *upper_dev, bool master)
4341 {
4342 struct netdev_upper *upper;
4343
4344 ASSERT_RTNL();
4345
4346 if (dev == upper_dev)
4347 return -EBUSY;
4348
4349 /* To prevent loops, check if dev is not upper device to upper_dev. */
4350 if (__netdev_search_upper_dev(upper_dev, dev))
4351 return -EBUSY;
4352
4353 if (__netdev_find_upper(dev, upper_dev))
4354 return -EEXIST;
4355
4356 if (master && netdev_master_upper_dev_get(dev))
4357 return -EBUSY;
4358
4359 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4360 if (!upper)
4361 return -ENOMEM;
4362
4363 upper->dev = upper_dev;
4364 upper->master = master;
4365 INIT_LIST_HEAD(&upper->search_list);
4366
4367 /* Ensure that master upper link is always the first item in list. */
4368 if (master)
4369 list_add_rcu(&upper->list, &dev->upper_dev_list);
4370 else
4371 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4372 dev_hold(upper_dev);
4373
4374 return 0;
4375 }
4376
4377 /**
4378 * netdev_upper_dev_link - Add a link to the upper device
4379 * @dev: device
4380 * @upper_dev: new upper device
4381 *
4382 * Adds a link to device which is upper to this one. The caller must hold
4383 * the RTNL lock. On a failure a negative errno code is returned.
4384 * On success the reference counts are adjusted and the function
4385 * returns zero.
4386 */
4387 int netdev_upper_dev_link(struct net_device *dev,
4388 struct net_device *upper_dev)
4389 {
4390 return __netdev_upper_dev_link(dev, upper_dev, false);
4391 }
4392 EXPORT_SYMBOL(netdev_upper_dev_link);
4393
4394 /**
4395 * netdev_master_upper_dev_link - Add a master link to the upper device
4396 * @dev: device
4397 * @upper_dev: new upper device
4398 *
4399 * Adds a link to device which is upper to this one. In this case, only
4400 * one master upper device can be linked, although other non-master devices
4401 * might be linked as well. The caller must hold the RTNL lock.
4402 * On a failure a negative errno code is returned. On success the reference
4403 * counts are adjusted and the function returns zero.
4404 */
4405 int netdev_master_upper_dev_link(struct net_device *dev,
4406 struct net_device *upper_dev)
4407 {
4408 return __netdev_upper_dev_link(dev, upper_dev, true);
4409 }
4410 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4411
4412 /**
4413 * netdev_upper_dev_unlink - Removes a link to upper device
4414 * @dev: device
4415 * @upper_dev: new upper device
4416 *
4417 * Removes a link to device which is upper to this one. The caller must hold
4418 * the RTNL lock.
4419 */
4420 void netdev_upper_dev_unlink(struct net_device *dev,
4421 struct net_device *upper_dev)
4422 {
4423 struct netdev_upper *upper;
4424
4425 ASSERT_RTNL();
4426
4427 upper = __netdev_find_upper(dev, upper_dev);
4428 if (!upper)
4429 return;
4430 list_del_rcu(&upper->list);
4431 dev_put(upper_dev);
4432 kfree_rcu(upper, rcu);
4433 }
4434 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4435
4436 static void dev_change_rx_flags(struct net_device *dev, int flags)
4437 {
4438 const struct net_device_ops *ops = dev->netdev_ops;
4439
4440 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4441 ops->ndo_change_rx_flags(dev, flags);
4442 }
4443
4444 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4445 {
4446 unsigned int old_flags = dev->flags;
4447 kuid_t uid;
4448 kgid_t gid;
4449
4450 ASSERT_RTNL();
4451
4452 dev->flags |= IFF_PROMISC;
4453 dev->promiscuity += inc;
4454 if (dev->promiscuity == 0) {
4455 /*
4456 * Avoid overflow.
4457 * If inc causes overflow, untouch promisc and return error.
4458 */
4459 if (inc < 0)
4460 dev->flags &= ~IFF_PROMISC;
4461 else {
4462 dev->promiscuity -= inc;
4463 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4464 dev->name);
4465 return -EOVERFLOW;
4466 }
4467 }
4468 if (dev->flags != old_flags) {
4469 pr_info("device %s %s promiscuous mode\n",
4470 dev->name,
4471 dev->flags & IFF_PROMISC ? "entered" : "left");
4472 if (audit_enabled) {
4473 current_uid_gid(&uid, &gid);
4474 audit_log(current->audit_context, GFP_ATOMIC,
4475 AUDIT_ANOM_PROMISCUOUS,
4476 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4477 dev->name, (dev->flags & IFF_PROMISC),
4478 (old_flags & IFF_PROMISC),
4479 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4480 from_kuid(&init_user_ns, uid),
4481 from_kgid(&init_user_ns, gid),
4482 audit_get_sessionid(current));
4483 }
4484
4485 dev_change_rx_flags(dev, IFF_PROMISC);
4486 }
4487 return 0;
4488 }
4489
4490 /**
4491 * dev_set_promiscuity - update promiscuity count on a device
4492 * @dev: device
4493 * @inc: modifier
4494 *
4495 * Add or remove promiscuity from a device. While the count in the device
4496 * remains above zero the interface remains promiscuous. Once it hits zero
4497 * the device reverts back to normal filtering operation. A negative inc
4498 * value is used to drop promiscuity on the device.
4499 * Return 0 if successful or a negative errno code on error.
4500 */
4501 int dev_set_promiscuity(struct net_device *dev, int inc)
4502 {
4503 unsigned int old_flags = dev->flags;
4504 int err;
4505
4506 err = __dev_set_promiscuity(dev, inc);
4507 if (err < 0)
4508 return err;
4509 if (dev->flags != old_flags)
4510 dev_set_rx_mode(dev);
4511 return err;
4512 }
4513 EXPORT_SYMBOL(dev_set_promiscuity);
4514
4515 /**
4516 * dev_set_allmulti - update allmulti count on a device
4517 * @dev: device
4518 * @inc: modifier
4519 *
4520 * Add or remove reception of all multicast frames to a device. While the
4521 * count in the device remains above zero the interface remains listening
4522 * to all interfaces. Once it hits zero the device reverts back to normal
4523 * filtering operation. A negative @inc value is used to drop the counter
4524 * when releasing a resource needing all multicasts.
4525 * Return 0 if successful or a negative errno code on error.
4526 */
4527
4528 int dev_set_allmulti(struct net_device *dev, int inc)
4529 {
4530 unsigned int old_flags = dev->flags;
4531
4532 ASSERT_RTNL();
4533
4534 dev->flags |= IFF_ALLMULTI;
4535 dev->allmulti += inc;
4536 if (dev->allmulti == 0) {
4537 /*
4538 * Avoid overflow.
4539 * If inc causes overflow, untouch allmulti and return error.
4540 */
4541 if (inc < 0)
4542 dev->flags &= ~IFF_ALLMULTI;
4543 else {
4544 dev->allmulti -= inc;
4545 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4546 dev->name);
4547 return -EOVERFLOW;
4548 }
4549 }
4550 if (dev->flags ^ old_flags) {
4551 dev_change_rx_flags(dev, IFF_ALLMULTI);
4552 dev_set_rx_mode(dev);
4553 }
4554 return 0;
4555 }
4556 EXPORT_SYMBOL(dev_set_allmulti);
4557
4558 /*
4559 * Upload unicast and multicast address lists to device and
4560 * configure RX filtering. When the device doesn't support unicast
4561 * filtering it is put in promiscuous mode while unicast addresses
4562 * are present.
4563 */
4564 void __dev_set_rx_mode(struct net_device *dev)
4565 {
4566 const struct net_device_ops *ops = dev->netdev_ops;
4567
4568 /* dev_open will call this function so the list will stay sane. */
4569 if (!(dev->flags&IFF_UP))
4570 return;
4571
4572 if (!netif_device_present(dev))
4573 return;
4574
4575 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4576 /* Unicast addresses changes may only happen under the rtnl,
4577 * therefore calling __dev_set_promiscuity here is safe.
4578 */
4579 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4580 __dev_set_promiscuity(dev, 1);
4581 dev->uc_promisc = true;
4582 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4583 __dev_set_promiscuity(dev, -1);
4584 dev->uc_promisc = false;
4585 }
4586 }
4587
4588 if (ops->ndo_set_rx_mode)
4589 ops->ndo_set_rx_mode(dev);
4590 }
4591
4592 void dev_set_rx_mode(struct net_device *dev)
4593 {
4594 netif_addr_lock_bh(dev);
4595 __dev_set_rx_mode(dev);
4596 netif_addr_unlock_bh(dev);
4597 }
4598
4599 /**
4600 * dev_get_flags - get flags reported to userspace
4601 * @dev: device
4602 *
4603 * Get the combination of flag bits exported through APIs to userspace.
4604 */
4605 unsigned int dev_get_flags(const struct net_device *dev)
4606 {
4607 unsigned int flags;
4608
4609 flags = (dev->flags & ~(IFF_PROMISC |
4610 IFF_ALLMULTI |
4611 IFF_RUNNING |
4612 IFF_LOWER_UP |
4613 IFF_DORMANT)) |
4614 (dev->gflags & (IFF_PROMISC |
4615 IFF_ALLMULTI));
4616
4617 if (netif_running(dev)) {
4618 if (netif_oper_up(dev))
4619 flags |= IFF_RUNNING;
4620 if (netif_carrier_ok(dev))
4621 flags |= IFF_LOWER_UP;
4622 if (netif_dormant(dev))
4623 flags |= IFF_DORMANT;
4624 }
4625
4626 return flags;
4627 }
4628 EXPORT_SYMBOL(dev_get_flags);
4629
4630 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4631 {
4632 unsigned int old_flags = dev->flags;
4633 int ret;
4634
4635 ASSERT_RTNL();
4636
4637 /*
4638 * Set the flags on our device.
4639 */
4640
4641 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4642 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4643 IFF_AUTOMEDIA)) |
4644 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4645 IFF_ALLMULTI));
4646
4647 /*
4648 * Load in the correct multicast list now the flags have changed.
4649 */
4650
4651 if ((old_flags ^ flags) & IFF_MULTICAST)
4652 dev_change_rx_flags(dev, IFF_MULTICAST);
4653
4654 dev_set_rx_mode(dev);
4655
4656 /*
4657 * Have we downed the interface. We handle IFF_UP ourselves
4658 * according to user attempts to set it, rather than blindly
4659 * setting it.
4660 */
4661
4662 ret = 0;
4663 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4664 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4665
4666 if (!ret)
4667 dev_set_rx_mode(dev);
4668 }
4669
4670 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4671 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4672
4673 dev->gflags ^= IFF_PROMISC;
4674 dev_set_promiscuity(dev, inc);
4675 }
4676
4677 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4678 is important. Some (broken) drivers set IFF_PROMISC, when
4679 IFF_ALLMULTI is requested not asking us and not reporting.
4680 */
4681 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4682 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4683
4684 dev->gflags ^= IFF_ALLMULTI;
4685 dev_set_allmulti(dev, inc);
4686 }
4687
4688 return ret;
4689 }
4690
4691 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4692 {
4693 unsigned int changes = dev->flags ^ old_flags;
4694
4695 if (changes & IFF_UP) {
4696 if (dev->flags & IFF_UP)
4697 call_netdevice_notifiers(NETDEV_UP, dev);
4698 else
4699 call_netdevice_notifiers(NETDEV_DOWN, dev);
4700 }
4701
4702 if (dev->flags & IFF_UP &&
4703 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4704 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4705 }
4706
4707 /**
4708 * dev_change_flags - change device settings
4709 * @dev: device
4710 * @flags: device state flags
4711 *
4712 * Change settings on device based state flags. The flags are
4713 * in the userspace exported format.
4714 */
4715 int dev_change_flags(struct net_device *dev, unsigned int flags)
4716 {
4717 int ret;
4718 unsigned int changes, old_flags = dev->flags;
4719
4720 ret = __dev_change_flags(dev, flags);
4721 if (ret < 0)
4722 return ret;
4723
4724 changes = old_flags ^ dev->flags;
4725 if (changes)
4726 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4727
4728 __dev_notify_flags(dev, old_flags);
4729 return ret;
4730 }
4731 EXPORT_SYMBOL(dev_change_flags);
4732
4733 /**
4734 * dev_set_mtu - Change maximum transfer unit
4735 * @dev: device
4736 * @new_mtu: new transfer unit
4737 *
4738 * Change the maximum transfer size of the network device.
4739 */
4740 int dev_set_mtu(struct net_device *dev, int new_mtu)
4741 {
4742 const struct net_device_ops *ops = dev->netdev_ops;
4743 int err;
4744
4745 if (new_mtu == dev->mtu)
4746 return 0;
4747
4748 /* MTU must be positive. */
4749 if (new_mtu < 0)
4750 return -EINVAL;
4751
4752 if (!netif_device_present(dev))
4753 return -ENODEV;
4754
4755 err = 0;
4756 if (ops->ndo_change_mtu)
4757 err = ops->ndo_change_mtu(dev, new_mtu);
4758 else
4759 dev->mtu = new_mtu;
4760
4761 if (!err)
4762 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4763 return err;
4764 }
4765 EXPORT_SYMBOL(dev_set_mtu);
4766
4767 /**
4768 * dev_set_group - Change group this device belongs to
4769 * @dev: device
4770 * @new_group: group this device should belong to
4771 */
4772 void dev_set_group(struct net_device *dev, int new_group)
4773 {
4774 dev->group = new_group;
4775 }
4776 EXPORT_SYMBOL(dev_set_group);
4777
4778 /**
4779 * dev_set_mac_address - Change Media Access Control Address
4780 * @dev: device
4781 * @sa: new address
4782 *
4783 * Change the hardware (MAC) address of the device
4784 */
4785 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4786 {
4787 const struct net_device_ops *ops = dev->netdev_ops;
4788 int err;
4789
4790 if (!ops->ndo_set_mac_address)
4791 return -EOPNOTSUPP;
4792 if (sa->sa_family != dev->type)
4793 return -EINVAL;
4794 if (!netif_device_present(dev))
4795 return -ENODEV;
4796 err = ops->ndo_set_mac_address(dev, sa);
4797 if (err)
4798 return err;
4799 dev->addr_assign_type = NET_ADDR_SET;
4800 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4801 add_device_randomness(dev->dev_addr, dev->addr_len);
4802 return 0;
4803 }
4804 EXPORT_SYMBOL(dev_set_mac_address);
4805
4806 /**
4807 * dev_change_carrier - Change device carrier
4808 * @dev: device
4809 * @new_carrier: new value
4810 *
4811 * Change device carrier
4812 */
4813 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4814 {
4815 const struct net_device_ops *ops = dev->netdev_ops;
4816
4817 if (!ops->ndo_change_carrier)
4818 return -EOPNOTSUPP;
4819 if (!netif_device_present(dev))
4820 return -ENODEV;
4821 return ops->ndo_change_carrier(dev, new_carrier);
4822 }
4823 EXPORT_SYMBOL(dev_change_carrier);
4824
4825 /**
4826 * dev_new_index - allocate an ifindex
4827 * @net: the applicable net namespace
4828 *
4829 * Returns a suitable unique value for a new device interface
4830 * number. The caller must hold the rtnl semaphore or the
4831 * dev_base_lock to be sure it remains unique.
4832 */
4833 static int dev_new_index(struct net *net)
4834 {
4835 int ifindex = net->ifindex;
4836 for (;;) {
4837 if (++ifindex <= 0)
4838 ifindex = 1;
4839 if (!__dev_get_by_index(net, ifindex))
4840 return net->ifindex = ifindex;
4841 }
4842 }
4843
4844 /* Delayed registration/unregisteration */
4845 static LIST_HEAD(net_todo_list);
4846
4847 static void net_set_todo(struct net_device *dev)
4848 {
4849 list_add_tail(&dev->todo_list, &net_todo_list);
4850 }
4851
4852 static void rollback_registered_many(struct list_head *head)
4853 {
4854 struct net_device *dev, *tmp;
4855
4856 BUG_ON(dev_boot_phase);
4857 ASSERT_RTNL();
4858
4859 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4860 /* Some devices call without registering
4861 * for initialization unwind. Remove those
4862 * devices and proceed with the remaining.
4863 */
4864 if (dev->reg_state == NETREG_UNINITIALIZED) {
4865 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4866 dev->name, dev);
4867
4868 WARN_ON(1);
4869 list_del(&dev->unreg_list);
4870 continue;
4871 }
4872 dev->dismantle = true;
4873 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4874 }
4875
4876 /* If device is running, close it first. */
4877 dev_close_many(head);
4878
4879 list_for_each_entry(dev, head, unreg_list) {
4880 /* And unlink it from device chain. */
4881 unlist_netdevice(dev);
4882
4883 dev->reg_state = NETREG_UNREGISTERING;
4884 }
4885
4886 synchronize_net();
4887
4888 list_for_each_entry(dev, head, unreg_list) {
4889 /* Shutdown queueing discipline. */
4890 dev_shutdown(dev);
4891
4892
4893 /* Notify protocols, that we are about to destroy
4894 this device. They should clean all the things.
4895 */
4896 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4897
4898 if (!dev->rtnl_link_ops ||
4899 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4900 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4901
4902 /*
4903 * Flush the unicast and multicast chains
4904 */
4905 dev_uc_flush(dev);
4906 dev_mc_flush(dev);
4907
4908 if (dev->netdev_ops->ndo_uninit)
4909 dev->netdev_ops->ndo_uninit(dev);
4910
4911 /* Notifier chain MUST detach us all upper devices. */
4912 WARN_ON(netdev_has_any_upper_dev(dev));
4913
4914 /* Remove entries from kobject tree */
4915 netdev_unregister_kobject(dev);
4916 #ifdef CONFIG_XPS
4917 /* Remove XPS queueing entries */
4918 netif_reset_xps_queues_gt(dev, 0);
4919 #endif
4920 }
4921
4922 synchronize_net();
4923
4924 list_for_each_entry(dev, head, unreg_list)
4925 dev_put(dev);
4926 }
4927
4928 static void rollback_registered(struct net_device *dev)
4929 {
4930 LIST_HEAD(single);
4931
4932 list_add(&dev->unreg_list, &single);
4933 rollback_registered_many(&single);
4934 list_del(&single);
4935 }
4936
4937 static netdev_features_t netdev_fix_features(struct net_device *dev,
4938 netdev_features_t features)
4939 {
4940 /* Fix illegal checksum combinations */
4941 if ((features & NETIF_F_HW_CSUM) &&
4942 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4943 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
4944 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4945 }
4946
4947 /* TSO requires that SG is present as well. */
4948 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
4949 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
4950 features &= ~NETIF_F_ALL_TSO;
4951 }
4952
4953 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
4954 !(features & NETIF_F_IP_CSUM)) {
4955 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
4956 features &= ~NETIF_F_TSO;
4957 features &= ~NETIF_F_TSO_ECN;
4958 }
4959
4960 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
4961 !(features & NETIF_F_IPV6_CSUM)) {
4962 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
4963 features &= ~NETIF_F_TSO6;
4964 }
4965
4966 /* TSO ECN requires that TSO is present as well. */
4967 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
4968 features &= ~NETIF_F_TSO_ECN;
4969
4970 /* Software GSO depends on SG. */
4971 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
4972 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
4973 features &= ~NETIF_F_GSO;
4974 }
4975
4976 /* UFO needs SG and checksumming */
4977 if (features & NETIF_F_UFO) {
4978 /* maybe split UFO into V4 and V6? */
4979 if (!((features & NETIF_F_GEN_CSUM) ||
4980 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
4981 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4982 netdev_dbg(dev,
4983 "Dropping NETIF_F_UFO since no checksum offload features.\n");
4984 features &= ~NETIF_F_UFO;
4985 }
4986
4987 if (!(features & NETIF_F_SG)) {
4988 netdev_dbg(dev,
4989 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
4990 features &= ~NETIF_F_UFO;
4991 }
4992 }
4993
4994 return features;
4995 }
4996
4997 int __netdev_update_features(struct net_device *dev)
4998 {
4999 netdev_features_t features;
5000 int err = 0;
5001
5002 ASSERT_RTNL();
5003
5004 features = netdev_get_wanted_features(dev);
5005
5006 if (dev->netdev_ops->ndo_fix_features)
5007 features = dev->netdev_ops->ndo_fix_features(dev, features);
5008
5009 /* driver might be less strict about feature dependencies */
5010 features = netdev_fix_features(dev, features);
5011
5012 if (dev->features == features)
5013 return 0;
5014
5015 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5016 &dev->features, &features);
5017
5018 if (dev->netdev_ops->ndo_set_features)
5019 err = dev->netdev_ops->ndo_set_features(dev, features);
5020
5021 if (unlikely(err < 0)) {
5022 netdev_err(dev,
5023 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5024 err, &features, &dev->features);
5025 return -1;
5026 }
5027
5028 if (!err)
5029 dev->features = features;
5030
5031 return 1;
5032 }
5033
5034 /**
5035 * netdev_update_features - recalculate device features
5036 * @dev: the device to check
5037 *
5038 * Recalculate dev->features set and send notifications if it
5039 * has changed. Should be called after driver or hardware dependent
5040 * conditions might have changed that influence the features.
5041 */
5042 void netdev_update_features(struct net_device *dev)
5043 {
5044 if (__netdev_update_features(dev))
5045 netdev_features_change(dev);
5046 }
5047 EXPORT_SYMBOL(netdev_update_features);
5048
5049 /**
5050 * netdev_change_features - recalculate device features
5051 * @dev: the device to check
5052 *
5053 * Recalculate dev->features set and send notifications even
5054 * if they have not changed. Should be called instead of
5055 * netdev_update_features() if also dev->vlan_features might
5056 * have changed to allow the changes to be propagated to stacked
5057 * VLAN devices.
5058 */
5059 void netdev_change_features(struct net_device *dev)
5060 {
5061 __netdev_update_features(dev);
5062 netdev_features_change(dev);
5063 }
5064 EXPORT_SYMBOL(netdev_change_features);
5065
5066 /**
5067 * netif_stacked_transfer_operstate - transfer operstate
5068 * @rootdev: the root or lower level device to transfer state from
5069 * @dev: the device to transfer operstate to
5070 *
5071 * Transfer operational state from root to device. This is normally
5072 * called when a stacking relationship exists between the root
5073 * device and the device(a leaf device).
5074 */
5075 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5076 struct net_device *dev)
5077 {
5078 if (rootdev->operstate == IF_OPER_DORMANT)
5079 netif_dormant_on(dev);
5080 else
5081 netif_dormant_off(dev);
5082
5083 if (netif_carrier_ok(rootdev)) {
5084 if (!netif_carrier_ok(dev))
5085 netif_carrier_on(dev);
5086 } else {
5087 if (netif_carrier_ok(dev))
5088 netif_carrier_off(dev);
5089 }
5090 }
5091 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5092
5093 #ifdef CONFIG_RPS
5094 static int netif_alloc_rx_queues(struct net_device *dev)
5095 {
5096 unsigned int i, count = dev->num_rx_queues;
5097 struct netdev_rx_queue *rx;
5098
5099 BUG_ON(count < 1);
5100
5101 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5102 if (!rx)
5103 return -ENOMEM;
5104
5105 dev->_rx = rx;
5106
5107 for (i = 0; i < count; i++)
5108 rx[i].dev = dev;
5109 return 0;
5110 }
5111 #endif
5112
5113 static void netdev_init_one_queue(struct net_device *dev,
5114 struct netdev_queue *queue, void *_unused)
5115 {
5116 /* Initialize queue lock */
5117 spin_lock_init(&queue->_xmit_lock);
5118 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5119 queue->xmit_lock_owner = -1;
5120 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5121 queue->dev = dev;
5122 #ifdef CONFIG_BQL
5123 dql_init(&queue->dql, HZ);
5124 #endif
5125 }
5126
5127 static int netif_alloc_netdev_queues(struct net_device *dev)
5128 {
5129 unsigned int count = dev->num_tx_queues;
5130 struct netdev_queue *tx;
5131
5132 BUG_ON(count < 1);
5133
5134 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5135 if (!tx)
5136 return -ENOMEM;
5137
5138 dev->_tx = tx;
5139
5140 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5141 spin_lock_init(&dev->tx_global_lock);
5142
5143 return 0;
5144 }
5145
5146 /**
5147 * register_netdevice - register a network device
5148 * @dev: device to register
5149 *
5150 * Take a completed network device structure and add it to the kernel
5151 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5152 * chain. 0 is returned on success. A negative errno code is returned
5153 * on a failure to set up the device, or if the name is a duplicate.
5154 *
5155 * Callers must hold the rtnl semaphore. You may want
5156 * register_netdev() instead of this.
5157 *
5158 * BUGS:
5159 * The locking appears insufficient to guarantee two parallel registers
5160 * will not get the same name.
5161 */
5162
5163 int register_netdevice(struct net_device *dev)
5164 {
5165 int ret;
5166 struct net *net = dev_net(dev);
5167
5168 BUG_ON(dev_boot_phase);
5169 ASSERT_RTNL();
5170
5171 might_sleep();
5172
5173 /* When net_device's are persistent, this will be fatal. */
5174 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5175 BUG_ON(!net);
5176
5177 spin_lock_init(&dev->addr_list_lock);
5178 netdev_set_addr_lockdep_class(dev);
5179
5180 dev->iflink = -1;
5181
5182 ret = dev_get_valid_name(net, dev, dev->name);
5183 if (ret < 0)
5184 goto out;
5185
5186 /* Init, if this function is available */
5187 if (dev->netdev_ops->ndo_init) {
5188 ret = dev->netdev_ops->ndo_init(dev);
5189 if (ret) {
5190 if (ret > 0)
5191 ret = -EIO;
5192 goto out;
5193 }
5194 }
5195
5196 if (((dev->hw_features | dev->features) &
5197 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5198 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5199 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5200 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5201 ret = -EINVAL;
5202 goto err_uninit;
5203 }
5204
5205 ret = -EBUSY;
5206 if (!dev->ifindex)
5207 dev->ifindex = dev_new_index(net);
5208 else if (__dev_get_by_index(net, dev->ifindex))
5209 goto err_uninit;
5210
5211 if (dev->iflink == -1)
5212 dev->iflink = dev->ifindex;
5213
5214 /* Transfer changeable features to wanted_features and enable
5215 * software offloads (GSO and GRO).
5216 */
5217 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5218 dev->features |= NETIF_F_SOFT_FEATURES;
5219 dev->wanted_features = dev->features & dev->hw_features;
5220
5221 /* Turn on no cache copy if HW is doing checksum */
5222 if (!(dev->flags & IFF_LOOPBACK)) {
5223 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5224 if (dev->features & NETIF_F_ALL_CSUM) {
5225 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5226 dev->features |= NETIF_F_NOCACHE_COPY;
5227 }
5228 }
5229
5230 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5231 */
5232 dev->vlan_features |= NETIF_F_HIGHDMA;
5233
5234 /* Make NETIF_F_SG inheritable to tunnel devices.
5235 */
5236 dev->hw_enc_features |= NETIF_F_SG;
5237
5238 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5239 ret = notifier_to_errno(ret);
5240 if (ret)
5241 goto err_uninit;
5242
5243 ret = netdev_register_kobject(dev);
5244 if (ret)
5245 goto err_uninit;
5246 dev->reg_state = NETREG_REGISTERED;
5247
5248 __netdev_update_features(dev);
5249
5250 /*
5251 * Default initial state at registry is that the
5252 * device is present.
5253 */
5254
5255 set_bit(__LINK_STATE_PRESENT, &dev->state);
5256
5257 linkwatch_init_dev(dev);
5258
5259 dev_init_scheduler(dev);
5260 dev_hold(dev);
5261 list_netdevice(dev);
5262 add_device_randomness(dev->dev_addr, dev->addr_len);
5263
5264 /* If the device has permanent device address, driver should
5265 * set dev_addr and also addr_assign_type should be set to
5266 * NET_ADDR_PERM (default value).
5267 */
5268 if (dev->addr_assign_type == NET_ADDR_PERM)
5269 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5270
5271 /* Notify protocols, that a new device appeared. */
5272 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5273 ret = notifier_to_errno(ret);
5274 if (ret) {
5275 rollback_registered(dev);
5276 dev->reg_state = NETREG_UNREGISTERED;
5277 }
5278 /*
5279 * Prevent userspace races by waiting until the network
5280 * device is fully setup before sending notifications.
5281 */
5282 if (!dev->rtnl_link_ops ||
5283 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5284 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5285
5286 out:
5287 return ret;
5288
5289 err_uninit:
5290 if (dev->netdev_ops->ndo_uninit)
5291 dev->netdev_ops->ndo_uninit(dev);
5292 goto out;
5293 }
5294 EXPORT_SYMBOL(register_netdevice);
5295
5296 /**
5297 * init_dummy_netdev - init a dummy network device for NAPI
5298 * @dev: device to init
5299 *
5300 * This takes a network device structure and initialize the minimum
5301 * amount of fields so it can be used to schedule NAPI polls without
5302 * registering a full blown interface. This is to be used by drivers
5303 * that need to tie several hardware interfaces to a single NAPI
5304 * poll scheduler due to HW limitations.
5305 */
5306 int init_dummy_netdev(struct net_device *dev)
5307 {
5308 /* Clear everything. Note we don't initialize spinlocks
5309 * are they aren't supposed to be taken by any of the
5310 * NAPI code and this dummy netdev is supposed to be
5311 * only ever used for NAPI polls
5312 */
5313 memset(dev, 0, sizeof(struct net_device));
5314
5315 /* make sure we BUG if trying to hit standard
5316 * register/unregister code path
5317 */
5318 dev->reg_state = NETREG_DUMMY;
5319
5320 /* NAPI wants this */
5321 INIT_LIST_HEAD(&dev->napi_list);
5322
5323 /* a dummy interface is started by default */
5324 set_bit(__LINK_STATE_PRESENT, &dev->state);
5325 set_bit(__LINK_STATE_START, &dev->state);
5326
5327 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5328 * because users of this 'device' dont need to change
5329 * its refcount.
5330 */
5331
5332 return 0;
5333 }
5334 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5335
5336
5337 /**
5338 * register_netdev - register a network device
5339 * @dev: device to register
5340 *
5341 * Take a completed network device structure and add it to the kernel
5342 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5343 * chain. 0 is returned on success. A negative errno code is returned
5344 * on a failure to set up the device, or if the name is a duplicate.
5345 *
5346 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5347 * and expands the device name if you passed a format string to
5348 * alloc_netdev.
5349 */
5350 int register_netdev(struct net_device *dev)
5351 {
5352 int err;
5353
5354 rtnl_lock();
5355 err = register_netdevice(dev);
5356 rtnl_unlock();
5357 return err;
5358 }
5359 EXPORT_SYMBOL(register_netdev);
5360
5361 int netdev_refcnt_read(const struct net_device *dev)
5362 {
5363 int i, refcnt = 0;
5364
5365 for_each_possible_cpu(i)
5366 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5367 return refcnt;
5368 }
5369 EXPORT_SYMBOL(netdev_refcnt_read);
5370
5371 /**
5372 * netdev_wait_allrefs - wait until all references are gone.
5373 * @dev: target net_device
5374 *
5375 * This is called when unregistering network devices.
5376 *
5377 * Any protocol or device that holds a reference should register
5378 * for netdevice notification, and cleanup and put back the
5379 * reference if they receive an UNREGISTER event.
5380 * We can get stuck here if buggy protocols don't correctly
5381 * call dev_put.
5382 */
5383 static void netdev_wait_allrefs(struct net_device *dev)
5384 {
5385 unsigned long rebroadcast_time, warning_time;
5386 int refcnt;
5387
5388 linkwatch_forget_dev(dev);
5389
5390 rebroadcast_time = warning_time = jiffies;
5391 refcnt = netdev_refcnt_read(dev);
5392
5393 while (refcnt != 0) {
5394 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5395 rtnl_lock();
5396
5397 /* Rebroadcast unregister notification */
5398 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5399
5400 __rtnl_unlock();
5401 rcu_barrier();
5402 rtnl_lock();
5403
5404 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5405 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5406 &dev->state)) {
5407 /* We must not have linkwatch events
5408 * pending on unregister. If this
5409 * happens, we simply run the queue
5410 * unscheduled, resulting in a noop
5411 * for this device.
5412 */
5413 linkwatch_run_queue();
5414 }
5415
5416 __rtnl_unlock();
5417
5418 rebroadcast_time = jiffies;
5419 }
5420
5421 msleep(250);
5422
5423 refcnt = netdev_refcnt_read(dev);
5424
5425 if (time_after(jiffies, warning_time + 10 * HZ)) {
5426 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5427 dev->name, refcnt);
5428 warning_time = jiffies;
5429 }
5430 }
5431 }
5432
5433 /* The sequence is:
5434 *
5435 * rtnl_lock();
5436 * ...
5437 * register_netdevice(x1);
5438 * register_netdevice(x2);
5439 * ...
5440 * unregister_netdevice(y1);
5441 * unregister_netdevice(y2);
5442 * ...
5443 * rtnl_unlock();
5444 * free_netdev(y1);
5445 * free_netdev(y2);
5446 *
5447 * We are invoked by rtnl_unlock().
5448 * This allows us to deal with problems:
5449 * 1) We can delete sysfs objects which invoke hotplug
5450 * without deadlocking with linkwatch via keventd.
5451 * 2) Since we run with the RTNL semaphore not held, we can sleep
5452 * safely in order to wait for the netdev refcnt to drop to zero.
5453 *
5454 * We must not return until all unregister events added during
5455 * the interval the lock was held have been completed.
5456 */
5457 void netdev_run_todo(void)
5458 {
5459 struct list_head list;
5460
5461 /* Snapshot list, allow later requests */
5462 list_replace_init(&net_todo_list, &list);
5463
5464 __rtnl_unlock();
5465
5466
5467 /* Wait for rcu callbacks to finish before next phase */
5468 if (!list_empty(&list))
5469 rcu_barrier();
5470
5471 while (!list_empty(&list)) {
5472 struct net_device *dev
5473 = list_first_entry(&list, struct net_device, todo_list);
5474 list_del(&dev->todo_list);
5475
5476 rtnl_lock();
5477 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5478 __rtnl_unlock();
5479
5480 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5481 pr_err("network todo '%s' but state %d\n",
5482 dev->name, dev->reg_state);
5483 dump_stack();
5484 continue;
5485 }
5486
5487 dev->reg_state = NETREG_UNREGISTERED;
5488
5489 on_each_cpu(flush_backlog, dev, 1);
5490
5491 netdev_wait_allrefs(dev);
5492
5493 /* paranoia */
5494 BUG_ON(netdev_refcnt_read(dev));
5495 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5496 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5497 WARN_ON(dev->dn_ptr);
5498
5499 if (dev->destructor)
5500 dev->destructor(dev);
5501
5502 /* Free network device */
5503 kobject_put(&dev->dev.kobj);
5504 }
5505 }
5506
5507 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5508 * fields in the same order, with only the type differing.
5509 */
5510 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5511 const struct net_device_stats *netdev_stats)
5512 {
5513 #if BITS_PER_LONG == 64
5514 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5515 memcpy(stats64, netdev_stats, sizeof(*stats64));
5516 #else
5517 size_t i, n = sizeof(*stats64) / sizeof(u64);
5518 const unsigned long *src = (const unsigned long *)netdev_stats;
5519 u64 *dst = (u64 *)stats64;
5520
5521 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5522 sizeof(*stats64) / sizeof(u64));
5523 for (i = 0; i < n; i++)
5524 dst[i] = src[i];
5525 #endif
5526 }
5527 EXPORT_SYMBOL(netdev_stats_to_stats64);
5528
5529 /**
5530 * dev_get_stats - get network device statistics
5531 * @dev: device to get statistics from
5532 * @storage: place to store stats
5533 *
5534 * Get network statistics from device. Return @storage.
5535 * The device driver may provide its own method by setting
5536 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5537 * otherwise the internal statistics structure is used.
5538 */
5539 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5540 struct rtnl_link_stats64 *storage)
5541 {
5542 const struct net_device_ops *ops = dev->netdev_ops;
5543
5544 if (ops->ndo_get_stats64) {
5545 memset(storage, 0, sizeof(*storage));
5546 ops->ndo_get_stats64(dev, storage);
5547 } else if (ops->ndo_get_stats) {
5548 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5549 } else {
5550 netdev_stats_to_stats64(storage, &dev->stats);
5551 }
5552 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5553 return storage;
5554 }
5555 EXPORT_SYMBOL(dev_get_stats);
5556
5557 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5558 {
5559 struct netdev_queue *queue = dev_ingress_queue(dev);
5560
5561 #ifdef CONFIG_NET_CLS_ACT
5562 if (queue)
5563 return queue;
5564 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5565 if (!queue)
5566 return NULL;
5567 netdev_init_one_queue(dev, queue, NULL);
5568 queue->qdisc = &noop_qdisc;
5569 queue->qdisc_sleeping = &noop_qdisc;
5570 rcu_assign_pointer(dev->ingress_queue, queue);
5571 #endif
5572 return queue;
5573 }
5574
5575 static const struct ethtool_ops default_ethtool_ops;
5576
5577 void netdev_set_default_ethtool_ops(struct net_device *dev,
5578 const struct ethtool_ops *ops)
5579 {
5580 if (dev->ethtool_ops == &default_ethtool_ops)
5581 dev->ethtool_ops = ops;
5582 }
5583 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5584
5585 /**
5586 * alloc_netdev_mqs - allocate network device
5587 * @sizeof_priv: size of private data to allocate space for
5588 * @name: device name format string
5589 * @setup: callback to initialize device
5590 * @txqs: the number of TX subqueues to allocate
5591 * @rxqs: the number of RX subqueues to allocate
5592 *
5593 * Allocates a struct net_device with private data area for driver use
5594 * and performs basic initialization. Also allocates subquue structs
5595 * for each queue on the device.
5596 */
5597 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5598 void (*setup)(struct net_device *),
5599 unsigned int txqs, unsigned int rxqs)
5600 {
5601 struct net_device *dev;
5602 size_t alloc_size;
5603 struct net_device *p;
5604
5605 BUG_ON(strlen(name) >= sizeof(dev->name));
5606
5607 if (txqs < 1) {
5608 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5609 return NULL;
5610 }
5611
5612 #ifdef CONFIG_RPS
5613 if (rxqs < 1) {
5614 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5615 return NULL;
5616 }
5617 #endif
5618
5619 alloc_size = sizeof(struct net_device);
5620 if (sizeof_priv) {
5621 /* ensure 32-byte alignment of private area */
5622 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5623 alloc_size += sizeof_priv;
5624 }
5625 /* ensure 32-byte alignment of whole construct */
5626 alloc_size += NETDEV_ALIGN - 1;
5627
5628 p = kzalloc(alloc_size, GFP_KERNEL);
5629 if (!p)
5630 return NULL;
5631
5632 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5633 dev->padded = (char *)dev - (char *)p;
5634
5635 dev->pcpu_refcnt = alloc_percpu(int);
5636 if (!dev->pcpu_refcnt)
5637 goto free_p;
5638
5639 if (dev_addr_init(dev))
5640 goto free_pcpu;
5641
5642 dev_mc_init(dev);
5643 dev_uc_init(dev);
5644
5645 dev_net_set(dev, &init_net);
5646
5647 dev->gso_max_size = GSO_MAX_SIZE;
5648 dev->gso_max_segs = GSO_MAX_SEGS;
5649
5650 INIT_LIST_HEAD(&dev->napi_list);
5651 INIT_LIST_HEAD(&dev->unreg_list);
5652 INIT_LIST_HEAD(&dev->link_watch_list);
5653 INIT_LIST_HEAD(&dev->upper_dev_list);
5654 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5655 setup(dev);
5656
5657 dev->num_tx_queues = txqs;
5658 dev->real_num_tx_queues = txqs;
5659 if (netif_alloc_netdev_queues(dev))
5660 goto free_all;
5661
5662 #ifdef CONFIG_RPS
5663 dev->num_rx_queues = rxqs;
5664 dev->real_num_rx_queues = rxqs;
5665 if (netif_alloc_rx_queues(dev))
5666 goto free_all;
5667 #endif
5668
5669 strcpy(dev->name, name);
5670 dev->group = INIT_NETDEV_GROUP;
5671 if (!dev->ethtool_ops)
5672 dev->ethtool_ops = &default_ethtool_ops;
5673 return dev;
5674
5675 free_all:
5676 free_netdev(dev);
5677 return NULL;
5678
5679 free_pcpu:
5680 free_percpu(dev->pcpu_refcnt);
5681 kfree(dev->_tx);
5682 #ifdef CONFIG_RPS
5683 kfree(dev->_rx);
5684 #endif
5685
5686 free_p:
5687 kfree(p);
5688 return NULL;
5689 }
5690 EXPORT_SYMBOL(alloc_netdev_mqs);
5691
5692 /**
5693 * free_netdev - free network device
5694 * @dev: device
5695 *
5696 * This function does the last stage of destroying an allocated device
5697 * interface. The reference to the device object is released.
5698 * If this is the last reference then it will be freed.
5699 */
5700 void free_netdev(struct net_device *dev)
5701 {
5702 struct napi_struct *p, *n;
5703
5704 release_net(dev_net(dev));
5705
5706 kfree(dev->_tx);
5707 #ifdef CONFIG_RPS
5708 kfree(dev->_rx);
5709 #endif
5710
5711 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5712
5713 /* Flush device addresses */
5714 dev_addr_flush(dev);
5715
5716 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5717 netif_napi_del(p);
5718
5719 free_percpu(dev->pcpu_refcnt);
5720 dev->pcpu_refcnt = NULL;
5721
5722 /* Compatibility with error handling in drivers */
5723 if (dev->reg_state == NETREG_UNINITIALIZED) {
5724 kfree((char *)dev - dev->padded);
5725 return;
5726 }
5727
5728 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5729 dev->reg_state = NETREG_RELEASED;
5730
5731 /* will free via device release */
5732 put_device(&dev->dev);
5733 }
5734 EXPORT_SYMBOL(free_netdev);
5735
5736 /**
5737 * synchronize_net - Synchronize with packet receive processing
5738 *
5739 * Wait for packets currently being received to be done.
5740 * Does not block later packets from starting.
5741 */
5742 void synchronize_net(void)
5743 {
5744 might_sleep();
5745 if (rtnl_is_locked())
5746 synchronize_rcu_expedited();
5747 else
5748 synchronize_rcu();
5749 }
5750 EXPORT_SYMBOL(synchronize_net);
5751
5752 /**
5753 * unregister_netdevice_queue - remove device from the kernel
5754 * @dev: device
5755 * @head: list
5756 *
5757 * This function shuts down a device interface and removes it
5758 * from the kernel tables.
5759 * If head not NULL, device is queued to be unregistered later.
5760 *
5761 * Callers must hold the rtnl semaphore. You may want
5762 * unregister_netdev() instead of this.
5763 */
5764
5765 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5766 {
5767 ASSERT_RTNL();
5768
5769 if (head) {
5770 list_move_tail(&dev->unreg_list, head);
5771 } else {
5772 rollback_registered(dev);
5773 /* Finish processing unregister after unlock */
5774 net_set_todo(dev);
5775 }
5776 }
5777 EXPORT_SYMBOL(unregister_netdevice_queue);
5778
5779 /**
5780 * unregister_netdevice_many - unregister many devices
5781 * @head: list of devices
5782 */
5783 void unregister_netdevice_many(struct list_head *head)
5784 {
5785 struct net_device *dev;
5786
5787 if (!list_empty(head)) {
5788 rollback_registered_many(head);
5789 list_for_each_entry(dev, head, unreg_list)
5790 net_set_todo(dev);
5791 }
5792 }
5793 EXPORT_SYMBOL(unregister_netdevice_many);
5794
5795 /**
5796 * unregister_netdev - remove device from the kernel
5797 * @dev: device
5798 *
5799 * This function shuts down a device interface and removes it
5800 * from the kernel tables.
5801 *
5802 * This is just a wrapper for unregister_netdevice that takes
5803 * the rtnl semaphore. In general you want to use this and not
5804 * unregister_netdevice.
5805 */
5806 void unregister_netdev(struct net_device *dev)
5807 {
5808 rtnl_lock();
5809 unregister_netdevice(dev);
5810 rtnl_unlock();
5811 }
5812 EXPORT_SYMBOL(unregister_netdev);
5813
5814 /**
5815 * dev_change_net_namespace - move device to different nethost namespace
5816 * @dev: device
5817 * @net: network namespace
5818 * @pat: If not NULL name pattern to try if the current device name
5819 * is already taken in the destination network namespace.
5820 *
5821 * This function shuts down a device interface and moves it
5822 * to a new network namespace. On success 0 is returned, on
5823 * a failure a netagive errno code is returned.
5824 *
5825 * Callers must hold the rtnl semaphore.
5826 */
5827
5828 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5829 {
5830 int err;
5831
5832 ASSERT_RTNL();
5833
5834 /* Don't allow namespace local devices to be moved. */
5835 err = -EINVAL;
5836 if (dev->features & NETIF_F_NETNS_LOCAL)
5837 goto out;
5838
5839 /* Ensure the device has been registrered */
5840 if (dev->reg_state != NETREG_REGISTERED)
5841 goto out;
5842
5843 /* Get out if there is nothing todo */
5844 err = 0;
5845 if (net_eq(dev_net(dev), net))
5846 goto out;
5847
5848 /* Pick the destination device name, and ensure
5849 * we can use it in the destination network namespace.
5850 */
5851 err = -EEXIST;
5852 if (__dev_get_by_name(net, dev->name)) {
5853 /* We get here if we can't use the current device name */
5854 if (!pat)
5855 goto out;
5856 if (dev_get_valid_name(net, dev, pat) < 0)
5857 goto out;
5858 }
5859
5860 /*
5861 * And now a mini version of register_netdevice unregister_netdevice.
5862 */
5863
5864 /* If device is running close it first. */
5865 dev_close(dev);
5866
5867 /* And unlink it from device chain */
5868 err = -ENODEV;
5869 unlist_netdevice(dev);
5870
5871 synchronize_net();
5872
5873 /* Shutdown queueing discipline. */
5874 dev_shutdown(dev);
5875
5876 /* Notify protocols, that we are about to destroy
5877 this device. They should clean all the things.
5878
5879 Note that dev->reg_state stays at NETREG_REGISTERED.
5880 This is wanted because this way 8021q and macvlan know
5881 the device is just moving and can keep their slaves up.
5882 */
5883 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5884 rcu_barrier();
5885 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5886 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5887
5888 /*
5889 * Flush the unicast and multicast chains
5890 */
5891 dev_uc_flush(dev);
5892 dev_mc_flush(dev);
5893
5894 /* Send a netdev-removed uevent to the old namespace */
5895 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5896
5897 /* Actually switch the network namespace */
5898 dev_net_set(dev, net);
5899
5900 /* If there is an ifindex conflict assign a new one */
5901 if (__dev_get_by_index(net, dev->ifindex)) {
5902 int iflink = (dev->iflink == dev->ifindex);
5903 dev->ifindex = dev_new_index(net);
5904 if (iflink)
5905 dev->iflink = dev->ifindex;
5906 }
5907
5908 /* Send a netdev-add uevent to the new namespace */
5909 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5910
5911 /* Fixup kobjects */
5912 err = device_rename(&dev->dev, dev->name);
5913 WARN_ON(err);
5914
5915 /* Add the device back in the hashes */
5916 list_netdevice(dev);
5917
5918 /* Notify protocols, that a new device appeared. */
5919 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5920
5921 /*
5922 * Prevent userspace races by waiting until the network
5923 * device is fully setup before sending notifications.
5924 */
5925 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5926
5927 synchronize_net();
5928 err = 0;
5929 out:
5930 return err;
5931 }
5932 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5933
5934 static int dev_cpu_callback(struct notifier_block *nfb,
5935 unsigned long action,
5936 void *ocpu)
5937 {
5938 struct sk_buff **list_skb;
5939 struct sk_buff *skb;
5940 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5941 struct softnet_data *sd, *oldsd;
5942
5943 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5944 return NOTIFY_OK;
5945
5946 local_irq_disable();
5947 cpu = smp_processor_id();
5948 sd = &per_cpu(softnet_data, cpu);
5949 oldsd = &per_cpu(softnet_data, oldcpu);
5950
5951 /* Find end of our completion_queue. */
5952 list_skb = &sd->completion_queue;
5953 while (*list_skb)
5954 list_skb = &(*list_skb)->next;
5955 /* Append completion queue from offline CPU. */
5956 *list_skb = oldsd->completion_queue;
5957 oldsd->completion_queue = NULL;
5958
5959 /* Append output queue from offline CPU. */
5960 if (oldsd->output_queue) {
5961 *sd->output_queue_tailp = oldsd->output_queue;
5962 sd->output_queue_tailp = oldsd->output_queue_tailp;
5963 oldsd->output_queue = NULL;
5964 oldsd->output_queue_tailp = &oldsd->output_queue;
5965 }
5966 /* Append NAPI poll list from offline CPU. */
5967 if (!list_empty(&oldsd->poll_list)) {
5968 list_splice_init(&oldsd->poll_list, &sd->poll_list);
5969 raise_softirq_irqoff(NET_RX_SOFTIRQ);
5970 }
5971
5972 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5973 local_irq_enable();
5974
5975 /* Process offline CPU's input_pkt_queue */
5976 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5977 netif_rx(skb);
5978 input_queue_head_incr(oldsd);
5979 }
5980 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5981 netif_rx(skb);
5982 input_queue_head_incr(oldsd);
5983 }
5984
5985 return NOTIFY_OK;
5986 }
5987
5988
5989 /**
5990 * netdev_increment_features - increment feature set by one
5991 * @all: current feature set
5992 * @one: new feature set
5993 * @mask: mask feature set
5994 *
5995 * Computes a new feature set after adding a device with feature set
5996 * @one to the master device with current feature set @all. Will not
5997 * enable anything that is off in @mask. Returns the new feature set.
5998 */
5999 netdev_features_t netdev_increment_features(netdev_features_t all,
6000 netdev_features_t one, netdev_features_t mask)
6001 {
6002 if (mask & NETIF_F_GEN_CSUM)
6003 mask |= NETIF_F_ALL_CSUM;
6004 mask |= NETIF_F_VLAN_CHALLENGED;
6005
6006 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6007 all &= one | ~NETIF_F_ALL_FOR_ALL;
6008
6009 /* If one device supports hw checksumming, set for all. */
6010 if (all & NETIF_F_GEN_CSUM)
6011 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6012
6013 return all;
6014 }
6015 EXPORT_SYMBOL(netdev_increment_features);
6016
6017 static struct hlist_head *netdev_create_hash(void)
6018 {
6019 int i;
6020 struct hlist_head *hash;
6021
6022 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6023 if (hash != NULL)
6024 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6025 INIT_HLIST_HEAD(&hash[i]);
6026
6027 return hash;
6028 }
6029
6030 /* Initialize per network namespace state */
6031 static int __net_init netdev_init(struct net *net)
6032 {
6033 if (net != &init_net)
6034 INIT_LIST_HEAD(&net->dev_base_head);
6035
6036 net->dev_name_head = netdev_create_hash();
6037 if (net->dev_name_head == NULL)
6038 goto err_name;
6039
6040 net->dev_index_head = netdev_create_hash();
6041 if (net->dev_index_head == NULL)
6042 goto err_idx;
6043
6044 return 0;
6045
6046 err_idx:
6047 kfree(net->dev_name_head);
6048 err_name:
6049 return -ENOMEM;
6050 }
6051
6052 /**
6053 * netdev_drivername - network driver for the device
6054 * @dev: network device
6055 *
6056 * Determine network driver for device.
6057 */
6058 const char *netdev_drivername(const struct net_device *dev)
6059 {
6060 const struct device_driver *driver;
6061 const struct device *parent;
6062 const char *empty = "";
6063
6064 parent = dev->dev.parent;
6065 if (!parent)
6066 return empty;
6067
6068 driver = parent->driver;
6069 if (driver && driver->name)
6070 return driver->name;
6071 return empty;
6072 }
6073
6074 static int __netdev_printk(const char *level, const struct net_device *dev,
6075 struct va_format *vaf)
6076 {
6077 int r;
6078
6079 if (dev && dev->dev.parent) {
6080 r = dev_printk_emit(level[1] - '0',
6081 dev->dev.parent,
6082 "%s %s %s: %pV",
6083 dev_driver_string(dev->dev.parent),
6084 dev_name(dev->dev.parent),
6085 netdev_name(dev), vaf);
6086 } else if (dev) {
6087 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6088 } else {
6089 r = printk("%s(NULL net_device): %pV", level, vaf);
6090 }
6091
6092 return r;
6093 }
6094
6095 int netdev_printk(const char *level, const struct net_device *dev,
6096 const char *format, ...)
6097 {
6098 struct va_format vaf;
6099 va_list args;
6100 int r;
6101
6102 va_start(args, format);
6103
6104 vaf.fmt = format;
6105 vaf.va = &args;
6106
6107 r = __netdev_printk(level, dev, &vaf);
6108
6109 va_end(args);
6110
6111 return r;
6112 }
6113 EXPORT_SYMBOL(netdev_printk);
6114
6115 #define define_netdev_printk_level(func, level) \
6116 int func(const struct net_device *dev, const char *fmt, ...) \
6117 { \
6118 int r; \
6119 struct va_format vaf; \
6120 va_list args; \
6121 \
6122 va_start(args, fmt); \
6123 \
6124 vaf.fmt = fmt; \
6125 vaf.va = &args; \
6126 \
6127 r = __netdev_printk(level, dev, &vaf); \
6128 \
6129 va_end(args); \
6130 \
6131 return r; \
6132 } \
6133 EXPORT_SYMBOL(func);
6134
6135 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6136 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6137 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6138 define_netdev_printk_level(netdev_err, KERN_ERR);
6139 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6140 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6141 define_netdev_printk_level(netdev_info, KERN_INFO);
6142
6143 static void __net_exit netdev_exit(struct net *net)
6144 {
6145 kfree(net->dev_name_head);
6146 kfree(net->dev_index_head);
6147 }
6148
6149 static struct pernet_operations __net_initdata netdev_net_ops = {
6150 .init = netdev_init,
6151 .exit = netdev_exit,
6152 };
6153
6154 static void __net_exit default_device_exit(struct net *net)
6155 {
6156 struct net_device *dev, *aux;
6157 /*
6158 * Push all migratable network devices back to the
6159 * initial network namespace
6160 */
6161 rtnl_lock();
6162 for_each_netdev_safe(net, dev, aux) {
6163 int err;
6164 char fb_name[IFNAMSIZ];
6165
6166 /* Ignore unmoveable devices (i.e. loopback) */
6167 if (dev->features & NETIF_F_NETNS_LOCAL)
6168 continue;
6169
6170 /* Leave virtual devices for the generic cleanup */
6171 if (dev->rtnl_link_ops)
6172 continue;
6173
6174 /* Push remaining network devices to init_net */
6175 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6176 err = dev_change_net_namespace(dev, &init_net, fb_name);
6177 if (err) {
6178 pr_emerg("%s: failed to move %s to init_net: %d\n",
6179 __func__, dev->name, err);
6180 BUG();
6181 }
6182 }
6183 rtnl_unlock();
6184 }
6185
6186 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6187 {
6188 /* At exit all network devices most be removed from a network
6189 * namespace. Do this in the reverse order of registration.
6190 * Do this across as many network namespaces as possible to
6191 * improve batching efficiency.
6192 */
6193 struct net_device *dev;
6194 struct net *net;
6195 LIST_HEAD(dev_kill_list);
6196
6197 rtnl_lock();
6198 list_for_each_entry(net, net_list, exit_list) {
6199 for_each_netdev_reverse(net, dev) {
6200 if (dev->rtnl_link_ops)
6201 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6202 else
6203 unregister_netdevice_queue(dev, &dev_kill_list);
6204 }
6205 }
6206 unregister_netdevice_many(&dev_kill_list);
6207 list_del(&dev_kill_list);
6208 rtnl_unlock();
6209 }
6210
6211 static struct pernet_operations __net_initdata default_device_ops = {
6212 .exit = default_device_exit,
6213 .exit_batch = default_device_exit_batch,
6214 };
6215
6216 /*
6217 * Initialize the DEV module. At boot time this walks the device list and
6218 * unhooks any devices that fail to initialise (normally hardware not
6219 * present) and leaves us with a valid list of present and active devices.
6220 *
6221 */
6222
6223 /*
6224 * This is called single threaded during boot, so no need
6225 * to take the rtnl semaphore.
6226 */
6227 static int __init net_dev_init(void)
6228 {
6229 int i, rc = -ENOMEM;
6230
6231 BUG_ON(!dev_boot_phase);
6232
6233 if (dev_proc_init())
6234 goto out;
6235
6236 if (netdev_kobject_init())
6237 goto out;
6238
6239 INIT_LIST_HEAD(&ptype_all);
6240 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6241 INIT_LIST_HEAD(&ptype_base[i]);
6242
6243 INIT_LIST_HEAD(&offload_base);
6244
6245 if (register_pernet_subsys(&netdev_net_ops))
6246 goto out;
6247
6248 /*
6249 * Initialise the packet receive queues.
6250 */
6251
6252 for_each_possible_cpu(i) {
6253 struct softnet_data *sd = &per_cpu(softnet_data, i);
6254
6255 memset(sd, 0, sizeof(*sd));
6256 skb_queue_head_init(&sd->input_pkt_queue);
6257 skb_queue_head_init(&sd->process_queue);
6258 sd->completion_queue = NULL;
6259 INIT_LIST_HEAD(&sd->poll_list);
6260 sd->output_queue = NULL;
6261 sd->output_queue_tailp = &sd->output_queue;
6262 #ifdef CONFIG_RPS
6263 sd->csd.func = rps_trigger_softirq;
6264 sd->csd.info = sd;
6265 sd->csd.flags = 0;
6266 sd->cpu = i;
6267 #endif
6268
6269 sd->backlog.poll = process_backlog;
6270 sd->backlog.weight = weight_p;
6271 sd->backlog.gro_list = NULL;
6272 sd->backlog.gro_count = 0;
6273 }
6274
6275 dev_boot_phase = 0;
6276
6277 /* The loopback device is special if any other network devices
6278 * is present in a network namespace the loopback device must
6279 * be present. Since we now dynamically allocate and free the
6280 * loopback device ensure this invariant is maintained by
6281 * keeping the loopback device as the first device on the
6282 * list of network devices. Ensuring the loopback devices
6283 * is the first device that appears and the last network device
6284 * that disappears.
6285 */
6286 if (register_pernet_device(&loopback_net_ops))
6287 goto out;
6288
6289 if (register_pernet_device(&default_device_ops))
6290 goto out;
6291
6292 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6293 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6294
6295 hotcpu_notifier(dev_cpu_callback, 0);
6296 dst_init();
6297 rc = 0;
6298 out:
6299 return rc;
6300 }
6301
6302 subsys_initcall(net_dev_init);