Add suspend-related notifications for CPU hotplug
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/sock.h>
96 #include <linux/rtnetlink.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/stat.h>
100 #include <linux/if_bridge.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <linux/highmem.h>
105 #include <linux/init.h>
106 #include <linux/kmod.h>
107 #include <linux/module.h>
108 #include <linux/kallsyms.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/wext.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119
120 /*
121 * The list of packet types we will receive (as opposed to discard)
122 * and the routines to invoke.
123 *
124 * Why 16. Because with 16 the only overlap we get on a hash of the
125 * low nibble of the protocol value is RARP/SNAP/X.25.
126 *
127 * NOTE: That is no longer true with the addition of VLAN tags. Not
128 * sure which should go first, but I bet it won't make much
129 * difference if we are running VLANs. The good news is that
130 * this protocol won't be in the list unless compiled in, so
131 * the average user (w/out VLANs) will not be adversely affected.
132 * --BLG
133 *
134 * 0800 IP
135 * 8100 802.1Q VLAN
136 * 0001 802.3
137 * 0002 AX.25
138 * 0004 802.2
139 * 8035 RARP
140 * 0005 SNAP
141 * 0805 X.25
142 * 0806 ARP
143 * 8137 IPX
144 * 0009 Localtalk
145 * 86DD IPv6
146 */
147
148 static DEFINE_SPINLOCK(ptype_lock);
149 static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */
150 static struct list_head ptype_all __read_mostly; /* Taps */
151
152 #ifdef CONFIG_NET_DMA
153 static struct dma_client *net_dma_client;
154 static unsigned int net_dma_count;
155 static spinlock_t net_dma_event_lock;
156 #endif
157
158 /*
159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160 * semaphore.
161 *
162 * Pure readers hold dev_base_lock for reading.
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base_head list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
177 LIST_HEAD(dev_base_head);
178 DEFINE_RWLOCK(dev_base_lock);
179
180 EXPORT_SYMBOL(dev_base_head);
181 EXPORT_SYMBOL(dev_base_lock);
182
183 #define NETDEV_HASHBITS 8
184 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS];
185 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS];
186
187 static inline struct hlist_head *dev_name_hash(const char *name)
188 {
189 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
190 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)];
191 }
192
193 static inline struct hlist_head *dev_index_hash(int ifindex)
194 {
195 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)];
196 }
197
198 /*
199 * Our notifier list
200 */
201
202 static RAW_NOTIFIER_HEAD(netdev_chain);
203
204 /*
205 * Device drivers call our routines to queue packets here. We empty the
206 * queue in the local softnet handler.
207 */
208 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL };
209
210 #ifdef CONFIG_SYSFS
211 extern int netdev_sysfs_init(void);
212 extern int netdev_register_sysfs(struct net_device *);
213 extern void netdev_unregister_sysfs(struct net_device *);
214 #else
215 #define netdev_sysfs_init() (0)
216 #define netdev_register_sysfs(dev) (0)
217 #define netdev_unregister_sysfs(dev) do { } while(0)
218 #endif
219
220
221 /*******************************************************************************
222
223 Protocol management and registration routines
224
225 *******************************************************************************/
226
227 /*
228 * Add a protocol ID to the list. Now that the input handler is
229 * smarter we can dispense with all the messy stuff that used to be
230 * here.
231 *
232 * BEWARE!!! Protocol handlers, mangling input packets,
233 * MUST BE last in hash buckets and checking protocol handlers
234 * MUST start from promiscuous ptype_all chain in net_bh.
235 * It is true now, do not change it.
236 * Explanation follows: if protocol handler, mangling packet, will
237 * be the first on list, it is not able to sense, that packet
238 * is cloned and should be copied-on-write, so that it will
239 * change it and subsequent readers will get broken packet.
240 * --ANK (980803)
241 */
242
243 /**
244 * dev_add_pack - add packet handler
245 * @pt: packet type declaration
246 *
247 * Add a protocol handler to the networking stack. The passed &packet_type
248 * is linked into kernel lists and may not be freed until it has been
249 * removed from the kernel lists.
250 *
251 * This call does not sleep therefore it can not
252 * guarantee all CPU's that are in middle of receiving packets
253 * will see the new packet type (until the next received packet).
254 */
255
256 void dev_add_pack(struct packet_type *pt)
257 {
258 int hash;
259
260 spin_lock_bh(&ptype_lock);
261 if (pt->type == htons(ETH_P_ALL))
262 list_add_rcu(&pt->list, &ptype_all);
263 else {
264 hash = ntohs(pt->type) & 15;
265 list_add_rcu(&pt->list, &ptype_base[hash]);
266 }
267 spin_unlock_bh(&ptype_lock);
268 }
269
270 /**
271 * __dev_remove_pack - remove packet handler
272 * @pt: packet type declaration
273 *
274 * Remove a protocol handler that was previously added to the kernel
275 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
276 * from the kernel lists and can be freed or reused once this function
277 * returns.
278 *
279 * The packet type might still be in use by receivers
280 * and must not be freed until after all the CPU's have gone
281 * through a quiescent state.
282 */
283 void __dev_remove_pack(struct packet_type *pt)
284 {
285 struct list_head *head;
286 struct packet_type *pt1;
287
288 spin_lock_bh(&ptype_lock);
289
290 if (pt->type == htons(ETH_P_ALL))
291 head = &ptype_all;
292 else
293 head = &ptype_base[ntohs(pt->type) & 15];
294
295 list_for_each_entry(pt1, head, list) {
296 if (pt == pt1) {
297 list_del_rcu(&pt->list);
298 goto out;
299 }
300 }
301
302 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
303 out:
304 spin_unlock_bh(&ptype_lock);
305 }
306 /**
307 * dev_remove_pack - remove packet handler
308 * @pt: packet type declaration
309 *
310 * Remove a protocol handler that was previously added to the kernel
311 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
312 * from the kernel lists and can be freed or reused once this function
313 * returns.
314 *
315 * This call sleeps to guarantee that no CPU is looking at the packet
316 * type after return.
317 */
318 void dev_remove_pack(struct packet_type *pt)
319 {
320 __dev_remove_pack(pt);
321
322 synchronize_net();
323 }
324
325 /******************************************************************************
326
327 Device Boot-time Settings Routines
328
329 *******************************************************************************/
330
331 /* Boot time configuration table */
332 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
333
334 /**
335 * netdev_boot_setup_add - add new setup entry
336 * @name: name of the device
337 * @map: configured settings for the device
338 *
339 * Adds new setup entry to the dev_boot_setup list. The function
340 * returns 0 on error and 1 on success. This is a generic routine to
341 * all netdevices.
342 */
343 static int netdev_boot_setup_add(char *name, struct ifmap *map)
344 {
345 struct netdev_boot_setup *s;
346 int i;
347
348 s = dev_boot_setup;
349 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
350 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
351 memset(s[i].name, 0, sizeof(s[i].name));
352 strcpy(s[i].name, name);
353 memcpy(&s[i].map, map, sizeof(s[i].map));
354 break;
355 }
356 }
357
358 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
359 }
360
361 /**
362 * netdev_boot_setup_check - check boot time settings
363 * @dev: the netdevice
364 *
365 * Check boot time settings for the device.
366 * The found settings are set for the device to be used
367 * later in the device probing.
368 * Returns 0 if no settings found, 1 if they are.
369 */
370 int netdev_boot_setup_check(struct net_device *dev)
371 {
372 struct netdev_boot_setup *s = dev_boot_setup;
373 int i;
374
375 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
376 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
377 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
378 dev->irq = s[i].map.irq;
379 dev->base_addr = s[i].map.base_addr;
380 dev->mem_start = s[i].map.mem_start;
381 dev->mem_end = s[i].map.mem_end;
382 return 1;
383 }
384 }
385 return 0;
386 }
387
388
389 /**
390 * netdev_boot_base - get address from boot time settings
391 * @prefix: prefix for network device
392 * @unit: id for network device
393 *
394 * Check boot time settings for the base address of device.
395 * The found settings are set for the device to be used
396 * later in the device probing.
397 * Returns 0 if no settings found.
398 */
399 unsigned long netdev_boot_base(const char *prefix, int unit)
400 {
401 const struct netdev_boot_setup *s = dev_boot_setup;
402 char name[IFNAMSIZ];
403 int i;
404
405 sprintf(name, "%s%d", prefix, unit);
406
407 /*
408 * If device already registered then return base of 1
409 * to indicate not to probe for this interface
410 */
411 if (__dev_get_by_name(name))
412 return 1;
413
414 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
415 if (!strcmp(name, s[i].name))
416 return s[i].map.base_addr;
417 return 0;
418 }
419
420 /*
421 * Saves at boot time configured settings for any netdevice.
422 */
423 int __init netdev_boot_setup(char *str)
424 {
425 int ints[5];
426 struct ifmap map;
427
428 str = get_options(str, ARRAY_SIZE(ints), ints);
429 if (!str || !*str)
430 return 0;
431
432 /* Save settings */
433 memset(&map, 0, sizeof(map));
434 if (ints[0] > 0)
435 map.irq = ints[1];
436 if (ints[0] > 1)
437 map.base_addr = ints[2];
438 if (ints[0] > 2)
439 map.mem_start = ints[3];
440 if (ints[0] > 3)
441 map.mem_end = ints[4];
442
443 /* Add new entry to the list */
444 return netdev_boot_setup_add(str, &map);
445 }
446
447 __setup("netdev=", netdev_boot_setup);
448
449 /*******************************************************************************
450
451 Device Interface Subroutines
452
453 *******************************************************************************/
454
455 /**
456 * __dev_get_by_name - find a device by its name
457 * @name: name to find
458 *
459 * Find an interface by name. Must be called under RTNL semaphore
460 * or @dev_base_lock. If the name is found a pointer to the device
461 * is returned. If the name is not found then %NULL is returned. The
462 * reference counters are not incremented so the caller must be
463 * careful with locks.
464 */
465
466 struct net_device *__dev_get_by_name(const char *name)
467 {
468 struct hlist_node *p;
469
470 hlist_for_each(p, dev_name_hash(name)) {
471 struct net_device *dev
472 = hlist_entry(p, struct net_device, name_hlist);
473 if (!strncmp(dev->name, name, IFNAMSIZ))
474 return dev;
475 }
476 return NULL;
477 }
478
479 /**
480 * dev_get_by_name - find a device by its name
481 * @name: name to find
482 *
483 * Find an interface by name. This can be called from any
484 * context and does its own locking. The returned handle has
485 * the usage count incremented and the caller must use dev_put() to
486 * release it when it is no longer needed. %NULL is returned if no
487 * matching device is found.
488 */
489
490 struct net_device *dev_get_by_name(const char *name)
491 {
492 struct net_device *dev;
493
494 read_lock(&dev_base_lock);
495 dev = __dev_get_by_name(name);
496 if (dev)
497 dev_hold(dev);
498 read_unlock(&dev_base_lock);
499 return dev;
500 }
501
502 /**
503 * __dev_get_by_index - find a device by its ifindex
504 * @ifindex: index of device
505 *
506 * Search for an interface by index. Returns %NULL if the device
507 * is not found or a pointer to the device. The device has not
508 * had its reference counter increased so the caller must be careful
509 * about locking. The caller must hold either the RTNL semaphore
510 * or @dev_base_lock.
511 */
512
513 struct net_device *__dev_get_by_index(int ifindex)
514 {
515 struct hlist_node *p;
516
517 hlist_for_each(p, dev_index_hash(ifindex)) {
518 struct net_device *dev
519 = hlist_entry(p, struct net_device, index_hlist);
520 if (dev->ifindex == ifindex)
521 return dev;
522 }
523 return NULL;
524 }
525
526
527 /**
528 * dev_get_by_index - find a device by its ifindex
529 * @ifindex: index of device
530 *
531 * Search for an interface by index. Returns NULL if the device
532 * is not found or a pointer to the device. The device returned has
533 * had a reference added and the pointer is safe until the user calls
534 * dev_put to indicate they have finished with it.
535 */
536
537 struct net_device *dev_get_by_index(int ifindex)
538 {
539 struct net_device *dev;
540
541 read_lock(&dev_base_lock);
542 dev = __dev_get_by_index(ifindex);
543 if (dev)
544 dev_hold(dev);
545 read_unlock(&dev_base_lock);
546 return dev;
547 }
548
549 /**
550 * dev_getbyhwaddr - find a device by its hardware address
551 * @type: media type of device
552 * @ha: hardware address
553 *
554 * Search for an interface by MAC address. Returns NULL if the device
555 * is not found or a pointer to the device. The caller must hold the
556 * rtnl semaphore. The returned device has not had its ref count increased
557 * and the caller must therefore be careful about locking
558 *
559 * BUGS:
560 * If the API was consistent this would be __dev_get_by_hwaddr
561 */
562
563 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha)
564 {
565 struct net_device *dev;
566
567 ASSERT_RTNL();
568
569 for_each_netdev(dev)
570 if (dev->type == type &&
571 !memcmp(dev->dev_addr, ha, dev->addr_len))
572 return dev;
573
574 return NULL;
575 }
576
577 EXPORT_SYMBOL(dev_getbyhwaddr);
578
579 struct net_device *__dev_getfirstbyhwtype(unsigned short type)
580 {
581 struct net_device *dev;
582
583 ASSERT_RTNL();
584 for_each_netdev(dev)
585 if (dev->type == type)
586 return dev;
587
588 return NULL;
589 }
590
591 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
592
593 struct net_device *dev_getfirstbyhwtype(unsigned short type)
594 {
595 struct net_device *dev;
596
597 rtnl_lock();
598 dev = __dev_getfirstbyhwtype(type);
599 if (dev)
600 dev_hold(dev);
601 rtnl_unlock();
602 return dev;
603 }
604
605 EXPORT_SYMBOL(dev_getfirstbyhwtype);
606
607 /**
608 * dev_get_by_flags - find any device with given flags
609 * @if_flags: IFF_* values
610 * @mask: bitmask of bits in if_flags to check
611 *
612 * Search for any interface with the given flags. Returns NULL if a device
613 * is not found or a pointer to the device. The device returned has
614 * had a reference added and the pointer is safe until the user calls
615 * dev_put to indicate they have finished with it.
616 */
617
618 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask)
619 {
620 struct net_device *dev, *ret;
621
622 ret = NULL;
623 read_lock(&dev_base_lock);
624 for_each_netdev(dev) {
625 if (((dev->flags ^ if_flags) & mask) == 0) {
626 dev_hold(dev);
627 ret = dev;
628 break;
629 }
630 }
631 read_unlock(&dev_base_lock);
632 return ret;
633 }
634
635 /**
636 * dev_valid_name - check if name is okay for network device
637 * @name: name string
638 *
639 * Network device names need to be valid file names to
640 * to allow sysfs to work. We also disallow any kind of
641 * whitespace.
642 */
643 int dev_valid_name(const char *name)
644 {
645 if (*name == '\0')
646 return 0;
647 if (strlen(name) >= IFNAMSIZ)
648 return 0;
649 if (!strcmp(name, ".") || !strcmp(name, ".."))
650 return 0;
651
652 while (*name) {
653 if (*name == '/' || isspace(*name))
654 return 0;
655 name++;
656 }
657 return 1;
658 }
659
660 /**
661 * dev_alloc_name - allocate a name for a device
662 * @dev: device
663 * @name: name format string
664 *
665 * Passed a format string - eg "lt%d" it will try and find a suitable
666 * id. It scans list of devices to build up a free map, then chooses
667 * the first empty slot. The caller must hold the dev_base or rtnl lock
668 * while allocating the name and adding the device in order to avoid
669 * duplicates.
670 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
671 * Returns the number of the unit assigned or a negative errno code.
672 */
673
674 int dev_alloc_name(struct net_device *dev, const char *name)
675 {
676 int i = 0;
677 char buf[IFNAMSIZ];
678 const char *p;
679 const int max_netdevices = 8*PAGE_SIZE;
680 long *inuse;
681 struct net_device *d;
682
683 p = strnchr(name, IFNAMSIZ-1, '%');
684 if (p) {
685 /*
686 * Verify the string as this thing may have come from
687 * the user. There must be either one "%d" and no other "%"
688 * characters.
689 */
690 if (p[1] != 'd' || strchr(p + 2, '%'))
691 return -EINVAL;
692
693 /* Use one page as a bit array of possible slots */
694 inuse = (long *) get_zeroed_page(GFP_ATOMIC);
695 if (!inuse)
696 return -ENOMEM;
697
698 for_each_netdev(d) {
699 if (!sscanf(d->name, name, &i))
700 continue;
701 if (i < 0 || i >= max_netdevices)
702 continue;
703
704 /* avoid cases where sscanf is not exact inverse of printf */
705 snprintf(buf, sizeof(buf), name, i);
706 if (!strncmp(buf, d->name, IFNAMSIZ))
707 set_bit(i, inuse);
708 }
709
710 i = find_first_zero_bit(inuse, max_netdevices);
711 free_page((unsigned long) inuse);
712 }
713
714 snprintf(buf, sizeof(buf), name, i);
715 if (!__dev_get_by_name(buf)) {
716 strlcpy(dev->name, buf, IFNAMSIZ);
717 return i;
718 }
719
720 /* It is possible to run out of possible slots
721 * when the name is long and there isn't enough space left
722 * for the digits, or if all bits are used.
723 */
724 return -ENFILE;
725 }
726
727
728 /**
729 * dev_change_name - change name of a device
730 * @dev: device
731 * @newname: name (or format string) must be at least IFNAMSIZ
732 *
733 * Change name of a device, can pass format strings "eth%d".
734 * for wildcarding.
735 */
736 int dev_change_name(struct net_device *dev, char *newname)
737 {
738 int err = 0;
739
740 ASSERT_RTNL();
741
742 if (dev->flags & IFF_UP)
743 return -EBUSY;
744
745 if (!dev_valid_name(newname))
746 return -EINVAL;
747
748 if (strchr(newname, '%')) {
749 err = dev_alloc_name(dev, newname);
750 if (err < 0)
751 return err;
752 strcpy(newname, dev->name);
753 }
754 else if (__dev_get_by_name(newname))
755 return -EEXIST;
756 else
757 strlcpy(dev->name, newname, IFNAMSIZ);
758
759 device_rename(&dev->dev, dev->name);
760 hlist_del(&dev->name_hlist);
761 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name));
762 raw_notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev);
763
764 return err;
765 }
766
767 /**
768 * netdev_features_change - device changes features
769 * @dev: device to cause notification
770 *
771 * Called to indicate a device has changed features.
772 */
773 void netdev_features_change(struct net_device *dev)
774 {
775 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev);
776 }
777 EXPORT_SYMBOL(netdev_features_change);
778
779 /**
780 * netdev_state_change - device changes state
781 * @dev: device to cause notification
782 *
783 * Called to indicate a device has changed state. This function calls
784 * the notifier chains for netdev_chain and sends a NEWLINK message
785 * to the routing socket.
786 */
787 void netdev_state_change(struct net_device *dev)
788 {
789 if (dev->flags & IFF_UP) {
790 raw_notifier_call_chain(&netdev_chain,
791 NETDEV_CHANGE, dev);
792 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
793 }
794 }
795
796 /**
797 * dev_load - load a network module
798 * @name: name of interface
799 *
800 * If a network interface is not present and the process has suitable
801 * privileges this function loads the module. If module loading is not
802 * available in this kernel then it becomes a nop.
803 */
804
805 void dev_load(const char *name)
806 {
807 struct net_device *dev;
808
809 read_lock(&dev_base_lock);
810 dev = __dev_get_by_name(name);
811 read_unlock(&dev_base_lock);
812
813 if (!dev && capable(CAP_SYS_MODULE))
814 request_module("%s", name);
815 }
816
817 static int default_rebuild_header(struct sk_buff *skb)
818 {
819 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n",
820 skb->dev ? skb->dev->name : "NULL!!!");
821 kfree_skb(skb);
822 return 1;
823 }
824
825 /**
826 * dev_open - prepare an interface for use.
827 * @dev: device to open
828 *
829 * Takes a device from down to up state. The device's private open
830 * function is invoked and then the multicast lists are loaded. Finally
831 * the device is moved into the up state and a %NETDEV_UP message is
832 * sent to the netdev notifier chain.
833 *
834 * Calling this function on an active interface is a nop. On a failure
835 * a negative errno code is returned.
836 */
837 int dev_open(struct net_device *dev)
838 {
839 int ret = 0;
840
841 /*
842 * Is it already up?
843 */
844
845 if (dev->flags & IFF_UP)
846 return 0;
847
848 /*
849 * Is it even present?
850 */
851 if (!netif_device_present(dev))
852 return -ENODEV;
853
854 /*
855 * Call device private open method
856 */
857 set_bit(__LINK_STATE_START, &dev->state);
858 if (dev->open) {
859 ret = dev->open(dev);
860 if (ret)
861 clear_bit(__LINK_STATE_START, &dev->state);
862 }
863
864 /*
865 * If it went open OK then:
866 */
867
868 if (!ret) {
869 /*
870 * Set the flags.
871 */
872 dev->flags |= IFF_UP;
873
874 /*
875 * Initialize multicasting status
876 */
877 dev_mc_upload(dev);
878
879 /*
880 * Wakeup transmit queue engine
881 */
882 dev_activate(dev);
883
884 /*
885 * ... and announce new interface.
886 */
887 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev);
888 }
889 return ret;
890 }
891
892 /**
893 * dev_close - shutdown an interface.
894 * @dev: device to shutdown
895 *
896 * This function moves an active device into down state. A
897 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
898 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
899 * chain.
900 */
901 int dev_close(struct net_device *dev)
902 {
903 if (!(dev->flags & IFF_UP))
904 return 0;
905
906 /*
907 * Tell people we are going down, so that they can
908 * prepare to death, when device is still operating.
909 */
910 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev);
911
912 dev_deactivate(dev);
913
914 clear_bit(__LINK_STATE_START, &dev->state);
915
916 /* Synchronize to scheduled poll. We cannot touch poll list,
917 * it can be even on different cpu. So just clear netif_running(),
918 * and wait when poll really will happen. Actually, the best place
919 * for this is inside dev->stop() after device stopped its irq
920 * engine, but this requires more changes in devices. */
921
922 smp_mb__after_clear_bit(); /* Commit netif_running(). */
923 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) {
924 /* No hurry. */
925 msleep(1);
926 }
927
928 /*
929 * Call the device specific close. This cannot fail.
930 * Only if device is UP
931 *
932 * We allow it to be called even after a DETACH hot-plug
933 * event.
934 */
935 if (dev->stop)
936 dev->stop(dev);
937
938 /*
939 * Device is now down.
940 */
941
942 dev->flags &= ~IFF_UP;
943
944 /*
945 * Tell people we are down
946 */
947 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev);
948
949 return 0;
950 }
951
952
953 /*
954 * Device change register/unregister. These are not inline or static
955 * as we export them to the world.
956 */
957
958 /**
959 * register_netdevice_notifier - register a network notifier block
960 * @nb: notifier
961 *
962 * Register a notifier to be called when network device events occur.
963 * The notifier passed is linked into the kernel structures and must
964 * not be reused until it has been unregistered. A negative errno code
965 * is returned on a failure.
966 *
967 * When registered all registration and up events are replayed
968 * to the new notifier to allow device to have a race free
969 * view of the network device list.
970 */
971
972 int register_netdevice_notifier(struct notifier_block *nb)
973 {
974 struct net_device *dev;
975 int err;
976
977 rtnl_lock();
978 err = raw_notifier_chain_register(&netdev_chain, nb);
979 if (!err) {
980 for_each_netdev(dev) {
981 nb->notifier_call(nb, NETDEV_REGISTER, dev);
982
983 if (dev->flags & IFF_UP)
984 nb->notifier_call(nb, NETDEV_UP, dev);
985 }
986 }
987 rtnl_unlock();
988 return err;
989 }
990
991 /**
992 * unregister_netdevice_notifier - unregister a network notifier block
993 * @nb: notifier
994 *
995 * Unregister a notifier previously registered by
996 * register_netdevice_notifier(). The notifier is unlinked into the
997 * kernel structures and may then be reused. A negative errno code
998 * is returned on a failure.
999 */
1000
1001 int unregister_netdevice_notifier(struct notifier_block *nb)
1002 {
1003 int err;
1004
1005 rtnl_lock();
1006 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1007 rtnl_unlock();
1008 return err;
1009 }
1010
1011 /**
1012 * call_netdevice_notifiers - call all network notifier blocks
1013 * @val: value passed unmodified to notifier function
1014 * @v: pointer passed unmodified to notifier function
1015 *
1016 * Call all network notifier blocks. Parameters and return value
1017 * are as for raw_notifier_call_chain().
1018 */
1019
1020 int call_netdevice_notifiers(unsigned long val, void *v)
1021 {
1022 return raw_notifier_call_chain(&netdev_chain, val, v);
1023 }
1024
1025 /* When > 0 there are consumers of rx skb time stamps */
1026 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1027
1028 void net_enable_timestamp(void)
1029 {
1030 atomic_inc(&netstamp_needed);
1031 }
1032
1033 void net_disable_timestamp(void)
1034 {
1035 atomic_dec(&netstamp_needed);
1036 }
1037
1038 static inline void net_timestamp(struct sk_buff *skb)
1039 {
1040 if (atomic_read(&netstamp_needed))
1041 __net_timestamp(skb);
1042 else
1043 skb->tstamp.tv64 = 0;
1044 }
1045
1046 /*
1047 * Support routine. Sends outgoing frames to any network
1048 * taps currently in use.
1049 */
1050
1051 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1052 {
1053 struct packet_type *ptype;
1054
1055 net_timestamp(skb);
1056
1057 rcu_read_lock();
1058 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1059 /* Never send packets back to the socket
1060 * they originated from - MvS (miquels@drinkel.ow.org)
1061 */
1062 if ((ptype->dev == dev || !ptype->dev) &&
1063 (ptype->af_packet_priv == NULL ||
1064 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1065 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1066 if (!skb2)
1067 break;
1068
1069 /* skb->nh should be correctly
1070 set by sender, so that the second statement is
1071 just protection against buggy protocols.
1072 */
1073 skb_reset_mac_header(skb2);
1074
1075 if (skb_network_header(skb2) < skb2->data ||
1076 skb2->network_header > skb2->tail) {
1077 if (net_ratelimit())
1078 printk(KERN_CRIT "protocol %04x is "
1079 "buggy, dev %s\n",
1080 skb2->protocol, dev->name);
1081 skb_reset_network_header(skb2);
1082 }
1083
1084 skb2->transport_header = skb2->network_header;
1085 skb2->pkt_type = PACKET_OUTGOING;
1086 ptype->func(skb2, skb->dev, ptype, skb->dev);
1087 }
1088 }
1089 rcu_read_unlock();
1090 }
1091
1092
1093 void __netif_schedule(struct net_device *dev)
1094 {
1095 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1096 unsigned long flags;
1097 struct softnet_data *sd;
1098
1099 local_irq_save(flags);
1100 sd = &__get_cpu_var(softnet_data);
1101 dev->next_sched = sd->output_queue;
1102 sd->output_queue = dev;
1103 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1104 local_irq_restore(flags);
1105 }
1106 }
1107 EXPORT_SYMBOL(__netif_schedule);
1108
1109 void __netif_rx_schedule(struct net_device *dev)
1110 {
1111 unsigned long flags;
1112
1113 local_irq_save(flags);
1114 dev_hold(dev);
1115 list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list);
1116 if (dev->quota < 0)
1117 dev->quota += dev->weight;
1118 else
1119 dev->quota = dev->weight;
1120 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
1121 local_irq_restore(flags);
1122 }
1123 EXPORT_SYMBOL(__netif_rx_schedule);
1124
1125 void dev_kfree_skb_any(struct sk_buff *skb)
1126 {
1127 if (in_irq() || irqs_disabled())
1128 dev_kfree_skb_irq(skb);
1129 else
1130 dev_kfree_skb(skb);
1131 }
1132 EXPORT_SYMBOL(dev_kfree_skb_any);
1133
1134
1135 /* Hot-plugging. */
1136 void netif_device_detach(struct net_device *dev)
1137 {
1138 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1139 netif_running(dev)) {
1140 netif_stop_queue(dev);
1141 }
1142 }
1143 EXPORT_SYMBOL(netif_device_detach);
1144
1145 void netif_device_attach(struct net_device *dev)
1146 {
1147 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1148 netif_running(dev)) {
1149 netif_wake_queue(dev);
1150 __netdev_watchdog_up(dev);
1151 }
1152 }
1153 EXPORT_SYMBOL(netif_device_attach);
1154
1155
1156 /*
1157 * Invalidate hardware checksum when packet is to be mangled, and
1158 * complete checksum manually on outgoing path.
1159 */
1160 int skb_checksum_help(struct sk_buff *skb)
1161 {
1162 __wsum csum;
1163 int ret = 0, offset;
1164
1165 if (skb->ip_summed == CHECKSUM_COMPLETE)
1166 goto out_set_summed;
1167
1168 if (unlikely(skb_shinfo(skb)->gso_size)) {
1169 /* Let GSO fix up the checksum. */
1170 goto out_set_summed;
1171 }
1172
1173 if (skb_cloned(skb)) {
1174 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1175 if (ret)
1176 goto out;
1177 }
1178
1179 offset = skb->csum_start - skb_headroom(skb);
1180 BUG_ON(offset > (int)skb->len);
1181 csum = skb_checksum(skb, offset, skb->len-offset, 0);
1182
1183 offset = skb_headlen(skb) - offset;
1184 BUG_ON(offset <= 0);
1185 BUG_ON(skb->csum_offset + 2 > offset);
1186
1187 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) =
1188 csum_fold(csum);
1189 out_set_summed:
1190 skb->ip_summed = CHECKSUM_NONE;
1191 out:
1192 return ret;
1193 }
1194
1195 /**
1196 * skb_gso_segment - Perform segmentation on skb.
1197 * @skb: buffer to segment
1198 * @features: features for the output path (see dev->features)
1199 *
1200 * This function segments the given skb and returns a list of segments.
1201 *
1202 * It may return NULL if the skb requires no segmentation. This is
1203 * only possible when GSO is used for verifying header integrity.
1204 */
1205 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1206 {
1207 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1208 struct packet_type *ptype;
1209 __be16 type = skb->protocol;
1210 int err;
1211
1212 BUG_ON(skb_shinfo(skb)->frag_list);
1213
1214 skb_reset_mac_header(skb);
1215 skb->mac_len = skb->network_header - skb->mac_header;
1216 __skb_pull(skb, skb->mac_len);
1217
1218 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1219 if (skb_header_cloned(skb) &&
1220 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1221 return ERR_PTR(err);
1222 }
1223
1224 rcu_read_lock();
1225 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1226 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1227 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1228 err = ptype->gso_send_check(skb);
1229 segs = ERR_PTR(err);
1230 if (err || skb_gso_ok(skb, features))
1231 break;
1232 __skb_push(skb, (skb->data -
1233 skb_network_header(skb)));
1234 }
1235 segs = ptype->gso_segment(skb, features);
1236 break;
1237 }
1238 }
1239 rcu_read_unlock();
1240
1241 __skb_push(skb, skb->data - skb_mac_header(skb));
1242
1243 return segs;
1244 }
1245
1246 EXPORT_SYMBOL(skb_gso_segment);
1247
1248 /* Take action when hardware reception checksum errors are detected. */
1249 #ifdef CONFIG_BUG
1250 void netdev_rx_csum_fault(struct net_device *dev)
1251 {
1252 if (net_ratelimit()) {
1253 printk(KERN_ERR "%s: hw csum failure.\n",
1254 dev ? dev->name : "<unknown>");
1255 dump_stack();
1256 }
1257 }
1258 EXPORT_SYMBOL(netdev_rx_csum_fault);
1259 #endif
1260
1261 /* Actually, we should eliminate this check as soon as we know, that:
1262 * 1. IOMMU is present and allows to map all the memory.
1263 * 2. No high memory really exists on this machine.
1264 */
1265
1266 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1267 {
1268 #ifdef CONFIG_HIGHMEM
1269 int i;
1270
1271 if (dev->features & NETIF_F_HIGHDMA)
1272 return 0;
1273
1274 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1275 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1276 return 1;
1277
1278 #endif
1279 return 0;
1280 }
1281
1282 struct dev_gso_cb {
1283 void (*destructor)(struct sk_buff *skb);
1284 };
1285
1286 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1287
1288 static void dev_gso_skb_destructor(struct sk_buff *skb)
1289 {
1290 struct dev_gso_cb *cb;
1291
1292 do {
1293 struct sk_buff *nskb = skb->next;
1294
1295 skb->next = nskb->next;
1296 nskb->next = NULL;
1297 kfree_skb(nskb);
1298 } while (skb->next);
1299
1300 cb = DEV_GSO_CB(skb);
1301 if (cb->destructor)
1302 cb->destructor(skb);
1303 }
1304
1305 /**
1306 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1307 * @skb: buffer to segment
1308 *
1309 * This function segments the given skb and stores the list of segments
1310 * in skb->next.
1311 */
1312 static int dev_gso_segment(struct sk_buff *skb)
1313 {
1314 struct net_device *dev = skb->dev;
1315 struct sk_buff *segs;
1316 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1317 NETIF_F_SG : 0);
1318
1319 segs = skb_gso_segment(skb, features);
1320
1321 /* Verifying header integrity only. */
1322 if (!segs)
1323 return 0;
1324
1325 if (unlikely(IS_ERR(segs)))
1326 return PTR_ERR(segs);
1327
1328 skb->next = segs;
1329 DEV_GSO_CB(skb)->destructor = skb->destructor;
1330 skb->destructor = dev_gso_skb_destructor;
1331
1332 return 0;
1333 }
1334
1335 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1336 {
1337 if (likely(!skb->next)) {
1338 if (!list_empty(&ptype_all))
1339 dev_queue_xmit_nit(skb, dev);
1340
1341 if (netif_needs_gso(dev, skb)) {
1342 if (unlikely(dev_gso_segment(skb)))
1343 goto out_kfree_skb;
1344 if (skb->next)
1345 goto gso;
1346 }
1347
1348 return dev->hard_start_xmit(skb, dev);
1349 }
1350
1351 gso:
1352 do {
1353 struct sk_buff *nskb = skb->next;
1354 int rc;
1355
1356 skb->next = nskb->next;
1357 nskb->next = NULL;
1358 rc = dev->hard_start_xmit(nskb, dev);
1359 if (unlikely(rc)) {
1360 nskb->next = skb->next;
1361 skb->next = nskb;
1362 return rc;
1363 }
1364 if (unlikely(netif_queue_stopped(dev) && skb->next))
1365 return NETDEV_TX_BUSY;
1366 } while (skb->next);
1367
1368 skb->destructor = DEV_GSO_CB(skb)->destructor;
1369
1370 out_kfree_skb:
1371 kfree_skb(skb);
1372 return 0;
1373 }
1374
1375 #define HARD_TX_LOCK(dev, cpu) { \
1376 if ((dev->features & NETIF_F_LLTX) == 0) { \
1377 netif_tx_lock(dev); \
1378 } \
1379 }
1380
1381 #define HARD_TX_UNLOCK(dev) { \
1382 if ((dev->features & NETIF_F_LLTX) == 0) { \
1383 netif_tx_unlock(dev); \
1384 } \
1385 }
1386
1387 /**
1388 * dev_queue_xmit - transmit a buffer
1389 * @skb: buffer to transmit
1390 *
1391 * Queue a buffer for transmission to a network device. The caller must
1392 * have set the device and priority and built the buffer before calling
1393 * this function. The function can be called from an interrupt.
1394 *
1395 * A negative errno code is returned on a failure. A success does not
1396 * guarantee the frame will be transmitted as it may be dropped due
1397 * to congestion or traffic shaping.
1398 *
1399 * -----------------------------------------------------------------------------------
1400 * I notice this method can also return errors from the queue disciplines,
1401 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1402 * be positive.
1403 *
1404 * Regardless of the return value, the skb is consumed, so it is currently
1405 * difficult to retry a send to this method. (You can bump the ref count
1406 * before sending to hold a reference for retry if you are careful.)
1407 *
1408 * When calling this method, interrupts MUST be enabled. This is because
1409 * the BH enable code must have IRQs enabled so that it will not deadlock.
1410 * --BLG
1411 */
1412
1413 int dev_queue_xmit(struct sk_buff *skb)
1414 {
1415 struct net_device *dev = skb->dev;
1416 struct Qdisc *q;
1417 int rc = -ENOMEM;
1418
1419 /* GSO will handle the following emulations directly. */
1420 if (netif_needs_gso(dev, skb))
1421 goto gso;
1422
1423 if (skb_shinfo(skb)->frag_list &&
1424 !(dev->features & NETIF_F_FRAGLIST) &&
1425 __skb_linearize(skb))
1426 goto out_kfree_skb;
1427
1428 /* Fragmented skb is linearized if device does not support SG,
1429 * or if at least one of fragments is in highmem and device
1430 * does not support DMA from it.
1431 */
1432 if (skb_shinfo(skb)->nr_frags &&
1433 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1434 __skb_linearize(skb))
1435 goto out_kfree_skb;
1436
1437 /* If packet is not checksummed and device does not support
1438 * checksumming for this protocol, complete checksumming here.
1439 */
1440 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1441 skb_set_transport_header(skb, skb->csum_start -
1442 skb_headroom(skb));
1443
1444 if (!(dev->features & NETIF_F_GEN_CSUM) &&
1445 (!(dev->features & NETIF_F_IP_CSUM) ||
1446 skb->protocol != htons(ETH_P_IP)))
1447 if (skb_checksum_help(skb))
1448 goto out_kfree_skb;
1449 }
1450
1451 gso:
1452 spin_lock_prefetch(&dev->queue_lock);
1453
1454 /* Disable soft irqs for various locks below. Also
1455 * stops preemption for RCU.
1456 */
1457 rcu_read_lock_bh();
1458
1459 /* Updates of qdisc are serialized by queue_lock.
1460 * The struct Qdisc which is pointed to by qdisc is now a
1461 * rcu structure - it may be accessed without acquiring
1462 * a lock (but the structure may be stale.) The freeing of the
1463 * qdisc will be deferred until it's known that there are no
1464 * more references to it.
1465 *
1466 * If the qdisc has an enqueue function, we still need to
1467 * hold the queue_lock before calling it, since queue_lock
1468 * also serializes access to the device queue.
1469 */
1470
1471 q = rcu_dereference(dev->qdisc);
1472 #ifdef CONFIG_NET_CLS_ACT
1473 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1474 #endif
1475 if (q->enqueue) {
1476 /* Grab device queue */
1477 spin_lock(&dev->queue_lock);
1478 q = dev->qdisc;
1479 if (q->enqueue) {
1480 rc = q->enqueue(skb, q);
1481 qdisc_run(dev);
1482 spin_unlock(&dev->queue_lock);
1483
1484 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1485 goto out;
1486 }
1487 spin_unlock(&dev->queue_lock);
1488 }
1489
1490 /* The device has no queue. Common case for software devices:
1491 loopback, all the sorts of tunnels...
1492
1493 Really, it is unlikely that netif_tx_lock protection is necessary
1494 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1495 counters.)
1496 However, it is possible, that they rely on protection
1497 made by us here.
1498
1499 Check this and shot the lock. It is not prone from deadlocks.
1500 Either shot noqueue qdisc, it is even simpler 8)
1501 */
1502 if (dev->flags & IFF_UP) {
1503 int cpu = smp_processor_id(); /* ok because BHs are off */
1504
1505 if (dev->xmit_lock_owner != cpu) {
1506
1507 HARD_TX_LOCK(dev, cpu);
1508
1509 if (!netif_queue_stopped(dev)) {
1510 rc = 0;
1511 if (!dev_hard_start_xmit(skb, dev)) {
1512 HARD_TX_UNLOCK(dev);
1513 goto out;
1514 }
1515 }
1516 HARD_TX_UNLOCK(dev);
1517 if (net_ratelimit())
1518 printk(KERN_CRIT "Virtual device %s asks to "
1519 "queue packet!\n", dev->name);
1520 } else {
1521 /* Recursion is detected! It is possible,
1522 * unfortunately */
1523 if (net_ratelimit())
1524 printk(KERN_CRIT "Dead loop on virtual device "
1525 "%s, fix it urgently!\n", dev->name);
1526 }
1527 }
1528
1529 rc = -ENETDOWN;
1530 rcu_read_unlock_bh();
1531
1532 out_kfree_skb:
1533 kfree_skb(skb);
1534 return rc;
1535 out:
1536 rcu_read_unlock_bh();
1537 return rc;
1538 }
1539
1540
1541 /*=======================================================================
1542 Receiver routines
1543 =======================================================================*/
1544
1545 int netdev_max_backlog __read_mostly = 1000;
1546 int netdev_budget __read_mostly = 300;
1547 int weight_p __read_mostly = 64; /* old backlog weight */
1548
1549 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1550
1551
1552 /**
1553 * netif_rx - post buffer to the network code
1554 * @skb: buffer to post
1555 *
1556 * This function receives a packet from a device driver and queues it for
1557 * the upper (protocol) levels to process. It always succeeds. The buffer
1558 * may be dropped during processing for congestion control or by the
1559 * protocol layers.
1560 *
1561 * return values:
1562 * NET_RX_SUCCESS (no congestion)
1563 * NET_RX_CN_LOW (low congestion)
1564 * NET_RX_CN_MOD (moderate congestion)
1565 * NET_RX_CN_HIGH (high congestion)
1566 * NET_RX_DROP (packet was dropped)
1567 *
1568 */
1569
1570 int netif_rx(struct sk_buff *skb)
1571 {
1572 struct softnet_data *queue;
1573 unsigned long flags;
1574
1575 /* if netpoll wants it, pretend we never saw it */
1576 if (netpoll_rx(skb))
1577 return NET_RX_DROP;
1578
1579 if (!skb->tstamp.tv64)
1580 net_timestamp(skb);
1581
1582 /*
1583 * The code is rearranged so that the path is the most
1584 * short when CPU is congested, but is still operating.
1585 */
1586 local_irq_save(flags);
1587 queue = &__get_cpu_var(softnet_data);
1588
1589 __get_cpu_var(netdev_rx_stat).total++;
1590 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1591 if (queue->input_pkt_queue.qlen) {
1592 enqueue:
1593 dev_hold(skb->dev);
1594 __skb_queue_tail(&queue->input_pkt_queue, skb);
1595 local_irq_restore(flags);
1596 return NET_RX_SUCCESS;
1597 }
1598
1599 netif_rx_schedule(&queue->backlog_dev);
1600 goto enqueue;
1601 }
1602
1603 __get_cpu_var(netdev_rx_stat).dropped++;
1604 local_irq_restore(flags);
1605
1606 kfree_skb(skb);
1607 return NET_RX_DROP;
1608 }
1609
1610 int netif_rx_ni(struct sk_buff *skb)
1611 {
1612 int err;
1613
1614 preempt_disable();
1615 err = netif_rx(skb);
1616 if (local_softirq_pending())
1617 do_softirq();
1618 preempt_enable();
1619
1620 return err;
1621 }
1622
1623 EXPORT_SYMBOL(netif_rx_ni);
1624
1625 static inline struct net_device *skb_bond(struct sk_buff *skb)
1626 {
1627 struct net_device *dev = skb->dev;
1628
1629 if (dev->master) {
1630 if (skb_bond_should_drop(skb)) {
1631 kfree_skb(skb);
1632 return NULL;
1633 }
1634 skb->dev = dev->master;
1635 }
1636
1637 return dev;
1638 }
1639
1640 static void net_tx_action(struct softirq_action *h)
1641 {
1642 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1643
1644 if (sd->completion_queue) {
1645 struct sk_buff *clist;
1646
1647 local_irq_disable();
1648 clist = sd->completion_queue;
1649 sd->completion_queue = NULL;
1650 local_irq_enable();
1651
1652 while (clist) {
1653 struct sk_buff *skb = clist;
1654 clist = clist->next;
1655
1656 BUG_TRAP(!atomic_read(&skb->users));
1657 __kfree_skb(skb);
1658 }
1659 }
1660
1661 if (sd->output_queue) {
1662 struct net_device *head;
1663
1664 local_irq_disable();
1665 head = sd->output_queue;
1666 sd->output_queue = NULL;
1667 local_irq_enable();
1668
1669 while (head) {
1670 struct net_device *dev = head;
1671 head = head->next_sched;
1672
1673 smp_mb__before_clear_bit();
1674 clear_bit(__LINK_STATE_SCHED, &dev->state);
1675
1676 if (spin_trylock(&dev->queue_lock)) {
1677 qdisc_run(dev);
1678 spin_unlock(&dev->queue_lock);
1679 } else {
1680 netif_schedule(dev);
1681 }
1682 }
1683 }
1684 }
1685
1686 static inline int deliver_skb(struct sk_buff *skb,
1687 struct packet_type *pt_prev,
1688 struct net_device *orig_dev)
1689 {
1690 atomic_inc(&skb->users);
1691 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1692 }
1693
1694 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1695 /* These hooks defined here for ATM */
1696 struct net_bridge;
1697 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1698 unsigned char *addr);
1699 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1700
1701 /*
1702 * If bridge module is loaded call bridging hook.
1703 * returns NULL if packet was consumed.
1704 */
1705 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1706 struct sk_buff *skb) __read_mostly;
1707 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1708 struct packet_type **pt_prev, int *ret,
1709 struct net_device *orig_dev)
1710 {
1711 struct net_bridge_port *port;
1712
1713 if (skb->pkt_type == PACKET_LOOPBACK ||
1714 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1715 return skb;
1716
1717 if (*pt_prev) {
1718 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1719 *pt_prev = NULL;
1720 }
1721
1722 return br_handle_frame_hook(port, skb);
1723 }
1724 #else
1725 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1726 #endif
1727
1728 #ifdef CONFIG_NET_CLS_ACT
1729 /* TODO: Maybe we should just force sch_ingress to be compiled in
1730 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1731 * a compare and 2 stores extra right now if we dont have it on
1732 * but have CONFIG_NET_CLS_ACT
1733 * NOTE: This doesnt stop any functionality; if you dont have
1734 * the ingress scheduler, you just cant add policies on ingress.
1735 *
1736 */
1737 static int ing_filter(struct sk_buff *skb)
1738 {
1739 struct Qdisc *q;
1740 struct net_device *dev = skb->dev;
1741 int result = TC_ACT_OK;
1742
1743 if (dev->qdisc_ingress) {
1744 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd);
1745 if (MAX_RED_LOOP < ttl++) {
1746 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n",
1747 skb->iif, skb->dev->ifindex);
1748 return TC_ACT_SHOT;
1749 }
1750
1751 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl);
1752
1753 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS);
1754
1755 spin_lock(&dev->ingress_lock);
1756 if ((q = dev->qdisc_ingress) != NULL)
1757 result = q->enqueue(skb, q);
1758 spin_unlock(&dev->ingress_lock);
1759
1760 }
1761
1762 return result;
1763 }
1764 #endif
1765
1766 int netif_receive_skb(struct sk_buff *skb)
1767 {
1768 struct packet_type *ptype, *pt_prev;
1769 struct net_device *orig_dev;
1770 int ret = NET_RX_DROP;
1771 __be16 type;
1772
1773 /* if we've gotten here through NAPI, check netpoll */
1774 if (skb->dev->poll && netpoll_rx(skb))
1775 return NET_RX_DROP;
1776
1777 if (!skb->tstamp.tv64)
1778 net_timestamp(skb);
1779
1780 if (!skb->iif)
1781 skb->iif = skb->dev->ifindex;
1782
1783 orig_dev = skb_bond(skb);
1784
1785 if (!orig_dev)
1786 return NET_RX_DROP;
1787
1788 __get_cpu_var(netdev_rx_stat).total++;
1789
1790 skb_reset_network_header(skb);
1791 skb_reset_transport_header(skb);
1792 skb->mac_len = skb->network_header - skb->mac_header;
1793
1794 pt_prev = NULL;
1795
1796 rcu_read_lock();
1797
1798 #ifdef CONFIG_NET_CLS_ACT
1799 if (skb->tc_verd & TC_NCLS) {
1800 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
1801 goto ncls;
1802 }
1803 #endif
1804
1805 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1806 if (!ptype->dev || ptype->dev == skb->dev) {
1807 if (pt_prev)
1808 ret = deliver_skb(skb, pt_prev, orig_dev);
1809 pt_prev = ptype;
1810 }
1811 }
1812
1813 #ifdef CONFIG_NET_CLS_ACT
1814 if (pt_prev) {
1815 ret = deliver_skb(skb, pt_prev, orig_dev);
1816 pt_prev = NULL; /* noone else should process this after*/
1817 } else {
1818 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1819 }
1820
1821 ret = ing_filter(skb);
1822
1823 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) {
1824 kfree_skb(skb);
1825 goto out;
1826 }
1827
1828 skb->tc_verd = 0;
1829 ncls:
1830 #endif
1831
1832 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
1833 if (!skb)
1834 goto out;
1835
1836 type = skb->protocol;
1837 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
1838 if (ptype->type == type &&
1839 (!ptype->dev || ptype->dev == skb->dev)) {
1840 if (pt_prev)
1841 ret = deliver_skb(skb, pt_prev, orig_dev);
1842 pt_prev = ptype;
1843 }
1844 }
1845
1846 if (pt_prev) {
1847 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1848 } else {
1849 kfree_skb(skb);
1850 /* Jamal, now you will not able to escape explaining
1851 * me how you were going to use this. :-)
1852 */
1853 ret = NET_RX_DROP;
1854 }
1855
1856 out:
1857 rcu_read_unlock();
1858 return ret;
1859 }
1860
1861 static int process_backlog(struct net_device *backlog_dev, int *budget)
1862 {
1863 int work = 0;
1864 int quota = min(backlog_dev->quota, *budget);
1865 struct softnet_data *queue = &__get_cpu_var(softnet_data);
1866 unsigned long start_time = jiffies;
1867
1868 backlog_dev->weight = weight_p;
1869 for (;;) {
1870 struct sk_buff *skb;
1871 struct net_device *dev;
1872
1873 local_irq_disable();
1874 skb = __skb_dequeue(&queue->input_pkt_queue);
1875 if (!skb)
1876 goto job_done;
1877 local_irq_enable();
1878
1879 dev = skb->dev;
1880
1881 netif_receive_skb(skb);
1882
1883 dev_put(dev);
1884
1885 work++;
1886
1887 if (work >= quota || jiffies - start_time > 1)
1888 break;
1889
1890 }
1891
1892 backlog_dev->quota -= work;
1893 *budget -= work;
1894 return -1;
1895
1896 job_done:
1897 backlog_dev->quota -= work;
1898 *budget -= work;
1899
1900 list_del(&backlog_dev->poll_list);
1901 smp_mb__before_clear_bit();
1902 netif_poll_enable(backlog_dev);
1903
1904 local_irq_enable();
1905 return 0;
1906 }
1907
1908 static void net_rx_action(struct softirq_action *h)
1909 {
1910 struct softnet_data *queue = &__get_cpu_var(softnet_data);
1911 unsigned long start_time = jiffies;
1912 int budget = netdev_budget;
1913 void *have;
1914
1915 local_irq_disable();
1916
1917 while (!list_empty(&queue->poll_list)) {
1918 struct net_device *dev;
1919
1920 if (budget <= 0 || jiffies - start_time > 1)
1921 goto softnet_break;
1922
1923 local_irq_enable();
1924
1925 dev = list_entry(queue->poll_list.next,
1926 struct net_device, poll_list);
1927 have = netpoll_poll_lock(dev);
1928
1929 if (dev->quota <= 0 || dev->poll(dev, &budget)) {
1930 netpoll_poll_unlock(have);
1931 local_irq_disable();
1932 list_move_tail(&dev->poll_list, &queue->poll_list);
1933 if (dev->quota < 0)
1934 dev->quota += dev->weight;
1935 else
1936 dev->quota = dev->weight;
1937 } else {
1938 netpoll_poll_unlock(have);
1939 dev_put(dev);
1940 local_irq_disable();
1941 }
1942 }
1943 out:
1944 #ifdef CONFIG_NET_DMA
1945 /*
1946 * There may not be any more sk_buffs coming right now, so push
1947 * any pending DMA copies to hardware
1948 */
1949 if (net_dma_client) {
1950 struct dma_chan *chan;
1951 rcu_read_lock();
1952 list_for_each_entry_rcu(chan, &net_dma_client->channels, client_node)
1953 dma_async_memcpy_issue_pending(chan);
1954 rcu_read_unlock();
1955 }
1956 #endif
1957 local_irq_enable();
1958 return;
1959
1960 softnet_break:
1961 __get_cpu_var(netdev_rx_stat).time_squeeze++;
1962 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
1963 goto out;
1964 }
1965
1966 static gifconf_func_t * gifconf_list [NPROTO];
1967
1968 /**
1969 * register_gifconf - register a SIOCGIF handler
1970 * @family: Address family
1971 * @gifconf: Function handler
1972 *
1973 * Register protocol dependent address dumping routines. The handler
1974 * that is passed must not be freed or reused until it has been replaced
1975 * by another handler.
1976 */
1977 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
1978 {
1979 if (family >= NPROTO)
1980 return -EINVAL;
1981 gifconf_list[family] = gifconf;
1982 return 0;
1983 }
1984
1985
1986 /*
1987 * Map an interface index to its name (SIOCGIFNAME)
1988 */
1989
1990 /*
1991 * We need this ioctl for efficient implementation of the
1992 * if_indextoname() function required by the IPv6 API. Without
1993 * it, we would have to search all the interfaces to find a
1994 * match. --pb
1995 */
1996
1997 static int dev_ifname(struct ifreq __user *arg)
1998 {
1999 struct net_device *dev;
2000 struct ifreq ifr;
2001
2002 /*
2003 * Fetch the caller's info block.
2004 */
2005
2006 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2007 return -EFAULT;
2008
2009 read_lock(&dev_base_lock);
2010 dev = __dev_get_by_index(ifr.ifr_ifindex);
2011 if (!dev) {
2012 read_unlock(&dev_base_lock);
2013 return -ENODEV;
2014 }
2015
2016 strcpy(ifr.ifr_name, dev->name);
2017 read_unlock(&dev_base_lock);
2018
2019 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2020 return -EFAULT;
2021 return 0;
2022 }
2023
2024 /*
2025 * Perform a SIOCGIFCONF call. This structure will change
2026 * size eventually, and there is nothing I can do about it.
2027 * Thus we will need a 'compatibility mode'.
2028 */
2029
2030 static int dev_ifconf(char __user *arg)
2031 {
2032 struct ifconf ifc;
2033 struct net_device *dev;
2034 char __user *pos;
2035 int len;
2036 int total;
2037 int i;
2038
2039 /*
2040 * Fetch the caller's info block.
2041 */
2042
2043 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2044 return -EFAULT;
2045
2046 pos = ifc.ifc_buf;
2047 len = ifc.ifc_len;
2048
2049 /*
2050 * Loop over the interfaces, and write an info block for each.
2051 */
2052
2053 total = 0;
2054 for_each_netdev(dev) {
2055 for (i = 0; i < NPROTO; i++) {
2056 if (gifconf_list[i]) {
2057 int done;
2058 if (!pos)
2059 done = gifconf_list[i](dev, NULL, 0);
2060 else
2061 done = gifconf_list[i](dev, pos + total,
2062 len - total);
2063 if (done < 0)
2064 return -EFAULT;
2065 total += done;
2066 }
2067 }
2068 }
2069
2070 /*
2071 * All done. Write the updated control block back to the caller.
2072 */
2073 ifc.ifc_len = total;
2074
2075 /*
2076 * Both BSD and Solaris return 0 here, so we do too.
2077 */
2078 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2079 }
2080
2081 #ifdef CONFIG_PROC_FS
2082 /*
2083 * This is invoked by the /proc filesystem handler to display a device
2084 * in detail.
2085 */
2086 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2087 {
2088 loff_t off;
2089 struct net_device *dev;
2090
2091 read_lock(&dev_base_lock);
2092 if (!*pos)
2093 return SEQ_START_TOKEN;
2094
2095 off = 1;
2096 for_each_netdev(dev)
2097 if (off++ == *pos)
2098 return dev;
2099
2100 return NULL;
2101 }
2102
2103 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2104 {
2105 ++*pos;
2106 return v == SEQ_START_TOKEN ?
2107 first_net_device() : next_net_device((struct net_device *)v);
2108 }
2109
2110 void dev_seq_stop(struct seq_file *seq, void *v)
2111 {
2112 read_unlock(&dev_base_lock);
2113 }
2114
2115 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2116 {
2117 struct net_device_stats *stats = dev->get_stats(dev);
2118
2119 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2120 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2121 dev->name, stats->rx_bytes, stats->rx_packets,
2122 stats->rx_errors,
2123 stats->rx_dropped + stats->rx_missed_errors,
2124 stats->rx_fifo_errors,
2125 stats->rx_length_errors + stats->rx_over_errors +
2126 stats->rx_crc_errors + stats->rx_frame_errors,
2127 stats->rx_compressed, stats->multicast,
2128 stats->tx_bytes, stats->tx_packets,
2129 stats->tx_errors, stats->tx_dropped,
2130 stats->tx_fifo_errors, stats->collisions,
2131 stats->tx_carrier_errors +
2132 stats->tx_aborted_errors +
2133 stats->tx_window_errors +
2134 stats->tx_heartbeat_errors,
2135 stats->tx_compressed);
2136 }
2137
2138 /*
2139 * Called from the PROCfs module. This now uses the new arbitrary sized
2140 * /proc/net interface to create /proc/net/dev
2141 */
2142 static int dev_seq_show(struct seq_file *seq, void *v)
2143 {
2144 if (v == SEQ_START_TOKEN)
2145 seq_puts(seq, "Inter-| Receive "
2146 " | Transmit\n"
2147 " face |bytes packets errs drop fifo frame "
2148 "compressed multicast|bytes packets errs "
2149 "drop fifo colls carrier compressed\n");
2150 else
2151 dev_seq_printf_stats(seq, v);
2152 return 0;
2153 }
2154
2155 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2156 {
2157 struct netif_rx_stats *rc = NULL;
2158
2159 while (*pos < NR_CPUS)
2160 if (cpu_online(*pos)) {
2161 rc = &per_cpu(netdev_rx_stat, *pos);
2162 break;
2163 } else
2164 ++*pos;
2165 return rc;
2166 }
2167
2168 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2169 {
2170 return softnet_get_online(pos);
2171 }
2172
2173 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2174 {
2175 ++*pos;
2176 return softnet_get_online(pos);
2177 }
2178
2179 static void softnet_seq_stop(struct seq_file *seq, void *v)
2180 {
2181 }
2182
2183 static int softnet_seq_show(struct seq_file *seq, void *v)
2184 {
2185 struct netif_rx_stats *s = v;
2186
2187 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2188 s->total, s->dropped, s->time_squeeze, 0,
2189 0, 0, 0, 0, /* was fastroute */
2190 s->cpu_collision );
2191 return 0;
2192 }
2193
2194 static const struct seq_operations dev_seq_ops = {
2195 .start = dev_seq_start,
2196 .next = dev_seq_next,
2197 .stop = dev_seq_stop,
2198 .show = dev_seq_show,
2199 };
2200
2201 static int dev_seq_open(struct inode *inode, struct file *file)
2202 {
2203 return seq_open(file, &dev_seq_ops);
2204 }
2205
2206 static const struct file_operations dev_seq_fops = {
2207 .owner = THIS_MODULE,
2208 .open = dev_seq_open,
2209 .read = seq_read,
2210 .llseek = seq_lseek,
2211 .release = seq_release,
2212 };
2213
2214 static const struct seq_operations softnet_seq_ops = {
2215 .start = softnet_seq_start,
2216 .next = softnet_seq_next,
2217 .stop = softnet_seq_stop,
2218 .show = softnet_seq_show,
2219 };
2220
2221 static int softnet_seq_open(struct inode *inode, struct file *file)
2222 {
2223 return seq_open(file, &softnet_seq_ops);
2224 }
2225
2226 static const struct file_operations softnet_seq_fops = {
2227 .owner = THIS_MODULE,
2228 .open = softnet_seq_open,
2229 .read = seq_read,
2230 .llseek = seq_lseek,
2231 .release = seq_release,
2232 };
2233
2234 static void *ptype_get_idx(loff_t pos)
2235 {
2236 struct packet_type *pt = NULL;
2237 loff_t i = 0;
2238 int t;
2239
2240 list_for_each_entry_rcu(pt, &ptype_all, list) {
2241 if (i == pos)
2242 return pt;
2243 ++i;
2244 }
2245
2246 for (t = 0; t < 16; t++) {
2247 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2248 if (i == pos)
2249 return pt;
2250 ++i;
2251 }
2252 }
2253 return NULL;
2254 }
2255
2256 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2257 {
2258 rcu_read_lock();
2259 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2260 }
2261
2262 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2263 {
2264 struct packet_type *pt;
2265 struct list_head *nxt;
2266 int hash;
2267
2268 ++*pos;
2269 if (v == SEQ_START_TOKEN)
2270 return ptype_get_idx(0);
2271
2272 pt = v;
2273 nxt = pt->list.next;
2274 if (pt->type == htons(ETH_P_ALL)) {
2275 if (nxt != &ptype_all)
2276 goto found;
2277 hash = 0;
2278 nxt = ptype_base[0].next;
2279 } else
2280 hash = ntohs(pt->type) & 15;
2281
2282 while (nxt == &ptype_base[hash]) {
2283 if (++hash >= 16)
2284 return NULL;
2285 nxt = ptype_base[hash].next;
2286 }
2287 found:
2288 return list_entry(nxt, struct packet_type, list);
2289 }
2290
2291 static void ptype_seq_stop(struct seq_file *seq, void *v)
2292 {
2293 rcu_read_unlock();
2294 }
2295
2296 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2297 {
2298 #ifdef CONFIG_KALLSYMS
2299 unsigned long offset = 0, symsize;
2300 const char *symname;
2301 char *modname;
2302 char namebuf[128];
2303
2304 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2305 &modname, namebuf);
2306
2307 if (symname) {
2308 char *delim = ":";
2309
2310 if (!modname)
2311 modname = delim = "";
2312 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2313 symname, offset);
2314 return;
2315 }
2316 #endif
2317
2318 seq_printf(seq, "[%p]", sym);
2319 }
2320
2321 static int ptype_seq_show(struct seq_file *seq, void *v)
2322 {
2323 struct packet_type *pt = v;
2324
2325 if (v == SEQ_START_TOKEN)
2326 seq_puts(seq, "Type Device Function\n");
2327 else {
2328 if (pt->type == htons(ETH_P_ALL))
2329 seq_puts(seq, "ALL ");
2330 else
2331 seq_printf(seq, "%04x", ntohs(pt->type));
2332
2333 seq_printf(seq, " %-8s ",
2334 pt->dev ? pt->dev->name : "");
2335 ptype_seq_decode(seq, pt->func);
2336 seq_putc(seq, '\n');
2337 }
2338
2339 return 0;
2340 }
2341
2342 static const struct seq_operations ptype_seq_ops = {
2343 .start = ptype_seq_start,
2344 .next = ptype_seq_next,
2345 .stop = ptype_seq_stop,
2346 .show = ptype_seq_show,
2347 };
2348
2349 static int ptype_seq_open(struct inode *inode, struct file *file)
2350 {
2351 return seq_open(file, &ptype_seq_ops);
2352 }
2353
2354 static const struct file_operations ptype_seq_fops = {
2355 .owner = THIS_MODULE,
2356 .open = ptype_seq_open,
2357 .read = seq_read,
2358 .llseek = seq_lseek,
2359 .release = seq_release,
2360 };
2361
2362
2363 static int __init dev_proc_init(void)
2364 {
2365 int rc = -ENOMEM;
2366
2367 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops))
2368 goto out;
2369 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops))
2370 goto out_dev;
2371 if (!proc_net_fops_create("ptype", S_IRUGO, &ptype_seq_fops))
2372 goto out_dev2;
2373
2374 if (wext_proc_init())
2375 goto out_softnet;
2376 rc = 0;
2377 out:
2378 return rc;
2379 out_softnet:
2380 proc_net_remove("ptype");
2381 out_dev2:
2382 proc_net_remove("softnet_stat");
2383 out_dev:
2384 proc_net_remove("dev");
2385 goto out;
2386 }
2387 #else
2388 #define dev_proc_init() 0
2389 #endif /* CONFIG_PROC_FS */
2390
2391
2392 /**
2393 * netdev_set_master - set up master/slave pair
2394 * @slave: slave device
2395 * @master: new master device
2396 *
2397 * Changes the master device of the slave. Pass %NULL to break the
2398 * bonding. The caller must hold the RTNL semaphore. On a failure
2399 * a negative errno code is returned. On success the reference counts
2400 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2401 * function returns zero.
2402 */
2403 int netdev_set_master(struct net_device *slave, struct net_device *master)
2404 {
2405 struct net_device *old = slave->master;
2406
2407 ASSERT_RTNL();
2408
2409 if (master) {
2410 if (old)
2411 return -EBUSY;
2412 dev_hold(master);
2413 }
2414
2415 slave->master = master;
2416
2417 synchronize_net();
2418
2419 if (old)
2420 dev_put(old);
2421
2422 if (master)
2423 slave->flags |= IFF_SLAVE;
2424 else
2425 slave->flags &= ~IFF_SLAVE;
2426
2427 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2428 return 0;
2429 }
2430
2431 /**
2432 * dev_set_promiscuity - update promiscuity count on a device
2433 * @dev: device
2434 * @inc: modifier
2435 *
2436 * Add or remove promiscuity from a device. While the count in the device
2437 * remains above zero the interface remains promiscuous. Once it hits zero
2438 * the device reverts back to normal filtering operation. A negative inc
2439 * value is used to drop promiscuity on the device.
2440 */
2441 void dev_set_promiscuity(struct net_device *dev, int inc)
2442 {
2443 unsigned short old_flags = dev->flags;
2444
2445 if ((dev->promiscuity += inc) == 0)
2446 dev->flags &= ~IFF_PROMISC;
2447 else
2448 dev->flags |= IFF_PROMISC;
2449 if (dev->flags != old_flags) {
2450 dev_mc_upload(dev);
2451 printk(KERN_INFO "device %s %s promiscuous mode\n",
2452 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2453 "left");
2454 audit_log(current->audit_context, GFP_ATOMIC,
2455 AUDIT_ANOM_PROMISCUOUS,
2456 "dev=%s prom=%d old_prom=%d auid=%u",
2457 dev->name, (dev->flags & IFF_PROMISC),
2458 (old_flags & IFF_PROMISC),
2459 audit_get_loginuid(current->audit_context));
2460 }
2461 }
2462
2463 /**
2464 * dev_set_allmulti - update allmulti count on a device
2465 * @dev: device
2466 * @inc: modifier
2467 *
2468 * Add or remove reception of all multicast frames to a device. While the
2469 * count in the device remains above zero the interface remains listening
2470 * to all interfaces. Once it hits zero the device reverts back to normal
2471 * filtering operation. A negative @inc value is used to drop the counter
2472 * when releasing a resource needing all multicasts.
2473 */
2474
2475 void dev_set_allmulti(struct net_device *dev, int inc)
2476 {
2477 unsigned short old_flags = dev->flags;
2478
2479 dev->flags |= IFF_ALLMULTI;
2480 if ((dev->allmulti += inc) == 0)
2481 dev->flags &= ~IFF_ALLMULTI;
2482 if (dev->flags ^ old_flags)
2483 dev_mc_upload(dev);
2484 }
2485
2486 unsigned dev_get_flags(const struct net_device *dev)
2487 {
2488 unsigned flags;
2489
2490 flags = (dev->flags & ~(IFF_PROMISC |
2491 IFF_ALLMULTI |
2492 IFF_RUNNING |
2493 IFF_LOWER_UP |
2494 IFF_DORMANT)) |
2495 (dev->gflags & (IFF_PROMISC |
2496 IFF_ALLMULTI));
2497
2498 if (netif_running(dev)) {
2499 if (netif_oper_up(dev))
2500 flags |= IFF_RUNNING;
2501 if (netif_carrier_ok(dev))
2502 flags |= IFF_LOWER_UP;
2503 if (netif_dormant(dev))
2504 flags |= IFF_DORMANT;
2505 }
2506
2507 return flags;
2508 }
2509
2510 int dev_change_flags(struct net_device *dev, unsigned flags)
2511 {
2512 int ret;
2513 int old_flags = dev->flags;
2514
2515 /*
2516 * Set the flags on our device.
2517 */
2518
2519 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
2520 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
2521 IFF_AUTOMEDIA)) |
2522 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
2523 IFF_ALLMULTI));
2524
2525 /*
2526 * Load in the correct multicast list now the flags have changed.
2527 */
2528
2529 dev_mc_upload(dev);
2530
2531 /*
2532 * Have we downed the interface. We handle IFF_UP ourselves
2533 * according to user attempts to set it, rather than blindly
2534 * setting it.
2535 */
2536
2537 ret = 0;
2538 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
2539 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
2540
2541 if (!ret)
2542 dev_mc_upload(dev);
2543 }
2544
2545 if (dev->flags & IFF_UP &&
2546 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
2547 IFF_VOLATILE)))
2548 raw_notifier_call_chain(&netdev_chain,
2549 NETDEV_CHANGE, dev);
2550
2551 if ((flags ^ dev->gflags) & IFF_PROMISC) {
2552 int inc = (flags & IFF_PROMISC) ? +1 : -1;
2553 dev->gflags ^= IFF_PROMISC;
2554 dev_set_promiscuity(dev, inc);
2555 }
2556
2557 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
2558 is important. Some (broken) drivers set IFF_PROMISC, when
2559 IFF_ALLMULTI is requested not asking us and not reporting.
2560 */
2561 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
2562 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
2563 dev->gflags ^= IFF_ALLMULTI;
2564 dev_set_allmulti(dev, inc);
2565 }
2566
2567 if (old_flags ^ dev->flags)
2568 rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags);
2569
2570 return ret;
2571 }
2572
2573 int dev_set_mtu(struct net_device *dev, int new_mtu)
2574 {
2575 int err;
2576
2577 if (new_mtu == dev->mtu)
2578 return 0;
2579
2580 /* MTU must be positive. */
2581 if (new_mtu < 0)
2582 return -EINVAL;
2583
2584 if (!netif_device_present(dev))
2585 return -ENODEV;
2586
2587 err = 0;
2588 if (dev->change_mtu)
2589 err = dev->change_mtu(dev, new_mtu);
2590 else
2591 dev->mtu = new_mtu;
2592 if (!err && dev->flags & IFF_UP)
2593 raw_notifier_call_chain(&netdev_chain,
2594 NETDEV_CHANGEMTU, dev);
2595 return err;
2596 }
2597
2598 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
2599 {
2600 int err;
2601
2602 if (!dev->set_mac_address)
2603 return -EOPNOTSUPP;
2604 if (sa->sa_family != dev->type)
2605 return -EINVAL;
2606 if (!netif_device_present(dev))
2607 return -ENODEV;
2608 err = dev->set_mac_address(dev, sa);
2609 if (!err)
2610 raw_notifier_call_chain(&netdev_chain,
2611 NETDEV_CHANGEADDR, dev);
2612 return err;
2613 }
2614
2615 /*
2616 * Perform the SIOCxIFxxx calls.
2617 */
2618 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd)
2619 {
2620 int err;
2621 struct net_device *dev = __dev_get_by_name(ifr->ifr_name);
2622
2623 if (!dev)
2624 return -ENODEV;
2625
2626 switch (cmd) {
2627 case SIOCGIFFLAGS: /* Get interface flags */
2628 ifr->ifr_flags = dev_get_flags(dev);
2629 return 0;
2630
2631 case SIOCSIFFLAGS: /* Set interface flags */
2632 return dev_change_flags(dev, ifr->ifr_flags);
2633
2634 case SIOCGIFMETRIC: /* Get the metric on the interface
2635 (currently unused) */
2636 ifr->ifr_metric = 0;
2637 return 0;
2638
2639 case SIOCSIFMETRIC: /* Set the metric on the interface
2640 (currently unused) */
2641 return -EOPNOTSUPP;
2642
2643 case SIOCGIFMTU: /* Get the MTU of a device */
2644 ifr->ifr_mtu = dev->mtu;
2645 return 0;
2646
2647 case SIOCSIFMTU: /* Set the MTU of a device */
2648 return dev_set_mtu(dev, ifr->ifr_mtu);
2649
2650 case SIOCGIFHWADDR:
2651 if (!dev->addr_len)
2652 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
2653 else
2654 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
2655 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2656 ifr->ifr_hwaddr.sa_family = dev->type;
2657 return 0;
2658
2659 case SIOCSIFHWADDR:
2660 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
2661
2662 case SIOCSIFHWBROADCAST:
2663 if (ifr->ifr_hwaddr.sa_family != dev->type)
2664 return -EINVAL;
2665 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
2666 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2667 raw_notifier_call_chain(&netdev_chain,
2668 NETDEV_CHANGEADDR, dev);
2669 return 0;
2670
2671 case SIOCGIFMAP:
2672 ifr->ifr_map.mem_start = dev->mem_start;
2673 ifr->ifr_map.mem_end = dev->mem_end;
2674 ifr->ifr_map.base_addr = dev->base_addr;
2675 ifr->ifr_map.irq = dev->irq;
2676 ifr->ifr_map.dma = dev->dma;
2677 ifr->ifr_map.port = dev->if_port;
2678 return 0;
2679
2680 case SIOCSIFMAP:
2681 if (dev->set_config) {
2682 if (!netif_device_present(dev))
2683 return -ENODEV;
2684 return dev->set_config(dev, &ifr->ifr_map);
2685 }
2686 return -EOPNOTSUPP;
2687
2688 case SIOCADDMULTI:
2689 if (!dev->set_multicast_list ||
2690 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2691 return -EINVAL;
2692 if (!netif_device_present(dev))
2693 return -ENODEV;
2694 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
2695 dev->addr_len, 1);
2696
2697 case SIOCDELMULTI:
2698 if (!dev->set_multicast_list ||
2699 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2700 return -EINVAL;
2701 if (!netif_device_present(dev))
2702 return -ENODEV;
2703 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
2704 dev->addr_len, 1);
2705
2706 case SIOCGIFINDEX:
2707 ifr->ifr_ifindex = dev->ifindex;
2708 return 0;
2709
2710 case SIOCGIFTXQLEN:
2711 ifr->ifr_qlen = dev->tx_queue_len;
2712 return 0;
2713
2714 case SIOCSIFTXQLEN:
2715 if (ifr->ifr_qlen < 0)
2716 return -EINVAL;
2717 dev->tx_queue_len = ifr->ifr_qlen;
2718 return 0;
2719
2720 case SIOCSIFNAME:
2721 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
2722 return dev_change_name(dev, ifr->ifr_newname);
2723
2724 /*
2725 * Unknown or private ioctl
2726 */
2727
2728 default:
2729 if ((cmd >= SIOCDEVPRIVATE &&
2730 cmd <= SIOCDEVPRIVATE + 15) ||
2731 cmd == SIOCBONDENSLAVE ||
2732 cmd == SIOCBONDRELEASE ||
2733 cmd == SIOCBONDSETHWADDR ||
2734 cmd == SIOCBONDSLAVEINFOQUERY ||
2735 cmd == SIOCBONDINFOQUERY ||
2736 cmd == SIOCBONDCHANGEACTIVE ||
2737 cmd == SIOCGMIIPHY ||
2738 cmd == SIOCGMIIREG ||
2739 cmd == SIOCSMIIREG ||
2740 cmd == SIOCBRADDIF ||
2741 cmd == SIOCBRDELIF ||
2742 cmd == SIOCWANDEV) {
2743 err = -EOPNOTSUPP;
2744 if (dev->do_ioctl) {
2745 if (netif_device_present(dev))
2746 err = dev->do_ioctl(dev, ifr,
2747 cmd);
2748 else
2749 err = -ENODEV;
2750 }
2751 } else
2752 err = -EINVAL;
2753
2754 }
2755 return err;
2756 }
2757
2758 /*
2759 * This function handles all "interface"-type I/O control requests. The actual
2760 * 'doing' part of this is dev_ifsioc above.
2761 */
2762
2763 /**
2764 * dev_ioctl - network device ioctl
2765 * @cmd: command to issue
2766 * @arg: pointer to a struct ifreq in user space
2767 *
2768 * Issue ioctl functions to devices. This is normally called by the
2769 * user space syscall interfaces but can sometimes be useful for
2770 * other purposes. The return value is the return from the syscall if
2771 * positive or a negative errno code on error.
2772 */
2773
2774 int dev_ioctl(unsigned int cmd, void __user *arg)
2775 {
2776 struct ifreq ifr;
2777 int ret;
2778 char *colon;
2779
2780 /* One special case: SIOCGIFCONF takes ifconf argument
2781 and requires shared lock, because it sleeps writing
2782 to user space.
2783 */
2784
2785 if (cmd == SIOCGIFCONF) {
2786 rtnl_lock();
2787 ret = dev_ifconf((char __user *) arg);
2788 rtnl_unlock();
2789 return ret;
2790 }
2791 if (cmd == SIOCGIFNAME)
2792 return dev_ifname((struct ifreq __user *)arg);
2793
2794 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2795 return -EFAULT;
2796
2797 ifr.ifr_name[IFNAMSIZ-1] = 0;
2798
2799 colon = strchr(ifr.ifr_name, ':');
2800 if (colon)
2801 *colon = 0;
2802
2803 /*
2804 * See which interface the caller is talking about.
2805 */
2806
2807 switch (cmd) {
2808 /*
2809 * These ioctl calls:
2810 * - can be done by all.
2811 * - atomic and do not require locking.
2812 * - return a value
2813 */
2814 case SIOCGIFFLAGS:
2815 case SIOCGIFMETRIC:
2816 case SIOCGIFMTU:
2817 case SIOCGIFHWADDR:
2818 case SIOCGIFSLAVE:
2819 case SIOCGIFMAP:
2820 case SIOCGIFINDEX:
2821 case SIOCGIFTXQLEN:
2822 dev_load(ifr.ifr_name);
2823 read_lock(&dev_base_lock);
2824 ret = dev_ifsioc(&ifr, cmd);
2825 read_unlock(&dev_base_lock);
2826 if (!ret) {
2827 if (colon)
2828 *colon = ':';
2829 if (copy_to_user(arg, &ifr,
2830 sizeof(struct ifreq)))
2831 ret = -EFAULT;
2832 }
2833 return ret;
2834
2835 case SIOCETHTOOL:
2836 dev_load(ifr.ifr_name);
2837 rtnl_lock();
2838 ret = dev_ethtool(&ifr);
2839 rtnl_unlock();
2840 if (!ret) {
2841 if (colon)
2842 *colon = ':';
2843 if (copy_to_user(arg, &ifr,
2844 sizeof(struct ifreq)))
2845 ret = -EFAULT;
2846 }
2847 return ret;
2848
2849 /*
2850 * These ioctl calls:
2851 * - require superuser power.
2852 * - require strict serialization.
2853 * - return a value
2854 */
2855 case SIOCGMIIPHY:
2856 case SIOCGMIIREG:
2857 case SIOCSIFNAME:
2858 if (!capable(CAP_NET_ADMIN))
2859 return -EPERM;
2860 dev_load(ifr.ifr_name);
2861 rtnl_lock();
2862 ret = dev_ifsioc(&ifr, cmd);
2863 rtnl_unlock();
2864 if (!ret) {
2865 if (colon)
2866 *colon = ':';
2867 if (copy_to_user(arg, &ifr,
2868 sizeof(struct ifreq)))
2869 ret = -EFAULT;
2870 }
2871 return ret;
2872
2873 /*
2874 * These ioctl calls:
2875 * - require superuser power.
2876 * - require strict serialization.
2877 * - do not return a value
2878 */
2879 case SIOCSIFFLAGS:
2880 case SIOCSIFMETRIC:
2881 case SIOCSIFMTU:
2882 case SIOCSIFMAP:
2883 case SIOCSIFHWADDR:
2884 case SIOCSIFSLAVE:
2885 case SIOCADDMULTI:
2886 case SIOCDELMULTI:
2887 case SIOCSIFHWBROADCAST:
2888 case SIOCSIFTXQLEN:
2889 case SIOCSMIIREG:
2890 case SIOCBONDENSLAVE:
2891 case SIOCBONDRELEASE:
2892 case SIOCBONDSETHWADDR:
2893 case SIOCBONDCHANGEACTIVE:
2894 case SIOCBRADDIF:
2895 case SIOCBRDELIF:
2896 if (!capable(CAP_NET_ADMIN))
2897 return -EPERM;
2898 /* fall through */
2899 case SIOCBONDSLAVEINFOQUERY:
2900 case SIOCBONDINFOQUERY:
2901 dev_load(ifr.ifr_name);
2902 rtnl_lock();
2903 ret = dev_ifsioc(&ifr, cmd);
2904 rtnl_unlock();
2905 return ret;
2906
2907 case SIOCGIFMEM:
2908 /* Get the per device memory space. We can add this but
2909 * currently do not support it */
2910 case SIOCSIFMEM:
2911 /* Set the per device memory buffer space.
2912 * Not applicable in our case */
2913 case SIOCSIFLINK:
2914 return -EINVAL;
2915
2916 /*
2917 * Unknown or private ioctl.
2918 */
2919 default:
2920 if (cmd == SIOCWANDEV ||
2921 (cmd >= SIOCDEVPRIVATE &&
2922 cmd <= SIOCDEVPRIVATE + 15)) {
2923 dev_load(ifr.ifr_name);
2924 rtnl_lock();
2925 ret = dev_ifsioc(&ifr, cmd);
2926 rtnl_unlock();
2927 if (!ret && copy_to_user(arg, &ifr,
2928 sizeof(struct ifreq)))
2929 ret = -EFAULT;
2930 return ret;
2931 }
2932 /* Take care of Wireless Extensions */
2933 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
2934 return wext_handle_ioctl(&ifr, cmd, arg);
2935 return -EINVAL;
2936 }
2937 }
2938
2939
2940 /**
2941 * dev_new_index - allocate an ifindex
2942 *
2943 * Returns a suitable unique value for a new device interface
2944 * number. The caller must hold the rtnl semaphore or the
2945 * dev_base_lock to be sure it remains unique.
2946 */
2947 static int dev_new_index(void)
2948 {
2949 static int ifindex;
2950 for (;;) {
2951 if (++ifindex <= 0)
2952 ifindex = 1;
2953 if (!__dev_get_by_index(ifindex))
2954 return ifindex;
2955 }
2956 }
2957
2958 static int dev_boot_phase = 1;
2959
2960 /* Delayed registration/unregisteration */
2961 static DEFINE_SPINLOCK(net_todo_list_lock);
2962 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
2963
2964 static void net_set_todo(struct net_device *dev)
2965 {
2966 spin_lock(&net_todo_list_lock);
2967 list_add_tail(&dev->todo_list, &net_todo_list);
2968 spin_unlock(&net_todo_list_lock);
2969 }
2970
2971 /**
2972 * register_netdevice - register a network device
2973 * @dev: device to register
2974 *
2975 * Take a completed network device structure and add it to the kernel
2976 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
2977 * chain. 0 is returned on success. A negative errno code is returned
2978 * on a failure to set up the device, or if the name is a duplicate.
2979 *
2980 * Callers must hold the rtnl semaphore. You may want
2981 * register_netdev() instead of this.
2982 *
2983 * BUGS:
2984 * The locking appears insufficient to guarantee two parallel registers
2985 * will not get the same name.
2986 */
2987
2988 int register_netdevice(struct net_device *dev)
2989 {
2990 struct hlist_head *head;
2991 struct hlist_node *p;
2992 int ret;
2993
2994 BUG_ON(dev_boot_phase);
2995 ASSERT_RTNL();
2996
2997 might_sleep();
2998
2999 /* When net_device's are persistent, this will be fatal. */
3000 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3001
3002 spin_lock_init(&dev->queue_lock);
3003 spin_lock_init(&dev->_xmit_lock);
3004 dev->xmit_lock_owner = -1;
3005 spin_lock_init(&dev->ingress_lock);
3006
3007 dev->iflink = -1;
3008
3009 /* Init, if this function is available */
3010 if (dev->init) {
3011 ret = dev->init(dev);
3012 if (ret) {
3013 if (ret > 0)
3014 ret = -EIO;
3015 goto out;
3016 }
3017 }
3018
3019 if (!dev_valid_name(dev->name)) {
3020 ret = -EINVAL;
3021 goto out;
3022 }
3023
3024 dev->ifindex = dev_new_index();
3025 if (dev->iflink == -1)
3026 dev->iflink = dev->ifindex;
3027
3028 /* Check for existence of name */
3029 head = dev_name_hash(dev->name);
3030 hlist_for_each(p, head) {
3031 struct net_device *d
3032 = hlist_entry(p, struct net_device, name_hlist);
3033 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3034 ret = -EEXIST;
3035 goto out;
3036 }
3037 }
3038
3039 /* Fix illegal SG+CSUM combinations. */
3040 if ((dev->features & NETIF_F_SG) &&
3041 !(dev->features & NETIF_F_ALL_CSUM)) {
3042 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3043 dev->name);
3044 dev->features &= ~NETIF_F_SG;
3045 }
3046
3047 /* TSO requires that SG is present as well. */
3048 if ((dev->features & NETIF_F_TSO) &&
3049 !(dev->features & NETIF_F_SG)) {
3050 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3051 dev->name);
3052 dev->features &= ~NETIF_F_TSO;
3053 }
3054 if (dev->features & NETIF_F_UFO) {
3055 if (!(dev->features & NETIF_F_HW_CSUM)) {
3056 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3057 "NETIF_F_HW_CSUM feature.\n",
3058 dev->name);
3059 dev->features &= ~NETIF_F_UFO;
3060 }
3061 if (!(dev->features & NETIF_F_SG)) {
3062 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3063 "NETIF_F_SG feature.\n",
3064 dev->name);
3065 dev->features &= ~NETIF_F_UFO;
3066 }
3067 }
3068
3069 /*
3070 * nil rebuild_header routine,
3071 * that should be never called and used as just bug trap.
3072 */
3073
3074 if (!dev->rebuild_header)
3075 dev->rebuild_header = default_rebuild_header;
3076
3077 ret = netdev_register_sysfs(dev);
3078 if (ret)
3079 goto out;
3080 dev->reg_state = NETREG_REGISTERED;
3081
3082 /*
3083 * Default initial state at registry is that the
3084 * device is present.
3085 */
3086
3087 set_bit(__LINK_STATE_PRESENT, &dev->state);
3088
3089 dev_init_scheduler(dev);
3090 write_lock_bh(&dev_base_lock);
3091 list_add_tail(&dev->dev_list, &dev_base_head);
3092 hlist_add_head(&dev->name_hlist, head);
3093 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex));
3094 dev_hold(dev);
3095 write_unlock_bh(&dev_base_lock);
3096
3097 /* Notify protocols, that a new device appeared. */
3098 raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev);
3099
3100 ret = 0;
3101
3102 out:
3103 return ret;
3104 }
3105
3106 /**
3107 * register_netdev - register a network device
3108 * @dev: device to register
3109 *
3110 * Take a completed network device structure and add it to the kernel
3111 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3112 * chain. 0 is returned on success. A negative errno code is returned
3113 * on a failure to set up the device, or if the name is a duplicate.
3114 *
3115 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3116 * and expands the device name if you passed a format string to
3117 * alloc_netdev.
3118 */
3119 int register_netdev(struct net_device *dev)
3120 {
3121 int err;
3122
3123 rtnl_lock();
3124
3125 /*
3126 * If the name is a format string the caller wants us to do a
3127 * name allocation.
3128 */
3129 if (strchr(dev->name, '%')) {
3130 err = dev_alloc_name(dev, dev->name);
3131 if (err < 0)
3132 goto out;
3133 }
3134
3135 err = register_netdevice(dev);
3136 out:
3137 rtnl_unlock();
3138 return err;
3139 }
3140 EXPORT_SYMBOL(register_netdev);
3141
3142 /*
3143 * netdev_wait_allrefs - wait until all references are gone.
3144 *
3145 * This is called when unregistering network devices.
3146 *
3147 * Any protocol or device that holds a reference should register
3148 * for netdevice notification, and cleanup and put back the
3149 * reference if they receive an UNREGISTER event.
3150 * We can get stuck here if buggy protocols don't correctly
3151 * call dev_put.
3152 */
3153 static void netdev_wait_allrefs(struct net_device *dev)
3154 {
3155 unsigned long rebroadcast_time, warning_time;
3156
3157 rebroadcast_time = warning_time = jiffies;
3158 while (atomic_read(&dev->refcnt) != 0) {
3159 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3160 rtnl_lock();
3161
3162 /* Rebroadcast unregister notification */
3163 raw_notifier_call_chain(&netdev_chain,
3164 NETDEV_UNREGISTER, dev);
3165
3166 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3167 &dev->state)) {
3168 /* We must not have linkwatch events
3169 * pending on unregister. If this
3170 * happens, we simply run the queue
3171 * unscheduled, resulting in a noop
3172 * for this device.
3173 */
3174 linkwatch_run_queue();
3175 }
3176
3177 __rtnl_unlock();
3178
3179 rebroadcast_time = jiffies;
3180 }
3181
3182 msleep(250);
3183
3184 if (time_after(jiffies, warning_time + 10 * HZ)) {
3185 printk(KERN_EMERG "unregister_netdevice: "
3186 "waiting for %s to become free. Usage "
3187 "count = %d\n",
3188 dev->name, atomic_read(&dev->refcnt));
3189 warning_time = jiffies;
3190 }
3191 }
3192 }
3193
3194 /* The sequence is:
3195 *
3196 * rtnl_lock();
3197 * ...
3198 * register_netdevice(x1);
3199 * register_netdevice(x2);
3200 * ...
3201 * unregister_netdevice(y1);
3202 * unregister_netdevice(y2);
3203 * ...
3204 * rtnl_unlock();
3205 * free_netdev(y1);
3206 * free_netdev(y2);
3207 *
3208 * We are invoked by rtnl_unlock() after it drops the semaphore.
3209 * This allows us to deal with problems:
3210 * 1) We can delete sysfs objects which invoke hotplug
3211 * without deadlocking with linkwatch via keventd.
3212 * 2) Since we run with the RTNL semaphore not held, we can sleep
3213 * safely in order to wait for the netdev refcnt to drop to zero.
3214 */
3215 static DEFINE_MUTEX(net_todo_run_mutex);
3216 void netdev_run_todo(void)
3217 {
3218 struct list_head list;
3219
3220 /* Need to guard against multiple cpu's getting out of order. */
3221 mutex_lock(&net_todo_run_mutex);
3222
3223 /* Not safe to do outside the semaphore. We must not return
3224 * until all unregister events invoked by the local processor
3225 * have been completed (either by this todo run, or one on
3226 * another cpu).
3227 */
3228 if (list_empty(&net_todo_list))
3229 goto out;
3230
3231 /* Snapshot list, allow later requests */
3232 spin_lock(&net_todo_list_lock);
3233 list_replace_init(&net_todo_list, &list);
3234 spin_unlock(&net_todo_list_lock);
3235
3236 while (!list_empty(&list)) {
3237 struct net_device *dev
3238 = list_entry(list.next, struct net_device, todo_list);
3239 list_del(&dev->todo_list);
3240
3241 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3242 printk(KERN_ERR "network todo '%s' but state %d\n",
3243 dev->name, dev->reg_state);
3244 dump_stack();
3245 continue;
3246 }
3247
3248 netdev_unregister_sysfs(dev);
3249 dev->reg_state = NETREG_UNREGISTERED;
3250
3251 netdev_wait_allrefs(dev);
3252
3253 /* paranoia */
3254 BUG_ON(atomic_read(&dev->refcnt));
3255 BUG_TRAP(!dev->ip_ptr);
3256 BUG_TRAP(!dev->ip6_ptr);
3257 BUG_TRAP(!dev->dn_ptr);
3258
3259 /* It must be the very last action,
3260 * after this 'dev' may point to freed up memory.
3261 */
3262 if (dev->destructor)
3263 dev->destructor(dev);
3264 }
3265
3266 out:
3267 mutex_unlock(&net_todo_run_mutex);
3268 }
3269
3270 static struct net_device_stats *internal_stats(struct net_device *dev)
3271 {
3272 return &dev->stats;
3273 }
3274
3275 /**
3276 * alloc_netdev - allocate network device
3277 * @sizeof_priv: size of private data to allocate space for
3278 * @name: device name format string
3279 * @setup: callback to initialize device
3280 *
3281 * Allocates a struct net_device with private data area for driver use
3282 * and performs basic initialization.
3283 */
3284 struct net_device *alloc_netdev(int sizeof_priv, const char *name,
3285 void (*setup)(struct net_device *))
3286 {
3287 void *p;
3288 struct net_device *dev;
3289 int alloc_size;
3290
3291 BUG_ON(strlen(name) >= sizeof(dev->name));
3292
3293 /* ensure 32-byte alignment of both the device and private area */
3294 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
3295 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3296
3297 p = kzalloc(alloc_size, GFP_KERNEL);
3298 if (!p) {
3299 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
3300 return NULL;
3301 }
3302
3303 dev = (struct net_device *)
3304 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3305 dev->padded = (char *)dev - (char *)p;
3306
3307 if (sizeof_priv)
3308 dev->priv = netdev_priv(dev);
3309
3310 dev->get_stats = internal_stats;
3311 setup(dev);
3312 strcpy(dev->name, name);
3313 return dev;
3314 }
3315 EXPORT_SYMBOL(alloc_netdev);
3316
3317 /**
3318 * free_netdev - free network device
3319 * @dev: device
3320 *
3321 * This function does the last stage of destroying an allocated device
3322 * interface. The reference to the device object is released.
3323 * If this is the last reference then it will be freed.
3324 */
3325 void free_netdev(struct net_device *dev)
3326 {
3327 #ifdef CONFIG_SYSFS
3328 /* Compatibility with error handling in drivers */
3329 if (dev->reg_state == NETREG_UNINITIALIZED) {
3330 kfree((char *)dev - dev->padded);
3331 return;
3332 }
3333
3334 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3335 dev->reg_state = NETREG_RELEASED;
3336
3337 /* will free via device release */
3338 put_device(&dev->dev);
3339 #else
3340 kfree((char *)dev - dev->padded);
3341 #endif
3342 }
3343
3344 /* Synchronize with packet receive processing. */
3345 void synchronize_net(void)
3346 {
3347 might_sleep();
3348 synchronize_rcu();
3349 }
3350
3351 /**
3352 * unregister_netdevice - remove device from the kernel
3353 * @dev: device
3354 *
3355 * This function shuts down a device interface and removes it
3356 * from the kernel tables. On success 0 is returned, on a failure
3357 * a negative errno code is returned.
3358 *
3359 * Callers must hold the rtnl semaphore. You may want
3360 * unregister_netdev() instead of this.
3361 */
3362
3363 void unregister_netdevice(struct net_device *dev)
3364 {
3365 BUG_ON(dev_boot_phase);
3366 ASSERT_RTNL();
3367
3368 /* Some devices call without registering for initialization unwind. */
3369 if (dev->reg_state == NETREG_UNINITIALIZED) {
3370 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3371 "was registered\n", dev->name, dev);
3372
3373 WARN_ON(1);
3374 return;
3375 }
3376
3377 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3378
3379 /* If device is running, close it first. */
3380 if (dev->flags & IFF_UP)
3381 dev_close(dev);
3382
3383 /* And unlink it from device chain. */
3384 write_lock_bh(&dev_base_lock);
3385 list_del(&dev->dev_list);
3386 hlist_del(&dev->name_hlist);
3387 hlist_del(&dev->index_hlist);
3388 write_unlock_bh(&dev_base_lock);
3389
3390 dev->reg_state = NETREG_UNREGISTERING;
3391
3392 synchronize_net();
3393
3394 /* Shutdown queueing discipline. */
3395 dev_shutdown(dev);
3396
3397
3398 /* Notify protocols, that we are about to destroy
3399 this device. They should clean all the things.
3400 */
3401 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev);
3402
3403 /*
3404 * Flush the multicast chain
3405 */
3406 dev_mc_discard(dev);
3407
3408 if (dev->uninit)
3409 dev->uninit(dev);
3410
3411 /* Notifier chain MUST detach us from master device. */
3412 BUG_TRAP(!dev->master);
3413
3414 /* Finish processing unregister after unlock */
3415 net_set_todo(dev);
3416
3417 synchronize_net();
3418
3419 dev_put(dev);
3420 }
3421
3422 /**
3423 * unregister_netdev - remove device from the kernel
3424 * @dev: device
3425 *
3426 * This function shuts down a device interface and removes it
3427 * from the kernel tables. On success 0 is returned, on a failure
3428 * a negative errno code is returned.
3429 *
3430 * This is just a wrapper for unregister_netdevice that takes
3431 * the rtnl semaphore. In general you want to use this and not
3432 * unregister_netdevice.
3433 */
3434 void unregister_netdev(struct net_device *dev)
3435 {
3436 rtnl_lock();
3437 unregister_netdevice(dev);
3438 rtnl_unlock();
3439 }
3440
3441 EXPORT_SYMBOL(unregister_netdev);
3442
3443 static int dev_cpu_callback(struct notifier_block *nfb,
3444 unsigned long action,
3445 void *ocpu)
3446 {
3447 struct sk_buff **list_skb;
3448 struct net_device **list_net;
3449 struct sk_buff *skb;
3450 unsigned int cpu, oldcpu = (unsigned long)ocpu;
3451 struct softnet_data *sd, *oldsd;
3452
3453 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
3454 return NOTIFY_OK;
3455
3456 local_irq_disable();
3457 cpu = smp_processor_id();
3458 sd = &per_cpu(softnet_data, cpu);
3459 oldsd = &per_cpu(softnet_data, oldcpu);
3460
3461 /* Find end of our completion_queue. */
3462 list_skb = &sd->completion_queue;
3463 while (*list_skb)
3464 list_skb = &(*list_skb)->next;
3465 /* Append completion queue from offline CPU. */
3466 *list_skb = oldsd->completion_queue;
3467 oldsd->completion_queue = NULL;
3468
3469 /* Find end of our output_queue. */
3470 list_net = &sd->output_queue;
3471 while (*list_net)
3472 list_net = &(*list_net)->next_sched;
3473 /* Append output queue from offline CPU. */
3474 *list_net = oldsd->output_queue;
3475 oldsd->output_queue = NULL;
3476
3477 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3478 local_irq_enable();
3479
3480 /* Process offline CPU's input_pkt_queue */
3481 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
3482 netif_rx(skb);
3483
3484 return NOTIFY_OK;
3485 }
3486
3487 #ifdef CONFIG_NET_DMA
3488 /**
3489 * net_dma_rebalance -
3490 * This is called when the number of channels allocated to the net_dma_client
3491 * changes. The net_dma_client tries to have one DMA channel per CPU.
3492 */
3493 static void net_dma_rebalance(void)
3494 {
3495 unsigned int cpu, i, n;
3496 struct dma_chan *chan;
3497
3498 if (net_dma_count == 0) {
3499 for_each_online_cpu(cpu)
3500 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
3501 return;
3502 }
3503
3504 i = 0;
3505 cpu = first_cpu(cpu_online_map);
3506
3507 rcu_read_lock();
3508 list_for_each_entry(chan, &net_dma_client->channels, client_node) {
3509 n = ((num_online_cpus() / net_dma_count)
3510 + (i < (num_online_cpus() % net_dma_count) ? 1 : 0));
3511
3512 while(n) {
3513 per_cpu(softnet_data, cpu).net_dma = chan;
3514 cpu = next_cpu(cpu, cpu_online_map);
3515 n--;
3516 }
3517 i++;
3518 }
3519 rcu_read_unlock();
3520 }
3521
3522 /**
3523 * netdev_dma_event - event callback for the net_dma_client
3524 * @client: should always be net_dma_client
3525 * @chan: DMA channel for the event
3526 * @event: event type
3527 */
3528 static void netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
3529 enum dma_event event)
3530 {
3531 spin_lock(&net_dma_event_lock);
3532 switch (event) {
3533 case DMA_RESOURCE_ADDED:
3534 net_dma_count++;
3535 net_dma_rebalance();
3536 break;
3537 case DMA_RESOURCE_REMOVED:
3538 net_dma_count--;
3539 net_dma_rebalance();
3540 break;
3541 default:
3542 break;
3543 }
3544 spin_unlock(&net_dma_event_lock);
3545 }
3546
3547 /**
3548 * netdev_dma_regiser - register the networking subsystem as a DMA client
3549 */
3550 static int __init netdev_dma_register(void)
3551 {
3552 spin_lock_init(&net_dma_event_lock);
3553 net_dma_client = dma_async_client_register(netdev_dma_event);
3554 if (net_dma_client == NULL)
3555 return -ENOMEM;
3556
3557 dma_async_client_chan_request(net_dma_client, num_online_cpus());
3558 return 0;
3559 }
3560
3561 #else
3562 static int __init netdev_dma_register(void) { return -ENODEV; }
3563 #endif /* CONFIG_NET_DMA */
3564
3565 /*
3566 * Initialize the DEV module. At boot time this walks the device list and
3567 * unhooks any devices that fail to initialise (normally hardware not
3568 * present) and leaves us with a valid list of present and active devices.
3569 *
3570 */
3571
3572 /*
3573 * This is called single threaded during boot, so no need
3574 * to take the rtnl semaphore.
3575 */
3576 static int __init net_dev_init(void)
3577 {
3578 int i, rc = -ENOMEM;
3579
3580 BUG_ON(!dev_boot_phase);
3581
3582 if (dev_proc_init())
3583 goto out;
3584
3585 if (netdev_sysfs_init())
3586 goto out;
3587
3588 INIT_LIST_HEAD(&ptype_all);
3589 for (i = 0; i < 16; i++)
3590 INIT_LIST_HEAD(&ptype_base[i]);
3591
3592 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++)
3593 INIT_HLIST_HEAD(&dev_name_head[i]);
3594
3595 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++)
3596 INIT_HLIST_HEAD(&dev_index_head[i]);
3597
3598 /*
3599 * Initialise the packet receive queues.
3600 */
3601
3602 for_each_possible_cpu(i) {
3603 struct softnet_data *queue;
3604
3605 queue = &per_cpu(softnet_data, i);
3606 skb_queue_head_init(&queue->input_pkt_queue);
3607 queue->completion_queue = NULL;
3608 INIT_LIST_HEAD(&queue->poll_list);
3609 set_bit(__LINK_STATE_START, &queue->backlog_dev.state);
3610 queue->backlog_dev.weight = weight_p;
3611 queue->backlog_dev.poll = process_backlog;
3612 atomic_set(&queue->backlog_dev.refcnt, 1);
3613 }
3614
3615 netdev_dma_register();
3616
3617 dev_boot_phase = 0;
3618
3619 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
3620 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
3621
3622 hotcpu_notifier(dev_cpu_callback, 0);
3623 dst_init();
3624 dev_mcast_init();
3625 rc = 0;
3626 out:
3627 return rc;
3628 }
3629
3630 subsys_initcall(net_dev_init);
3631
3632 EXPORT_SYMBOL(__dev_get_by_index);
3633 EXPORT_SYMBOL(__dev_get_by_name);
3634 EXPORT_SYMBOL(__dev_remove_pack);
3635 EXPORT_SYMBOL(dev_valid_name);
3636 EXPORT_SYMBOL(dev_add_pack);
3637 EXPORT_SYMBOL(dev_alloc_name);
3638 EXPORT_SYMBOL(dev_close);
3639 EXPORT_SYMBOL(dev_get_by_flags);
3640 EXPORT_SYMBOL(dev_get_by_index);
3641 EXPORT_SYMBOL(dev_get_by_name);
3642 EXPORT_SYMBOL(dev_open);
3643 EXPORT_SYMBOL(dev_queue_xmit);
3644 EXPORT_SYMBOL(dev_remove_pack);
3645 EXPORT_SYMBOL(dev_set_allmulti);
3646 EXPORT_SYMBOL(dev_set_promiscuity);
3647 EXPORT_SYMBOL(dev_change_flags);
3648 EXPORT_SYMBOL(dev_set_mtu);
3649 EXPORT_SYMBOL(dev_set_mac_address);
3650 EXPORT_SYMBOL(free_netdev);
3651 EXPORT_SYMBOL(netdev_boot_setup_check);
3652 EXPORT_SYMBOL(netdev_set_master);
3653 EXPORT_SYMBOL(netdev_state_change);
3654 EXPORT_SYMBOL(netif_receive_skb);
3655 EXPORT_SYMBOL(netif_rx);
3656 EXPORT_SYMBOL(register_gifconf);
3657 EXPORT_SYMBOL(register_netdevice);
3658 EXPORT_SYMBOL(register_netdevice_notifier);
3659 EXPORT_SYMBOL(skb_checksum_help);
3660 EXPORT_SYMBOL(synchronize_net);
3661 EXPORT_SYMBOL(unregister_netdevice);
3662 EXPORT_SYMBOL(unregister_netdevice_notifier);
3663 EXPORT_SYMBOL(net_enable_timestamp);
3664 EXPORT_SYMBOL(net_disable_timestamp);
3665 EXPORT_SYMBOL(dev_get_flags);
3666
3667 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
3668 EXPORT_SYMBOL(br_handle_frame_hook);
3669 EXPORT_SYMBOL(br_fdb_get_hook);
3670 EXPORT_SYMBOL(br_fdb_put_hook);
3671 #endif
3672
3673 #ifdef CONFIG_KMOD
3674 EXPORT_SYMBOL(dev_load);
3675 #endif
3676
3677 EXPORT_PER_CPU_SYMBOL(softnet_data);