import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <net/udp.h>
133 #include "net-sysfs.h"
134
135 #ifdef UDP_SKT_WIFI
136 #include <linux/ftrace_event.h>
137 #endif
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly; /* Taps */
149 static struct list_head offload_base __read_mostly;
150
151 /*
152 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
153 * semaphore.
154 *
155 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
156 *
157 * Writers must hold the rtnl semaphore while they loop through the
158 * dev_base_head list, and hold dev_base_lock for writing when they do the
159 * actual updates. This allows pure readers to access the list even
160 * while a writer is preparing to update it.
161 *
162 * To put it another way, dev_base_lock is held for writing only to
163 * protect against pure readers; the rtnl semaphore provides the
164 * protection against other writers.
165 *
166 * See, for example usages, register_netdevice() and
167 * unregister_netdevice(), which must be called with the rtnl
168 * semaphore held.
169 */
170 DEFINE_RWLOCK(dev_base_lock);
171 EXPORT_SYMBOL(dev_base_lock);
172
173 seqcount_t devnet_rename_seq;
174
175 static inline void dev_base_seq_inc(struct net *net)
176 {
177 while (++net->dev_base_seq == 0);
178 }
179
180 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
181 {
182 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
183
184 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
185 }
186
187 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
188 {
189 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
190 }
191
192 static inline void rps_lock(struct softnet_data *sd)
193 {
194 #ifdef CONFIG_RPS
195 spin_lock(&sd->input_pkt_queue.lock);
196 #endif
197 }
198
199 static inline void rps_unlock(struct softnet_data *sd)
200 {
201 #ifdef CONFIG_RPS
202 spin_unlock(&sd->input_pkt_queue.lock);
203 #endif
204 }
205
206 /* Device list insertion */
207 static void list_netdevice(struct net_device *dev)
208 {
209 struct net *net = dev_net(dev);
210
211 ASSERT_RTNL();
212
213 write_lock_bh(&dev_base_lock);
214 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
215 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
216 hlist_add_head_rcu(&dev->index_hlist,
217 dev_index_hash(net, dev->ifindex));
218 write_unlock_bh(&dev_base_lock);
219
220 dev_base_seq_inc(net);
221 }
222
223 /* Device list removal
224 * caller must respect a RCU grace period before freeing/reusing dev
225 */
226 static void unlist_netdevice(struct net_device *dev)
227 {
228 ASSERT_RTNL();
229
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del_rcu(&dev->dev_list);
233 hlist_del_rcu(&dev->name_hlist);
234 hlist_del_rcu(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
236
237 dev_base_seq_inc(dev_net(dev));
238 }
239
240 /*
241 * Our notifier list
242 */
243
244 static RAW_NOTIFIER_HEAD(netdev_chain);
245
246 /*
247 * Device drivers call our routines to queue packets here. We empty the
248 * queue in the local softnet handler.
249 */
250
251 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
252 EXPORT_PER_CPU_SYMBOL(softnet_data);
253
254 #ifdef CONFIG_LOCKDEP
255 /*
256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
257 * according to dev->type
258 */
259 static const unsigned short netdev_lock_type[] =
260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
273 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
274 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
275
276 static const char *const netdev_lock_name[] =
277 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
278 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
279 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
280 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
281 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
282 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
283 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
284 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
285 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
286 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
287 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
288 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
289 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
290 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
291 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
292
293 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
294 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
295
296 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
297 {
298 int i;
299
300 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
301 if (netdev_lock_type[i] == dev_type)
302 return i;
303 /* the last key is used by default */
304 return ARRAY_SIZE(netdev_lock_type) - 1;
305 }
306
307 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
308 unsigned short dev_type)
309 {
310 int i;
311
312 i = netdev_lock_pos(dev_type);
313 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
314 netdev_lock_name[i]);
315 }
316
317 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
318 {
319 int i;
320
321 i = netdev_lock_pos(dev->type);
322 lockdep_set_class_and_name(&dev->addr_list_lock,
323 &netdev_addr_lock_key[i],
324 netdev_lock_name[i]);
325 }
326 #else
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329 {
330 }
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333 }
334 #endif
335
336 /*******************************************************************************
337
338 Protocol management and registration routines
339
340 *******************************************************************************/
341
342 /*
343 * Add a protocol ID to the list. Now that the input handler is
344 * smarter we can dispense with all the messy stuff that used to be
345 * here.
346 *
347 * BEWARE!!! Protocol handlers, mangling input packets,
348 * MUST BE last in hash buckets and checking protocol handlers
349 * MUST start from promiscuous ptype_all chain in net_bh.
350 * It is true now, do not change it.
351 * Explanation follows: if protocol handler, mangling packet, will
352 * be the first on list, it is not able to sense, that packet
353 * is cloned and should be copied-on-write, so that it will
354 * change it and subsequent readers will get broken packet.
355 * --ANK (980803)
356 */
357
358 static inline struct list_head *ptype_head(const struct packet_type *pt)
359 {
360 if (pt->type == htons(ETH_P_ALL))
361 return &ptype_all;
362 else
363 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
364 }
365
366 /**
367 * dev_add_pack - add packet handler
368 * @pt: packet type declaration
369 *
370 * Add a protocol handler to the networking stack. The passed &packet_type
371 * is linked into kernel lists and may not be freed until it has been
372 * removed from the kernel lists.
373 *
374 * This call does not sleep therefore it can not
375 * guarantee all CPU's that are in middle of receiving packets
376 * will see the new packet type (until the next received packet).
377 */
378
379 void dev_add_pack(struct packet_type *pt)
380 {
381 struct list_head *head = ptype_head(pt);
382
383 spin_lock(&ptype_lock);
384 list_add_rcu(&pt->list, head);
385 spin_unlock(&ptype_lock);
386 }
387 EXPORT_SYMBOL(dev_add_pack);
388
389 /**
390 * __dev_remove_pack - remove packet handler
391 * @pt: packet type declaration
392 *
393 * Remove a protocol handler that was previously added to the kernel
394 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
395 * from the kernel lists and can be freed or reused once this function
396 * returns.
397 *
398 * The packet type might still be in use by receivers
399 * and must not be freed until after all the CPU's have gone
400 * through a quiescent state.
401 */
402 void __dev_remove_pack(struct packet_type *pt)
403 {
404 struct list_head *head = ptype_head(pt);
405 struct packet_type *pt1;
406
407 spin_lock(&ptype_lock);
408
409 list_for_each_entry(pt1, head, list) {
410 if (pt == pt1) {
411 list_del_rcu(&pt->list);
412 goto out;
413 }
414 }
415
416 pr_warn("dev_remove_pack: %p not found\n", pt);
417 out:
418 spin_unlock(&ptype_lock);
419 }
420 EXPORT_SYMBOL(__dev_remove_pack);
421
422 /**
423 * dev_remove_pack - remove packet handler
424 * @pt: packet type declaration
425 *
426 * Remove a protocol handler that was previously added to the kernel
427 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
428 * from the kernel lists and can be freed or reused once this function
429 * returns.
430 *
431 * This call sleeps to guarantee that no CPU is looking at the packet
432 * type after return.
433 */
434 void dev_remove_pack(struct packet_type *pt)
435 {
436 __dev_remove_pack(pt);
437
438 synchronize_net();
439 }
440 EXPORT_SYMBOL(dev_remove_pack);
441
442
443 /**
444 * dev_add_offload - register offload handlers
445 * @po: protocol offload declaration
446 *
447 * Add protocol offload handlers to the networking stack. The passed
448 * &proto_offload is linked into kernel lists and may not be freed until
449 * it has been removed from the kernel lists.
450 *
451 * This call does not sleep therefore it can not
452 * guarantee all CPU's that are in middle of receiving packets
453 * will see the new offload handlers (until the next received packet).
454 */
455 void dev_add_offload(struct packet_offload *po)
456 {
457 struct list_head *head = &offload_base;
458
459 spin_lock(&offload_lock);
460 list_add_rcu(&po->list, head);
461 spin_unlock(&offload_lock);
462 }
463 EXPORT_SYMBOL(dev_add_offload);
464
465 /**
466 * __dev_remove_offload - remove offload handler
467 * @po: packet offload declaration
468 *
469 * Remove a protocol offload handler that was previously added to the
470 * kernel offload handlers by dev_add_offload(). The passed &offload_type
471 * is removed from the kernel lists and can be freed or reused once this
472 * function returns.
473 *
474 * The packet type might still be in use by receivers
475 * and must not be freed until after all the CPU's have gone
476 * through a quiescent state.
477 */
478 void __dev_remove_offload(struct packet_offload *po)
479 {
480 struct list_head *head = &offload_base;
481 struct packet_offload *po1;
482
483 spin_lock(&offload_lock);
484
485 list_for_each_entry(po1, head, list) {
486 if (po == po1) {
487 list_del_rcu(&po->list);
488 goto out;
489 }
490 }
491
492 pr_warn("dev_remove_offload: %p not found\n", po);
493 out:
494 spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(__dev_remove_offload);
497
498 /**
499 * dev_remove_offload - remove packet offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a packet offload handler that was previously added to the kernel
503 * offload handlers by dev_add_offload(). The passed &offload_type is
504 * removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * This call sleeps to guarantee that no CPU is looking at the packet
508 * type after return.
509 */
510 void dev_remove_offload(struct packet_offload *po)
511 {
512 __dev_remove_offload(po);
513
514 synchronize_net();
515 }
516 EXPORT_SYMBOL(dev_remove_offload);
517
518 /******************************************************************************
519
520 Device Boot-time Settings Routines
521
522 *******************************************************************************/
523
524 /* Boot time configuration table */
525 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
526
527 /**
528 * netdev_boot_setup_add - add new setup entry
529 * @name: name of the device
530 * @map: configured settings for the device
531 *
532 * Adds new setup entry to the dev_boot_setup list. The function
533 * returns 0 on error and 1 on success. This is a generic routine to
534 * all netdevices.
535 */
536 static int netdev_boot_setup_add(char *name, struct ifmap *map)
537 {
538 struct netdev_boot_setup *s;
539 int i;
540
541 s = dev_boot_setup;
542 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
543 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
544 memset(s[i].name, 0, sizeof(s[i].name));
545 strlcpy(s[i].name, name, IFNAMSIZ);
546 memcpy(&s[i].map, map, sizeof(s[i].map));
547 break;
548 }
549 }
550
551 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
552 }
553
554 /**
555 * netdev_boot_setup_check - check boot time settings
556 * @dev: the netdevice
557 *
558 * Check boot time settings for the device.
559 * The found settings are set for the device to be used
560 * later in the device probing.
561 * Returns 0 if no settings found, 1 if they are.
562 */
563 int netdev_boot_setup_check(struct net_device *dev)
564 {
565 struct netdev_boot_setup *s = dev_boot_setup;
566 int i;
567
568 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
569 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
570 !strcmp(dev->name, s[i].name)) {
571 dev->irq = s[i].map.irq;
572 dev->base_addr = s[i].map.base_addr;
573 dev->mem_start = s[i].map.mem_start;
574 dev->mem_end = s[i].map.mem_end;
575 return 1;
576 }
577 }
578 return 0;
579 }
580 EXPORT_SYMBOL(netdev_boot_setup_check);
581
582
583 /**
584 * netdev_boot_base - get address from boot time settings
585 * @prefix: prefix for network device
586 * @unit: id for network device
587 *
588 * Check boot time settings for the base address of device.
589 * The found settings are set for the device to be used
590 * later in the device probing.
591 * Returns 0 if no settings found.
592 */
593 unsigned long netdev_boot_base(const char *prefix, int unit)
594 {
595 const struct netdev_boot_setup *s = dev_boot_setup;
596 char name[IFNAMSIZ];
597 int i;
598
599 sprintf(name, "%s%d", prefix, unit);
600
601 /*
602 * If device already registered then return base of 1
603 * to indicate not to probe for this interface
604 */
605 if (__dev_get_by_name(&init_net, name))
606 return 1;
607
608 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
609 if (!strcmp(name, s[i].name))
610 return s[i].map.base_addr;
611 return 0;
612 }
613
614 /*
615 * Saves at boot time configured settings for any netdevice.
616 */
617 int __init netdev_boot_setup(char *str)
618 {
619 int ints[5];
620 struct ifmap map;
621
622 str = get_options(str, ARRAY_SIZE(ints), ints);
623 if (!str || !*str)
624 return 0;
625
626 /* Save settings */
627 memset(&map, 0, sizeof(map));
628 if (ints[0] > 0)
629 map.irq = ints[1];
630 if (ints[0] > 1)
631 map.base_addr = ints[2];
632 if (ints[0] > 2)
633 map.mem_start = ints[3];
634 if (ints[0] > 3)
635 map.mem_end = ints[4];
636
637 /* Add new entry to the list */
638 return netdev_boot_setup_add(str, &map);
639 }
640
641 __setup("netdev=", netdev_boot_setup);
642
643 /*******************************************************************************
644
645 Device Interface Subroutines
646
647 *******************************************************************************/
648
649 /**
650 * __dev_get_by_name - find a device by its name
651 * @net: the applicable net namespace
652 * @name: name to find
653 *
654 * Find an interface by name. Must be called under RTNL semaphore
655 * or @dev_base_lock. If the name is found a pointer to the device
656 * is returned. If the name is not found then %NULL is returned. The
657 * reference counters are not incremented so the caller must be
658 * careful with locks.
659 */
660
661 struct net_device *__dev_get_by_name(struct net *net, const char *name)
662 {
663 struct net_device *dev;
664 struct hlist_head *head = dev_name_hash(net, name);
665
666 hlist_for_each_entry(dev, head, name_hlist)
667 if (!strncmp(dev->name, name, IFNAMSIZ))
668 return dev;
669
670 return NULL;
671 }
672 EXPORT_SYMBOL(__dev_get_by_name);
673
674 /**
675 * dev_get_by_name_rcu - find a device by its name
676 * @net: the applicable net namespace
677 * @name: name to find
678 *
679 * Find an interface by name.
680 * If the name is found a pointer to the device is returned.
681 * If the name is not found then %NULL is returned.
682 * The reference counters are not incremented so the caller must be
683 * careful with locks. The caller must hold RCU lock.
684 */
685
686 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
687 {
688 struct net_device *dev;
689 struct hlist_head *head = dev_name_hash(net, name);
690
691 hlist_for_each_entry_rcu(dev, head, name_hlist)
692 if (!strncmp(dev->name, name, IFNAMSIZ))
693 return dev;
694
695 return NULL;
696 }
697 EXPORT_SYMBOL(dev_get_by_name_rcu);
698
699 /**
700 * dev_get_by_name - find a device by its name
701 * @net: the applicable net namespace
702 * @name: name to find
703 *
704 * Find an interface by name. This can be called from any
705 * context and does its own locking. The returned handle has
706 * the usage count incremented and the caller must use dev_put() to
707 * release it when it is no longer needed. %NULL is returned if no
708 * matching device is found.
709 */
710
711 struct net_device *dev_get_by_name(struct net *net, const char *name)
712 {
713 struct net_device *dev;
714
715 rcu_read_lock();
716 dev = dev_get_by_name_rcu(net, name);
717 if (dev)
718 dev_hold(dev);
719 rcu_read_unlock();
720 return dev;
721 }
722 EXPORT_SYMBOL(dev_get_by_name);
723
724 /**
725 * __dev_get_by_index - find a device by its ifindex
726 * @net: the applicable net namespace
727 * @ifindex: index of device
728 *
729 * Search for an interface by index. Returns %NULL if the device
730 * is not found or a pointer to the device. The device has not
731 * had its reference counter increased so the caller must be careful
732 * about locking. The caller must hold either the RTNL semaphore
733 * or @dev_base_lock.
734 */
735
736 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
737 {
738 struct net_device *dev;
739 struct hlist_head *head = dev_index_hash(net, ifindex);
740
741 hlist_for_each_entry(dev, head, index_hlist)
742 if (dev->ifindex == ifindex)
743 return dev;
744
745 return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_index);
748
749 /**
750 * dev_get_by_index_rcu - find a device by its ifindex
751 * @net: the applicable net namespace
752 * @ifindex: index of device
753 *
754 * Search for an interface by index. Returns %NULL if the device
755 * is not found or a pointer to the device. The device has not
756 * had its reference counter increased so the caller must be careful
757 * about locking. The caller must hold RCU lock.
758 */
759
760 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
761 {
762 struct net_device *dev;
763 struct hlist_head *head = dev_index_hash(net, ifindex);
764
765 hlist_for_each_entry_rcu(dev, head, index_hlist)
766 if (dev->ifindex == ifindex)
767 return dev;
768
769 return NULL;
770 }
771 EXPORT_SYMBOL(dev_get_by_index_rcu);
772
773
774 /**
775 * dev_get_by_index - find a device by its ifindex
776 * @net: the applicable net namespace
777 * @ifindex: index of device
778 *
779 * Search for an interface by index. Returns NULL if the device
780 * is not found or a pointer to the device. The device returned has
781 * had a reference added and the pointer is safe until the user calls
782 * dev_put to indicate they have finished with it.
783 */
784
785 struct net_device *dev_get_by_index(struct net *net, int ifindex)
786 {
787 struct net_device *dev;
788
789 rcu_read_lock();
790 dev = dev_get_by_index_rcu(net, ifindex);
791 if (dev)
792 dev_hold(dev);
793 rcu_read_unlock();
794 return dev;
795 }
796 EXPORT_SYMBOL(dev_get_by_index);
797
798 /**
799 * netdev_get_name - get a netdevice name, knowing its ifindex.
800 * @net: network namespace
801 * @name: a pointer to the buffer where the name will be stored.
802 * @ifindex: the ifindex of the interface to get the name from.
803 *
804 * The use of raw_seqcount_begin() and cond_resched() before
805 * retrying is required as we want to give the writers a chance
806 * to complete when CONFIG_PREEMPT is not set.
807 */
808 int netdev_get_name(struct net *net, char *name, int ifindex)
809 {
810 struct net_device *dev;
811 unsigned int seq;
812
813 retry:
814 seq = raw_seqcount_begin(&devnet_rename_seq);
815 rcu_read_lock();
816 dev = dev_get_by_index_rcu(net, ifindex);
817 if (!dev) {
818 rcu_read_unlock();
819 return -ENODEV;
820 }
821
822 strcpy(name, dev->name);
823 rcu_read_unlock();
824 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
825 cond_resched();
826 goto retry;
827 }
828
829 return 0;
830 }
831
832 /**
833 * dev_getbyhwaddr_rcu - find a device by its hardware address
834 * @net: the applicable net namespace
835 * @type: media type of device
836 * @ha: hardware address
837 *
838 * Search for an interface by MAC address. Returns NULL if the device
839 * is not found or a pointer to the device.
840 * The caller must hold RCU or RTNL.
841 * The returned device has not had its ref count increased
842 * and the caller must therefore be careful about locking
843 *
844 */
845
846 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
847 const char *ha)
848 {
849 struct net_device *dev;
850
851 for_each_netdev_rcu(net, dev)
852 if (dev->type == type &&
853 !memcmp(dev->dev_addr, ha, dev->addr_len))
854 return dev;
855
856 return NULL;
857 }
858 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
859
860 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
861 {
862 struct net_device *dev;
863
864 ASSERT_RTNL();
865 for_each_netdev(net, dev)
866 if (dev->type == type)
867 return dev;
868
869 return NULL;
870 }
871 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
872
873 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
874 {
875 struct net_device *dev, *ret = NULL;
876
877 rcu_read_lock();
878 for_each_netdev_rcu(net, dev)
879 if (dev->type == type) {
880 dev_hold(dev);
881 ret = dev;
882 break;
883 }
884 rcu_read_unlock();
885 return ret;
886 }
887 EXPORT_SYMBOL(dev_getfirstbyhwtype);
888
889 /**
890 * dev_get_by_flags_rcu - find any device with given flags
891 * @net: the applicable net namespace
892 * @if_flags: IFF_* values
893 * @mask: bitmask of bits in if_flags to check
894 *
895 * Search for any interface with the given flags. Returns NULL if a device
896 * is not found or a pointer to the device. Must be called inside
897 * rcu_read_lock(), and result refcount is unchanged.
898 */
899
900 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
901 unsigned short mask)
902 {
903 struct net_device *dev, *ret;
904
905 ret = NULL;
906 for_each_netdev_rcu(net, dev) {
907 if (((dev->flags ^ if_flags) & mask) == 0) {
908 ret = dev;
909 break;
910 }
911 }
912 return ret;
913 }
914 EXPORT_SYMBOL(dev_get_by_flags_rcu);
915
916 /**
917 * dev_valid_name - check if name is okay for network device
918 * @name: name string
919 *
920 * Network device names need to be valid file names to
921 * to allow sysfs to work. We also disallow any kind of
922 * whitespace.
923 */
924 bool dev_valid_name(const char *name)
925 {
926 if (*name == '\0')
927 return false;
928 if (strlen(name) >= IFNAMSIZ)
929 return false;
930 if (!strcmp(name, ".") || !strcmp(name, ".."))
931 return false;
932
933 while (*name) {
934 if (*name == '/' || isspace(*name))
935 return false;
936 name++;
937 }
938 return true;
939 }
940 EXPORT_SYMBOL(dev_valid_name);
941
942 /**
943 * __dev_alloc_name - allocate a name for a device
944 * @net: network namespace to allocate the device name in
945 * @name: name format string
946 * @buf: scratch buffer and result name string
947 *
948 * Passed a format string - eg "lt%d" it will try and find a suitable
949 * id. It scans list of devices to build up a free map, then chooses
950 * the first empty slot. The caller must hold the dev_base or rtnl lock
951 * while allocating the name and adding the device in order to avoid
952 * duplicates.
953 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
954 * Returns the number of the unit assigned or a negative errno code.
955 */
956
957 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
958 {
959 int i = 0;
960 const char *p;
961 const int max_netdevices = 8*PAGE_SIZE;
962 unsigned long *inuse;
963 struct net_device *d;
964
965 p = strnchr(name, IFNAMSIZ-1, '%');
966 if (p) {
967 /*
968 * Verify the string as this thing may have come from
969 * the user. There must be either one "%d" and no other "%"
970 * characters.
971 */
972 if (p[1] != 'd' || strchr(p + 2, '%'))
973 return -EINVAL;
974
975 /* Use one page as a bit array of possible slots */
976 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
977 if (!inuse)
978 return -ENOMEM;
979
980 for_each_netdev(net, d) {
981 if (!sscanf(d->name, name, &i))
982 continue;
983 if (i < 0 || i >= max_netdevices)
984 continue;
985
986 /* avoid cases where sscanf is not exact inverse of printf */
987 snprintf(buf, IFNAMSIZ, name, i);
988 if (!strncmp(buf, d->name, IFNAMSIZ))
989 set_bit(i, inuse);
990 }
991
992 i = find_first_zero_bit(inuse, max_netdevices);
993 free_page((unsigned long) inuse);
994 }
995
996 if (buf != name)
997 snprintf(buf, IFNAMSIZ, name, i);
998 if (!__dev_get_by_name(net, buf))
999 return i;
1000
1001 /* It is possible to run out of possible slots
1002 * when the name is long and there isn't enough space left
1003 * for the digits, or if all bits are used.
1004 */
1005 return -ENFILE;
1006 }
1007
1008 /**
1009 * dev_alloc_name - allocate a name for a device
1010 * @dev: device
1011 * @name: name format string
1012 *
1013 * Passed a format string - eg "lt%d" it will try and find a suitable
1014 * id. It scans list of devices to build up a free map, then chooses
1015 * the first empty slot. The caller must hold the dev_base or rtnl lock
1016 * while allocating the name and adding the device in order to avoid
1017 * duplicates.
1018 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1019 * Returns the number of the unit assigned or a negative errno code.
1020 */
1021
1022 int dev_alloc_name(struct net_device *dev, const char *name)
1023 {
1024 char buf[IFNAMSIZ];
1025 struct net *net;
1026 int ret;
1027
1028 BUG_ON(!dev_net(dev));
1029 net = dev_net(dev);
1030 ret = __dev_alloc_name(net, name, buf);
1031 if (ret >= 0)
1032 strlcpy(dev->name, buf, IFNAMSIZ);
1033 return ret;
1034 }
1035 EXPORT_SYMBOL(dev_alloc_name);
1036
1037 static int dev_alloc_name_ns(struct net *net,
1038 struct net_device *dev,
1039 const char *name)
1040 {
1041 char buf[IFNAMSIZ];
1042 int ret;
1043
1044 ret = __dev_alloc_name(net, name, buf);
1045 if (ret >= 0)
1046 strlcpy(dev->name, buf, IFNAMSIZ);
1047 return ret;
1048 }
1049
1050 static int dev_get_valid_name(struct net *net,
1051 struct net_device *dev,
1052 const char *name)
1053 {
1054 BUG_ON(!net);
1055
1056 if (!dev_valid_name(name))
1057 return -EINVAL;
1058
1059 if (strchr(name, '%'))
1060 return dev_alloc_name_ns(net, dev, name);
1061 else if (__dev_get_by_name(net, name))
1062 return -EEXIST;
1063 else if (dev->name != name)
1064 strlcpy(dev->name, name, IFNAMSIZ);
1065
1066 return 0;
1067 }
1068
1069 /**
1070 * dev_change_name - change name of a device
1071 * @dev: device
1072 * @newname: name (or format string) must be at least IFNAMSIZ
1073 *
1074 * Change name of a device, can pass format strings "eth%d".
1075 * for wildcarding.
1076 */
1077 int dev_change_name(struct net_device *dev, const char *newname)
1078 {
1079 char oldname[IFNAMSIZ];
1080 int err = 0;
1081 int ret;
1082 struct net *net;
1083
1084 ASSERT_RTNL();
1085 BUG_ON(!dev_net(dev));
1086
1087 net = dev_net(dev);
1088 if (dev->flags & IFF_UP)
1089 return -EBUSY;
1090
1091 write_seqcount_begin(&devnet_rename_seq);
1092
1093 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1094 write_seqcount_end(&devnet_rename_seq);
1095 return 0;
1096 }
1097
1098 memcpy(oldname, dev->name, IFNAMSIZ);
1099
1100 err = dev_get_valid_name(net, dev, newname);
1101 if (err < 0) {
1102 write_seqcount_end(&devnet_rename_seq);
1103 return err;
1104 }
1105
1106 rollback:
1107 ret = device_rename(&dev->dev, dev->name);
1108 if (ret) {
1109 memcpy(dev->name, oldname, IFNAMSIZ);
1110 write_seqcount_end(&devnet_rename_seq);
1111 return ret;
1112 }
1113
1114 write_seqcount_end(&devnet_rename_seq);
1115
1116 write_lock_bh(&dev_base_lock);
1117 hlist_del_rcu(&dev->name_hlist);
1118 write_unlock_bh(&dev_base_lock);
1119
1120 synchronize_rcu();
1121
1122 write_lock_bh(&dev_base_lock);
1123 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1124 write_unlock_bh(&dev_base_lock);
1125
1126 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1127 ret = notifier_to_errno(ret);
1128
1129 if (ret) {
1130 /* err >= 0 after dev_alloc_name() or stores the first errno */
1131 if (err >= 0) {
1132 err = ret;
1133 write_seqcount_begin(&devnet_rename_seq);
1134 memcpy(dev->name, oldname, IFNAMSIZ);
1135 goto rollback;
1136 } else {
1137 pr_err("%s: name change rollback failed: %d\n",
1138 dev->name, ret);
1139 }
1140 }
1141
1142 return err;
1143 }
1144
1145 /**
1146 * dev_set_alias - change ifalias of a device
1147 * @dev: device
1148 * @alias: name up to IFALIASZ
1149 * @len: limit of bytes to copy from info
1150 *
1151 * Set ifalias for a device,
1152 */
1153 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1154 {
1155 char *new_ifalias;
1156
1157 ASSERT_RTNL();
1158
1159 if (len >= IFALIASZ)
1160 return -EINVAL;
1161
1162 if (!len) {
1163 kfree(dev->ifalias);
1164 dev->ifalias = NULL;
1165 return 0;
1166 }
1167
1168 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1169 if (!new_ifalias)
1170 return -ENOMEM;
1171 dev->ifalias = new_ifalias;
1172
1173 strlcpy(dev->ifalias, alias, len+1);
1174 return len;
1175 }
1176
1177
1178 /**
1179 * netdev_features_change - device changes features
1180 * @dev: device to cause notification
1181 *
1182 * Called to indicate a device has changed features.
1183 */
1184 void netdev_features_change(struct net_device *dev)
1185 {
1186 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1187 }
1188 EXPORT_SYMBOL(netdev_features_change);
1189
1190 /**
1191 * netdev_state_change - device changes state
1192 * @dev: device to cause notification
1193 *
1194 * Called to indicate a device has changed state. This function calls
1195 * the notifier chains for netdev_chain and sends a NEWLINK message
1196 * to the routing socket.
1197 */
1198 void netdev_state_change(struct net_device *dev)
1199 {
1200 if (dev->flags & IFF_UP) {
1201 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1202 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1203 }
1204 }
1205 EXPORT_SYMBOL(netdev_state_change);
1206
1207 /**
1208 * netdev_notify_peers - notify network peers about existence of @dev
1209 * @dev: network device
1210 *
1211 * Generate traffic such that interested network peers are aware of
1212 * @dev, such as by generating a gratuitous ARP. This may be used when
1213 * a device wants to inform the rest of the network about some sort of
1214 * reconfiguration such as a failover event or virtual machine
1215 * migration.
1216 */
1217 void netdev_notify_peers(struct net_device *dev)
1218 {
1219 rtnl_lock();
1220 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1221 rtnl_unlock();
1222 }
1223 EXPORT_SYMBOL(netdev_notify_peers);
1224
1225 static int __dev_open(struct net_device *dev)
1226 {
1227 const struct net_device_ops *ops = dev->netdev_ops;
1228 int ret;
1229
1230 ASSERT_RTNL();
1231
1232 if (!netif_device_present(dev))
1233 return -ENODEV;
1234
1235 /* Block netpoll from trying to do any rx path servicing.
1236 * If we don't do this there is a chance ndo_poll_controller
1237 * or ndo_poll may be running while we open the device
1238 */
1239 ret = netpoll_rx_disable(dev);
1240 if (ret)
1241 return ret;
1242
1243 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1244 ret = notifier_to_errno(ret);
1245 if (ret)
1246 return ret;
1247
1248 set_bit(__LINK_STATE_START, &dev->state);
1249
1250 if (ops->ndo_validate_addr)
1251 ret = ops->ndo_validate_addr(dev);
1252
1253 if (!ret && ops->ndo_open)
1254 ret = ops->ndo_open(dev);
1255
1256 netpoll_rx_enable(dev);
1257
1258 if (ret)
1259 clear_bit(__LINK_STATE_START, &dev->state);
1260 else {
1261 dev->flags |= IFF_UP;
1262 net_dmaengine_get();
1263 dev_set_rx_mode(dev);
1264 dev_activate(dev);
1265 add_device_randomness(dev->dev_addr, dev->addr_len);
1266 }
1267
1268 return ret;
1269 }
1270
1271 /**
1272 * dev_open - prepare an interface for use.
1273 * @dev: device to open
1274 *
1275 * Takes a device from down to up state. The device's private open
1276 * function is invoked and then the multicast lists are loaded. Finally
1277 * the device is moved into the up state and a %NETDEV_UP message is
1278 * sent to the netdev notifier chain.
1279 *
1280 * Calling this function on an active interface is a nop. On a failure
1281 * a negative errno code is returned.
1282 */
1283 int dev_open(struct net_device *dev)
1284 {
1285 int ret;
1286
1287 if (dev->flags & IFF_UP)
1288 return 0;
1289
1290 ret = __dev_open(dev);
1291 if (ret < 0)
1292 return ret;
1293
1294 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1295 call_netdevice_notifiers(NETDEV_UP, dev);
1296
1297 return ret;
1298 }
1299 EXPORT_SYMBOL(dev_open);
1300
1301 static int __dev_close_many(struct list_head *head)
1302 {
1303 struct net_device *dev;
1304
1305 ASSERT_RTNL();
1306 might_sleep();
1307
1308 list_for_each_entry(dev, head, unreg_list) {
1309 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1310
1311 clear_bit(__LINK_STATE_START, &dev->state);
1312
1313 /* Synchronize to scheduled poll. We cannot touch poll list, it
1314 * can be even on different cpu. So just clear netif_running().
1315 *
1316 * dev->stop() will invoke napi_disable() on all of it's
1317 * napi_struct instances on this device.
1318 */
1319 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1320 }
1321
1322 dev_deactivate_many(head);
1323
1324 list_for_each_entry(dev, head, unreg_list) {
1325 const struct net_device_ops *ops = dev->netdev_ops;
1326
1327 /*
1328 * Call the device specific close. This cannot fail.
1329 * Only if device is UP
1330 *
1331 * We allow it to be called even after a DETACH hot-plug
1332 * event.
1333 */
1334 if (ops->ndo_stop)
1335 ops->ndo_stop(dev);
1336
1337 dev->flags &= ~IFF_UP;
1338 net_dmaengine_put();
1339 }
1340
1341 return 0;
1342 }
1343
1344 static int __dev_close(struct net_device *dev)
1345 {
1346 int retval;
1347 LIST_HEAD(single);
1348
1349 /* Temporarily disable netpoll until the interface is down */
1350 retval = netpoll_rx_disable(dev);
1351 if (retval)
1352 return retval;
1353
1354 list_add(&dev->unreg_list, &single);
1355 retval = __dev_close_many(&single);
1356 list_del(&single);
1357
1358 netpoll_rx_enable(dev);
1359 return retval;
1360 }
1361
1362 static int dev_close_many(struct list_head *head)
1363 {
1364 struct net_device *dev, *tmp;
1365 LIST_HEAD(tmp_list);
1366
1367 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1368 if (!(dev->flags & IFF_UP))
1369 list_move(&dev->unreg_list, &tmp_list);
1370
1371 __dev_close_many(head);
1372
1373 list_for_each_entry(dev, head, unreg_list) {
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1375 call_netdevice_notifiers(NETDEV_DOWN, dev);
1376 }
1377
1378 /* rollback_registered_many needs the complete original list */
1379 list_splice(&tmp_list, head);
1380 return 0;
1381 }
1382
1383 /**
1384 * dev_close - shutdown an interface.
1385 * @dev: device to shutdown
1386 *
1387 * This function moves an active device into down state. A
1388 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1389 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1390 * chain.
1391 */
1392 int dev_close(struct net_device *dev)
1393 {
1394 int ret = 0;
1395 if (dev->flags & IFF_UP) {
1396 LIST_HEAD(single);
1397
1398 /* Block netpoll rx while the interface is going down */
1399 ret = netpoll_rx_disable(dev);
1400 if (ret)
1401 return ret;
1402
1403 list_add(&dev->unreg_list, &single);
1404 dev_close_many(&single);
1405 list_del(&single);
1406
1407 netpoll_rx_enable(dev);
1408 }
1409 return ret;
1410 }
1411 EXPORT_SYMBOL(dev_close);
1412
1413
1414 /**
1415 * dev_disable_lro - disable Large Receive Offload on a device
1416 * @dev: device
1417 *
1418 * Disable Large Receive Offload (LRO) on a net device. Must be
1419 * called under RTNL. This is needed if received packets may be
1420 * forwarded to another interface.
1421 */
1422 void dev_disable_lro(struct net_device *dev)
1423 {
1424 /*
1425 * If we're trying to disable lro on a vlan device
1426 * use the underlying physical device instead
1427 */
1428 if (is_vlan_dev(dev))
1429 dev = vlan_dev_real_dev(dev);
1430
1431 dev->wanted_features &= ~NETIF_F_LRO;
1432 netdev_update_features(dev);
1433
1434 if (unlikely(dev->features & NETIF_F_LRO))
1435 netdev_WARN(dev, "failed to disable LRO!\n");
1436 }
1437 EXPORT_SYMBOL(dev_disable_lro);
1438
1439
1440 static int dev_boot_phase = 1;
1441
1442 /**
1443 * register_netdevice_notifier - register a network notifier block
1444 * @nb: notifier
1445 *
1446 * Register a notifier to be called when network device events occur.
1447 * The notifier passed is linked into the kernel structures and must
1448 * not be reused until it has been unregistered. A negative errno code
1449 * is returned on a failure.
1450 *
1451 * When registered all registration and up events are replayed
1452 * to the new notifier to allow device to have a race free
1453 * view of the network device list.
1454 */
1455
1456 int register_netdevice_notifier(struct notifier_block *nb)
1457 {
1458 struct net_device *dev;
1459 struct net_device *last;
1460 struct net *net;
1461 int err;
1462
1463 rtnl_lock();
1464 err = raw_notifier_chain_register(&netdev_chain, nb);
1465 if (err)
1466 goto unlock;
1467 if (dev_boot_phase)
1468 goto unlock;
1469 for_each_net(net) {
1470 for_each_netdev(net, dev) {
1471 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1472 err = notifier_to_errno(err);
1473 if (err)
1474 goto rollback;
1475
1476 if (!(dev->flags & IFF_UP))
1477 continue;
1478
1479 nb->notifier_call(nb, NETDEV_UP, dev);
1480 }
1481 }
1482
1483 unlock:
1484 rtnl_unlock();
1485 return err;
1486
1487 rollback:
1488 last = dev;
1489 for_each_net(net) {
1490 for_each_netdev(net, dev) {
1491 if (dev == last)
1492 goto outroll;
1493
1494 if (dev->flags & IFF_UP) {
1495 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1496 nb->notifier_call(nb, NETDEV_DOWN, dev);
1497 }
1498 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1499 }
1500 }
1501
1502 outroll:
1503 raw_notifier_chain_unregister(&netdev_chain, nb);
1504 goto unlock;
1505 }
1506 EXPORT_SYMBOL(register_netdevice_notifier);
1507
1508 /**
1509 * unregister_netdevice_notifier - unregister a network notifier block
1510 * @nb: notifier
1511 *
1512 * Unregister a notifier previously registered by
1513 * register_netdevice_notifier(). The notifier is unlinked into the
1514 * kernel structures and may then be reused. A negative errno code
1515 * is returned on a failure.
1516 *
1517 * After unregistering unregister and down device events are synthesized
1518 * for all devices on the device list to the removed notifier to remove
1519 * the need for special case cleanup code.
1520 */
1521
1522 int unregister_netdevice_notifier(struct notifier_block *nb)
1523 {
1524 struct net_device *dev;
1525 struct net *net;
1526 int err;
1527
1528 rtnl_lock();
1529 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1530 if (err)
1531 goto unlock;
1532
1533 for_each_net(net) {
1534 for_each_netdev(net, dev) {
1535 if (dev->flags & IFF_UP) {
1536 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1537 nb->notifier_call(nb, NETDEV_DOWN, dev);
1538 }
1539 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1540 }
1541 }
1542 unlock:
1543 rtnl_unlock();
1544 return err;
1545 }
1546 EXPORT_SYMBOL(unregister_netdevice_notifier);
1547
1548 /**
1549 * call_netdevice_notifiers - call all network notifier blocks
1550 * @val: value passed unmodified to notifier function
1551 * @dev: net_device pointer passed unmodified to notifier function
1552 *
1553 * Call all network notifier blocks. Parameters and return value
1554 * are as for raw_notifier_call_chain().
1555 */
1556
1557 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1558 {
1559 ASSERT_RTNL();
1560 return raw_notifier_call_chain(&netdev_chain, val, dev);
1561 }
1562 EXPORT_SYMBOL(call_netdevice_notifiers);
1563
1564 static struct static_key netstamp_needed __read_mostly;
1565 #ifdef HAVE_JUMP_LABEL
1566 /* We are not allowed to call static_key_slow_dec() from irq context
1567 * If net_disable_timestamp() is called from irq context, defer the
1568 * static_key_slow_dec() calls.
1569 */
1570 static atomic_t netstamp_needed_deferred;
1571 #endif
1572
1573 void net_enable_timestamp(void)
1574 {
1575 #ifdef HAVE_JUMP_LABEL
1576 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1577
1578 if (deferred) {
1579 while (--deferred)
1580 static_key_slow_dec(&netstamp_needed);
1581 return;
1582 }
1583 #endif
1584 static_key_slow_inc(&netstamp_needed);
1585 }
1586 EXPORT_SYMBOL(net_enable_timestamp);
1587
1588 void net_disable_timestamp(void)
1589 {
1590 #ifdef HAVE_JUMP_LABEL
1591 if (in_interrupt()) {
1592 atomic_inc(&netstamp_needed_deferred);
1593 return;
1594 }
1595 #endif
1596 static_key_slow_dec(&netstamp_needed);
1597 }
1598 EXPORT_SYMBOL(net_disable_timestamp);
1599
1600 static inline void net_timestamp_set(struct sk_buff *skb)
1601 {
1602 skb->tstamp.tv64 = 0;
1603 if (static_key_false(&netstamp_needed))
1604 __net_timestamp(skb);
1605 }
1606
1607 #define net_timestamp_check(COND, SKB) \
1608 if (static_key_false(&netstamp_needed)) { \
1609 if ((COND) && !(SKB)->tstamp.tv64) \
1610 __net_timestamp(SKB); \
1611 } \
1612
1613 static inline bool is_skb_forwardable(struct net_device *dev,
1614 struct sk_buff *skb)
1615 {
1616 unsigned int len;
1617
1618 if (!(dev->flags & IFF_UP))
1619 return false;
1620
1621 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1622 if (skb->len <= len)
1623 return true;
1624
1625 /* if TSO is enabled, we don't care about the length as the packet
1626 * could be forwarded without being segmented before
1627 */
1628 if (skb_is_gso(skb))
1629 return true;
1630
1631 return false;
1632 }
1633
1634 /**
1635 * dev_forward_skb - loopback an skb to another netif
1636 *
1637 * @dev: destination network device
1638 * @skb: buffer to forward
1639 *
1640 * return values:
1641 * NET_RX_SUCCESS (no congestion)
1642 * NET_RX_DROP (packet was dropped, but freed)
1643 *
1644 * dev_forward_skb can be used for injecting an skb from the
1645 * start_xmit function of one device into the receive queue
1646 * of another device.
1647 *
1648 * The receiving device may be in another namespace, so
1649 * we have to clear all information in the skb that could
1650 * impact namespace isolation.
1651 */
1652 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1653 {
1654 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1655 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1656 atomic_long_inc(&dev->rx_dropped);
1657 kfree_skb(skb);
1658 return NET_RX_DROP;
1659 }
1660 }
1661
1662 skb_orphan(skb);
1663
1664 if (unlikely(!is_skb_forwardable(dev, skb))) {
1665 atomic_long_inc(&dev->rx_dropped);
1666 kfree_skb(skb);
1667 return NET_RX_DROP;
1668 }
1669 skb->skb_iif = 0;
1670 skb->dev = dev;
1671 skb_dst_drop(skb);
1672 skb->tstamp.tv64 = 0;
1673 skb->pkt_type = PACKET_HOST;
1674 skb->protocol = eth_type_trans(skb, dev);
1675 skb->mark = 0;
1676 secpath_reset(skb);
1677 nf_reset(skb);
1678 nf_reset_trace(skb);
1679 return netif_rx(skb);
1680 }
1681 EXPORT_SYMBOL_GPL(dev_forward_skb);
1682
1683 static inline int deliver_skb(struct sk_buff *skb,
1684 struct packet_type *pt_prev,
1685 struct net_device *orig_dev)
1686 {
1687 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1688 return -ENOMEM;
1689 atomic_inc(&skb->users);
1690 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1691 }
1692
1693 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1694 {
1695 if (!ptype->af_packet_priv || !skb->sk)
1696 return false;
1697
1698 if (ptype->id_match)
1699 return ptype->id_match(ptype, skb->sk);
1700 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1701 return true;
1702
1703 return false;
1704 }
1705
1706 /*
1707 * Support routine. Sends outgoing frames to any network
1708 * taps currently in use.
1709 */
1710
1711 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1712 {
1713 struct packet_type *ptype;
1714 struct sk_buff *skb2 = NULL;
1715 struct packet_type *pt_prev = NULL;
1716
1717 rcu_read_lock();
1718 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1719 /* Never send packets back to the socket
1720 * they originated from - MvS (miquels@drinkel.ow.org)
1721 */
1722 if ((ptype->dev == dev || !ptype->dev) &&
1723 (!skb_loop_sk(ptype, skb))) {
1724 if (pt_prev) {
1725 deliver_skb(skb2, pt_prev, skb->dev);
1726 pt_prev = ptype;
1727 continue;
1728 }
1729
1730 skb2 = skb_clone(skb, GFP_ATOMIC);
1731 if (!skb2)
1732 break;
1733
1734 net_timestamp_set(skb2);
1735
1736 /* skb->nh should be correctly
1737 set by sender, so that the second statement is
1738 just protection against buggy protocols.
1739 */
1740 skb_reset_mac_header(skb2);
1741
1742 if (skb_network_header(skb2) < skb2->data ||
1743 skb2->network_header > skb2->tail) {
1744 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1745 ntohs(skb2->protocol),
1746 dev->name);
1747 skb_reset_network_header(skb2);
1748 }
1749
1750 skb2->transport_header = skb2->network_header;
1751 skb2->pkt_type = PACKET_OUTGOING;
1752 pt_prev = ptype;
1753 }
1754 }
1755 if (pt_prev)
1756 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1757 rcu_read_unlock();
1758 }
1759
1760 /**
1761 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1762 * @dev: Network device
1763 * @txq: number of queues available
1764 *
1765 * If real_num_tx_queues is changed the tc mappings may no longer be
1766 * valid. To resolve this verify the tc mapping remains valid and if
1767 * not NULL the mapping. With no priorities mapping to this
1768 * offset/count pair it will no longer be used. In the worst case TC0
1769 * is invalid nothing can be done so disable priority mappings. If is
1770 * expected that drivers will fix this mapping if they can before
1771 * calling netif_set_real_num_tx_queues.
1772 */
1773 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1774 {
1775 int i;
1776 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1777
1778 /* If TC0 is invalidated disable TC mapping */
1779 if (tc->offset + tc->count > txq) {
1780 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1781 dev->num_tc = 0;
1782 return;
1783 }
1784
1785 /* Invalidated prio to tc mappings set to TC0 */
1786 for (i = 1; i < TC_BITMASK + 1; i++) {
1787 int q = netdev_get_prio_tc_map(dev, i);
1788
1789 tc = &dev->tc_to_txq[q];
1790 if (tc->offset + tc->count > txq) {
1791 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1792 i, q);
1793 netdev_set_prio_tc_map(dev, i, 0);
1794 }
1795 }
1796 }
1797
1798 #ifdef CONFIG_XPS
1799 static DEFINE_MUTEX(xps_map_mutex);
1800 #define xmap_dereference(P) \
1801 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1802
1803 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1804 int cpu, u16 index)
1805 {
1806 struct xps_map *map = NULL;
1807 int pos;
1808
1809 if (dev_maps)
1810 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1811
1812 for (pos = 0; map && pos < map->len; pos++) {
1813 if (map->queues[pos] == index) {
1814 if (map->len > 1) {
1815 map->queues[pos] = map->queues[--map->len];
1816 } else {
1817 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1818 kfree_rcu(map, rcu);
1819 map = NULL;
1820 }
1821 break;
1822 }
1823 }
1824
1825 return map;
1826 }
1827
1828 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1829 {
1830 struct xps_dev_maps *dev_maps;
1831 int cpu, i;
1832 bool active = false;
1833
1834 mutex_lock(&xps_map_mutex);
1835 dev_maps = xmap_dereference(dev->xps_maps);
1836
1837 if (!dev_maps)
1838 goto out_no_maps;
1839
1840 for_each_possible_cpu(cpu) {
1841 for (i = index; i < dev->num_tx_queues; i++) {
1842 if (!remove_xps_queue(dev_maps, cpu, i))
1843 break;
1844 }
1845 if (i == dev->num_tx_queues)
1846 active = true;
1847 }
1848
1849 if (!active) {
1850 RCU_INIT_POINTER(dev->xps_maps, NULL);
1851 kfree_rcu(dev_maps, rcu);
1852 }
1853
1854 for (i = index; i < dev->num_tx_queues; i++)
1855 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1856 NUMA_NO_NODE);
1857
1858 out_no_maps:
1859 mutex_unlock(&xps_map_mutex);
1860 }
1861
1862 static struct xps_map *expand_xps_map(struct xps_map *map,
1863 int cpu, u16 index)
1864 {
1865 struct xps_map *new_map;
1866 int alloc_len = XPS_MIN_MAP_ALLOC;
1867 int i, pos;
1868
1869 for (pos = 0; map && pos < map->len; pos++) {
1870 if (map->queues[pos] != index)
1871 continue;
1872 return map;
1873 }
1874
1875 /* Need to add queue to this CPU's existing map */
1876 if (map) {
1877 if (pos < map->alloc_len)
1878 return map;
1879
1880 alloc_len = map->alloc_len * 2;
1881 }
1882
1883 /* Need to allocate new map to store queue on this CPU's map */
1884 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1885 cpu_to_node(cpu));
1886 if (!new_map)
1887 return NULL;
1888
1889 for (i = 0; i < pos; i++)
1890 new_map->queues[i] = map->queues[i];
1891 new_map->alloc_len = alloc_len;
1892 new_map->len = pos;
1893
1894 return new_map;
1895 }
1896
1897 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1898 {
1899 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1900 struct xps_map *map, *new_map;
1901 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1902 int cpu, numa_node_id = -2;
1903 bool active = false;
1904
1905 mutex_lock(&xps_map_mutex);
1906
1907 dev_maps = xmap_dereference(dev->xps_maps);
1908
1909 /* allocate memory for queue storage */
1910 for_each_online_cpu(cpu) {
1911 if (!cpumask_test_cpu(cpu, mask))
1912 continue;
1913
1914 if (!new_dev_maps)
1915 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1916 if (!new_dev_maps) {
1917 mutex_unlock(&xps_map_mutex);
1918 return -ENOMEM;
1919 }
1920
1921 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1922 NULL;
1923
1924 map = expand_xps_map(map, cpu, index);
1925 if (!map)
1926 goto error;
1927
1928 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1929 }
1930
1931 if (!new_dev_maps)
1932 goto out_no_new_maps;
1933
1934 for_each_possible_cpu(cpu) {
1935 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1936 /* add queue to CPU maps */
1937 int pos = 0;
1938
1939 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1940 while ((pos < map->len) && (map->queues[pos] != index))
1941 pos++;
1942
1943 if (pos == map->len)
1944 map->queues[map->len++] = index;
1945 #ifdef CONFIG_NUMA
1946 if (numa_node_id == -2)
1947 numa_node_id = cpu_to_node(cpu);
1948 else if (numa_node_id != cpu_to_node(cpu))
1949 numa_node_id = -1;
1950 #endif
1951 } else if (dev_maps) {
1952 /* fill in the new device map from the old device map */
1953 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1954 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1955 }
1956
1957 }
1958
1959 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1960
1961 /* Cleanup old maps */
1962 if (dev_maps) {
1963 for_each_possible_cpu(cpu) {
1964 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1965 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1966 if (map && map != new_map)
1967 kfree_rcu(map, rcu);
1968 }
1969
1970 kfree_rcu(dev_maps, rcu);
1971 }
1972
1973 dev_maps = new_dev_maps;
1974 active = true;
1975
1976 out_no_new_maps:
1977 /* update Tx queue numa node */
1978 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1979 (numa_node_id >= 0) ? numa_node_id :
1980 NUMA_NO_NODE);
1981
1982 if (!dev_maps)
1983 goto out_no_maps;
1984
1985 /* removes queue from unused CPUs */
1986 for_each_possible_cpu(cpu) {
1987 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1988 continue;
1989
1990 if (remove_xps_queue(dev_maps, cpu, index))
1991 active = true;
1992 }
1993
1994 /* free map if not active */
1995 if (!active) {
1996 RCU_INIT_POINTER(dev->xps_maps, NULL);
1997 kfree_rcu(dev_maps, rcu);
1998 }
1999
2000 out_no_maps:
2001 mutex_unlock(&xps_map_mutex);
2002
2003 return 0;
2004 error:
2005 /* remove any maps that we added */
2006 for_each_possible_cpu(cpu) {
2007 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2008 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2009 NULL;
2010 if (new_map && new_map != map)
2011 kfree(new_map);
2012 }
2013
2014 mutex_unlock(&xps_map_mutex);
2015
2016 kfree(new_dev_maps);
2017 return -ENOMEM;
2018 }
2019 EXPORT_SYMBOL(netif_set_xps_queue);
2020
2021 #endif
2022 /*
2023 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2024 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2025 */
2026 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2027 {
2028 int rc;
2029
2030 if (txq < 1 || txq > dev->num_tx_queues)
2031 return -EINVAL;
2032
2033 if (dev->reg_state == NETREG_REGISTERED ||
2034 dev->reg_state == NETREG_UNREGISTERING) {
2035 ASSERT_RTNL();
2036
2037 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2038 txq);
2039 if (rc)
2040 return rc;
2041
2042 if (dev->num_tc)
2043 netif_setup_tc(dev, txq);
2044
2045 if (txq < dev->real_num_tx_queues) {
2046 qdisc_reset_all_tx_gt(dev, txq);
2047 #ifdef CONFIG_XPS
2048 netif_reset_xps_queues_gt(dev, txq);
2049 #endif
2050 }
2051 }
2052
2053 dev->real_num_tx_queues = txq;
2054 return 0;
2055 }
2056 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2057
2058 #ifdef CONFIG_RPS
2059 /**
2060 * netif_set_real_num_rx_queues - set actual number of RX queues used
2061 * @dev: Network device
2062 * @rxq: Actual number of RX queues
2063 *
2064 * This must be called either with the rtnl_lock held or before
2065 * registration of the net device. Returns 0 on success, or a
2066 * negative error code. If called before registration, it always
2067 * succeeds.
2068 */
2069 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2070 {
2071 int rc;
2072
2073 if (rxq < 1 || rxq > dev->num_rx_queues)
2074 return -EINVAL;
2075
2076 if (dev->reg_state == NETREG_REGISTERED) {
2077 ASSERT_RTNL();
2078
2079 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2080 rxq);
2081 if (rc)
2082 return rc;
2083 }
2084
2085 dev->real_num_rx_queues = rxq;
2086 return 0;
2087 }
2088 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2089 #endif
2090
2091 /**
2092 * netif_get_num_default_rss_queues - default number of RSS queues
2093 *
2094 * This routine should set an upper limit on the number of RSS queues
2095 * used by default by multiqueue devices.
2096 */
2097 int netif_get_num_default_rss_queues(void)
2098 {
2099 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2100 }
2101 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2102
2103 static inline void __netif_reschedule(struct Qdisc *q)
2104 {
2105 struct softnet_data *sd;
2106 unsigned long flags;
2107
2108 local_irq_save(flags);
2109 sd = &__get_cpu_var(softnet_data);
2110 q->next_sched = NULL;
2111 *sd->output_queue_tailp = q;
2112 sd->output_queue_tailp = &q->next_sched;
2113 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2114 local_irq_restore(flags);
2115 }
2116
2117 void __netif_schedule(struct Qdisc *q)
2118 {
2119 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2120 __netif_reschedule(q);
2121 }
2122 EXPORT_SYMBOL(__netif_schedule);
2123
2124 void dev_kfree_skb_irq(struct sk_buff *skb)
2125 {
2126 if (atomic_dec_and_test(&skb->users)) {
2127 struct softnet_data *sd;
2128 unsigned long flags;
2129
2130 local_irq_save(flags);
2131 sd = &__get_cpu_var(softnet_data);
2132 skb->next = sd->completion_queue;
2133 sd->completion_queue = skb;
2134 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2135 local_irq_restore(flags);
2136 }
2137 }
2138 EXPORT_SYMBOL(dev_kfree_skb_irq);
2139
2140 void dev_kfree_skb_any(struct sk_buff *skb)
2141 {
2142 if (in_irq() || irqs_disabled())
2143 dev_kfree_skb_irq(skb);
2144 else
2145 dev_kfree_skb(skb);
2146 }
2147 EXPORT_SYMBOL(dev_kfree_skb_any);
2148
2149
2150 /**
2151 * netif_device_detach - mark device as removed
2152 * @dev: network device
2153 *
2154 * Mark device as removed from system and therefore no longer available.
2155 */
2156 void netif_device_detach(struct net_device *dev)
2157 {
2158 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2159 netif_running(dev)) {
2160 netif_tx_stop_all_queues(dev);
2161 }
2162 }
2163 EXPORT_SYMBOL(netif_device_detach);
2164
2165 /**
2166 * netif_device_attach - mark device as attached
2167 * @dev: network device
2168 *
2169 * Mark device as attached from system and restart if needed.
2170 */
2171 void netif_device_attach(struct net_device *dev)
2172 {
2173 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2174 netif_running(dev)) {
2175 netif_tx_wake_all_queues(dev);
2176 __netdev_watchdog_up(dev);
2177 }
2178 }
2179 EXPORT_SYMBOL(netif_device_attach);
2180
2181 static void skb_warn_bad_offload(const struct sk_buff *skb)
2182 {
2183 static const netdev_features_t null_features = 0;
2184 struct net_device *dev = skb->dev;
2185 const char *driver = "";
2186
2187 if (!net_ratelimit())
2188 return;
2189
2190 if (dev && dev->dev.parent)
2191 driver = dev_driver_string(dev->dev.parent);
2192
2193 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2194 "gso_type=%d ip_summed=%d\n",
2195 driver, dev ? &dev->features : &null_features,
2196 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2197 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2198 skb_shinfo(skb)->gso_type, skb->ip_summed);
2199 }
2200
2201 /*
2202 * Invalidate hardware checksum when packet is to be mangled, and
2203 * complete checksum manually on outgoing path.
2204 */
2205 int skb_checksum_help(struct sk_buff *skb)
2206 {
2207 __wsum csum;
2208 int ret = 0, offset;
2209
2210 if (skb->ip_summed == CHECKSUM_COMPLETE)
2211 goto out_set_summed;
2212
2213 if (unlikely(skb_shinfo(skb)->gso_size)) {
2214 skb_warn_bad_offload(skb);
2215 return -EINVAL;
2216 }
2217
2218 /* Before computing a checksum, we should make sure no frag could
2219 * be modified by an external entity : checksum could be wrong.
2220 */
2221 if (skb_has_shared_frag(skb)) {
2222 ret = __skb_linearize(skb);
2223 if (ret)
2224 goto out;
2225 }
2226
2227 offset = skb_checksum_start_offset(skb);
2228 BUG_ON(offset >= skb_headlen(skb));
2229 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2230
2231 offset += skb->csum_offset;
2232 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2233
2234 if (skb_cloned(skb) &&
2235 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2236 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2237 if (ret)
2238 goto out;
2239 }
2240
2241 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2242 out_set_summed:
2243 skb->ip_summed = CHECKSUM_NONE;
2244 out:
2245 return ret;
2246 }
2247 EXPORT_SYMBOL(skb_checksum_help);
2248
2249 __be16 skb_network_protocol(struct sk_buff *skb)
2250 {
2251 __be16 type = skb->protocol;
2252 int vlan_depth = ETH_HLEN;
2253
2254 /* Tunnel gso handlers can set protocol to ethernet. */
2255 if (type == htons(ETH_P_TEB)) {
2256 struct ethhdr *eth;
2257
2258 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2259 return 0;
2260
2261 eth = (struct ethhdr *)skb_mac_header(skb);
2262 type = eth->h_proto;
2263 }
2264
2265 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2266 struct vlan_hdr *vh;
2267
2268 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2269 return 0;
2270
2271 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2272 type = vh->h_vlan_encapsulated_proto;
2273 vlan_depth += VLAN_HLEN;
2274 }
2275
2276 return type;
2277 }
2278
2279 /**
2280 * skb_mac_gso_segment - mac layer segmentation handler.
2281 * @skb: buffer to segment
2282 * @features: features for the output path (see dev->features)
2283 */
2284 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2285 netdev_features_t features)
2286 {
2287 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2288 struct packet_offload *ptype;
2289 __be16 type = skb_network_protocol(skb);
2290
2291 if (unlikely(!type))
2292 return ERR_PTR(-EINVAL);
2293
2294 __skb_pull(skb, skb->mac_len);
2295
2296 rcu_read_lock();
2297 list_for_each_entry_rcu(ptype, &offload_base, list) {
2298 if (ptype->type == type && ptype->callbacks.gso_segment) {
2299 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2300 int err;
2301
2302 err = ptype->callbacks.gso_send_check(skb);
2303 segs = ERR_PTR(err);
2304 if (err || skb_gso_ok(skb, features))
2305 break;
2306 __skb_push(skb, (skb->data -
2307 skb_network_header(skb)));
2308 }
2309 segs = ptype->callbacks.gso_segment(skb, features);
2310 break;
2311 }
2312 }
2313 rcu_read_unlock();
2314
2315 __skb_push(skb, skb->data - skb_mac_header(skb));
2316
2317 return segs;
2318 }
2319 EXPORT_SYMBOL(skb_mac_gso_segment);
2320
2321
2322 /* openvswitch calls this on rx path, so we need a different check.
2323 */
2324 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2325 {
2326 if (tx_path)
2327 return skb->ip_summed != CHECKSUM_PARTIAL;
2328 else
2329 return skb->ip_summed == CHECKSUM_NONE;
2330 }
2331
2332 /**
2333 * __skb_gso_segment - Perform segmentation on skb.
2334 * @skb: buffer to segment
2335 * @features: features for the output path (see dev->features)
2336 * @tx_path: whether it is called in TX path
2337 *
2338 * This function segments the given skb and returns a list of segments.
2339 *
2340 * It may return NULL if the skb requires no segmentation. This is
2341 * only possible when GSO is used for verifying header integrity.
2342 */
2343 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2344 netdev_features_t features, bool tx_path)
2345 {
2346 if (unlikely(skb_needs_check(skb, tx_path))) {
2347 int err;
2348
2349 skb_warn_bad_offload(skb);
2350
2351 if (skb_header_cloned(skb) &&
2352 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2353 return ERR_PTR(err);
2354 }
2355
2356 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2357 skb_reset_mac_header(skb);
2358 skb_reset_mac_len(skb);
2359
2360 return skb_mac_gso_segment(skb, features);
2361 }
2362 EXPORT_SYMBOL(__skb_gso_segment);
2363
2364 /* Take action when hardware reception checksum errors are detected. */
2365 #ifdef CONFIG_BUG
2366 void netdev_rx_csum_fault(struct net_device *dev)
2367 {
2368 if (net_ratelimit()) {
2369 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2370 dump_stack();
2371 }
2372 }
2373 EXPORT_SYMBOL(netdev_rx_csum_fault);
2374 #endif
2375
2376 /* Actually, we should eliminate this check as soon as we know, that:
2377 * 1. IOMMU is present and allows to map all the memory.
2378 * 2. No high memory really exists on this machine.
2379 */
2380
2381 static int illegal_highdma(const struct net_device *dev, struct sk_buff *skb)
2382 {
2383 #ifdef CONFIG_HIGHMEM
2384 int i;
2385 if (!(dev->features & NETIF_F_HIGHDMA)) {
2386 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2387 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2388 if (PageHighMem(skb_frag_page(frag)))
2389 return 1;
2390 }
2391 }
2392
2393 if (PCI_DMA_BUS_IS_PHYS) {
2394 struct device *pdev = dev->dev.parent;
2395
2396 if (!pdev)
2397 return 0;
2398 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2399 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2400 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2401 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2402 return 1;
2403 }
2404 }
2405 #endif
2406 return 0;
2407 }
2408
2409 struct dev_gso_cb {
2410 void (*destructor)(struct sk_buff *skb);
2411 };
2412
2413 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2414
2415 static void dev_gso_skb_destructor(struct sk_buff *skb)
2416 {
2417 struct dev_gso_cb *cb;
2418
2419 do {
2420 struct sk_buff *nskb = skb->next;
2421
2422 skb->next = nskb->next;
2423 nskb->next = NULL;
2424 kfree_skb(nskb);
2425 } while (skb->next);
2426
2427 cb = DEV_GSO_CB(skb);
2428 if (cb->destructor)
2429 cb->destructor(skb);
2430 }
2431
2432 /**
2433 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2434 * @skb: buffer to segment
2435 * @features: device features as applicable to this skb
2436 *
2437 * This function segments the given skb and stores the list of segments
2438 * in skb->next.
2439 */
2440 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2441 {
2442 struct sk_buff *segs;
2443
2444 segs = skb_gso_segment(skb, features);
2445
2446 /* Verifying header integrity only. */
2447 if (!segs)
2448 return 0;
2449
2450 if (IS_ERR(segs))
2451 return PTR_ERR(segs);
2452
2453 skb->next = segs;
2454 DEV_GSO_CB(skb)->destructor = skb->destructor;
2455 skb->destructor = dev_gso_skb_destructor;
2456
2457 return 0;
2458 }
2459
2460 static netdev_features_t harmonize_features(struct sk_buff *skb,
2461 __be16 protocol,
2462 const struct net_device *dev,
2463 netdev_features_t features)
2464 {
2465 if (skb->ip_summed != CHECKSUM_NONE &&
2466 !can_checksum_protocol(features, protocol)) {
2467 features &= ~NETIF_F_ALL_CSUM;
2468 } else if (illegal_highdma(dev, skb)) {
2469 features &= ~NETIF_F_SG;
2470 }
2471
2472 return features;
2473 }
2474
2475 netdev_features_t netif_skb_dev_features(struct sk_buff *skb,
2476 const struct net_device *dev)
2477 {
2478 __be16 protocol = skb->protocol;
2479 netdev_features_t features = dev->features;
2480
2481 if (skb_shinfo(skb)->gso_segs > dev->gso_max_segs)
2482 features &= ~NETIF_F_GSO_MASK;
2483
2484 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2485 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2486 protocol = veh->h_vlan_encapsulated_proto;
2487 } else if (!vlan_tx_tag_present(skb)) {
2488 return harmonize_features(skb, protocol, dev, features);
2489 }
2490
2491 features &= (dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2492 NETIF_F_HW_VLAN_STAG_TX);
2493
2494 if (protocol != htons(ETH_P_8021Q) && protocol != htons(ETH_P_8021AD)) {
2495 return harmonize_features(skb, protocol, dev, features);
2496 } else {
2497 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2498 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2499 NETIF_F_HW_VLAN_STAG_TX;
2500 return harmonize_features(skb, protocol, dev, features);
2501 }
2502
2503 return harmonize_features(skb, protocol, dev, features);
2504 }
2505 EXPORT_SYMBOL(netif_skb_dev_features);
2506
2507 /*
2508 * Returns true if either:
2509 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2510 * 2. skb is fragmented and the device does not support SG.
2511 */
2512 static inline int skb_needs_linearize(struct sk_buff *skb,
2513 netdev_features_t features)
2514 {
2515 return skb_is_nonlinear(skb) &&
2516 ((skb_has_frag_list(skb) &&
2517 !(features & NETIF_F_FRAGLIST)) ||
2518 (skb_shinfo(skb)->nr_frags &&
2519 !(features & NETIF_F_SG)));
2520 }
2521
2522 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2523 struct netdev_queue *txq)
2524 {
2525 const struct net_device_ops *ops = dev->netdev_ops;
2526 int rc = NETDEV_TX_OK;
2527 unsigned int skb_len;
2528
2529 if (likely(!skb->next)) {
2530 netdev_features_t features;
2531
2532 /*
2533 * If device doesn't need skb->dst, release it right now while
2534 * its hot in this cpu cache
2535 */
2536 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2537 skb_dst_drop(skb);
2538
2539 features = netif_skb_features(skb);
2540
2541 if (vlan_tx_tag_present(skb) &&
2542 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2543 skb = __vlan_put_tag(skb, skb->vlan_proto,
2544 vlan_tx_tag_get(skb));
2545 if (unlikely(!skb))
2546 goto out;
2547
2548 skb->vlan_tci = 0;
2549 }
2550
2551 /* If encapsulation offload request, verify we are testing
2552 * hardware encapsulation features instead of standard
2553 * features for the netdev
2554 */
2555 if (skb->encapsulation)
2556 features &= dev->hw_enc_features;
2557
2558 if (netif_needs_gso(skb, features)) {
2559 if (unlikely(dev_gso_segment(skb, features)))
2560 goto out_kfree_skb;
2561 if (skb->next)
2562 goto gso;
2563 } else {
2564 if (skb_needs_linearize(skb, features) &&
2565 __skb_linearize(skb))
2566 goto out_kfree_skb;
2567
2568 /* If packet is not checksummed and device does not
2569 * support checksumming for this protocol, complete
2570 * checksumming here.
2571 */
2572 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2573 if (skb->encapsulation)
2574 skb_set_inner_transport_header(skb,
2575 skb_checksum_start_offset(skb));
2576 else
2577 skb_set_transport_header(skb,
2578 skb_checksum_start_offset(skb));
2579 if (!(features & NETIF_F_ALL_CSUM) &&
2580 skb_checksum_help(skb))
2581 goto out_kfree_skb;
2582 }
2583 }
2584
2585 if (!list_empty(&ptype_all))
2586 dev_queue_xmit_nit(skb, dev);
2587
2588 skb_len = skb->len;
2589 rc = ops->ndo_start_xmit(skb, dev);
2590 trace_net_dev_xmit(skb, rc, dev, skb_len);
2591 if (rc == NETDEV_TX_OK)
2592 txq_trans_update(txq);
2593 return rc;
2594 }
2595
2596 gso:
2597 do {
2598 struct sk_buff *nskb = skb->next;
2599
2600 skb->next = nskb->next;
2601 nskb->next = NULL;
2602
2603 if (!list_empty(&ptype_all))
2604 dev_queue_xmit_nit(nskb, dev);
2605
2606 skb_len = nskb->len;
2607 rc = ops->ndo_start_xmit(nskb, dev);
2608 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2609 if (unlikely(rc != NETDEV_TX_OK)) {
2610 if (rc & ~NETDEV_TX_MASK)
2611 goto out_kfree_gso_skb;
2612 nskb->next = skb->next;
2613 skb->next = nskb;
2614 return rc;
2615 }
2616 txq_trans_update(txq);
2617 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2618 return NETDEV_TX_BUSY;
2619 } while (skb->next);
2620
2621 out_kfree_gso_skb:
2622 if (likely(skb->next == NULL)) {
2623 skb->destructor = DEV_GSO_CB(skb)->destructor;
2624 consume_skb(skb);
2625 return rc;
2626 }
2627 out_kfree_skb:
2628 kfree_skb(skb);
2629 out:
2630 return rc;
2631 }
2632
2633 static void qdisc_pkt_len_init(struct sk_buff *skb)
2634 {
2635 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2636
2637 qdisc_skb_cb(skb)->pkt_len = skb->len;
2638
2639 /* To get more precise estimation of bytes sent on wire,
2640 * we add to pkt_len the headers size of all segments
2641 */
2642 if (shinfo->gso_size) {
2643 unsigned int hdr_len;
2644 u16 gso_segs = shinfo->gso_segs;
2645
2646 /* mac layer + network layer */
2647 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2648
2649 /* + transport layer */
2650 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2651 hdr_len += tcp_hdrlen(skb);
2652 else
2653 hdr_len += sizeof(struct udphdr);
2654
2655 if (shinfo->gso_type & SKB_GSO_DODGY)
2656 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2657 shinfo->gso_size);
2658
2659 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2660 }
2661 }
2662
2663 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2664 struct net_device *dev,
2665 struct netdev_queue *txq)
2666 {
2667 spinlock_t *root_lock = qdisc_lock(q);
2668 bool contended;
2669 int rc;
2670
2671 qdisc_pkt_len_init(skb);
2672 qdisc_calculate_pkt_len(skb, q);
2673 /*
2674 * Heuristic to force contended enqueues to serialize on a
2675 * separate lock before trying to get qdisc main lock.
2676 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2677 * and dequeue packets faster.
2678 */
2679 contended = qdisc_is_running(q);
2680 if (unlikely(contended))
2681 spin_lock(&q->busylock);
2682
2683 spin_lock(root_lock);
2684 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2685 printk(KERN_WARNING "[mtk_net]__dev_xmit_skb drop skb_len = %d \n", skb->len);
2686 kfree_skb(skb);
2687 rc = NET_XMIT_DROP;
2688 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2689 qdisc_run_begin(q)) {
2690 /*
2691 * This is a work-conserving queue; there are no old skbs
2692 * waiting to be sent out; and the qdisc is not running -
2693 * xmit the skb directly.
2694 */
2695 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2696 skb_dst_force(skb);
2697
2698 qdisc_bstats_update(q, skb);
2699
2700 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2701 if (unlikely(contended)) {
2702 spin_unlock(&q->busylock);
2703 contended = false;
2704 }
2705 __qdisc_run(q);
2706 } else
2707 qdisc_run_end(q);
2708
2709 rc = NET_XMIT_SUCCESS;
2710 } else {
2711 skb_dst_force(skb);
2712 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2713 if (qdisc_run_begin(q)) {
2714 if (unlikely(contended)) {
2715 spin_unlock(&q->busylock);
2716 contended = false;
2717 }
2718 __qdisc_run(q);
2719 }
2720 }
2721 spin_unlock(root_lock);
2722 if (unlikely(contended))
2723 spin_unlock(&q->busylock);
2724 return rc;
2725 }
2726
2727 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2728 static void skb_update_prio(struct sk_buff *skb)
2729 {
2730 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2731
2732 if (!skb->priority && skb->sk && map) {
2733 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2734
2735 if (prioidx < map->priomap_len)
2736 skb->priority = map->priomap[prioidx];
2737 }
2738 }
2739 #else
2740 #define skb_update_prio(skb)
2741 #endif
2742
2743 static DEFINE_PER_CPU(int, xmit_recursion);
2744 #define RECURSION_LIMIT 10
2745
2746 /**
2747 * dev_loopback_xmit - loop back @skb
2748 * @skb: buffer to transmit
2749 */
2750 int dev_loopback_xmit(struct sk_buff *skb)
2751 {
2752 skb_reset_mac_header(skb);
2753 __skb_pull(skb, skb_network_offset(skb));
2754 skb->pkt_type = PACKET_LOOPBACK;
2755 skb->ip_summed = CHECKSUM_UNNECESSARY;
2756 WARN_ON(!skb_dst(skb));
2757 skb_dst_force(skb);
2758 netif_rx_ni(skb);
2759 return 0;
2760 }
2761 EXPORT_SYMBOL(dev_loopback_xmit);
2762
2763 /**
2764 * dev_queue_xmit - transmit a buffer
2765 * @skb: buffer to transmit
2766 *
2767 * Queue a buffer for transmission to a network device. The caller must
2768 * have set the device and priority and built the buffer before calling
2769 * this function. The function can be called from an interrupt.
2770 *
2771 * A negative errno code is returned on a failure. A success does not
2772 * guarantee the frame will be transmitted as it may be dropped due
2773 * to congestion or traffic shaping.
2774 *
2775 * -----------------------------------------------------------------------------------
2776 * I notice this method can also return errors from the queue disciplines,
2777 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2778 * be positive.
2779 *
2780 * Regardless of the return value, the skb is consumed, so it is currently
2781 * difficult to retry a send to this method. (You can bump the ref count
2782 * before sending to hold a reference for retry if you are careful.)
2783 *
2784 * When calling this method, interrupts MUST be enabled. This is because
2785 * the BH enable code must have IRQs enabled so that it will not deadlock.
2786 * --BLG
2787 */
2788 int dev_queue_xmit(struct sk_buff *skb)
2789 {
2790 struct net_device *dev = skb->dev;
2791 struct netdev_queue *txq;
2792 struct Qdisc *q;
2793 int rc = -ENOMEM;
2794
2795 skb_reset_mac_header(skb);
2796
2797 #ifdef UDP_SKT_WIFI
2798
2799 if (unlikely((sysctl_met_is_enable == 1) && (sysctl_udp_met_port > 0)
2800 && (ip_hdr(skb)->protocol == IPPROTO_UDP) && skb->sk)) {
2801
2802 if (sysctl_udp_met_port == ntohs((inet_sk(skb->sk))->inet_sport)) {
2803 struct udphdr * udp_iphdr = udp_hdr(skb);
2804 if (udp_iphdr && (ntohs(udp_iphdr->len) >= 12)) {
2805 __u16 * seq_id = (__u16 *)((char *)udp_iphdr + 10);
2806 udp_event_trace_printk("F|%d|%s|%d\n", current->pid, *seq_id);
2807
2808 }
2809 }
2810 }
2811 #endif
2812
2813 /* Disable soft irqs for various locks below. Also
2814 * stops preemption for RCU.
2815 */
2816 rcu_read_lock_bh();
2817
2818 skb_update_prio(skb);
2819
2820 txq = netdev_pick_tx(dev, skb);
2821 q = rcu_dereference_bh(txq->qdisc);
2822
2823 #ifdef CONFIG_NET_CLS_ACT
2824 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2825 #endif
2826 trace_net_dev_queue(skb);
2827 if (q->enqueue) {
2828 rc = __dev_xmit_skb(skb, q, dev, txq);
2829 goto out;
2830 }
2831
2832 /* The device has no queue. Common case for software devices:
2833 loopback, all the sorts of tunnels...
2834
2835 Really, it is unlikely that netif_tx_lock protection is necessary
2836 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2837 counters.)
2838 However, it is possible, that they rely on protection
2839 made by us here.
2840
2841 Check this and shot the lock. It is not prone from deadlocks.
2842 Either shot noqueue qdisc, it is even simpler 8)
2843 */
2844 if (dev->flags & IFF_UP) {
2845 int cpu = smp_processor_id(); /* ok because BHs are off */
2846
2847 if (txq->xmit_lock_owner != cpu) {
2848
2849 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2850 goto recursion_alert;
2851
2852 HARD_TX_LOCK(dev, txq, cpu);
2853
2854 if (!netif_xmit_stopped(txq)) {
2855 __this_cpu_inc(xmit_recursion);
2856 rc = dev_hard_start_xmit(skb, dev, txq);
2857 __this_cpu_dec(xmit_recursion);
2858 if (dev_xmit_complete(rc)) {
2859 HARD_TX_UNLOCK(dev, txq);
2860 goto out;
2861 }
2862 }
2863 HARD_TX_UNLOCK(dev, txq);
2864 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2865 dev->name);
2866 } else {
2867 /* Recursion is detected! It is possible,
2868 * unfortunately
2869 */
2870 recursion_alert:
2871 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2872 dev->name);
2873 }
2874 }
2875
2876 rc = -ENETDOWN;
2877 rcu_read_unlock_bh();
2878
2879 kfree_skb(skb);
2880 return rc;
2881 out:
2882 rcu_read_unlock_bh();
2883 return rc;
2884 }
2885 EXPORT_SYMBOL(dev_queue_xmit);
2886
2887
2888 /*=======================================================================
2889 Receiver routines
2890 =======================================================================*/
2891
2892 int netdev_max_backlog __read_mostly = 1000;
2893 EXPORT_SYMBOL(netdev_max_backlog);
2894
2895 int netdev_tstamp_prequeue __read_mostly = 1;
2896 int netdev_budget __read_mostly = 300;
2897 int weight_p __read_mostly = 64; /* old backlog weight */
2898
2899 /* Called with irq disabled */
2900 static inline void ____napi_schedule(struct softnet_data *sd,
2901 struct napi_struct *napi)
2902 {
2903 list_add_tail(&napi->poll_list, &sd->poll_list);
2904 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2905 }
2906
2907 #ifdef CONFIG_RPS
2908
2909 /* One global table that all flow-based protocols share. */
2910 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2911 EXPORT_SYMBOL(rps_sock_flow_table);
2912
2913 struct static_key rps_needed __read_mostly;
2914
2915 static struct rps_dev_flow *
2916 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2917 struct rps_dev_flow *rflow, u16 next_cpu)
2918 {
2919 if (next_cpu != RPS_NO_CPU) {
2920 #ifdef CONFIG_RFS_ACCEL
2921 struct netdev_rx_queue *rxqueue;
2922 struct rps_dev_flow_table *flow_table;
2923 struct rps_dev_flow *old_rflow;
2924 u32 flow_id;
2925 u16 rxq_index;
2926 int rc;
2927
2928 /* Should we steer this flow to a different hardware queue? */
2929 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2930 !(dev->features & NETIF_F_NTUPLE))
2931 goto out;
2932 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2933 if (rxq_index == skb_get_rx_queue(skb))
2934 goto out;
2935
2936 rxqueue = dev->_rx + rxq_index;
2937 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2938 if (!flow_table)
2939 goto out;
2940 flow_id = skb->rxhash & flow_table->mask;
2941 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2942 rxq_index, flow_id);
2943 if (rc < 0)
2944 goto out;
2945 old_rflow = rflow;
2946 rflow = &flow_table->flows[flow_id];
2947 rflow->filter = rc;
2948 if (old_rflow->filter == rflow->filter)
2949 old_rflow->filter = RPS_NO_FILTER;
2950 out:
2951 #endif
2952 rflow->last_qtail =
2953 per_cpu(softnet_data, next_cpu).input_queue_head;
2954 }
2955
2956 rflow->cpu = next_cpu;
2957 return rflow;
2958 }
2959
2960 /*
2961 * get_rps_cpu is called from netif_receive_skb and returns the target
2962 * CPU from the RPS map of the receiving queue for a given skb.
2963 * rcu_read_lock must be held on entry.
2964 */
2965 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2966 struct rps_dev_flow **rflowp)
2967 {
2968 struct netdev_rx_queue *rxqueue;
2969 struct rps_map *map;
2970 struct rps_dev_flow_table *flow_table;
2971 struct rps_sock_flow_table *sock_flow_table;
2972 int cpu = -1;
2973 u16 tcpu;
2974
2975 if (skb_rx_queue_recorded(skb)) {
2976 u16 index = skb_get_rx_queue(skb);
2977 if (unlikely(index >= dev->real_num_rx_queues)) {
2978 WARN_ONCE(dev->real_num_rx_queues > 1,
2979 "%s received packet on queue %u, but number "
2980 "of RX queues is %u\n",
2981 dev->name, index, dev->real_num_rx_queues);
2982 goto done;
2983 }
2984 rxqueue = dev->_rx + index;
2985 } else
2986 rxqueue = dev->_rx;
2987
2988 map = rcu_dereference(rxqueue->rps_map);
2989 if (map) {
2990 if (map->len == 1 &&
2991 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2992 tcpu = map->cpus[0];
2993 if (cpu_online(tcpu))
2994 cpu = tcpu;
2995 goto done;
2996 }
2997 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2998 goto done;
2999 }
3000
3001 skb_reset_network_header(skb);
3002 if (!skb_get_rxhash(skb))
3003 goto done;
3004
3005 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3006 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3007 if (flow_table && sock_flow_table) {
3008 u16 next_cpu;
3009 struct rps_dev_flow *rflow;
3010
3011 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3012 tcpu = rflow->cpu;
3013
3014 next_cpu = sock_flow_table->ents[skb->rxhash &
3015 sock_flow_table->mask];
3016
3017 /*
3018 * If the desired CPU (where last recvmsg was done) is
3019 * different from current CPU (one in the rx-queue flow
3020 * table entry), switch if one of the following holds:
3021 * - Current CPU is unset (equal to RPS_NO_CPU).
3022 * - Current CPU is offline.
3023 * - The current CPU's queue tail has advanced beyond the
3024 * last packet that was enqueued using this table entry.
3025 * This guarantees that all previous packets for the flow
3026 * have been dequeued, thus preserving in order delivery.
3027 */
3028 if (unlikely(tcpu != next_cpu) &&
3029 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3030 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3031 rflow->last_qtail)) >= 0)) {
3032 tcpu = next_cpu;
3033 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3034 }
3035
3036 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3037 *rflowp = rflow;
3038 cpu = tcpu;
3039 goto done;
3040 }
3041 }
3042
3043 if (map) {
3044 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3045
3046 if (cpu_online(tcpu)) {
3047 cpu = tcpu;
3048 goto done;
3049 }
3050 }
3051
3052 done:
3053 return cpu;
3054 }
3055
3056 #ifdef CONFIG_RFS_ACCEL
3057
3058 /**
3059 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3060 * @dev: Device on which the filter was set
3061 * @rxq_index: RX queue index
3062 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3063 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3064 *
3065 * Drivers that implement ndo_rx_flow_steer() should periodically call
3066 * this function for each installed filter and remove the filters for
3067 * which it returns %true.
3068 */
3069 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3070 u32 flow_id, u16 filter_id)
3071 {
3072 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3073 struct rps_dev_flow_table *flow_table;
3074 struct rps_dev_flow *rflow;
3075 bool expire = true;
3076 int cpu;
3077
3078 rcu_read_lock();
3079 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3080 if (flow_table && flow_id <= flow_table->mask) {
3081 rflow = &flow_table->flows[flow_id];
3082 cpu = ACCESS_ONCE(rflow->cpu);
3083 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3084 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3085 rflow->last_qtail) <
3086 (int)(10 * flow_table->mask)))
3087 expire = false;
3088 }
3089 rcu_read_unlock();
3090 return expire;
3091 }
3092 EXPORT_SYMBOL(rps_may_expire_flow);
3093
3094 #endif /* CONFIG_RFS_ACCEL */
3095
3096 /* Called from hardirq (IPI) context */
3097 static void rps_trigger_softirq(void *data)
3098 {
3099 struct softnet_data *sd = data;
3100
3101 ____napi_schedule(sd, &sd->backlog);
3102 sd->received_rps++;
3103 }
3104
3105 #endif /* CONFIG_RPS */
3106
3107 /*
3108 * Check if this softnet_data structure is another cpu one
3109 * If yes, queue it to our IPI list and return 1
3110 * If no, return 0
3111 */
3112 static int rps_ipi_queued(struct softnet_data *sd)
3113 {
3114 #ifdef CONFIG_RPS
3115 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3116
3117 if (sd != mysd) {
3118 sd->rps_ipi_next = mysd->rps_ipi_list;
3119 mysd->rps_ipi_list = sd;
3120
3121 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3122 return 1;
3123 }
3124 #endif /* CONFIG_RPS */
3125 return 0;
3126 }
3127
3128 /*
3129 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3130 * queue (may be a remote CPU queue).
3131 */
3132 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3133 unsigned int *qtail)
3134 {
3135 struct softnet_data *sd;
3136 unsigned long flags;
3137
3138 sd = &per_cpu(softnet_data, cpu);
3139
3140 local_irq_save(flags);
3141
3142 rps_lock(sd);
3143 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3144 if (skb_queue_len(&sd->input_pkt_queue)) {
3145 enqueue:
3146 __skb_queue_tail(&sd->input_pkt_queue, skb);
3147 input_queue_tail_incr_save(sd, qtail);
3148 rps_unlock(sd);
3149 local_irq_restore(flags);
3150 return NET_RX_SUCCESS;
3151 }
3152
3153 /* Schedule NAPI for backlog device
3154 * We can use non atomic operation since we own the queue lock
3155 */
3156 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3157 if (!rps_ipi_queued(sd))
3158 ____napi_schedule(sd, &sd->backlog);
3159 }
3160 goto enqueue;
3161 }
3162
3163 sd->dropped++;
3164 rps_unlock(sd);
3165
3166 local_irq_restore(flags);
3167
3168 atomic_long_inc(&skb->dev->rx_dropped);
3169 kfree_skb(skb);
3170 return NET_RX_DROP;
3171 }
3172
3173 /**
3174 * netif_rx - post buffer to the network code
3175 * @skb: buffer to post
3176 *
3177 * This function receives a packet from a device driver and queues it for
3178 * the upper (protocol) levels to process. It always succeeds. The buffer
3179 * may be dropped during processing for congestion control or by the
3180 * protocol layers.
3181 *
3182 * return values:
3183 * NET_RX_SUCCESS (no congestion)
3184 * NET_RX_DROP (packet was dropped)
3185 *
3186 */
3187
3188 int netif_rx(struct sk_buff *skb)
3189 {
3190 int ret;
3191
3192 /* if netpoll wants it, pretend we never saw it */
3193 if (netpoll_rx(skb))
3194 return NET_RX_DROP;
3195
3196 net_timestamp_check(netdev_tstamp_prequeue, skb);
3197
3198 trace_netif_rx(skb);
3199 #ifdef CONFIG_RPS
3200 if (static_key_false(&rps_needed)) {
3201 struct rps_dev_flow voidflow, *rflow = &voidflow;
3202 int cpu;
3203
3204 preempt_disable();
3205 rcu_read_lock();
3206
3207 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3208 if (cpu < 0)
3209 cpu = smp_processor_id();
3210
3211 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3212
3213 rcu_read_unlock();
3214 preempt_enable();
3215 } else
3216 #endif
3217 {
3218 unsigned int qtail;
3219 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3220 put_cpu();
3221 }
3222 return ret;
3223 }
3224 EXPORT_SYMBOL(netif_rx);
3225
3226 int netif_rx_ni(struct sk_buff *skb)
3227 {
3228 int err;
3229
3230 preempt_disable();
3231 err = netif_rx(skb);
3232 if (local_softirq_pending())
3233 do_softirq();
3234 preempt_enable();
3235
3236 return err;
3237 }
3238 EXPORT_SYMBOL(netif_rx_ni);
3239
3240 static void net_tx_action(struct softirq_action *h)
3241 {
3242 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3243
3244 if (sd->completion_queue) {
3245 struct sk_buff *clist;
3246
3247 local_irq_disable();
3248 clist = sd->completion_queue;
3249 sd->completion_queue = NULL;
3250 local_irq_enable();
3251
3252 while (clist) {
3253 struct sk_buff *skb = clist;
3254 clist = clist->next;
3255
3256 WARN_ON(atomic_read(&skb->users));
3257 trace_kfree_skb(skb, net_tx_action);
3258 __kfree_skb(skb);
3259 }
3260 }
3261
3262 if (sd->output_queue) {
3263 struct Qdisc *head;
3264
3265 local_irq_disable();
3266 head = sd->output_queue;
3267 sd->output_queue = NULL;
3268 sd->output_queue_tailp = &sd->output_queue;
3269 local_irq_enable();
3270
3271 while (head) {
3272 struct Qdisc *q = head;
3273 spinlock_t *root_lock;
3274
3275 head = head->next_sched;
3276
3277 root_lock = qdisc_lock(q);
3278 if (spin_trylock(root_lock)) {
3279 smp_mb__before_clear_bit();
3280 clear_bit(__QDISC_STATE_SCHED,
3281 &q->state);
3282 qdisc_run(q);
3283 spin_unlock(root_lock);
3284 } else {
3285 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3286 &q->state)) {
3287 __netif_reschedule(q);
3288 } else {
3289 smp_mb__before_clear_bit();
3290 clear_bit(__QDISC_STATE_SCHED,
3291 &q->state);
3292 }
3293 }
3294 }
3295 }
3296 }
3297
3298 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3299 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3300 /* This hook is defined here for ATM LANE */
3301 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3302 unsigned char *addr) __read_mostly;
3303 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3304 #endif
3305
3306 #ifdef CONFIG_NET_CLS_ACT
3307 /* TODO: Maybe we should just force sch_ingress to be compiled in
3308 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3309 * a compare and 2 stores extra right now if we dont have it on
3310 * but have CONFIG_NET_CLS_ACT
3311 * NOTE: This doesn't stop any functionality; if you dont have
3312 * the ingress scheduler, you just can't add policies on ingress.
3313 *
3314 */
3315 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3316 {
3317 struct net_device *dev = skb->dev;
3318 u32 ttl = G_TC_RTTL(skb->tc_verd);
3319 int result = TC_ACT_OK;
3320 struct Qdisc *q;
3321
3322 if (unlikely(MAX_RED_LOOP < ttl++)) {
3323 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3324 skb->skb_iif, dev->ifindex);
3325 return TC_ACT_SHOT;
3326 }
3327
3328 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3329 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3330
3331 q = rxq->qdisc;
3332 if (q != &noop_qdisc) {
3333 spin_lock(qdisc_lock(q));
3334 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3335 result = qdisc_enqueue_root(skb, q);
3336 spin_unlock(qdisc_lock(q));
3337 }
3338
3339 return result;
3340 }
3341
3342 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3343 struct packet_type **pt_prev,
3344 int *ret, struct net_device *orig_dev)
3345 {
3346 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3347
3348 if (!rxq || rxq->qdisc == &noop_qdisc)
3349 goto out;
3350
3351 if (*pt_prev) {
3352 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3353 *pt_prev = NULL;
3354 }
3355
3356 switch (ing_filter(skb, rxq)) {
3357 case TC_ACT_SHOT:
3358 case TC_ACT_STOLEN:
3359 kfree_skb(skb);
3360 return NULL;
3361 }
3362
3363 out:
3364 skb->tc_verd = 0;
3365 return skb;
3366 }
3367 #endif
3368
3369 /**
3370 * netdev_rx_handler_register - register receive handler
3371 * @dev: device to register a handler for
3372 * @rx_handler: receive handler to register
3373 * @rx_handler_data: data pointer that is used by rx handler
3374 *
3375 * Register a receive hander for a device. This handler will then be
3376 * called from __netif_receive_skb. A negative errno code is returned
3377 * on a failure.
3378 *
3379 * The caller must hold the rtnl_mutex.
3380 *
3381 * For a general description of rx_handler, see enum rx_handler_result.
3382 */
3383 int netdev_rx_handler_register(struct net_device *dev,
3384 rx_handler_func_t *rx_handler,
3385 void *rx_handler_data)
3386 {
3387 ASSERT_RTNL();
3388
3389 if (dev->rx_handler)
3390 return -EBUSY;
3391
3392 /* Note: rx_handler_data must be set before rx_handler */
3393 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3394 rcu_assign_pointer(dev->rx_handler, rx_handler);
3395
3396 return 0;
3397 }
3398 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3399
3400 /**
3401 * netdev_rx_handler_unregister - unregister receive handler
3402 * @dev: device to unregister a handler from
3403 *
3404 * Unregister a receive handler from a device.
3405 *
3406 * The caller must hold the rtnl_mutex.
3407 */
3408 void netdev_rx_handler_unregister(struct net_device *dev)
3409 {
3410
3411 ASSERT_RTNL();
3412 RCU_INIT_POINTER(dev->rx_handler, NULL);
3413 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3414 * section has a guarantee to see a non NULL rx_handler_data
3415 * as well.
3416 */
3417 synchronize_net();
3418 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3419 }
3420 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3421
3422 /*
3423 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3424 * the special handling of PFMEMALLOC skbs.
3425 */
3426 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3427 {
3428 switch (skb->protocol) {
3429 case __constant_htons(ETH_P_ARP):
3430 case __constant_htons(ETH_P_IP):
3431 case __constant_htons(ETH_P_IPV6):
3432 case __constant_htons(ETH_P_8021Q):
3433 case __constant_htons(ETH_P_8021AD):
3434 return true;
3435 default:
3436 return false;
3437 }
3438 }
3439
3440 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3441 {
3442 struct packet_type *ptype, *pt_prev;
3443 rx_handler_func_t *rx_handler;
3444 struct net_device *orig_dev;
3445 struct net_device *null_or_dev;
3446 bool deliver_exact = false;
3447 int ret = NET_RX_DROP;
3448 __be16 type;
3449
3450 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3451
3452 trace_netif_receive_skb(skb);
3453
3454 /* if we've gotten here through NAPI, check netpoll */
3455 if (netpoll_receive_skb(skb))
3456 goto out;
3457
3458 orig_dev = skb->dev;
3459
3460 skb_reset_network_header(skb);
3461 if (!skb_transport_header_was_set(skb))
3462 skb_reset_transport_header(skb);
3463 skb_reset_mac_len(skb);
3464
3465 pt_prev = NULL;
3466
3467 rcu_read_lock();
3468
3469 another_round:
3470 skb->skb_iif = skb->dev->ifindex;
3471
3472 __this_cpu_inc(softnet_data.processed);
3473
3474 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3475 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3476 skb = vlan_untag(skb);
3477 if (unlikely(!skb))
3478 goto unlock;
3479 }
3480
3481 #ifdef CONFIG_NET_CLS_ACT
3482 if (skb->tc_verd & TC_NCLS) {
3483 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3484 goto ncls;
3485 }
3486 #endif
3487
3488 if (pfmemalloc)
3489 goto skip_taps;
3490
3491 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3492 if (!ptype->dev || ptype->dev == skb->dev) {
3493 if (pt_prev)
3494 ret = deliver_skb(skb, pt_prev, orig_dev);
3495 pt_prev = ptype;
3496 }
3497 }
3498
3499 skip_taps:
3500 #ifdef CONFIG_NET_CLS_ACT
3501 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3502 if (!skb)
3503 goto unlock;
3504 ncls:
3505 #endif
3506
3507 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3508 goto drop;
3509
3510 if (vlan_tx_tag_present(skb)) {
3511 if (pt_prev) {
3512 ret = deliver_skb(skb, pt_prev, orig_dev);
3513 pt_prev = NULL;
3514 }
3515 if (vlan_do_receive(&skb))
3516 goto another_round;
3517 else if (unlikely(!skb))
3518 goto unlock;
3519 }
3520
3521 rx_handler = rcu_dereference(skb->dev->rx_handler);
3522 if (rx_handler) {
3523 if (pt_prev) {
3524 ret = deliver_skb(skb, pt_prev, orig_dev);
3525 pt_prev = NULL;
3526 }
3527 switch (rx_handler(&skb)) {
3528 case RX_HANDLER_CONSUMED:
3529 ret = NET_RX_SUCCESS;
3530 goto unlock;
3531 case RX_HANDLER_ANOTHER:
3532 goto another_round;
3533 case RX_HANDLER_EXACT:
3534 deliver_exact = true;
3535 case RX_HANDLER_PASS:
3536 break;
3537 default:
3538 BUG();
3539 }
3540 }
3541
3542 if (unlikely(vlan_tx_tag_present(skb))) {
3543 if (vlan_tx_tag_get_id(skb))
3544 skb->pkt_type = PACKET_OTHERHOST;
3545 /* Note: we might in the future use prio bits
3546 * and set skb->priority like in vlan_do_receive()
3547 * For the time being, just ignore Priority Code Point
3548 */
3549 skb->vlan_tci = 0;
3550 }
3551
3552 /* deliver only exact match when indicated */
3553 null_or_dev = deliver_exact ? skb->dev : NULL;
3554
3555 type = skb->protocol;
3556 list_for_each_entry_rcu(ptype,
3557 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3558 if (ptype->type == type &&
3559 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3560 ptype->dev == orig_dev)) {
3561 if (pt_prev)
3562 ret = deliver_skb(skb, pt_prev, orig_dev);
3563 pt_prev = ptype;
3564 }
3565 }
3566
3567 if (pt_prev) {
3568 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3569 goto drop;
3570 else
3571 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3572 } else {
3573 drop:
3574 atomic_long_inc(&skb->dev->rx_dropped);
3575 kfree_skb(skb);
3576 /* Jamal, now you will not able to escape explaining
3577 * me how you were going to use this. :-)
3578 */
3579 ret = NET_RX_DROP;
3580 }
3581
3582 unlock:
3583 rcu_read_unlock();
3584 out:
3585 return ret;
3586 }
3587
3588 static int __netif_receive_skb(struct sk_buff *skb)
3589 {
3590 int ret;
3591
3592 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3593 unsigned long pflags = current->flags;
3594
3595 /*
3596 * PFMEMALLOC skbs are special, they should
3597 * - be delivered to SOCK_MEMALLOC sockets only
3598 * - stay away from userspace
3599 * - have bounded memory usage
3600 *
3601 * Use PF_MEMALLOC as this saves us from propagating the allocation
3602 * context down to all allocation sites.
3603 */
3604 current->flags |= PF_MEMALLOC;
3605 ret = __netif_receive_skb_core(skb, true);
3606 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3607 } else
3608 ret = __netif_receive_skb_core(skb, false);
3609
3610 return ret;
3611 }
3612
3613 /**
3614 * netif_receive_skb - process receive buffer from network
3615 * @skb: buffer to process
3616 *
3617 * netif_receive_skb() is the main receive data processing function.
3618 * It always succeeds. The buffer may be dropped during processing
3619 * for congestion control or by the protocol layers.
3620 *
3621 * This function may only be called from softirq context and interrupts
3622 * should be enabled.
3623 *
3624 * Return values (usually ignored):
3625 * NET_RX_SUCCESS: no congestion
3626 * NET_RX_DROP: packet was dropped
3627 */
3628 int netif_receive_skb(struct sk_buff *skb)
3629 {
3630 net_timestamp_check(netdev_tstamp_prequeue, skb);
3631
3632 if (skb_defer_rx_timestamp(skb))
3633 return NET_RX_SUCCESS;
3634
3635 #ifdef CONFIG_RPS
3636 if (static_key_false(&rps_needed)) {
3637 struct rps_dev_flow voidflow, *rflow = &voidflow;
3638 int cpu, ret;
3639
3640 rcu_read_lock();
3641
3642 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3643
3644 if (cpu >= 0) {
3645 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3646 rcu_read_unlock();
3647 return ret;
3648 }
3649 rcu_read_unlock();
3650 }
3651 #endif
3652 return __netif_receive_skb(skb);
3653 }
3654 EXPORT_SYMBOL(netif_receive_skb);
3655
3656 /* Network device is going away, flush any packets still pending
3657 * Called with irqs disabled.
3658 */
3659 static void flush_backlog(void *arg)
3660 {
3661 struct net_device *dev = arg;
3662 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3663 struct sk_buff *skb, *tmp;
3664
3665 rps_lock(sd);
3666 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3667 if (skb->dev == dev) {
3668 __skb_unlink(skb, &sd->input_pkt_queue);
3669 kfree_skb(skb);
3670 input_queue_head_incr(sd);
3671 }
3672 }
3673 rps_unlock(sd);
3674
3675 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3676 if (skb->dev == dev) {
3677 __skb_unlink(skb, &sd->process_queue);
3678 kfree_skb(skb);
3679 input_queue_head_incr(sd);
3680 }
3681 }
3682 }
3683
3684 static int napi_gro_complete(struct sk_buff *skb)
3685 {
3686 struct packet_offload *ptype;
3687 __be16 type = skb->protocol;
3688 struct list_head *head = &offload_base;
3689 int err = -ENOENT;
3690
3691 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3692
3693 if (NAPI_GRO_CB(skb)->count == 1) {
3694 skb_shinfo(skb)->gso_size = 0;
3695 goto out;
3696 }
3697
3698 rcu_read_lock();
3699 list_for_each_entry_rcu(ptype, head, list) {
3700 if (ptype->type != type || !ptype->callbacks.gro_complete)
3701 continue;
3702
3703 err = ptype->callbacks.gro_complete(skb);
3704 break;
3705 }
3706 rcu_read_unlock();
3707
3708 if (err) {
3709 WARN_ON(&ptype->list == head);
3710 kfree_skb(skb);
3711 return NET_RX_SUCCESS;
3712 }
3713
3714 out:
3715 return netif_receive_skb(skb);
3716 }
3717
3718 /* napi->gro_list contains packets ordered by age.
3719 * youngest packets at the head of it.
3720 * Complete skbs in reverse order to reduce latencies.
3721 */
3722 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3723 {
3724 struct sk_buff *skb, *prev = NULL;
3725
3726 /* scan list and build reverse chain */
3727 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3728 skb->prev = prev;
3729 prev = skb;
3730 }
3731
3732 for (skb = prev; skb; skb = prev) {
3733 skb->next = NULL;
3734
3735 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3736 return;
3737
3738 prev = skb->prev;
3739 napi_gro_complete(skb);
3740 napi->gro_count--;
3741 }
3742
3743 napi->gro_list = NULL;
3744 }
3745 EXPORT_SYMBOL(napi_gro_flush);
3746
3747 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3748 {
3749 struct sk_buff *p;
3750 unsigned int maclen = skb->dev->hard_header_len;
3751
3752 for (p = napi->gro_list; p; p = p->next) {
3753 unsigned long diffs;
3754
3755 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3756 diffs |= p->vlan_tci ^ skb->vlan_tci;
3757 if (maclen == ETH_HLEN)
3758 diffs |= compare_ether_header(skb_mac_header(p),
3759 skb_gro_mac_header(skb));
3760 else if (!diffs)
3761 diffs = memcmp(skb_mac_header(p),
3762 skb_gro_mac_header(skb),
3763 maclen);
3764 NAPI_GRO_CB(p)->same_flow = !diffs;
3765 NAPI_GRO_CB(p)->flush = 0;
3766 }
3767 }
3768
3769 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3770 {
3771 struct sk_buff **pp = NULL;
3772 struct packet_offload *ptype;
3773 __be16 type = skb->protocol;
3774 struct list_head *head = &offload_base;
3775 int same_flow;
3776 enum gro_result ret;
3777
3778 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3779 goto normal;
3780
3781 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3782 goto normal;
3783
3784 gro_list_prepare(napi, skb);
3785
3786 rcu_read_lock();
3787 list_for_each_entry_rcu(ptype, head, list) {
3788 if (ptype->type != type || !ptype->callbacks.gro_receive)
3789 continue;
3790
3791 skb_set_network_header(skb, skb_gro_offset(skb));
3792 skb_reset_mac_len(skb);
3793 NAPI_GRO_CB(skb)->same_flow = 0;
3794 NAPI_GRO_CB(skb)->flush = 0;
3795 NAPI_GRO_CB(skb)->free = 0;
3796
3797 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3798 break;
3799 }
3800 rcu_read_unlock();
3801
3802 if (&ptype->list == head)
3803 goto normal;
3804
3805 same_flow = NAPI_GRO_CB(skb)->same_flow;
3806 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3807
3808 if (pp) {
3809 struct sk_buff *nskb = *pp;
3810
3811 *pp = nskb->next;
3812 nskb->next = NULL;
3813 napi_gro_complete(nskb);
3814 napi->gro_count--;
3815 }
3816
3817 if (same_flow)
3818 goto ok;
3819
3820 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3821 goto normal;
3822
3823 napi->gro_count++;
3824 NAPI_GRO_CB(skb)->count = 1;
3825 NAPI_GRO_CB(skb)->age = jiffies;
3826 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3827 skb->next = napi->gro_list;
3828 napi->gro_list = skb;
3829 ret = GRO_HELD;
3830
3831 pull:
3832 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3833 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3834
3835 BUG_ON(skb->end - skb->tail < grow);
3836
3837 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3838
3839 skb->tail += grow;
3840 skb->data_len -= grow;
3841
3842 skb_shinfo(skb)->frags[0].page_offset += grow;
3843 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3844
3845 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3846 skb_frag_unref(skb, 0);
3847 memmove(skb_shinfo(skb)->frags,
3848 skb_shinfo(skb)->frags + 1,
3849 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3850 }
3851 }
3852
3853 ok:
3854 return ret;
3855
3856 normal:
3857 ret = GRO_NORMAL;
3858 goto pull;
3859 }
3860
3861
3862 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3863 {
3864 switch (ret) {
3865 case GRO_NORMAL:
3866 if (netif_receive_skb(skb))
3867 ret = GRO_DROP;
3868 break;
3869
3870 case GRO_DROP:
3871 kfree_skb(skb);
3872 break;
3873
3874 case GRO_MERGED_FREE:
3875 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3876 kmem_cache_free(skbuff_head_cache, skb);
3877 else
3878 __kfree_skb(skb);
3879 break;
3880
3881 case GRO_HELD:
3882 case GRO_MERGED:
3883 break;
3884 }
3885
3886 return ret;
3887 }
3888
3889 static void skb_gro_reset_offset(struct sk_buff *skb)
3890 {
3891 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3892 const skb_frag_t *frag0 = &pinfo->frags[0];
3893
3894 NAPI_GRO_CB(skb)->data_offset = 0;
3895 NAPI_GRO_CB(skb)->frag0 = NULL;
3896 NAPI_GRO_CB(skb)->frag0_len = 0;
3897
3898 if (skb->mac_header == skb->tail &&
3899 pinfo->nr_frags &&
3900 !PageHighMem(skb_frag_page(frag0))) {
3901 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3902 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3903 }
3904 }
3905
3906 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3907 {
3908 skb_gro_reset_offset(skb);
3909
3910 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3911 }
3912 EXPORT_SYMBOL(napi_gro_receive);
3913
3914 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3915 {
3916 __skb_pull(skb, skb_headlen(skb));
3917 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3918 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3919 skb->vlan_tci = 0;
3920 skb->dev = napi->dev;
3921 skb->skb_iif = 0;
3922 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
3923
3924 napi->skb = skb;
3925 }
3926
3927 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3928 {
3929 struct sk_buff *skb = napi->skb;
3930
3931 if (!skb) {
3932 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3933 if (skb)
3934 napi->skb = skb;
3935 }
3936 return skb;
3937 }
3938 EXPORT_SYMBOL(napi_get_frags);
3939
3940 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3941 gro_result_t ret)
3942 {
3943 switch (ret) {
3944 case GRO_NORMAL:
3945 case GRO_HELD:
3946 skb->protocol = eth_type_trans(skb, skb->dev);
3947
3948 if (ret == GRO_HELD)
3949 skb_gro_pull(skb, -ETH_HLEN);
3950 else if (netif_receive_skb(skb))
3951 ret = GRO_DROP;
3952 break;
3953
3954 case GRO_DROP:
3955 case GRO_MERGED_FREE:
3956 napi_reuse_skb(napi, skb);
3957 break;
3958
3959 case GRO_MERGED:
3960 break;
3961 }
3962
3963 return ret;
3964 }
3965
3966 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3967 {
3968 struct sk_buff *skb = napi->skb;
3969 struct ethhdr *eth;
3970 unsigned int hlen;
3971 unsigned int off;
3972
3973 napi->skb = NULL;
3974
3975 skb_reset_mac_header(skb);
3976 skb_gro_reset_offset(skb);
3977
3978 off = skb_gro_offset(skb);
3979 hlen = off + sizeof(*eth);
3980 eth = skb_gro_header_fast(skb, off);
3981 if (skb_gro_header_hard(skb, hlen)) {
3982 eth = skb_gro_header_slow(skb, hlen, off);
3983 if (unlikely(!eth)) {
3984 napi_reuse_skb(napi, skb);
3985 skb = NULL;
3986 goto out;
3987 }
3988 }
3989
3990 skb_gro_pull(skb, sizeof(*eth));
3991
3992 /*
3993 * This works because the only protocols we care about don't require
3994 * special handling. We'll fix it up properly at the end.
3995 */
3996 skb->protocol = eth->h_proto;
3997
3998 out:
3999 return skb;
4000 }
4001
4002 gro_result_t napi_gro_frags(struct napi_struct *napi)
4003 {
4004 struct sk_buff *skb = napi_frags_skb(napi);
4005
4006 if (!skb)
4007 return GRO_DROP;
4008
4009 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4010 }
4011 EXPORT_SYMBOL(napi_gro_frags);
4012
4013 /*
4014 * net_rps_action sends any pending IPI's for rps.
4015 * Note: called with local irq disabled, but exits with local irq enabled.
4016 */
4017 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4018 {
4019 #ifdef CONFIG_RPS
4020 struct softnet_data *remsd = sd->rps_ipi_list;
4021
4022 if (remsd) {
4023 sd->rps_ipi_list = NULL;
4024
4025 local_irq_enable();
4026
4027 /* Send pending IPI's to kick RPS processing on remote cpus. */
4028 while (remsd) {
4029 struct softnet_data *next = remsd->rps_ipi_next;
4030
4031 if (cpu_online(remsd->cpu))
4032 __smp_call_function_single(remsd->cpu,
4033 &remsd->csd, 0);
4034 remsd = next;
4035 }
4036 } else
4037 #endif
4038 local_irq_enable();
4039 }
4040
4041 static int process_backlog(struct napi_struct *napi, int quota)
4042 {
4043 int work = 0;
4044 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4045
4046 #ifdef CONFIG_RPS
4047 /* Check if we have pending ipi, its better to send them now,
4048 * not waiting net_rx_action() end.
4049 */
4050 if (sd->rps_ipi_list) {
4051 local_irq_disable();
4052 net_rps_action_and_irq_enable(sd);
4053 }
4054 #endif
4055 napi->weight = weight_p;
4056 local_irq_disable();
4057 while (work < quota) {
4058 struct sk_buff *skb;
4059 unsigned int qlen;
4060
4061 while ((skb = __skb_dequeue(&sd->process_queue))) {
4062 local_irq_enable();
4063 __netif_receive_skb(skb);
4064 local_irq_disable();
4065 input_queue_head_incr(sd);
4066 if (++work >= quota) {
4067 local_irq_enable();
4068 return work;
4069 }
4070 }
4071
4072 rps_lock(sd);
4073 qlen = skb_queue_len(&sd->input_pkt_queue);
4074 if (qlen)
4075 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4076 &sd->process_queue);
4077
4078 if (qlen < quota - work) {
4079 /*
4080 * Inline a custom version of __napi_complete().
4081 * only current cpu owns and manipulates this napi,
4082 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4083 * we can use a plain write instead of clear_bit(),
4084 * and we dont need an smp_mb() memory barrier.
4085 */
4086 list_del(&napi->poll_list);
4087 napi->state = 0;
4088
4089 quota = work + qlen;
4090 }
4091 rps_unlock(sd);
4092 }
4093 local_irq_enable();
4094
4095 return work;
4096 }
4097
4098 /**
4099 * __napi_schedule - schedule for receive
4100 * @n: entry to schedule
4101 *
4102 * The entry's receive function will be scheduled to run
4103 */
4104 void __napi_schedule(struct napi_struct *n)
4105 {
4106 unsigned long flags;
4107
4108 local_irq_save(flags);
4109 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4110 local_irq_restore(flags);
4111 }
4112 EXPORT_SYMBOL(__napi_schedule);
4113
4114 void __napi_complete(struct napi_struct *n)
4115 {
4116 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4117 BUG_ON(n->gro_list);
4118
4119 list_del(&n->poll_list);
4120 smp_mb__before_clear_bit();
4121 clear_bit(NAPI_STATE_SCHED, &n->state);
4122 }
4123 EXPORT_SYMBOL(__napi_complete);
4124
4125 void napi_complete(struct napi_struct *n)
4126 {
4127 unsigned long flags;
4128
4129 /*
4130 * don't let napi dequeue from the cpu poll list
4131 * just in case its running on a different cpu
4132 */
4133 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4134 return;
4135
4136 napi_gro_flush(n, false);
4137 local_irq_save(flags);
4138 __napi_complete(n);
4139 local_irq_restore(flags);
4140 }
4141 EXPORT_SYMBOL(napi_complete);
4142
4143 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4144 int (*poll)(struct napi_struct *, int), int weight)
4145 {
4146 INIT_LIST_HEAD(&napi->poll_list);
4147 napi->gro_count = 0;
4148 napi->gro_list = NULL;
4149 napi->skb = NULL;
4150 napi->poll = poll;
4151 if (weight > NAPI_POLL_WEIGHT)
4152 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4153 weight, dev->name);
4154 napi->weight = weight;
4155 list_add(&napi->dev_list, &dev->napi_list);
4156 napi->dev = dev;
4157 #ifdef CONFIG_NETPOLL
4158 spin_lock_init(&napi->poll_lock);
4159 napi->poll_owner = -1;
4160 #endif
4161 set_bit(NAPI_STATE_SCHED, &napi->state);
4162 }
4163 EXPORT_SYMBOL(netif_napi_add);
4164
4165 void netif_napi_del(struct napi_struct *napi)
4166 {
4167 struct sk_buff *skb, *next;
4168
4169 list_del_init(&napi->dev_list);
4170 napi_free_frags(napi);
4171
4172 for (skb = napi->gro_list; skb; skb = next) {
4173 next = skb->next;
4174 skb->next = NULL;
4175 kfree_skb(skb);
4176 }
4177
4178 napi->gro_list = NULL;
4179 napi->gro_count = 0;
4180 }
4181 EXPORT_SYMBOL(netif_napi_del);
4182
4183 static void net_rx_action(struct softirq_action *h)
4184 {
4185 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4186 unsigned long time_limit = jiffies + 2;
4187 int budget = netdev_budget;
4188 void *have;
4189
4190 local_irq_disable();
4191
4192 while (!list_empty(&sd->poll_list)) {
4193 struct napi_struct *n;
4194 int work, weight;
4195
4196 /* If softirq window is exhuasted then punt.
4197 * Allow this to run for 2 jiffies since which will allow
4198 * an average latency of 1.5/HZ.
4199 */
4200 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4201 goto softnet_break;
4202
4203 local_irq_enable();
4204
4205 /* Even though interrupts have been re-enabled, this
4206 * access is safe because interrupts can only add new
4207 * entries to the tail of this list, and only ->poll()
4208 * calls can remove this head entry from the list.
4209 */
4210 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4211
4212 have = netpoll_poll_lock(n);
4213
4214 weight = n->weight;
4215
4216 /* This NAPI_STATE_SCHED test is for avoiding a race
4217 * with netpoll's poll_napi(). Only the entity which
4218 * obtains the lock and sees NAPI_STATE_SCHED set will
4219 * actually make the ->poll() call. Therefore we avoid
4220 * accidentally calling ->poll() when NAPI is not scheduled.
4221 */
4222 work = 0;
4223 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4224 work = n->poll(n, weight);
4225 trace_napi_poll(n);
4226 }
4227
4228 WARN_ON_ONCE(work > weight);
4229
4230 budget -= work;
4231
4232 local_irq_disable();
4233
4234 /* Drivers must not modify the NAPI state if they
4235 * consume the entire weight. In such cases this code
4236 * still "owns" the NAPI instance and therefore can
4237 * move the instance around on the list at-will.
4238 */
4239 if (unlikely(work == weight)) {
4240 if (unlikely(napi_disable_pending(n))) {
4241 local_irq_enable();
4242 napi_complete(n);
4243 local_irq_disable();
4244 } else {
4245 if (n->gro_list) {
4246 /* flush too old packets
4247 * If HZ < 1000, flush all packets.
4248 */
4249 local_irq_enable();
4250 napi_gro_flush(n, HZ >= 1000);
4251 local_irq_disable();
4252 }
4253 list_move_tail(&n->poll_list, &sd->poll_list);
4254 }
4255 }
4256
4257 netpoll_poll_unlock(have);
4258 }
4259 out:
4260 net_rps_action_and_irq_enable(sd);
4261
4262 #ifdef CONFIG_NET_DMA
4263 /*
4264 * There may not be any more sk_buffs coming right now, so push
4265 * any pending DMA copies to hardware
4266 */
4267 dma_issue_pending_all();
4268 #endif
4269
4270 return;
4271
4272 softnet_break:
4273 sd->time_squeeze++;
4274 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4275 goto out;
4276 }
4277
4278 struct netdev_upper {
4279 struct net_device *dev;
4280 bool master;
4281 struct list_head list;
4282 struct rcu_head rcu;
4283 struct list_head search_list;
4284 };
4285
4286 static void __append_search_uppers(struct list_head *search_list,
4287 struct net_device *dev)
4288 {
4289 struct netdev_upper *upper;
4290
4291 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4292 /* check if this upper is not already in search list */
4293 if (list_empty(&upper->search_list))
4294 list_add_tail(&upper->search_list, search_list);
4295 }
4296 }
4297
4298 static bool __netdev_search_upper_dev(struct net_device *dev,
4299 struct net_device *upper_dev)
4300 {
4301 LIST_HEAD(search_list);
4302 struct netdev_upper *upper;
4303 struct netdev_upper *tmp;
4304 bool ret = false;
4305
4306 __append_search_uppers(&search_list, dev);
4307 list_for_each_entry(upper, &search_list, search_list) {
4308 if (upper->dev == upper_dev) {
4309 ret = true;
4310 break;
4311 }
4312 __append_search_uppers(&search_list, upper->dev);
4313 }
4314 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4315 INIT_LIST_HEAD(&upper->search_list);
4316 return ret;
4317 }
4318
4319 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4320 struct net_device *upper_dev)
4321 {
4322 struct netdev_upper *upper;
4323
4324 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4325 if (upper->dev == upper_dev)
4326 return upper;
4327 }
4328 return NULL;
4329 }
4330
4331 /**
4332 * netdev_has_upper_dev - Check if device is linked to an upper device
4333 * @dev: device
4334 * @upper_dev: upper device to check
4335 *
4336 * Find out if a device is linked to specified upper device and return true
4337 * in case it is. Note that this checks only immediate upper device,
4338 * not through a complete stack of devices. The caller must hold the RTNL lock.
4339 */
4340 bool netdev_has_upper_dev(struct net_device *dev,
4341 struct net_device *upper_dev)
4342 {
4343 ASSERT_RTNL();
4344
4345 return __netdev_find_upper(dev, upper_dev);
4346 }
4347 EXPORT_SYMBOL(netdev_has_upper_dev);
4348
4349 /**
4350 * netdev_has_any_upper_dev - Check if device is linked to some device
4351 * @dev: device
4352 *
4353 * Find out if a device is linked to an upper device and return true in case
4354 * it is. The caller must hold the RTNL lock.
4355 */
4356 bool netdev_has_any_upper_dev(struct net_device *dev)
4357 {
4358 ASSERT_RTNL();
4359
4360 return !list_empty(&dev->upper_dev_list);
4361 }
4362 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4363
4364 /**
4365 * netdev_master_upper_dev_get - Get master upper device
4366 * @dev: device
4367 *
4368 * Find a master upper device and return pointer to it or NULL in case
4369 * it's not there. The caller must hold the RTNL lock.
4370 */
4371 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4372 {
4373 struct netdev_upper *upper;
4374
4375 ASSERT_RTNL();
4376
4377 if (list_empty(&dev->upper_dev_list))
4378 return NULL;
4379
4380 upper = list_first_entry(&dev->upper_dev_list,
4381 struct netdev_upper, list);
4382 if (likely(upper->master))
4383 return upper->dev;
4384 return NULL;
4385 }
4386 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4387
4388 /**
4389 * netdev_master_upper_dev_get_rcu - Get master upper device
4390 * @dev: device
4391 *
4392 * Find a master upper device and return pointer to it or NULL in case
4393 * it's not there. The caller must hold the RCU read lock.
4394 */
4395 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4396 {
4397 struct netdev_upper *upper;
4398
4399 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4400 struct netdev_upper, list);
4401 if (upper && likely(upper->master))
4402 return upper->dev;
4403 return NULL;
4404 }
4405 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4406
4407 static int __netdev_upper_dev_link(struct net_device *dev,
4408 struct net_device *upper_dev, bool master)
4409 {
4410 struct netdev_upper *upper;
4411
4412 ASSERT_RTNL();
4413
4414 if (dev == upper_dev)
4415 return -EBUSY;
4416
4417 /* To prevent loops, check if dev is not upper device to upper_dev. */
4418 if (__netdev_search_upper_dev(upper_dev, dev))
4419 return -EBUSY;
4420
4421 if (__netdev_find_upper(dev, upper_dev))
4422 return -EEXIST;
4423
4424 if (master && netdev_master_upper_dev_get(dev))
4425 return -EBUSY;
4426
4427 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4428 if (!upper)
4429 return -ENOMEM;
4430
4431 upper->dev = upper_dev;
4432 upper->master = master;
4433 INIT_LIST_HEAD(&upper->search_list);
4434
4435 /* Ensure that master upper link is always the first item in list. */
4436 if (master)
4437 list_add_rcu(&upper->list, &dev->upper_dev_list);
4438 else
4439 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4440 dev_hold(upper_dev);
4441
4442 return 0;
4443 }
4444
4445 /**
4446 * netdev_upper_dev_link - Add a link to the upper device
4447 * @dev: device
4448 * @upper_dev: new upper device
4449 *
4450 * Adds a link to device which is upper to this one. The caller must hold
4451 * the RTNL lock. On a failure a negative errno code is returned.
4452 * On success the reference counts are adjusted and the function
4453 * returns zero.
4454 */
4455 int netdev_upper_dev_link(struct net_device *dev,
4456 struct net_device *upper_dev)
4457 {
4458 return __netdev_upper_dev_link(dev, upper_dev, false);
4459 }
4460 EXPORT_SYMBOL(netdev_upper_dev_link);
4461
4462 /**
4463 * netdev_master_upper_dev_link - Add a master link to the upper device
4464 * @dev: device
4465 * @upper_dev: new upper device
4466 *
4467 * Adds a link to device which is upper to this one. In this case, only
4468 * one master upper device can be linked, although other non-master devices
4469 * might be linked as well. The caller must hold the RTNL lock.
4470 * On a failure a negative errno code is returned. On success the reference
4471 * counts are adjusted and the function returns zero.
4472 */
4473 int netdev_master_upper_dev_link(struct net_device *dev,
4474 struct net_device *upper_dev)
4475 {
4476 return __netdev_upper_dev_link(dev, upper_dev, true);
4477 }
4478 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4479
4480 /**
4481 * netdev_upper_dev_unlink - Removes a link to upper device
4482 * @dev: device
4483 * @upper_dev: new upper device
4484 *
4485 * Removes a link to device which is upper to this one. The caller must hold
4486 * the RTNL lock.
4487 */
4488 void netdev_upper_dev_unlink(struct net_device *dev,
4489 struct net_device *upper_dev)
4490 {
4491 struct netdev_upper *upper;
4492
4493 ASSERT_RTNL();
4494
4495 upper = __netdev_find_upper(dev, upper_dev);
4496 if (!upper)
4497 return;
4498 list_del_rcu(&upper->list);
4499 dev_put(upper_dev);
4500 kfree_rcu(upper, rcu);
4501 }
4502 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4503
4504 static void dev_change_rx_flags(struct net_device *dev, int flags)
4505 {
4506 const struct net_device_ops *ops = dev->netdev_ops;
4507
4508 if (ops->ndo_change_rx_flags)
4509 ops->ndo_change_rx_flags(dev, flags);
4510 }
4511
4512 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4513 {
4514 unsigned int old_flags = dev->flags;
4515 kuid_t uid;
4516 kgid_t gid;
4517
4518 ASSERT_RTNL();
4519
4520 dev->flags |= IFF_PROMISC;
4521 dev->promiscuity += inc;
4522 if (dev->promiscuity == 0) {
4523 /*
4524 * Avoid overflow.
4525 * If inc causes overflow, untouch promisc and return error.
4526 */
4527 if (inc < 0)
4528 dev->flags &= ~IFF_PROMISC;
4529 else {
4530 dev->promiscuity -= inc;
4531 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4532 dev->name);
4533 return -EOVERFLOW;
4534 }
4535 }
4536 if (dev->flags != old_flags) {
4537 pr_info("device %s %s promiscuous mode\n",
4538 dev->name,
4539 dev->flags & IFF_PROMISC ? "entered" : "left");
4540 if (audit_enabled) {
4541 current_uid_gid(&uid, &gid);
4542 audit_log(current->audit_context, GFP_ATOMIC,
4543 AUDIT_ANOM_PROMISCUOUS,
4544 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4545 dev->name, (dev->flags & IFF_PROMISC),
4546 (old_flags & IFF_PROMISC),
4547 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4548 from_kuid(&init_user_ns, uid),
4549 from_kgid(&init_user_ns, gid),
4550 audit_get_sessionid(current));
4551 }
4552
4553 dev_change_rx_flags(dev, IFF_PROMISC);
4554 }
4555 return 0;
4556 }
4557
4558 /**
4559 * dev_set_promiscuity - update promiscuity count on a device
4560 * @dev: device
4561 * @inc: modifier
4562 *
4563 * Add or remove promiscuity from a device. While the count in the device
4564 * remains above zero the interface remains promiscuous. Once it hits zero
4565 * the device reverts back to normal filtering operation. A negative inc
4566 * value is used to drop promiscuity on the device.
4567 * Return 0 if successful or a negative errno code on error.
4568 */
4569 int dev_set_promiscuity(struct net_device *dev, int inc)
4570 {
4571 unsigned int old_flags = dev->flags;
4572 int err;
4573
4574 err = __dev_set_promiscuity(dev, inc);
4575 if (err < 0)
4576 return err;
4577 if (dev->flags != old_flags)
4578 dev_set_rx_mode(dev);
4579 return err;
4580 }
4581 EXPORT_SYMBOL(dev_set_promiscuity);
4582
4583 /**
4584 * dev_set_allmulti - update allmulti count on a device
4585 * @dev: device
4586 * @inc: modifier
4587 *
4588 * Add or remove reception of all multicast frames to a device. While the
4589 * count in the device remains above zero the interface remains listening
4590 * to all interfaces. Once it hits zero the device reverts back to normal
4591 * filtering operation. A negative @inc value is used to drop the counter
4592 * when releasing a resource needing all multicasts.
4593 * Return 0 if successful or a negative errno code on error.
4594 */
4595
4596 int dev_set_allmulti(struct net_device *dev, int inc)
4597 {
4598 unsigned int old_flags = dev->flags;
4599
4600 ASSERT_RTNL();
4601
4602 dev->flags |= IFF_ALLMULTI;
4603 dev->allmulti += inc;
4604 if (dev->allmulti == 0) {
4605 /*
4606 * Avoid overflow.
4607 * If inc causes overflow, untouch allmulti and return error.
4608 */
4609 if (inc < 0)
4610 dev->flags &= ~IFF_ALLMULTI;
4611 else {
4612 dev->allmulti -= inc;
4613 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4614 dev->name);
4615 return -EOVERFLOW;
4616 }
4617 }
4618 if (dev->flags ^ old_flags) {
4619 dev_change_rx_flags(dev, IFF_ALLMULTI);
4620 dev_set_rx_mode(dev);
4621 }
4622 return 0;
4623 }
4624 EXPORT_SYMBOL(dev_set_allmulti);
4625
4626 /*
4627 * Upload unicast and multicast address lists to device and
4628 * configure RX filtering. When the device doesn't support unicast
4629 * filtering it is put in promiscuous mode while unicast addresses
4630 * are present.
4631 */
4632 void __dev_set_rx_mode(struct net_device *dev)
4633 {
4634 const struct net_device_ops *ops = dev->netdev_ops;
4635
4636 /* dev_open will call this function so the list will stay sane. */
4637 if (!(dev->flags&IFF_UP))
4638 return;
4639
4640 if (!netif_device_present(dev))
4641 return;
4642
4643 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4644 /* Unicast addresses changes may only happen under the rtnl,
4645 * therefore calling __dev_set_promiscuity here is safe.
4646 */
4647 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4648 __dev_set_promiscuity(dev, 1);
4649 dev->uc_promisc = true;
4650 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4651 __dev_set_promiscuity(dev, -1);
4652 dev->uc_promisc = false;
4653 }
4654 }
4655
4656 if (ops->ndo_set_rx_mode)
4657 ops->ndo_set_rx_mode(dev);
4658 }
4659 EXPORT_SYMBOL(__dev_set_rx_mode);
4660
4661 void dev_set_rx_mode(struct net_device *dev)
4662 {
4663 netif_addr_lock_bh(dev);
4664 __dev_set_rx_mode(dev);
4665 netif_addr_unlock_bh(dev);
4666 }
4667
4668 /**
4669 * dev_get_flags - get flags reported to userspace
4670 * @dev: device
4671 *
4672 * Get the combination of flag bits exported through APIs to userspace.
4673 */
4674 unsigned int dev_get_flags(const struct net_device *dev)
4675 {
4676 unsigned int flags;
4677
4678 flags = (dev->flags & ~(IFF_PROMISC |
4679 IFF_ALLMULTI |
4680 IFF_RUNNING |
4681 IFF_LOWER_UP |
4682 IFF_DORMANT)) |
4683 (dev->gflags & (IFF_PROMISC |
4684 IFF_ALLMULTI));
4685
4686 if (netif_running(dev)) {
4687 if (netif_oper_up(dev))
4688 flags |= IFF_RUNNING;
4689 if (netif_carrier_ok(dev))
4690 flags |= IFF_LOWER_UP;
4691 if (netif_dormant(dev))
4692 flags |= IFF_DORMANT;
4693 }
4694
4695 return flags;
4696 }
4697 EXPORT_SYMBOL(dev_get_flags);
4698
4699 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4700 {
4701 unsigned int old_flags = dev->flags;
4702 int ret;
4703
4704 ASSERT_RTNL();
4705
4706 /*
4707 * Set the flags on our device.
4708 */
4709
4710 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4711 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4712 IFF_AUTOMEDIA)) |
4713 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4714 IFF_ALLMULTI));
4715
4716 /*
4717 * Load in the correct multicast list now the flags have changed.
4718 */
4719
4720 if ((old_flags ^ flags) & IFF_MULTICAST)
4721 dev_change_rx_flags(dev, IFF_MULTICAST);
4722
4723 dev_set_rx_mode(dev);
4724
4725 /*
4726 * Have we downed the interface. We handle IFF_UP ourselves
4727 * according to user attempts to set it, rather than blindly
4728 * setting it.
4729 */
4730
4731 ret = 0;
4732 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4733 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4734
4735 if (!ret)
4736 dev_set_rx_mode(dev);
4737 }
4738
4739 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4740 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4741
4742 dev->gflags ^= IFF_PROMISC;
4743 dev_set_promiscuity(dev, inc);
4744 }
4745
4746 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4747 is important. Some (broken) drivers set IFF_PROMISC, when
4748 IFF_ALLMULTI is requested not asking us and not reporting.
4749 */
4750 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4751 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4752
4753 dev->gflags ^= IFF_ALLMULTI;
4754 dev_set_allmulti(dev, inc);
4755 }
4756
4757 return ret;
4758 }
4759
4760 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4761 {
4762 unsigned int changes = dev->flags ^ old_flags;
4763
4764 if (changes & IFF_UP) {
4765 if (dev->flags & IFF_UP)
4766 call_netdevice_notifiers(NETDEV_UP, dev);
4767 else
4768 call_netdevice_notifiers(NETDEV_DOWN, dev);
4769 }
4770
4771 if (dev->flags & IFF_UP &&
4772 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4773 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4774 }
4775
4776 /**
4777 * dev_change_flags - change device settings
4778 * @dev: device
4779 * @flags: device state flags
4780 *
4781 * Change settings on device based state flags. The flags are
4782 * in the userspace exported format.
4783 */
4784 int dev_change_flags(struct net_device *dev, unsigned int flags)
4785 {
4786 int ret;
4787 unsigned int changes, old_flags = dev->flags;
4788
4789 ret = __dev_change_flags(dev, flags);
4790 if (ret < 0)
4791 return ret;
4792
4793 changes = old_flags ^ dev->flags;
4794 if (changes)
4795 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4796
4797 __dev_notify_flags(dev, old_flags);
4798 return ret;
4799 }
4800 EXPORT_SYMBOL(dev_change_flags);
4801
4802 /**
4803 * dev_set_mtu - Change maximum transfer unit
4804 * @dev: device
4805 * @new_mtu: new transfer unit
4806 *
4807 * Change the maximum transfer size of the network device.
4808 */
4809 int dev_set_mtu(struct net_device *dev, int new_mtu)
4810 {
4811 const struct net_device_ops *ops = dev->netdev_ops;
4812 int err;
4813
4814 if (new_mtu == dev->mtu)
4815 return 0;
4816
4817 /* MTU must be positive. */
4818 if (new_mtu < 0)
4819 return -EINVAL;
4820
4821 if (!netif_device_present(dev))
4822 return -ENODEV;
4823
4824 err = 0;
4825 if (ops->ndo_change_mtu)
4826 err = ops->ndo_change_mtu(dev, new_mtu);
4827 else
4828 dev->mtu = new_mtu;
4829
4830 if (!err)
4831 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4832 return err;
4833 }
4834 EXPORT_SYMBOL(dev_set_mtu);
4835
4836 /**
4837 * dev_set_group - Change group this device belongs to
4838 * @dev: device
4839 * @new_group: group this device should belong to
4840 */
4841 void dev_set_group(struct net_device *dev, int new_group)
4842 {
4843 dev->group = new_group;
4844 }
4845 EXPORT_SYMBOL(dev_set_group);
4846
4847 /**
4848 * dev_set_mac_address - Change Media Access Control Address
4849 * @dev: device
4850 * @sa: new address
4851 *
4852 * Change the hardware (MAC) address of the device
4853 */
4854 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4855 {
4856 const struct net_device_ops *ops = dev->netdev_ops;
4857 int err;
4858
4859 if (!ops->ndo_set_mac_address)
4860 return -EOPNOTSUPP;
4861 if (sa->sa_family != dev->type)
4862 return -EINVAL;
4863 if (!netif_device_present(dev))
4864 return -ENODEV;
4865 err = ops->ndo_set_mac_address(dev, sa);
4866 if (err)
4867 return err;
4868 dev->addr_assign_type = NET_ADDR_SET;
4869 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4870 add_device_randomness(dev->dev_addr, dev->addr_len);
4871 return 0;
4872 }
4873 EXPORT_SYMBOL(dev_set_mac_address);
4874
4875 /**
4876 * dev_change_carrier - Change device carrier
4877 * @dev: device
4878 * @new_carrier: new value
4879 *
4880 * Change device carrier
4881 */
4882 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4883 {
4884 const struct net_device_ops *ops = dev->netdev_ops;
4885
4886 if (!ops->ndo_change_carrier)
4887 return -EOPNOTSUPP;
4888 if (!netif_device_present(dev))
4889 return -ENODEV;
4890 return ops->ndo_change_carrier(dev, new_carrier);
4891 }
4892 EXPORT_SYMBOL(dev_change_carrier);
4893
4894 /**
4895 * dev_new_index - allocate an ifindex
4896 * @net: the applicable net namespace
4897 *
4898 * Returns a suitable unique value for a new device interface
4899 * number. The caller must hold the rtnl semaphore or the
4900 * dev_base_lock to be sure it remains unique.
4901 */
4902 static int dev_new_index(struct net *net)
4903 {
4904 int ifindex = net->ifindex;
4905 for (;;) {
4906 if (++ifindex <= 0)
4907 ifindex = 1;
4908 if (!__dev_get_by_index(net, ifindex))
4909 return net->ifindex = ifindex;
4910 }
4911 }
4912
4913 /* Delayed registration/unregisteration */
4914 static LIST_HEAD(net_todo_list);
4915
4916 static void net_set_todo(struct net_device *dev)
4917 {
4918 list_add_tail(&dev->todo_list, &net_todo_list);
4919 }
4920
4921 static void rollback_registered_many(struct list_head *head)
4922 {
4923 struct net_device *dev, *tmp;
4924
4925 BUG_ON(dev_boot_phase);
4926 ASSERT_RTNL();
4927
4928 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4929 /* Some devices call without registering
4930 * for initialization unwind. Remove those
4931 * devices and proceed with the remaining.
4932 */
4933 if (dev->reg_state == NETREG_UNINITIALIZED) {
4934 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4935 dev->name, dev);
4936
4937 WARN_ON(1);
4938 list_del(&dev->unreg_list);
4939 continue;
4940 }
4941 dev->dismantle = true;
4942 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4943 }
4944
4945 /* If device is running, close it first. */
4946 dev_close_many(head);
4947
4948 list_for_each_entry(dev, head, unreg_list) {
4949 /* And unlink it from device chain. */
4950 unlist_netdevice(dev);
4951
4952 dev->reg_state = NETREG_UNREGISTERING;
4953 }
4954
4955 synchronize_net();
4956
4957 list_for_each_entry(dev, head, unreg_list) {
4958 /* Shutdown queueing discipline. */
4959 dev_shutdown(dev);
4960
4961
4962 /* Notify protocols, that we are about to destroy
4963 this device. They should clean all the things.
4964 */
4965 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4966
4967 if (!dev->rtnl_link_ops ||
4968 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4969 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4970
4971 /*
4972 * Flush the unicast and multicast chains
4973 */
4974 dev_uc_flush(dev);
4975 dev_mc_flush(dev);
4976
4977 if (dev->netdev_ops->ndo_uninit)
4978 dev->netdev_ops->ndo_uninit(dev);
4979
4980 /* Notifier chain MUST detach us all upper devices. */
4981 WARN_ON(netdev_has_any_upper_dev(dev));
4982
4983 /* Remove entries from kobject tree */
4984 netdev_unregister_kobject(dev);
4985 #ifdef CONFIG_XPS
4986 /* Remove XPS queueing entries */
4987 netif_reset_xps_queues_gt(dev, 0);
4988 #endif
4989 }
4990
4991 synchronize_net();
4992
4993 list_for_each_entry(dev, head, unreg_list)
4994 dev_put(dev);
4995 }
4996
4997 static void rollback_registered(struct net_device *dev)
4998 {
4999 LIST_HEAD(single);
5000
5001 list_add(&dev->unreg_list, &single);
5002 rollback_registered_many(&single);
5003 list_del(&single);
5004 }
5005
5006 static netdev_features_t netdev_fix_features(struct net_device *dev,
5007 netdev_features_t features)
5008 {
5009 /* Fix illegal checksum combinations */
5010 if ((features & NETIF_F_HW_CSUM) &&
5011 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5012 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5013 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5014 }
5015
5016 /* TSO requires that SG is present as well. */
5017 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5018 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5019 features &= ~NETIF_F_ALL_TSO;
5020 }
5021
5022 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5023 !(features & NETIF_F_IP_CSUM)) {
5024 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5025 features &= ~NETIF_F_TSO;
5026 features &= ~NETIF_F_TSO_ECN;
5027 }
5028
5029 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5030 !(features & NETIF_F_IPV6_CSUM)) {
5031 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5032 features &= ~NETIF_F_TSO6;
5033 }
5034
5035 /* TSO ECN requires that TSO is present as well. */
5036 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5037 features &= ~NETIF_F_TSO_ECN;
5038
5039 /* Software GSO depends on SG. */
5040 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5041 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5042 features &= ~NETIF_F_GSO;
5043 }
5044
5045 /* UFO needs SG and checksumming */
5046 if (features & NETIF_F_UFO) {
5047 /* maybe split UFO into V4 and V6? */
5048 if (!((features & NETIF_F_GEN_CSUM) ||
5049 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5050 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5051 netdev_dbg(dev,
5052 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5053 features &= ~NETIF_F_UFO;
5054 }
5055
5056 if (!(features & NETIF_F_SG)) {
5057 netdev_dbg(dev,
5058 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5059 features &= ~NETIF_F_UFO;
5060 }
5061 }
5062
5063 return features;
5064 }
5065
5066 int __netdev_update_features(struct net_device *dev)
5067 {
5068 netdev_features_t features;
5069 int err = 0;
5070
5071 ASSERT_RTNL();
5072
5073 features = netdev_get_wanted_features(dev);
5074
5075 if (dev->netdev_ops->ndo_fix_features)
5076 features = dev->netdev_ops->ndo_fix_features(dev, features);
5077
5078 /* driver might be less strict about feature dependencies */
5079 features = netdev_fix_features(dev, features);
5080
5081 if (dev->features == features)
5082 return 0;
5083
5084 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5085 &dev->features, &features);
5086
5087 if (dev->netdev_ops->ndo_set_features)
5088 err = dev->netdev_ops->ndo_set_features(dev, features);
5089
5090 if (unlikely(err < 0)) {
5091 netdev_err(dev,
5092 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5093 err, &features, &dev->features);
5094 return -1;
5095 }
5096
5097 if (!err)
5098 dev->features = features;
5099
5100 return 1;
5101 }
5102
5103 /**
5104 * netdev_update_features - recalculate device features
5105 * @dev: the device to check
5106 *
5107 * Recalculate dev->features set and send notifications if it
5108 * has changed. Should be called after driver or hardware dependent
5109 * conditions might have changed that influence the features.
5110 */
5111 void netdev_update_features(struct net_device *dev)
5112 {
5113 if (__netdev_update_features(dev))
5114 netdev_features_change(dev);
5115 }
5116 EXPORT_SYMBOL(netdev_update_features);
5117
5118 /**
5119 * netdev_change_features - recalculate device features
5120 * @dev: the device to check
5121 *
5122 * Recalculate dev->features set and send notifications even
5123 * if they have not changed. Should be called instead of
5124 * netdev_update_features() if also dev->vlan_features might
5125 * have changed to allow the changes to be propagated to stacked
5126 * VLAN devices.
5127 */
5128 void netdev_change_features(struct net_device *dev)
5129 {
5130 __netdev_update_features(dev);
5131 netdev_features_change(dev);
5132 }
5133 EXPORT_SYMBOL(netdev_change_features);
5134
5135 /**
5136 * netif_stacked_transfer_operstate - transfer operstate
5137 * @rootdev: the root or lower level device to transfer state from
5138 * @dev: the device to transfer operstate to
5139 *
5140 * Transfer operational state from root to device. This is normally
5141 * called when a stacking relationship exists between the root
5142 * device and the device(a leaf device).
5143 */
5144 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5145 struct net_device *dev)
5146 {
5147 if (rootdev->operstate == IF_OPER_DORMANT)
5148 netif_dormant_on(dev);
5149 else
5150 netif_dormant_off(dev);
5151
5152 if (netif_carrier_ok(rootdev)) {
5153 if (!netif_carrier_ok(dev))
5154 netif_carrier_on(dev);
5155 } else {
5156 if (netif_carrier_ok(dev))
5157 netif_carrier_off(dev);
5158 }
5159 }
5160 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5161
5162 #ifdef CONFIG_RPS
5163 static int netif_alloc_rx_queues(struct net_device *dev)
5164 {
5165 unsigned int i, count = dev->num_rx_queues;
5166 struct netdev_rx_queue *rx;
5167
5168 BUG_ON(count < 1);
5169
5170 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5171 if (!rx)
5172 return -ENOMEM;
5173
5174 dev->_rx = rx;
5175
5176 for (i = 0; i < count; i++)
5177 rx[i].dev = dev;
5178 return 0;
5179 }
5180 #endif
5181
5182 static void netdev_init_one_queue(struct net_device *dev,
5183 struct netdev_queue *queue, void *_unused)
5184 {
5185 /* Initialize queue lock */
5186 spin_lock_init(&queue->_xmit_lock);
5187 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5188 queue->xmit_lock_owner = -1;
5189 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5190 queue->dev = dev;
5191 #ifdef CONFIG_BQL
5192 dql_init(&queue->dql, HZ);
5193 #endif
5194 }
5195
5196 static int netif_alloc_netdev_queues(struct net_device *dev)
5197 {
5198 unsigned int count = dev->num_tx_queues;
5199 struct netdev_queue *tx;
5200
5201 BUG_ON(count < 1);
5202
5203 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5204 if (!tx)
5205 return -ENOMEM;
5206
5207 dev->_tx = tx;
5208
5209 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5210 spin_lock_init(&dev->tx_global_lock);
5211
5212 return 0;
5213 }
5214
5215 /**
5216 * register_netdevice - register a network device
5217 * @dev: device to register
5218 *
5219 * Take a completed network device structure and add it to the kernel
5220 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5221 * chain. 0 is returned on success. A negative errno code is returned
5222 * on a failure to set up the device, or if the name is a duplicate.
5223 *
5224 * Callers must hold the rtnl semaphore. You may want
5225 * register_netdev() instead of this.
5226 *
5227 * BUGS:
5228 * The locking appears insufficient to guarantee two parallel registers
5229 * will not get the same name.
5230 */
5231
5232 int register_netdevice(struct net_device *dev)
5233 {
5234 int ret;
5235 struct net *net = dev_net(dev);
5236
5237 BUG_ON(dev_boot_phase);
5238 ASSERT_RTNL();
5239
5240 might_sleep();
5241
5242 /* When net_device's are persistent, this will be fatal. */
5243 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5244 BUG_ON(!net);
5245
5246 spin_lock_init(&dev->addr_list_lock);
5247 netdev_set_addr_lockdep_class(dev);
5248
5249 dev->iflink = -1;
5250
5251 ret = dev_get_valid_name(net, dev, dev->name);
5252 if (ret < 0)
5253 goto out;
5254
5255 /* Init, if this function is available */
5256 if (dev->netdev_ops->ndo_init) {
5257 ret = dev->netdev_ops->ndo_init(dev);
5258 if (ret) {
5259 if (ret > 0)
5260 ret = -EIO;
5261 goto out;
5262 }
5263 }
5264
5265 if (((dev->hw_features | dev->features) &
5266 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5267 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5268 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5269 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5270 ret = -EINVAL;
5271 goto err_uninit;
5272 }
5273
5274 ret = -EBUSY;
5275 if (!dev->ifindex)
5276 dev->ifindex = dev_new_index(net);
5277 else if (__dev_get_by_index(net, dev->ifindex))
5278 goto err_uninit;
5279
5280 if (dev->iflink == -1)
5281 dev->iflink = dev->ifindex;
5282
5283 /* Transfer changeable features to wanted_features and enable
5284 * software offloads (GSO and GRO).
5285 */
5286 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5287 dev->features |= NETIF_F_SOFT_FEATURES;
5288 dev->wanted_features = dev->features & dev->hw_features;
5289
5290 /* Turn on no cache copy if HW is doing checksum */
5291 if (!(dev->flags & IFF_LOOPBACK)) {
5292 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5293 if (dev->features & NETIF_F_ALL_CSUM) {
5294 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5295 dev->features |= NETIF_F_NOCACHE_COPY;
5296 }
5297 }
5298
5299 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5300 */
5301 dev->vlan_features |= NETIF_F_HIGHDMA;
5302
5303 /* Make NETIF_F_SG inheritable to tunnel devices.
5304 */
5305 dev->hw_enc_features |= NETIF_F_SG;
5306
5307 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5308 ret = notifier_to_errno(ret);
5309 if (ret)
5310 goto err_uninit;
5311
5312 ret = netdev_register_kobject(dev);
5313 if (ret)
5314 goto err_uninit;
5315 dev->reg_state = NETREG_REGISTERED;
5316
5317 __netdev_update_features(dev);
5318
5319 /*
5320 * Default initial state at registry is that the
5321 * device is present.
5322 */
5323
5324 set_bit(__LINK_STATE_PRESENT, &dev->state);
5325
5326 linkwatch_init_dev(dev);
5327
5328 dev_init_scheduler(dev);
5329 dev_hold(dev);
5330 list_netdevice(dev);
5331 add_device_randomness(dev->dev_addr, dev->addr_len);
5332
5333 /* If the device has permanent device address, driver should
5334 * set dev_addr and also addr_assign_type should be set to
5335 * NET_ADDR_PERM (default value).
5336 */
5337 if (dev->addr_assign_type == NET_ADDR_PERM)
5338 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5339
5340 /* Notify protocols, that a new device appeared. */
5341 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5342 ret = notifier_to_errno(ret);
5343 if (ret) {
5344 rollback_registered(dev);
5345 dev->reg_state = NETREG_UNREGISTERED;
5346 }
5347 /*
5348 * Prevent userspace races by waiting until the network
5349 * device is fully setup before sending notifications.
5350 */
5351 if (!dev->rtnl_link_ops ||
5352 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5353 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5354
5355 out:
5356 return ret;
5357
5358 err_uninit:
5359 if (dev->netdev_ops->ndo_uninit)
5360 dev->netdev_ops->ndo_uninit(dev);
5361 goto out;
5362 }
5363 EXPORT_SYMBOL(register_netdevice);
5364
5365 /**
5366 * init_dummy_netdev - init a dummy network device for NAPI
5367 * @dev: device to init
5368 *
5369 * This takes a network device structure and initialize the minimum
5370 * amount of fields so it can be used to schedule NAPI polls without
5371 * registering a full blown interface. This is to be used by drivers
5372 * that need to tie several hardware interfaces to a single NAPI
5373 * poll scheduler due to HW limitations.
5374 */
5375 int init_dummy_netdev(struct net_device *dev)
5376 {
5377 /* Clear everything. Note we don't initialize spinlocks
5378 * are they aren't supposed to be taken by any of the
5379 * NAPI code and this dummy netdev is supposed to be
5380 * only ever used for NAPI polls
5381 */
5382 memset(dev, 0, sizeof(struct net_device));
5383
5384 /* make sure we BUG if trying to hit standard
5385 * register/unregister code path
5386 */
5387 dev->reg_state = NETREG_DUMMY;
5388
5389 /* NAPI wants this */
5390 INIT_LIST_HEAD(&dev->napi_list);
5391
5392 /* a dummy interface is started by default */
5393 set_bit(__LINK_STATE_PRESENT, &dev->state);
5394 set_bit(__LINK_STATE_START, &dev->state);
5395
5396 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5397 * because users of this 'device' dont need to change
5398 * its refcount.
5399 */
5400
5401 return 0;
5402 }
5403 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5404
5405
5406 /**
5407 * register_netdev - register a network device
5408 * @dev: device to register
5409 *
5410 * Take a completed network device structure and add it to the kernel
5411 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5412 * chain. 0 is returned on success. A negative errno code is returned
5413 * on a failure to set up the device, or if the name is a duplicate.
5414 *
5415 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5416 * and expands the device name if you passed a format string to
5417 * alloc_netdev.
5418 */
5419 int register_netdev(struct net_device *dev)
5420 {
5421 int err;
5422
5423 rtnl_lock();
5424 err = register_netdevice(dev);
5425 rtnl_unlock();
5426 return err;
5427 }
5428 EXPORT_SYMBOL(register_netdev);
5429
5430 int netdev_refcnt_read(const struct net_device *dev)
5431 {
5432 int i, refcnt = 0;
5433
5434 for_each_possible_cpu(i)
5435 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5436 return refcnt;
5437 }
5438 EXPORT_SYMBOL(netdev_refcnt_read);
5439
5440 /**
5441 * netdev_wait_allrefs - wait until all references are gone.
5442 * @dev: target net_device
5443 *
5444 * This is called when unregistering network devices.
5445 *
5446 * Any protocol or device that holds a reference should register
5447 * for netdevice notification, and cleanup and put back the
5448 * reference if they receive an UNREGISTER event.
5449 * We can get stuck here if buggy protocols don't correctly
5450 * call dev_put.
5451 */
5452 static void netdev_wait_allrefs(struct net_device *dev)
5453 {
5454 unsigned long rebroadcast_time, warning_time;
5455 int refcnt;
5456
5457 linkwatch_forget_dev(dev);
5458
5459 rebroadcast_time = warning_time = jiffies;
5460 refcnt = netdev_refcnt_read(dev);
5461
5462 while (refcnt != 0) {
5463 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5464 rtnl_lock();
5465
5466 /* Rebroadcast unregister notification */
5467 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5468
5469 __rtnl_unlock();
5470 rcu_barrier();
5471 rtnl_lock();
5472
5473 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5474 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5475 &dev->state)) {
5476 /* We must not have linkwatch events
5477 * pending on unregister. If this
5478 * happens, we simply run the queue
5479 * unscheduled, resulting in a noop
5480 * for this device.
5481 */
5482 linkwatch_run_queue();
5483 }
5484
5485 __rtnl_unlock();
5486
5487 rebroadcast_time = jiffies;
5488 }
5489
5490 msleep(250);
5491
5492 refcnt = netdev_refcnt_read(dev);
5493
5494 if (time_after(jiffies, warning_time + 10 * HZ)) {
5495 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5496 dev->name, refcnt);
5497 warning_time = jiffies;
5498 }
5499 }
5500 }
5501
5502 /* The sequence is:
5503 *
5504 * rtnl_lock();
5505 * ...
5506 * register_netdevice(x1);
5507 * register_netdevice(x2);
5508 * ...
5509 * unregister_netdevice(y1);
5510 * unregister_netdevice(y2);
5511 * ...
5512 * rtnl_unlock();
5513 * free_netdev(y1);
5514 * free_netdev(y2);
5515 *
5516 * We are invoked by rtnl_unlock().
5517 * This allows us to deal with problems:
5518 * 1) We can delete sysfs objects which invoke hotplug
5519 * without deadlocking with linkwatch via keventd.
5520 * 2) Since we run with the RTNL semaphore not held, we can sleep
5521 * safely in order to wait for the netdev refcnt to drop to zero.
5522 *
5523 * We must not return until all unregister events added during
5524 * the interval the lock was held have been completed.
5525 */
5526 void netdev_run_todo(void)
5527 {
5528 struct list_head list;
5529
5530 /* Snapshot list, allow later requests */
5531 list_replace_init(&net_todo_list, &list);
5532
5533 __rtnl_unlock();
5534
5535
5536 /* Wait for rcu callbacks to finish before next phase */
5537 if (!list_empty(&list))
5538 rcu_barrier();
5539
5540 while (!list_empty(&list)) {
5541 struct net_device *dev
5542 = list_first_entry(&list, struct net_device, todo_list);
5543 list_del(&dev->todo_list);
5544
5545 rtnl_lock();
5546 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5547 __rtnl_unlock();
5548
5549 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5550 pr_err("network todo '%s' but state %d\n",
5551 dev->name, dev->reg_state);
5552 dump_stack();
5553 continue;
5554 }
5555
5556 dev->reg_state = NETREG_UNREGISTERED;
5557
5558 on_each_cpu(flush_backlog, dev, 1);
5559
5560 netdev_wait_allrefs(dev);
5561
5562 /* paranoia */
5563 BUG_ON(netdev_refcnt_read(dev));
5564 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5565 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5566 WARN_ON(dev->dn_ptr);
5567
5568 if (dev->destructor)
5569 dev->destructor(dev);
5570
5571 /* Free network device */
5572 kobject_put(&dev->dev.kobj);
5573 }
5574 }
5575
5576 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5577 * fields in the same order, with only the type differing.
5578 */
5579 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5580 const struct net_device_stats *netdev_stats)
5581 {
5582 #if BITS_PER_LONG == 64
5583 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5584 memcpy(stats64, netdev_stats, sizeof(*stats64));
5585 #else
5586 size_t i, n = sizeof(*stats64) / sizeof(u64);
5587 const unsigned long *src = (const unsigned long *)netdev_stats;
5588 u64 *dst = (u64 *)stats64;
5589
5590 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5591 sizeof(*stats64) / sizeof(u64));
5592 for (i = 0; i < n; i++)
5593 dst[i] = src[i];
5594 #endif
5595 }
5596 EXPORT_SYMBOL(netdev_stats_to_stats64);
5597
5598 /**
5599 * dev_get_stats - get network device statistics
5600 * @dev: device to get statistics from
5601 * @storage: place to store stats
5602 *
5603 * Get network statistics from device. Return @storage.
5604 * The device driver may provide its own method by setting
5605 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5606 * otherwise the internal statistics structure is used.
5607 */
5608 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5609 struct rtnl_link_stats64 *storage)
5610 {
5611 const struct net_device_ops *ops = dev->netdev_ops;
5612
5613 if (ops->ndo_get_stats64) {
5614 memset(storage, 0, sizeof(*storage));
5615 ops->ndo_get_stats64(dev, storage);
5616 } else if (ops->ndo_get_stats) {
5617 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5618 } else {
5619 netdev_stats_to_stats64(storage, &dev->stats);
5620 }
5621 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5622 return storage;
5623 }
5624 EXPORT_SYMBOL(dev_get_stats);
5625
5626 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5627 {
5628 struct netdev_queue *queue = dev_ingress_queue(dev);
5629
5630 #ifdef CONFIG_NET_CLS_ACT
5631 if (queue)
5632 return queue;
5633 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5634 if (!queue)
5635 return NULL;
5636 netdev_init_one_queue(dev, queue, NULL);
5637 queue->qdisc = &noop_qdisc;
5638 queue->qdisc_sleeping = &noop_qdisc;
5639 rcu_assign_pointer(dev->ingress_queue, queue);
5640 #endif
5641 return queue;
5642 }
5643
5644 static const struct ethtool_ops default_ethtool_ops;
5645
5646 void netdev_set_default_ethtool_ops(struct net_device *dev,
5647 const struct ethtool_ops *ops)
5648 {
5649 if (dev->ethtool_ops == &default_ethtool_ops)
5650 dev->ethtool_ops = ops;
5651 }
5652 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5653
5654 /**
5655 * alloc_netdev_mqs - allocate network device
5656 * @sizeof_priv: size of private data to allocate space for
5657 * @name: device name format string
5658 * @setup: callback to initialize device
5659 * @txqs: the number of TX subqueues to allocate
5660 * @rxqs: the number of RX subqueues to allocate
5661 *
5662 * Allocates a struct net_device with private data area for driver use
5663 * and performs basic initialization. Also allocates subquue structs
5664 * for each queue on the device.
5665 */
5666 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5667 void (*setup)(struct net_device *),
5668 unsigned int txqs, unsigned int rxqs)
5669 {
5670 struct net_device *dev;
5671 size_t alloc_size;
5672 struct net_device *p;
5673
5674 BUG_ON(strlen(name) >= sizeof(dev->name));
5675
5676 if (txqs < 1) {
5677 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5678 return NULL;
5679 }
5680
5681 #ifdef CONFIG_RPS
5682 if (rxqs < 1) {
5683 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5684 return NULL;
5685 }
5686 #endif
5687
5688 alloc_size = sizeof(struct net_device);
5689 if (sizeof_priv) {
5690 /* ensure 32-byte alignment of private area */
5691 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5692 alloc_size += sizeof_priv;
5693 }
5694 /* ensure 32-byte alignment of whole construct */
5695 alloc_size += NETDEV_ALIGN - 1;
5696
5697 p = kzalloc(alloc_size, GFP_KERNEL);
5698 if (!p)
5699 return NULL;
5700
5701 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5702 dev->padded = (char *)dev - (char *)p;
5703
5704 dev->pcpu_refcnt = alloc_percpu(int);
5705 if (!dev->pcpu_refcnt)
5706 goto free_p;
5707
5708 if (dev_addr_init(dev))
5709 goto free_pcpu;
5710
5711 dev_mc_init(dev);
5712 dev_uc_init(dev);
5713
5714 dev_net_set(dev, &init_net);
5715
5716 dev->gso_max_size = GSO_MAX_SIZE;
5717 dev->gso_max_segs = GSO_MAX_SEGS;
5718
5719 INIT_LIST_HEAD(&dev->napi_list);
5720 INIT_LIST_HEAD(&dev->unreg_list);
5721 INIT_LIST_HEAD(&dev->link_watch_list);
5722 INIT_LIST_HEAD(&dev->upper_dev_list);
5723 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5724 setup(dev);
5725
5726 dev->num_tx_queues = txqs;
5727 dev->real_num_tx_queues = txqs;
5728 if (netif_alloc_netdev_queues(dev))
5729 goto free_all;
5730
5731 #ifdef CONFIG_RPS
5732 dev->num_rx_queues = rxqs;
5733 dev->real_num_rx_queues = rxqs;
5734 if (netif_alloc_rx_queues(dev))
5735 goto free_all;
5736 #endif
5737
5738 strcpy(dev->name, name);
5739 dev->group = INIT_NETDEV_GROUP;
5740 if (!dev->ethtool_ops)
5741 dev->ethtool_ops = &default_ethtool_ops;
5742 return dev;
5743
5744 free_all:
5745 free_netdev(dev);
5746 return NULL;
5747
5748 free_pcpu:
5749 free_percpu(dev->pcpu_refcnt);
5750 kfree(dev->_tx);
5751 #ifdef CONFIG_RPS
5752 kfree(dev->_rx);
5753 #endif
5754
5755 free_p:
5756 kfree(p);
5757 return NULL;
5758 }
5759 EXPORT_SYMBOL(alloc_netdev_mqs);
5760
5761 /**
5762 * free_netdev - free network device
5763 * @dev: device
5764 *
5765 * This function does the last stage of destroying an allocated device
5766 * interface. The reference to the device object is released.
5767 * If this is the last reference then it will be freed.
5768 */
5769 void free_netdev(struct net_device *dev)
5770 {
5771 struct napi_struct *p, *n;
5772
5773 release_net(dev_net(dev));
5774
5775 kfree(dev->_tx);
5776 #ifdef CONFIG_RPS
5777 kfree(dev->_rx);
5778 #endif
5779
5780 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5781
5782 /* Flush device addresses */
5783 dev_addr_flush(dev);
5784
5785 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5786 netif_napi_del(p);
5787
5788 free_percpu(dev->pcpu_refcnt);
5789 dev->pcpu_refcnt = NULL;
5790
5791 /* Compatibility with error handling in drivers */
5792 if (dev->reg_state == NETREG_UNINITIALIZED) {
5793 kfree((char *)dev - dev->padded);
5794 return;
5795 }
5796
5797 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5798 dev->reg_state = NETREG_RELEASED;
5799
5800 /* will free via device release */
5801 put_device(&dev->dev);
5802 }
5803 EXPORT_SYMBOL(free_netdev);
5804
5805 /**
5806 * synchronize_net - Synchronize with packet receive processing
5807 *
5808 * Wait for packets currently being received to be done.
5809 * Does not block later packets from starting.
5810 */
5811 void synchronize_net(void)
5812 {
5813 might_sleep();
5814 if (rtnl_is_locked())
5815 synchronize_rcu_expedited();
5816 else
5817 synchronize_rcu();
5818 }
5819 EXPORT_SYMBOL(synchronize_net);
5820
5821 /**
5822 * unregister_netdevice_queue - remove device from the kernel
5823 * @dev: device
5824 * @head: list
5825 *
5826 * This function shuts down a device interface and removes it
5827 * from the kernel tables.
5828 * If head not NULL, device is queued to be unregistered later.
5829 *
5830 * Callers must hold the rtnl semaphore. You may want
5831 * unregister_netdev() instead of this.
5832 */
5833
5834 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5835 {
5836 ASSERT_RTNL();
5837
5838 if (head) {
5839 list_move_tail(&dev->unreg_list, head);
5840 } else {
5841 rollback_registered(dev);
5842 /* Finish processing unregister after unlock */
5843 net_set_todo(dev);
5844 }
5845 }
5846 EXPORT_SYMBOL(unregister_netdevice_queue);
5847
5848 /**
5849 * unregister_netdevice_many - unregister many devices
5850 * @head: list of devices
5851 *
5852 * Note: As most callers use a stack allocated list_head,
5853 * we force a list_del() to make sure stack wont be corrupted later.
5854 */
5855 void unregister_netdevice_many(struct list_head *head)
5856 {
5857 struct net_device *dev;
5858
5859 if (!list_empty(head)) {
5860 rollback_registered_many(head);
5861 list_for_each_entry(dev, head, unreg_list)
5862 net_set_todo(dev);
5863 list_del(head);
5864 }
5865 }
5866 EXPORT_SYMBOL(unregister_netdevice_many);
5867
5868 /**
5869 * unregister_netdev - remove device from the kernel
5870 * @dev: device
5871 *
5872 * This function shuts down a device interface and removes it
5873 * from the kernel tables.
5874 *
5875 * This is just a wrapper for unregister_netdevice that takes
5876 * the rtnl semaphore. In general you want to use this and not
5877 * unregister_netdevice.
5878 */
5879 void unregister_netdev(struct net_device *dev)
5880 {
5881 rtnl_lock();
5882 unregister_netdevice(dev);
5883 rtnl_unlock();
5884 }
5885 EXPORT_SYMBOL(unregister_netdev);
5886
5887 /**
5888 * dev_change_net_namespace - move device to different nethost namespace
5889 * @dev: device
5890 * @net: network namespace
5891 * @pat: If not NULL name pattern to try if the current device name
5892 * is already taken in the destination network namespace.
5893 *
5894 * This function shuts down a device interface and moves it
5895 * to a new network namespace. On success 0 is returned, on
5896 * a failure a netagive errno code is returned.
5897 *
5898 * Callers must hold the rtnl semaphore.
5899 */
5900
5901 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5902 {
5903 int err;
5904
5905 ASSERT_RTNL();
5906
5907 /* Don't allow namespace local devices to be moved. */
5908 err = -EINVAL;
5909 if (dev->features & NETIF_F_NETNS_LOCAL)
5910 goto out;
5911
5912 /* Ensure the device has been registrered */
5913 if (dev->reg_state != NETREG_REGISTERED)
5914 goto out;
5915
5916 /* Get out if there is nothing todo */
5917 err = 0;
5918 if (net_eq(dev_net(dev), net))
5919 goto out;
5920
5921 /* Pick the destination device name, and ensure
5922 * we can use it in the destination network namespace.
5923 */
5924 err = -EEXIST;
5925 if (__dev_get_by_name(net, dev->name)) {
5926 /* We get here if we can't use the current device name */
5927 if (!pat)
5928 goto out;
5929 if (dev_get_valid_name(net, dev, pat) < 0)
5930 goto out;
5931 }
5932
5933 /*
5934 * And now a mini version of register_netdevice unregister_netdevice.
5935 */
5936
5937 /* If device is running close it first. */
5938 dev_close(dev);
5939
5940 /* And unlink it from device chain */
5941 err = -ENODEV;
5942 unlist_netdevice(dev);
5943
5944 synchronize_net();
5945
5946 /* Shutdown queueing discipline. */
5947 dev_shutdown(dev);
5948
5949 /* Notify protocols, that we are about to destroy
5950 this device. They should clean all the things.
5951
5952 Note that dev->reg_state stays at NETREG_REGISTERED.
5953 This is wanted because this way 8021q and macvlan know
5954 the device is just moving and can keep their slaves up.
5955 */
5956 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5957 rcu_barrier();
5958 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5959 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5960
5961 /*
5962 * Flush the unicast and multicast chains
5963 */
5964 dev_uc_flush(dev);
5965 dev_mc_flush(dev);
5966
5967 /* Send a netdev-removed uevent to the old namespace */
5968 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5969
5970 /* Actually switch the network namespace */
5971 dev_net_set(dev, net);
5972
5973 /* If there is an ifindex conflict assign a new one */
5974 if (__dev_get_by_index(net, dev->ifindex)) {
5975 int iflink = (dev->iflink == dev->ifindex);
5976 dev->ifindex = dev_new_index(net);
5977 if (iflink)
5978 dev->iflink = dev->ifindex;
5979 }
5980
5981 /* Send a netdev-add uevent to the new namespace */
5982 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5983
5984 /* Fixup kobjects */
5985 err = device_rename(&dev->dev, dev->name);
5986 WARN_ON(err);
5987
5988 /* Add the device back in the hashes */
5989 list_netdevice(dev);
5990
5991 /* Notify protocols, that a new device appeared. */
5992 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5993
5994 /*
5995 * Prevent userspace races by waiting until the network
5996 * device is fully setup before sending notifications.
5997 */
5998 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5999
6000 synchronize_net();
6001 err = 0;
6002 out:
6003 return err;
6004 }
6005 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6006
6007 static int dev_cpu_callback(struct notifier_block *nfb,
6008 unsigned long action,
6009 void *ocpu)
6010 {
6011 struct sk_buff **list_skb;
6012 struct sk_buff *skb;
6013 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6014 struct softnet_data *sd, *oldsd;
6015
6016 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6017 return NOTIFY_OK;
6018
6019 local_irq_disable();
6020 cpu = smp_processor_id();
6021 sd = &per_cpu(softnet_data, cpu);
6022 oldsd = &per_cpu(softnet_data, oldcpu);
6023
6024 /* Find end of our completion_queue. */
6025 list_skb = &sd->completion_queue;
6026 while (*list_skb)
6027 list_skb = &(*list_skb)->next;
6028 /* Append completion queue from offline CPU. */
6029 *list_skb = oldsd->completion_queue;
6030 oldsd->completion_queue = NULL;
6031
6032 /* Append output queue from offline CPU. */
6033 if (oldsd->output_queue) {
6034 *sd->output_queue_tailp = oldsd->output_queue;
6035 sd->output_queue_tailp = oldsd->output_queue_tailp;
6036 oldsd->output_queue = NULL;
6037 oldsd->output_queue_tailp = &oldsd->output_queue;
6038 }
6039 /* Append NAPI poll list from offline CPU. */
6040 if (!list_empty(&oldsd->poll_list)) {
6041 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6042 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6043 }
6044
6045 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6046 local_irq_enable();
6047
6048 /* Process offline CPU's input_pkt_queue */
6049 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6050 netif_rx(skb);
6051 input_queue_head_incr(oldsd);
6052 }
6053 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6054 netif_rx(skb);
6055 input_queue_head_incr(oldsd);
6056 }
6057
6058 return NOTIFY_OK;
6059 }
6060
6061
6062 /**
6063 * netdev_increment_features - increment feature set by one
6064 * @all: current feature set
6065 * @one: new feature set
6066 * @mask: mask feature set
6067 *
6068 * Computes a new feature set after adding a device with feature set
6069 * @one to the master device with current feature set @all. Will not
6070 * enable anything that is off in @mask. Returns the new feature set.
6071 */
6072 netdev_features_t netdev_increment_features(netdev_features_t all,
6073 netdev_features_t one, netdev_features_t mask)
6074 {
6075 if (mask & NETIF_F_GEN_CSUM)
6076 mask |= NETIF_F_ALL_CSUM;
6077 mask |= NETIF_F_VLAN_CHALLENGED;
6078
6079 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6080 all &= one | ~NETIF_F_ALL_FOR_ALL;
6081
6082 /* If one device supports hw checksumming, set for all. */
6083 if (all & NETIF_F_GEN_CSUM)
6084 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6085
6086 return all;
6087 }
6088 EXPORT_SYMBOL(netdev_increment_features);
6089
6090 static struct hlist_head *netdev_create_hash(void)
6091 {
6092 int i;
6093 struct hlist_head *hash;
6094
6095 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6096 if (hash != NULL)
6097 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6098 INIT_HLIST_HEAD(&hash[i]);
6099
6100 return hash;
6101 }
6102
6103 /* Initialize per network namespace state */
6104 static int __net_init netdev_init(struct net *net)
6105 {
6106 if (net != &init_net)
6107 INIT_LIST_HEAD(&net->dev_base_head);
6108
6109 net->dev_name_head = netdev_create_hash();
6110 if (net->dev_name_head == NULL)
6111 goto err_name;
6112
6113 net->dev_index_head = netdev_create_hash();
6114 if (net->dev_index_head == NULL)
6115 goto err_idx;
6116
6117 return 0;
6118
6119 err_idx:
6120 kfree(net->dev_name_head);
6121 err_name:
6122 return -ENOMEM;
6123 }
6124
6125 /**
6126 * netdev_drivername - network driver for the device
6127 * @dev: network device
6128 *
6129 * Determine network driver for device.
6130 */
6131 const char *netdev_drivername(const struct net_device *dev)
6132 {
6133 const struct device_driver *driver;
6134 const struct device *parent;
6135 const char *empty = "";
6136
6137 parent = dev->dev.parent;
6138 if (!parent)
6139 return empty;
6140
6141 driver = parent->driver;
6142 if (driver && driver->name)
6143 return driver->name;
6144 return empty;
6145 }
6146
6147 static int __netdev_printk(const char *level, const struct net_device *dev,
6148 struct va_format *vaf)
6149 {
6150 int r;
6151
6152 if (dev && dev->dev.parent) {
6153 r = dev_printk_emit(level[1] - '0',
6154 dev->dev.parent,
6155 "%s %s %s: %pV",
6156 dev_driver_string(dev->dev.parent),
6157 dev_name(dev->dev.parent),
6158 netdev_name(dev), vaf);
6159 } else if (dev) {
6160 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6161 } else {
6162 r = printk("%s(NULL net_device): %pV", level, vaf);
6163 }
6164
6165 return r;
6166 }
6167
6168 int netdev_printk(const char *level, const struct net_device *dev,
6169 const char *format, ...)
6170 {
6171 struct va_format vaf;
6172 va_list args;
6173 int r;
6174
6175 va_start(args, format);
6176
6177 vaf.fmt = format;
6178 vaf.va = &args;
6179
6180 r = __netdev_printk(level, dev, &vaf);
6181
6182 va_end(args);
6183
6184 return r;
6185 }
6186 EXPORT_SYMBOL(netdev_printk);
6187
6188 #define define_netdev_printk_level(func, level) \
6189 int func(const struct net_device *dev, const char *fmt, ...) \
6190 { \
6191 int r; \
6192 struct va_format vaf; \
6193 va_list args; \
6194 \
6195 va_start(args, fmt); \
6196 \
6197 vaf.fmt = fmt; \
6198 vaf.va = &args; \
6199 \
6200 r = __netdev_printk(level, dev, &vaf); \
6201 \
6202 va_end(args); \
6203 \
6204 return r; \
6205 } \
6206 EXPORT_SYMBOL(func);
6207
6208 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6209 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6210 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6211 define_netdev_printk_level(netdev_err, KERN_ERR);
6212 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6213 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6214 define_netdev_printk_level(netdev_info, KERN_INFO);
6215
6216 static void __net_exit netdev_exit(struct net *net)
6217 {
6218 kfree(net->dev_name_head);
6219 kfree(net->dev_index_head);
6220 }
6221
6222 static struct pernet_operations __net_initdata netdev_net_ops = {
6223 .init = netdev_init,
6224 .exit = netdev_exit,
6225 };
6226
6227 static void __net_exit default_device_exit(struct net *net)
6228 {
6229 struct net_device *dev, *aux;
6230 /*
6231 * Push all migratable network devices back to the
6232 * initial network namespace
6233 */
6234 rtnl_lock();
6235 for_each_netdev_safe(net, dev, aux) {
6236 int err;
6237 char fb_name[IFNAMSIZ];
6238
6239 /* Ignore unmoveable devices (i.e. loopback) */
6240 if (dev->features & NETIF_F_NETNS_LOCAL)
6241 continue;
6242
6243 /* Leave virtual devices for the generic cleanup */
6244 if (dev->rtnl_link_ops)
6245 continue;
6246
6247 /* Push remaining network devices to init_net */
6248 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6249 err = dev_change_net_namespace(dev, &init_net, fb_name);
6250 if (err) {
6251 pr_emerg("%s: failed to move %s to init_net: %d\n",
6252 __func__, dev->name, err);
6253 BUG();
6254 }
6255 }
6256 rtnl_unlock();
6257 }
6258
6259 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6260 {
6261 /* At exit all network devices most be removed from a network
6262 * namespace. Do this in the reverse order of registration.
6263 * Do this across as many network namespaces as possible to
6264 * improve batching efficiency.
6265 */
6266 struct net_device *dev;
6267 struct net *net;
6268 LIST_HEAD(dev_kill_list);
6269
6270 rtnl_lock();
6271 list_for_each_entry(net, net_list, exit_list) {
6272 for_each_netdev_reverse(net, dev) {
6273 if (dev->rtnl_link_ops)
6274 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6275 else
6276 unregister_netdevice_queue(dev, &dev_kill_list);
6277 }
6278 }
6279 unregister_netdevice_many(&dev_kill_list);
6280 rtnl_unlock();
6281 }
6282
6283 static struct pernet_operations __net_initdata default_device_ops = {
6284 .exit = default_device_exit,
6285 .exit_batch = default_device_exit_batch,
6286 };
6287
6288 /*
6289 * Initialize the DEV module. At boot time this walks the device list and
6290 * unhooks any devices that fail to initialise (normally hardware not
6291 * present) and leaves us with a valid list of present and active devices.
6292 *
6293 */
6294
6295 /*
6296 * This is called single threaded during boot, so no need
6297 * to take the rtnl semaphore.
6298 */
6299 static int __init net_dev_init(void)
6300 {
6301 int i, rc = -ENOMEM;
6302
6303 BUG_ON(!dev_boot_phase);
6304
6305 if (dev_proc_init())
6306 goto out;
6307
6308 if (netdev_kobject_init())
6309 goto out;
6310
6311 INIT_LIST_HEAD(&ptype_all);
6312 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6313 INIT_LIST_HEAD(&ptype_base[i]);
6314
6315 INIT_LIST_HEAD(&offload_base);
6316
6317 if (register_pernet_subsys(&netdev_net_ops))
6318 goto out;
6319
6320 /*
6321 * Initialise the packet receive queues.
6322 */
6323
6324 for_each_possible_cpu(i) {
6325 struct softnet_data *sd = &per_cpu(softnet_data, i);
6326
6327 memset(sd, 0, sizeof(*sd));
6328 skb_queue_head_init(&sd->input_pkt_queue);
6329 skb_queue_head_init(&sd->process_queue);
6330 sd->completion_queue = NULL;
6331 INIT_LIST_HEAD(&sd->poll_list);
6332 sd->output_queue = NULL;
6333 sd->output_queue_tailp = &sd->output_queue;
6334 #ifdef CONFIG_RPS
6335 sd->csd.func = rps_trigger_softirq;
6336 sd->csd.info = sd;
6337 sd->csd.flags = 0;
6338 sd->cpu = i;
6339 #endif
6340
6341 sd->backlog.poll = process_backlog;
6342 sd->backlog.weight = weight_p;
6343 sd->backlog.gro_list = NULL;
6344 sd->backlog.gro_count = 0;
6345 }
6346
6347 dev_boot_phase = 0;
6348
6349 /* The loopback device is special if any other network devices
6350 * is present in a network namespace the loopback device must
6351 * be present. Since we now dynamically allocate and free the
6352 * loopback device ensure this invariant is maintained by
6353 * keeping the loopback device as the first device on the
6354 * list of network devices. Ensuring the loopback devices
6355 * is the first device that appears and the last network device
6356 * that disappears.
6357 */
6358 if (register_pernet_device(&loopback_net_ops))
6359 goto out;
6360
6361 if (register_pernet_device(&default_device_ops))
6362 goto out;
6363
6364 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6365 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6366
6367 hotcpu_notifier(dev_cpu_callback, 0);
6368 dst_init();
6369 rc = 0;
6370 out:
6371 return rc;
6372 }
6373
6374 subsys_initcall(net_dev_init);