net: introduce pre-up netdev notifier
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/napi.h>
130
131 #include "net-sysfs.h"
132
133 /* Instead of increasing this, you should create a hash table. */
134 #define MAX_GRO_SKBS 8
135
136 /* This should be increased if a protocol with a bigger head is added. */
137 #define GRO_MAX_HEAD (MAX_HEADER + 128)
138
139 /*
140 * The list of packet types we will receive (as opposed to discard)
141 * and the routines to invoke.
142 *
143 * Why 16. Because with 16 the only overlap we get on a hash of the
144 * low nibble of the protocol value is RARP/SNAP/X.25.
145 *
146 * NOTE: That is no longer true with the addition of VLAN tags. Not
147 * sure which should go first, but I bet it won't make much
148 * difference if we are running VLANs. The good news is that
149 * this protocol won't be in the list unless compiled in, so
150 * the average user (w/out VLANs) will not be adversely affected.
151 * --BLG
152 *
153 * 0800 IP
154 * 8100 802.1Q VLAN
155 * 0001 802.3
156 * 0002 AX.25
157 * 0004 802.2
158 * 8035 RARP
159 * 0005 SNAP
160 * 0805 X.25
161 * 0806 ARP
162 * 8137 IPX
163 * 0009 Localtalk
164 * 86DD IPv6
165 */
166
167 #define PTYPE_HASH_SIZE (16)
168 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
169
170 static DEFINE_SPINLOCK(ptype_lock);
171 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172 static struct list_head ptype_all __read_mostly; /* Taps */
173
174 /*
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading.
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
193 DEFINE_RWLOCK(dev_base_lock);
194
195 EXPORT_SYMBOL(dev_base_lock);
196
197 #define NETDEV_HASHBITS 8
198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
209 }
210
211 /* Device list insertion */
212 static int list_netdevice(struct net_device *dev)
213 {
214 struct net *net = dev_net(dev);
215
216 ASSERT_RTNL();
217
218 write_lock_bh(&dev_base_lock);
219 list_add_tail(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223 return 0;
224 }
225
226 /* Device list removal */
227 static void unlist_netdevice(struct net_device *dev)
228 {
229 ASSERT_RTNL();
230
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del(&dev->dev_list);
234 hlist_del(&dev->name_hlist);
235 hlist_del(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
237 }
238
239 /*
240 * Our notifier list
241 */
242
243 static RAW_NOTIFIER_HEAD(netdev_chain);
244
245 /*
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
248 */
249
250 DEFINE_PER_CPU(struct softnet_data, softnet_data);
251
252 #ifdef CONFIG_LOCKDEP
253 /*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
272 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
273
274 static const char *netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
288 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
289 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
290
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
293
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295 {
296 int i;
297
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
300 return i;
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
303 }
304
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
307 {
308 int i;
309
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
313 }
314
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
323 }
324 #else
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 }
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330 {
331 }
332 #endif
333
334 /*******************************************************************************
335
336 Protocol management and registration routines
337
338 *******************************************************************************/
339
340 /*
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
343 * here.
344 *
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
353 * --ANK (980803)
354 */
355
356 /**
357 * dev_add_pack - add packet handler
358 * @pt: packet type declaration
359 *
360 * Add a protocol handler to the networking stack. The passed &packet_type
361 * is linked into kernel lists and may not be freed until it has been
362 * removed from the kernel lists.
363 *
364 * This call does not sleep therefore it can not
365 * guarantee all CPU's that are in middle of receiving packets
366 * will see the new packet type (until the next received packet).
367 */
368
369 void dev_add_pack(struct packet_type *pt)
370 {
371 int hash;
372
373 spin_lock_bh(&ptype_lock);
374 if (pt->type == htons(ETH_P_ALL))
375 list_add_rcu(&pt->list, &ptype_all);
376 else {
377 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
378 list_add_rcu(&pt->list, &ptype_base[hash]);
379 }
380 spin_unlock_bh(&ptype_lock);
381 }
382
383 /**
384 * __dev_remove_pack - remove packet handler
385 * @pt: packet type declaration
386 *
387 * Remove a protocol handler that was previously added to the kernel
388 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
389 * from the kernel lists and can be freed or reused once this function
390 * returns.
391 *
392 * The packet type might still be in use by receivers
393 * and must not be freed until after all the CPU's have gone
394 * through a quiescent state.
395 */
396 void __dev_remove_pack(struct packet_type *pt)
397 {
398 struct list_head *head;
399 struct packet_type *pt1;
400
401 spin_lock_bh(&ptype_lock);
402
403 if (pt->type == htons(ETH_P_ALL))
404 head = &ptype_all;
405 else
406 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
407
408 list_for_each_entry(pt1, head, list) {
409 if (pt == pt1) {
410 list_del_rcu(&pt->list);
411 goto out;
412 }
413 }
414
415 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
416 out:
417 spin_unlock_bh(&ptype_lock);
418 }
419 /**
420 * dev_remove_pack - remove packet handler
421 * @pt: packet type declaration
422 *
423 * Remove a protocol handler that was previously added to the kernel
424 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
425 * from the kernel lists and can be freed or reused once this function
426 * returns.
427 *
428 * This call sleeps to guarantee that no CPU is looking at the packet
429 * type after return.
430 */
431 void dev_remove_pack(struct packet_type *pt)
432 {
433 __dev_remove_pack(pt);
434
435 synchronize_net();
436 }
437
438 /******************************************************************************
439
440 Device Boot-time Settings Routines
441
442 *******************************************************************************/
443
444 /* Boot time configuration table */
445 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
446
447 /**
448 * netdev_boot_setup_add - add new setup entry
449 * @name: name of the device
450 * @map: configured settings for the device
451 *
452 * Adds new setup entry to the dev_boot_setup list. The function
453 * returns 0 on error and 1 on success. This is a generic routine to
454 * all netdevices.
455 */
456 static int netdev_boot_setup_add(char *name, struct ifmap *map)
457 {
458 struct netdev_boot_setup *s;
459 int i;
460
461 s = dev_boot_setup;
462 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
463 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
464 memset(s[i].name, 0, sizeof(s[i].name));
465 strlcpy(s[i].name, name, IFNAMSIZ);
466 memcpy(&s[i].map, map, sizeof(s[i].map));
467 break;
468 }
469 }
470
471 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
472 }
473
474 /**
475 * netdev_boot_setup_check - check boot time settings
476 * @dev: the netdevice
477 *
478 * Check boot time settings for the device.
479 * The found settings are set for the device to be used
480 * later in the device probing.
481 * Returns 0 if no settings found, 1 if they are.
482 */
483 int netdev_boot_setup_check(struct net_device *dev)
484 {
485 struct netdev_boot_setup *s = dev_boot_setup;
486 int i;
487
488 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
489 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
490 !strcmp(dev->name, s[i].name)) {
491 dev->irq = s[i].map.irq;
492 dev->base_addr = s[i].map.base_addr;
493 dev->mem_start = s[i].map.mem_start;
494 dev->mem_end = s[i].map.mem_end;
495 return 1;
496 }
497 }
498 return 0;
499 }
500
501
502 /**
503 * netdev_boot_base - get address from boot time settings
504 * @prefix: prefix for network device
505 * @unit: id for network device
506 *
507 * Check boot time settings for the base address of device.
508 * The found settings are set for the device to be used
509 * later in the device probing.
510 * Returns 0 if no settings found.
511 */
512 unsigned long netdev_boot_base(const char *prefix, int unit)
513 {
514 const struct netdev_boot_setup *s = dev_boot_setup;
515 char name[IFNAMSIZ];
516 int i;
517
518 sprintf(name, "%s%d", prefix, unit);
519
520 /*
521 * If device already registered then return base of 1
522 * to indicate not to probe for this interface
523 */
524 if (__dev_get_by_name(&init_net, name))
525 return 1;
526
527 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
528 if (!strcmp(name, s[i].name))
529 return s[i].map.base_addr;
530 return 0;
531 }
532
533 /*
534 * Saves at boot time configured settings for any netdevice.
535 */
536 int __init netdev_boot_setup(char *str)
537 {
538 int ints[5];
539 struct ifmap map;
540
541 str = get_options(str, ARRAY_SIZE(ints), ints);
542 if (!str || !*str)
543 return 0;
544
545 /* Save settings */
546 memset(&map, 0, sizeof(map));
547 if (ints[0] > 0)
548 map.irq = ints[1];
549 if (ints[0] > 1)
550 map.base_addr = ints[2];
551 if (ints[0] > 2)
552 map.mem_start = ints[3];
553 if (ints[0] > 3)
554 map.mem_end = ints[4];
555
556 /* Add new entry to the list */
557 return netdev_boot_setup_add(str, &map);
558 }
559
560 __setup("netdev=", netdev_boot_setup);
561
562 /*******************************************************************************
563
564 Device Interface Subroutines
565
566 *******************************************************************************/
567
568 /**
569 * __dev_get_by_name - find a device by its name
570 * @net: the applicable net namespace
571 * @name: name to find
572 *
573 * Find an interface by name. Must be called under RTNL semaphore
574 * or @dev_base_lock. If the name is found a pointer to the device
575 * is returned. If the name is not found then %NULL is returned. The
576 * reference counters are not incremented so the caller must be
577 * careful with locks.
578 */
579
580 struct net_device *__dev_get_by_name(struct net *net, const char *name)
581 {
582 struct hlist_node *p;
583
584 hlist_for_each(p, dev_name_hash(net, name)) {
585 struct net_device *dev
586 = hlist_entry(p, struct net_device, name_hlist);
587 if (!strncmp(dev->name, name, IFNAMSIZ))
588 return dev;
589 }
590 return NULL;
591 }
592
593 /**
594 * dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. This can be called from any
599 * context and does its own locking. The returned handle has
600 * the usage count incremented and the caller must use dev_put() to
601 * release it when it is no longer needed. %NULL is returned if no
602 * matching device is found.
603 */
604
605 struct net_device *dev_get_by_name(struct net *net, const char *name)
606 {
607 struct net_device *dev;
608
609 read_lock(&dev_base_lock);
610 dev = __dev_get_by_name(net, name);
611 if (dev)
612 dev_hold(dev);
613 read_unlock(&dev_base_lock);
614 return dev;
615 }
616
617 /**
618 * __dev_get_by_index - find a device by its ifindex
619 * @net: the applicable net namespace
620 * @ifindex: index of device
621 *
622 * Search for an interface by index. Returns %NULL if the device
623 * is not found or a pointer to the device. The device has not
624 * had its reference counter increased so the caller must be careful
625 * about locking. The caller must hold either the RTNL semaphore
626 * or @dev_base_lock.
627 */
628
629 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
630 {
631 struct hlist_node *p;
632
633 hlist_for_each(p, dev_index_hash(net, ifindex)) {
634 struct net_device *dev
635 = hlist_entry(p, struct net_device, index_hlist);
636 if (dev->ifindex == ifindex)
637 return dev;
638 }
639 return NULL;
640 }
641
642
643 /**
644 * dev_get_by_index - find a device by its ifindex
645 * @net: the applicable net namespace
646 * @ifindex: index of device
647 *
648 * Search for an interface by index. Returns NULL if the device
649 * is not found or a pointer to the device. The device returned has
650 * had a reference added and the pointer is safe until the user calls
651 * dev_put to indicate they have finished with it.
652 */
653
654 struct net_device *dev_get_by_index(struct net *net, int ifindex)
655 {
656 struct net_device *dev;
657
658 read_lock(&dev_base_lock);
659 dev = __dev_get_by_index(net, ifindex);
660 if (dev)
661 dev_hold(dev);
662 read_unlock(&dev_base_lock);
663 return dev;
664 }
665
666 /**
667 * dev_getbyhwaddr - find a device by its hardware address
668 * @net: the applicable net namespace
669 * @type: media type of device
670 * @ha: hardware address
671 *
672 * Search for an interface by MAC address. Returns NULL if the device
673 * is not found or a pointer to the device. The caller must hold the
674 * rtnl semaphore. The returned device has not had its ref count increased
675 * and the caller must therefore be careful about locking
676 *
677 * BUGS:
678 * If the API was consistent this would be __dev_get_by_hwaddr
679 */
680
681 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
682 {
683 struct net_device *dev;
684
685 ASSERT_RTNL();
686
687 for_each_netdev(net, dev)
688 if (dev->type == type &&
689 !memcmp(dev->dev_addr, ha, dev->addr_len))
690 return dev;
691
692 return NULL;
693 }
694
695 EXPORT_SYMBOL(dev_getbyhwaddr);
696
697 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
698 {
699 struct net_device *dev;
700
701 ASSERT_RTNL();
702 for_each_netdev(net, dev)
703 if (dev->type == type)
704 return dev;
705
706 return NULL;
707 }
708
709 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
710
711 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
712 {
713 struct net_device *dev;
714
715 rtnl_lock();
716 dev = __dev_getfirstbyhwtype(net, type);
717 if (dev)
718 dev_hold(dev);
719 rtnl_unlock();
720 return dev;
721 }
722
723 EXPORT_SYMBOL(dev_getfirstbyhwtype);
724
725 /**
726 * dev_get_by_flags - find any device with given flags
727 * @net: the applicable net namespace
728 * @if_flags: IFF_* values
729 * @mask: bitmask of bits in if_flags to check
730 *
731 * Search for any interface with the given flags. Returns NULL if a device
732 * is not found or a pointer to the device. The device returned has
733 * had a reference added and the pointer is safe until the user calls
734 * dev_put to indicate they have finished with it.
735 */
736
737 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
738 {
739 struct net_device *dev, *ret;
740
741 ret = NULL;
742 read_lock(&dev_base_lock);
743 for_each_netdev(net, dev) {
744 if (((dev->flags ^ if_flags) & mask) == 0) {
745 dev_hold(dev);
746 ret = dev;
747 break;
748 }
749 }
750 read_unlock(&dev_base_lock);
751 return ret;
752 }
753
754 /**
755 * dev_valid_name - check if name is okay for network device
756 * @name: name string
757 *
758 * Network device names need to be valid file names to
759 * to allow sysfs to work. We also disallow any kind of
760 * whitespace.
761 */
762 int dev_valid_name(const char *name)
763 {
764 if (*name == '\0')
765 return 0;
766 if (strlen(name) >= IFNAMSIZ)
767 return 0;
768 if (!strcmp(name, ".") || !strcmp(name, ".."))
769 return 0;
770
771 while (*name) {
772 if (*name == '/' || isspace(*name))
773 return 0;
774 name++;
775 }
776 return 1;
777 }
778
779 /**
780 * __dev_alloc_name - allocate a name for a device
781 * @net: network namespace to allocate the device name in
782 * @name: name format string
783 * @buf: scratch buffer and result name string
784 *
785 * Passed a format string - eg "lt%d" it will try and find a suitable
786 * id. It scans list of devices to build up a free map, then chooses
787 * the first empty slot. The caller must hold the dev_base or rtnl lock
788 * while allocating the name and adding the device in order to avoid
789 * duplicates.
790 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
791 * Returns the number of the unit assigned or a negative errno code.
792 */
793
794 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
795 {
796 int i = 0;
797 const char *p;
798 const int max_netdevices = 8*PAGE_SIZE;
799 unsigned long *inuse;
800 struct net_device *d;
801
802 p = strnchr(name, IFNAMSIZ-1, '%');
803 if (p) {
804 /*
805 * Verify the string as this thing may have come from
806 * the user. There must be either one "%d" and no other "%"
807 * characters.
808 */
809 if (p[1] != 'd' || strchr(p + 2, '%'))
810 return -EINVAL;
811
812 /* Use one page as a bit array of possible slots */
813 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
814 if (!inuse)
815 return -ENOMEM;
816
817 for_each_netdev(net, d) {
818 if (!sscanf(d->name, name, &i))
819 continue;
820 if (i < 0 || i >= max_netdevices)
821 continue;
822
823 /* avoid cases where sscanf is not exact inverse of printf */
824 snprintf(buf, IFNAMSIZ, name, i);
825 if (!strncmp(buf, d->name, IFNAMSIZ))
826 set_bit(i, inuse);
827 }
828
829 i = find_first_zero_bit(inuse, max_netdevices);
830 free_page((unsigned long) inuse);
831 }
832
833 snprintf(buf, IFNAMSIZ, name, i);
834 if (!__dev_get_by_name(net, buf))
835 return i;
836
837 /* It is possible to run out of possible slots
838 * when the name is long and there isn't enough space left
839 * for the digits, or if all bits are used.
840 */
841 return -ENFILE;
842 }
843
844 /**
845 * dev_alloc_name - allocate a name for a device
846 * @dev: device
847 * @name: name format string
848 *
849 * Passed a format string - eg "lt%d" it will try and find a suitable
850 * id. It scans list of devices to build up a free map, then chooses
851 * the first empty slot. The caller must hold the dev_base or rtnl lock
852 * while allocating the name and adding the device in order to avoid
853 * duplicates.
854 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
855 * Returns the number of the unit assigned or a negative errno code.
856 */
857
858 int dev_alloc_name(struct net_device *dev, const char *name)
859 {
860 char buf[IFNAMSIZ];
861 struct net *net;
862 int ret;
863
864 BUG_ON(!dev_net(dev));
865 net = dev_net(dev);
866 ret = __dev_alloc_name(net, name, buf);
867 if (ret >= 0)
868 strlcpy(dev->name, buf, IFNAMSIZ);
869 return ret;
870 }
871
872
873 /**
874 * dev_change_name - change name of a device
875 * @dev: device
876 * @newname: name (or format string) must be at least IFNAMSIZ
877 *
878 * Change name of a device, can pass format strings "eth%d".
879 * for wildcarding.
880 */
881 int dev_change_name(struct net_device *dev, const char *newname)
882 {
883 char oldname[IFNAMSIZ];
884 int err = 0;
885 int ret;
886 struct net *net;
887
888 ASSERT_RTNL();
889 BUG_ON(!dev_net(dev));
890
891 net = dev_net(dev);
892 if (dev->flags & IFF_UP)
893 return -EBUSY;
894
895 if (!dev_valid_name(newname))
896 return -EINVAL;
897
898 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
899 return 0;
900
901 memcpy(oldname, dev->name, IFNAMSIZ);
902
903 if (strchr(newname, '%')) {
904 err = dev_alloc_name(dev, newname);
905 if (err < 0)
906 return err;
907 }
908 else if (__dev_get_by_name(net, newname))
909 return -EEXIST;
910 else
911 strlcpy(dev->name, newname, IFNAMSIZ);
912
913 rollback:
914 /* For now only devices in the initial network namespace
915 * are in sysfs.
916 */
917 if (net == &init_net) {
918 ret = device_rename(&dev->dev, dev->name);
919 if (ret) {
920 memcpy(dev->name, oldname, IFNAMSIZ);
921 return ret;
922 }
923 }
924
925 write_lock_bh(&dev_base_lock);
926 hlist_del(&dev->name_hlist);
927 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
928 write_unlock_bh(&dev_base_lock);
929
930 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
931 ret = notifier_to_errno(ret);
932
933 if (ret) {
934 if (err) {
935 printk(KERN_ERR
936 "%s: name change rollback failed: %d.\n",
937 dev->name, ret);
938 } else {
939 err = ret;
940 memcpy(dev->name, oldname, IFNAMSIZ);
941 goto rollback;
942 }
943 }
944
945 return err;
946 }
947
948 /**
949 * dev_set_alias - change ifalias of a device
950 * @dev: device
951 * @alias: name up to IFALIASZ
952 * @len: limit of bytes to copy from info
953 *
954 * Set ifalias for a device,
955 */
956 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
957 {
958 ASSERT_RTNL();
959
960 if (len >= IFALIASZ)
961 return -EINVAL;
962
963 if (!len) {
964 if (dev->ifalias) {
965 kfree(dev->ifalias);
966 dev->ifalias = NULL;
967 }
968 return 0;
969 }
970
971 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
972 if (!dev->ifalias)
973 return -ENOMEM;
974
975 strlcpy(dev->ifalias, alias, len+1);
976 return len;
977 }
978
979
980 /**
981 * netdev_features_change - device changes features
982 * @dev: device to cause notification
983 *
984 * Called to indicate a device has changed features.
985 */
986 void netdev_features_change(struct net_device *dev)
987 {
988 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
989 }
990 EXPORT_SYMBOL(netdev_features_change);
991
992 /**
993 * netdev_state_change - device changes state
994 * @dev: device to cause notification
995 *
996 * Called to indicate a device has changed state. This function calls
997 * the notifier chains for netdev_chain and sends a NEWLINK message
998 * to the routing socket.
999 */
1000 void netdev_state_change(struct net_device *dev)
1001 {
1002 if (dev->flags & IFF_UP) {
1003 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1004 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1005 }
1006 }
1007
1008 void netdev_bonding_change(struct net_device *dev)
1009 {
1010 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1011 }
1012 EXPORT_SYMBOL(netdev_bonding_change);
1013
1014 /**
1015 * dev_load - load a network module
1016 * @net: the applicable net namespace
1017 * @name: name of interface
1018 *
1019 * If a network interface is not present and the process has suitable
1020 * privileges this function loads the module. If module loading is not
1021 * available in this kernel then it becomes a nop.
1022 */
1023
1024 void dev_load(struct net *net, const char *name)
1025 {
1026 struct net_device *dev;
1027
1028 read_lock(&dev_base_lock);
1029 dev = __dev_get_by_name(net, name);
1030 read_unlock(&dev_base_lock);
1031
1032 if (!dev && capable(CAP_SYS_MODULE))
1033 request_module("%s", name);
1034 }
1035
1036 /**
1037 * dev_open - prepare an interface for use.
1038 * @dev: device to open
1039 *
1040 * Takes a device from down to up state. The device's private open
1041 * function is invoked and then the multicast lists are loaded. Finally
1042 * the device is moved into the up state and a %NETDEV_UP message is
1043 * sent to the netdev notifier chain.
1044 *
1045 * Calling this function on an active interface is a nop. On a failure
1046 * a negative errno code is returned.
1047 */
1048 int dev_open(struct net_device *dev)
1049 {
1050 const struct net_device_ops *ops = dev->netdev_ops;
1051 int ret;
1052
1053 ASSERT_RTNL();
1054
1055 /*
1056 * Is it already up?
1057 */
1058
1059 if (dev->flags & IFF_UP)
1060 return 0;
1061
1062 /*
1063 * Is it even present?
1064 */
1065 if (!netif_device_present(dev))
1066 return -ENODEV;
1067
1068 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1069 ret = notifier_to_errno(ret);
1070 if (ret)
1071 return ret;
1072
1073 /*
1074 * Call device private open method
1075 */
1076 set_bit(__LINK_STATE_START, &dev->state);
1077
1078 if (ops->ndo_validate_addr)
1079 ret = ops->ndo_validate_addr(dev);
1080
1081 if (!ret && ops->ndo_open)
1082 ret = ops->ndo_open(dev);
1083
1084 /*
1085 * If it went open OK then:
1086 */
1087
1088 if (ret)
1089 clear_bit(__LINK_STATE_START, &dev->state);
1090 else {
1091 /*
1092 * Set the flags.
1093 */
1094 dev->flags |= IFF_UP;
1095
1096 /*
1097 * Enable NET_DMA
1098 */
1099 net_dmaengine_get();
1100
1101 /*
1102 * Initialize multicasting status
1103 */
1104 dev_set_rx_mode(dev);
1105
1106 /*
1107 * Wakeup transmit queue engine
1108 */
1109 dev_activate(dev);
1110
1111 /*
1112 * ... and announce new interface.
1113 */
1114 call_netdevice_notifiers(NETDEV_UP, dev);
1115 }
1116
1117 return ret;
1118 }
1119
1120 /**
1121 * dev_close - shutdown an interface.
1122 * @dev: device to shutdown
1123 *
1124 * This function moves an active device into down state. A
1125 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1126 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1127 * chain.
1128 */
1129 int dev_close(struct net_device *dev)
1130 {
1131 const struct net_device_ops *ops = dev->netdev_ops;
1132 ASSERT_RTNL();
1133
1134 might_sleep();
1135
1136 if (!(dev->flags & IFF_UP))
1137 return 0;
1138
1139 /*
1140 * Tell people we are going down, so that they can
1141 * prepare to death, when device is still operating.
1142 */
1143 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1144
1145 clear_bit(__LINK_STATE_START, &dev->state);
1146
1147 /* Synchronize to scheduled poll. We cannot touch poll list,
1148 * it can be even on different cpu. So just clear netif_running().
1149 *
1150 * dev->stop() will invoke napi_disable() on all of it's
1151 * napi_struct instances on this device.
1152 */
1153 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1154
1155 dev_deactivate(dev);
1156
1157 /*
1158 * Call the device specific close. This cannot fail.
1159 * Only if device is UP
1160 *
1161 * We allow it to be called even after a DETACH hot-plug
1162 * event.
1163 */
1164 if (ops->ndo_stop)
1165 ops->ndo_stop(dev);
1166
1167 /*
1168 * Device is now down.
1169 */
1170
1171 dev->flags &= ~IFF_UP;
1172
1173 /*
1174 * Tell people we are down
1175 */
1176 call_netdevice_notifiers(NETDEV_DOWN, dev);
1177
1178 /*
1179 * Shutdown NET_DMA
1180 */
1181 net_dmaengine_put();
1182
1183 return 0;
1184 }
1185
1186
1187 /**
1188 * dev_disable_lro - disable Large Receive Offload on a device
1189 * @dev: device
1190 *
1191 * Disable Large Receive Offload (LRO) on a net device. Must be
1192 * called under RTNL. This is needed if received packets may be
1193 * forwarded to another interface.
1194 */
1195 void dev_disable_lro(struct net_device *dev)
1196 {
1197 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1198 dev->ethtool_ops->set_flags) {
1199 u32 flags = dev->ethtool_ops->get_flags(dev);
1200 if (flags & ETH_FLAG_LRO) {
1201 flags &= ~ETH_FLAG_LRO;
1202 dev->ethtool_ops->set_flags(dev, flags);
1203 }
1204 }
1205 WARN_ON(dev->features & NETIF_F_LRO);
1206 }
1207 EXPORT_SYMBOL(dev_disable_lro);
1208
1209
1210 static int dev_boot_phase = 1;
1211
1212 /*
1213 * Device change register/unregister. These are not inline or static
1214 * as we export them to the world.
1215 */
1216
1217 /**
1218 * register_netdevice_notifier - register a network notifier block
1219 * @nb: notifier
1220 *
1221 * Register a notifier to be called when network device events occur.
1222 * The notifier passed is linked into the kernel structures and must
1223 * not be reused until it has been unregistered. A negative errno code
1224 * is returned on a failure.
1225 *
1226 * When registered all registration and up events are replayed
1227 * to the new notifier to allow device to have a race free
1228 * view of the network device list.
1229 */
1230
1231 int register_netdevice_notifier(struct notifier_block *nb)
1232 {
1233 struct net_device *dev;
1234 struct net_device *last;
1235 struct net *net;
1236 int err;
1237
1238 rtnl_lock();
1239 err = raw_notifier_chain_register(&netdev_chain, nb);
1240 if (err)
1241 goto unlock;
1242 if (dev_boot_phase)
1243 goto unlock;
1244 for_each_net(net) {
1245 for_each_netdev(net, dev) {
1246 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1247 err = notifier_to_errno(err);
1248 if (err)
1249 goto rollback;
1250
1251 if (!(dev->flags & IFF_UP))
1252 continue;
1253
1254 nb->notifier_call(nb, NETDEV_UP, dev);
1255 }
1256 }
1257
1258 unlock:
1259 rtnl_unlock();
1260 return err;
1261
1262 rollback:
1263 last = dev;
1264 for_each_net(net) {
1265 for_each_netdev(net, dev) {
1266 if (dev == last)
1267 break;
1268
1269 if (dev->flags & IFF_UP) {
1270 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1271 nb->notifier_call(nb, NETDEV_DOWN, dev);
1272 }
1273 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1274 }
1275 }
1276
1277 raw_notifier_chain_unregister(&netdev_chain, nb);
1278 goto unlock;
1279 }
1280
1281 /**
1282 * unregister_netdevice_notifier - unregister a network notifier block
1283 * @nb: notifier
1284 *
1285 * Unregister a notifier previously registered by
1286 * register_netdevice_notifier(). The notifier is unlinked into the
1287 * kernel structures and may then be reused. A negative errno code
1288 * is returned on a failure.
1289 */
1290
1291 int unregister_netdevice_notifier(struct notifier_block *nb)
1292 {
1293 int err;
1294
1295 rtnl_lock();
1296 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1297 rtnl_unlock();
1298 return err;
1299 }
1300
1301 /**
1302 * call_netdevice_notifiers - call all network notifier blocks
1303 * @val: value passed unmodified to notifier function
1304 * @dev: net_device pointer passed unmodified to notifier function
1305 *
1306 * Call all network notifier blocks. Parameters and return value
1307 * are as for raw_notifier_call_chain().
1308 */
1309
1310 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1311 {
1312 return raw_notifier_call_chain(&netdev_chain, val, dev);
1313 }
1314
1315 /* When > 0 there are consumers of rx skb time stamps */
1316 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1317
1318 void net_enable_timestamp(void)
1319 {
1320 atomic_inc(&netstamp_needed);
1321 }
1322
1323 void net_disable_timestamp(void)
1324 {
1325 atomic_dec(&netstamp_needed);
1326 }
1327
1328 static inline void net_timestamp(struct sk_buff *skb)
1329 {
1330 if (atomic_read(&netstamp_needed))
1331 __net_timestamp(skb);
1332 else
1333 skb->tstamp.tv64 = 0;
1334 }
1335
1336 /*
1337 * Support routine. Sends outgoing frames to any network
1338 * taps currently in use.
1339 */
1340
1341 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1342 {
1343 struct packet_type *ptype;
1344
1345 #ifdef CONFIG_NET_CLS_ACT
1346 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1347 net_timestamp(skb);
1348 #else
1349 net_timestamp(skb);
1350 #endif
1351
1352 rcu_read_lock();
1353 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1354 /* Never send packets back to the socket
1355 * they originated from - MvS (miquels@drinkel.ow.org)
1356 */
1357 if ((ptype->dev == dev || !ptype->dev) &&
1358 (ptype->af_packet_priv == NULL ||
1359 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1360 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1361 if (!skb2)
1362 break;
1363
1364 /* skb->nh should be correctly
1365 set by sender, so that the second statement is
1366 just protection against buggy protocols.
1367 */
1368 skb_reset_mac_header(skb2);
1369
1370 if (skb_network_header(skb2) < skb2->data ||
1371 skb2->network_header > skb2->tail) {
1372 if (net_ratelimit())
1373 printk(KERN_CRIT "protocol %04x is "
1374 "buggy, dev %s\n",
1375 skb2->protocol, dev->name);
1376 skb_reset_network_header(skb2);
1377 }
1378
1379 skb2->transport_header = skb2->network_header;
1380 skb2->pkt_type = PACKET_OUTGOING;
1381 ptype->func(skb2, skb->dev, ptype, skb->dev);
1382 }
1383 }
1384 rcu_read_unlock();
1385 }
1386
1387
1388 static inline void __netif_reschedule(struct Qdisc *q)
1389 {
1390 struct softnet_data *sd;
1391 unsigned long flags;
1392
1393 local_irq_save(flags);
1394 sd = &__get_cpu_var(softnet_data);
1395 q->next_sched = sd->output_queue;
1396 sd->output_queue = q;
1397 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1398 local_irq_restore(flags);
1399 }
1400
1401 void __netif_schedule(struct Qdisc *q)
1402 {
1403 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1404 __netif_reschedule(q);
1405 }
1406 EXPORT_SYMBOL(__netif_schedule);
1407
1408 void dev_kfree_skb_irq(struct sk_buff *skb)
1409 {
1410 if (atomic_dec_and_test(&skb->users)) {
1411 struct softnet_data *sd;
1412 unsigned long flags;
1413
1414 local_irq_save(flags);
1415 sd = &__get_cpu_var(softnet_data);
1416 skb->next = sd->completion_queue;
1417 sd->completion_queue = skb;
1418 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1419 local_irq_restore(flags);
1420 }
1421 }
1422 EXPORT_SYMBOL(dev_kfree_skb_irq);
1423
1424 void dev_kfree_skb_any(struct sk_buff *skb)
1425 {
1426 if (in_irq() || irqs_disabled())
1427 dev_kfree_skb_irq(skb);
1428 else
1429 dev_kfree_skb(skb);
1430 }
1431 EXPORT_SYMBOL(dev_kfree_skb_any);
1432
1433
1434 /**
1435 * netif_device_detach - mark device as removed
1436 * @dev: network device
1437 *
1438 * Mark device as removed from system and therefore no longer available.
1439 */
1440 void netif_device_detach(struct net_device *dev)
1441 {
1442 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1443 netif_running(dev)) {
1444 netif_tx_stop_all_queues(dev);
1445 }
1446 }
1447 EXPORT_SYMBOL(netif_device_detach);
1448
1449 /**
1450 * netif_device_attach - mark device as attached
1451 * @dev: network device
1452 *
1453 * Mark device as attached from system and restart if needed.
1454 */
1455 void netif_device_attach(struct net_device *dev)
1456 {
1457 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1458 netif_running(dev)) {
1459 netif_tx_wake_all_queues(dev);
1460 __netdev_watchdog_up(dev);
1461 }
1462 }
1463 EXPORT_SYMBOL(netif_device_attach);
1464
1465 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1466 {
1467 return ((features & NETIF_F_GEN_CSUM) ||
1468 ((features & NETIF_F_IP_CSUM) &&
1469 protocol == htons(ETH_P_IP)) ||
1470 ((features & NETIF_F_IPV6_CSUM) &&
1471 protocol == htons(ETH_P_IPV6)) ||
1472 ((features & NETIF_F_FCOE_CRC) &&
1473 protocol == htons(ETH_P_FCOE)));
1474 }
1475
1476 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1477 {
1478 if (can_checksum_protocol(dev->features, skb->protocol))
1479 return true;
1480
1481 if (skb->protocol == htons(ETH_P_8021Q)) {
1482 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1483 if (can_checksum_protocol(dev->features & dev->vlan_features,
1484 veh->h_vlan_encapsulated_proto))
1485 return true;
1486 }
1487
1488 return false;
1489 }
1490
1491 /*
1492 * Invalidate hardware checksum when packet is to be mangled, and
1493 * complete checksum manually on outgoing path.
1494 */
1495 int skb_checksum_help(struct sk_buff *skb)
1496 {
1497 __wsum csum;
1498 int ret = 0, offset;
1499
1500 if (skb->ip_summed == CHECKSUM_COMPLETE)
1501 goto out_set_summed;
1502
1503 if (unlikely(skb_shinfo(skb)->gso_size)) {
1504 /* Let GSO fix up the checksum. */
1505 goto out_set_summed;
1506 }
1507
1508 offset = skb->csum_start - skb_headroom(skb);
1509 BUG_ON(offset >= skb_headlen(skb));
1510 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1511
1512 offset += skb->csum_offset;
1513 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1514
1515 if (skb_cloned(skb) &&
1516 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1517 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1518 if (ret)
1519 goto out;
1520 }
1521
1522 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1523 out_set_summed:
1524 skb->ip_summed = CHECKSUM_NONE;
1525 out:
1526 return ret;
1527 }
1528
1529 /**
1530 * skb_gso_segment - Perform segmentation on skb.
1531 * @skb: buffer to segment
1532 * @features: features for the output path (see dev->features)
1533 *
1534 * This function segments the given skb and returns a list of segments.
1535 *
1536 * It may return NULL if the skb requires no segmentation. This is
1537 * only possible when GSO is used for verifying header integrity.
1538 */
1539 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1540 {
1541 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1542 struct packet_type *ptype;
1543 __be16 type = skb->protocol;
1544 int err;
1545
1546 skb_reset_mac_header(skb);
1547 skb->mac_len = skb->network_header - skb->mac_header;
1548 __skb_pull(skb, skb->mac_len);
1549
1550 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1551 struct net_device *dev = skb->dev;
1552 struct ethtool_drvinfo info = {};
1553
1554 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1555 dev->ethtool_ops->get_drvinfo(dev, &info);
1556
1557 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1558 "ip_summed=%d",
1559 info.driver, dev ? dev->features : 0L,
1560 skb->sk ? skb->sk->sk_route_caps : 0L,
1561 skb->len, skb->data_len, skb->ip_summed);
1562
1563 if (skb_header_cloned(skb) &&
1564 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1565 return ERR_PTR(err);
1566 }
1567
1568 rcu_read_lock();
1569 list_for_each_entry_rcu(ptype,
1570 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1571 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1572 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1573 err = ptype->gso_send_check(skb);
1574 segs = ERR_PTR(err);
1575 if (err || skb_gso_ok(skb, features))
1576 break;
1577 __skb_push(skb, (skb->data -
1578 skb_network_header(skb)));
1579 }
1580 segs = ptype->gso_segment(skb, features);
1581 break;
1582 }
1583 }
1584 rcu_read_unlock();
1585
1586 __skb_push(skb, skb->data - skb_mac_header(skb));
1587
1588 return segs;
1589 }
1590
1591 EXPORT_SYMBOL(skb_gso_segment);
1592
1593 /* Take action when hardware reception checksum errors are detected. */
1594 #ifdef CONFIG_BUG
1595 void netdev_rx_csum_fault(struct net_device *dev)
1596 {
1597 if (net_ratelimit()) {
1598 printk(KERN_ERR "%s: hw csum failure.\n",
1599 dev ? dev->name : "<unknown>");
1600 dump_stack();
1601 }
1602 }
1603 EXPORT_SYMBOL(netdev_rx_csum_fault);
1604 #endif
1605
1606 /* Actually, we should eliminate this check as soon as we know, that:
1607 * 1. IOMMU is present and allows to map all the memory.
1608 * 2. No high memory really exists on this machine.
1609 */
1610
1611 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1612 {
1613 #ifdef CONFIG_HIGHMEM
1614 int i;
1615
1616 if (dev->features & NETIF_F_HIGHDMA)
1617 return 0;
1618
1619 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1620 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1621 return 1;
1622
1623 #endif
1624 return 0;
1625 }
1626
1627 struct dev_gso_cb {
1628 void (*destructor)(struct sk_buff *skb);
1629 };
1630
1631 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1632
1633 static void dev_gso_skb_destructor(struct sk_buff *skb)
1634 {
1635 struct dev_gso_cb *cb;
1636
1637 do {
1638 struct sk_buff *nskb = skb->next;
1639
1640 skb->next = nskb->next;
1641 nskb->next = NULL;
1642 kfree_skb(nskb);
1643 } while (skb->next);
1644
1645 cb = DEV_GSO_CB(skb);
1646 if (cb->destructor)
1647 cb->destructor(skb);
1648 }
1649
1650 /**
1651 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1652 * @skb: buffer to segment
1653 *
1654 * This function segments the given skb and stores the list of segments
1655 * in skb->next.
1656 */
1657 static int dev_gso_segment(struct sk_buff *skb)
1658 {
1659 struct net_device *dev = skb->dev;
1660 struct sk_buff *segs;
1661 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1662 NETIF_F_SG : 0);
1663
1664 segs = skb_gso_segment(skb, features);
1665
1666 /* Verifying header integrity only. */
1667 if (!segs)
1668 return 0;
1669
1670 if (IS_ERR(segs))
1671 return PTR_ERR(segs);
1672
1673 skb->next = segs;
1674 DEV_GSO_CB(skb)->destructor = skb->destructor;
1675 skb->destructor = dev_gso_skb_destructor;
1676
1677 return 0;
1678 }
1679
1680 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1681 struct netdev_queue *txq)
1682 {
1683 const struct net_device_ops *ops = dev->netdev_ops;
1684 int rc;
1685
1686 if (likely(!skb->next)) {
1687 if (!list_empty(&ptype_all))
1688 dev_queue_xmit_nit(skb, dev);
1689
1690 if (netif_needs_gso(dev, skb)) {
1691 if (unlikely(dev_gso_segment(skb)))
1692 goto out_kfree_skb;
1693 if (skb->next)
1694 goto gso;
1695 }
1696
1697 /*
1698 * If device doesnt need skb->dst, release it right now while
1699 * its hot in this cpu cache
1700 */
1701 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1702 skb_dst_drop(skb);
1703
1704 rc = ops->ndo_start_xmit(skb, dev);
1705 if (rc == 0)
1706 txq_trans_update(txq);
1707 /*
1708 * TODO: if skb_orphan() was called by
1709 * dev->hard_start_xmit() (for example, the unmodified
1710 * igb driver does that; bnx2 doesn't), then
1711 * skb_tx_software_timestamp() will be unable to send
1712 * back the time stamp.
1713 *
1714 * How can this be prevented? Always create another
1715 * reference to the socket before calling
1716 * dev->hard_start_xmit()? Prevent that skb_orphan()
1717 * does anything in dev->hard_start_xmit() by clearing
1718 * the skb destructor before the call and restoring it
1719 * afterwards, then doing the skb_orphan() ourselves?
1720 */
1721 return rc;
1722 }
1723
1724 gso:
1725 do {
1726 struct sk_buff *nskb = skb->next;
1727
1728 skb->next = nskb->next;
1729 nskb->next = NULL;
1730 rc = ops->ndo_start_xmit(nskb, dev);
1731 if (unlikely(rc)) {
1732 nskb->next = skb->next;
1733 skb->next = nskb;
1734 return rc;
1735 }
1736 txq_trans_update(txq);
1737 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1738 return NETDEV_TX_BUSY;
1739 } while (skb->next);
1740
1741 skb->destructor = DEV_GSO_CB(skb)->destructor;
1742
1743 out_kfree_skb:
1744 kfree_skb(skb);
1745 return 0;
1746 }
1747
1748 static u32 skb_tx_hashrnd;
1749
1750 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1751 {
1752 u32 hash;
1753
1754 if (skb_rx_queue_recorded(skb)) {
1755 hash = skb_get_rx_queue(skb);
1756 while (unlikely (hash >= dev->real_num_tx_queues))
1757 hash -= dev->real_num_tx_queues;
1758 return hash;
1759 }
1760
1761 if (skb->sk && skb->sk->sk_hash)
1762 hash = skb->sk->sk_hash;
1763 else
1764 hash = skb->protocol;
1765
1766 hash = jhash_1word(hash, skb_tx_hashrnd);
1767
1768 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1769 }
1770 EXPORT_SYMBOL(skb_tx_hash);
1771
1772 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1773 struct sk_buff *skb)
1774 {
1775 const struct net_device_ops *ops = dev->netdev_ops;
1776 u16 queue_index = 0;
1777
1778 if (ops->ndo_select_queue)
1779 queue_index = ops->ndo_select_queue(dev, skb);
1780 else if (dev->real_num_tx_queues > 1)
1781 queue_index = skb_tx_hash(dev, skb);
1782
1783 skb_set_queue_mapping(skb, queue_index);
1784 return netdev_get_tx_queue(dev, queue_index);
1785 }
1786
1787 /**
1788 * dev_queue_xmit - transmit a buffer
1789 * @skb: buffer to transmit
1790 *
1791 * Queue a buffer for transmission to a network device. The caller must
1792 * have set the device and priority and built the buffer before calling
1793 * this function. The function can be called from an interrupt.
1794 *
1795 * A negative errno code is returned on a failure. A success does not
1796 * guarantee the frame will be transmitted as it may be dropped due
1797 * to congestion or traffic shaping.
1798 *
1799 * -----------------------------------------------------------------------------------
1800 * I notice this method can also return errors from the queue disciplines,
1801 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1802 * be positive.
1803 *
1804 * Regardless of the return value, the skb is consumed, so it is currently
1805 * difficult to retry a send to this method. (You can bump the ref count
1806 * before sending to hold a reference for retry if you are careful.)
1807 *
1808 * When calling this method, interrupts MUST be enabled. This is because
1809 * the BH enable code must have IRQs enabled so that it will not deadlock.
1810 * --BLG
1811 */
1812 int dev_queue_xmit(struct sk_buff *skb)
1813 {
1814 struct net_device *dev = skb->dev;
1815 struct netdev_queue *txq;
1816 struct Qdisc *q;
1817 int rc = -ENOMEM;
1818
1819 /* GSO will handle the following emulations directly. */
1820 if (netif_needs_gso(dev, skb))
1821 goto gso;
1822
1823 if (skb_shinfo(skb)->frag_list &&
1824 !(dev->features & NETIF_F_FRAGLIST) &&
1825 __skb_linearize(skb))
1826 goto out_kfree_skb;
1827
1828 /* Fragmented skb is linearized if device does not support SG,
1829 * or if at least one of fragments is in highmem and device
1830 * does not support DMA from it.
1831 */
1832 if (skb_shinfo(skb)->nr_frags &&
1833 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1834 __skb_linearize(skb))
1835 goto out_kfree_skb;
1836
1837 /* If packet is not checksummed and device does not support
1838 * checksumming for this protocol, complete checksumming here.
1839 */
1840 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1841 skb_set_transport_header(skb, skb->csum_start -
1842 skb_headroom(skb));
1843 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1844 goto out_kfree_skb;
1845 }
1846
1847 gso:
1848 /* Disable soft irqs for various locks below. Also
1849 * stops preemption for RCU.
1850 */
1851 rcu_read_lock_bh();
1852
1853 txq = dev_pick_tx(dev, skb);
1854 q = rcu_dereference(txq->qdisc);
1855
1856 #ifdef CONFIG_NET_CLS_ACT
1857 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1858 #endif
1859 if (q->enqueue) {
1860 spinlock_t *root_lock = qdisc_lock(q);
1861
1862 spin_lock(root_lock);
1863
1864 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1865 kfree_skb(skb);
1866 rc = NET_XMIT_DROP;
1867 } else {
1868 rc = qdisc_enqueue_root(skb, q);
1869 qdisc_run(q);
1870 }
1871 spin_unlock(root_lock);
1872
1873 goto out;
1874 }
1875
1876 /* The device has no queue. Common case for software devices:
1877 loopback, all the sorts of tunnels...
1878
1879 Really, it is unlikely that netif_tx_lock protection is necessary
1880 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1881 counters.)
1882 However, it is possible, that they rely on protection
1883 made by us here.
1884
1885 Check this and shot the lock. It is not prone from deadlocks.
1886 Either shot noqueue qdisc, it is even simpler 8)
1887 */
1888 if (dev->flags & IFF_UP) {
1889 int cpu = smp_processor_id(); /* ok because BHs are off */
1890
1891 if (txq->xmit_lock_owner != cpu) {
1892
1893 HARD_TX_LOCK(dev, txq, cpu);
1894
1895 if (!netif_tx_queue_stopped(txq)) {
1896 rc = 0;
1897 if (!dev_hard_start_xmit(skb, dev, txq)) {
1898 HARD_TX_UNLOCK(dev, txq);
1899 goto out;
1900 }
1901 }
1902 HARD_TX_UNLOCK(dev, txq);
1903 if (net_ratelimit())
1904 printk(KERN_CRIT "Virtual device %s asks to "
1905 "queue packet!\n", dev->name);
1906 } else {
1907 /* Recursion is detected! It is possible,
1908 * unfortunately */
1909 if (net_ratelimit())
1910 printk(KERN_CRIT "Dead loop on virtual device "
1911 "%s, fix it urgently!\n", dev->name);
1912 }
1913 }
1914
1915 rc = -ENETDOWN;
1916 rcu_read_unlock_bh();
1917
1918 out_kfree_skb:
1919 kfree_skb(skb);
1920 return rc;
1921 out:
1922 rcu_read_unlock_bh();
1923 return rc;
1924 }
1925
1926
1927 /*=======================================================================
1928 Receiver routines
1929 =======================================================================*/
1930
1931 int netdev_max_backlog __read_mostly = 1000;
1932 int netdev_budget __read_mostly = 300;
1933 int weight_p __read_mostly = 64; /* old backlog weight */
1934
1935 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1936
1937
1938 /**
1939 * netif_rx - post buffer to the network code
1940 * @skb: buffer to post
1941 *
1942 * This function receives a packet from a device driver and queues it for
1943 * the upper (protocol) levels to process. It always succeeds. The buffer
1944 * may be dropped during processing for congestion control or by the
1945 * protocol layers.
1946 *
1947 * return values:
1948 * NET_RX_SUCCESS (no congestion)
1949 * NET_RX_DROP (packet was dropped)
1950 *
1951 */
1952
1953 int netif_rx(struct sk_buff *skb)
1954 {
1955 struct softnet_data *queue;
1956 unsigned long flags;
1957
1958 /* if netpoll wants it, pretend we never saw it */
1959 if (netpoll_rx(skb))
1960 return NET_RX_DROP;
1961
1962 if (!skb->tstamp.tv64)
1963 net_timestamp(skb);
1964
1965 /*
1966 * The code is rearranged so that the path is the most
1967 * short when CPU is congested, but is still operating.
1968 */
1969 local_irq_save(flags);
1970 queue = &__get_cpu_var(softnet_data);
1971
1972 __get_cpu_var(netdev_rx_stat).total++;
1973 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1974 if (queue->input_pkt_queue.qlen) {
1975 enqueue:
1976 __skb_queue_tail(&queue->input_pkt_queue, skb);
1977 local_irq_restore(flags);
1978 return NET_RX_SUCCESS;
1979 }
1980
1981 napi_schedule(&queue->backlog);
1982 goto enqueue;
1983 }
1984
1985 __get_cpu_var(netdev_rx_stat).dropped++;
1986 local_irq_restore(flags);
1987
1988 kfree_skb(skb);
1989 return NET_RX_DROP;
1990 }
1991
1992 int netif_rx_ni(struct sk_buff *skb)
1993 {
1994 int err;
1995
1996 preempt_disable();
1997 err = netif_rx(skb);
1998 if (local_softirq_pending())
1999 do_softirq();
2000 preempt_enable();
2001
2002 return err;
2003 }
2004
2005 EXPORT_SYMBOL(netif_rx_ni);
2006
2007 static void net_tx_action(struct softirq_action *h)
2008 {
2009 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2010
2011 if (sd->completion_queue) {
2012 struct sk_buff *clist;
2013
2014 local_irq_disable();
2015 clist = sd->completion_queue;
2016 sd->completion_queue = NULL;
2017 local_irq_enable();
2018
2019 while (clist) {
2020 struct sk_buff *skb = clist;
2021 clist = clist->next;
2022
2023 WARN_ON(atomic_read(&skb->users));
2024 __kfree_skb(skb);
2025 }
2026 }
2027
2028 if (sd->output_queue) {
2029 struct Qdisc *head;
2030
2031 local_irq_disable();
2032 head = sd->output_queue;
2033 sd->output_queue = NULL;
2034 local_irq_enable();
2035
2036 while (head) {
2037 struct Qdisc *q = head;
2038 spinlock_t *root_lock;
2039
2040 head = head->next_sched;
2041
2042 root_lock = qdisc_lock(q);
2043 if (spin_trylock(root_lock)) {
2044 smp_mb__before_clear_bit();
2045 clear_bit(__QDISC_STATE_SCHED,
2046 &q->state);
2047 qdisc_run(q);
2048 spin_unlock(root_lock);
2049 } else {
2050 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2051 &q->state)) {
2052 __netif_reschedule(q);
2053 } else {
2054 smp_mb__before_clear_bit();
2055 clear_bit(__QDISC_STATE_SCHED,
2056 &q->state);
2057 }
2058 }
2059 }
2060 }
2061 }
2062
2063 static inline int deliver_skb(struct sk_buff *skb,
2064 struct packet_type *pt_prev,
2065 struct net_device *orig_dev)
2066 {
2067 atomic_inc(&skb->users);
2068 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2069 }
2070
2071 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2072 /* These hooks defined here for ATM */
2073 struct net_bridge;
2074 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2075 unsigned char *addr);
2076 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2077
2078 /*
2079 * If bridge module is loaded call bridging hook.
2080 * returns NULL if packet was consumed.
2081 */
2082 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2083 struct sk_buff *skb) __read_mostly;
2084 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2085 struct packet_type **pt_prev, int *ret,
2086 struct net_device *orig_dev)
2087 {
2088 struct net_bridge_port *port;
2089
2090 if (skb->pkt_type == PACKET_LOOPBACK ||
2091 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2092 return skb;
2093
2094 if (*pt_prev) {
2095 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2096 *pt_prev = NULL;
2097 }
2098
2099 return br_handle_frame_hook(port, skb);
2100 }
2101 #else
2102 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2103 #endif
2104
2105 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2106 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2107 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2108
2109 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2110 struct packet_type **pt_prev,
2111 int *ret,
2112 struct net_device *orig_dev)
2113 {
2114 if (skb->dev->macvlan_port == NULL)
2115 return skb;
2116
2117 if (*pt_prev) {
2118 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2119 *pt_prev = NULL;
2120 }
2121 return macvlan_handle_frame_hook(skb);
2122 }
2123 #else
2124 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2125 #endif
2126
2127 #ifdef CONFIG_NET_CLS_ACT
2128 /* TODO: Maybe we should just force sch_ingress to be compiled in
2129 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2130 * a compare and 2 stores extra right now if we dont have it on
2131 * but have CONFIG_NET_CLS_ACT
2132 * NOTE: This doesnt stop any functionality; if you dont have
2133 * the ingress scheduler, you just cant add policies on ingress.
2134 *
2135 */
2136 static int ing_filter(struct sk_buff *skb)
2137 {
2138 struct net_device *dev = skb->dev;
2139 u32 ttl = G_TC_RTTL(skb->tc_verd);
2140 struct netdev_queue *rxq;
2141 int result = TC_ACT_OK;
2142 struct Qdisc *q;
2143
2144 if (MAX_RED_LOOP < ttl++) {
2145 printk(KERN_WARNING
2146 "Redir loop detected Dropping packet (%d->%d)\n",
2147 skb->iif, dev->ifindex);
2148 return TC_ACT_SHOT;
2149 }
2150
2151 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2152 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2153
2154 rxq = &dev->rx_queue;
2155
2156 q = rxq->qdisc;
2157 if (q != &noop_qdisc) {
2158 spin_lock(qdisc_lock(q));
2159 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2160 result = qdisc_enqueue_root(skb, q);
2161 spin_unlock(qdisc_lock(q));
2162 }
2163
2164 return result;
2165 }
2166
2167 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2168 struct packet_type **pt_prev,
2169 int *ret, struct net_device *orig_dev)
2170 {
2171 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2172 goto out;
2173
2174 if (*pt_prev) {
2175 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2176 *pt_prev = NULL;
2177 } else {
2178 /* Huh? Why does turning on AF_PACKET affect this? */
2179 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2180 }
2181
2182 switch (ing_filter(skb)) {
2183 case TC_ACT_SHOT:
2184 case TC_ACT_STOLEN:
2185 kfree_skb(skb);
2186 return NULL;
2187 }
2188
2189 out:
2190 skb->tc_verd = 0;
2191 return skb;
2192 }
2193 #endif
2194
2195 /*
2196 * netif_nit_deliver - deliver received packets to network taps
2197 * @skb: buffer
2198 *
2199 * This function is used to deliver incoming packets to network
2200 * taps. It should be used when the normal netif_receive_skb path
2201 * is bypassed, for example because of VLAN acceleration.
2202 */
2203 void netif_nit_deliver(struct sk_buff *skb)
2204 {
2205 struct packet_type *ptype;
2206
2207 if (list_empty(&ptype_all))
2208 return;
2209
2210 skb_reset_network_header(skb);
2211 skb_reset_transport_header(skb);
2212 skb->mac_len = skb->network_header - skb->mac_header;
2213
2214 rcu_read_lock();
2215 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2216 if (!ptype->dev || ptype->dev == skb->dev)
2217 deliver_skb(skb, ptype, skb->dev);
2218 }
2219 rcu_read_unlock();
2220 }
2221
2222 /**
2223 * netif_receive_skb - process receive buffer from network
2224 * @skb: buffer to process
2225 *
2226 * netif_receive_skb() is the main receive data processing function.
2227 * It always succeeds. The buffer may be dropped during processing
2228 * for congestion control or by the protocol layers.
2229 *
2230 * This function may only be called from softirq context and interrupts
2231 * should be enabled.
2232 *
2233 * Return values (usually ignored):
2234 * NET_RX_SUCCESS: no congestion
2235 * NET_RX_DROP: packet was dropped
2236 */
2237 int netif_receive_skb(struct sk_buff *skb)
2238 {
2239 struct packet_type *ptype, *pt_prev;
2240 struct net_device *orig_dev;
2241 struct net_device *null_or_orig;
2242 int ret = NET_RX_DROP;
2243 __be16 type;
2244
2245 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2246 return NET_RX_SUCCESS;
2247
2248 /* if we've gotten here through NAPI, check netpoll */
2249 if (netpoll_receive_skb(skb))
2250 return NET_RX_DROP;
2251
2252 if (!skb->tstamp.tv64)
2253 net_timestamp(skb);
2254
2255 if (!skb->iif)
2256 skb->iif = skb->dev->ifindex;
2257
2258 null_or_orig = NULL;
2259 orig_dev = skb->dev;
2260 if (orig_dev->master) {
2261 if (skb_bond_should_drop(skb))
2262 null_or_orig = orig_dev; /* deliver only exact match */
2263 else
2264 skb->dev = orig_dev->master;
2265 }
2266
2267 __get_cpu_var(netdev_rx_stat).total++;
2268
2269 skb_reset_network_header(skb);
2270 skb_reset_transport_header(skb);
2271 skb->mac_len = skb->network_header - skb->mac_header;
2272
2273 pt_prev = NULL;
2274
2275 rcu_read_lock();
2276
2277 #ifdef CONFIG_NET_CLS_ACT
2278 if (skb->tc_verd & TC_NCLS) {
2279 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2280 goto ncls;
2281 }
2282 #endif
2283
2284 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2285 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2286 ptype->dev == orig_dev) {
2287 if (pt_prev)
2288 ret = deliver_skb(skb, pt_prev, orig_dev);
2289 pt_prev = ptype;
2290 }
2291 }
2292
2293 #ifdef CONFIG_NET_CLS_ACT
2294 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2295 if (!skb)
2296 goto out;
2297 ncls:
2298 #endif
2299
2300 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2301 if (!skb)
2302 goto out;
2303 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2304 if (!skb)
2305 goto out;
2306
2307 skb_orphan(skb);
2308
2309 type = skb->protocol;
2310 list_for_each_entry_rcu(ptype,
2311 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2312 if (ptype->type == type &&
2313 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2314 ptype->dev == orig_dev)) {
2315 if (pt_prev)
2316 ret = deliver_skb(skb, pt_prev, orig_dev);
2317 pt_prev = ptype;
2318 }
2319 }
2320
2321 if (pt_prev) {
2322 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2323 } else {
2324 kfree_skb(skb);
2325 /* Jamal, now you will not able to escape explaining
2326 * me how you were going to use this. :-)
2327 */
2328 ret = NET_RX_DROP;
2329 }
2330
2331 out:
2332 rcu_read_unlock();
2333 return ret;
2334 }
2335
2336 /* Network device is going away, flush any packets still pending */
2337 static void flush_backlog(void *arg)
2338 {
2339 struct net_device *dev = arg;
2340 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2341 struct sk_buff *skb, *tmp;
2342
2343 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2344 if (skb->dev == dev) {
2345 __skb_unlink(skb, &queue->input_pkt_queue);
2346 kfree_skb(skb);
2347 }
2348 }
2349
2350 static int napi_gro_complete(struct sk_buff *skb)
2351 {
2352 struct packet_type *ptype;
2353 __be16 type = skb->protocol;
2354 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2355 int err = -ENOENT;
2356
2357 if (NAPI_GRO_CB(skb)->count == 1) {
2358 skb_shinfo(skb)->gso_size = 0;
2359 goto out;
2360 }
2361
2362 rcu_read_lock();
2363 list_for_each_entry_rcu(ptype, head, list) {
2364 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2365 continue;
2366
2367 err = ptype->gro_complete(skb);
2368 break;
2369 }
2370 rcu_read_unlock();
2371
2372 if (err) {
2373 WARN_ON(&ptype->list == head);
2374 kfree_skb(skb);
2375 return NET_RX_SUCCESS;
2376 }
2377
2378 out:
2379 return netif_receive_skb(skb);
2380 }
2381
2382 void napi_gro_flush(struct napi_struct *napi)
2383 {
2384 struct sk_buff *skb, *next;
2385
2386 for (skb = napi->gro_list; skb; skb = next) {
2387 next = skb->next;
2388 skb->next = NULL;
2389 napi_gro_complete(skb);
2390 }
2391
2392 napi->gro_count = 0;
2393 napi->gro_list = NULL;
2394 }
2395 EXPORT_SYMBOL(napi_gro_flush);
2396
2397 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2398 {
2399 struct sk_buff **pp = NULL;
2400 struct packet_type *ptype;
2401 __be16 type = skb->protocol;
2402 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2403 int same_flow;
2404 int mac_len;
2405 int ret;
2406
2407 if (!(skb->dev->features & NETIF_F_GRO))
2408 goto normal;
2409
2410 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2411 goto normal;
2412
2413 rcu_read_lock();
2414 list_for_each_entry_rcu(ptype, head, list) {
2415 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2416 continue;
2417
2418 skb_set_network_header(skb, skb_gro_offset(skb));
2419 mac_len = skb->network_header - skb->mac_header;
2420 skb->mac_len = mac_len;
2421 NAPI_GRO_CB(skb)->same_flow = 0;
2422 NAPI_GRO_CB(skb)->flush = 0;
2423 NAPI_GRO_CB(skb)->free = 0;
2424
2425 pp = ptype->gro_receive(&napi->gro_list, skb);
2426 break;
2427 }
2428 rcu_read_unlock();
2429
2430 if (&ptype->list == head)
2431 goto normal;
2432
2433 same_flow = NAPI_GRO_CB(skb)->same_flow;
2434 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2435
2436 if (pp) {
2437 struct sk_buff *nskb = *pp;
2438
2439 *pp = nskb->next;
2440 nskb->next = NULL;
2441 napi_gro_complete(nskb);
2442 napi->gro_count--;
2443 }
2444
2445 if (same_flow)
2446 goto ok;
2447
2448 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2449 goto normal;
2450
2451 napi->gro_count++;
2452 NAPI_GRO_CB(skb)->count = 1;
2453 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2454 skb->next = napi->gro_list;
2455 napi->gro_list = skb;
2456 ret = GRO_HELD;
2457
2458 pull:
2459 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2460 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2461
2462 BUG_ON(skb->end - skb->tail < grow);
2463
2464 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2465
2466 skb->tail += grow;
2467 skb->data_len -= grow;
2468
2469 skb_shinfo(skb)->frags[0].page_offset += grow;
2470 skb_shinfo(skb)->frags[0].size -= grow;
2471
2472 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2473 put_page(skb_shinfo(skb)->frags[0].page);
2474 memmove(skb_shinfo(skb)->frags,
2475 skb_shinfo(skb)->frags + 1,
2476 --skb_shinfo(skb)->nr_frags);
2477 }
2478 }
2479
2480 ok:
2481 return ret;
2482
2483 normal:
2484 ret = GRO_NORMAL;
2485 goto pull;
2486 }
2487 EXPORT_SYMBOL(dev_gro_receive);
2488
2489 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2490 {
2491 struct sk_buff *p;
2492
2493 if (netpoll_rx_on(skb))
2494 return GRO_NORMAL;
2495
2496 for (p = napi->gro_list; p; p = p->next) {
2497 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2498 && !compare_ether_header(skb_mac_header(p),
2499 skb_gro_mac_header(skb));
2500 NAPI_GRO_CB(p)->flush = 0;
2501 }
2502
2503 return dev_gro_receive(napi, skb);
2504 }
2505
2506 int napi_skb_finish(int ret, struct sk_buff *skb)
2507 {
2508 int err = NET_RX_SUCCESS;
2509
2510 switch (ret) {
2511 case GRO_NORMAL:
2512 return netif_receive_skb(skb);
2513
2514 case GRO_DROP:
2515 err = NET_RX_DROP;
2516 /* fall through */
2517
2518 case GRO_MERGED_FREE:
2519 kfree_skb(skb);
2520 break;
2521 }
2522
2523 return err;
2524 }
2525 EXPORT_SYMBOL(napi_skb_finish);
2526
2527 void skb_gro_reset_offset(struct sk_buff *skb)
2528 {
2529 NAPI_GRO_CB(skb)->data_offset = 0;
2530 NAPI_GRO_CB(skb)->frag0 = NULL;
2531 NAPI_GRO_CB(skb)->frag0_len = 0;
2532
2533 if (skb->mac_header == skb->tail &&
2534 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2535 NAPI_GRO_CB(skb)->frag0 =
2536 page_address(skb_shinfo(skb)->frags[0].page) +
2537 skb_shinfo(skb)->frags[0].page_offset;
2538 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2539 }
2540 }
2541 EXPORT_SYMBOL(skb_gro_reset_offset);
2542
2543 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2544 {
2545 skb_gro_reset_offset(skb);
2546
2547 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2548 }
2549 EXPORT_SYMBOL(napi_gro_receive);
2550
2551 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2552 {
2553 __skb_pull(skb, skb_headlen(skb));
2554 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2555
2556 napi->skb = skb;
2557 }
2558 EXPORT_SYMBOL(napi_reuse_skb);
2559
2560 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2561 {
2562 struct net_device *dev = napi->dev;
2563 struct sk_buff *skb = napi->skb;
2564
2565 if (!skb) {
2566 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2567 if (!skb)
2568 goto out;
2569
2570 skb_reserve(skb, NET_IP_ALIGN);
2571
2572 napi->skb = skb;
2573 }
2574
2575 out:
2576 return skb;
2577 }
2578 EXPORT_SYMBOL(napi_get_frags);
2579
2580 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2581 {
2582 int err = NET_RX_SUCCESS;
2583
2584 switch (ret) {
2585 case GRO_NORMAL:
2586 case GRO_HELD:
2587 skb->protocol = eth_type_trans(skb, napi->dev);
2588
2589 if (ret == GRO_NORMAL)
2590 return netif_receive_skb(skb);
2591
2592 skb_gro_pull(skb, -ETH_HLEN);
2593 break;
2594
2595 case GRO_DROP:
2596 err = NET_RX_DROP;
2597 /* fall through */
2598
2599 case GRO_MERGED_FREE:
2600 napi_reuse_skb(napi, skb);
2601 break;
2602 }
2603
2604 return err;
2605 }
2606 EXPORT_SYMBOL(napi_frags_finish);
2607
2608 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2609 {
2610 struct sk_buff *skb = napi->skb;
2611 struct ethhdr *eth;
2612 unsigned int hlen;
2613 unsigned int off;
2614
2615 napi->skb = NULL;
2616
2617 skb_reset_mac_header(skb);
2618 skb_gro_reset_offset(skb);
2619
2620 off = skb_gro_offset(skb);
2621 hlen = off + sizeof(*eth);
2622 eth = skb_gro_header_fast(skb, off);
2623 if (skb_gro_header_hard(skb, hlen)) {
2624 eth = skb_gro_header_slow(skb, hlen, off);
2625 if (unlikely(!eth)) {
2626 napi_reuse_skb(napi, skb);
2627 skb = NULL;
2628 goto out;
2629 }
2630 }
2631
2632 skb_gro_pull(skb, sizeof(*eth));
2633
2634 /*
2635 * This works because the only protocols we care about don't require
2636 * special handling. We'll fix it up properly at the end.
2637 */
2638 skb->protocol = eth->h_proto;
2639
2640 out:
2641 return skb;
2642 }
2643 EXPORT_SYMBOL(napi_frags_skb);
2644
2645 int napi_gro_frags(struct napi_struct *napi)
2646 {
2647 struct sk_buff *skb = napi_frags_skb(napi);
2648
2649 if (!skb)
2650 return NET_RX_DROP;
2651
2652 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2653 }
2654 EXPORT_SYMBOL(napi_gro_frags);
2655
2656 static int process_backlog(struct napi_struct *napi, int quota)
2657 {
2658 int work = 0;
2659 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2660 unsigned long start_time = jiffies;
2661
2662 napi->weight = weight_p;
2663 do {
2664 struct sk_buff *skb;
2665
2666 local_irq_disable();
2667 skb = __skb_dequeue(&queue->input_pkt_queue);
2668 if (!skb) {
2669 __napi_complete(napi);
2670 local_irq_enable();
2671 break;
2672 }
2673 local_irq_enable();
2674
2675 netif_receive_skb(skb);
2676 } while (++work < quota && jiffies == start_time);
2677
2678 return work;
2679 }
2680
2681 /**
2682 * __napi_schedule - schedule for receive
2683 * @n: entry to schedule
2684 *
2685 * The entry's receive function will be scheduled to run
2686 */
2687 void __napi_schedule(struct napi_struct *n)
2688 {
2689 unsigned long flags;
2690
2691 local_irq_save(flags);
2692 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2693 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2694 local_irq_restore(flags);
2695 }
2696 EXPORT_SYMBOL(__napi_schedule);
2697
2698 void __napi_complete(struct napi_struct *n)
2699 {
2700 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2701 BUG_ON(n->gro_list);
2702
2703 list_del(&n->poll_list);
2704 smp_mb__before_clear_bit();
2705 clear_bit(NAPI_STATE_SCHED, &n->state);
2706 }
2707 EXPORT_SYMBOL(__napi_complete);
2708
2709 void napi_complete(struct napi_struct *n)
2710 {
2711 unsigned long flags;
2712
2713 /*
2714 * don't let napi dequeue from the cpu poll list
2715 * just in case its running on a different cpu
2716 */
2717 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2718 return;
2719
2720 napi_gro_flush(n);
2721 local_irq_save(flags);
2722 __napi_complete(n);
2723 local_irq_restore(flags);
2724 }
2725 EXPORT_SYMBOL(napi_complete);
2726
2727 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2728 int (*poll)(struct napi_struct *, int), int weight)
2729 {
2730 INIT_LIST_HEAD(&napi->poll_list);
2731 napi->gro_count = 0;
2732 napi->gro_list = NULL;
2733 napi->skb = NULL;
2734 napi->poll = poll;
2735 napi->weight = weight;
2736 list_add(&napi->dev_list, &dev->napi_list);
2737 napi->dev = dev;
2738 #ifdef CONFIG_NETPOLL
2739 spin_lock_init(&napi->poll_lock);
2740 napi->poll_owner = -1;
2741 #endif
2742 set_bit(NAPI_STATE_SCHED, &napi->state);
2743 }
2744 EXPORT_SYMBOL(netif_napi_add);
2745
2746 void netif_napi_del(struct napi_struct *napi)
2747 {
2748 struct sk_buff *skb, *next;
2749
2750 list_del_init(&napi->dev_list);
2751 napi_free_frags(napi);
2752
2753 for (skb = napi->gro_list; skb; skb = next) {
2754 next = skb->next;
2755 skb->next = NULL;
2756 kfree_skb(skb);
2757 }
2758
2759 napi->gro_list = NULL;
2760 napi->gro_count = 0;
2761 }
2762 EXPORT_SYMBOL(netif_napi_del);
2763
2764
2765 static void net_rx_action(struct softirq_action *h)
2766 {
2767 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2768 unsigned long time_limit = jiffies + 2;
2769 int budget = netdev_budget;
2770 void *have;
2771
2772 local_irq_disable();
2773
2774 while (!list_empty(list)) {
2775 struct napi_struct *n;
2776 int work, weight;
2777
2778 /* If softirq window is exhuasted then punt.
2779 * Allow this to run for 2 jiffies since which will allow
2780 * an average latency of 1.5/HZ.
2781 */
2782 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2783 goto softnet_break;
2784
2785 local_irq_enable();
2786
2787 /* Even though interrupts have been re-enabled, this
2788 * access is safe because interrupts can only add new
2789 * entries to the tail of this list, and only ->poll()
2790 * calls can remove this head entry from the list.
2791 */
2792 n = list_entry(list->next, struct napi_struct, poll_list);
2793
2794 have = netpoll_poll_lock(n);
2795
2796 weight = n->weight;
2797
2798 /* This NAPI_STATE_SCHED test is for avoiding a race
2799 * with netpoll's poll_napi(). Only the entity which
2800 * obtains the lock and sees NAPI_STATE_SCHED set will
2801 * actually make the ->poll() call. Therefore we avoid
2802 * accidently calling ->poll() when NAPI is not scheduled.
2803 */
2804 work = 0;
2805 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2806 work = n->poll(n, weight);
2807 trace_napi_poll(n);
2808 }
2809
2810 WARN_ON_ONCE(work > weight);
2811
2812 budget -= work;
2813
2814 local_irq_disable();
2815
2816 /* Drivers must not modify the NAPI state if they
2817 * consume the entire weight. In such cases this code
2818 * still "owns" the NAPI instance and therefore can
2819 * move the instance around on the list at-will.
2820 */
2821 if (unlikely(work == weight)) {
2822 if (unlikely(napi_disable_pending(n)))
2823 __napi_complete(n);
2824 else
2825 list_move_tail(&n->poll_list, list);
2826 }
2827
2828 netpoll_poll_unlock(have);
2829 }
2830 out:
2831 local_irq_enable();
2832
2833 #ifdef CONFIG_NET_DMA
2834 /*
2835 * There may not be any more sk_buffs coming right now, so push
2836 * any pending DMA copies to hardware
2837 */
2838 dma_issue_pending_all();
2839 #endif
2840
2841 return;
2842
2843 softnet_break:
2844 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2845 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2846 goto out;
2847 }
2848
2849 static gifconf_func_t * gifconf_list [NPROTO];
2850
2851 /**
2852 * register_gifconf - register a SIOCGIF handler
2853 * @family: Address family
2854 * @gifconf: Function handler
2855 *
2856 * Register protocol dependent address dumping routines. The handler
2857 * that is passed must not be freed or reused until it has been replaced
2858 * by another handler.
2859 */
2860 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2861 {
2862 if (family >= NPROTO)
2863 return -EINVAL;
2864 gifconf_list[family] = gifconf;
2865 return 0;
2866 }
2867
2868
2869 /*
2870 * Map an interface index to its name (SIOCGIFNAME)
2871 */
2872
2873 /*
2874 * We need this ioctl for efficient implementation of the
2875 * if_indextoname() function required by the IPv6 API. Without
2876 * it, we would have to search all the interfaces to find a
2877 * match. --pb
2878 */
2879
2880 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2881 {
2882 struct net_device *dev;
2883 struct ifreq ifr;
2884
2885 /*
2886 * Fetch the caller's info block.
2887 */
2888
2889 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2890 return -EFAULT;
2891
2892 read_lock(&dev_base_lock);
2893 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2894 if (!dev) {
2895 read_unlock(&dev_base_lock);
2896 return -ENODEV;
2897 }
2898
2899 strcpy(ifr.ifr_name, dev->name);
2900 read_unlock(&dev_base_lock);
2901
2902 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2903 return -EFAULT;
2904 return 0;
2905 }
2906
2907 /*
2908 * Perform a SIOCGIFCONF call. This structure will change
2909 * size eventually, and there is nothing I can do about it.
2910 * Thus we will need a 'compatibility mode'.
2911 */
2912
2913 static int dev_ifconf(struct net *net, char __user *arg)
2914 {
2915 struct ifconf ifc;
2916 struct net_device *dev;
2917 char __user *pos;
2918 int len;
2919 int total;
2920 int i;
2921
2922 /*
2923 * Fetch the caller's info block.
2924 */
2925
2926 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2927 return -EFAULT;
2928
2929 pos = ifc.ifc_buf;
2930 len = ifc.ifc_len;
2931
2932 /*
2933 * Loop over the interfaces, and write an info block for each.
2934 */
2935
2936 total = 0;
2937 for_each_netdev(net, dev) {
2938 for (i = 0; i < NPROTO; i++) {
2939 if (gifconf_list[i]) {
2940 int done;
2941 if (!pos)
2942 done = gifconf_list[i](dev, NULL, 0);
2943 else
2944 done = gifconf_list[i](dev, pos + total,
2945 len - total);
2946 if (done < 0)
2947 return -EFAULT;
2948 total += done;
2949 }
2950 }
2951 }
2952
2953 /*
2954 * All done. Write the updated control block back to the caller.
2955 */
2956 ifc.ifc_len = total;
2957
2958 /*
2959 * Both BSD and Solaris return 0 here, so we do too.
2960 */
2961 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2962 }
2963
2964 #ifdef CONFIG_PROC_FS
2965 /*
2966 * This is invoked by the /proc filesystem handler to display a device
2967 * in detail.
2968 */
2969 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2970 __acquires(dev_base_lock)
2971 {
2972 struct net *net = seq_file_net(seq);
2973 loff_t off;
2974 struct net_device *dev;
2975
2976 read_lock(&dev_base_lock);
2977 if (!*pos)
2978 return SEQ_START_TOKEN;
2979
2980 off = 1;
2981 for_each_netdev(net, dev)
2982 if (off++ == *pos)
2983 return dev;
2984
2985 return NULL;
2986 }
2987
2988 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2989 {
2990 struct net *net = seq_file_net(seq);
2991 ++*pos;
2992 return v == SEQ_START_TOKEN ?
2993 first_net_device(net) : next_net_device((struct net_device *)v);
2994 }
2995
2996 void dev_seq_stop(struct seq_file *seq, void *v)
2997 __releases(dev_base_lock)
2998 {
2999 read_unlock(&dev_base_lock);
3000 }
3001
3002 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3003 {
3004 const struct net_device_stats *stats = dev_get_stats(dev);
3005
3006 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3007 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3008 dev->name, stats->rx_bytes, stats->rx_packets,
3009 stats->rx_errors,
3010 stats->rx_dropped + stats->rx_missed_errors,
3011 stats->rx_fifo_errors,
3012 stats->rx_length_errors + stats->rx_over_errors +
3013 stats->rx_crc_errors + stats->rx_frame_errors,
3014 stats->rx_compressed, stats->multicast,
3015 stats->tx_bytes, stats->tx_packets,
3016 stats->tx_errors, stats->tx_dropped,
3017 stats->tx_fifo_errors, stats->collisions,
3018 stats->tx_carrier_errors +
3019 stats->tx_aborted_errors +
3020 stats->tx_window_errors +
3021 stats->tx_heartbeat_errors,
3022 stats->tx_compressed);
3023 }
3024
3025 /*
3026 * Called from the PROCfs module. This now uses the new arbitrary sized
3027 * /proc/net interface to create /proc/net/dev
3028 */
3029 static int dev_seq_show(struct seq_file *seq, void *v)
3030 {
3031 if (v == SEQ_START_TOKEN)
3032 seq_puts(seq, "Inter-| Receive "
3033 " | Transmit\n"
3034 " face |bytes packets errs drop fifo frame "
3035 "compressed multicast|bytes packets errs "
3036 "drop fifo colls carrier compressed\n");
3037 else
3038 dev_seq_printf_stats(seq, v);
3039 return 0;
3040 }
3041
3042 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3043 {
3044 struct netif_rx_stats *rc = NULL;
3045
3046 while (*pos < nr_cpu_ids)
3047 if (cpu_online(*pos)) {
3048 rc = &per_cpu(netdev_rx_stat, *pos);
3049 break;
3050 } else
3051 ++*pos;
3052 return rc;
3053 }
3054
3055 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3056 {
3057 return softnet_get_online(pos);
3058 }
3059
3060 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3061 {
3062 ++*pos;
3063 return softnet_get_online(pos);
3064 }
3065
3066 static void softnet_seq_stop(struct seq_file *seq, void *v)
3067 {
3068 }
3069
3070 static int softnet_seq_show(struct seq_file *seq, void *v)
3071 {
3072 struct netif_rx_stats *s = v;
3073
3074 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3075 s->total, s->dropped, s->time_squeeze, 0,
3076 0, 0, 0, 0, /* was fastroute */
3077 s->cpu_collision );
3078 return 0;
3079 }
3080
3081 static const struct seq_operations dev_seq_ops = {
3082 .start = dev_seq_start,
3083 .next = dev_seq_next,
3084 .stop = dev_seq_stop,
3085 .show = dev_seq_show,
3086 };
3087
3088 static int dev_seq_open(struct inode *inode, struct file *file)
3089 {
3090 return seq_open_net(inode, file, &dev_seq_ops,
3091 sizeof(struct seq_net_private));
3092 }
3093
3094 static const struct file_operations dev_seq_fops = {
3095 .owner = THIS_MODULE,
3096 .open = dev_seq_open,
3097 .read = seq_read,
3098 .llseek = seq_lseek,
3099 .release = seq_release_net,
3100 };
3101
3102 static const struct seq_operations softnet_seq_ops = {
3103 .start = softnet_seq_start,
3104 .next = softnet_seq_next,
3105 .stop = softnet_seq_stop,
3106 .show = softnet_seq_show,
3107 };
3108
3109 static int softnet_seq_open(struct inode *inode, struct file *file)
3110 {
3111 return seq_open(file, &softnet_seq_ops);
3112 }
3113
3114 static const struct file_operations softnet_seq_fops = {
3115 .owner = THIS_MODULE,
3116 .open = softnet_seq_open,
3117 .read = seq_read,
3118 .llseek = seq_lseek,
3119 .release = seq_release,
3120 };
3121
3122 static void *ptype_get_idx(loff_t pos)
3123 {
3124 struct packet_type *pt = NULL;
3125 loff_t i = 0;
3126 int t;
3127
3128 list_for_each_entry_rcu(pt, &ptype_all, list) {
3129 if (i == pos)
3130 return pt;
3131 ++i;
3132 }
3133
3134 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3135 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3136 if (i == pos)
3137 return pt;
3138 ++i;
3139 }
3140 }
3141 return NULL;
3142 }
3143
3144 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3145 __acquires(RCU)
3146 {
3147 rcu_read_lock();
3148 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3149 }
3150
3151 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3152 {
3153 struct packet_type *pt;
3154 struct list_head *nxt;
3155 int hash;
3156
3157 ++*pos;
3158 if (v == SEQ_START_TOKEN)
3159 return ptype_get_idx(0);
3160
3161 pt = v;
3162 nxt = pt->list.next;
3163 if (pt->type == htons(ETH_P_ALL)) {
3164 if (nxt != &ptype_all)
3165 goto found;
3166 hash = 0;
3167 nxt = ptype_base[0].next;
3168 } else
3169 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3170
3171 while (nxt == &ptype_base[hash]) {
3172 if (++hash >= PTYPE_HASH_SIZE)
3173 return NULL;
3174 nxt = ptype_base[hash].next;
3175 }
3176 found:
3177 return list_entry(nxt, struct packet_type, list);
3178 }
3179
3180 static void ptype_seq_stop(struct seq_file *seq, void *v)
3181 __releases(RCU)
3182 {
3183 rcu_read_unlock();
3184 }
3185
3186 static int ptype_seq_show(struct seq_file *seq, void *v)
3187 {
3188 struct packet_type *pt = v;
3189
3190 if (v == SEQ_START_TOKEN)
3191 seq_puts(seq, "Type Device Function\n");
3192 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3193 if (pt->type == htons(ETH_P_ALL))
3194 seq_puts(seq, "ALL ");
3195 else
3196 seq_printf(seq, "%04x", ntohs(pt->type));
3197
3198 seq_printf(seq, " %-8s %pF\n",
3199 pt->dev ? pt->dev->name : "", pt->func);
3200 }
3201
3202 return 0;
3203 }
3204
3205 static const struct seq_operations ptype_seq_ops = {
3206 .start = ptype_seq_start,
3207 .next = ptype_seq_next,
3208 .stop = ptype_seq_stop,
3209 .show = ptype_seq_show,
3210 };
3211
3212 static int ptype_seq_open(struct inode *inode, struct file *file)
3213 {
3214 return seq_open_net(inode, file, &ptype_seq_ops,
3215 sizeof(struct seq_net_private));
3216 }
3217
3218 static const struct file_operations ptype_seq_fops = {
3219 .owner = THIS_MODULE,
3220 .open = ptype_seq_open,
3221 .read = seq_read,
3222 .llseek = seq_lseek,
3223 .release = seq_release_net,
3224 };
3225
3226
3227 static int __net_init dev_proc_net_init(struct net *net)
3228 {
3229 int rc = -ENOMEM;
3230
3231 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3232 goto out;
3233 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3234 goto out_dev;
3235 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3236 goto out_softnet;
3237
3238 if (wext_proc_init(net))
3239 goto out_ptype;
3240 rc = 0;
3241 out:
3242 return rc;
3243 out_ptype:
3244 proc_net_remove(net, "ptype");
3245 out_softnet:
3246 proc_net_remove(net, "softnet_stat");
3247 out_dev:
3248 proc_net_remove(net, "dev");
3249 goto out;
3250 }
3251
3252 static void __net_exit dev_proc_net_exit(struct net *net)
3253 {
3254 wext_proc_exit(net);
3255
3256 proc_net_remove(net, "ptype");
3257 proc_net_remove(net, "softnet_stat");
3258 proc_net_remove(net, "dev");
3259 }
3260
3261 static struct pernet_operations __net_initdata dev_proc_ops = {
3262 .init = dev_proc_net_init,
3263 .exit = dev_proc_net_exit,
3264 };
3265
3266 static int __init dev_proc_init(void)
3267 {
3268 return register_pernet_subsys(&dev_proc_ops);
3269 }
3270 #else
3271 #define dev_proc_init() 0
3272 #endif /* CONFIG_PROC_FS */
3273
3274
3275 /**
3276 * netdev_set_master - set up master/slave pair
3277 * @slave: slave device
3278 * @master: new master device
3279 *
3280 * Changes the master device of the slave. Pass %NULL to break the
3281 * bonding. The caller must hold the RTNL semaphore. On a failure
3282 * a negative errno code is returned. On success the reference counts
3283 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3284 * function returns zero.
3285 */
3286 int netdev_set_master(struct net_device *slave, struct net_device *master)
3287 {
3288 struct net_device *old = slave->master;
3289
3290 ASSERT_RTNL();
3291
3292 if (master) {
3293 if (old)
3294 return -EBUSY;
3295 dev_hold(master);
3296 }
3297
3298 slave->master = master;
3299
3300 synchronize_net();
3301
3302 if (old)
3303 dev_put(old);
3304
3305 if (master)
3306 slave->flags |= IFF_SLAVE;
3307 else
3308 slave->flags &= ~IFF_SLAVE;
3309
3310 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3311 return 0;
3312 }
3313
3314 static void dev_change_rx_flags(struct net_device *dev, int flags)
3315 {
3316 const struct net_device_ops *ops = dev->netdev_ops;
3317
3318 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3319 ops->ndo_change_rx_flags(dev, flags);
3320 }
3321
3322 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3323 {
3324 unsigned short old_flags = dev->flags;
3325 uid_t uid;
3326 gid_t gid;
3327
3328 ASSERT_RTNL();
3329
3330 dev->flags |= IFF_PROMISC;
3331 dev->promiscuity += inc;
3332 if (dev->promiscuity == 0) {
3333 /*
3334 * Avoid overflow.
3335 * If inc causes overflow, untouch promisc and return error.
3336 */
3337 if (inc < 0)
3338 dev->flags &= ~IFF_PROMISC;
3339 else {
3340 dev->promiscuity -= inc;
3341 printk(KERN_WARNING "%s: promiscuity touches roof, "
3342 "set promiscuity failed, promiscuity feature "
3343 "of device might be broken.\n", dev->name);
3344 return -EOVERFLOW;
3345 }
3346 }
3347 if (dev->flags != old_flags) {
3348 printk(KERN_INFO "device %s %s promiscuous mode\n",
3349 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3350 "left");
3351 if (audit_enabled) {
3352 current_uid_gid(&uid, &gid);
3353 audit_log(current->audit_context, GFP_ATOMIC,
3354 AUDIT_ANOM_PROMISCUOUS,
3355 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3356 dev->name, (dev->flags & IFF_PROMISC),
3357 (old_flags & IFF_PROMISC),
3358 audit_get_loginuid(current),
3359 uid, gid,
3360 audit_get_sessionid(current));
3361 }
3362
3363 dev_change_rx_flags(dev, IFF_PROMISC);
3364 }
3365 return 0;
3366 }
3367
3368 /**
3369 * dev_set_promiscuity - update promiscuity count on a device
3370 * @dev: device
3371 * @inc: modifier
3372 *
3373 * Add or remove promiscuity from a device. While the count in the device
3374 * remains above zero the interface remains promiscuous. Once it hits zero
3375 * the device reverts back to normal filtering operation. A negative inc
3376 * value is used to drop promiscuity on the device.
3377 * Return 0 if successful or a negative errno code on error.
3378 */
3379 int dev_set_promiscuity(struct net_device *dev, int inc)
3380 {
3381 unsigned short old_flags = dev->flags;
3382 int err;
3383
3384 err = __dev_set_promiscuity(dev, inc);
3385 if (err < 0)
3386 return err;
3387 if (dev->flags != old_flags)
3388 dev_set_rx_mode(dev);
3389 return err;
3390 }
3391
3392 /**
3393 * dev_set_allmulti - update allmulti count on a device
3394 * @dev: device
3395 * @inc: modifier
3396 *
3397 * Add or remove reception of all multicast frames to a device. While the
3398 * count in the device remains above zero the interface remains listening
3399 * to all interfaces. Once it hits zero the device reverts back to normal
3400 * filtering operation. A negative @inc value is used to drop the counter
3401 * when releasing a resource needing all multicasts.
3402 * Return 0 if successful or a negative errno code on error.
3403 */
3404
3405 int dev_set_allmulti(struct net_device *dev, int inc)
3406 {
3407 unsigned short old_flags = dev->flags;
3408
3409 ASSERT_RTNL();
3410
3411 dev->flags |= IFF_ALLMULTI;
3412 dev->allmulti += inc;
3413 if (dev->allmulti == 0) {
3414 /*
3415 * Avoid overflow.
3416 * If inc causes overflow, untouch allmulti and return error.
3417 */
3418 if (inc < 0)
3419 dev->flags &= ~IFF_ALLMULTI;
3420 else {
3421 dev->allmulti -= inc;
3422 printk(KERN_WARNING "%s: allmulti touches roof, "
3423 "set allmulti failed, allmulti feature of "
3424 "device might be broken.\n", dev->name);
3425 return -EOVERFLOW;
3426 }
3427 }
3428 if (dev->flags ^ old_flags) {
3429 dev_change_rx_flags(dev, IFF_ALLMULTI);
3430 dev_set_rx_mode(dev);
3431 }
3432 return 0;
3433 }
3434
3435 /*
3436 * Upload unicast and multicast address lists to device and
3437 * configure RX filtering. When the device doesn't support unicast
3438 * filtering it is put in promiscuous mode while unicast addresses
3439 * are present.
3440 */
3441 void __dev_set_rx_mode(struct net_device *dev)
3442 {
3443 const struct net_device_ops *ops = dev->netdev_ops;
3444
3445 /* dev_open will call this function so the list will stay sane. */
3446 if (!(dev->flags&IFF_UP))
3447 return;
3448
3449 if (!netif_device_present(dev))
3450 return;
3451
3452 if (ops->ndo_set_rx_mode)
3453 ops->ndo_set_rx_mode(dev);
3454 else {
3455 /* Unicast addresses changes may only happen under the rtnl,
3456 * therefore calling __dev_set_promiscuity here is safe.
3457 */
3458 if (dev->uc_count > 0 && !dev->uc_promisc) {
3459 __dev_set_promiscuity(dev, 1);
3460 dev->uc_promisc = 1;
3461 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3462 __dev_set_promiscuity(dev, -1);
3463 dev->uc_promisc = 0;
3464 }
3465
3466 if (ops->ndo_set_multicast_list)
3467 ops->ndo_set_multicast_list(dev);
3468 }
3469 }
3470
3471 void dev_set_rx_mode(struct net_device *dev)
3472 {
3473 netif_addr_lock_bh(dev);
3474 __dev_set_rx_mode(dev);
3475 netif_addr_unlock_bh(dev);
3476 }
3477
3478 /* hw addresses list handling functions */
3479
3480 static int __hw_addr_add(struct list_head *list, int *delta,
3481 unsigned char *addr, int addr_len,
3482 unsigned char addr_type)
3483 {
3484 struct netdev_hw_addr *ha;
3485 int alloc_size;
3486
3487 if (addr_len > MAX_ADDR_LEN)
3488 return -EINVAL;
3489
3490 list_for_each_entry(ha, list, list) {
3491 if (!memcmp(ha->addr, addr, addr_len) &&
3492 ha->type == addr_type) {
3493 ha->refcount++;
3494 return 0;
3495 }
3496 }
3497
3498
3499 alloc_size = sizeof(*ha);
3500 if (alloc_size < L1_CACHE_BYTES)
3501 alloc_size = L1_CACHE_BYTES;
3502 ha = kmalloc(alloc_size, GFP_ATOMIC);
3503 if (!ha)
3504 return -ENOMEM;
3505 memcpy(ha->addr, addr, addr_len);
3506 ha->type = addr_type;
3507 ha->refcount = 1;
3508 ha->synced = false;
3509 list_add_tail_rcu(&ha->list, list);
3510 if (delta)
3511 (*delta)++;
3512 return 0;
3513 }
3514
3515 static void ha_rcu_free(struct rcu_head *head)
3516 {
3517 struct netdev_hw_addr *ha;
3518
3519 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3520 kfree(ha);
3521 }
3522
3523 static int __hw_addr_del(struct list_head *list, int *delta,
3524 unsigned char *addr, int addr_len,
3525 unsigned char addr_type)
3526 {
3527 struct netdev_hw_addr *ha;
3528
3529 list_for_each_entry(ha, list, list) {
3530 if (!memcmp(ha->addr, addr, addr_len) &&
3531 (ha->type == addr_type || !addr_type)) {
3532 if (--ha->refcount)
3533 return 0;
3534 list_del_rcu(&ha->list);
3535 call_rcu(&ha->rcu_head, ha_rcu_free);
3536 if (delta)
3537 (*delta)--;
3538 return 0;
3539 }
3540 }
3541 return -ENOENT;
3542 }
3543
3544 static int __hw_addr_add_multiple(struct list_head *to_list, int *to_delta,
3545 struct list_head *from_list, int addr_len,
3546 unsigned char addr_type)
3547 {
3548 int err;
3549 struct netdev_hw_addr *ha, *ha2;
3550 unsigned char type;
3551
3552 list_for_each_entry(ha, from_list, list) {
3553 type = addr_type ? addr_type : ha->type;
3554 err = __hw_addr_add(to_list, to_delta, ha->addr,
3555 addr_len, type);
3556 if (err)
3557 goto unroll;
3558 }
3559 return 0;
3560
3561 unroll:
3562 list_for_each_entry(ha2, from_list, list) {
3563 if (ha2 == ha)
3564 break;
3565 type = addr_type ? addr_type : ha2->type;
3566 __hw_addr_del(to_list, to_delta, ha2->addr,
3567 addr_len, type);
3568 }
3569 return err;
3570 }
3571
3572 static void __hw_addr_del_multiple(struct list_head *to_list, int *to_delta,
3573 struct list_head *from_list, int addr_len,
3574 unsigned char addr_type)
3575 {
3576 struct netdev_hw_addr *ha;
3577 unsigned char type;
3578
3579 list_for_each_entry(ha, from_list, list) {
3580 type = addr_type ? addr_type : ha->type;
3581 __hw_addr_del(to_list, to_delta, ha->addr,
3582 addr_len, addr_type);
3583 }
3584 }
3585
3586 static int __hw_addr_sync(struct list_head *to_list, int *to_delta,
3587 struct list_head *from_list, int *from_delta,
3588 int addr_len)
3589 {
3590 int err = 0;
3591 struct netdev_hw_addr *ha, *tmp;
3592
3593 list_for_each_entry_safe(ha, tmp, from_list, list) {
3594 if (!ha->synced) {
3595 err = __hw_addr_add(to_list, to_delta, ha->addr,
3596 addr_len, ha->type);
3597 if (err)
3598 break;
3599 ha->synced = true;
3600 ha->refcount++;
3601 } else if (ha->refcount == 1) {
3602 __hw_addr_del(to_list, to_delta, ha->addr,
3603 addr_len, ha->type);
3604 __hw_addr_del(from_list, from_delta, ha->addr,
3605 addr_len, ha->type);
3606 }
3607 }
3608 return err;
3609 }
3610
3611 static void __hw_addr_unsync(struct list_head *to_list, int *to_delta,
3612 struct list_head *from_list, int *from_delta,
3613 int addr_len)
3614 {
3615 struct netdev_hw_addr *ha, *tmp;
3616
3617 list_for_each_entry_safe(ha, tmp, from_list, list) {
3618 if (ha->synced) {
3619 __hw_addr_del(to_list, to_delta, ha->addr,
3620 addr_len, ha->type);
3621 ha->synced = false;
3622 __hw_addr_del(from_list, from_delta, ha->addr,
3623 addr_len, ha->type);
3624 }
3625 }
3626 }
3627
3628
3629 static void __hw_addr_flush(struct list_head *list)
3630 {
3631 struct netdev_hw_addr *ha, *tmp;
3632
3633 list_for_each_entry_safe(ha, tmp, list, list) {
3634 list_del_rcu(&ha->list);
3635 call_rcu(&ha->rcu_head, ha_rcu_free);
3636 }
3637 }
3638
3639 /* Device addresses handling functions */
3640
3641 static void dev_addr_flush(struct net_device *dev)
3642 {
3643 /* rtnl_mutex must be held here */
3644
3645 __hw_addr_flush(&dev->dev_addr_list);
3646 dev->dev_addr = NULL;
3647 }
3648
3649 static int dev_addr_init(struct net_device *dev)
3650 {
3651 unsigned char addr[MAX_ADDR_LEN];
3652 struct netdev_hw_addr *ha;
3653 int err;
3654
3655 /* rtnl_mutex must be held here */
3656
3657 INIT_LIST_HEAD(&dev->dev_addr_list);
3658 memset(addr, 0, sizeof(*addr));
3659 err = __hw_addr_add(&dev->dev_addr_list, NULL, addr, sizeof(*addr),
3660 NETDEV_HW_ADDR_T_LAN);
3661 if (!err) {
3662 /*
3663 * Get the first (previously created) address from the list
3664 * and set dev_addr pointer to this location.
3665 */
3666 ha = list_first_entry(&dev->dev_addr_list,
3667 struct netdev_hw_addr, list);
3668 dev->dev_addr = ha->addr;
3669 }
3670 return err;
3671 }
3672
3673 /**
3674 * dev_addr_add - Add a device address
3675 * @dev: device
3676 * @addr: address to add
3677 * @addr_type: address type
3678 *
3679 * Add a device address to the device or increase the reference count if
3680 * it already exists.
3681 *
3682 * The caller must hold the rtnl_mutex.
3683 */
3684 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3685 unsigned char addr_type)
3686 {
3687 int err;
3688
3689 ASSERT_RTNL();
3690
3691 err = __hw_addr_add(&dev->dev_addr_list, NULL, addr, dev->addr_len,
3692 addr_type);
3693 if (!err)
3694 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3695 return err;
3696 }
3697 EXPORT_SYMBOL(dev_addr_add);
3698
3699 /**
3700 * dev_addr_del - Release a device address.
3701 * @dev: device
3702 * @addr: address to delete
3703 * @addr_type: address type
3704 *
3705 * Release reference to a device address and remove it from the device
3706 * if the reference count drops to zero.
3707 *
3708 * The caller must hold the rtnl_mutex.
3709 */
3710 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3711 unsigned char addr_type)
3712 {
3713 int err;
3714 struct netdev_hw_addr *ha;
3715
3716 ASSERT_RTNL();
3717
3718 /*
3719 * We can not remove the first address from the list because
3720 * dev->dev_addr points to that.
3721 */
3722 ha = list_first_entry(&dev->dev_addr_list, struct netdev_hw_addr, list);
3723 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3724 return -ENOENT;
3725
3726 err = __hw_addr_del(&dev->dev_addr_list, NULL, addr, dev->addr_len,
3727 addr_type);
3728 if (!err)
3729 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3730 return err;
3731 }
3732 EXPORT_SYMBOL(dev_addr_del);
3733
3734 /**
3735 * dev_addr_add_multiple - Add device addresses from another device
3736 * @to_dev: device to which addresses will be added
3737 * @from_dev: device from which addresses will be added
3738 * @addr_type: address type - 0 means type will be used from from_dev
3739 *
3740 * Add device addresses of the one device to another.
3741 **
3742 * The caller must hold the rtnl_mutex.
3743 */
3744 int dev_addr_add_multiple(struct net_device *to_dev,
3745 struct net_device *from_dev,
3746 unsigned char addr_type)
3747 {
3748 int err;
3749
3750 ASSERT_RTNL();
3751
3752 if (from_dev->addr_len != to_dev->addr_len)
3753 return -EINVAL;
3754 err = __hw_addr_add_multiple(&to_dev->dev_addr_list, NULL,
3755 &from_dev->dev_addr_list,
3756 to_dev->addr_len, addr_type);
3757 if (!err)
3758 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3759 return err;
3760 }
3761 EXPORT_SYMBOL(dev_addr_add_multiple);
3762
3763 /**
3764 * dev_addr_del_multiple - Delete device addresses by another device
3765 * @to_dev: device where the addresses will be deleted
3766 * @from_dev: device by which addresses the addresses will be deleted
3767 * @addr_type: address type - 0 means type will used from from_dev
3768 *
3769 * Deletes addresses in to device by the list of addresses in from device.
3770 *
3771 * The caller must hold the rtnl_mutex.
3772 */
3773 int dev_addr_del_multiple(struct net_device *to_dev,
3774 struct net_device *from_dev,
3775 unsigned char addr_type)
3776 {
3777 ASSERT_RTNL();
3778
3779 if (from_dev->addr_len != to_dev->addr_len)
3780 return -EINVAL;
3781 __hw_addr_del_multiple(&to_dev->dev_addr_list, NULL,
3782 &from_dev->dev_addr_list,
3783 to_dev->addr_len, addr_type);
3784 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3785 return 0;
3786 }
3787 EXPORT_SYMBOL(dev_addr_del_multiple);
3788
3789 /* unicast and multicast addresses handling functions */
3790
3791 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3792 void *addr, int alen, int glbl)
3793 {
3794 struct dev_addr_list *da;
3795
3796 for (; (da = *list) != NULL; list = &da->next) {
3797 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3798 alen == da->da_addrlen) {
3799 if (glbl) {
3800 int old_glbl = da->da_gusers;
3801 da->da_gusers = 0;
3802 if (old_glbl == 0)
3803 break;
3804 }
3805 if (--da->da_users)
3806 return 0;
3807
3808 *list = da->next;
3809 kfree(da);
3810 (*count)--;
3811 return 0;
3812 }
3813 }
3814 return -ENOENT;
3815 }
3816
3817 int __dev_addr_add(struct dev_addr_list **list, int *count,
3818 void *addr, int alen, int glbl)
3819 {
3820 struct dev_addr_list *da;
3821
3822 for (da = *list; da != NULL; da = da->next) {
3823 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3824 da->da_addrlen == alen) {
3825 if (glbl) {
3826 int old_glbl = da->da_gusers;
3827 da->da_gusers = 1;
3828 if (old_glbl)
3829 return 0;
3830 }
3831 da->da_users++;
3832 return 0;
3833 }
3834 }
3835
3836 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3837 if (da == NULL)
3838 return -ENOMEM;
3839 memcpy(da->da_addr, addr, alen);
3840 da->da_addrlen = alen;
3841 da->da_users = 1;
3842 da->da_gusers = glbl ? 1 : 0;
3843 da->next = *list;
3844 *list = da;
3845 (*count)++;
3846 return 0;
3847 }
3848
3849 /**
3850 * dev_unicast_delete - Release secondary unicast address.
3851 * @dev: device
3852 * @addr: address to delete
3853 *
3854 * Release reference to a secondary unicast address and remove it
3855 * from the device if the reference count drops to zero.
3856 *
3857 * The caller must hold the rtnl_mutex.
3858 */
3859 int dev_unicast_delete(struct net_device *dev, void *addr)
3860 {
3861 int err;
3862
3863 ASSERT_RTNL();
3864
3865 err = __hw_addr_del(&dev->uc_list, &dev->uc_count, addr,
3866 dev->addr_len, NETDEV_HW_ADDR_T_UNICAST);
3867 if (!err)
3868 __dev_set_rx_mode(dev);
3869 return err;
3870 }
3871 EXPORT_SYMBOL(dev_unicast_delete);
3872
3873 /**
3874 * dev_unicast_add - add a secondary unicast address
3875 * @dev: device
3876 * @addr: address to add
3877 *
3878 * Add a secondary unicast address to the device or increase
3879 * the reference count if it already exists.
3880 *
3881 * The caller must hold the rtnl_mutex.
3882 */
3883 int dev_unicast_add(struct net_device *dev, void *addr)
3884 {
3885 int err;
3886
3887 ASSERT_RTNL();
3888
3889 err = __hw_addr_add(&dev->uc_list, &dev->uc_count, addr,
3890 dev->addr_len, NETDEV_HW_ADDR_T_UNICAST);
3891 if (!err)
3892 __dev_set_rx_mode(dev);
3893 return err;
3894 }
3895 EXPORT_SYMBOL(dev_unicast_add);
3896
3897 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3898 struct dev_addr_list **from, int *from_count)
3899 {
3900 struct dev_addr_list *da, *next;
3901 int err = 0;
3902
3903 da = *from;
3904 while (da != NULL) {
3905 next = da->next;
3906 if (!da->da_synced) {
3907 err = __dev_addr_add(to, to_count,
3908 da->da_addr, da->da_addrlen, 0);
3909 if (err < 0)
3910 break;
3911 da->da_synced = 1;
3912 da->da_users++;
3913 } else if (da->da_users == 1) {
3914 __dev_addr_delete(to, to_count,
3915 da->da_addr, da->da_addrlen, 0);
3916 __dev_addr_delete(from, from_count,
3917 da->da_addr, da->da_addrlen, 0);
3918 }
3919 da = next;
3920 }
3921 return err;
3922 }
3923
3924 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3925 struct dev_addr_list **from, int *from_count)
3926 {
3927 struct dev_addr_list *da, *next;
3928
3929 da = *from;
3930 while (da != NULL) {
3931 next = da->next;
3932 if (da->da_synced) {
3933 __dev_addr_delete(to, to_count,
3934 da->da_addr, da->da_addrlen, 0);
3935 da->da_synced = 0;
3936 __dev_addr_delete(from, from_count,
3937 da->da_addr, da->da_addrlen, 0);
3938 }
3939 da = next;
3940 }
3941 }
3942
3943 /**
3944 * dev_unicast_sync - Synchronize device's unicast list to another device
3945 * @to: destination device
3946 * @from: source device
3947 *
3948 * Add newly added addresses to the destination device and release
3949 * addresses that have no users left.
3950 *
3951 * This function is intended to be called from the dev->set_rx_mode
3952 * function of layered software devices.
3953 */
3954 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3955 {
3956 int err = 0;
3957
3958 ASSERT_RTNL();
3959
3960 if (to->addr_len != from->addr_len)
3961 return -EINVAL;
3962
3963 err = __hw_addr_sync(&to->uc_list, &to->uc_count,
3964 &from->uc_list, &from->uc_count, to->addr_len);
3965 if (!err)
3966 __dev_set_rx_mode(to);
3967 return err;
3968 }
3969 EXPORT_SYMBOL(dev_unicast_sync);
3970
3971 /**
3972 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3973 * @to: destination device
3974 * @from: source device
3975 *
3976 * Remove all addresses that were added to the destination device by
3977 * dev_unicast_sync(). This function is intended to be called from the
3978 * dev->stop function of layered software devices.
3979 */
3980 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3981 {
3982 ASSERT_RTNL();
3983
3984 if (to->addr_len != from->addr_len)
3985 return;
3986
3987 __hw_addr_unsync(&to->uc_list, &to->uc_count,
3988 &from->uc_list, &from->uc_count, to->addr_len);
3989 __dev_set_rx_mode(to);
3990 }
3991 EXPORT_SYMBOL(dev_unicast_unsync);
3992
3993 static void dev_unicast_flush(struct net_device *dev)
3994 {
3995 /* rtnl_mutex must be held here */
3996
3997 __hw_addr_flush(&dev->uc_list);
3998 dev->uc_count = 0;
3999 }
4000
4001 static void dev_unicast_init(struct net_device *dev)
4002 {
4003 /* rtnl_mutex must be held here */
4004
4005 INIT_LIST_HEAD(&dev->uc_list);
4006 }
4007
4008
4009 static void __dev_addr_discard(struct dev_addr_list **list)
4010 {
4011 struct dev_addr_list *tmp;
4012
4013 while (*list != NULL) {
4014 tmp = *list;
4015 *list = tmp->next;
4016 if (tmp->da_users > tmp->da_gusers)
4017 printk("__dev_addr_discard: address leakage! "
4018 "da_users=%d\n", tmp->da_users);
4019 kfree(tmp);
4020 }
4021 }
4022
4023 static void dev_addr_discard(struct net_device *dev)
4024 {
4025 netif_addr_lock_bh(dev);
4026
4027 __dev_addr_discard(&dev->mc_list);
4028 dev->mc_count = 0;
4029
4030 netif_addr_unlock_bh(dev);
4031 }
4032
4033 /**
4034 * dev_get_flags - get flags reported to userspace
4035 * @dev: device
4036 *
4037 * Get the combination of flag bits exported through APIs to userspace.
4038 */
4039 unsigned dev_get_flags(const struct net_device *dev)
4040 {
4041 unsigned flags;
4042
4043 flags = (dev->flags & ~(IFF_PROMISC |
4044 IFF_ALLMULTI |
4045 IFF_RUNNING |
4046 IFF_LOWER_UP |
4047 IFF_DORMANT)) |
4048 (dev->gflags & (IFF_PROMISC |
4049 IFF_ALLMULTI));
4050
4051 if (netif_running(dev)) {
4052 if (netif_oper_up(dev))
4053 flags |= IFF_RUNNING;
4054 if (netif_carrier_ok(dev))
4055 flags |= IFF_LOWER_UP;
4056 if (netif_dormant(dev))
4057 flags |= IFF_DORMANT;
4058 }
4059
4060 return flags;
4061 }
4062
4063 /**
4064 * dev_change_flags - change device settings
4065 * @dev: device
4066 * @flags: device state flags
4067 *
4068 * Change settings on device based state flags. The flags are
4069 * in the userspace exported format.
4070 */
4071 int dev_change_flags(struct net_device *dev, unsigned flags)
4072 {
4073 int ret, changes;
4074 int old_flags = dev->flags;
4075
4076 ASSERT_RTNL();
4077
4078 /*
4079 * Set the flags on our device.
4080 */
4081
4082 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4083 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4084 IFF_AUTOMEDIA)) |
4085 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4086 IFF_ALLMULTI));
4087
4088 /*
4089 * Load in the correct multicast list now the flags have changed.
4090 */
4091
4092 if ((old_flags ^ flags) & IFF_MULTICAST)
4093 dev_change_rx_flags(dev, IFF_MULTICAST);
4094
4095 dev_set_rx_mode(dev);
4096
4097 /*
4098 * Have we downed the interface. We handle IFF_UP ourselves
4099 * according to user attempts to set it, rather than blindly
4100 * setting it.
4101 */
4102
4103 ret = 0;
4104 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4105 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4106
4107 if (!ret)
4108 dev_set_rx_mode(dev);
4109 }
4110
4111 if (dev->flags & IFF_UP &&
4112 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4113 IFF_VOLATILE)))
4114 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4115
4116 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4117 int inc = (flags & IFF_PROMISC) ? +1 : -1;
4118 dev->gflags ^= IFF_PROMISC;
4119 dev_set_promiscuity(dev, inc);
4120 }
4121
4122 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4123 is important. Some (broken) drivers set IFF_PROMISC, when
4124 IFF_ALLMULTI is requested not asking us and not reporting.
4125 */
4126 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4127 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
4128 dev->gflags ^= IFF_ALLMULTI;
4129 dev_set_allmulti(dev, inc);
4130 }
4131
4132 /* Exclude state transition flags, already notified */
4133 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4134 if (changes)
4135 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4136
4137 return ret;
4138 }
4139
4140 /**
4141 * dev_set_mtu - Change maximum transfer unit
4142 * @dev: device
4143 * @new_mtu: new transfer unit
4144 *
4145 * Change the maximum transfer size of the network device.
4146 */
4147 int dev_set_mtu(struct net_device *dev, int new_mtu)
4148 {
4149 const struct net_device_ops *ops = dev->netdev_ops;
4150 int err;
4151
4152 if (new_mtu == dev->mtu)
4153 return 0;
4154
4155 /* MTU must be positive. */
4156 if (new_mtu < 0)
4157 return -EINVAL;
4158
4159 if (!netif_device_present(dev))
4160 return -ENODEV;
4161
4162 err = 0;
4163 if (ops->ndo_change_mtu)
4164 err = ops->ndo_change_mtu(dev, new_mtu);
4165 else
4166 dev->mtu = new_mtu;
4167
4168 if (!err && dev->flags & IFF_UP)
4169 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4170 return err;
4171 }
4172
4173 /**
4174 * dev_set_mac_address - Change Media Access Control Address
4175 * @dev: device
4176 * @sa: new address
4177 *
4178 * Change the hardware (MAC) address of the device
4179 */
4180 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4181 {
4182 const struct net_device_ops *ops = dev->netdev_ops;
4183 int err;
4184
4185 if (!ops->ndo_set_mac_address)
4186 return -EOPNOTSUPP;
4187 if (sa->sa_family != dev->type)
4188 return -EINVAL;
4189 if (!netif_device_present(dev))
4190 return -ENODEV;
4191 err = ops->ndo_set_mac_address(dev, sa);
4192 if (!err)
4193 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4194 return err;
4195 }
4196
4197 /*
4198 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
4199 */
4200 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4201 {
4202 int err;
4203 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4204
4205 if (!dev)
4206 return -ENODEV;
4207
4208 switch (cmd) {
4209 case SIOCGIFFLAGS: /* Get interface flags */
4210 ifr->ifr_flags = dev_get_flags(dev);
4211 return 0;
4212
4213 case SIOCGIFMETRIC: /* Get the metric on the interface
4214 (currently unused) */
4215 ifr->ifr_metric = 0;
4216 return 0;
4217
4218 case SIOCGIFMTU: /* Get the MTU of a device */
4219 ifr->ifr_mtu = dev->mtu;
4220 return 0;
4221
4222 case SIOCGIFHWADDR:
4223 if (!dev->addr_len)
4224 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4225 else
4226 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4227 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4228 ifr->ifr_hwaddr.sa_family = dev->type;
4229 return 0;
4230
4231 case SIOCGIFSLAVE:
4232 err = -EINVAL;
4233 break;
4234
4235 case SIOCGIFMAP:
4236 ifr->ifr_map.mem_start = dev->mem_start;
4237 ifr->ifr_map.mem_end = dev->mem_end;
4238 ifr->ifr_map.base_addr = dev->base_addr;
4239 ifr->ifr_map.irq = dev->irq;
4240 ifr->ifr_map.dma = dev->dma;
4241 ifr->ifr_map.port = dev->if_port;
4242 return 0;
4243
4244 case SIOCGIFINDEX:
4245 ifr->ifr_ifindex = dev->ifindex;
4246 return 0;
4247
4248 case SIOCGIFTXQLEN:
4249 ifr->ifr_qlen = dev->tx_queue_len;
4250 return 0;
4251
4252 default:
4253 /* dev_ioctl() should ensure this case
4254 * is never reached
4255 */
4256 WARN_ON(1);
4257 err = -EINVAL;
4258 break;
4259
4260 }
4261 return err;
4262 }
4263
4264 /*
4265 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4266 */
4267 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4268 {
4269 int err;
4270 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4271 const struct net_device_ops *ops;
4272
4273 if (!dev)
4274 return -ENODEV;
4275
4276 ops = dev->netdev_ops;
4277
4278 switch (cmd) {
4279 case SIOCSIFFLAGS: /* Set interface flags */
4280 return dev_change_flags(dev, ifr->ifr_flags);
4281
4282 case SIOCSIFMETRIC: /* Set the metric on the interface
4283 (currently unused) */
4284 return -EOPNOTSUPP;
4285
4286 case SIOCSIFMTU: /* Set the MTU of a device */
4287 return dev_set_mtu(dev, ifr->ifr_mtu);
4288
4289 case SIOCSIFHWADDR:
4290 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4291
4292 case SIOCSIFHWBROADCAST:
4293 if (ifr->ifr_hwaddr.sa_family != dev->type)
4294 return -EINVAL;
4295 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4296 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4297 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4298 return 0;
4299
4300 case SIOCSIFMAP:
4301 if (ops->ndo_set_config) {
4302 if (!netif_device_present(dev))
4303 return -ENODEV;
4304 return ops->ndo_set_config(dev, &ifr->ifr_map);
4305 }
4306 return -EOPNOTSUPP;
4307
4308 case SIOCADDMULTI:
4309 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4310 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4311 return -EINVAL;
4312 if (!netif_device_present(dev))
4313 return -ENODEV;
4314 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4315 dev->addr_len, 1);
4316
4317 case SIOCDELMULTI:
4318 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4319 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4320 return -EINVAL;
4321 if (!netif_device_present(dev))
4322 return -ENODEV;
4323 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4324 dev->addr_len, 1);
4325
4326 case SIOCSIFTXQLEN:
4327 if (ifr->ifr_qlen < 0)
4328 return -EINVAL;
4329 dev->tx_queue_len = ifr->ifr_qlen;
4330 return 0;
4331
4332 case SIOCSIFNAME:
4333 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4334 return dev_change_name(dev, ifr->ifr_newname);
4335
4336 /*
4337 * Unknown or private ioctl
4338 */
4339
4340 default:
4341 if ((cmd >= SIOCDEVPRIVATE &&
4342 cmd <= SIOCDEVPRIVATE + 15) ||
4343 cmd == SIOCBONDENSLAVE ||
4344 cmd == SIOCBONDRELEASE ||
4345 cmd == SIOCBONDSETHWADDR ||
4346 cmd == SIOCBONDSLAVEINFOQUERY ||
4347 cmd == SIOCBONDINFOQUERY ||
4348 cmd == SIOCBONDCHANGEACTIVE ||
4349 cmd == SIOCGMIIPHY ||
4350 cmd == SIOCGMIIREG ||
4351 cmd == SIOCSMIIREG ||
4352 cmd == SIOCBRADDIF ||
4353 cmd == SIOCBRDELIF ||
4354 cmd == SIOCSHWTSTAMP ||
4355 cmd == SIOCWANDEV) {
4356 err = -EOPNOTSUPP;
4357 if (ops->ndo_do_ioctl) {
4358 if (netif_device_present(dev))
4359 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4360 else
4361 err = -ENODEV;
4362 }
4363 } else
4364 err = -EINVAL;
4365
4366 }
4367 return err;
4368 }
4369
4370 /*
4371 * This function handles all "interface"-type I/O control requests. The actual
4372 * 'doing' part of this is dev_ifsioc above.
4373 */
4374
4375 /**
4376 * dev_ioctl - network device ioctl
4377 * @net: the applicable net namespace
4378 * @cmd: command to issue
4379 * @arg: pointer to a struct ifreq in user space
4380 *
4381 * Issue ioctl functions to devices. This is normally called by the
4382 * user space syscall interfaces but can sometimes be useful for
4383 * other purposes. The return value is the return from the syscall if
4384 * positive or a negative errno code on error.
4385 */
4386
4387 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4388 {
4389 struct ifreq ifr;
4390 int ret;
4391 char *colon;
4392
4393 /* One special case: SIOCGIFCONF takes ifconf argument
4394 and requires shared lock, because it sleeps writing
4395 to user space.
4396 */
4397
4398 if (cmd == SIOCGIFCONF) {
4399 rtnl_lock();
4400 ret = dev_ifconf(net, (char __user *) arg);
4401 rtnl_unlock();
4402 return ret;
4403 }
4404 if (cmd == SIOCGIFNAME)
4405 return dev_ifname(net, (struct ifreq __user *)arg);
4406
4407 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4408 return -EFAULT;
4409
4410 ifr.ifr_name[IFNAMSIZ-1] = 0;
4411
4412 colon = strchr(ifr.ifr_name, ':');
4413 if (colon)
4414 *colon = 0;
4415
4416 /*
4417 * See which interface the caller is talking about.
4418 */
4419
4420 switch (cmd) {
4421 /*
4422 * These ioctl calls:
4423 * - can be done by all.
4424 * - atomic and do not require locking.
4425 * - return a value
4426 */
4427 case SIOCGIFFLAGS:
4428 case SIOCGIFMETRIC:
4429 case SIOCGIFMTU:
4430 case SIOCGIFHWADDR:
4431 case SIOCGIFSLAVE:
4432 case SIOCGIFMAP:
4433 case SIOCGIFINDEX:
4434 case SIOCGIFTXQLEN:
4435 dev_load(net, ifr.ifr_name);
4436 read_lock(&dev_base_lock);
4437 ret = dev_ifsioc_locked(net, &ifr, cmd);
4438 read_unlock(&dev_base_lock);
4439 if (!ret) {
4440 if (colon)
4441 *colon = ':';
4442 if (copy_to_user(arg, &ifr,
4443 sizeof(struct ifreq)))
4444 ret = -EFAULT;
4445 }
4446 return ret;
4447
4448 case SIOCETHTOOL:
4449 dev_load(net, ifr.ifr_name);
4450 rtnl_lock();
4451 ret = dev_ethtool(net, &ifr);
4452 rtnl_unlock();
4453 if (!ret) {
4454 if (colon)
4455 *colon = ':';
4456 if (copy_to_user(arg, &ifr,
4457 sizeof(struct ifreq)))
4458 ret = -EFAULT;
4459 }
4460 return ret;
4461
4462 /*
4463 * These ioctl calls:
4464 * - require superuser power.
4465 * - require strict serialization.
4466 * - return a value
4467 */
4468 case SIOCGMIIPHY:
4469 case SIOCGMIIREG:
4470 case SIOCSIFNAME:
4471 if (!capable(CAP_NET_ADMIN))
4472 return -EPERM;
4473 dev_load(net, ifr.ifr_name);
4474 rtnl_lock();
4475 ret = dev_ifsioc(net, &ifr, cmd);
4476 rtnl_unlock();
4477 if (!ret) {
4478 if (colon)
4479 *colon = ':';
4480 if (copy_to_user(arg, &ifr,
4481 sizeof(struct ifreq)))
4482 ret = -EFAULT;
4483 }
4484 return ret;
4485
4486 /*
4487 * These ioctl calls:
4488 * - require superuser power.
4489 * - require strict serialization.
4490 * - do not return a value
4491 */
4492 case SIOCSIFFLAGS:
4493 case SIOCSIFMETRIC:
4494 case SIOCSIFMTU:
4495 case SIOCSIFMAP:
4496 case SIOCSIFHWADDR:
4497 case SIOCSIFSLAVE:
4498 case SIOCADDMULTI:
4499 case SIOCDELMULTI:
4500 case SIOCSIFHWBROADCAST:
4501 case SIOCSIFTXQLEN:
4502 case SIOCSMIIREG:
4503 case SIOCBONDENSLAVE:
4504 case SIOCBONDRELEASE:
4505 case SIOCBONDSETHWADDR:
4506 case SIOCBONDCHANGEACTIVE:
4507 case SIOCBRADDIF:
4508 case SIOCBRDELIF:
4509 case SIOCSHWTSTAMP:
4510 if (!capable(CAP_NET_ADMIN))
4511 return -EPERM;
4512 /* fall through */
4513 case SIOCBONDSLAVEINFOQUERY:
4514 case SIOCBONDINFOQUERY:
4515 dev_load(net, ifr.ifr_name);
4516 rtnl_lock();
4517 ret = dev_ifsioc(net, &ifr, cmd);
4518 rtnl_unlock();
4519 return ret;
4520
4521 case SIOCGIFMEM:
4522 /* Get the per device memory space. We can add this but
4523 * currently do not support it */
4524 case SIOCSIFMEM:
4525 /* Set the per device memory buffer space.
4526 * Not applicable in our case */
4527 case SIOCSIFLINK:
4528 return -EINVAL;
4529
4530 /*
4531 * Unknown or private ioctl.
4532 */
4533 default:
4534 if (cmd == SIOCWANDEV ||
4535 (cmd >= SIOCDEVPRIVATE &&
4536 cmd <= SIOCDEVPRIVATE + 15)) {
4537 dev_load(net, ifr.ifr_name);
4538 rtnl_lock();
4539 ret = dev_ifsioc(net, &ifr, cmd);
4540 rtnl_unlock();
4541 if (!ret && copy_to_user(arg, &ifr,
4542 sizeof(struct ifreq)))
4543 ret = -EFAULT;
4544 return ret;
4545 }
4546 /* Take care of Wireless Extensions */
4547 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4548 return wext_handle_ioctl(net, &ifr, cmd, arg);
4549 return -EINVAL;
4550 }
4551 }
4552
4553
4554 /**
4555 * dev_new_index - allocate an ifindex
4556 * @net: the applicable net namespace
4557 *
4558 * Returns a suitable unique value for a new device interface
4559 * number. The caller must hold the rtnl semaphore or the
4560 * dev_base_lock to be sure it remains unique.
4561 */
4562 static int dev_new_index(struct net *net)
4563 {
4564 static int ifindex;
4565 for (;;) {
4566 if (++ifindex <= 0)
4567 ifindex = 1;
4568 if (!__dev_get_by_index(net, ifindex))
4569 return ifindex;
4570 }
4571 }
4572
4573 /* Delayed registration/unregisteration */
4574 static LIST_HEAD(net_todo_list);
4575
4576 static void net_set_todo(struct net_device *dev)
4577 {
4578 list_add_tail(&dev->todo_list, &net_todo_list);
4579 }
4580
4581 static void rollback_registered(struct net_device *dev)
4582 {
4583 BUG_ON(dev_boot_phase);
4584 ASSERT_RTNL();
4585
4586 /* Some devices call without registering for initialization unwind. */
4587 if (dev->reg_state == NETREG_UNINITIALIZED) {
4588 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4589 "was registered\n", dev->name, dev);
4590
4591 WARN_ON(1);
4592 return;
4593 }
4594
4595 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4596
4597 /* If device is running, close it first. */
4598 dev_close(dev);
4599
4600 /* And unlink it from device chain. */
4601 unlist_netdevice(dev);
4602
4603 dev->reg_state = NETREG_UNREGISTERING;
4604
4605 synchronize_net();
4606
4607 /* Shutdown queueing discipline. */
4608 dev_shutdown(dev);
4609
4610
4611 /* Notify protocols, that we are about to destroy
4612 this device. They should clean all the things.
4613 */
4614 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4615
4616 /*
4617 * Flush the unicast and multicast chains
4618 */
4619 dev_unicast_flush(dev);
4620 dev_addr_discard(dev);
4621
4622 if (dev->netdev_ops->ndo_uninit)
4623 dev->netdev_ops->ndo_uninit(dev);
4624
4625 /* Notifier chain MUST detach us from master device. */
4626 WARN_ON(dev->master);
4627
4628 /* Remove entries from kobject tree */
4629 netdev_unregister_kobject(dev);
4630
4631 synchronize_net();
4632
4633 dev_put(dev);
4634 }
4635
4636 static void __netdev_init_queue_locks_one(struct net_device *dev,
4637 struct netdev_queue *dev_queue,
4638 void *_unused)
4639 {
4640 spin_lock_init(&dev_queue->_xmit_lock);
4641 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4642 dev_queue->xmit_lock_owner = -1;
4643 }
4644
4645 static void netdev_init_queue_locks(struct net_device *dev)
4646 {
4647 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4648 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4649 }
4650
4651 unsigned long netdev_fix_features(unsigned long features, const char *name)
4652 {
4653 /* Fix illegal SG+CSUM combinations. */
4654 if ((features & NETIF_F_SG) &&
4655 !(features & NETIF_F_ALL_CSUM)) {
4656 if (name)
4657 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4658 "checksum feature.\n", name);
4659 features &= ~NETIF_F_SG;
4660 }
4661
4662 /* TSO requires that SG is present as well. */
4663 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4664 if (name)
4665 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4666 "SG feature.\n", name);
4667 features &= ~NETIF_F_TSO;
4668 }
4669
4670 if (features & NETIF_F_UFO) {
4671 if (!(features & NETIF_F_GEN_CSUM)) {
4672 if (name)
4673 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4674 "since no NETIF_F_HW_CSUM feature.\n",
4675 name);
4676 features &= ~NETIF_F_UFO;
4677 }
4678
4679 if (!(features & NETIF_F_SG)) {
4680 if (name)
4681 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4682 "since no NETIF_F_SG feature.\n", name);
4683 features &= ~NETIF_F_UFO;
4684 }
4685 }
4686
4687 return features;
4688 }
4689 EXPORT_SYMBOL(netdev_fix_features);
4690
4691 /**
4692 * register_netdevice - register a network device
4693 * @dev: device to register
4694 *
4695 * Take a completed network device structure and add it to the kernel
4696 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4697 * chain. 0 is returned on success. A negative errno code is returned
4698 * on a failure to set up the device, or if the name is a duplicate.
4699 *
4700 * Callers must hold the rtnl semaphore. You may want
4701 * register_netdev() instead of this.
4702 *
4703 * BUGS:
4704 * The locking appears insufficient to guarantee two parallel registers
4705 * will not get the same name.
4706 */
4707
4708 int register_netdevice(struct net_device *dev)
4709 {
4710 struct hlist_head *head;
4711 struct hlist_node *p;
4712 int ret;
4713 struct net *net = dev_net(dev);
4714
4715 BUG_ON(dev_boot_phase);
4716 ASSERT_RTNL();
4717
4718 might_sleep();
4719
4720 /* When net_device's are persistent, this will be fatal. */
4721 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4722 BUG_ON(!net);
4723
4724 spin_lock_init(&dev->addr_list_lock);
4725 netdev_set_addr_lockdep_class(dev);
4726 netdev_init_queue_locks(dev);
4727
4728 dev->iflink = -1;
4729
4730 /* Init, if this function is available */
4731 if (dev->netdev_ops->ndo_init) {
4732 ret = dev->netdev_ops->ndo_init(dev);
4733 if (ret) {
4734 if (ret > 0)
4735 ret = -EIO;
4736 goto out;
4737 }
4738 }
4739
4740 if (!dev_valid_name(dev->name)) {
4741 ret = -EINVAL;
4742 goto err_uninit;
4743 }
4744
4745 dev->ifindex = dev_new_index(net);
4746 if (dev->iflink == -1)
4747 dev->iflink = dev->ifindex;
4748
4749 /* Check for existence of name */
4750 head = dev_name_hash(net, dev->name);
4751 hlist_for_each(p, head) {
4752 struct net_device *d
4753 = hlist_entry(p, struct net_device, name_hlist);
4754 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4755 ret = -EEXIST;
4756 goto err_uninit;
4757 }
4758 }
4759
4760 /* Fix illegal checksum combinations */
4761 if ((dev->features & NETIF_F_HW_CSUM) &&
4762 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4763 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4764 dev->name);
4765 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4766 }
4767
4768 if ((dev->features & NETIF_F_NO_CSUM) &&
4769 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4770 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4771 dev->name);
4772 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4773 }
4774
4775 dev->features = netdev_fix_features(dev->features, dev->name);
4776
4777 /* Enable software GSO if SG is supported. */
4778 if (dev->features & NETIF_F_SG)
4779 dev->features |= NETIF_F_GSO;
4780
4781 netdev_initialize_kobject(dev);
4782 ret = netdev_register_kobject(dev);
4783 if (ret)
4784 goto err_uninit;
4785 dev->reg_state = NETREG_REGISTERED;
4786
4787 /*
4788 * Default initial state at registry is that the
4789 * device is present.
4790 */
4791
4792 set_bit(__LINK_STATE_PRESENT, &dev->state);
4793
4794 dev_init_scheduler(dev);
4795 dev_hold(dev);
4796 list_netdevice(dev);
4797
4798 /* Notify protocols, that a new device appeared. */
4799 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4800 ret = notifier_to_errno(ret);
4801 if (ret) {
4802 rollback_registered(dev);
4803 dev->reg_state = NETREG_UNREGISTERED;
4804 }
4805
4806 out:
4807 return ret;
4808
4809 err_uninit:
4810 if (dev->netdev_ops->ndo_uninit)
4811 dev->netdev_ops->ndo_uninit(dev);
4812 goto out;
4813 }
4814
4815 /**
4816 * init_dummy_netdev - init a dummy network device for NAPI
4817 * @dev: device to init
4818 *
4819 * This takes a network device structure and initialize the minimum
4820 * amount of fields so it can be used to schedule NAPI polls without
4821 * registering a full blown interface. This is to be used by drivers
4822 * that need to tie several hardware interfaces to a single NAPI
4823 * poll scheduler due to HW limitations.
4824 */
4825 int init_dummy_netdev(struct net_device *dev)
4826 {
4827 /* Clear everything. Note we don't initialize spinlocks
4828 * are they aren't supposed to be taken by any of the
4829 * NAPI code and this dummy netdev is supposed to be
4830 * only ever used for NAPI polls
4831 */
4832 memset(dev, 0, sizeof(struct net_device));
4833
4834 /* make sure we BUG if trying to hit standard
4835 * register/unregister code path
4836 */
4837 dev->reg_state = NETREG_DUMMY;
4838
4839 /* initialize the ref count */
4840 atomic_set(&dev->refcnt, 1);
4841
4842 /* NAPI wants this */
4843 INIT_LIST_HEAD(&dev->napi_list);
4844
4845 /* a dummy interface is started by default */
4846 set_bit(__LINK_STATE_PRESENT, &dev->state);
4847 set_bit(__LINK_STATE_START, &dev->state);
4848
4849 return 0;
4850 }
4851 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4852
4853
4854 /**
4855 * register_netdev - register a network device
4856 * @dev: device to register
4857 *
4858 * Take a completed network device structure and add it to the kernel
4859 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4860 * chain. 0 is returned on success. A negative errno code is returned
4861 * on a failure to set up the device, or if the name is a duplicate.
4862 *
4863 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4864 * and expands the device name if you passed a format string to
4865 * alloc_netdev.
4866 */
4867 int register_netdev(struct net_device *dev)
4868 {
4869 int err;
4870
4871 rtnl_lock();
4872
4873 /*
4874 * If the name is a format string the caller wants us to do a
4875 * name allocation.
4876 */
4877 if (strchr(dev->name, '%')) {
4878 err = dev_alloc_name(dev, dev->name);
4879 if (err < 0)
4880 goto out;
4881 }
4882
4883 err = register_netdevice(dev);
4884 out:
4885 rtnl_unlock();
4886 return err;
4887 }
4888 EXPORT_SYMBOL(register_netdev);
4889
4890 /*
4891 * netdev_wait_allrefs - wait until all references are gone.
4892 *
4893 * This is called when unregistering network devices.
4894 *
4895 * Any protocol or device that holds a reference should register
4896 * for netdevice notification, and cleanup and put back the
4897 * reference if they receive an UNREGISTER event.
4898 * We can get stuck here if buggy protocols don't correctly
4899 * call dev_put.
4900 */
4901 static void netdev_wait_allrefs(struct net_device *dev)
4902 {
4903 unsigned long rebroadcast_time, warning_time;
4904
4905 rebroadcast_time = warning_time = jiffies;
4906 while (atomic_read(&dev->refcnt) != 0) {
4907 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4908 rtnl_lock();
4909
4910 /* Rebroadcast unregister notification */
4911 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4912
4913 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4914 &dev->state)) {
4915 /* We must not have linkwatch events
4916 * pending on unregister. If this
4917 * happens, we simply run the queue
4918 * unscheduled, resulting in a noop
4919 * for this device.
4920 */
4921 linkwatch_run_queue();
4922 }
4923
4924 __rtnl_unlock();
4925
4926 rebroadcast_time = jiffies;
4927 }
4928
4929 msleep(250);
4930
4931 if (time_after(jiffies, warning_time + 10 * HZ)) {
4932 printk(KERN_EMERG "unregister_netdevice: "
4933 "waiting for %s to become free. Usage "
4934 "count = %d\n",
4935 dev->name, atomic_read(&dev->refcnt));
4936 warning_time = jiffies;
4937 }
4938 }
4939 }
4940
4941 /* The sequence is:
4942 *
4943 * rtnl_lock();
4944 * ...
4945 * register_netdevice(x1);
4946 * register_netdevice(x2);
4947 * ...
4948 * unregister_netdevice(y1);
4949 * unregister_netdevice(y2);
4950 * ...
4951 * rtnl_unlock();
4952 * free_netdev(y1);
4953 * free_netdev(y2);
4954 *
4955 * We are invoked by rtnl_unlock().
4956 * This allows us to deal with problems:
4957 * 1) We can delete sysfs objects which invoke hotplug
4958 * without deadlocking with linkwatch via keventd.
4959 * 2) Since we run with the RTNL semaphore not held, we can sleep
4960 * safely in order to wait for the netdev refcnt to drop to zero.
4961 *
4962 * We must not return until all unregister events added during
4963 * the interval the lock was held have been completed.
4964 */
4965 void netdev_run_todo(void)
4966 {
4967 struct list_head list;
4968
4969 /* Snapshot list, allow later requests */
4970 list_replace_init(&net_todo_list, &list);
4971
4972 __rtnl_unlock();
4973
4974 while (!list_empty(&list)) {
4975 struct net_device *dev
4976 = list_entry(list.next, struct net_device, todo_list);
4977 list_del(&dev->todo_list);
4978
4979 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4980 printk(KERN_ERR "network todo '%s' but state %d\n",
4981 dev->name, dev->reg_state);
4982 dump_stack();
4983 continue;
4984 }
4985
4986 dev->reg_state = NETREG_UNREGISTERED;
4987
4988 on_each_cpu(flush_backlog, dev, 1);
4989
4990 netdev_wait_allrefs(dev);
4991
4992 /* paranoia */
4993 BUG_ON(atomic_read(&dev->refcnt));
4994 WARN_ON(dev->ip_ptr);
4995 WARN_ON(dev->ip6_ptr);
4996 WARN_ON(dev->dn_ptr);
4997
4998 if (dev->destructor)
4999 dev->destructor(dev);
5000
5001 /* Free network device */
5002 kobject_put(&dev->dev.kobj);
5003 }
5004 }
5005
5006 /**
5007 * dev_get_stats - get network device statistics
5008 * @dev: device to get statistics from
5009 *
5010 * Get network statistics from device. The device driver may provide
5011 * its own method by setting dev->netdev_ops->get_stats; otherwise
5012 * the internal statistics structure is used.
5013 */
5014 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5015 {
5016 const struct net_device_ops *ops = dev->netdev_ops;
5017
5018 if (ops->ndo_get_stats)
5019 return ops->ndo_get_stats(dev);
5020 else {
5021 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5022 struct net_device_stats *stats = &dev->stats;
5023 unsigned int i;
5024 struct netdev_queue *txq;
5025
5026 for (i = 0; i < dev->num_tx_queues; i++) {
5027 txq = netdev_get_tx_queue(dev, i);
5028 tx_bytes += txq->tx_bytes;
5029 tx_packets += txq->tx_packets;
5030 tx_dropped += txq->tx_dropped;
5031 }
5032 if (tx_bytes || tx_packets || tx_dropped) {
5033 stats->tx_bytes = tx_bytes;
5034 stats->tx_packets = tx_packets;
5035 stats->tx_dropped = tx_dropped;
5036 }
5037 return stats;
5038 }
5039 }
5040 EXPORT_SYMBOL(dev_get_stats);
5041
5042 static void netdev_init_one_queue(struct net_device *dev,
5043 struct netdev_queue *queue,
5044 void *_unused)
5045 {
5046 queue->dev = dev;
5047 }
5048
5049 static void netdev_init_queues(struct net_device *dev)
5050 {
5051 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5052 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5053 spin_lock_init(&dev->tx_global_lock);
5054 }
5055
5056 /**
5057 * alloc_netdev_mq - allocate network device
5058 * @sizeof_priv: size of private data to allocate space for
5059 * @name: device name format string
5060 * @setup: callback to initialize device
5061 * @queue_count: the number of subqueues to allocate
5062 *
5063 * Allocates a struct net_device with private data area for driver use
5064 * and performs basic initialization. Also allocates subquue structs
5065 * for each queue on the device at the end of the netdevice.
5066 */
5067 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5068 void (*setup)(struct net_device *), unsigned int queue_count)
5069 {
5070 struct netdev_queue *tx;
5071 struct net_device *dev;
5072 size_t alloc_size;
5073 struct net_device *p;
5074
5075 BUG_ON(strlen(name) >= sizeof(dev->name));
5076
5077 alloc_size = sizeof(struct net_device);
5078 if (sizeof_priv) {
5079 /* ensure 32-byte alignment of private area */
5080 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5081 alloc_size += sizeof_priv;
5082 }
5083 /* ensure 32-byte alignment of whole construct */
5084 alloc_size += NETDEV_ALIGN - 1;
5085
5086 p = kzalloc(alloc_size, GFP_KERNEL);
5087 if (!p) {
5088 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5089 return NULL;
5090 }
5091
5092 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5093 if (!tx) {
5094 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5095 "tx qdiscs.\n");
5096 goto free_p;
5097 }
5098
5099 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5100 dev->padded = (char *)dev - (char *)p;
5101
5102 if (dev_addr_init(dev))
5103 goto free_tx;
5104
5105 dev_unicast_init(dev);
5106
5107 dev_net_set(dev, &init_net);
5108
5109 dev->_tx = tx;
5110 dev->num_tx_queues = queue_count;
5111 dev->real_num_tx_queues = queue_count;
5112
5113 dev->gso_max_size = GSO_MAX_SIZE;
5114
5115 netdev_init_queues(dev);
5116
5117 INIT_LIST_HEAD(&dev->napi_list);
5118 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5119 setup(dev);
5120 strcpy(dev->name, name);
5121 return dev;
5122
5123 free_tx:
5124 kfree(tx);
5125
5126 free_p:
5127 kfree(p);
5128 return NULL;
5129 }
5130 EXPORT_SYMBOL(alloc_netdev_mq);
5131
5132 /**
5133 * free_netdev - free network device
5134 * @dev: device
5135 *
5136 * This function does the last stage of destroying an allocated device
5137 * interface. The reference to the device object is released.
5138 * If this is the last reference then it will be freed.
5139 */
5140 void free_netdev(struct net_device *dev)
5141 {
5142 struct napi_struct *p, *n;
5143
5144 release_net(dev_net(dev));
5145
5146 kfree(dev->_tx);
5147
5148 /* Flush device addresses */
5149 dev_addr_flush(dev);
5150
5151 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5152 netif_napi_del(p);
5153
5154 /* Compatibility with error handling in drivers */
5155 if (dev->reg_state == NETREG_UNINITIALIZED) {
5156 kfree((char *)dev - dev->padded);
5157 return;
5158 }
5159
5160 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5161 dev->reg_state = NETREG_RELEASED;
5162
5163 /* will free via device release */
5164 put_device(&dev->dev);
5165 }
5166
5167 /**
5168 * synchronize_net - Synchronize with packet receive processing
5169 *
5170 * Wait for packets currently being received to be done.
5171 * Does not block later packets from starting.
5172 */
5173 void synchronize_net(void)
5174 {
5175 might_sleep();
5176 synchronize_rcu();
5177 }
5178
5179 /**
5180 * unregister_netdevice - remove device from the kernel
5181 * @dev: device
5182 *
5183 * This function shuts down a device interface and removes it
5184 * from the kernel tables.
5185 *
5186 * Callers must hold the rtnl semaphore. You may want
5187 * unregister_netdev() instead of this.
5188 */
5189
5190 void unregister_netdevice(struct net_device *dev)
5191 {
5192 ASSERT_RTNL();
5193
5194 rollback_registered(dev);
5195 /* Finish processing unregister after unlock */
5196 net_set_todo(dev);
5197 }
5198
5199 /**
5200 * unregister_netdev - remove device from the kernel
5201 * @dev: device
5202 *
5203 * This function shuts down a device interface and removes it
5204 * from the kernel tables.
5205 *
5206 * This is just a wrapper for unregister_netdevice that takes
5207 * the rtnl semaphore. In general you want to use this and not
5208 * unregister_netdevice.
5209 */
5210 void unregister_netdev(struct net_device *dev)
5211 {
5212 rtnl_lock();
5213 unregister_netdevice(dev);
5214 rtnl_unlock();
5215 }
5216
5217 EXPORT_SYMBOL(unregister_netdev);
5218
5219 /**
5220 * dev_change_net_namespace - move device to different nethost namespace
5221 * @dev: device
5222 * @net: network namespace
5223 * @pat: If not NULL name pattern to try if the current device name
5224 * is already taken in the destination network namespace.
5225 *
5226 * This function shuts down a device interface and moves it
5227 * to a new network namespace. On success 0 is returned, on
5228 * a failure a netagive errno code is returned.
5229 *
5230 * Callers must hold the rtnl semaphore.
5231 */
5232
5233 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5234 {
5235 char buf[IFNAMSIZ];
5236 const char *destname;
5237 int err;
5238
5239 ASSERT_RTNL();
5240
5241 /* Don't allow namespace local devices to be moved. */
5242 err = -EINVAL;
5243 if (dev->features & NETIF_F_NETNS_LOCAL)
5244 goto out;
5245
5246 #ifdef CONFIG_SYSFS
5247 /* Don't allow real devices to be moved when sysfs
5248 * is enabled.
5249 */
5250 err = -EINVAL;
5251 if (dev->dev.parent)
5252 goto out;
5253 #endif
5254
5255 /* Ensure the device has been registrered */
5256 err = -EINVAL;
5257 if (dev->reg_state != NETREG_REGISTERED)
5258 goto out;
5259
5260 /* Get out if there is nothing todo */
5261 err = 0;
5262 if (net_eq(dev_net(dev), net))
5263 goto out;
5264
5265 /* Pick the destination device name, and ensure
5266 * we can use it in the destination network namespace.
5267 */
5268 err = -EEXIST;
5269 destname = dev->name;
5270 if (__dev_get_by_name(net, destname)) {
5271 /* We get here if we can't use the current device name */
5272 if (!pat)
5273 goto out;
5274 if (!dev_valid_name(pat))
5275 goto out;
5276 if (strchr(pat, '%')) {
5277 if (__dev_alloc_name(net, pat, buf) < 0)
5278 goto out;
5279 destname = buf;
5280 } else
5281 destname = pat;
5282 if (__dev_get_by_name(net, destname))
5283 goto out;
5284 }
5285
5286 /*
5287 * And now a mini version of register_netdevice unregister_netdevice.
5288 */
5289
5290 /* If device is running close it first. */
5291 dev_close(dev);
5292
5293 /* And unlink it from device chain */
5294 err = -ENODEV;
5295 unlist_netdevice(dev);
5296
5297 synchronize_net();
5298
5299 /* Shutdown queueing discipline. */
5300 dev_shutdown(dev);
5301
5302 /* Notify protocols, that we are about to destroy
5303 this device. They should clean all the things.
5304 */
5305 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5306
5307 /*
5308 * Flush the unicast and multicast chains
5309 */
5310 dev_unicast_flush(dev);
5311 dev_addr_discard(dev);
5312
5313 netdev_unregister_kobject(dev);
5314
5315 /* Actually switch the network namespace */
5316 dev_net_set(dev, net);
5317
5318 /* Assign the new device name */
5319 if (destname != dev->name)
5320 strcpy(dev->name, destname);
5321
5322 /* If there is an ifindex conflict assign a new one */
5323 if (__dev_get_by_index(net, dev->ifindex)) {
5324 int iflink = (dev->iflink == dev->ifindex);
5325 dev->ifindex = dev_new_index(net);
5326 if (iflink)
5327 dev->iflink = dev->ifindex;
5328 }
5329
5330 /* Fixup kobjects */
5331 err = netdev_register_kobject(dev);
5332 WARN_ON(err);
5333
5334 /* Add the device back in the hashes */
5335 list_netdevice(dev);
5336
5337 /* Notify protocols, that a new device appeared. */
5338 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5339
5340 synchronize_net();
5341 err = 0;
5342 out:
5343 return err;
5344 }
5345
5346 static int dev_cpu_callback(struct notifier_block *nfb,
5347 unsigned long action,
5348 void *ocpu)
5349 {
5350 struct sk_buff **list_skb;
5351 struct Qdisc **list_net;
5352 struct sk_buff *skb;
5353 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5354 struct softnet_data *sd, *oldsd;
5355
5356 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5357 return NOTIFY_OK;
5358
5359 local_irq_disable();
5360 cpu = smp_processor_id();
5361 sd = &per_cpu(softnet_data, cpu);
5362 oldsd = &per_cpu(softnet_data, oldcpu);
5363
5364 /* Find end of our completion_queue. */
5365 list_skb = &sd->completion_queue;
5366 while (*list_skb)
5367 list_skb = &(*list_skb)->next;
5368 /* Append completion queue from offline CPU. */
5369 *list_skb = oldsd->completion_queue;
5370 oldsd->completion_queue = NULL;
5371
5372 /* Find end of our output_queue. */
5373 list_net = &sd->output_queue;
5374 while (*list_net)
5375 list_net = &(*list_net)->next_sched;
5376 /* Append output queue from offline CPU. */
5377 *list_net = oldsd->output_queue;
5378 oldsd->output_queue = NULL;
5379
5380 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5381 local_irq_enable();
5382
5383 /* Process offline CPU's input_pkt_queue */
5384 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5385 netif_rx(skb);
5386
5387 return NOTIFY_OK;
5388 }
5389
5390
5391 /**
5392 * netdev_increment_features - increment feature set by one
5393 * @all: current feature set
5394 * @one: new feature set
5395 * @mask: mask feature set
5396 *
5397 * Computes a new feature set after adding a device with feature set
5398 * @one to the master device with current feature set @all. Will not
5399 * enable anything that is off in @mask. Returns the new feature set.
5400 */
5401 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5402 unsigned long mask)
5403 {
5404 /* If device needs checksumming, downgrade to it. */
5405 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5406 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5407 else if (mask & NETIF_F_ALL_CSUM) {
5408 /* If one device supports v4/v6 checksumming, set for all. */
5409 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5410 !(all & NETIF_F_GEN_CSUM)) {
5411 all &= ~NETIF_F_ALL_CSUM;
5412 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5413 }
5414
5415 /* If one device supports hw checksumming, set for all. */
5416 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5417 all &= ~NETIF_F_ALL_CSUM;
5418 all |= NETIF_F_HW_CSUM;
5419 }
5420 }
5421
5422 one |= NETIF_F_ALL_CSUM;
5423
5424 one |= all & NETIF_F_ONE_FOR_ALL;
5425 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5426 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5427
5428 return all;
5429 }
5430 EXPORT_SYMBOL(netdev_increment_features);
5431
5432 static struct hlist_head *netdev_create_hash(void)
5433 {
5434 int i;
5435 struct hlist_head *hash;
5436
5437 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5438 if (hash != NULL)
5439 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5440 INIT_HLIST_HEAD(&hash[i]);
5441
5442 return hash;
5443 }
5444
5445 /* Initialize per network namespace state */
5446 static int __net_init netdev_init(struct net *net)
5447 {
5448 INIT_LIST_HEAD(&net->dev_base_head);
5449
5450 net->dev_name_head = netdev_create_hash();
5451 if (net->dev_name_head == NULL)
5452 goto err_name;
5453
5454 net->dev_index_head = netdev_create_hash();
5455 if (net->dev_index_head == NULL)
5456 goto err_idx;
5457
5458 return 0;
5459
5460 err_idx:
5461 kfree(net->dev_name_head);
5462 err_name:
5463 return -ENOMEM;
5464 }
5465
5466 /**
5467 * netdev_drivername - network driver for the device
5468 * @dev: network device
5469 * @buffer: buffer for resulting name
5470 * @len: size of buffer
5471 *
5472 * Determine network driver for device.
5473 */
5474 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5475 {
5476 const struct device_driver *driver;
5477 const struct device *parent;
5478
5479 if (len <= 0 || !buffer)
5480 return buffer;
5481 buffer[0] = 0;
5482
5483 parent = dev->dev.parent;
5484
5485 if (!parent)
5486 return buffer;
5487
5488 driver = parent->driver;
5489 if (driver && driver->name)
5490 strlcpy(buffer, driver->name, len);
5491 return buffer;
5492 }
5493
5494 static void __net_exit netdev_exit(struct net *net)
5495 {
5496 kfree(net->dev_name_head);
5497 kfree(net->dev_index_head);
5498 }
5499
5500 static struct pernet_operations __net_initdata netdev_net_ops = {
5501 .init = netdev_init,
5502 .exit = netdev_exit,
5503 };
5504
5505 static void __net_exit default_device_exit(struct net *net)
5506 {
5507 struct net_device *dev;
5508 /*
5509 * Push all migratable of the network devices back to the
5510 * initial network namespace
5511 */
5512 rtnl_lock();
5513 restart:
5514 for_each_netdev(net, dev) {
5515 int err;
5516 char fb_name[IFNAMSIZ];
5517
5518 /* Ignore unmoveable devices (i.e. loopback) */
5519 if (dev->features & NETIF_F_NETNS_LOCAL)
5520 continue;
5521
5522 /* Delete virtual devices */
5523 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5524 dev->rtnl_link_ops->dellink(dev);
5525 goto restart;
5526 }
5527
5528 /* Push remaing network devices to init_net */
5529 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5530 err = dev_change_net_namespace(dev, &init_net, fb_name);
5531 if (err) {
5532 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5533 __func__, dev->name, err);
5534 BUG();
5535 }
5536 goto restart;
5537 }
5538 rtnl_unlock();
5539 }
5540
5541 static struct pernet_operations __net_initdata default_device_ops = {
5542 .exit = default_device_exit,
5543 };
5544
5545 /*
5546 * Initialize the DEV module. At boot time this walks the device list and
5547 * unhooks any devices that fail to initialise (normally hardware not
5548 * present) and leaves us with a valid list of present and active devices.
5549 *
5550 */
5551
5552 /*
5553 * This is called single threaded during boot, so no need
5554 * to take the rtnl semaphore.
5555 */
5556 static int __init net_dev_init(void)
5557 {
5558 int i, rc = -ENOMEM;
5559
5560 BUG_ON(!dev_boot_phase);
5561
5562 if (dev_proc_init())
5563 goto out;
5564
5565 if (netdev_kobject_init())
5566 goto out;
5567
5568 INIT_LIST_HEAD(&ptype_all);
5569 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5570 INIT_LIST_HEAD(&ptype_base[i]);
5571
5572 if (register_pernet_subsys(&netdev_net_ops))
5573 goto out;
5574
5575 /*
5576 * Initialise the packet receive queues.
5577 */
5578
5579 for_each_possible_cpu(i) {
5580 struct softnet_data *queue;
5581
5582 queue = &per_cpu(softnet_data, i);
5583 skb_queue_head_init(&queue->input_pkt_queue);
5584 queue->completion_queue = NULL;
5585 INIT_LIST_HEAD(&queue->poll_list);
5586
5587 queue->backlog.poll = process_backlog;
5588 queue->backlog.weight = weight_p;
5589 queue->backlog.gro_list = NULL;
5590 queue->backlog.gro_count = 0;
5591 }
5592
5593 dev_boot_phase = 0;
5594
5595 /* The loopback device is special if any other network devices
5596 * is present in a network namespace the loopback device must
5597 * be present. Since we now dynamically allocate and free the
5598 * loopback device ensure this invariant is maintained by
5599 * keeping the loopback device as the first device on the
5600 * list of network devices. Ensuring the loopback devices
5601 * is the first device that appears and the last network device
5602 * that disappears.
5603 */
5604 if (register_pernet_device(&loopback_net_ops))
5605 goto out;
5606
5607 if (register_pernet_device(&default_device_ops))
5608 goto out;
5609
5610 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5611 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5612
5613 hotcpu_notifier(dev_cpu_callback, 0);
5614 dst_init();
5615 dev_mcast_init();
5616 rc = 0;
5617 out:
5618 return rc;
5619 }
5620
5621 subsys_initcall(net_dev_init);
5622
5623 static int __init initialize_hashrnd(void)
5624 {
5625 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5626 return 0;
5627 }
5628
5629 late_initcall_sync(initialize_hashrnd);
5630
5631 EXPORT_SYMBOL(__dev_get_by_index);
5632 EXPORT_SYMBOL(__dev_get_by_name);
5633 EXPORT_SYMBOL(__dev_remove_pack);
5634 EXPORT_SYMBOL(dev_valid_name);
5635 EXPORT_SYMBOL(dev_add_pack);
5636 EXPORT_SYMBOL(dev_alloc_name);
5637 EXPORT_SYMBOL(dev_close);
5638 EXPORT_SYMBOL(dev_get_by_flags);
5639 EXPORT_SYMBOL(dev_get_by_index);
5640 EXPORT_SYMBOL(dev_get_by_name);
5641 EXPORT_SYMBOL(dev_open);
5642 EXPORT_SYMBOL(dev_queue_xmit);
5643 EXPORT_SYMBOL(dev_remove_pack);
5644 EXPORT_SYMBOL(dev_set_allmulti);
5645 EXPORT_SYMBOL(dev_set_promiscuity);
5646 EXPORT_SYMBOL(dev_change_flags);
5647 EXPORT_SYMBOL(dev_set_mtu);
5648 EXPORT_SYMBOL(dev_set_mac_address);
5649 EXPORT_SYMBOL(free_netdev);
5650 EXPORT_SYMBOL(netdev_boot_setup_check);
5651 EXPORT_SYMBOL(netdev_set_master);
5652 EXPORT_SYMBOL(netdev_state_change);
5653 EXPORT_SYMBOL(netif_receive_skb);
5654 EXPORT_SYMBOL(netif_rx);
5655 EXPORT_SYMBOL(register_gifconf);
5656 EXPORT_SYMBOL(register_netdevice);
5657 EXPORT_SYMBOL(register_netdevice_notifier);
5658 EXPORT_SYMBOL(skb_checksum_help);
5659 EXPORT_SYMBOL(synchronize_net);
5660 EXPORT_SYMBOL(unregister_netdevice);
5661 EXPORT_SYMBOL(unregister_netdevice_notifier);
5662 EXPORT_SYMBOL(net_enable_timestamp);
5663 EXPORT_SYMBOL(net_disable_timestamp);
5664 EXPORT_SYMBOL(dev_get_flags);
5665
5666 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5667 EXPORT_SYMBOL(br_handle_frame_hook);
5668 EXPORT_SYMBOL(br_fdb_get_hook);
5669 EXPORT_SYMBOL(br_fdb_put_hook);
5670 #endif
5671
5672 EXPORT_SYMBOL(dev_load);
5673
5674 EXPORT_PER_CPU_SYMBOL(softnet_data);