d3668c55b088bc940e1848c4b551cdb6e2626448
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / can / af_can.c
1 /*
2 * af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules)
4 *
5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
24 *
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 *
41 */
42
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64
65 #include "af_can.h"
66
67 static __initconst const char banner[] = KERN_INFO
68 "can: controller area network core (" CAN_VERSION_STRING ")\n";
69
70 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
71 MODULE_LICENSE("Dual BSD/GPL");
72 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
73 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
74
75 MODULE_ALIAS_NETPROTO(PF_CAN);
76
77 static int stats_timer __read_mostly = 1;
78 module_param(stats_timer, int, S_IRUGO);
79 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
80
81 /* receive filters subscribed for 'all' CAN devices */
82 struct dev_rcv_lists can_rx_alldev_list;
83 static DEFINE_SPINLOCK(can_rcvlists_lock);
84
85 static struct kmem_cache *rcv_cache __read_mostly;
86
87 /* table of registered CAN protocols */
88 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
89 static DEFINE_MUTEX(proto_tab_lock);
90
91 struct timer_list can_stattimer; /* timer for statistics update */
92 struct s_stats can_stats; /* packet statistics */
93 struct s_pstats can_pstats; /* receive list statistics */
94
95 /*
96 * af_can socket functions
97 */
98
99 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
100 {
101 struct sock *sk = sock->sk;
102
103 switch (cmd) {
104
105 case SIOCGSTAMP:
106 return sock_get_timestamp(sk, (struct timeval __user *)arg);
107
108 default:
109 return -ENOIOCTLCMD;
110 }
111 }
112 EXPORT_SYMBOL(can_ioctl);
113
114 static void can_sock_destruct(struct sock *sk)
115 {
116 skb_queue_purge(&sk->sk_receive_queue);
117 }
118
119 static const struct can_proto *can_get_proto(int protocol)
120 {
121 const struct can_proto *cp;
122
123 rcu_read_lock();
124 cp = rcu_dereference(proto_tab[protocol]);
125 if (cp && !try_module_get(cp->prot->owner))
126 cp = NULL;
127 rcu_read_unlock();
128
129 return cp;
130 }
131
132 static inline void can_put_proto(const struct can_proto *cp)
133 {
134 module_put(cp->prot->owner);
135 }
136
137 static int can_create(struct net *net, struct socket *sock, int protocol,
138 int kern)
139 {
140 struct sock *sk;
141 const struct can_proto *cp;
142 int err = 0;
143
144 sock->state = SS_UNCONNECTED;
145
146 if (protocol < 0 || protocol >= CAN_NPROTO)
147 return -EINVAL;
148
149 if (!net_eq(net, &init_net))
150 return -EAFNOSUPPORT;
151
152 cp = can_get_proto(protocol);
153
154 #ifdef CONFIG_MODULES
155 if (!cp) {
156 /* try to load protocol module if kernel is modular */
157
158 err = request_module("can-proto-%d", protocol);
159
160 /*
161 * In case of error we only print a message but don't
162 * return the error code immediately. Below we will
163 * return -EPROTONOSUPPORT
164 */
165 if (err)
166 printk_ratelimited(KERN_ERR "can: request_module "
167 "(can-proto-%d) failed.\n", protocol);
168
169 cp = can_get_proto(protocol);
170 }
171 #endif
172
173 /* check for available protocol and correct usage */
174
175 if (!cp)
176 return -EPROTONOSUPPORT;
177
178 if (cp->type != sock->type) {
179 err = -EPROTOTYPE;
180 goto errout;
181 }
182
183 sock->ops = cp->ops;
184
185 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
186 if (!sk) {
187 err = -ENOMEM;
188 goto errout;
189 }
190
191 sock_init_data(sock, sk);
192 sk->sk_destruct = can_sock_destruct;
193
194 if (sk->sk_prot->init)
195 err = sk->sk_prot->init(sk);
196
197 if (err) {
198 /* release sk on errors */
199 sock_orphan(sk);
200 sock_put(sk);
201 }
202
203 errout:
204 can_put_proto(cp);
205 return err;
206 }
207
208 /*
209 * af_can tx path
210 */
211
212 /**
213 * can_send - transmit a CAN frame (optional with local loopback)
214 * @skb: pointer to socket buffer with CAN frame in data section
215 * @loop: loopback for listeners on local CAN sockets (recommended default!)
216 *
217 * Due to the loopback this routine must not be called from hardirq context.
218 *
219 * Return:
220 * 0 on success
221 * -ENETDOWN when the selected interface is down
222 * -ENOBUFS on full driver queue (see net_xmit_errno())
223 * -ENOMEM when local loopback failed at calling skb_clone()
224 * -EPERM when trying to send on a non-CAN interface
225 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU
226 * -EINVAL when the skb->data does not contain a valid CAN frame
227 */
228 int can_send(struct sk_buff *skb, int loop)
229 {
230 struct sk_buff *newskb = NULL;
231 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
232 int err = -EINVAL;
233
234 if (skb->len == CAN_MTU) {
235 skb->protocol = htons(ETH_P_CAN);
236 if (unlikely(cfd->len > CAN_MAX_DLEN))
237 goto inval_skb;
238 } else if (skb->len == CANFD_MTU) {
239 skb->protocol = htons(ETH_P_CANFD);
240 if (unlikely(cfd->len > CANFD_MAX_DLEN))
241 goto inval_skb;
242 } else
243 goto inval_skb;
244
245 /*
246 * Make sure the CAN frame can pass the selected CAN netdevice.
247 * As structs can_frame and canfd_frame are similar, we can provide
248 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
249 */
250 if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
251 err = -EMSGSIZE;
252 goto inval_skb;
253 }
254
255 if (unlikely(skb->dev->type != ARPHRD_CAN)) {
256 err = -EPERM;
257 goto inval_skb;
258 }
259
260 if (unlikely(!(skb->dev->flags & IFF_UP))) {
261 err = -ENETDOWN;
262 goto inval_skb;
263 }
264
265 skb->ip_summed = CHECKSUM_UNNECESSARY;
266
267 skb_reset_mac_header(skb);
268 skb_reset_network_header(skb);
269 skb_reset_transport_header(skb);
270
271 if (loop) {
272 /* local loopback of sent CAN frames */
273
274 /* indication for the CAN driver: do loopback */
275 skb->pkt_type = PACKET_LOOPBACK;
276
277 /*
278 * The reference to the originating sock may be required
279 * by the receiving socket to check whether the frame is
280 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
281 * Therefore we have to ensure that skb->sk remains the
282 * reference to the originating sock by restoring skb->sk
283 * after each skb_clone() or skb_orphan() usage.
284 */
285
286 if (!(skb->dev->flags & IFF_ECHO)) {
287 /*
288 * If the interface is not capable to do loopback
289 * itself, we do it here.
290 */
291 newskb = skb_clone(skb, GFP_ATOMIC);
292 if (!newskb) {
293 kfree_skb(skb);
294 return -ENOMEM;
295 }
296
297 can_skb_set_owner(newskb, skb->sk);
298 newskb->ip_summed = CHECKSUM_UNNECESSARY;
299 newskb->pkt_type = PACKET_BROADCAST;
300 }
301 } else {
302 /* indication for the CAN driver: no loopback required */
303 skb->pkt_type = PACKET_HOST;
304 }
305
306 /* send to netdevice */
307 err = dev_queue_xmit(skb);
308 if (err > 0)
309 err = net_xmit_errno(err);
310
311 if (err) {
312 kfree_skb(newskb);
313 return err;
314 }
315
316 if (newskb)
317 netif_rx_ni(newskb);
318
319 /* update statistics */
320 can_stats.tx_frames++;
321 can_stats.tx_frames_delta++;
322
323 return 0;
324
325 inval_skb:
326 kfree_skb(skb);
327 return err;
328 }
329 EXPORT_SYMBOL(can_send);
330
331 /*
332 * af_can rx path
333 */
334
335 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
336 {
337 if (!dev)
338 return &can_rx_alldev_list;
339 else
340 return (struct dev_rcv_lists *)dev->ml_priv;
341 }
342
343 /**
344 * find_rcv_list - determine optimal filterlist inside device filter struct
345 * @can_id: pointer to CAN identifier of a given can_filter
346 * @mask: pointer to CAN mask of a given can_filter
347 * @d: pointer to the device filter struct
348 *
349 * Description:
350 * Returns the optimal filterlist to reduce the filter handling in the
351 * receive path. This function is called by service functions that need
352 * to register or unregister a can_filter in the filter lists.
353 *
354 * A filter matches in general, when
355 *
356 * <received_can_id> & mask == can_id & mask
357 *
358 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
359 * relevant bits for the filter.
360 *
361 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
362 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
363 * frames there is a special filterlist and a special rx path filter handling.
364 *
365 * Return:
366 * Pointer to optimal filterlist for the given can_id/mask pair.
367 * Constistency checked mask.
368 * Reduced can_id to have a preprocessed filter compare value.
369 */
370 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
371 struct dev_rcv_lists *d)
372 {
373 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
374
375 /* filter for error message frames in extra filterlist */
376 if (*mask & CAN_ERR_FLAG) {
377 /* clear CAN_ERR_FLAG in filter entry */
378 *mask &= CAN_ERR_MASK;
379 return &d->rx[RX_ERR];
380 }
381
382 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
383
384 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
385
386 /* ensure valid values in can_mask for 'SFF only' frame filtering */
387 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
388 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
389
390 /* reduce condition testing at receive time */
391 *can_id &= *mask;
392
393 /* inverse can_id/can_mask filter */
394 if (inv)
395 return &d->rx[RX_INV];
396
397 /* mask == 0 => no condition testing at receive time */
398 if (!(*mask))
399 return &d->rx[RX_ALL];
400
401 /* extra filterlists for the subscription of a single non-RTR can_id */
402 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
403 !(*can_id & CAN_RTR_FLAG)) {
404
405 if (*can_id & CAN_EFF_FLAG) {
406 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
407 /* RFC: a future use-case for hash-tables? */
408 return &d->rx[RX_EFF];
409 }
410 } else {
411 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
412 return &d->rx_sff[*can_id];
413 }
414 }
415
416 /* default: filter via can_id/can_mask */
417 return &d->rx[RX_FIL];
418 }
419
420 /**
421 * can_rx_register - subscribe CAN frames from a specific interface
422 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
423 * @can_id: CAN identifier (see description)
424 * @mask: CAN mask (see description)
425 * @func: callback function on filter match
426 * @data: returned parameter for callback function
427 * @ident: string for calling module indentification
428 *
429 * Description:
430 * Invokes the callback function with the received sk_buff and the given
431 * parameter 'data' on a matching receive filter. A filter matches, when
432 *
433 * <received_can_id> & mask == can_id & mask
434 *
435 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
436 * filter for error message frames (CAN_ERR_FLAG bit set in mask).
437 *
438 * The provided pointer to the sk_buff is guaranteed to be valid as long as
439 * the callback function is running. The callback function must *not* free
440 * the given sk_buff while processing it's task. When the given sk_buff is
441 * needed after the end of the callback function it must be cloned inside
442 * the callback function with skb_clone().
443 *
444 * Return:
445 * 0 on success
446 * -ENOMEM on missing cache mem to create subscription entry
447 * -ENODEV unknown device
448 */
449 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
450 void (*func)(struct sk_buff *, void *), void *data,
451 char *ident)
452 {
453 struct receiver *r;
454 struct hlist_head *rl;
455 struct dev_rcv_lists *d;
456 int err = 0;
457
458 /* insert new receiver (dev,canid,mask) -> (func,data) */
459
460 if (dev && dev->type != ARPHRD_CAN)
461 return -ENODEV;
462
463 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
464 if (!r)
465 return -ENOMEM;
466
467 spin_lock(&can_rcvlists_lock);
468
469 d = find_dev_rcv_lists(dev);
470 if (d) {
471 rl = find_rcv_list(&can_id, &mask, d);
472
473 r->can_id = can_id;
474 r->mask = mask;
475 r->matches = 0;
476 r->func = func;
477 r->data = data;
478 r->ident = ident;
479
480 hlist_add_head_rcu(&r->list, rl);
481 d->entries++;
482
483 can_pstats.rcv_entries++;
484 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
485 can_pstats.rcv_entries_max = can_pstats.rcv_entries;
486 } else {
487 kmem_cache_free(rcv_cache, r);
488 err = -ENODEV;
489 }
490
491 spin_unlock(&can_rcvlists_lock);
492
493 return err;
494 }
495 EXPORT_SYMBOL(can_rx_register);
496
497 /*
498 * can_rx_delete_receiver - rcu callback for single receiver entry removal
499 */
500 static void can_rx_delete_receiver(struct rcu_head *rp)
501 {
502 struct receiver *r = container_of(rp, struct receiver, rcu);
503
504 kmem_cache_free(rcv_cache, r);
505 }
506
507 /**
508 * can_rx_unregister - unsubscribe CAN frames from a specific interface
509 * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
510 * @can_id: CAN identifier
511 * @mask: CAN mask
512 * @func: callback function on filter match
513 * @data: returned parameter for callback function
514 *
515 * Description:
516 * Removes subscription entry depending on given (subscription) values.
517 */
518 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
519 void (*func)(struct sk_buff *, void *), void *data)
520 {
521 struct receiver *r = NULL;
522 struct hlist_head *rl;
523 struct dev_rcv_lists *d;
524
525 if (dev && dev->type != ARPHRD_CAN)
526 return;
527
528 spin_lock(&can_rcvlists_lock);
529
530 d = find_dev_rcv_lists(dev);
531 if (!d) {
532 pr_err("BUG: receive list not found for "
533 "dev %s, id %03X, mask %03X\n",
534 DNAME(dev), can_id, mask);
535 goto out;
536 }
537
538 rl = find_rcv_list(&can_id, &mask, d);
539
540 /*
541 * Search the receiver list for the item to delete. This should
542 * exist, since no receiver may be unregistered that hasn't
543 * been registered before.
544 */
545
546 hlist_for_each_entry_rcu(r, rl, list) {
547 if (r->can_id == can_id && r->mask == mask &&
548 r->func == func && r->data == data)
549 break;
550 }
551
552 /*
553 * Check for bugs in CAN protocol implementations using af_can.c:
554 * 'r' will be NULL if no matching list item was found for removal.
555 */
556
557 if (!r) {
558 WARN(1, "BUG: receive list entry not found for dev %s, "
559 "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
560 goto out;
561 }
562
563 hlist_del_rcu(&r->list);
564 d->entries--;
565
566 if (can_pstats.rcv_entries > 0)
567 can_pstats.rcv_entries--;
568
569 /* remove device structure requested by NETDEV_UNREGISTER */
570 if (d->remove_on_zero_entries && !d->entries) {
571 kfree(d);
572 dev->ml_priv = NULL;
573 }
574
575 out:
576 spin_unlock(&can_rcvlists_lock);
577
578 /* schedule the receiver item for deletion */
579 if (r)
580 call_rcu(&r->rcu, can_rx_delete_receiver);
581 }
582 EXPORT_SYMBOL(can_rx_unregister);
583
584 static inline void deliver(struct sk_buff *skb, struct receiver *r)
585 {
586 r->func(skb, r->data);
587 r->matches++;
588 }
589
590 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
591 {
592 struct receiver *r;
593 int matches = 0;
594 struct can_frame *cf = (struct can_frame *)skb->data;
595 canid_t can_id = cf->can_id;
596
597 if (d->entries == 0)
598 return 0;
599
600 if (can_id & CAN_ERR_FLAG) {
601 /* check for error message frame entries only */
602 hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
603 if (can_id & r->mask) {
604 deliver(skb, r);
605 matches++;
606 }
607 }
608 return matches;
609 }
610
611 /* check for unfiltered entries */
612 hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
613 deliver(skb, r);
614 matches++;
615 }
616
617 /* check for can_id/mask entries */
618 hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
619 if ((can_id & r->mask) == r->can_id) {
620 deliver(skb, r);
621 matches++;
622 }
623 }
624
625 /* check for inverted can_id/mask entries */
626 hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
627 if ((can_id & r->mask) != r->can_id) {
628 deliver(skb, r);
629 matches++;
630 }
631 }
632
633 /* check filterlists for single non-RTR can_ids */
634 if (can_id & CAN_RTR_FLAG)
635 return matches;
636
637 if (can_id & CAN_EFF_FLAG) {
638 hlist_for_each_entry_rcu(r, &d->rx[RX_EFF], list) {
639 if (r->can_id == can_id) {
640 deliver(skb, r);
641 matches++;
642 }
643 }
644 } else {
645 can_id &= CAN_SFF_MASK;
646 hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
647 deliver(skb, r);
648 matches++;
649 }
650 }
651
652 return matches;
653 }
654
655 static void can_receive(struct sk_buff *skb, struct net_device *dev)
656 {
657 struct dev_rcv_lists *d;
658 int matches;
659
660 /* update statistics */
661 can_stats.rx_frames++;
662 can_stats.rx_frames_delta++;
663
664 rcu_read_lock();
665
666 /* deliver the packet to sockets listening on all devices */
667 matches = can_rcv_filter(&can_rx_alldev_list, skb);
668
669 /* find receive list for this device */
670 d = find_dev_rcv_lists(dev);
671 if (d)
672 matches += can_rcv_filter(d, skb);
673
674 rcu_read_unlock();
675
676 /* consume the skbuff allocated by the netdevice driver */
677 consume_skb(skb);
678
679 if (matches > 0) {
680 can_stats.matches++;
681 can_stats.matches_delta++;
682 }
683 }
684
685 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
686 struct packet_type *pt, struct net_device *orig_dev)
687 {
688 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
689
690 if (unlikely(!net_eq(dev_net(dev), &init_net)))
691 goto drop;
692
693 if (WARN_ONCE(dev->type != ARPHRD_CAN ||
694 skb->len != CAN_MTU ||
695 cfd->len > CAN_MAX_DLEN,
696 "PF_CAN: dropped non conform CAN skbuf: "
697 "dev type %d, len %d, datalen %d\n",
698 dev->type, skb->len, cfd->len))
699 goto drop;
700
701 can_receive(skb, dev);
702 return NET_RX_SUCCESS;
703
704 drop:
705 kfree_skb(skb);
706 return NET_RX_DROP;
707 }
708
709 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
710 struct packet_type *pt, struct net_device *orig_dev)
711 {
712 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
713
714 if (unlikely(!net_eq(dev_net(dev), &init_net)))
715 goto drop;
716
717 if (WARN_ONCE(dev->type != ARPHRD_CAN ||
718 skb->len != CANFD_MTU ||
719 cfd->len > CANFD_MAX_DLEN,
720 "PF_CAN: dropped non conform CAN FD skbuf: "
721 "dev type %d, len %d, datalen %d\n",
722 dev->type, skb->len, cfd->len))
723 goto drop;
724
725 can_receive(skb, dev);
726 return NET_RX_SUCCESS;
727
728 drop:
729 kfree_skb(skb);
730 return NET_RX_DROP;
731 }
732
733 /*
734 * af_can protocol functions
735 */
736
737 /**
738 * can_proto_register - register CAN transport protocol
739 * @cp: pointer to CAN protocol structure
740 *
741 * Return:
742 * 0 on success
743 * -EINVAL invalid (out of range) protocol number
744 * -EBUSY protocol already in use
745 * -ENOBUF if proto_register() fails
746 */
747 int can_proto_register(const struct can_proto *cp)
748 {
749 int proto = cp->protocol;
750 int err = 0;
751
752 if (proto < 0 || proto >= CAN_NPROTO) {
753 pr_err("can: protocol number %d out of range\n", proto);
754 return -EINVAL;
755 }
756
757 err = proto_register(cp->prot, 0);
758 if (err < 0)
759 return err;
760
761 mutex_lock(&proto_tab_lock);
762
763 if (proto_tab[proto]) {
764 pr_err("can: protocol %d already registered\n", proto);
765 err = -EBUSY;
766 } else
767 RCU_INIT_POINTER(proto_tab[proto], cp);
768
769 mutex_unlock(&proto_tab_lock);
770
771 if (err < 0)
772 proto_unregister(cp->prot);
773
774 return err;
775 }
776 EXPORT_SYMBOL(can_proto_register);
777
778 /**
779 * can_proto_unregister - unregister CAN transport protocol
780 * @cp: pointer to CAN protocol structure
781 */
782 void can_proto_unregister(const struct can_proto *cp)
783 {
784 int proto = cp->protocol;
785
786 mutex_lock(&proto_tab_lock);
787 BUG_ON(proto_tab[proto] != cp);
788 RCU_INIT_POINTER(proto_tab[proto], NULL);
789 mutex_unlock(&proto_tab_lock);
790
791 synchronize_rcu();
792
793 proto_unregister(cp->prot);
794 }
795 EXPORT_SYMBOL(can_proto_unregister);
796
797 /*
798 * af_can notifier to create/remove CAN netdevice specific structs
799 */
800 static int can_notifier(struct notifier_block *nb, unsigned long msg,
801 void *data)
802 {
803 struct net_device *dev = (struct net_device *)data;
804 struct dev_rcv_lists *d;
805
806 if (!net_eq(dev_net(dev), &init_net))
807 return NOTIFY_DONE;
808
809 if (dev->type != ARPHRD_CAN)
810 return NOTIFY_DONE;
811
812 switch (msg) {
813
814 case NETDEV_REGISTER:
815
816 /* create new dev_rcv_lists for this device */
817 d = kzalloc(sizeof(*d), GFP_KERNEL);
818 if (!d)
819 return NOTIFY_DONE;
820 BUG_ON(dev->ml_priv);
821 dev->ml_priv = d;
822
823 break;
824
825 case NETDEV_UNREGISTER:
826 spin_lock(&can_rcvlists_lock);
827
828 d = dev->ml_priv;
829 if (d) {
830 if (d->entries)
831 d->remove_on_zero_entries = 1;
832 else {
833 kfree(d);
834 dev->ml_priv = NULL;
835 }
836 } else
837 pr_err("can: notifier: receive list not found for dev "
838 "%s\n", dev->name);
839
840 spin_unlock(&can_rcvlists_lock);
841
842 break;
843 }
844
845 return NOTIFY_DONE;
846 }
847
848 /*
849 * af_can module init/exit functions
850 */
851
852 static struct packet_type can_packet __read_mostly = {
853 .type = cpu_to_be16(ETH_P_CAN),
854 .func = can_rcv,
855 };
856
857 static struct packet_type canfd_packet __read_mostly = {
858 .type = cpu_to_be16(ETH_P_CANFD),
859 .func = canfd_rcv,
860 };
861
862 static const struct net_proto_family can_family_ops = {
863 .family = PF_CAN,
864 .create = can_create,
865 .owner = THIS_MODULE,
866 };
867
868 /* notifier block for netdevice event */
869 static struct notifier_block can_netdev_notifier __read_mostly = {
870 .notifier_call = can_notifier,
871 };
872
873 static __init int can_init(void)
874 {
875 /* check for correct padding to be able to use the structs similarly */
876 BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
877 offsetof(struct canfd_frame, len) ||
878 offsetof(struct can_frame, data) !=
879 offsetof(struct canfd_frame, data));
880
881 printk(banner);
882
883 memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list));
884
885 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
886 0, 0, NULL);
887 if (!rcv_cache)
888 return -ENOMEM;
889
890 if (stats_timer) {
891 /* the statistics are updated every second (timer triggered) */
892 setup_timer(&can_stattimer, can_stat_update, 0);
893 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
894 } else
895 can_stattimer.function = NULL;
896
897 can_init_proc();
898
899 /* protocol register */
900 sock_register(&can_family_ops);
901 register_netdevice_notifier(&can_netdev_notifier);
902 dev_add_pack(&can_packet);
903 dev_add_pack(&canfd_packet);
904
905 return 0;
906 }
907
908 static __exit void can_exit(void)
909 {
910 struct net_device *dev;
911
912 if (stats_timer)
913 del_timer_sync(&can_stattimer);
914
915 can_remove_proc();
916
917 /* protocol unregister */
918 dev_remove_pack(&canfd_packet);
919 dev_remove_pack(&can_packet);
920 unregister_netdevice_notifier(&can_netdev_notifier);
921 sock_unregister(PF_CAN);
922
923 /* remove created dev_rcv_lists from still registered CAN devices */
924 rcu_read_lock();
925 for_each_netdev_rcu(&init_net, dev) {
926 if (dev->type == ARPHRD_CAN && dev->ml_priv) {
927
928 struct dev_rcv_lists *d = dev->ml_priv;
929
930 BUG_ON(d->entries);
931 kfree(d);
932 dev->ml_priv = NULL;
933 }
934 }
935 rcu_read_unlock();
936
937 rcu_barrier(); /* Wait for completion of call_rcu()'s */
938
939 kmem_cache_destroy(rcv_cache);
940 }
941
942 module_init(can_init);
943 module_exit(can_exit);