Merge tag 'acpi-fixes-3.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / bluetooth / rfcomm / sock.c
1 /*
2 RFCOMM implementation for Linux Bluetooth stack (BlueZ).
3 Copyright (C) 2002 Maxim Krasnyansky <maxk@qualcomm.com>
4 Copyright (C) 2002 Marcel Holtmann <marcel@holtmann.org>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
9
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
22 */
23
24 /*
25 * RFCOMM sockets.
26 */
27
28 #include <linux/export.h>
29 #include <linux/debugfs.h>
30
31 #include <net/bluetooth/bluetooth.h>
32 #include <net/bluetooth/hci_core.h>
33 #include <net/bluetooth/l2cap.h>
34 #include <net/bluetooth/rfcomm.h>
35
36 static const struct proto_ops rfcomm_sock_ops;
37
38 static struct bt_sock_list rfcomm_sk_list = {
39 .lock = __RW_LOCK_UNLOCKED(rfcomm_sk_list.lock)
40 };
41
42 static void rfcomm_sock_close(struct sock *sk);
43 static void rfcomm_sock_kill(struct sock *sk);
44
45 /* ---- DLC callbacks ----
46 *
47 * called under rfcomm_dlc_lock()
48 */
49 static void rfcomm_sk_data_ready(struct rfcomm_dlc *d, struct sk_buff *skb)
50 {
51 struct sock *sk = d->owner;
52 if (!sk)
53 return;
54
55 atomic_add(skb->len, &sk->sk_rmem_alloc);
56 skb_queue_tail(&sk->sk_receive_queue, skb);
57 sk->sk_data_ready(sk, skb->len);
58
59 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
60 rfcomm_dlc_throttle(d);
61 }
62
63 static void rfcomm_sk_state_change(struct rfcomm_dlc *d, int err)
64 {
65 struct sock *sk = d->owner, *parent;
66 unsigned long flags;
67
68 if (!sk)
69 return;
70
71 BT_DBG("dlc %p state %ld err %d", d, d->state, err);
72
73 local_irq_save(flags);
74 bh_lock_sock(sk);
75
76 if (err)
77 sk->sk_err = err;
78
79 sk->sk_state = d->state;
80
81 parent = bt_sk(sk)->parent;
82 if (parent) {
83 if (d->state == BT_CLOSED) {
84 sock_set_flag(sk, SOCK_ZAPPED);
85 bt_accept_unlink(sk);
86 }
87 parent->sk_data_ready(parent, 0);
88 } else {
89 if (d->state == BT_CONNECTED)
90 rfcomm_session_getaddr(d->session, &bt_sk(sk)->src, NULL);
91 sk->sk_state_change(sk);
92 }
93
94 bh_unlock_sock(sk);
95 local_irq_restore(flags);
96
97 if (parent && sock_flag(sk, SOCK_ZAPPED)) {
98 /* We have to drop DLC lock here, otherwise
99 * rfcomm_sock_destruct() will dead lock. */
100 rfcomm_dlc_unlock(d);
101 rfcomm_sock_kill(sk);
102 rfcomm_dlc_lock(d);
103 }
104 }
105
106 /* ---- Socket functions ---- */
107 static struct sock *__rfcomm_get_sock_by_addr(u8 channel, bdaddr_t *src)
108 {
109 struct sock *sk = NULL;
110
111 sk_for_each(sk, &rfcomm_sk_list.head) {
112 if (rfcomm_pi(sk)->channel == channel &&
113 !bacmp(&bt_sk(sk)->src, src))
114 break;
115 }
116
117 return sk ? sk : NULL;
118 }
119
120 /* Find socket with channel and source bdaddr.
121 * Returns closest match.
122 */
123 static struct sock *rfcomm_get_sock_by_channel(int state, u8 channel, bdaddr_t *src)
124 {
125 struct sock *sk = NULL, *sk1 = NULL;
126
127 read_lock(&rfcomm_sk_list.lock);
128
129 sk_for_each(sk, &rfcomm_sk_list.head) {
130 if (state && sk->sk_state != state)
131 continue;
132
133 if (rfcomm_pi(sk)->channel == channel) {
134 /* Exact match. */
135 if (!bacmp(&bt_sk(sk)->src, src))
136 break;
137
138 /* Closest match */
139 if (!bacmp(&bt_sk(sk)->src, BDADDR_ANY))
140 sk1 = sk;
141 }
142 }
143
144 read_unlock(&rfcomm_sk_list.lock);
145
146 return sk ? sk : sk1;
147 }
148
149 static void rfcomm_sock_destruct(struct sock *sk)
150 {
151 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
152
153 BT_DBG("sk %p dlc %p", sk, d);
154
155 skb_queue_purge(&sk->sk_receive_queue);
156 skb_queue_purge(&sk->sk_write_queue);
157
158 rfcomm_dlc_lock(d);
159 rfcomm_pi(sk)->dlc = NULL;
160
161 /* Detach DLC if it's owned by this socket */
162 if (d->owner == sk)
163 d->owner = NULL;
164 rfcomm_dlc_unlock(d);
165
166 rfcomm_dlc_put(d);
167 }
168
169 static void rfcomm_sock_cleanup_listen(struct sock *parent)
170 {
171 struct sock *sk;
172
173 BT_DBG("parent %p", parent);
174
175 /* Close not yet accepted dlcs */
176 while ((sk = bt_accept_dequeue(parent, NULL))) {
177 rfcomm_sock_close(sk);
178 rfcomm_sock_kill(sk);
179 }
180
181 parent->sk_state = BT_CLOSED;
182 sock_set_flag(parent, SOCK_ZAPPED);
183 }
184
185 /* Kill socket (only if zapped and orphan)
186 * Must be called on unlocked socket.
187 */
188 static void rfcomm_sock_kill(struct sock *sk)
189 {
190 if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
191 return;
192
193 BT_DBG("sk %p state %d refcnt %d", sk, sk->sk_state, atomic_read(&sk->sk_refcnt));
194
195 /* Kill poor orphan */
196 bt_sock_unlink(&rfcomm_sk_list, sk);
197 sock_set_flag(sk, SOCK_DEAD);
198 sock_put(sk);
199 }
200
201 static void __rfcomm_sock_close(struct sock *sk)
202 {
203 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
204
205 BT_DBG("sk %p state %d socket %p", sk, sk->sk_state, sk->sk_socket);
206
207 switch (sk->sk_state) {
208 case BT_LISTEN:
209 rfcomm_sock_cleanup_listen(sk);
210 break;
211
212 case BT_CONNECT:
213 case BT_CONNECT2:
214 case BT_CONFIG:
215 case BT_CONNECTED:
216 rfcomm_dlc_close(d, 0);
217
218 default:
219 sock_set_flag(sk, SOCK_ZAPPED);
220 break;
221 }
222 }
223
224 /* Close socket.
225 * Must be called on unlocked socket.
226 */
227 static void rfcomm_sock_close(struct sock *sk)
228 {
229 lock_sock(sk);
230 __rfcomm_sock_close(sk);
231 release_sock(sk);
232 }
233
234 static void rfcomm_sock_init(struct sock *sk, struct sock *parent)
235 {
236 struct rfcomm_pinfo *pi = rfcomm_pi(sk);
237
238 BT_DBG("sk %p", sk);
239
240 if (parent) {
241 sk->sk_type = parent->sk_type;
242 pi->dlc->defer_setup = test_bit(BT_SK_DEFER_SETUP,
243 &bt_sk(parent)->flags);
244
245 pi->sec_level = rfcomm_pi(parent)->sec_level;
246 pi->role_switch = rfcomm_pi(parent)->role_switch;
247
248 security_sk_clone(parent, sk);
249 } else {
250 pi->dlc->defer_setup = 0;
251
252 pi->sec_level = BT_SECURITY_LOW;
253 pi->role_switch = 0;
254 }
255
256 pi->dlc->sec_level = pi->sec_level;
257 pi->dlc->role_switch = pi->role_switch;
258 }
259
260 static struct proto rfcomm_proto = {
261 .name = "RFCOMM",
262 .owner = THIS_MODULE,
263 .obj_size = sizeof(struct rfcomm_pinfo)
264 };
265
266 static struct sock *rfcomm_sock_alloc(struct net *net, struct socket *sock, int proto, gfp_t prio)
267 {
268 struct rfcomm_dlc *d;
269 struct sock *sk;
270
271 sk = sk_alloc(net, PF_BLUETOOTH, prio, &rfcomm_proto);
272 if (!sk)
273 return NULL;
274
275 sock_init_data(sock, sk);
276 INIT_LIST_HEAD(&bt_sk(sk)->accept_q);
277
278 d = rfcomm_dlc_alloc(prio);
279 if (!d) {
280 sk_free(sk);
281 return NULL;
282 }
283
284 d->data_ready = rfcomm_sk_data_ready;
285 d->state_change = rfcomm_sk_state_change;
286
287 rfcomm_pi(sk)->dlc = d;
288 d->owner = sk;
289
290 sk->sk_destruct = rfcomm_sock_destruct;
291 sk->sk_sndtimeo = RFCOMM_CONN_TIMEOUT;
292
293 sk->sk_sndbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10;
294 sk->sk_rcvbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10;
295
296 sock_reset_flag(sk, SOCK_ZAPPED);
297
298 sk->sk_protocol = proto;
299 sk->sk_state = BT_OPEN;
300
301 bt_sock_link(&rfcomm_sk_list, sk);
302
303 BT_DBG("sk %p", sk);
304 return sk;
305 }
306
307 static int rfcomm_sock_create(struct net *net, struct socket *sock,
308 int protocol, int kern)
309 {
310 struct sock *sk;
311
312 BT_DBG("sock %p", sock);
313
314 sock->state = SS_UNCONNECTED;
315
316 if (sock->type != SOCK_STREAM && sock->type != SOCK_RAW)
317 return -ESOCKTNOSUPPORT;
318
319 sock->ops = &rfcomm_sock_ops;
320
321 sk = rfcomm_sock_alloc(net, sock, protocol, GFP_ATOMIC);
322 if (!sk)
323 return -ENOMEM;
324
325 rfcomm_sock_init(sk, NULL);
326 return 0;
327 }
328
329 static int rfcomm_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
330 {
331 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr;
332 struct sock *sk = sock->sk;
333 int err = 0;
334
335 BT_DBG("sk %p %pMR", sk, &sa->rc_bdaddr);
336
337 if (!addr || addr->sa_family != AF_BLUETOOTH)
338 return -EINVAL;
339
340 lock_sock(sk);
341
342 if (sk->sk_state != BT_OPEN) {
343 err = -EBADFD;
344 goto done;
345 }
346
347 if (sk->sk_type != SOCK_STREAM) {
348 err = -EINVAL;
349 goto done;
350 }
351
352 write_lock(&rfcomm_sk_list.lock);
353
354 if (sa->rc_channel && __rfcomm_get_sock_by_addr(sa->rc_channel, &sa->rc_bdaddr)) {
355 err = -EADDRINUSE;
356 } else {
357 /* Save source address */
358 bacpy(&bt_sk(sk)->src, &sa->rc_bdaddr);
359 rfcomm_pi(sk)->channel = sa->rc_channel;
360 sk->sk_state = BT_BOUND;
361 }
362
363 write_unlock(&rfcomm_sk_list.lock);
364
365 done:
366 release_sock(sk);
367 return err;
368 }
369
370 static int rfcomm_sock_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags)
371 {
372 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr;
373 struct sock *sk = sock->sk;
374 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
375 int err = 0;
376
377 BT_DBG("sk %p", sk);
378
379 if (alen < sizeof(struct sockaddr_rc) ||
380 addr->sa_family != AF_BLUETOOTH)
381 return -EINVAL;
382
383 lock_sock(sk);
384
385 if (sk->sk_state != BT_OPEN && sk->sk_state != BT_BOUND) {
386 err = -EBADFD;
387 goto done;
388 }
389
390 if (sk->sk_type != SOCK_STREAM) {
391 err = -EINVAL;
392 goto done;
393 }
394
395 sk->sk_state = BT_CONNECT;
396 bacpy(&bt_sk(sk)->dst, &sa->rc_bdaddr);
397 rfcomm_pi(sk)->channel = sa->rc_channel;
398
399 d->sec_level = rfcomm_pi(sk)->sec_level;
400 d->role_switch = rfcomm_pi(sk)->role_switch;
401
402 err = rfcomm_dlc_open(d, &bt_sk(sk)->src, &sa->rc_bdaddr, sa->rc_channel);
403 if (!err)
404 err = bt_sock_wait_state(sk, BT_CONNECTED,
405 sock_sndtimeo(sk, flags & O_NONBLOCK));
406
407 done:
408 release_sock(sk);
409 return err;
410 }
411
412 static int rfcomm_sock_listen(struct socket *sock, int backlog)
413 {
414 struct sock *sk = sock->sk;
415 int err = 0;
416
417 BT_DBG("sk %p backlog %d", sk, backlog);
418
419 lock_sock(sk);
420
421 if (sk->sk_state != BT_BOUND) {
422 err = -EBADFD;
423 goto done;
424 }
425
426 if (sk->sk_type != SOCK_STREAM) {
427 err = -EINVAL;
428 goto done;
429 }
430
431 if (!rfcomm_pi(sk)->channel) {
432 bdaddr_t *src = &bt_sk(sk)->src;
433 u8 channel;
434
435 err = -EINVAL;
436
437 write_lock(&rfcomm_sk_list.lock);
438
439 for (channel = 1; channel < 31; channel++)
440 if (!__rfcomm_get_sock_by_addr(channel, src)) {
441 rfcomm_pi(sk)->channel = channel;
442 err = 0;
443 break;
444 }
445
446 write_unlock(&rfcomm_sk_list.lock);
447
448 if (err < 0)
449 goto done;
450 }
451
452 sk->sk_max_ack_backlog = backlog;
453 sk->sk_ack_backlog = 0;
454 sk->sk_state = BT_LISTEN;
455
456 done:
457 release_sock(sk);
458 return err;
459 }
460
461 static int rfcomm_sock_accept(struct socket *sock, struct socket *newsock, int flags)
462 {
463 DECLARE_WAITQUEUE(wait, current);
464 struct sock *sk = sock->sk, *nsk;
465 long timeo;
466 int err = 0;
467
468 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
469
470 if (sk->sk_type != SOCK_STREAM) {
471 err = -EINVAL;
472 goto done;
473 }
474
475 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
476
477 BT_DBG("sk %p timeo %ld", sk, timeo);
478
479 /* Wait for an incoming connection. (wake-one). */
480 add_wait_queue_exclusive(sk_sleep(sk), &wait);
481 while (1) {
482 set_current_state(TASK_INTERRUPTIBLE);
483
484 if (sk->sk_state != BT_LISTEN) {
485 err = -EBADFD;
486 break;
487 }
488
489 nsk = bt_accept_dequeue(sk, newsock);
490 if (nsk)
491 break;
492
493 if (!timeo) {
494 err = -EAGAIN;
495 break;
496 }
497
498 if (signal_pending(current)) {
499 err = sock_intr_errno(timeo);
500 break;
501 }
502
503 release_sock(sk);
504 timeo = schedule_timeout(timeo);
505 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
506 }
507 __set_current_state(TASK_RUNNING);
508 remove_wait_queue(sk_sleep(sk), &wait);
509
510 if (err)
511 goto done;
512
513 newsock->state = SS_CONNECTED;
514
515 BT_DBG("new socket %p", nsk);
516
517 done:
518 release_sock(sk);
519 return err;
520 }
521
522 static int rfcomm_sock_getname(struct socket *sock, struct sockaddr *addr, int *len, int peer)
523 {
524 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr;
525 struct sock *sk = sock->sk;
526
527 BT_DBG("sock %p, sk %p", sock, sk);
528
529 memset(sa, 0, sizeof(*sa));
530 sa->rc_family = AF_BLUETOOTH;
531 sa->rc_channel = rfcomm_pi(sk)->channel;
532 if (peer)
533 bacpy(&sa->rc_bdaddr, &bt_sk(sk)->dst);
534 else
535 bacpy(&sa->rc_bdaddr, &bt_sk(sk)->src);
536
537 *len = sizeof(struct sockaddr_rc);
538 return 0;
539 }
540
541 static int rfcomm_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
542 struct msghdr *msg, size_t len)
543 {
544 struct sock *sk = sock->sk;
545 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
546 struct sk_buff *skb;
547 int sent = 0;
548
549 if (test_bit(RFCOMM_DEFER_SETUP, &d->flags))
550 return -ENOTCONN;
551
552 if (msg->msg_flags & MSG_OOB)
553 return -EOPNOTSUPP;
554
555 if (sk->sk_shutdown & SEND_SHUTDOWN)
556 return -EPIPE;
557
558 BT_DBG("sock %p, sk %p", sock, sk);
559
560 lock_sock(sk);
561
562 while (len) {
563 size_t size = min_t(size_t, len, d->mtu);
564 int err;
565
566 skb = sock_alloc_send_skb(sk, size + RFCOMM_SKB_RESERVE,
567 msg->msg_flags & MSG_DONTWAIT, &err);
568 if (!skb) {
569 if (sent == 0)
570 sent = err;
571 break;
572 }
573 skb_reserve(skb, RFCOMM_SKB_HEAD_RESERVE);
574
575 err = memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size);
576 if (err) {
577 kfree_skb(skb);
578 if (sent == 0)
579 sent = err;
580 break;
581 }
582
583 skb->priority = sk->sk_priority;
584
585 err = rfcomm_dlc_send(d, skb);
586 if (err < 0) {
587 kfree_skb(skb);
588 if (sent == 0)
589 sent = err;
590 break;
591 }
592
593 sent += size;
594 len -= size;
595 }
596
597 release_sock(sk);
598
599 return sent;
600 }
601
602 static int rfcomm_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
603 struct msghdr *msg, size_t size, int flags)
604 {
605 struct sock *sk = sock->sk;
606 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
607 int len;
608
609 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) {
610 rfcomm_dlc_accept(d);
611 msg->msg_namelen = 0;
612 return 0;
613 }
614
615 len = bt_sock_stream_recvmsg(iocb, sock, msg, size, flags);
616
617 lock_sock(sk);
618 if (!(flags & MSG_PEEK) && len > 0)
619 atomic_sub(len, &sk->sk_rmem_alloc);
620
621 if (atomic_read(&sk->sk_rmem_alloc) <= (sk->sk_rcvbuf >> 2))
622 rfcomm_dlc_unthrottle(rfcomm_pi(sk)->dlc);
623 release_sock(sk);
624
625 return len;
626 }
627
628 static int rfcomm_sock_setsockopt_old(struct socket *sock, int optname, char __user *optval, unsigned int optlen)
629 {
630 struct sock *sk = sock->sk;
631 int err = 0;
632 u32 opt;
633
634 BT_DBG("sk %p", sk);
635
636 lock_sock(sk);
637
638 switch (optname) {
639 case RFCOMM_LM:
640 if (get_user(opt, (u32 __user *) optval)) {
641 err = -EFAULT;
642 break;
643 }
644
645 if (opt & RFCOMM_LM_AUTH)
646 rfcomm_pi(sk)->sec_level = BT_SECURITY_LOW;
647 if (opt & RFCOMM_LM_ENCRYPT)
648 rfcomm_pi(sk)->sec_level = BT_SECURITY_MEDIUM;
649 if (opt & RFCOMM_LM_SECURE)
650 rfcomm_pi(sk)->sec_level = BT_SECURITY_HIGH;
651
652 rfcomm_pi(sk)->role_switch = (opt & RFCOMM_LM_MASTER);
653 break;
654
655 default:
656 err = -ENOPROTOOPT;
657 break;
658 }
659
660 release_sock(sk);
661 return err;
662 }
663
664 static int rfcomm_sock_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
665 {
666 struct sock *sk = sock->sk;
667 struct bt_security sec;
668 int err = 0;
669 size_t len;
670 u32 opt;
671
672 BT_DBG("sk %p", sk);
673
674 if (level == SOL_RFCOMM)
675 return rfcomm_sock_setsockopt_old(sock, optname, optval, optlen);
676
677 if (level != SOL_BLUETOOTH)
678 return -ENOPROTOOPT;
679
680 lock_sock(sk);
681
682 switch (optname) {
683 case BT_SECURITY:
684 if (sk->sk_type != SOCK_STREAM) {
685 err = -EINVAL;
686 break;
687 }
688
689 sec.level = BT_SECURITY_LOW;
690
691 len = min_t(unsigned int, sizeof(sec), optlen);
692 if (copy_from_user((char *) &sec, optval, len)) {
693 err = -EFAULT;
694 break;
695 }
696
697 if (sec.level > BT_SECURITY_HIGH) {
698 err = -EINVAL;
699 break;
700 }
701
702 rfcomm_pi(sk)->sec_level = sec.level;
703 break;
704
705 case BT_DEFER_SETUP:
706 if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) {
707 err = -EINVAL;
708 break;
709 }
710
711 if (get_user(opt, (u32 __user *) optval)) {
712 err = -EFAULT;
713 break;
714 }
715
716 if (opt)
717 set_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags);
718 else
719 clear_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags);
720
721 break;
722
723 default:
724 err = -ENOPROTOOPT;
725 break;
726 }
727
728 release_sock(sk);
729 return err;
730 }
731
732 static int rfcomm_sock_getsockopt_old(struct socket *sock, int optname, char __user *optval, int __user *optlen)
733 {
734 struct sock *sk = sock->sk;
735 struct rfcomm_conninfo cinfo;
736 struct l2cap_conn *conn = l2cap_pi(sk)->chan->conn;
737 int len, err = 0;
738 u32 opt;
739
740 BT_DBG("sk %p", sk);
741
742 if (get_user(len, optlen))
743 return -EFAULT;
744
745 lock_sock(sk);
746
747 switch (optname) {
748 case RFCOMM_LM:
749 switch (rfcomm_pi(sk)->sec_level) {
750 case BT_SECURITY_LOW:
751 opt = RFCOMM_LM_AUTH;
752 break;
753 case BT_SECURITY_MEDIUM:
754 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT;
755 break;
756 case BT_SECURITY_HIGH:
757 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT |
758 RFCOMM_LM_SECURE;
759 break;
760 default:
761 opt = 0;
762 break;
763 }
764
765 if (rfcomm_pi(sk)->role_switch)
766 opt |= RFCOMM_LM_MASTER;
767
768 if (put_user(opt, (u32 __user *) optval))
769 err = -EFAULT;
770 break;
771
772 case RFCOMM_CONNINFO:
773 if (sk->sk_state != BT_CONNECTED &&
774 !rfcomm_pi(sk)->dlc->defer_setup) {
775 err = -ENOTCONN;
776 break;
777 }
778
779 memset(&cinfo, 0, sizeof(cinfo));
780 cinfo.hci_handle = conn->hcon->handle;
781 memcpy(cinfo.dev_class, conn->hcon->dev_class, 3);
782
783 len = min_t(unsigned int, len, sizeof(cinfo));
784 if (copy_to_user(optval, (char *) &cinfo, len))
785 err = -EFAULT;
786
787 break;
788
789 default:
790 err = -ENOPROTOOPT;
791 break;
792 }
793
794 release_sock(sk);
795 return err;
796 }
797
798 static int rfcomm_sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen)
799 {
800 struct sock *sk = sock->sk;
801 struct bt_security sec;
802 int len, err = 0;
803
804 BT_DBG("sk %p", sk);
805
806 if (level == SOL_RFCOMM)
807 return rfcomm_sock_getsockopt_old(sock, optname, optval, optlen);
808
809 if (level != SOL_BLUETOOTH)
810 return -ENOPROTOOPT;
811
812 if (get_user(len, optlen))
813 return -EFAULT;
814
815 lock_sock(sk);
816
817 switch (optname) {
818 case BT_SECURITY:
819 if (sk->sk_type != SOCK_STREAM) {
820 err = -EINVAL;
821 break;
822 }
823
824 sec.level = rfcomm_pi(sk)->sec_level;
825 sec.key_size = 0;
826
827 len = min_t(unsigned int, len, sizeof(sec));
828 if (copy_to_user(optval, (char *) &sec, len))
829 err = -EFAULT;
830
831 break;
832
833 case BT_DEFER_SETUP:
834 if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) {
835 err = -EINVAL;
836 break;
837 }
838
839 if (put_user(test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags),
840 (u32 __user *) optval))
841 err = -EFAULT;
842
843 break;
844
845 default:
846 err = -ENOPROTOOPT;
847 break;
848 }
849
850 release_sock(sk);
851 return err;
852 }
853
854 static int rfcomm_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
855 {
856 struct sock *sk __maybe_unused = sock->sk;
857 int err;
858
859 BT_DBG("sk %p cmd %x arg %lx", sk, cmd, arg);
860
861 err = bt_sock_ioctl(sock, cmd, arg);
862
863 if (err == -ENOIOCTLCMD) {
864 #ifdef CONFIG_BT_RFCOMM_TTY
865 lock_sock(sk);
866 err = rfcomm_dev_ioctl(sk, cmd, (void __user *) arg);
867 release_sock(sk);
868 #else
869 err = -EOPNOTSUPP;
870 #endif
871 }
872
873 return err;
874 }
875
876 static int rfcomm_sock_shutdown(struct socket *sock, int how)
877 {
878 struct sock *sk = sock->sk;
879 int err = 0;
880
881 BT_DBG("sock %p, sk %p", sock, sk);
882
883 if (!sk)
884 return 0;
885
886 lock_sock(sk);
887 if (!sk->sk_shutdown) {
888 sk->sk_shutdown = SHUTDOWN_MASK;
889 __rfcomm_sock_close(sk);
890
891 if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
892 err = bt_sock_wait_state(sk, BT_CLOSED, sk->sk_lingertime);
893 }
894 release_sock(sk);
895 return err;
896 }
897
898 static int rfcomm_sock_release(struct socket *sock)
899 {
900 struct sock *sk = sock->sk;
901 int err;
902
903 BT_DBG("sock %p, sk %p", sock, sk);
904
905 if (!sk)
906 return 0;
907
908 err = rfcomm_sock_shutdown(sock, 2);
909
910 sock_orphan(sk);
911 rfcomm_sock_kill(sk);
912 return err;
913 }
914
915 /* ---- RFCOMM core layer callbacks ----
916 *
917 * called under rfcomm_lock()
918 */
919 int rfcomm_connect_ind(struct rfcomm_session *s, u8 channel, struct rfcomm_dlc **d)
920 {
921 struct sock *sk, *parent;
922 bdaddr_t src, dst;
923 int result = 0;
924
925 BT_DBG("session %p channel %d", s, channel);
926
927 rfcomm_session_getaddr(s, &src, &dst);
928
929 /* Check if we have socket listening on channel */
930 parent = rfcomm_get_sock_by_channel(BT_LISTEN, channel, &src);
931 if (!parent)
932 return 0;
933
934 bh_lock_sock(parent);
935
936 /* Check for backlog size */
937 if (sk_acceptq_is_full(parent)) {
938 BT_DBG("backlog full %d", parent->sk_ack_backlog);
939 goto done;
940 }
941
942 sk = rfcomm_sock_alloc(sock_net(parent), NULL, BTPROTO_RFCOMM, GFP_ATOMIC);
943 if (!sk)
944 goto done;
945
946 bt_sock_reclassify_lock(sk, BTPROTO_RFCOMM);
947
948 rfcomm_sock_init(sk, parent);
949 bacpy(&bt_sk(sk)->src, &src);
950 bacpy(&bt_sk(sk)->dst, &dst);
951 rfcomm_pi(sk)->channel = channel;
952
953 sk->sk_state = BT_CONFIG;
954 bt_accept_enqueue(parent, sk);
955
956 /* Accept connection and return socket DLC */
957 *d = rfcomm_pi(sk)->dlc;
958 result = 1;
959
960 done:
961 bh_unlock_sock(parent);
962
963 if (test_bit(BT_SK_DEFER_SETUP, &bt_sk(parent)->flags))
964 parent->sk_state_change(parent);
965
966 return result;
967 }
968
969 static int rfcomm_sock_debugfs_show(struct seq_file *f, void *p)
970 {
971 struct sock *sk;
972
973 read_lock(&rfcomm_sk_list.lock);
974
975 sk_for_each(sk, &rfcomm_sk_list.head) {
976 seq_printf(f, "%pMR %pMR %d %d\n",
977 &bt_sk(sk)->src, &bt_sk(sk)->dst,
978 sk->sk_state, rfcomm_pi(sk)->channel);
979 }
980
981 read_unlock(&rfcomm_sk_list.lock);
982
983 return 0;
984 }
985
986 static int rfcomm_sock_debugfs_open(struct inode *inode, struct file *file)
987 {
988 return single_open(file, rfcomm_sock_debugfs_show, inode->i_private);
989 }
990
991 static const struct file_operations rfcomm_sock_debugfs_fops = {
992 .open = rfcomm_sock_debugfs_open,
993 .read = seq_read,
994 .llseek = seq_lseek,
995 .release = single_release,
996 };
997
998 static struct dentry *rfcomm_sock_debugfs;
999
1000 static const struct proto_ops rfcomm_sock_ops = {
1001 .family = PF_BLUETOOTH,
1002 .owner = THIS_MODULE,
1003 .release = rfcomm_sock_release,
1004 .bind = rfcomm_sock_bind,
1005 .connect = rfcomm_sock_connect,
1006 .listen = rfcomm_sock_listen,
1007 .accept = rfcomm_sock_accept,
1008 .getname = rfcomm_sock_getname,
1009 .sendmsg = rfcomm_sock_sendmsg,
1010 .recvmsg = rfcomm_sock_recvmsg,
1011 .shutdown = rfcomm_sock_shutdown,
1012 .setsockopt = rfcomm_sock_setsockopt,
1013 .getsockopt = rfcomm_sock_getsockopt,
1014 .ioctl = rfcomm_sock_ioctl,
1015 .poll = bt_sock_poll,
1016 .socketpair = sock_no_socketpair,
1017 .mmap = sock_no_mmap
1018 };
1019
1020 static const struct net_proto_family rfcomm_sock_family_ops = {
1021 .family = PF_BLUETOOTH,
1022 .owner = THIS_MODULE,
1023 .create = rfcomm_sock_create
1024 };
1025
1026 int __init rfcomm_init_sockets(void)
1027 {
1028 int err;
1029
1030 err = proto_register(&rfcomm_proto, 0);
1031 if (err < 0)
1032 return err;
1033
1034 err = bt_sock_register(BTPROTO_RFCOMM, &rfcomm_sock_family_ops);
1035 if (err < 0) {
1036 BT_ERR("RFCOMM socket layer registration failed");
1037 goto error;
1038 }
1039
1040 err = bt_procfs_init(&init_net, "rfcomm", &rfcomm_sk_list, NULL);
1041 if (err < 0) {
1042 BT_ERR("Failed to create RFCOMM proc file");
1043 bt_sock_unregister(BTPROTO_RFCOMM);
1044 goto error;
1045 }
1046
1047 if (bt_debugfs) {
1048 rfcomm_sock_debugfs = debugfs_create_file("rfcomm", 0444,
1049 bt_debugfs, NULL, &rfcomm_sock_debugfs_fops);
1050 if (!rfcomm_sock_debugfs)
1051 BT_ERR("Failed to create RFCOMM debug file");
1052 }
1053
1054 BT_INFO("RFCOMM socket layer initialized");
1055
1056 return 0;
1057
1058 error:
1059 proto_unregister(&rfcomm_proto);
1060 return err;
1061 }
1062
1063 void __exit rfcomm_cleanup_sockets(void)
1064 {
1065 bt_procfs_cleanup(&init_net, "rfcomm");
1066
1067 debugfs_remove(rfcomm_sock_debugfs);
1068
1069 bt_sock_unregister(BTPROTO_RFCOMM);
1070
1071 proto_unregister(&rfcomm_proto);
1072 }