Bluetooth: Fix stand-alone HCI command handling
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / bluetooth / hci_sock.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI sockets. */
26
27 #include <linux/export.h>
28 #include <asm/unaligned.h>
29
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/hci_mon.h>
33
34 static atomic_t monitor_promisc = ATOMIC_INIT(0);
35
36 /* ----- HCI socket interface ----- */
37
38 static inline int hci_test_bit(int nr, void *addr)
39 {
40 return *((__u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31));
41 }
42
43 /* Security filter */
44 static struct hci_sec_filter hci_sec_filter = {
45 /* Packet types */
46 0x10,
47 /* Events */
48 { 0x1000d9fe, 0x0000b00c },
49 /* Commands */
50 {
51 { 0x0 },
52 /* OGF_LINK_CTL */
53 { 0xbe000006, 0x00000001, 0x00000000, 0x00 },
54 /* OGF_LINK_POLICY */
55 { 0x00005200, 0x00000000, 0x00000000, 0x00 },
56 /* OGF_HOST_CTL */
57 { 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 },
58 /* OGF_INFO_PARAM */
59 { 0x000002be, 0x00000000, 0x00000000, 0x00 },
60 /* OGF_STATUS_PARAM */
61 { 0x000000ea, 0x00000000, 0x00000000, 0x00 }
62 }
63 };
64
65 static struct bt_sock_list hci_sk_list = {
66 .lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock)
67 };
68
69 /* Send frame to RAW socket */
70 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb)
71 {
72 struct sock *sk;
73 struct sk_buff *skb_copy = NULL;
74
75 BT_DBG("hdev %p len %d", hdev, skb->len);
76
77 read_lock(&hci_sk_list.lock);
78
79 sk_for_each(sk, &hci_sk_list.head) {
80 struct hci_filter *flt;
81 struct sk_buff *nskb;
82
83 if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev)
84 continue;
85
86 /* Don't send frame to the socket it came from */
87 if (skb->sk == sk)
88 continue;
89
90 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW)
91 continue;
92
93 /* Apply filter */
94 flt = &hci_pi(sk)->filter;
95
96 if (!test_bit((bt_cb(skb)->pkt_type == HCI_VENDOR_PKT) ?
97 0 : (bt_cb(skb)->pkt_type & HCI_FLT_TYPE_BITS),
98 &flt->type_mask))
99 continue;
100
101 if (bt_cb(skb)->pkt_type == HCI_EVENT_PKT) {
102 int evt = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS);
103
104 if (!hci_test_bit(evt, &flt->event_mask))
105 continue;
106
107 if (flt->opcode &&
108 ((evt == HCI_EV_CMD_COMPLETE &&
109 flt->opcode !=
110 get_unaligned((__le16 *)(skb->data + 3))) ||
111 (evt == HCI_EV_CMD_STATUS &&
112 flt->opcode !=
113 get_unaligned((__le16 *)(skb->data + 4)))))
114 continue;
115 }
116
117 if (!skb_copy) {
118 /* Create a private copy with headroom */
119 skb_copy = __pskb_copy(skb, 1, GFP_ATOMIC);
120 if (!skb_copy)
121 continue;
122
123 /* Put type byte before the data */
124 memcpy(skb_push(skb_copy, 1), &bt_cb(skb)->pkt_type, 1);
125 }
126
127 nskb = skb_clone(skb_copy, GFP_ATOMIC);
128 if (!nskb)
129 continue;
130
131 if (sock_queue_rcv_skb(sk, nskb))
132 kfree_skb(nskb);
133 }
134
135 read_unlock(&hci_sk_list.lock);
136
137 kfree_skb(skb_copy);
138 }
139
140 /* Send frame to control socket */
141 void hci_send_to_control(struct sk_buff *skb, struct sock *skip_sk)
142 {
143 struct sock *sk;
144
145 BT_DBG("len %d", skb->len);
146
147 read_lock(&hci_sk_list.lock);
148
149 sk_for_each(sk, &hci_sk_list.head) {
150 struct sk_buff *nskb;
151
152 /* Skip the original socket */
153 if (sk == skip_sk)
154 continue;
155
156 if (sk->sk_state != BT_BOUND)
157 continue;
158
159 if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL)
160 continue;
161
162 nskb = skb_clone(skb, GFP_ATOMIC);
163 if (!nskb)
164 continue;
165
166 if (sock_queue_rcv_skb(sk, nskb))
167 kfree_skb(nskb);
168 }
169
170 read_unlock(&hci_sk_list.lock);
171 }
172
173 /* Send frame to monitor socket */
174 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb)
175 {
176 struct sock *sk;
177 struct sk_buff *skb_copy = NULL;
178 __le16 opcode;
179
180 if (!atomic_read(&monitor_promisc))
181 return;
182
183 BT_DBG("hdev %p len %d", hdev, skb->len);
184
185 switch (bt_cb(skb)->pkt_type) {
186 case HCI_COMMAND_PKT:
187 opcode = __constant_cpu_to_le16(HCI_MON_COMMAND_PKT);
188 break;
189 case HCI_EVENT_PKT:
190 opcode = __constant_cpu_to_le16(HCI_MON_EVENT_PKT);
191 break;
192 case HCI_ACLDATA_PKT:
193 if (bt_cb(skb)->incoming)
194 opcode = __constant_cpu_to_le16(HCI_MON_ACL_RX_PKT);
195 else
196 opcode = __constant_cpu_to_le16(HCI_MON_ACL_TX_PKT);
197 break;
198 case HCI_SCODATA_PKT:
199 if (bt_cb(skb)->incoming)
200 opcode = __constant_cpu_to_le16(HCI_MON_SCO_RX_PKT);
201 else
202 opcode = __constant_cpu_to_le16(HCI_MON_SCO_TX_PKT);
203 break;
204 default:
205 return;
206 }
207
208 read_lock(&hci_sk_list.lock);
209
210 sk_for_each(sk, &hci_sk_list.head) {
211 struct sk_buff *nskb;
212
213 if (sk->sk_state != BT_BOUND)
214 continue;
215
216 if (hci_pi(sk)->channel != HCI_CHANNEL_MONITOR)
217 continue;
218
219 if (!skb_copy) {
220 struct hci_mon_hdr *hdr;
221
222 /* Create a private copy with headroom */
223 skb_copy = __pskb_copy(skb, HCI_MON_HDR_SIZE,
224 GFP_ATOMIC);
225 if (!skb_copy)
226 continue;
227
228 /* Put header before the data */
229 hdr = (void *) skb_push(skb_copy, HCI_MON_HDR_SIZE);
230 hdr->opcode = opcode;
231 hdr->index = cpu_to_le16(hdev->id);
232 hdr->len = cpu_to_le16(skb->len);
233 }
234
235 nskb = skb_clone(skb_copy, GFP_ATOMIC);
236 if (!nskb)
237 continue;
238
239 if (sock_queue_rcv_skb(sk, nskb))
240 kfree_skb(nskb);
241 }
242
243 read_unlock(&hci_sk_list.lock);
244
245 kfree_skb(skb_copy);
246 }
247
248 static void send_monitor_event(struct sk_buff *skb)
249 {
250 struct sock *sk;
251
252 BT_DBG("len %d", skb->len);
253
254 read_lock(&hci_sk_list.lock);
255
256 sk_for_each(sk, &hci_sk_list.head) {
257 struct sk_buff *nskb;
258
259 if (sk->sk_state != BT_BOUND)
260 continue;
261
262 if (hci_pi(sk)->channel != HCI_CHANNEL_MONITOR)
263 continue;
264
265 nskb = skb_clone(skb, GFP_ATOMIC);
266 if (!nskb)
267 continue;
268
269 if (sock_queue_rcv_skb(sk, nskb))
270 kfree_skb(nskb);
271 }
272
273 read_unlock(&hci_sk_list.lock);
274 }
275
276 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event)
277 {
278 struct hci_mon_hdr *hdr;
279 struct hci_mon_new_index *ni;
280 struct sk_buff *skb;
281 __le16 opcode;
282
283 switch (event) {
284 case HCI_DEV_REG:
285 skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC);
286 if (!skb)
287 return NULL;
288
289 ni = (void *) skb_put(skb, HCI_MON_NEW_INDEX_SIZE);
290 ni->type = hdev->dev_type;
291 ni->bus = hdev->bus;
292 bacpy(&ni->bdaddr, &hdev->bdaddr);
293 memcpy(ni->name, hdev->name, 8);
294
295 opcode = __constant_cpu_to_le16(HCI_MON_NEW_INDEX);
296 break;
297
298 case HCI_DEV_UNREG:
299 skb = bt_skb_alloc(0, GFP_ATOMIC);
300 if (!skb)
301 return NULL;
302
303 opcode = __constant_cpu_to_le16(HCI_MON_DEL_INDEX);
304 break;
305
306 default:
307 return NULL;
308 }
309
310 __net_timestamp(skb);
311
312 hdr = (void *) skb_push(skb, HCI_MON_HDR_SIZE);
313 hdr->opcode = opcode;
314 hdr->index = cpu_to_le16(hdev->id);
315 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
316
317 return skb;
318 }
319
320 static void send_monitor_replay(struct sock *sk)
321 {
322 struct hci_dev *hdev;
323
324 read_lock(&hci_dev_list_lock);
325
326 list_for_each_entry(hdev, &hci_dev_list, list) {
327 struct sk_buff *skb;
328
329 skb = create_monitor_event(hdev, HCI_DEV_REG);
330 if (!skb)
331 continue;
332
333 if (sock_queue_rcv_skb(sk, skb))
334 kfree_skb(skb);
335 }
336
337 read_unlock(&hci_dev_list_lock);
338 }
339
340 /* Generate internal stack event */
341 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data)
342 {
343 struct hci_event_hdr *hdr;
344 struct hci_ev_stack_internal *ev;
345 struct sk_buff *skb;
346
347 skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC);
348 if (!skb)
349 return;
350
351 hdr = (void *) skb_put(skb, HCI_EVENT_HDR_SIZE);
352 hdr->evt = HCI_EV_STACK_INTERNAL;
353 hdr->plen = sizeof(*ev) + dlen;
354
355 ev = (void *) skb_put(skb, sizeof(*ev) + dlen);
356 ev->type = type;
357 memcpy(ev->data, data, dlen);
358
359 bt_cb(skb)->incoming = 1;
360 __net_timestamp(skb);
361
362 bt_cb(skb)->pkt_type = HCI_EVENT_PKT;
363 skb->dev = (void *) hdev;
364 hci_send_to_sock(hdev, skb);
365 kfree_skb(skb);
366 }
367
368 void hci_sock_dev_event(struct hci_dev *hdev, int event)
369 {
370 struct hci_ev_si_device ev;
371
372 BT_DBG("hdev %s event %d", hdev->name, event);
373
374 /* Send event to monitor */
375 if (atomic_read(&monitor_promisc)) {
376 struct sk_buff *skb;
377
378 skb = create_monitor_event(hdev, event);
379 if (skb) {
380 send_monitor_event(skb);
381 kfree_skb(skb);
382 }
383 }
384
385 /* Send event to sockets */
386 ev.event = event;
387 ev.dev_id = hdev->id;
388 hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev);
389
390 if (event == HCI_DEV_UNREG) {
391 struct sock *sk;
392
393 /* Detach sockets from device */
394 read_lock(&hci_sk_list.lock);
395 sk_for_each(sk, &hci_sk_list.head) {
396 bh_lock_sock_nested(sk);
397 if (hci_pi(sk)->hdev == hdev) {
398 hci_pi(sk)->hdev = NULL;
399 sk->sk_err = EPIPE;
400 sk->sk_state = BT_OPEN;
401 sk->sk_state_change(sk);
402
403 hci_dev_put(hdev);
404 }
405 bh_unlock_sock(sk);
406 }
407 read_unlock(&hci_sk_list.lock);
408 }
409 }
410
411 static int hci_sock_release(struct socket *sock)
412 {
413 struct sock *sk = sock->sk;
414 struct hci_dev *hdev;
415
416 BT_DBG("sock %p sk %p", sock, sk);
417
418 if (!sk)
419 return 0;
420
421 hdev = hci_pi(sk)->hdev;
422
423 if (hci_pi(sk)->channel == HCI_CHANNEL_MONITOR)
424 atomic_dec(&monitor_promisc);
425
426 bt_sock_unlink(&hci_sk_list, sk);
427
428 if (hdev) {
429 atomic_dec(&hdev->promisc);
430 hci_dev_put(hdev);
431 }
432
433 sock_orphan(sk);
434
435 skb_queue_purge(&sk->sk_receive_queue);
436 skb_queue_purge(&sk->sk_write_queue);
437
438 sock_put(sk);
439 return 0;
440 }
441
442 static int hci_sock_blacklist_add(struct hci_dev *hdev, void __user *arg)
443 {
444 bdaddr_t bdaddr;
445 int err;
446
447 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
448 return -EFAULT;
449
450 hci_dev_lock(hdev);
451
452 err = hci_blacklist_add(hdev, &bdaddr, 0);
453
454 hci_dev_unlock(hdev);
455
456 return err;
457 }
458
459 static int hci_sock_blacklist_del(struct hci_dev *hdev, void __user *arg)
460 {
461 bdaddr_t bdaddr;
462 int err;
463
464 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
465 return -EFAULT;
466
467 hci_dev_lock(hdev);
468
469 err = hci_blacklist_del(hdev, &bdaddr, 0);
470
471 hci_dev_unlock(hdev);
472
473 return err;
474 }
475
476 /* Ioctls that require bound socket */
477 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd,
478 unsigned long arg)
479 {
480 struct hci_dev *hdev = hci_pi(sk)->hdev;
481
482 if (!hdev)
483 return -EBADFD;
484
485 switch (cmd) {
486 case HCISETRAW:
487 if (!capable(CAP_NET_ADMIN))
488 return -EPERM;
489
490 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
491 return -EPERM;
492
493 if (arg)
494 set_bit(HCI_RAW, &hdev->flags);
495 else
496 clear_bit(HCI_RAW, &hdev->flags);
497
498 return 0;
499
500 case HCIGETCONNINFO:
501 return hci_get_conn_info(hdev, (void __user *) arg);
502
503 case HCIGETAUTHINFO:
504 return hci_get_auth_info(hdev, (void __user *) arg);
505
506 case HCIBLOCKADDR:
507 if (!capable(CAP_NET_ADMIN))
508 return -EPERM;
509 return hci_sock_blacklist_add(hdev, (void __user *) arg);
510
511 case HCIUNBLOCKADDR:
512 if (!capable(CAP_NET_ADMIN))
513 return -EPERM;
514 return hci_sock_blacklist_del(hdev, (void __user *) arg);
515
516 default:
517 if (hdev->ioctl)
518 return hdev->ioctl(hdev, cmd, arg);
519 return -EINVAL;
520 }
521 }
522
523 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd,
524 unsigned long arg)
525 {
526 struct sock *sk = sock->sk;
527 void __user *argp = (void __user *) arg;
528 int err;
529
530 BT_DBG("cmd %x arg %lx", cmd, arg);
531
532 switch (cmd) {
533 case HCIGETDEVLIST:
534 return hci_get_dev_list(argp);
535
536 case HCIGETDEVINFO:
537 return hci_get_dev_info(argp);
538
539 case HCIGETCONNLIST:
540 return hci_get_conn_list(argp);
541
542 case HCIDEVUP:
543 if (!capable(CAP_NET_ADMIN))
544 return -EPERM;
545 return hci_dev_open(arg);
546
547 case HCIDEVDOWN:
548 if (!capable(CAP_NET_ADMIN))
549 return -EPERM;
550 return hci_dev_close(arg);
551
552 case HCIDEVRESET:
553 if (!capable(CAP_NET_ADMIN))
554 return -EPERM;
555 return hci_dev_reset(arg);
556
557 case HCIDEVRESTAT:
558 if (!capable(CAP_NET_ADMIN))
559 return -EPERM;
560 return hci_dev_reset_stat(arg);
561
562 case HCISETSCAN:
563 case HCISETAUTH:
564 case HCISETENCRYPT:
565 case HCISETPTYPE:
566 case HCISETLINKPOL:
567 case HCISETLINKMODE:
568 case HCISETACLMTU:
569 case HCISETSCOMTU:
570 if (!capable(CAP_NET_ADMIN))
571 return -EPERM;
572 return hci_dev_cmd(cmd, argp);
573
574 case HCIINQUIRY:
575 return hci_inquiry(argp);
576
577 default:
578 lock_sock(sk);
579 err = hci_sock_bound_ioctl(sk, cmd, arg);
580 release_sock(sk);
581 return err;
582 }
583 }
584
585 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr,
586 int addr_len)
587 {
588 struct sockaddr_hci haddr;
589 struct sock *sk = sock->sk;
590 struct hci_dev *hdev = NULL;
591 int len, err = 0;
592
593 BT_DBG("sock %p sk %p", sock, sk);
594
595 if (!addr)
596 return -EINVAL;
597
598 memset(&haddr, 0, sizeof(haddr));
599 len = min_t(unsigned int, sizeof(haddr), addr_len);
600 memcpy(&haddr, addr, len);
601
602 if (haddr.hci_family != AF_BLUETOOTH)
603 return -EINVAL;
604
605 lock_sock(sk);
606
607 if (sk->sk_state == BT_BOUND) {
608 err = -EALREADY;
609 goto done;
610 }
611
612 switch (haddr.hci_channel) {
613 case HCI_CHANNEL_RAW:
614 if (hci_pi(sk)->hdev) {
615 err = -EALREADY;
616 goto done;
617 }
618
619 if (haddr.hci_dev != HCI_DEV_NONE) {
620 hdev = hci_dev_get(haddr.hci_dev);
621 if (!hdev) {
622 err = -ENODEV;
623 goto done;
624 }
625
626 atomic_inc(&hdev->promisc);
627 }
628
629 hci_pi(sk)->hdev = hdev;
630 break;
631
632 case HCI_CHANNEL_CONTROL:
633 if (haddr.hci_dev != HCI_DEV_NONE) {
634 err = -EINVAL;
635 goto done;
636 }
637
638 if (!capable(CAP_NET_ADMIN)) {
639 err = -EPERM;
640 goto done;
641 }
642
643 break;
644
645 case HCI_CHANNEL_MONITOR:
646 if (haddr.hci_dev != HCI_DEV_NONE) {
647 err = -EINVAL;
648 goto done;
649 }
650
651 if (!capable(CAP_NET_RAW)) {
652 err = -EPERM;
653 goto done;
654 }
655
656 send_monitor_replay(sk);
657
658 atomic_inc(&monitor_promisc);
659 break;
660
661 default:
662 err = -EINVAL;
663 goto done;
664 }
665
666
667 hci_pi(sk)->channel = haddr.hci_channel;
668 sk->sk_state = BT_BOUND;
669
670 done:
671 release_sock(sk);
672 return err;
673 }
674
675 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr,
676 int *addr_len, int peer)
677 {
678 struct sockaddr_hci *haddr = (struct sockaddr_hci *) addr;
679 struct sock *sk = sock->sk;
680 struct hci_dev *hdev = hci_pi(sk)->hdev;
681
682 BT_DBG("sock %p sk %p", sock, sk);
683
684 if (!hdev)
685 return -EBADFD;
686
687 lock_sock(sk);
688
689 *addr_len = sizeof(*haddr);
690 haddr->hci_family = AF_BLUETOOTH;
691 haddr->hci_dev = hdev->id;
692 haddr->hci_channel= 0;
693
694 release_sock(sk);
695 return 0;
696 }
697
698 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg,
699 struct sk_buff *skb)
700 {
701 __u32 mask = hci_pi(sk)->cmsg_mask;
702
703 if (mask & HCI_CMSG_DIR) {
704 int incoming = bt_cb(skb)->incoming;
705 put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming),
706 &incoming);
707 }
708
709 if (mask & HCI_CMSG_TSTAMP) {
710 #ifdef CONFIG_COMPAT
711 struct compat_timeval ctv;
712 #endif
713 struct timeval tv;
714 void *data;
715 int len;
716
717 skb_get_timestamp(skb, &tv);
718
719 data = &tv;
720 len = sizeof(tv);
721 #ifdef CONFIG_COMPAT
722 if (!COMPAT_USE_64BIT_TIME &&
723 (msg->msg_flags & MSG_CMSG_COMPAT)) {
724 ctv.tv_sec = tv.tv_sec;
725 ctv.tv_usec = tv.tv_usec;
726 data = &ctv;
727 len = sizeof(ctv);
728 }
729 #endif
730
731 put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data);
732 }
733 }
734
735 static int hci_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
736 struct msghdr *msg, size_t len, int flags)
737 {
738 int noblock = flags & MSG_DONTWAIT;
739 struct sock *sk = sock->sk;
740 struct sk_buff *skb;
741 int copied, err;
742
743 BT_DBG("sock %p, sk %p", sock, sk);
744
745 if (flags & (MSG_OOB))
746 return -EOPNOTSUPP;
747
748 if (sk->sk_state == BT_CLOSED)
749 return 0;
750
751 skb = skb_recv_datagram(sk, flags, noblock, &err);
752 if (!skb)
753 return err;
754
755 msg->msg_namelen = 0;
756
757 copied = skb->len;
758 if (len < copied) {
759 msg->msg_flags |= MSG_TRUNC;
760 copied = len;
761 }
762
763 skb_reset_transport_header(skb);
764 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
765
766 switch (hci_pi(sk)->channel) {
767 case HCI_CHANNEL_RAW:
768 hci_sock_cmsg(sk, msg, skb);
769 break;
770 case HCI_CHANNEL_CONTROL:
771 case HCI_CHANNEL_MONITOR:
772 sock_recv_timestamp(msg, sk, skb);
773 break;
774 }
775
776 skb_free_datagram(sk, skb);
777
778 return err ? : copied;
779 }
780
781 static int hci_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
782 struct msghdr *msg, size_t len)
783 {
784 struct sock *sk = sock->sk;
785 struct hci_dev *hdev;
786 struct sk_buff *skb;
787 int err;
788
789 BT_DBG("sock %p sk %p", sock, sk);
790
791 if (msg->msg_flags & MSG_OOB)
792 return -EOPNOTSUPP;
793
794 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_NOSIGNAL|MSG_ERRQUEUE))
795 return -EINVAL;
796
797 if (len < 4 || len > HCI_MAX_FRAME_SIZE)
798 return -EINVAL;
799
800 lock_sock(sk);
801
802 switch (hci_pi(sk)->channel) {
803 case HCI_CHANNEL_RAW:
804 break;
805 case HCI_CHANNEL_CONTROL:
806 err = mgmt_control(sk, msg, len);
807 goto done;
808 case HCI_CHANNEL_MONITOR:
809 err = -EOPNOTSUPP;
810 goto done;
811 default:
812 err = -EINVAL;
813 goto done;
814 }
815
816 hdev = hci_pi(sk)->hdev;
817 if (!hdev) {
818 err = -EBADFD;
819 goto done;
820 }
821
822 if (!test_bit(HCI_UP, &hdev->flags)) {
823 err = -ENETDOWN;
824 goto done;
825 }
826
827 skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err);
828 if (!skb)
829 goto done;
830
831 if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
832 err = -EFAULT;
833 goto drop;
834 }
835
836 bt_cb(skb)->pkt_type = *((unsigned char *) skb->data);
837 skb_pull(skb, 1);
838 skb->dev = (void *) hdev;
839
840 if (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT) {
841 u16 opcode = get_unaligned_le16(skb->data);
842 u16 ogf = hci_opcode_ogf(opcode);
843 u16 ocf = hci_opcode_ocf(opcode);
844
845 if (((ogf > HCI_SFLT_MAX_OGF) ||
846 !hci_test_bit(ocf & HCI_FLT_OCF_BITS,
847 &hci_sec_filter.ocf_mask[ogf])) &&
848 !capable(CAP_NET_RAW)) {
849 err = -EPERM;
850 goto drop;
851 }
852
853 if (test_bit(HCI_RAW, &hdev->flags) || (ogf == 0x3f)) {
854 skb_queue_tail(&hdev->raw_q, skb);
855 queue_work(hdev->workqueue, &hdev->tx_work);
856 } else {
857 /* Stand-alone HCI commands must be flaged as
858 * single-command requests.
859 */
860 bt_cb(skb)->req.start = true;
861
862 skb_queue_tail(&hdev->cmd_q, skb);
863 queue_work(hdev->workqueue, &hdev->cmd_work);
864 }
865 } else {
866 if (!capable(CAP_NET_RAW)) {
867 err = -EPERM;
868 goto drop;
869 }
870
871 skb_queue_tail(&hdev->raw_q, skb);
872 queue_work(hdev->workqueue, &hdev->tx_work);
873 }
874
875 err = len;
876
877 done:
878 release_sock(sk);
879 return err;
880
881 drop:
882 kfree_skb(skb);
883 goto done;
884 }
885
886 static int hci_sock_setsockopt(struct socket *sock, int level, int optname,
887 char __user *optval, unsigned int len)
888 {
889 struct hci_ufilter uf = { .opcode = 0 };
890 struct sock *sk = sock->sk;
891 int err = 0, opt = 0;
892
893 BT_DBG("sk %p, opt %d", sk, optname);
894
895 lock_sock(sk);
896
897 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
898 err = -EINVAL;
899 goto done;
900 }
901
902 switch (optname) {
903 case HCI_DATA_DIR:
904 if (get_user(opt, (int __user *)optval)) {
905 err = -EFAULT;
906 break;
907 }
908
909 if (opt)
910 hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR;
911 else
912 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR;
913 break;
914
915 case HCI_TIME_STAMP:
916 if (get_user(opt, (int __user *)optval)) {
917 err = -EFAULT;
918 break;
919 }
920
921 if (opt)
922 hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP;
923 else
924 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP;
925 break;
926
927 case HCI_FILTER:
928 {
929 struct hci_filter *f = &hci_pi(sk)->filter;
930
931 uf.type_mask = f->type_mask;
932 uf.opcode = f->opcode;
933 uf.event_mask[0] = *((u32 *) f->event_mask + 0);
934 uf.event_mask[1] = *((u32 *) f->event_mask + 1);
935 }
936
937 len = min_t(unsigned int, len, sizeof(uf));
938 if (copy_from_user(&uf, optval, len)) {
939 err = -EFAULT;
940 break;
941 }
942
943 if (!capable(CAP_NET_RAW)) {
944 uf.type_mask &= hci_sec_filter.type_mask;
945 uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0);
946 uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1);
947 }
948
949 {
950 struct hci_filter *f = &hci_pi(sk)->filter;
951
952 f->type_mask = uf.type_mask;
953 f->opcode = uf.opcode;
954 *((u32 *) f->event_mask + 0) = uf.event_mask[0];
955 *((u32 *) f->event_mask + 1) = uf.event_mask[1];
956 }
957 break;
958
959 default:
960 err = -ENOPROTOOPT;
961 break;
962 }
963
964 done:
965 release_sock(sk);
966 return err;
967 }
968
969 static int hci_sock_getsockopt(struct socket *sock, int level, int optname,
970 char __user *optval, int __user *optlen)
971 {
972 struct hci_ufilter uf;
973 struct sock *sk = sock->sk;
974 int len, opt, err = 0;
975
976 BT_DBG("sk %p, opt %d", sk, optname);
977
978 if (get_user(len, optlen))
979 return -EFAULT;
980
981 lock_sock(sk);
982
983 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
984 err = -EINVAL;
985 goto done;
986 }
987
988 switch (optname) {
989 case HCI_DATA_DIR:
990 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR)
991 opt = 1;
992 else
993 opt = 0;
994
995 if (put_user(opt, optval))
996 err = -EFAULT;
997 break;
998
999 case HCI_TIME_STAMP:
1000 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP)
1001 opt = 1;
1002 else
1003 opt = 0;
1004
1005 if (put_user(opt, optval))
1006 err = -EFAULT;
1007 break;
1008
1009 case HCI_FILTER:
1010 {
1011 struct hci_filter *f = &hci_pi(sk)->filter;
1012
1013 memset(&uf, 0, sizeof(uf));
1014 uf.type_mask = f->type_mask;
1015 uf.opcode = f->opcode;
1016 uf.event_mask[0] = *((u32 *) f->event_mask + 0);
1017 uf.event_mask[1] = *((u32 *) f->event_mask + 1);
1018 }
1019
1020 len = min_t(unsigned int, len, sizeof(uf));
1021 if (copy_to_user(optval, &uf, len))
1022 err = -EFAULT;
1023 break;
1024
1025 default:
1026 err = -ENOPROTOOPT;
1027 break;
1028 }
1029
1030 done:
1031 release_sock(sk);
1032 return err;
1033 }
1034
1035 static const struct proto_ops hci_sock_ops = {
1036 .family = PF_BLUETOOTH,
1037 .owner = THIS_MODULE,
1038 .release = hci_sock_release,
1039 .bind = hci_sock_bind,
1040 .getname = hci_sock_getname,
1041 .sendmsg = hci_sock_sendmsg,
1042 .recvmsg = hci_sock_recvmsg,
1043 .ioctl = hci_sock_ioctl,
1044 .poll = datagram_poll,
1045 .listen = sock_no_listen,
1046 .shutdown = sock_no_shutdown,
1047 .setsockopt = hci_sock_setsockopt,
1048 .getsockopt = hci_sock_getsockopt,
1049 .connect = sock_no_connect,
1050 .socketpair = sock_no_socketpair,
1051 .accept = sock_no_accept,
1052 .mmap = sock_no_mmap
1053 };
1054
1055 static struct proto hci_sk_proto = {
1056 .name = "HCI",
1057 .owner = THIS_MODULE,
1058 .obj_size = sizeof(struct hci_pinfo)
1059 };
1060
1061 static int hci_sock_create(struct net *net, struct socket *sock, int protocol,
1062 int kern)
1063 {
1064 struct sock *sk;
1065
1066 BT_DBG("sock %p", sock);
1067
1068 if (sock->type != SOCK_RAW)
1069 return -ESOCKTNOSUPPORT;
1070
1071 sock->ops = &hci_sock_ops;
1072
1073 sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto);
1074 if (!sk)
1075 return -ENOMEM;
1076
1077 sock_init_data(sock, sk);
1078
1079 sock_reset_flag(sk, SOCK_ZAPPED);
1080
1081 sk->sk_protocol = protocol;
1082
1083 sock->state = SS_UNCONNECTED;
1084 sk->sk_state = BT_OPEN;
1085
1086 bt_sock_link(&hci_sk_list, sk);
1087 return 0;
1088 }
1089
1090 static const struct net_proto_family hci_sock_family_ops = {
1091 .family = PF_BLUETOOTH,
1092 .owner = THIS_MODULE,
1093 .create = hci_sock_create,
1094 };
1095
1096 int __init hci_sock_init(void)
1097 {
1098 int err;
1099
1100 err = proto_register(&hci_sk_proto, 0);
1101 if (err < 0)
1102 return err;
1103
1104 err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops);
1105 if (err < 0) {
1106 BT_ERR("HCI socket registration failed");
1107 goto error;
1108 }
1109
1110 err = bt_procfs_init(THIS_MODULE, &init_net, "hci", &hci_sk_list, NULL);
1111 if (err < 0) {
1112 BT_ERR("Failed to create HCI proc file");
1113 bt_sock_unregister(BTPROTO_HCI);
1114 goto error;
1115 }
1116
1117 BT_INFO("HCI socket layer initialized");
1118
1119 return 0;
1120
1121 error:
1122 proto_unregister(&hci_sk_proto);
1123 return err;
1124 }
1125
1126 void hci_sock_cleanup(void)
1127 {
1128 bt_procfs_cleanup(&init_net, "hci");
1129 bt_sock_unregister(BTPROTO_HCI);
1130 proto_unregister(&hci_sk_proto);
1131 }