Bluetooth: Remove magic number from ACL TO
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/jiffies.h>
29 #include <linux/module.h>
30 #include <linux/kmod.h>
31
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <linux/poll.h>
38 #include <linux/fcntl.h>
39 #include <linux/init.h>
40 #include <linux/skbuff.h>
41 #include <linux/workqueue.h>
42 #include <linux/interrupt.h>
43 #include <linux/notifier.h>
44 #include <linux/rfkill.h>
45 #include <linux/timer.h>
46 #include <linux/crypto.h>
47 #include <net/sock.h>
48
49 #include <asm/system.h>
50 #include <linux/uaccess.h>
51 #include <asm/unaligned.h>
52
53 #include <net/bluetooth/bluetooth.h>
54 #include <net/bluetooth/hci_core.h>
55
56 #define AUTO_OFF_TIMEOUT 2000
57
58 int enable_hs;
59
60 static void hci_rx_work(struct work_struct *work);
61 static void hci_cmd_work(struct work_struct *work);
62 static void hci_tx_work(struct work_struct *work);
63
64 /* HCI device list */
65 LIST_HEAD(hci_dev_list);
66 DEFINE_RWLOCK(hci_dev_list_lock);
67
68 /* HCI callback list */
69 LIST_HEAD(hci_cb_list);
70 DEFINE_RWLOCK(hci_cb_list_lock);
71
72 /* HCI notifiers list */
73 static ATOMIC_NOTIFIER_HEAD(hci_notifier);
74
75 /* ---- HCI notifications ---- */
76
77 int hci_register_notifier(struct notifier_block *nb)
78 {
79 return atomic_notifier_chain_register(&hci_notifier, nb);
80 }
81
82 int hci_unregister_notifier(struct notifier_block *nb)
83 {
84 return atomic_notifier_chain_unregister(&hci_notifier, nb);
85 }
86
87 static void hci_notify(struct hci_dev *hdev, int event)
88 {
89 atomic_notifier_call_chain(&hci_notifier, event, hdev);
90 }
91
92 /* ---- HCI requests ---- */
93
94 void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
95 {
96 BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
97
98 /* If this is the init phase check if the completed command matches
99 * the last init command, and if not just return.
100 */
101 if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd)
102 return;
103
104 if (hdev->req_status == HCI_REQ_PEND) {
105 hdev->req_result = result;
106 hdev->req_status = HCI_REQ_DONE;
107 wake_up_interruptible(&hdev->req_wait_q);
108 }
109 }
110
111 static void hci_req_cancel(struct hci_dev *hdev, int err)
112 {
113 BT_DBG("%s err 0x%2.2x", hdev->name, err);
114
115 if (hdev->req_status == HCI_REQ_PEND) {
116 hdev->req_result = err;
117 hdev->req_status = HCI_REQ_CANCELED;
118 wake_up_interruptible(&hdev->req_wait_q);
119 }
120 }
121
122 /* Execute request and wait for completion. */
123 static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
124 unsigned long opt, __u32 timeout)
125 {
126 DECLARE_WAITQUEUE(wait, current);
127 int err = 0;
128
129 BT_DBG("%s start", hdev->name);
130
131 hdev->req_status = HCI_REQ_PEND;
132
133 add_wait_queue(&hdev->req_wait_q, &wait);
134 set_current_state(TASK_INTERRUPTIBLE);
135
136 req(hdev, opt);
137 schedule_timeout(timeout);
138
139 remove_wait_queue(&hdev->req_wait_q, &wait);
140
141 if (signal_pending(current))
142 return -EINTR;
143
144 switch (hdev->req_status) {
145 case HCI_REQ_DONE:
146 err = -bt_to_errno(hdev->req_result);
147 break;
148
149 case HCI_REQ_CANCELED:
150 err = -hdev->req_result;
151 break;
152
153 default:
154 err = -ETIMEDOUT;
155 break;
156 }
157
158 hdev->req_status = hdev->req_result = 0;
159
160 BT_DBG("%s end: err %d", hdev->name, err);
161
162 return err;
163 }
164
165 static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
166 unsigned long opt, __u32 timeout)
167 {
168 int ret;
169
170 if (!test_bit(HCI_UP, &hdev->flags))
171 return -ENETDOWN;
172
173 /* Serialize all requests */
174 hci_req_lock(hdev);
175 ret = __hci_request(hdev, req, opt, timeout);
176 hci_req_unlock(hdev);
177
178 return ret;
179 }
180
181 static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
182 {
183 BT_DBG("%s %ld", hdev->name, opt);
184
185 /* Reset device */
186 set_bit(HCI_RESET, &hdev->flags);
187 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
188 }
189
190 static void bredr_init(struct hci_dev *hdev)
191 {
192 struct hci_cp_delete_stored_link_key cp;
193 __le16 param;
194 __u8 flt_type;
195
196 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
197
198 /* Mandatory initialization */
199
200 /* Reset */
201 if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
202 set_bit(HCI_RESET, &hdev->flags);
203 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
204 }
205
206 /* Read Local Supported Features */
207 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
208
209 /* Read Local Version */
210 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
211
212 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
213 hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
214
215 /* Read BD Address */
216 hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
217
218 /* Read Class of Device */
219 hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
220
221 /* Read Local Name */
222 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
223
224 /* Read Voice Setting */
225 hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
226
227 /* Optional initialization */
228
229 /* Clear Event Filters */
230 flt_type = HCI_FLT_CLEAR_ALL;
231 hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
232
233 /* Connection accept timeout ~20 secs */
234 param = cpu_to_le16(0x7d00);
235 hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
236
237 bacpy(&cp.bdaddr, BDADDR_ANY);
238 cp.delete_all = 1;
239 hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
240 }
241
242 static void amp_init(struct hci_dev *hdev)
243 {
244 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
245
246 /* Reset */
247 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
248
249 /* Read Local Version */
250 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
251 }
252
253 static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
254 {
255 struct sk_buff *skb;
256
257 BT_DBG("%s %ld", hdev->name, opt);
258
259 /* Driver initialization */
260
261 /* Special commands */
262 while ((skb = skb_dequeue(&hdev->driver_init))) {
263 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
264 skb->dev = (void *) hdev;
265
266 skb_queue_tail(&hdev->cmd_q, skb);
267 queue_work(hdev->workqueue, &hdev->cmd_work);
268 }
269 skb_queue_purge(&hdev->driver_init);
270
271 switch (hdev->dev_type) {
272 case HCI_BREDR:
273 bredr_init(hdev);
274 break;
275
276 case HCI_AMP:
277 amp_init(hdev);
278 break;
279
280 default:
281 BT_ERR("Unknown device type %d", hdev->dev_type);
282 break;
283 }
284
285 }
286
287 static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
288 {
289 BT_DBG("%s", hdev->name);
290
291 /* Read LE buffer size */
292 hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
293 }
294
295 static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
296 {
297 __u8 scan = opt;
298
299 BT_DBG("%s %x", hdev->name, scan);
300
301 /* Inquiry and Page scans */
302 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
303 }
304
305 static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
306 {
307 __u8 auth = opt;
308
309 BT_DBG("%s %x", hdev->name, auth);
310
311 /* Authentication */
312 hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
313 }
314
315 static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
316 {
317 __u8 encrypt = opt;
318
319 BT_DBG("%s %x", hdev->name, encrypt);
320
321 /* Encryption */
322 hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
323 }
324
325 static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
326 {
327 __le16 policy = cpu_to_le16(opt);
328
329 BT_DBG("%s %x", hdev->name, policy);
330
331 /* Default link policy */
332 hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
333 }
334
335 /* Get HCI device by index.
336 * Device is held on return. */
337 struct hci_dev *hci_dev_get(int index)
338 {
339 struct hci_dev *hdev = NULL, *d;
340
341 BT_DBG("%d", index);
342
343 if (index < 0)
344 return NULL;
345
346 read_lock(&hci_dev_list_lock);
347 list_for_each_entry(d, &hci_dev_list, list) {
348 if (d->id == index) {
349 hdev = hci_dev_hold(d);
350 break;
351 }
352 }
353 read_unlock(&hci_dev_list_lock);
354 return hdev;
355 }
356
357 /* ---- Inquiry support ---- */
358
359 bool hci_discovery_active(struct hci_dev *hdev)
360 {
361 struct discovery_state *discov = &hdev->discovery;
362
363 if (discov->state == DISCOVERY_INQUIRY ||
364 discov->state == DISCOVERY_RESOLVING)
365 return true;
366
367 return false;
368 }
369
370 void hci_discovery_set_state(struct hci_dev *hdev, int state)
371 {
372 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
373
374 if (hdev->discovery.state == state)
375 return;
376
377 switch (state) {
378 case DISCOVERY_STOPPED:
379 mgmt_discovering(hdev, 0);
380 break;
381 case DISCOVERY_STARTING:
382 break;
383 case DISCOVERY_INQUIRY:
384 mgmt_discovering(hdev, 1);
385 break;
386 case DISCOVERY_RESOLVING:
387 break;
388 case DISCOVERY_STOPPING:
389 break;
390 }
391
392 hdev->discovery.state = state;
393 }
394
395 static void inquiry_cache_flush(struct hci_dev *hdev)
396 {
397 struct discovery_state *cache = &hdev->discovery;
398 struct inquiry_entry *p, *n;
399
400 list_for_each_entry_safe(p, n, &cache->all, all) {
401 list_del(&p->all);
402 kfree(p);
403 }
404
405 INIT_LIST_HEAD(&cache->unknown);
406 INIT_LIST_HEAD(&cache->resolve);
407 cache->state = DISCOVERY_STOPPED;
408 }
409
410 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
411 {
412 struct discovery_state *cache = &hdev->discovery;
413 struct inquiry_entry *e;
414
415 BT_DBG("cache %p, %s", cache, batostr(bdaddr));
416
417 list_for_each_entry(e, &cache->all, all) {
418 if (!bacmp(&e->data.bdaddr, bdaddr))
419 return e;
420 }
421
422 return NULL;
423 }
424
425 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
426 bdaddr_t *bdaddr)
427 {
428 struct discovery_state *cache = &hdev->discovery;
429 struct inquiry_entry *e;
430
431 BT_DBG("cache %p, %s", cache, batostr(bdaddr));
432
433 list_for_each_entry(e, &cache->unknown, list) {
434 if (!bacmp(&e->data.bdaddr, bdaddr))
435 return e;
436 }
437
438 return NULL;
439 }
440
441 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
442 bdaddr_t *bdaddr,
443 int state)
444 {
445 struct discovery_state *cache = &hdev->discovery;
446 struct inquiry_entry *e;
447
448 BT_DBG("cache %p bdaddr %s state %d", cache, batostr(bdaddr), state);
449
450 list_for_each_entry(e, &cache->resolve, list) {
451 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
452 return e;
453 if (!bacmp(&e->data.bdaddr, bdaddr))
454 return e;
455 }
456
457 return NULL;
458 }
459
460 bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
461 bool name_known)
462 {
463 struct discovery_state *cache = &hdev->discovery;
464 struct inquiry_entry *ie;
465
466 BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
467
468 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
469 if (ie)
470 goto update;
471
472 /* Entry not in the cache. Add new one. */
473 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
474 if (!ie)
475 return false;
476
477 list_add(&ie->all, &cache->all);
478
479 if (name_known) {
480 ie->name_state = NAME_KNOWN;
481 } else {
482 ie->name_state = NAME_NOT_KNOWN;
483 list_add(&ie->list, &cache->unknown);
484 }
485
486 update:
487 if (name_known && ie->name_state != NAME_KNOWN &&
488 ie->name_state != NAME_PENDING) {
489 ie->name_state = NAME_KNOWN;
490 list_del(&ie->list);
491 }
492
493 memcpy(&ie->data, data, sizeof(*data));
494 ie->timestamp = jiffies;
495 cache->timestamp = jiffies;
496
497 if (ie->name_state == NAME_NOT_KNOWN)
498 return false;
499
500 return true;
501 }
502
503 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
504 {
505 struct discovery_state *cache = &hdev->discovery;
506 struct inquiry_info *info = (struct inquiry_info *) buf;
507 struct inquiry_entry *e;
508 int copied = 0;
509
510 list_for_each_entry(e, &cache->all, all) {
511 struct inquiry_data *data = &e->data;
512
513 if (copied >= num)
514 break;
515
516 bacpy(&info->bdaddr, &data->bdaddr);
517 info->pscan_rep_mode = data->pscan_rep_mode;
518 info->pscan_period_mode = data->pscan_period_mode;
519 info->pscan_mode = data->pscan_mode;
520 memcpy(info->dev_class, data->dev_class, 3);
521 info->clock_offset = data->clock_offset;
522
523 info++;
524 copied++;
525 }
526
527 BT_DBG("cache %p, copied %d", cache, copied);
528 return copied;
529 }
530
531 static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
532 {
533 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
534 struct hci_cp_inquiry cp;
535
536 BT_DBG("%s", hdev->name);
537
538 if (test_bit(HCI_INQUIRY, &hdev->flags))
539 return;
540
541 /* Start Inquiry */
542 memcpy(&cp.lap, &ir->lap, 3);
543 cp.length = ir->length;
544 cp.num_rsp = ir->num_rsp;
545 hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
546 }
547
548 int hci_inquiry(void __user *arg)
549 {
550 __u8 __user *ptr = arg;
551 struct hci_inquiry_req ir;
552 struct hci_dev *hdev;
553 int err = 0, do_inquiry = 0, max_rsp;
554 long timeo;
555 __u8 *buf;
556
557 if (copy_from_user(&ir, ptr, sizeof(ir)))
558 return -EFAULT;
559
560 hdev = hci_dev_get(ir.dev_id);
561 if (!hdev)
562 return -ENODEV;
563
564 hci_dev_lock(hdev);
565 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
566 inquiry_cache_empty(hdev) ||
567 ir.flags & IREQ_CACHE_FLUSH) {
568 inquiry_cache_flush(hdev);
569 do_inquiry = 1;
570 }
571 hci_dev_unlock(hdev);
572
573 timeo = ir.length * msecs_to_jiffies(2000);
574
575 if (do_inquiry) {
576 err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
577 if (err < 0)
578 goto done;
579 }
580
581 /* for unlimited number of responses we will use buffer with 255 entries */
582 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
583
584 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
585 * copy it to the user space.
586 */
587 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
588 if (!buf) {
589 err = -ENOMEM;
590 goto done;
591 }
592
593 hci_dev_lock(hdev);
594 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
595 hci_dev_unlock(hdev);
596
597 BT_DBG("num_rsp %d", ir.num_rsp);
598
599 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
600 ptr += sizeof(ir);
601 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
602 ir.num_rsp))
603 err = -EFAULT;
604 } else
605 err = -EFAULT;
606
607 kfree(buf);
608
609 done:
610 hci_dev_put(hdev);
611 return err;
612 }
613
614 /* ---- HCI ioctl helpers ---- */
615
616 int hci_dev_open(__u16 dev)
617 {
618 struct hci_dev *hdev;
619 int ret = 0;
620
621 hdev = hci_dev_get(dev);
622 if (!hdev)
623 return -ENODEV;
624
625 BT_DBG("%s %p", hdev->name, hdev);
626
627 hci_req_lock(hdev);
628
629 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
630 ret = -ERFKILL;
631 goto done;
632 }
633
634 if (test_bit(HCI_UP, &hdev->flags)) {
635 ret = -EALREADY;
636 goto done;
637 }
638
639 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
640 set_bit(HCI_RAW, &hdev->flags);
641
642 /* Treat all non BR/EDR controllers as raw devices if
643 enable_hs is not set */
644 if (hdev->dev_type != HCI_BREDR && !enable_hs)
645 set_bit(HCI_RAW, &hdev->flags);
646
647 if (hdev->open(hdev)) {
648 ret = -EIO;
649 goto done;
650 }
651
652 if (!test_bit(HCI_RAW, &hdev->flags)) {
653 atomic_set(&hdev->cmd_cnt, 1);
654 set_bit(HCI_INIT, &hdev->flags);
655 hdev->init_last_cmd = 0;
656
657 ret = __hci_request(hdev, hci_init_req, 0,
658 msecs_to_jiffies(HCI_INIT_TIMEOUT));
659
660 if (lmp_host_le_capable(hdev))
661 ret = __hci_request(hdev, hci_le_init_req, 0,
662 msecs_to_jiffies(HCI_INIT_TIMEOUT));
663
664 clear_bit(HCI_INIT, &hdev->flags);
665 }
666
667 if (!ret) {
668 hci_dev_hold(hdev);
669 set_bit(HCI_UP, &hdev->flags);
670 hci_notify(hdev, HCI_DEV_UP);
671 if (!test_bit(HCI_SETUP, &hdev->flags)) {
672 hci_dev_lock(hdev);
673 mgmt_powered(hdev, 1);
674 hci_dev_unlock(hdev);
675 }
676 } else {
677 /* Init failed, cleanup */
678 flush_work(&hdev->tx_work);
679 flush_work(&hdev->cmd_work);
680 flush_work(&hdev->rx_work);
681
682 skb_queue_purge(&hdev->cmd_q);
683 skb_queue_purge(&hdev->rx_q);
684
685 if (hdev->flush)
686 hdev->flush(hdev);
687
688 if (hdev->sent_cmd) {
689 kfree_skb(hdev->sent_cmd);
690 hdev->sent_cmd = NULL;
691 }
692
693 hdev->close(hdev);
694 hdev->flags = 0;
695 }
696
697 done:
698 hci_req_unlock(hdev);
699 hci_dev_put(hdev);
700 return ret;
701 }
702
703 static int hci_dev_do_close(struct hci_dev *hdev)
704 {
705 BT_DBG("%s %p", hdev->name, hdev);
706
707 hci_req_cancel(hdev, ENODEV);
708 hci_req_lock(hdev);
709
710 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
711 del_timer_sync(&hdev->cmd_timer);
712 hci_req_unlock(hdev);
713 return 0;
714 }
715
716 /* Flush RX and TX works */
717 flush_work(&hdev->tx_work);
718 flush_work(&hdev->rx_work);
719
720 if (hdev->discov_timeout > 0) {
721 cancel_delayed_work(&hdev->discov_off);
722 hdev->discov_timeout = 0;
723 }
724
725 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->flags))
726 cancel_delayed_work(&hdev->power_off);
727
728 if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->flags))
729 cancel_delayed_work(&hdev->service_cache);
730
731 hci_dev_lock(hdev);
732 inquiry_cache_flush(hdev);
733 hci_conn_hash_flush(hdev);
734 hci_dev_unlock(hdev);
735
736 hci_notify(hdev, HCI_DEV_DOWN);
737
738 if (hdev->flush)
739 hdev->flush(hdev);
740
741 /* Reset device */
742 skb_queue_purge(&hdev->cmd_q);
743 atomic_set(&hdev->cmd_cnt, 1);
744 if (!test_bit(HCI_RAW, &hdev->flags)) {
745 set_bit(HCI_INIT, &hdev->flags);
746 __hci_request(hdev, hci_reset_req, 0,
747 msecs_to_jiffies(250));
748 clear_bit(HCI_INIT, &hdev->flags);
749 }
750
751 /* flush cmd work */
752 flush_work(&hdev->cmd_work);
753
754 /* Drop queues */
755 skb_queue_purge(&hdev->rx_q);
756 skb_queue_purge(&hdev->cmd_q);
757 skb_queue_purge(&hdev->raw_q);
758
759 /* Drop last sent command */
760 if (hdev->sent_cmd) {
761 del_timer_sync(&hdev->cmd_timer);
762 kfree_skb(hdev->sent_cmd);
763 hdev->sent_cmd = NULL;
764 }
765
766 /* After this point our queues are empty
767 * and no tasks are scheduled. */
768 hdev->close(hdev);
769
770 hci_dev_lock(hdev);
771 mgmt_powered(hdev, 0);
772 hci_dev_unlock(hdev);
773
774 /* Clear flags */
775 hdev->flags = 0;
776
777 hci_req_unlock(hdev);
778
779 hci_dev_put(hdev);
780 return 0;
781 }
782
783 int hci_dev_close(__u16 dev)
784 {
785 struct hci_dev *hdev;
786 int err;
787
788 hdev = hci_dev_get(dev);
789 if (!hdev)
790 return -ENODEV;
791 err = hci_dev_do_close(hdev);
792 hci_dev_put(hdev);
793 return err;
794 }
795
796 int hci_dev_reset(__u16 dev)
797 {
798 struct hci_dev *hdev;
799 int ret = 0;
800
801 hdev = hci_dev_get(dev);
802 if (!hdev)
803 return -ENODEV;
804
805 hci_req_lock(hdev);
806
807 if (!test_bit(HCI_UP, &hdev->flags))
808 goto done;
809
810 /* Drop queues */
811 skb_queue_purge(&hdev->rx_q);
812 skb_queue_purge(&hdev->cmd_q);
813
814 hci_dev_lock(hdev);
815 inquiry_cache_flush(hdev);
816 hci_conn_hash_flush(hdev);
817 hci_dev_unlock(hdev);
818
819 if (hdev->flush)
820 hdev->flush(hdev);
821
822 atomic_set(&hdev->cmd_cnt, 1);
823 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
824
825 if (!test_bit(HCI_RAW, &hdev->flags))
826 ret = __hci_request(hdev, hci_reset_req, 0,
827 msecs_to_jiffies(HCI_INIT_TIMEOUT));
828
829 done:
830 hci_req_unlock(hdev);
831 hci_dev_put(hdev);
832 return ret;
833 }
834
835 int hci_dev_reset_stat(__u16 dev)
836 {
837 struct hci_dev *hdev;
838 int ret = 0;
839
840 hdev = hci_dev_get(dev);
841 if (!hdev)
842 return -ENODEV;
843
844 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
845
846 hci_dev_put(hdev);
847
848 return ret;
849 }
850
851 int hci_dev_cmd(unsigned int cmd, void __user *arg)
852 {
853 struct hci_dev *hdev;
854 struct hci_dev_req dr;
855 int err = 0;
856
857 if (copy_from_user(&dr, arg, sizeof(dr)))
858 return -EFAULT;
859
860 hdev = hci_dev_get(dr.dev_id);
861 if (!hdev)
862 return -ENODEV;
863
864 switch (cmd) {
865 case HCISETAUTH:
866 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
867 msecs_to_jiffies(HCI_INIT_TIMEOUT));
868 break;
869
870 case HCISETENCRYPT:
871 if (!lmp_encrypt_capable(hdev)) {
872 err = -EOPNOTSUPP;
873 break;
874 }
875
876 if (!test_bit(HCI_AUTH, &hdev->flags)) {
877 /* Auth must be enabled first */
878 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
879 msecs_to_jiffies(HCI_INIT_TIMEOUT));
880 if (err)
881 break;
882 }
883
884 err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
885 msecs_to_jiffies(HCI_INIT_TIMEOUT));
886 break;
887
888 case HCISETSCAN:
889 err = hci_request(hdev, hci_scan_req, dr.dev_opt,
890 msecs_to_jiffies(HCI_INIT_TIMEOUT));
891 break;
892
893 case HCISETLINKPOL:
894 err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
895 msecs_to_jiffies(HCI_INIT_TIMEOUT));
896 break;
897
898 case HCISETLINKMODE:
899 hdev->link_mode = ((__u16) dr.dev_opt) &
900 (HCI_LM_MASTER | HCI_LM_ACCEPT);
901 break;
902
903 case HCISETPTYPE:
904 hdev->pkt_type = (__u16) dr.dev_opt;
905 break;
906
907 case HCISETACLMTU:
908 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
909 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
910 break;
911
912 case HCISETSCOMTU:
913 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
914 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
915 break;
916
917 default:
918 err = -EINVAL;
919 break;
920 }
921
922 hci_dev_put(hdev);
923 return err;
924 }
925
926 int hci_get_dev_list(void __user *arg)
927 {
928 struct hci_dev *hdev;
929 struct hci_dev_list_req *dl;
930 struct hci_dev_req *dr;
931 int n = 0, size, err;
932 __u16 dev_num;
933
934 if (get_user(dev_num, (__u16 __user *) arg))
935 return -EFAULT;
936
937 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
938 return -EINVAL;
939
940 size = sizeof(*dl) + dev_num * sizeof(*dr);
941
942 dl = kzalloc(size, GFP_KERNEL);
943 if (!dl)
944 return -ENOMEM;
945
946 dr = dl->dev_req;
947
948 read_lock(&hci_dev_list_lock);
949 list_for_each_entry(hdev, &hci_dev_list, list) {
950 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->flags))
951 cancel_delayed_work(&hdev->power_off);
952
953 if (!test_bit(HCI_MGMT, &hdev->flags))
954 set_bit(HCI_PAIRABLE, &hdev->flags);
955
956 (dr + n)->dev_id = hdev->id;
957 (dr + n)->dev_opt = hdev->flags;
958
959 if (++n >= dev_num)
960 break;
961 }
962 read_unlock(&hci_dev_list_lock);
963
964 dl->dev_num = n;
965 size = sizeof(*dl) + n * sizeof(*dr);
966
967 err = copy_to_user(arg, dl, size);
968 kfree(dl);
969
970 return err ? -EFAULT : 0;
971 }
972
973 int hci_get_dev_info(void __user *arg)
974 {
975 struct hci_dev *hdev;
976 struct hci_dev_info di;
977 int err = 0;
978
979 if (copy_from_user(&di, arg, sizeof(di)))
980 return -EFAULT;
981
982 hdev = hci_dev_get(di.dev_id);
983 if (!hdev)
984 return -ENODEV;
985
986 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->flags))
987 cancel_delayed_work_sync(&hdev->power_off);
988
989 if (!test_bit(HCI_MGMT, &hdev->flags))
990 set_bit(HCI_PAIRABLE, &hdev->flags);
991
992 strcpy(di.name, hdev->name);
993 di.bdaddr = hdev->bdaddr;
994 di.type = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
995 di.flags = hdev->flags;
996 di.pkt_type = hdev->pkt_type;
997 di.acl_mtu = hdev->acl_mtu;
998 di.acl_pkts = hdev->acl_pkts;
999 di.sco_mtu = hdev->sco_mtu;
1000 di.sco_pkts = hdev->sco_pkts;
1001 di.link_policy = hdev->link_policy;
1002 di.link_mode = hdev->link_mode;
1003
1004 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1005 memcpy(&di.features, &hdev->features, sizeof(di.features));
1006
1007 if (copy_to_user(arg, &di, sizeof(di)))
1008 err = -EFAULT;
1009
1010 hci_dev_put(hdev);
1011
1012 return err;
1013 }
1014
1015 /* ---- Interface to HCI drivers ---- */
1016
1017 static int hci_rfkill_set_block(void *data, bool blocked)
1018 {
1019 struct hci_dev *hdev = data;
1020
1021 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1022
1023 if (!blocked)
1024 return 0;
1025
1026 hci_dev_do_close(hdev);
1027
1028 return 0;
1029 }
1030
1031 static const struct rfkill_ops hci_rfkill_ops = {
1032 .set_block = hci_rfkill_set_block,
1033 };
1034
1035 /* Alloc HCI device */
1036 struct hci_dev *hci_alloc_dev(void)
1037 {
1038 struct hci_dev *hdev;
1039
1040 hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
1041 if (!hdev)
1042 return NULL;
1043
1044 hci_init_sysfs(hdev);
1045 skb_queue_head_init(&hdev->driver_init);
1046
1047 return hdev;
1048 }
1049 EXPORT_SYMBOL(hci_alloc_dev);
1050
1051 /* Free HCI device */
1052 void hci_free_dev(struct hci_dev *hdev)
1053 {
1054 skb_queue_purge(&hdev->driver_init);
1055
1056 /* will free via device release */
1057 put_device(&hdev->dev);
1058 }
1059 EXPORT_SYMBOL(hci_free_dev);
1060
1061 static void hci_power_on(struct work_struct *work)
1062 {
1063 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
1064
1065 BT_DBG("%s", hdev->name);
1066
1067 if (hci_dev_open(hdev->id) < 0)
1068 return;
1069
1070 if (test_bit(HCI_AUTO_OFF, &hdev->flags))
1071 schedule_delayed_work(&hdev->power_off,
1072 msecs_to_jiffies(AUTO_OFF_TIMEOUT));
1073
1074 if (test_and_clear_bit(HCI_SETUP, &hdev->flags))
1075 mgmt_index_added(hdev);
1076 }
1077
1078 static void hci_power_off(struct work_struct *work)
1079 {
1080 struct hci_dev *hdev = container_of(work, struct hci_dev,
1081 power_off.work);
1082
1083 BT_DBG("%s", hdev->name);
1084
1085 clear_bit(HCI_AUTO_OFF, &hdev->flags);
1086
1087 hci_dev_close(hdev->id);
1088 }
1089
1090 static void hci_discov_off(struct work_struct *work)
1091 {
1092 struct hci_dev *hdev;
1093 u8 scan = SCAN_PAGE;
1094
1095 hdev = container_of(work, struct hci_dev, discov_off.work);
1096
1097 BT_DBG("%s", hdev->name);
1098
1099 hci_dev_lock(hdev);
1100
1101 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, sizeof(scan), &scan);
1102
1103 hdev->discov_timeout = 0;
1104
1105 hci_dev_unlock(hdev);
1106 }
1107
1108 int hci_uuids_clear(struct hci_dev *hdev)
1109 {
1110 struct list_head *p, *n;
1111
1112 list_for_each_safe(p, n, &hdev->uuids) {
1113 struct bt_uuid *uuid;
1114
1115 uuid = list_entry(p, struct bt_uuid, list);
1116
1117 list_del(p);
1118 kfree(uuid);
1119 }
1120
1121 return 0;
1122 }
1123
1124 int hci_link_keys_clear(struct hci_dev *hdev)
1125 {
1126 struct list_head *p, *n;
1127
1128 list_for_each_safe(p, n, &hdev->link_keys) {
1129 struct link_key *key;
1130
1131 key = list_entry(p, struct link_key, list);
1132
1133 list_del(p);
1134 kfree(key);
1135 }
1136
1137 return 0;
1138 }
1139
1140 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1141 {
1142 struct link_key *k;
1143
1144 list_for_each_entry(k, &hdev->link_keys, list)
1145 if (bacmp(bdaddr, &k->bdaddr) == 0)
1146 return k;
1147
1148 return NULL;
1149 }
1150
1151 static int hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1152 u8 key_type, u8 old_key_type)
1153 {
1154 /* Legacy key */
1155 if (key_type < 0x03)
1156 return 1;
1157
1158 /* Debug keys are insecure so don't store them persistently */
1159 if (key_type == HCI_LK_DEBUG_COMBINATION)
1160 return 0;
1161
1162 /* Changed combination key and there's no previous one */
1163 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1164 return 0;
1165
1166 /* Security mode 3 case */
1167 if (!conn)
1168 return 1;
1169
1170 /* Neither local nor remote side had no-bonding as requirement */
1171 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1172 return 1;
1173
1174 /* Local side had dedicated bonding as requirement */
1175 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1176 return 1;
1177
1178 /* Remote side had dedicated bonding as requirement */
1179 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1180 return 1;
1181
1182 /* If none of the above criteria match, then don't store the key
1183 * persistently */
1184 return 0;
1185 }
1186
1187 struct link_key *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1188 {
1189 struct link_key *k;
1190
1191 list_for_each_entry(k, &hdev->link_keys, list) {
1192 struct key_master_id *id;
1193
1194 if (k->type != HCI_LK_SMP_LTK)
1195 continue;
1196
1197 if (k->dlen != sizeof(*id))
1198 continue;
1199
1200 id = (void *) &k->data;
1201 if (id->ediv == ediv &&
1202 (memcmp(rand, id->rand, sizeof(id->rand)) == 0))
1203 return k;
1204 }
1205
1206 return NULL;
1207 }
1208 EXPORT_SYMBOL(hci_find_ltk);
1209
1210 struct link_key *hci_find_link_key_type(struct hci_dev *hdev,
1211 bdaddr_t *bdaddr, u8 type)
1212 {
1213 struct link_key *k;
1214
1215 list_for_each_entry(k, &hdev->link_keys, list)
1216 if (k->type == type && bacmp(bdaddr, &k->bdaddr) == 0)
1217 return k;
1218
1219 return NULL;
1220 }
1221 EXPORT_SYMBOL(hci_find_link_key_type);
1222
1223 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1224 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1225 {
1226 struct link_key *key, *old_key;
1227 u8 old_key_type, persistent;
1228
1229 old_key = hci_find_link_key(hdev, bdaddr);
1230 if (old_key) {
1231 old_key_type = old_key->type;
1232 key = old_key;
1233 } else {
1234 old_key_type = conn ? conn->key_type : 0xff;
1235 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1236 if (!key)
1237 return -ENOMEM;
1238 list_add(&key->list, &hdev->link_keys);
1239 }
1240
1241 BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1242
1243 /* Some buggy controller combinations generate a changed
1244 * combination key for legacy pairing even when there's no
1245 * previous key */
1246 if (type == HCI_LK_CHANGED_COMBINATION &&
1247 (!conn || conn->remote_auth == 0xff) &&
1248 old_key_type == 0xff) {
1249 type = HCI_LK_COMBINATION;
1250 if (conn)
1251 conn->key_type = type;
1252 }
1253
1254 bacpy(&key->bdaddr, bdaddr);
1255 memcpy(key->val, val, 16);
1256 key->pin_len = pin_len;
1257
1258 if (type == HCI_LK_CHANGED_COMBINATION)
1259 key->type = old_key_type;
1260 else
1261 key->type = type;
1262
1263 if (!new_key)
1264 return 0;
1265
1266 persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1267
1268 mgmt_new_link_key(hdev, key, persistent);
1269
1270 if (!persistent) {
1271 list_del(&key->list);
1272 kfree(key);
1273 }
1274
1275 return 0;
1276 }
1277
1278 int hci_add_ltk(struct hci_dev *hdev, int new_key, bdaddr_t *bdaddr,
1279 u8 key_size, __le16 ediv, u8 rand[8], u8 ltk[16])
1280 {
1281 struct link_key *key, *old_key;
1282 struct key_master_id *id;
1283 u8 old_key_type;
1284
1285 BT_DBG("%s addr %s", hdev->name, batostr(bdaddr));
1286
1287 old_key = hci_find_link_key_type(hdev, bdaddr, HCI_LK_SMP_LTK);
1288 if (old_key) {
1289 key = old_key;
1290 old_key_type = old_key->type;
1291 } else {
1292 key = kzalloc(sizeof(*key) + sizeof(*id), GFP_ATOMIC);
1293 if (!key)
1294 return -ENOMEM;
1295 list_add(&key->list, &hdev->link_keys);
1296 old_key_type = 0xff;
1297 }
1298
1299 key->dlen = sizeof(*id);
1300
1301 bacpy(&key->bdaddr, bdaddr);
1302 memcpy(key->val, ltk, sizeof(key->val));
1303 key->type = HCI_LK_SMP_LTK;
1304 key->pin_len = key_size;
1305
1306 id = (void *) &key->data;
1307 id->ediv = ediv;
1308 memcpy(id->rand, rand, sizeof(id->rand));
1309
1310 if (new_key)
1311 mgmt_new_link_key(hdev, key, old_key_type);
1312
1313 return 0;
1314 }
1315
1316 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1317 {
1318 struct link_key *key;
1319
1320 key = hci_find_link_key(hdev, bdaddr);
1321 if (!key)
1322 return -ENOENT;
1323
1324 BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1325
1326 list_del(&key->list);
1327 kfree(key);
1328
1329 return 0;
1330 }
1331
1332 /* HCI command timer function */
1333 static void hci_cmd_timer(unsigned long arg)
1334 {
1335 struct hci_dev *hdev = (void *) arg;
1336
1337 BT_ERR("%s command tx timeout", hdev->name);
1338 atomic_set(&hdev->cmd_cnt, 1);
1339 queue_work(hdev->workqueue, &hdev->cmd_work);
1340 }
1341
1342 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1343 bdaddr_t *bdaddr)
1344 {
1345 struct oob_data *data;
1346
1347 list_for_each_entry(data, &hdev->remote_oob_data, list)
1348 if (bacmp(bdaddr, &data->bdaddr) == 0)
1349 return data;
1350
1351 return NULL;
1352 }
1353
1354 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1355 {
1356 struct oob_data *data;
1357
1358 data = hci_find_remote_oob_data(hdev, bdaddr);
1359 if (!data)
1360 return -ENOENT;
1361
1362 BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1363
1364 list_del(&data->list);
1365 kfree(data);
1366
1367 return 0;
1368 }
1369
1370 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1371 {
1372 struct oob_data *data, *n;
1373
1374 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1375 list_del(&data->list);
1376 kfree(data);
1377 }
1378
1379 return 0;
1380 }
1381
1382 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1383 u8 *randomizer)
1384 {
1385 struct oob_data *data;
1386
1387 data = hci_find_remote_oob_data(hdev, bdaddr);
1388
1389 if (!data) {
1390 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1391 if (!data)
1392 return -ENOMEM;
1393
1394 bacpy(&data->bdaddr, bdaddr);
1395 list_add(&data->list, &hdev->remote_oob_data);
1396 }
1397
1398 memcpy(data->hash, hash, sizeof(data->hash));
1399 memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1400
1401 BT_DBG("%s for %s", hdev->name, batostr(bdaddr));
1402
1403 return 0;
1404 }
1405
1406 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
1407 bdaddr_t *bdaddr)
1408 {
1409 struct bdaddr_list *b;
1410
1411 list_for_each_entry(b, &hdev->blacklist, list)
1412 if (bacmp(bdaddr, &b->bdaddr) == 0)
1413 return b;
1414
1415 return NULL;
1416 }
1417
1418 int hci_blacklist_clear(struct hci_dev *hdev)
1419 {
1420 struct list_head *p, *n;
1421
1422 list_for_each_safe(p, n, &hdev->blacklist) {
1423 struct bdaddr_list *b;
1424
1425 b = list_entry(p, struct bdaddr_list, list);
1426
1427 list_del(p);
1428 kfree(b);
1429 }
1430
1431 return 0;
1432 }
1433
1434 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr)
1435 {
1436 struct bdaddr_list *entry;
1437
1438 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1439 return -EBADF;
1440
1441 if (hci_blacklist_lookup(hdev, bdaddr))
1442 return -EEXIST;
1443
1444 entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1445 if (!entry)
1446 return -ENOMEM;
1447
1448 bacpy(&entry->bdaddr, bdaddr);
1449
1450 list_add(&entry->list, &hdev->blacklist);
1451
1452 return mgmt_device_blocked(hdev, bdaddr);
1453 }
1454
1455 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr)
1456 {
1457 struct bdaddr_list *entry;
1458
1459 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1460 return hci_blacklist_clear(hdev);
1461
1462 entry = hci_blacklist_lookup(hdev, bdaddr);
1463 if (!entry)
1464 return -ENOENT;
1465
1466 list_del(&entry->list);
1467 kfree(entry);
1468
1469 return mgmt_device_unblocked(hdev, bdaddr);
1470 }
1471
1472 static void hci_clear_adv_cache(struct work_struct *work)
1473 {
1474 struct hci_dev *hdev = container_of(work, struct hci_dev,
1475 adv_work.work);
1476
1477 hci_dev_lock(hdev);
1478
1479 hci_adv_entries_clear(hdev);
1480
1481 hci_dev_unlock(hdev);
1482 }
1483
1484 int hci_adv_entries_clear(struct hci_dev *hdev)
1485 {
1486 struct adv_entry *entry, *tmp;
1487
1488 list_for_each_entry_safe(entry, tmp, &hdev->adv_entries, list) {
1489 list_del(&entry->list);
1490 kfree(entry);
1491 }
1492
1493 BT_DBG("%s adv cache cleared", hdev->name);
1494
1495 return 0;
1496 }
1497
1498 struct adv_entry *hci_find_adv_entry(struct hci_dev *hdev, bdaddr_t *bdaddr)
1499 {
1500 struct adv_entry *entry;
1501
1502 list_for_each_entry(entry, &hdev->adv_entries, list)
1503 if (bacmp(bdaddr, &entry->bdaddr) == 0)
1504 return entry;
1505
1506 return NULL;
1507 }
1508
1509 static inline int is_connectable_adv(u8 evt_type)
1510 {
1511 if (evt_type == ADV_IND || evt_type == ADV_DIRECT_IND)
1512 return 1;
1513
1514 return 0;
1515 }
1516
1517 int hci_add_adv_entry(struct hci_dev *hdev,
1518 struct hci_ev_le_advertising_info *ev)
1519 {
1520 struct adv_entry *entry;
1521
1522 if (!is_connectable_adv(ev->evt_type))
1523 return -EINVAL;
1524
1525 /* Only new entries should be added to adv_entries. So, if
1526 * bdaddr was found, don't add it. */
1527 if (hci_find_adv_entry(hdev, &ev->bdaddr))
1528 return 0;
1529
1530 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1531 if (!entry)
1532 return -ENOMEM;
1533
1534 bacpy(&entry->bdaddr, &ev->bdaddr);
1535 entry->bdaddr_type = ev->bdaddr_type;
1536
1537 list_add(&entry->list, &hdev->adv_entries);
1538
1539 BT_DBG("%s adv entry added: address %s type %u", hdev->name,
1540 batostr(&entry->bdaddr), entry->bdaddr_type);
1541
1542 return 0;
1543 }
1544
1545 /* Register HCI device */
1546 int hci_register_dev(struct hci_dev *hdev)
1547 {
1548 struct list_head *head = &hci_dev_list, *p;
1549 int i, id, error;
1550
1551 BT_DBG("%p name %s bus %d owner %p", hdev, hdev->name,
1552 hdev->bus, hdev->owner);
1553
1554 if (!hdev->open || !hdev->close || !hdev->destruct)
1555 return -EINVAL;
1556
1557 /* Do not allow HCI_AMP devices to register at index 0,
1558 * so the index can be used as the AMP controller ID.
1559 */
1560 id = (hdev->dev_type == HCI_BREDR) ? 0 : 1;
1561
1562 write_lock(&hci_dev_list_lock);
1563
1564 /* Find first available device id */
1565 list_for_each(p, &hci_dev_list) {
1566 if (list_entry(p, struct hci_dev, list)->id != id)
1567 break;
1568 head = p; id++;
1569 }
1570
1571 sprintf(hdev->name, "hci%d", id);
1572 hdev->id = id;
1573 list_add_tail(&hdev->list, head);
1574
1575 atomic_set(&hdev->refcnt, 1);
1576 mutex_init(&hdev->lock);
1577
1578 hdev->flags = 0;
1579 hdev->dev_flags = 0;
1580 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1581 hdev->esco_type = (ESCO_HV1);
1582 hdev->link_mode = (HCI_LM_ACCEPT);
1583 hdev->io_capability = 0x03; /* No Input No Output */
1584
1585 hdev->idle_timeout = 0;
1586 hdev->sniff_max_interval = 800;
1587 hdev->sniff_min_interval = 80;
1588
1589 INIT_WORK(&hdev->rx_work, hci_rx_work);
1590 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
1591 INIT_WORK(&hdev->tx_work, hci_tx_work);
1592
1593
1594 skb_queue_head_init(&hdev->rx_q);
1595 skb_queue_head_init(&hdev->cmd_q);
1596 skb_queue_head_init(&hdev->raw_q);
1597
1598 setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
1599
1600 for (i = 0; i < NUM_REASSEMBLY; i++)
1601 hdev->reassembly[i] = NULL;
1602
1603 init_waitqueue_head(&hdev->req_wait_q);
1604 mutex_init(&hdev->req_lock);
1605
1606 discovery_init(hdev);
1607
1608 hci_conn_hash_init(hdev);
1609
1610 INIT_LIST_HEAD(&hdev->mgmt_pending);
1611
1612 INIT_LIST_HEAD(&hdev->blacklist);
1613
1614 INIT_LIST_HEAD(&hdev->uuids);
1615
1616 INIT_LIST_HEAD(&hdev->link_keys);
1617
1618 INIT_LIST_HEAD(&hdev->remote_oob_data);
1619
1620 INIT_LIST_HEAD(&hdev->adv_entries);
1621
1622 INIT_DELAYED_WORK(&hdev->adv_work, hci_clear_adv_cache);
1623 INIT_WORK(&hdev->power_on, hci_power_on);
1624 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
1625
1626 INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
1627
1628 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1629
1630 atomic_set(&hdev->promisc, 0);
1631
1632 write_unlock(&hci_dev_list_lock);
1633
1634 hdev->workqueue = alloc_workqueue(hdev->name, WQ_HIGHPRI | WQ_UNBOUND |
1635 WQ_MEM_RECLAIM, 1);
1636 if (!hdev->workqueue) {
1637 error = -ENOMEM;
1638 goto err;
1639 }
1640
1641 error = hci_add_sysfs(hdev);
1642 if (error < 0)
1643 goto err_wqueue;
1644
1645 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1646 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
1647 if (hdev->rfkill) {
1648 if (rfkill_register(hdev->rfkill) < 0) {
1649 rfkill_destroy(hdev->rfkill);
1650 hdev->rfkill = NULL;
1651 }
1652 }
1653
1654 set_bit(HCI_AUTO_OFF, &hdev->flags);
1655 set_bit(HCI_SETUP, &hdev->flags);
1656 schedule_work(&hdev->power_on);
1657
1658 hci_notify(hdev, HCI_DEV_REG);
1659
1660 return id;
1661
1662 err_wqueue:
1663 destroy_workqueue(hdev->workqueue);
1664 err:
1665 write_lock(&hci_dev_list_lock);
1666 list_del(&hdev->list);
1667 write_unlock(&hci_dev_list_lock);
1668
1669 return error;
1670 }
1671 EXPORT_SYMBOL(hci_register_dev);
1672
1673 /* Unregister HCI device */
1674 void hci_unregister_dev(struct hci_dev *hdev)
1675 {
1676 int i;
1677
1678 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1679
1680 write_lock(&hci_dev_list_lock);
1681 list_del(&hdev->list);
1682 write_unlock(&hci_dev_list_lock);
1683
1684 hci_dev_do_close(hdev);
1685
1686 for (i = 0; i < NUM_REASSEMBLY; i++)
1687 kfree_skb(hdev->reassembly[i]);
1688
1689 if (!test_bit(HCI_INIT, &hdev->flags) &&
1690 !test_bit(HCI_SETUP, &hdev->flags)) {
1691 hci_dev_lock(hdev);
1692 mgmt_index_removed(hdev);
1693 hci_dev_unlock(hdev);
1694 }
1695
1696 /* mgmt_index_removed should take care of emptying the
1697 * pending list */
1698 BUG_ON(!list_empty(&hdev->mgmt_pending));
1699
1700 hci_notify(hdev, HCI_DEV_UNREG);
1701
1702 if (hdev->rfkill) {
1703 rfkill_unregister(hdev->rfkill);
1704 rfkill_destroy(hdev->rfkill);
1705 }
1706
1707 hci_del_sysfs(hdev);
1708
1709 cancel_delayed_work_sync(&hdev->adv_work);
1710
1711 destroy_workqueue(hdev->workqueue);
1712
1713 hci_dev_lock(hdev);
1714 hci_blacklist_clear(hdev);
1715 hci_uuids_clear(hdev);
1716 hci_link_keys_clear(hdev);
1717 hci_remote_oob_data_clear(hdev);
1718 hci_adv_entries_clear(hdev);
1719 hci_dev_unlock(hdev);
1720
1721 __hci_dev_put(hdev);
1722 }
1723 EXPORT_SYMBOL(hci_unregister_dev);
1724
1725 /* Suspend HCI device */
1726 int hci_suspend_dev(struct hci_dev *hdev)
1727 {
1728 hci_notify(hdev, HCI_DEV_SUSPEND);
1729 return 0;
1730 }
1731 EXPORT_SYMBOL(hci_suspend_dev);
1732
1733 /* Resume HCI device */
1734 int hci_resume_dev(struct hci_dev *hdev)
1735 {
1736 hci_notify(hdev, HCI_DEV_RESUME);
1737 return 0;
1738 }
1739 EXPORT_SYMBOL(hci_resume_dev);
1740
1741 /* Receive frame from HCI drivers */
1742 int hci_recv_frame(struct sk_buff *skb)
1743 {
1744 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1745 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1746 && !test_bit(HCI_INIT, &hdev->flags))) {
1747 kfree_skb(skb);
1748 return -ENXIO;
1749 }
1750
1751 /* Incomming skb */
1752 bt_cb(skb)->incoming = 1;
1753
1754 /* Time stamp */
1755 __net_timestamp(skb);
1756
1757 skb_queue_tail(&hdev->rx_q, skb);
1758 queue_work(hdev->workqueue, &hdev->rx_work);
1759
1760 return 0;
1761 }
1762 EXPORT_SYMBOL(hci_recv_frame);
1763
1764 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1765 int count, __u8 index)
1766 {
1767 int len = 0;
1768 int hlen = 0;
1769 int remain = count;
1770 struct sk_buff *skb;
1771 struct bt_skb_cb *scb;
1772
1773 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1774 index >= NUM_REASSEMBLY)
1775 return -EILSEQ;
1776
1777 skb = hdev->reassembly[index];
1778
1779 if (!skb) {
1780 switch (type) {
1781 case HCI_ACLDATA_PKT:
1782 len = HCI_MAX_FRAME_SIZE;
1783 hlen = HCI_ACL_HDR_SIZE;
1784 break;
1785 case HCI_EVENT_PKT:
1786 len = HCI_MAX_EVENT_SIZE;
1787 hlen = HCI_EVENT_HDR_SIZE;
1788 break;
1789 case HCI_SCODATA_PKT:
1790 len = HCI_MAX_SCO_SIZE;
1791 hlen = HCI_SCO_HDR_SIZE;
1792 break;
1793 }
1794
1795 skb = bt_skb_alloc(len, GFP_ATOMIC);
1796 if (!skb)
1797 return -ENOMEM;
1798
1799 scb = (void *) skb->cb;
1800 scb->expect = hlen;
1801 scb->pkt_type = type;
1802
1803 skb->dev = (void *) hdev;
1804 hdev->reassembly[index] = skb;
1805 }
1806
1807 while (count) {
1808 scb = (void *) skb->cb;
1809 len = min(scb->expect, (__u16)count);
1810
1811 memcpy(skb_put(skb, len), data, len);
1812
1813 count -= len;
1814 data += len;
1815 scb->expect -= len;
1816 remain = count;
1817
1818 switch (type) {
1819 case HCI_EVENT_PKT:
1820 if (skb->len == HCI_EVENT_HDR_SIZE) {
1821 struct hci_event_hdr *h = hci_event_hdr(skb);
1822 scb->expect = h->plen;
1823
1824 if (skb_tailroom(skb) < scb->expect) {
1825 kfree_skb(skb);
1826 hdev->reassembly[index] = NULL;
1827 return -ENOMEM;
1828 }
1829 }
1830 break;
1831
1832 case HCI_ACLDATA_PKT:
1833 if (skb->len == HCI_ACL_HDR_SIZE) {
1834 struct hci_acl_hdr *h = hci_acl_hdr(skb);
1835 scb->expect = __le16_to_cpu(h->dlen);
1836
1837 if (skb_tailroom(skb) < scb->expect) {
1838 kfree_skb(skb);
1839 hdev->reassembly[index] = NULL;
1840 return -ENOMEM;
1841 }
1842 }
1843 break;
1844
1845 case HCI_SCODATA_PKT:
1846 if (skb->len == HCI_SCO_HDR_SIZE) {
1847 struct hci_sco_hdr *h = hci_sco_hdr(skb);
1848 scb->expect = h->dlen;
1849
1850 if (skb_tailroom(skb) < scb->expect) {
1851 kfree_skb(skb);
1852 hdev->reassembly[index] = NULL;
1853 return -ENOMEM;
1854 }
1855 }
1856 break;
1857 }
1858
1859 if (scb->expect == 0) {
1860 /* Complete frame */
1861
1862 bt_cb(skb)->pkt_type = type;
1863 hci_recv_frame(skb);
1864
1865 hdev->reassembly[index] = NULL;
1866 return remain;
1867 }
1868 }
1869
1870 return remain;
1871 }
1872
1873 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
1874 {
1875 int rem = 0;
1876
1877 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
1878 return -EILSEQ;
1879
1880 while (count) {
1881 rem = hci_reassembly(hdev, type, data, count, type - 1);
1882 if (rem < 0)
1883 return rem;
1884
1885 data += (count - rem);
1886 count = rem;
1887 }
1888
1889 return rem;
1890 }
1891 EXPORT_SYMBOL(hci_recv_fragment);
1892
1893 #define STREAM_REASSEMBLY 0
1894
1895 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
1896 {
1897 int type;
1898 int rem = 0;
1899
1900 while (count) {
1901 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
1902
1903 if (!skb) {
1904 struct { char type; } *pkt;
1905
1906 /* Start of the frame */
1907 pkt = data;
1908 type = pkt->type;
1909
1910 data++;
1911 count--;
1912 } else
1913 type = bt_cb(skb)->pkt_type;
1914
1915 rem = hci_reassembly(hdev, type, data, count,
1916 STREAM_REASSEMBLY);
1917 if (rem < 0)
1918 return rem;
1919
1920 data += (count - rem);
1921 count = rem;
1922 }
1923
1924 return rem;
1925 }
1926 EXPORT_SYMBOL(hci_recv_stream_fragment);
1927
1928 /* ---- Interface to upper protocols ---- */
1929
1930 int hci_register_cb(struct hci_cb *cb)
1931 {
1932 BT_DBG("%p name %s", cb, cb->name);
1933
1934 write_lock(&hci_cb_list_lock);
1935 list_add(&cb->list, &hci_cb_list);
1936 write_unlock(&hci_cb_list_lock);
1937
1938 return 0;
1939 }
1940 EXPORT_SYMBOL(hci_register_cb);
1941
1942 int hci_unregister_cb(struct hci_cb *cb)
1943 {
1944 BT_DBG("%p name %s", cb, cb->name);
1945
1946 write_lock(&hci_cb_list_lock);
1947 list_del(&cb->list);
1948 write_unlock(&hci_cb_list_lock);
1949
1950 return 0;
1951 }
1952 EXPORT_SYMBOL(hci_unregister_cb);
1953
1954 static int hci_send_frame(struct sk_buff *skb)
1955 {
1956 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1957
1958 if (!hdev) {
1959 kfree_skb(skb);
1960 return -ENODEV;
1961 }
1962
1963 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
1964
1965 if (atomic_read(&hdev->promisc)) {
1966 /* Time stamp */
1967 __net_timestamp(skb);
1968
1969 hci_send_to_sock(hdev, skb, NULL);
1970 }
1971
1972 /* Get rid of skb owner, prior to sending to the driver. */
1973 skb_orphan(skb);
1974
1975 return hdev->send(skb);
1976 }
1977
1978 /* Send HCI command */
1979 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
1980 {
1981 int len = HCI_COMMAND_HDR_SIZE + plen;
1982 struct hci_command_hdr *hdr;
1983 struct sk_buff *skb;
1984
1985 BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
1986
1987 skb = bt_skb_alloc(len, GFP_ATOMIC);
1988 if (!skb) {
1989 BT_ERR("%s no memory for command", hdev->name);
1990 return -ENOMEM;
1991 }
1992
1993 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
1994 hdr->opcode = cpu_to_le16(opcode);
1995 hdr->plen = plen;
1996
1997 if (plen)
1998 memcpy(skb_put(skb, plen), param, plen);
1999
2000 BT_DBG("skb len %d", skb->len);
2001
2002 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
2003 skb->dev = (void *) hdev;
2004
2005 if (test_bit(HCI_INIT, &hdev->flags))
2006 hdev->init_last_cmd = opcode;
2007
2008 skb_queue_tail(&hdev->cmd_q, skb);
2009 queue_work(hdev->workqueue, &hdev->cmd_work);
2010
2011 return 0;
2012 }
2013
2014 /* Get data from the previously sent command */
2015 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
2016 {
2017 struct hci_command_hdr *hdr;
2018
2019 if (!hdev->sent_cmd)
2020 return NULL;
2021
2022 hdr = (void *) hdev->sent_cmd->data;
2023
2024 if (hdr->opcode != cpu_to_le16(opcode))
2025 return NULL;
2026
2027 BT_DBG("%s opcode 0x%x", hdev->name, opcode);
2028
2029 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
2030 }
2031
2032 /* Send ACL data */
2033 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
2034 {
2035 struct hci_acl_hdr *hdr;
2036 int len = skb->len;
2037
2038 skb_push(skb, HCI_ACL_HDR_SIZE);
2039 skb_reset_transport_header(skb);
2040 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
2041 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
2042 hdr->dlen = cpu_to_le16(len);
2043 }
2044
2045 static void hci_queue_acl(struct hci_conn *conn, struct sk_buff_head *queue,
2046 struct sk_buff *skb, __u16 flags)
2047 {
2048 struct hci_dev *hdev = conn->hdev;
2049 struct sk_buff *list;
2050
2051 list = skb_shinfo(skb)->frag_list;
2052 if (!list) {
2053 /* Non fragmented */
2054 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
2055
2056 skb_queue_tail(queue, skb);
2057 } else {
2058 /* Fragmented */
2059 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2060
2061 skb_shinfo(skb)->frag_list = NULL;
2062
2063 /* Queue all fragments atomically */
2064 spin_lock(&queue->lock);
2065
2066 __skb_queue_tail(queue, skb);
2067
2068 flags &= ~ACL_START;
2069 flags |= ACL_CONT;
2070 do {
2071 skb = list; list = list->next;
2072
2073 skb->dev = (void *) hdev;
2074 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2075 hci_add_acl_hdr(skb, conn->handle, flags);
2076
2077 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2078
2079 __skb_queue_tail(queue, skb);
2080 } while (list);
2081
2082 spin_unlock(&queue->lock);
2083 }
2084 }
2085
2086 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
2087 {
2088 struct hci_conn *conn = chan->conn;
2089 struct hci_dev *hdev = conn->hdev;
2090
2091 BT_DBG("%s chan %p flags 0x%x", hdev->name, chan, flags);
2092
2093 skb->dev = (void *) hdev;
2094 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2095 hci_add_acl_hdr(skb, conn->handle, flags);
2096
2097 hci_queue_acl(conn, &chan->data_q, skb, flags);
2098
2099 queue_work(hdev->workqueue, &hdev->tx_work);
2100 }
2101 EXPORT_SYMBOL(hci_send_acl);
2102
2103 /* Send SCO data */
2104 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2105 {
2106 struct hci_dev *hdev = conn->hdev;
2107 struct hci_sco_hdr hdr;
2108
2109 BT_DBG("%s len %d", hdev->name, skb->len);
2110
2111 hdr.handle = cpu_to_le16(conn->handle);
2112 hdr.dlen = skb->len;
2113
2114 skb_push(skb, HCI_SCO_HDR_SIZE);
2115 skb_reset_transport_header(skb);
2116 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2117
2118 skb->dev = (void *) hdev;
2119 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2120
2121 skb_queue_tail(&conn->data_q, skb);
2122 queue_work(hdev->workqueue, &hdev->tx_work);
2123 }
2124 EXPORT_SYMBOL(hci_send_sco);
2125
2126 /* ---- HCI TX task (outgoing data) ---- */
2127
2128 /* HCI Connection scheduler */
2129 static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
2130 {
2131 struct hci_conn_hash *h = &hdev->conn_hash;
2132 struct hci_conn *conn = NULL, *c;
2133 int num = 0, min = ~0;
2134
2135 /* We don't have to lock device here. Connections are always
2136 * added and removed with TX task disabled. */
2137
2138 rcu_read_lock();
2139
2140 list_for_each_entry_rcu(c, &h->list, list) {
2141 if (c->type != type || skb_queue_empty(&c->data_q))
2142 continue;
2143
2144 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2145 continue;
2146
2147 num++;
2148
2149 if (c->sent < min) {
2150 min = c->sent;
2151 conn = c;
2152 }
2153
2154 if (hci_conn_num(hdev, type) == num)
2155 break;
2156 }
2157
2158 rcu_read_unlock();
2159
2160 if (conn) {
2161 int cnt, q;
2162
2163 switch (conn->type) {
2164 case ACL_LINK:
2165 cnt = hdev->acl_cnt;
2166 break;
2167 case SCO_LINK:
2168 case ESCO_LINK:
2169 cnt = hdev->sco_cnt;
2170 break;
2171 case LE_LINK:
2172 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2173 break;
2174 default:
2175 cnt = 0;
2176 BT_ERR("Unknown link type");
2177 }
2178
2179 q = cnt / num;
2180 *quote = q ? q : 1;
2181 } else
2182 *quote = 0;
2183
2184 BT_DBG("conn %p quote %d", conn, *quote);
2185 return conn;
2186 }
2187
2188 static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2189 {
2190 struct hci_conn_hash *h = &hdev->conn_hash;
2191 struct hci_conn *c;
2192
2193 BT_ERR("%s link tx timeout", hdev->name);
2194
2195 rcu_read_lock();
2196
2197 /* Kill stalled connections */
2198 list_for_each_entry_rcu(c, &h->list, list) {
2199 if (c->type == type && c->sent) {
2200 BT_ERR("%s killing stalled connection %s",
2201 hdev->name, batostr(&c->dst));
2202 hci_acl_disconn(c, 0x13);
2203 }
2204 }
2205
2206 rcu_read_unlock();
2207 }
2208
2209 static inline struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
2210 int *quote)
2211 {
2212 struct hci_conn_hash *h = &hdev->conn_hash;
2213 struct hci_chan *chan = NULL;
2214 int num = 0, min = ~0, cur_prio = 0;
2215 struct hci_conn *conn;
2216 int cnt, q, conn_num = 0;
2217
2218 BT_DBG("%s", hdev->name);
2219
2220 rcu_read_lock();
2221
2222 list_for_each_entry_rcu(conn, &h->list, list) {
2223 struct hci_chan *tmp;
2224
2225 if (conn->type != type)
2226 continue;
2227
2228 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2229 continue;
2230
2231 conn_num++;
2232
2233 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
2234 struct sk_buff *skb;
2235
2236 if (skb_queue_empty(&tmp->data_q))
2237 continue;
2238
2239 skb = skb_peek(&tmp->data_q);
2240 if (skb->priority < cur_prio)
2241 continue;
2242
2243 if (skb->priority > cur_prio) {
2244 num = 0;
2245 min = ~0;
2246 cur_prio = skb->priority;
2247 }
2248
2249 num++;
2250
2251 if (conn->sent < min) {
2252 min = conn->sent;
2253 chan = tmp;
2254 }
2255 }
2256
2257 if (hci_conn_num(hdev, type) == conn_num)
2258 break;
2259 }
2260
2261 rcu_read_unlock();
2262
2263 if (!chan)
2264 return NULL;
2265
2266 switch (chan->conn->type) {
2267 case ACL_LINK:
2268 cnt = hdev->acl_cnt;
2269 break;
2270 case SCO_LINK:
2271 case ESCO_LINK:
2272 cnt = hdev->sco_cnt;
2273 break;
2274 case LE_LINK:
2275 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2276 break;
2277 default:
2278 cnt = 0;
2279 BT_ERR("Unknown link type");
2280 }
2281
2282 q = cnt / num;
2283 *quote = q ? q : 1;
2284 BT_DBG("chan %p quote %d", chan, *quote);
2285 return chan;
2286 }
2287
2288 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
2289 {
2290 struct hci_conn_hash *h = &hdev->conn_hash;
2291 struct hci_conn *conn;
2292 int num = 0;
2293
2294 BT_DBG("%s", hdev->name);
2295
2296 rcu_read_lock();
2297
2298 list_for_each_entry_rcu(conn, &h->list, list) {
2299 struct hci_chan *chan;
2300
2301 if (conn->type != type)
2302 continue;
2303
2304 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2305 continue;
2306
2307 num++;
2308
2309 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
2310 struct sk_buff *skb;
2311
2312 if (chan->sent) {
2313 chan->sent = 0;
2314 continue;
2315 }
2316
2317 if (skb_queue_empty(&chan->data_q))
2318 continue;
2319
2320 skb = skb_peek(&chan->data_q);
2321 if (skb->priority >= HCI_PRIO_MAX - 1)
2322 continue;
2323
2324 skb->priority = HCI_PRIO_MAX - 1;
2325
2326 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
2327 skb->priority);
2328 }
2329
2330 if (hci_conn_num(hdev, type) == num)
2331 break;
2332 }
2333
2334 rcu_read_unlock();
2335
2336 }
2337
2338 static inline void hci_sched_acl(struct hci_dev *hdev)
2339 {
2340 struct hci_chan *chan;
2341 struct sk_buff *skb;
2342 int quote;
2343 unsigned int cnt;
2344
2345 BT_DBG("%s", hdev->name);
2346
2347 if (!hci_conn_num(hdev, ACL_LINK))
2348 return;
2349
2350 if (!test_bit(HCI_RAW, &hdev->flags)) {
2351 /* ACL tx timeout must be longer than maximum
2352 * link supervision timeout (40.9 seconds) */
2353 if (!hdev->acl_cnt && time_after(jiffies, hdev->acl_last_tx +
2354 msecs_to_jiffies(HCI_ACL_TX_TIMEOUT)))
2355 hci_link_tx_to(hdev, ACL_LINK);
2356 }
2357
2358 cnt = hdev->acl_cnt;
2359
2360 while (hdev->acl_cnt &&
2361 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
2362 u32 priority = (skb_peek(&chan->data_q))->priority;
2363 while (quote-- && (skb = skb_peek(&chan->data_q))) {
2364 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2365 skb->len, skb->priority);
2366
2367 /* Stop if priority has changed */
2368 if (skb->priority < priority)
2369 break;
2370
2371 skb = skb_dequeue(&chan->data_q);
2372
2373 hci_conn_enter_active_mode(chan->conn,
2374 bt_cb(skb)->force_active);
2375
2376 hci_send_frame(skb);
2377 hdev->acl_last_tx = jiffies;
2378
2379 hdev->acl_cnt--;
2380 chan->sent++;
2381 chan->conn->sent++;
2382 }
2383 }
2384
2385 if (cnt != hdev->acl_cnt)
2386 hci_prio_recalculate(hdev, ACL_LINK);
2387 }
2388
2389 /* Schedule SCO */
2390 static inline void hci_sched_sco(struct hci_dev *hdev)
2391 {
2392 struct hci_conn *conn;
2393 struct sk_buff *skb;
2394 int quote;
2395
2396 BT_DBG("%s", hdev->name);
2397
2398 if (!hci_conn_num(hdev, SCO_LINK))
2399 return;
2400
2401 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
2402 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2403 BT_DBG("skb %p len %d", skb, skb->len);
2404 hci_send_frame(skb);
2405
2406 conn->sent++;
2407 if (conn->sent == ~0)
2408 conn->sent = 0;
2409 }
2410 }
2411 }
2412
2413 static inline void hci_sched_esco(struct hci_dev *hdev)
2414 {
2415 struct hci_conn *conn;
2416 struct sk_buff *skb;
2417 int quote;
2418
2419 BT_DBG("%s", hdev->name);
2420
2421 if (!hci_conn_num(hdev, ESCO_LINK))
2422 return;
2423
2424 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
2425 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2426 BT_DBG("skb %p len %d", skb, skb->len);
2427 hci_send_frame(skb);
2428
2429 conn->sent++;
2430 if (conn->sent == ~0)
2431 conn->sent = 0;
2432 }
2433 }
2434 }
2435
2436 static inline void hci_sched_le(struct hci_dev *hdev)
2437 {
2438 struct hci_chan *chan;
2439 struct sk_buff *skb;
2440 int quote, cnt, tmp;
2441
2442 BT_DBG("%s", hdev->name);
2443
2444 if (!hci_conn_num(hdev, LE_LINK))
2445 return;
2446
2447 if (!test_bit(HCI_RAW, &hdev->flags)) {
2448 /* LE tx timeout must be longer than maximum
2449 * link supervision timeout (40.9 seconds) */
2450 if (!hdev->le_cnt && hdev->le_pkts &&
2451 time_after(jiffies, hdev->le_last_tx + HZ * 45))
2452 hci_link_tx_to(hdev, LE_LINK);
2453 }
2454
2455 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
2456 tmp = cnt;
2457 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
2458 u32 priority = (skb_peek(&chan->data_q))->priority;
2459 while (quote-- && (skb = skb_peek(&chan->data_q))) {
2460 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2461 skb->len, skb->priority);
2462
2463 /* Stop if priority has changed */
2464 if (skb->priority < priority)
2465 break;
2466
2467 skb = skb_dequeue(&chan->data_q);
2468
2469 hci_send_frame(skb);
2470 hdev->le_last_tx = jiffies;
2471
2472 cnt--;
2473 chan->sent++;
2474 chan->conn->sent++;
2475 }
2476 }
2477
2478 if (hdev->le_pkts)
2479 hdev->le_cnt = cnt;
2480 else
2481 hdev->acl_cnt = cnt;
2482
2483 if (cnt != tmp)
2484 hci_prio_recalculate(hdev, LE_LINK);
2485 }
2486
2487 static void hci_tx_work(struct work_struct *work)
2488 {
2489 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
2490 struct sk_buff *skb;
2491
2492 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
2493 hdev->sco_cnt, hdev->le_cnt);
2494
2495 /* Schedule queues and send stuff to HCI driver */
2496
2497 hci_sched_acl(hdev);
2498
2499 hci_sched_sco(hdev);
2500
2501 hci_sched_esco(hdev);
2502
2503 hci_sched_le(hdev);
2504
2505 /* Send next queued raw (unknown type) packet */
2506 while ((skb = skb_dequeue(&hdev->raw_q)))
2507 hci_send_frame(skb);
2508 }
2509
2510 /* ----- HCI RX task (incoming data processing) ----- */
2511
2512 /* ACL data packet */
2513 static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2514 {
2515 struct hci_acl_hdr *hdr = (void *) skb->data;
2516 struct hci_conn *conn;
2517 __u16 handle, flags;
2518
2519 skb_pull(skb, HCI_ACL_HDR_SIZE);
2520
2521 handle = __le16_to_cpu(hdr->handle);
2522 flags = hci_flags(handle);
2523 handle = hci_handle(handle);
2524
2525 BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
2526
2527 hdev->stat.acl_rx++;
2528
2529 hci_dev_lock(hdev);
2530 conn = hci_conn_hash_lookup_handle(hdev, handle);
2531 hci_dev_unlock(hdev);
2532
2533 if (conn) {
2534 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
2535
2536 /* Send to upper protocol */
2537 l2cap_recv_acldata(conn, skb, flags);
2538 return;
2539 } else {
2540 BT_ERR("%s ACL packet for unknown connection handle %d",
2541 hdev->name, handle);
2542 }
2543
2544 kfree_skb(skb);
2545 }
2546
2547 /* SCO data packet */
2548 static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2549 {
2550 struct hci_sco_hdr *hdr = (void *) skb->data;
2551 struct hci_conn *conn;
2552 __u16 handle;
2553
2554 skb_pull(skb, HCI_SCO_HDR_SIZE);
2555
2556 handle = __le16_to_cpu(hdr->handle);
2557
2558 BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
2559
2560 hdev->stat.sco_rx++;
2561
2562 hci_dev_lock(hdev);
2563 conn = hci_conn_hash_lookup_handle(hdev, handle);
2564 hci_dev_unlock(hdev);
2565
2566 if (conn) {
2567 /* Send to upper protocol */
2568 sco_recv_scodata(conn, skb);
2569 return;
2570 } else {
2571 BT_ERR("%s SCO packet for unknown connection handle %d",
2572 hdev->name, handle);
2573 }
2574
2575 kfree_skb(skb);
2576 }
2577
2578 static void hci_rx_work(struct work_struct *work)
2579 {
2580 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
2581 struct sk_buff *skb;
2582
2583 BT_DBG("%s", hdev->name);
2584
2585 while ((skb = skb_dequeue(&hdev->rx_q))) {
2586 if (atomic_read(&hdev->promisc)) {
2587 /* Send copy to the sockets */
2588 hci_send_to_sock(hdev, skb, NULL);
2589 }
2590
2591 if (test_bit(HCI_RAW, &hdev->flags)) {
2592 kfree_skb(skb);
2593 continue;
2594 }
2595
2596 if (test_bit(HCI_INIT, &hdev->flags)) {
2597 /* Don't process data packets in this states. */
2598 switch (bt_cb(skb)->pkt_type) {
2599 case HCI_ACLDATA_PKT:
2600 case HCI_SCODATA_PKT:
2601 kfree_skb(skb);
2602 continue;
2603 }
2604 }
2605
2606 /* Process frame */
2607 switch (bt_cb(skb)->pkt_type) {
2608 case HCI_EVENT_PKT:
2609 BT_DBG("%s Event packet", hdev->name);
2610 hci_event_packet(hdev, skb);
2611 break;
2612
2613 case HCI_ACLDATA_PKT:
2614 BT_DBG("%s ACL data packet", hdev->name);
2615 hci_acldata_packet(hdev, skb);
2616 break;
2617
2618 case HCI_SCODATA_PKT:
2619 BT_DBG("%s SCO data packet", hdev->name);
2620 hci_scodata_packet(hdev, skb);
2621 break;
2622
2623 default:
2624 kfree_skb(skb);
2625 break;
2626 }
2627 }
2628 }
2629
2630 static void hci_cmd_work(struct work_struct *work)
2631 {
2632 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
2633 struct sk_buff *skb;
2634
2635 BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
2636
2637 /* Send queued commands */
2638 if (atomic_read(&hdev->cmd_cnt)) {
2639 skb = skb_dequeue(&hdev->cmd_q);
2640 if (!skb)
2641 return;
2642
2643 kfree_skb(hdev->sent_cmd);
2644
2645 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2646 if (hdev->sent_cmd) {
2647 atomic_dec(&hdev->cmd_cnt);
2648 hci_send_frame(skb);
2649 if (test_bit(HCI_RESET, &hdev->flags))
2650 del_timer(&hdev->cmd_timer);
2651 else
2652 mod_timer(&hdev->cmd_timer,
2653 jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
2654 } else {
2655 skb_queue_head(&hdev->cmd_q, skb);
2656 queue_work(hdev->workqueue, &hdev->cmd_work);
2657 }
2658 }
2659 }
2660
2661 int hci_do_inquiry(struct hci_dev *hdev, u8 length)
2662 {
2663 /* General inquiry access code (GIAC) */
2664 u8 lap[3] = { 0x33, 0x8b, 0x9e };
2665 struct hci_cp_inquiry cp;
2666
2667 BT_DBG("%s", hdev->name);
2668
2669 if (test_bit(HCI_INQUIRY, &hdev->flags))
2670 return -EINPROGRESS;
2671
2672 inquiry_cache_flush(hdev);
2673
2674 memset(&cp, 0, sizeof(cp));
2675 memcpy(&cp.lap, lap, sizeof(cp.lap));
2676 cp.length = length;
2677
2678 return hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
2679 }
2680
2681 int hci_cancel_inquiry(struct hci_dev *hdev)
2682 {
2683 BT_DBG("%s", hdev->name);
2684
2685 if (!test_bit(HCI_INQUIRY, &hdev->flags))
2686 return -EPERM;
2687
2688 return hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2689 }
2690
2691 module_param(enable_hs, bool, 0644);
2692 MODULE_PARM_DESC(enable_hs, "Enable High Speed");