Bluetooth: Check hci_req_run returning value in __hci_req_sync
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30
31 #include <linux/rfkill.h>
32
33 #include <net/bluetooth/bluetooth.h>
34 #include <net/bluetooth/hci_core.h>
35
36 static void hci_rx_work(struct work_struct *work);
37 static void hci_cmd_work(struct work_struct *work);
38 static void hci_tx_work(struct work_struct *work);
39
40 /* HCI device list */
41 LIST_HEAD(hci_dev_list);
42 DEFINE_RWLOCK(hci_dev_list_lock);
43
44 /* HCI callback list */
45 LIST_HEAD(hci_cb_list);
46 DEFINE_RWLOCK(hci_cb_list_lock);
47
48 /* HCI ID Numbering */
49 static DEFINE_IDA(hci_index_ida);
50
51 /* ---- HCI notifications ---- */
52
53 static void hci_notify(struct hci_dev *hdev, int event)
54 {
55 hci_sock_dev_event(hdev, event);
56 }
57
58 /* ---- HCI requests ---- */
59
60 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result)
61 {
62 BT_DBG("%s result 0x%2.2x", hdev->name, result);
63
64 if (hdev->req_status == HCI_REQ_PEND) {
65 hdev->req_result = result;
66 hdev->req_status = HCI_REQ_DONE;
67 wake_up_interruptible(&hdev->req_wait_q);
68 }
69 }
70
71 static void hci_req_cancel(struct hci_dev *hdev, int err)
72 {
73 BT_DBG("%s err 0x%2.2x", hdev->name, err);
74
75 if (hdev->req_status == HCI_REQ_PEND) {
76 hdev->req_result = err;
77 hdev->req_status = HCI_REQ_CANCELED;
78 wake_up_interruptible(&hdev->req_wait_q);
79 }
80 }
81
82 /* Execute request and wait for completion. */
83 static int __hci_req_sync(struct hci_dev *hdev,
84 void (*func)(struct hci_request *req,
85 unsigned long opt),
86 unsigned long opt, __u32 timeout)
87 {
88 struct hci_request req;
89 DECLARE_WAITQUEUE(wait, current);
90 int err = 0;
91
92 BT_DBG("%s start", hdev->name);
93
94 hci_req_init(&req, hdev);
95
96 hdev->req_status = HCI_REQ_PEND;
97
98 func(&req, opt);
99
100 err = hci_req_run(&req, hci_req_sync_complete);
101 if (err < 0) {
102 hdev->req_status = 0;
103
104 /* ENODATA means the HCI request command queue is empty.
105 * This can happen when a request with conditionals doesn't
106 * trigger any commands to be sent. This is normal behavior
107 * and should not trigger an error return.
108 */
109 if (err == -ENODATA)
110 return 0;
111
112 return err;
113 }
114
115 add_wait_queue(&hdev->req_wait_q, &wait);
116 set_current_state(TASK_INTERRUPTIBLE);
117
118 schedule_timeout(timeout);
119
120 remove_wait_queue(&hdev->req_wait_q, &wait);
121
122 if (signal_pending(current))
123 return -EINTR;
124
125 switch (hdev->req_status) {
126 case HCI_REQ_DONE:
127 err = -bt_to_errno(hdev->req_result);
128 break;
129
130 case HCI_REQ_CANCELED:
131 err = -hdev->req_result;
132 break;
133
134 default:
135 err = -ETIMEDOUT;
136 break;
137 }
138
139 hdev->req_status = hdev->req_result = 0;
140
141 BT_DBG("%s end: err %d", hdev->name, err);
142
143 return err;
144 }
145
146 static int hci_req_sync(struct hci_dev *hdev,
147 void (*req)(struct hci_request *req,
148 unsigned long opt),
149 unsigned long opt, __u32 timeout)
150 {
151 int ret;
152
153 if (!test_bit(HCI_UP, &hdev->flags))
154 return -ENETDOWN;
155
156 /* Serialize all requests */
157 hci_req_lock(hdev);
158 ret = __hci_req_sync(hdev, req, opt, timeout);
159 hci_req_unlock(hdev);
160
161 return ret;
162 }
163
164 static void hci_reset_req(struct hci_request *req, unsigned long opt)
165 {
166 BT_DBG("%s %ld", req->hdev->name, opt);
167
168 /* Reset device */
169 set_bit(HCI_RESET, &req->hdev->flags);
170 hci_req_add(req, HCI_OP_RESET, 0, NULL);
171 }
172
173 static void bredr_init(struct hci_request *req)
174 {
175 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
176
177 /* Read Local Supported Features */
178 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
179
180 /* Read Local Version */
181 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
182
183 /* Read BD Address */
184 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
185 }
186
187 static void amp_init(struct hci_request *req)
188 {
189 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
190
191 /* Read Local Version */
192 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
193
194 /* Read Local AMP Info */
195 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
196
197 /* Read Data Blk size */
198 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
199 }
200
201 static void hci_init1_req(struct hci_request *req, unsigned long opt)
202 {
203 struct hci_dev *hdev = req->hdev;
204 struct hci_request init_req;
205 struct sk_buff *skb;
206
207 BT_DBG("%s %ld", hdev->name, opt);
208
209 /* Driver initialization */
210
211 hci_req_init(&init_req, hdev);
212
213 /* Special commands */
214 while ((skb = skb_dequeue(&hdev->driver_init))) {
215 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
216 skb->dev = (void *) hdev;
217
218 if (skb_queue_empty(&init_req.cmd_q))
219 bt_cb(skb)->req.start = true;
220
221 skb_queue_tail(&init_req.cmd_q, skb);
222 }
223 skb_queue_purge(&hdev->driver_init);
224
225 hci_req_run(&init_req, NULL);
226
227 /* Reset */
228 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
229 hci_reset_req(req, 0);
230
231 switch (hdev->dev_type) {
232 case HCI_BREDR:
233 bredr_init(req);
234 break;
235
236 case HCI_AMP:
237 amp_init(req);
238 break;
239
240 default:
241 BT_ERR("Unknown device type %d", hdev->dev_type);
242 break;
243 }
244 }
245
246 static void bredr_setup(struct hci_request *req)
247 {
248 struct hci_cp_delete_stored_link_key cp;
249 __le16 param;
250 __u8 flt_type;
251
252 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
253 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
254
255 /* Read Class of Device */
256 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
257
258 /* Read Local Name */
259 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
260
261 /* Read Voice Setting */
262 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
263
264 /* Clear Event Filters */
265 flt_type = HCI_FLT_CLEAR_ALL;
266 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
267
268 /* Connection accept timeout ~20 secs */
269 param = __constant_cpu_to_le16(0x7d00);
270 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
271
272 bacpy(&cp.bdaddr, BDADDR_ANY);
273 cp.delete_all = 0x01;
274 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
275 }
276
277 static void le_setup(struct hci_request *req)
278 {
279 /* Read LE Buffer Size */
280 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
281
282 /* Read LE Local Supported Features */
283 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
284
285 /* Read LE Advertising Channel TX Power */
286 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
287
288 /* Read LE White List Size */
289 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL);
290
291 /* Read LE Supported States */
292 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
293 }
294
295 static u8 hci_get_inquiry_mode(struct hci_dev *hdev)
296 {
297 if (lmp_ext_inq_capable(hdev))
298 return 0x02;
299
300 if (lmp_inq_rssi_capable(hdev))
301 return 0x01;
302
303 if (hdev->manufacturer == 11 && hdev->hci_rev == 0x00 &&
304 hdev->lmp_subver == 0x0757)
305 return 0x01;
306
307 if (hdev->manufacturer == 15) {
308 if (hdev->hci_rev == 0x03 && hdev->lmp_subver == 0x6963)
309 return 0x01;
310 if (hdev->hci_rev == 0x09 && hdev->lmp_subver == 0x6963)
311 return 0x01;
312 if (hdev->hci_rev == 0x00 && hdev->lmp_subver == 0x6965)
313 return 0x01;
314 }
315
316 if (hdev->manufacturer == 31 && hdev->hci_rev == 0x2005 &&
317 hdev->lmp_subver == 0x1805)
318 return 0x01;
319
320 return 0x00;
321 }
322
323 static void hci_setup_inquiry_mode(struct hci_request *req)
324 {
325 u8 mode;
326
327 mode = hci_get_inquiry_mode(req->hdev);
328
329 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
330 }
331
332 static void hci_setup_event_mask(struct hci_request *req)
333 {
334 struct hci_dev *hdev = req->hdev;
335
336 /* The second byte is 0xff instead of 0x9f (two reserved bits
337 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
338 * command otherwise.
339 */
340 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
341
342 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
343 * any event mask for pre 1.2 devices.
344 */
345 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
346 return;
347
348 if (lmp_bredr_capable(hdev)) {
349 events[4] |= 0x01; /* Flow Specification Complete */
350 events[4] |= 0x02; /* Inquiry Result with RSSI */
351 events[4] |= 0x04; /* Read Remote Extended Features Complete */
352 events[5] |= 0x08; /* Synchronous Connection Complete */
353 events[5] |= 0x10; /* Synchronous Connection Changed */
354 }
355
356 if (lmp_inq_rssi_capable(hdev))
357 events[4] |= 0x02; /* Inquiry Result with RSSI */
358
359 if (lmp_sniffsubr_capable(hdev))
360 events[5] |= 0x20; /* Sniff Subrating */
361
362 if (lmp_pause_enc_capable(hdev))
363 events[5] |= 0x80; /* Encryption Key Refresh Complete */
364
365 if (lmp_ext_inq_capable(hdev))
366 events[5] |= 0x40; /* Extended Inquiry Result */
367
368 if (lmp_no_flush_capable(hdev))
369 events[7] |= 0x01; /* Enhanced Flush Complete */
370
371 if (lmp_lsto_capable(hdev))
372 events[6] |= 0x80; /* Link Supervision Timeout Changed */
373
374 if (lmp_ssp_capable(hdev)) {
375 events[6] |= 0x01; /* IO Capability Request */
376 events[6] |= 0x02; /* IO Capability Response */
377 events[6] |= 0x04; /* User Confirmation Request */
378 events[6] |= 0x08; /* User Passkey Request */
379 events[6] |= 0x10; /* Remote OOB Data Request */
380 events[6] |= 0x20; /* Simple Pairing Complete */
381 events[7] |= 0x04; /* User Passkey Notification */
382 events[7] |= 0x08; /* Keypress Notification */
383 events[7] |= 0x10; /* Remote Host Supported
384 * Features Notification
385 */
386 }
387
388 if (lmp_le_capable(hdev))
389 events[7] |= 0x20; /* LE Meta-Event */
390
391 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
392
393 if (lmp_le_capable(hdev)) {
394 memset(events, 0, sizeof(events));
395 events[0] = 0x1f;
396 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK,
397 sizeof(events), events);
398 }
399 }
400
401 static void hci_init2_req(struct hci_request *req, unsigned long opt)
402 {
403 struct hci_dev *hdev = req->hdev;
404
405 if (lmp_bredr_capable(hdev))
406 bredr_setup(req);
407
408 if (lmp_le_capable(hdev))
409 le_setup(req);
410
411 hci_setup_event_mask(req);
412
413 if (hdev->hci_ver > BLUETOOTH_VER_1_1)
414 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
415
416 if (lmp_ssp_capable(hdev)) {
417 if (test_bit(HCI_SSP_ENABLED, &hdev->dev_flags)) {
418 u8 mode = 0x01;
419 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
420 sizeof(mode), &mode);
421 } else {
422 struct hci_cp_write_eir cp;
423
424 memset(hdev->eir, 0, sizeof(hdev->eir));
425 memset(&cp, 0, sizeof(cp));
426
427 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
428 }
429 }
430
431 if (lmp_inq_rssi_capable(hdev))
432 hci_setup_inquiry_mode(req);
433
434 if (lmp_inq_tx_pwr_capable(hdev))
435 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
436
437 if (lmp_ext_feat_capable(hdev)) {
438 struct hci_cp_read_local_ext_features cp;
439
440 cp.page = 0x01;
441 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
442 sizeof(cp), &cp);
443 }
444
445 if (test_bit(HCI_LINK_SECURITY, &hdev->dev_flags)) {
446 u8 enable = 1;
447 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
448 &enable);
449 }
450 }
451
452 static void hci_setup_link_policy(struct hci_request *req)
453 {
454 struct hci_dev *hdev = req->hdev;
455 struct hci_cp_write_def_link_policy cp;
456 u16 link_policy = 0;
457
458 if (lmp_rswitch_capable(hdev))
459 link_policy |= HCI_LP_RSWITCH;
460 if (lmp_hold_capable(hdev))
461 link_policy |= HCI_LP_HOLD;
462 if (lmp_sniff_capable(hdev))
463 link_policy |= HCI_LP_SNIFF;
464 if (lmp_park_capable(hdev))
465 link_policy |= HCI_LP_PARK;
466
467 cp.policy = cpu_to_le16(link_policy);
468 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
469 }
470
471 static void hci_set_le_support(struct hci_request *req)
472 {
473 struct hci_dev *hdev = req->hdev;
474 struct hci_cp_write_le_host_supported cp;
475
476 memset(&cp, 0, sizeof(cp));
477
478 if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) {
479 cp.le = 0x01;
480 cp.simul = lmp_le_br_capable(hdev);
481 }
482
483 if (cp.le != lmp_host_le_capable(hdev))
484 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
485 &cp);
486 }
487
488 static void hci_init3_req(struct hci_request *req, unsigned long opt)
489 {
490 struct hci_dev *hdev = req->hdev;
491
492 if (hdev->commands[5] & 0x10)
493 hci_setup_link_policy(req);
494
495 if (lmp_le_capable(hdev))
496 hci_set_le_support(req);
497 }
498
499 static int __hci_init(struct hci_dev *hdev)
500 {
501 int err;
502
503 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT);
504 if (err < 0)
505 return err;
506
507 /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
508 * BR/EDR/LE type controllers. AMP controllers only need the
509 * first stage init.
510 */
511 if (hdev->dev_type != HCI_BREDR)
512 return 0;
513
514 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT);
515 if (err < 0)
516 return err;
517
518 return __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT);
519 }
520
521 static void hci_scan_req(struct hci_request *req, unsigned long opt)
522 {
523 __u8 scan = opt;
524
525 BT_DBG("%s %x", req->hdev->name, scan);
526
527 /* Inquiry and Page scans */
528 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
529 }
530
531 static void hci_auth_req(struct hci_request *req, unsigned long opt)
532 {
533 __u8 auth = opt;
534
535 BT_DBG("%s %x", req->hdev->name, auth);
536
537 /* Authentication */
538 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
539 }
540
541 static void hci_encrypt_req(struct hci_request *req, unsigned long opt)
542 {
543 __u8 encrypt = opt;
544
545 BT_DBG("%s %x", req->hdev->name, encrypt);
546
547 /* Encryption */
548 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
549 }
550
551 static void hci_linkpol_req(struct hci_request *req, unsigned long opt)
552 {
553 __le16 policy = cpu_to_le16(opt);
554
555 BT_DBG("%s %x", req->hdev->name, policy);
556
557 /* Default link policy */
558 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
559 }
560
561 /* Get HCI device by index.
562 * Device is held on return. */
563 struct hci_dev *hci_dev_get(int index)
564 {
565 struct hci_dev *hdev = NULL, *d;
566
567 BT_DBG("%d", index);
568
569 if (index < 0)
570 return NULL;
571
572 read_lock(&hci_dev_list_lock);
573 list_for_each_entry(d, &hci_dev_list, list) {
574 if (d->id == index) {
575 hdev = hci_dev_hold(d);
576 break;
577 }
578 }
579 read_unlock(&hci_dev_list_lock);
580 return hdev;
581 }
582
583 /* ---- Inquiry support ---- */
584
585 bool hci_discovery_active(struct hci_dev *hdev)
586 {
587 struct discovery_state *discov = &hdev->discovery;
588
589 switch (discov->state) {
590 case DISCOVERY_FINDING:
591 case DISCOVERY_RESOLVING:
592 return true;
593
594 default:
595 return false;
596 }
597 }
598
599 void hci_discovery_set_state(struct hci_dev *hdev, int state)
600 {
601 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
602
603 if (hdev->discovery.state == state)
604 return;
605
606 switch (state) {
607 case DISCOVERY_STOPPED:
608 if (hdev->discovery.state != DISCOVERY_STARTING)
609 mgmt_discovering(hdev, 0);
610 break;
611 case DISCOVERY_STARTING:
612 break;
613 case DISCOVERY_FINDING:
614 mgmt_discovering(hdev, 1);
615 break;
616 case DISCOVERY_RESOLVING:
617 break;
618 case DISCOVERY_STOPPING:
619 break;
620 }
621
622 hdev->discovery.state = state;
623 }
624
625 static void inquiry_cache_flush(struct hci_dev *hdev)
626 {
627 struct discovery_state *cache = &hdev->discovery;
628 struct inquiry_entry *p, *n;
629
630 list_for_each_entry_safe(p, n, &cache->all, all) {
631 list_del(&p->all);
632 kfree(p);
633 }
634
635 INIT_LIST_HEAD(&cache->unknown);
636 INIT_LIST_HEAD(&cache->resolve);
637 }
638
639 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
640 bdaddr_t *bdaddr)
641 {
642 struct discovery_state *cache = &hdev->discovery;
643 struct inquiry_entry *e;
644
645 BT_DBG("cache %p, %pMR", cache, bdaddr);
646
647 list_for_each_entry(e, &cache->all, all) {
648 if (!bacmp(&e->data.bdaddr, bdaddr))
649 return e;
650 }
651
652 return NULL;
653 }
654
655 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
656 bdaddr_t *bdaddr)
657 {
658 struct discovery_state *cache = &hdev->discovery;
659 struct inquiry_entry *e;
660
661 BT_DBG("cache %p, %pMR", cache, bdaddr);
662
663 list_for_each_entry(e, &cache->unknown, list) {
664 if (!bacmp(&e->data.bdaddr, bdaddr))
665 return e;
666 }
667
668 return NULL;
669 }
670
671 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
672 bdaddr_t *bdaddr,
673 int state)
674 {
675 struct discovery_state *cache = &hdev->discovery;
676 struct inquiry_entry *e;
677
678 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
679
680 list_for_each_entry(e, &cache->resolve, list) {
681 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
682 return e;
683 if (!bacmp(&e->data.bdaddr, bdaddr))
684 return e;
685 }
686
687 return NULL;
688 }
689
690 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
691 struct inquiry_entry *ie)
692 {
693 struct discovery_state *cache = &hdev->discovery;
694 struct list_head *pos = &cache->resolve;
695 struct inquiry_entry *p;
696
697 list_del(&ie->list);
698
699 list_for_each_entry(p, &cache->resolve, list) {
700 if (p->name_state != NAME_PENDING &&
701 abs(p->data.rssi) >= abs(ie->data.rssi))
702 break;
703 pos = &p->list;
704 }
705
706 list_add(&ie->list, pos);
707 }
708
709 bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
710 bool name_known, bool *ssp)
711 {
712 struct discovery_state *cache = &hdev->discovery;
713 struct inquiry_entry *ie;
714
715 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
716
717 hci_remove_remote_oob_data(hdev, &data->bdaddr);
718
719 if (ssp)
720 *ssp = data->ssp_mode;
721
722 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
723 if (ie) {
724 if (ie->data.ssp_mode && ssp)
725 *ssp = true;
726
727 if (ie->name_state == NAME_NEEDED &&
728 data->rssi != ie->data.rssi) {
729 ie->data.rssi = data->rssi;
730 hci_inquiry_cache_update_resolve(hdev, ie);
731 }
732
733 goto update;
734 }
735
736 /* Entry not in the cache. Add new one. */
737 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
738 if (!ie)
739 return false;
740
741 list_add(&ie->all, &cache->all);
742
743 if (name_known) {
744 ie->name_state = NAME_KNOWN;
745 } else {
746 ie->name_state = NAME_NOT_KNOWN;
747 list_add(&ie->list, &cache->unknown);
748 }
749
750 update:
751 if (name_known && ie->name_state != NAME_KNOWN &&
752 ie->name_state != NAME_PENDING) {
753 ie->name_state = NAME_KNOWN;
754 list_del(&ie->list);
755 }
756
757 memcpy(&ie->data, data, sizeof(*data));
758 ie->timestamp = jiffies;
759 cache->timestamp = jiffies;
760
761 if (ie->name_state == NAME_NOT_KNOWN)
762 return false;
763
764 return true;
765 }
766
767 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
768 {
769 struct discovery_state *cache = &hdev->discovery;
770 struct inquiry_info *info = (struct inquiry_info *) buf;
771 struct inquiry_entry *e;
772 int copied = 0;
773
774 list_for_each_entry(e, &cache->all, all) {
775 struct inquiry_data *data = &e->data;
776
777 if (copied >= num)
778 break;
779
780 bacpy(&info->bdaddr, &data->bdaddr);
781 info->pscan_rep_mode = data->pscan_rep_mode;
782 info->pscan_period_mode = data->pscan_period_mode;
783 info->pscan_mode = data->pscan_mode;
784 memcpy(info->dev_class, data->dev_class, 3);
785 info->clock_offset = data->clock_offset;
786
787 info++;
788 copied++;
789 }
790
791 BT_DBG("cache %p, copied %d", cache, copied);
792 return copied;
793 }
794
795 static void hci_inq_req(struct hci_request *req, unsigned long opt)
796 {
797 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
798 struct hci_dev *hdev = req->hdev;
799 struct hci_cp_inquiry cp;
800
801 BT_DBG("%s", hdev->name);
802
803 if (test_bit(HCI_INQUIRY, &hdev->flags))
804 return;
805
806 /* Start Inquiry */
807 memcpy(&cp.lap, &ir->lap, 3);
808 cp.length = ir->length;
809 cp.num_rsp = ir->num_rsp;
810 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
811 }
812
813 int hci_inquiry(void __user *arg)
814 {
815 __u8 __user *ptr = arg;
816 struct hci_inquiry_req ir;
817 struct hci_dev *hdev;
818 int err = 0, do_inquiry = 0, max_rsp;
819 long timeo;
820 __u8 *buf;
821
822 if (copy_from_user(&ir, ptr, sizeof(ir)))
823 return -EFAULT;
824
825 hdev = hci_dev_get(ir.dev_id);
826 if (!hdev)
827 return -ENODEV;
828
829 hci_dev_lock(hdev);
830 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
831 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
832 inquiry_cache_flush(hdev);
833 do_inquiry = 1;
834 }
835 hci_dev_unlock(hdev);
836
837 timeo = ir.length * msecs_to_jiffies(2000);
838
839 if (do_inquiry) {
840 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
841 timeo);
842 if (err < 0)
843 goto done;
844 }
845
846 /* for unlimited number of responses we will use buffer with
847 * 255 entries
848 */
849 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
850
851 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
852 * copy it to the user space.
853 */
854 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
855 if (!buf) {
856 err = -ENOMEM;
857 goto done;
858 }
859
860 hci_dev_lock(hdev);
861 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
862 hci_dev_unlock(hdev);
863
864 BT_DBG("num_rsp %d", ir.num_rsp);
865
866 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
867 ptr += sizeof(ir);
868 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
869 ir.num_rsp))
870 err = -EFAULT;
871 } else
872 err = -EFAULT;
873
874 kfree(buf);
875
876 done:
877 hci_dev_put(hdev);
878 return err;
879 }
880
881 static u8 create_ad(struct hci_dev *hdev, u8 *ptr)
882 {
883 u8 ad_len = 0, flags = 0;
884 size_t name_len;
885
886 if (test_bit(HCI_LE_PERIPHERAL, &hdev->dev_flags))
887 flags |= LE_AD_GENERAL;
888
889 if (!lmp_bredr_capable(hdev))
890 flags |= LE_AD_NO_BREDR;
891
892 if (lmp_le_br_capable(hdev))
893 flags |= LE_AD_SIM_LE_BREDR_CTRL;
894
895 if (lmp_host_le_br_capable(hdev))
896 flags |= LE_AD_SIM_LE_BREDR_HOST;
897
898 if (flags) {
899 BT_DBG("adv flags 0x%02x", flags);
900
901 ptr[0] = 2;
902 ptr[1] = EIR_FLAGS;
903 ptr[2] = flags;
904
905 ad_len += 3;
906 ptr += 3;
907 }
908
909 if (hdev->adv_tx_power != HCI_TX_POWER_INVALID) {
910 ptr[0] = 2;
911 ptr[1] = EIR_TX_POWER;
912 ptr[2] = (u8) hdev->adv_tx_power;
913
914 ad_len += 3;
915 ptr += 3;
916 }
917
918 name_len = strlen(hdev->dev_name);
919 if (name_len > 0) {
920 size_t max_len = HCI_MAX_AD_LENGTH - ad_len - 2;
921
922 if (name_len > max_len) {
923 name_len = max_len;
924 ptr[1] = EIR_NAME_SHORT;
925 } else
926 ptr[1] = EIR_NAME_COMPLETE;
927
928 ptr[0] = name_len + 1;
929
930 memcpy(ptr + 2, hdev->dev_name, name_len);
931
932 ad_len += (name_len + 2);
933 ptr += (name_len + 2);
934 }
935
936 return ad_len;
937 }
938
939 int hci_update_ad(struct hci_dev *hdev)
940 {
941 struct hci_cp_le_set_adv_data cp;
942 u8 len;
943 int err;
944
945 hci_dev_lock(hdev);
946
947 if (!lmp_le_capable(hdev)) {
948 err = -EINVAL;
949 goto unlock;
950 }
951
952 memset(&cp, 0, sizeof(cp));
953
954 len = create_ad(hdev, cp.data);
955
956 if (hdev->adv_data_len == len &&
957 memcmp(cp.data, hdev->adv_data, len) == 0) {
958 err = 0;
959 goto unlock;
960 }
961
962 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
963 hdev->adv_data_len = len;
964
965 cp.length = len;
966 err = hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
967
968 unlock:
969 hci_dev_unlock(hdev);
970
971 return err;
972 }
973
974 /* ---- HCI ioctl helpers ---- */
975
976 int hci_dev_open(__u16 dev)
977 {
978 struct hci_dev *hdev;
979 int ret = 0;
980
981 hdev = hci_dev_get(dev);
982 if (!hdev)
983 return -ENODEV;
984
985 BT_DBG("%s %p", hdev->name, hdev);
986
987 hci_req_lock(hdev);
988
989 if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) {
990 ret = -ENODEV;
991 goto done;
992 }
993
994 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
995 ret = -ERFKILL;
996 goto done;
997 }
998
999 if (test_bit(HCI_UP, &hdev->flags)) {
1000 ret = -EALREADY;
1001 goto done;
1002 }
1003
1004 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
1005 set_bit(HCI_RAW, &hdev->flags);
1006
1007 /* Treat all non BR/EDR controllers as raw devices if
1008 enable_hs is not set */
1009 if (hdev->dev_type != HCI_BREDR && !enable_hs)
1010 set_bit(HCI_RAW, &hdev->flags);
1011
1012 if (hdev->open(hdev)) {
1013 ret = -EIO;
1014 goto done;
1015 }
1016
1017 if (!test_bit(HCI_RAW, &hdev->flags)) {
1018 atomic_set(&hdev->cmd_cnt, 1);
1019 set_bit(HCI_INIT, &hdev->flags);
1020 ret = __hci_init(hdev);
1021 clear_bit(HCI_INIT, &hdev->flags);
1022 }
1023
1024 if (!ret) {
1025 hci_dev_hold(hdev);
1026 set_bit(HCI_UP, &hdev->flags);
1027 hci_notify(hdev, HCI_DEV_UP);
1028 hci_update_ad(hdev);
1029 if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
1030 mgmt_valid_hdev(hdev)) {
1031 hci_dev_lock(hdev);
1032 mgmt_powered(hdev, 1);
1033 hci_dev_unlock(hdev);
1034 }
1035 } else {
1036 /* Init failed, cleanup */
1037 flush_work(&hdev->tx_work);
1038 flush_work(&hdev->cmd_work);
1039 flush_work(&hdev->rx_work);
1040
1041 skb_queue_purge(&hdev->cmd_q);
1042 skb_queue_purge(&hdev->rx_q);
1043
1044 if (hdev->flush)
1045 hdev->flush(hdev);
1046
1047 if (hdev->sent_cmd) {
1048 kfree_skb(hdev->sent_cmd);
1049 hdev->sent_cmd = NULL;
1050 }
1051
1052 hdev->close(hdev);
1053 hdev->flags = 0;
1054 }
1055
1056 done:
1057 hci_req_unlock(hdev);
1058 hci_dev_put(hdev);
1059 return ret;
1060 }
1061
1062 static int hci_dev_do_close(struct hci_dev *hdev)
1063 {
1064 BT_DBG("%s %p", hdev->name, hdev);
1065
1066 cancel_work_sync(&hdev->le_scan);
1067
1068 cancel_delayed_work(&hdev->power_off);
1069
1070 hci_req_cancel(hdev, ENODEV);
1071 hci_req_lock(hdev);
1072
1073 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1074 del_timer_sync(&hdev->cmd_timer);
1075 hci_req_unlock(hdev);
1076 return 0;
1077 }
1078
1079 /* Flush RX and TX works */
1080 flush_work(&hdev->tx_work);
1081 flush_work(&hdev->rx_work);
1082
1083 if (hdev->discov_timeout > 0) {
1084 cancel_delayed_work(&hdev->discov_off);
1085 hdev->discov_timeout = 0;
1086 clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags);
1087 }
1088
1089 if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags))
1090 cancel_delayed_work(&hdev->service_cache);
1091
1092 cancel_delayed_work_sync(&hdev->le_scan_disable);
1093
1094 hci_dev_lock(hdev);
1095 inquiry_cache_flush(hdev);
1096 hci_conn_hash_flush(hdev);
1097 hci_dev_unlock(hdev);
1098
1099 hci_notify(hdev, HCI_DEV_DOWN);
1100
1101 if (hdev->flush)
1102 hdev->flush(hdev);
1103
1104 /* Reset device */
1105 skb_queue_purge(&hdev->cmd_q);
1106 atomic_set(&hdev->cmd_cnt, 1);
1107 if (!test_bit(HCI_RAW, &hdev->flags) &&
1108 test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
1109 set_bit(HCI_INIT, &hdev->flags);
1110 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT);
1111 clear_bit(HCI_INIT, &hdev->flags);
1112 }
1113
1114 /* flush cmd work */
1115 flush_work(&hdev->cmd_work);
1116
1117 /* Drop queues */
1118 skb_queue_purge(&hdev->rx_q);
1119 skb_queue_purge(&hdev->cmd_q);
1120 skb_queue_purge(&hdev->raw_q);
1121
1122 /* Drop last sent command */
1123 if (hdev->sent_cmd) {
1124 del_timer_sync(&hdev->cmd_timer);
1125 kfree_skb(hdev->sent_cmd);
1126 hdev->sent_cmd = NULL;
1127 }
1128
1129 /* After this point our queues are empty
1130 * and no tasks are scheduled. */
1131 hdev->close(hdev);
1132
1133 if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags) &&
1134 mgmt_valid_hdev(hdev)) {
1135 hci_dev_lock(hdev);
1136 mgmt_powered(hdev, 0);
1137 hci_dev_unlock(hdev);
1138 }
1139
1140 /* Clear flags */
1141 hdev->flags = 0;
1142
1143 /* Controller radio is available but is currently powered down */
1144 hdev->amp_status = 0;
1145
1146 memset(hdev->eir, 0, sizeof(hdev->eir));
1147 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1148
1149 hci_req_unlock(hdev);
1150
1151 hci_dev_put(hdev);
1152 return 0;
1153 }
1154
1155 int hci_dev_close(__u16 dev)
1156 {
1157 struct hci_dev *hdev;
1158 int err;
1159
1160 hdev = hci_dev_get(dev);
1161 if (!hdev)
1162 return -ENODEV;
1163
1164 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1165 cancel_delayed_work(&hdev->power_off);
1166
1167 err = hci_dev_do_close(hdev);
1168
1169 hci_dev_put(hdev);
1170 return err;
1171 }
1172
1173 int hci_dev_reset(__u16 dev)
1174 {
1175 struct hci_dev *hdev;
1176 int ret = 0;
1177
1178 hdev = hci_dev_get(dev);
1179 if (!hdev)
1180 return -ENODEV;
1181
1182 hci_req_lock(hdev);
1183
1184 if (!test_bit(HCI_UP, &hdev->flags))
1185 goto done;
1186
1187 /* Drop queues */
1188 skb_queue_purge(&hdev->rx_q);
1189 skb_queue_purge(&hdev->cmd_q);
1190
1191 hci_dev_lock(hdev);
1192 inquiry_cache_flush(hdev);
1193 hci_conn_hash_flush(hdev);
1194 hci_dev_unlock(hdev);
1195
1196 if (hdev->flush)
1197 hdev->flush(hdev);
1198
1199 atomic_set(&hdev->cmd_cnt, 1);
1200 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1201
1202 if (!test_bit(HCI_RAW, &hdev->flags))
1203 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT);
1204
1205 done:
1206 hci_req_unlock(hdev);
1207 hci_dev_put(hdev);
1208 return ret;
1209 }
1210
1211 int hci_dev_reset_stat(__u16 dev)
1212 {
1213 struct hci_dev *hdev;
1214 int ret = 0;
1215
1216 hdev = hci_dev_get(dev);
1217 if (!hdev)
1218 return -ENODEV;
1219
1220 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1221
1222 hci_dev_put(hdev);
1223
1224 return ret;
1225 }
1226
1227 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1228 {
1229 struct hci_dev *hdev;
1230 struct hci_dev_req dr;
1231 int err = 0;
1232
1233 if (copy_from_user(&dr, arg, sizeof(dr)))
1234 return -EFAULT;
1235
1236 hdev = hci_dev_get(dr.dev_id);
1237 if (!hdev)
1238 return -ENODEV;
1239
1240 switch (cmd) {
1241 case HCISETAUTH:
1242 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1243 HCI_INIT_TIMEOUT);
1244 break;
1245
1246 case HCISETENCRYPT:
1247 if (!lmp_encrypt_capable(hdev)) {
1248 err = -EOPNOTSUPP;
1249 break;
1250 }
1251
1252 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1253 /* Auth must be enabled first */
1254 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1255 HCI_INIT_TIMEOUT);
1256 if (err)
1257 break;
1258 }
1259
1260 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1261 HCI_INIT_TIMEOUT);
1262 break;
1263
1264 case HCISETSCAN:
1265 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1266 HCI_INIT_TIMEOUT);
1267 break;
1268
1269 case HCISETLINKPOL:
1270 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1271 HCI_INIT_TIMEOUT);
1272 break;
1273
1274 case HCISETLINKMODE:
1275 hdev->link_mode = ((__u16) dr.dev_opt) &
1276 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1277 break;
1278
1279 case HCISETPTYPE:
1280 hdev->pkt_type = (__u16) dr.dev_opt;
1281 break;
1282
1283 case HCISETACLMTU:
1284 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1285 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1286 break;
1287
1288 case HCISETSCOMTU:
1289 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1290 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1291 break;
1292
1293 default:
1294 err = -EINVAL;
1295 break;
1296 }
1297
1298 hci_dev_put(hdev);
1299 return err;
1300 }
1301
1302 int hci_get_dev_list(void __user *arg)
1303 {
1304 struct hci_dev *hdev;
1305 struct hci_dev_list_req *dl;
1306 struct hci_dev_req *dr;
1307 int n = 0, size, err;
1308 __u16 dev_num;
1309
1310 if (get_user(dev_num, (__u16 __user *) arg))
1311 return -EFAULT;
1312
1313 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1314 return -EINVAL;
1315
1316 size = sizeof(*dl) + dev_num * sizeof(*dr);
1317
1318 dl = kzalloc(size, GFP_KERNEL);
1319 if (!dl)
1320 return -ENOMEM;
1321
1322 dr = dl->dev_req;
1323
1324 read_lock(&hci_dev_list_lock);
1325 list_for_each_entry(hdev, &hci_dev_list, list) {
1326 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1327 cancel_delayed_work(&hdev->power_off);
1328
1329 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1330 set_bit(HCI_PAIRABLE, &hdev->dev_flags);
1331
1332 (dr + n)->dev_id = hdev->id;
1333 (dr + n)->dev_opt = hdev->flags;
1334
1335 if (++n >= dev_num)
1336 break;
1337 }
1338 read_unlock(&hci_dev_list_lock);
1339
1340 dl->dev_num = n;
1341 size = sizeof(*dl) + n * sizeof(*dr);
1342
1343 err = copy_to_user(arg, dl, size);
1344 kfree(dl);
1345
1346 return err ? -EFAULT : 0;
1347 }
1348
1349 int hci_get_dev_info(void __user *arg)
1350 {
1351 struct hci_dev *hdev;
1352 struct hci_dev_info di;
1353 int err = 0;
1354
1355 if (copy_from_user(&di, arg, sizeof(di)))
1356 return -EFAULT;
1357
1358 hdev = hci_dev_get(di.dev_id);
1359 if (!hdev)
1360 return -ENODEV;
1361
1362 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1363 cancel_delayed_work_sync(&hdev->power_off);
1364
1365 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1366 set_bit(HCI_PAIRABLE, &hdev->dev_flags);
1367
1368 strcpy(di.name, hdev->name);
1369 di.bdaddr = hdev->bdaddr;
1370 di.type = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
1371 di.flags = hdev->flags;
1372 di.pkt_type = hdev->pkt_type;
1373 if (lmp_bredr_capable(hdev)) {
1374 di.acl_mtu = hdev->acl_mtu;
1375 di.acl_pkts = hdev->acl_pkts;
1376 di.sco_mtu = hdev->sco_mtu;
1377 di.sco_pkts = hdev->sco_pkts;
1378 } else {
1379 di.acl_mtu = hdev->le_mtu;
1380 di.acl_pkts = hdev->le_pkts;
1381 di.sco_mtu = 0;
1382 di.sco_pkts = 0;
1383 }
1384 di.link_policy = hdev->link_policy;
1385 di.link_mode = hdev->link_mode;
1386
1387 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1388 memcpy(&di.features, &hdev->features, sizeof(di.features));
1389
1390 if (copy_to_user(arg, &di, sizeof(di)))
1391 err = -EFAULT;
1392
1393 hci_dev_put(hdev);
1394
1395 return err;
1396 }
1397
1398 /* ---- Interface to HCI drivers ---- */
1399
1400 static int hci_rfkill_set_block(void *data, bool blocked)
1401 {
1402 struct hci_dev *hdev = data;
1403
1404 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1405
1406 if (!blocked)
1407 return 0;
1408
1409 hci_dev_do_close(hdev);
1410
1411 return 0;
1412 }
1413
1414 static const struct rfkill_ops hci_rfkill_ops = {
1415 .set_block = hci_rfkill_set_block,
1416 };
1417
1418 static void hci_power_on(struct work_struct *work)
1419 {
1420 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
1421
1422 BT_DBG("%s", hdev->name);
1423
1424 if (hci_dev_open(hdev->id) < 0)
1425 return;
1426
1427 if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1428 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1429 HCI_AUTO_OFF_TIMEOUT);
1430
1431 if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags))
1432 mgmt_index_added(hdev);
1433 }
1434
1435 static void hci_power_off(struct work_struct *work)
1436 {
1437 struct hci_dev *hdev = container_of(work, struct hci_dev,
1438 power_off.work);
1439
1440 BT_DBG("%s", hdev->name);
1441
1442 hci_dev_do_close(hdev);
1443 }
1444
1445 static void hci_discov_off(struct work_struct *work)
1446 {
1447 struct hci_dev *hdev;
1448 u8 scan = SCAN_PAGE;
1449
1450 hdev = container_of(work, struct hci_dev, discov_off.work);
1451
1452 BT_DBG("%s", hdev->name);
1453
1454 hci_dev_lock(hdev);
1455
1456 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, sizeof(scan), &scan);
1457
1458 hdev->discov_timeout = 0;
1459
1460 hci_dev_unlock(hdev);
1461 }
1462
1463 int hci_uuids_clear(struct hci_dev *hdev)
1464 {
1465 struct bt_uuid *uuid, *tmp;
1466
1467 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1468 list_del(&uuid->list);
1469 kfree(uuid);
1470 }
1471
1472 return 0;
1473 }
1474
1475 int hci_link_keys_clear(struct hci_dev *hdev)
1476 {
1477 struct list_head *p, *n;
1478
1479 list_for_each_safe(p, n, &hdev->link_keys) {
1480 struct link_key *key;
1481
1482 key = list_entry(p, struct link_key, list);
1483
1484 list_del(p);
1485 kfree(key);
1486 }
1487
1488 return 0;
1489 }
1490
1491 int hci_smp_ltks_clear(struct hci_dev *hdev)
1492 {
1493 struct smp_ltk *k, *tmp;
1494
1495 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1496 list_del(&k->list);
1497 kfree(k);
1498 }
1499
1500 return 0;
1501 }
1502
1503 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1504 {
1505 struct link_key *k;
1506
1507 list_for_each_entry(k, &hdev->link_keys, list)
1508 if (bacmp(bdaddr, &k->bdaddr) == 0)
1509 return k;
1510
1511 return NULL;
1512 }
1513
1514 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1515 u8 key_type, u8 old_key_type)
1516 {
1517 /* Legacy key */
1518 if (key_type < 0x03)
1519 return true;
1520
1521 /* Debug keys are insecure so don't store them persistently */
1522 if (key_type == HCI_LK_DEBUG_COMBINATION)
1523 return false;
1524
1525 /* Changed combination key and there's no previous one */
1526 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1527 return false;
1528
1529 /* Security mode 3 case */
1530 if (!conn)
1531 return true;
1532
1533 /* Neither local nor remote side had no-bonding as requirement */
1534 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1535 return true;
1536
1537 /* Local side had dedicated bonding as requirement */
1538 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1539 return true;
1540
1541 /* Remote side had dedicated bonding as requirement */
1542 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1543 return true;
1544
1545 /* If none of the above criteria match, then don't store the key
1546 * persistently */
1547 return false;
1548 }
1549
1550 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1551 {
1552 struct smp_ltk *k;
1553
1554 list_for_each_entry(k, &hdev->long_term_keys, list) {
1555 if (k->ediv != ediv ||
1556 memcmp(rand, k->rand, sizeof(k->rand)))
1557 continue;
1558
1559 return k;
1560 }
1561
1562 return NULL;
1563 }
1564
1565 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1566 u8 addr_type)
1567 {
1568 struct smp_ltk *k;
1569
1570 list_for_each_entry(k, &hdev->long_term_keys, list)
1571 if (addr_type == k->bdaddr_type &&
1572 bacmp(bdaddr, &k->bdaddr) == 0)
1573 return k;
1574
1575 return NULL;
1576 }
1577
1578 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1579 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1580 {
1581 struct link_key *key, *old_key;
1582 u8 old_key_type;
1583 bool persistent;
1584
1585 old_key = hci_find_link_key(hdev, bdaddr);
1586 if (old_key) {
1587 old_key_type = old_key->type;
1588 key = old_key;
1589 } else {
1590 old_key_type = conn ? conn->key_type : 0xff;
1591 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1592 if (!key)
1593 return -ENOMEM;
1594 list_add(&key->list, &hdev->link_keys);
1595 }
1596
1597 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1598
1599 /* Some buggy controller combinations generate a changed
1600 * combination key for legacy pairing even when there's no
1601 * previous key */
1602 if (type == HCI_LK_CHANGED_COMBINATION &&
1603 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1604 type = HCI_LK_COMBINATION;
1605 if (conn)
1606 conn->key_type = type;
1607 }
1608
1609 bacpy(&key->bdaddr, bdaddr);
1610 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1611 key->pin_len = pin_len;
1612
1613 if (type == HCI_LK_CHANGED_COMBINATION)
1614 key->type = old_key_type;
1615 else
1616 key->type = type;
1617
1618 if (!new_key)
1619 return 0;
1620
1621 persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1622
1623 mgmt_new_link_key(hdev, key, persistent);
1624
1625 if (conn)
1626 conn->flush_key = !persistent;
1627
1628 return 0;
1629 }
1630
1631 int hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type,
1632 int new_key, u8 authenticated, u8 tk[16], u8 enc_size, __le16
1633 ediv, u8 rand[8])
1634 {
1635 struct smp_ltk *key, *old_key;
1636
1637 if (!(type & HCI_SMP_STK) && !(type & HCI_SMP_LTK))
1638 return 0;
1639
1640 old_key = hci_find_ltk_by_addr(hdev, bdaddr, addr_type);
1641 if (old_key)
1642 key = old_key;
1643 else {
1644 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1645 if (!key)
1646 return -ENOMEM;
1647 list_add(&key->list, &hdev->long_term_keys);
1648 }
1649
1650 bacpy(&key->bdaddr, bdaddr);
1651 key->bdaddr_type = addr_type;
1652 memcpy(key->val, tk, sizeof(key->val));
1653 key->authenticated = authenticated;
1654 key->ediv = ediv;
1655 key->enc_size = enc_size;
1656 key->type = type;
1657 memcpy(key->rand, rand, sizeof(key->rand));
1658
1659 if (!new_key)
1660 return 0;
1661
1662 if (type & HCI_SMP_LTK)
1663 mgmt_new_ltk(hdev, key, 1);
1664
1665 return 0;
1666 }
1667
1668 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1669 {
1670 struct link_key *key;
1671
1672 key = hci_find_link_key(hdev, bdaddr);
1673 if (!key)
1674 return -ENOENT;
1675
1676 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1677
1678 list_del(&key->list);
1679 kfree(key);
1680
1681 return 0;
1682 }
1683
1684 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr)
1685 {
1686 struct smp_ltk *k, *tmp;
1687
1688 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1689 if (bacmp(bdaddr, &k->bdaddr))
1690 continue;
1691
1692 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1693
1694 list_del(&k->list);
1695 kfree(k);
1696 }
1697
1698 return 0;
1699 }
1700
1701 /* HCI command timer function */
1702 static void hci_cmd_timeout(unsigned long arg)
1703 {
1704 struct hci_dev *hdev = (void *) arg;
1705
1706 if (hdev->sent_cmd) {
1707 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1708 u16 opcode = __le16_to_cpu(sent->opcode);
1709
1710 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
1711 } else {
1712 BT_ERR("%s command tx timeout", hdev->name);
1713 }
1714
1715 atomic_set(&hdev->cmd_cnt, 1);
1716 queue_work(hdev->workqueue, &hdev->cmd_work);
1717 }
1718
1719 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1720 bdaddr_t *bdaddr)
1721 {
1722 struct oob_data *data;
1723
1724 list_for_each_entry(data, &hdev->remote_oob_data, list)
1725 if (bacmp(bdaddr, &data->bdaddr) == 0)
1726 return data;
1727
1728 return NULL;
1729 }
1730
1731 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1732 {
1733 struct oob_data *data;
1734
1735 data = hci_find_remote_oob_data(hdev, bdaddr);
1736 if (!data)
1737 return -ENOENT;
1738
1739 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1740
1741 list_del(&data->list);
1742 kfree(data);
1743
1744 return 0;
1745 }
1746
1747 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1748 {
1749 struct oob_data *data, *n;
1750
1751 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1752 list_del(&data->list);
1753 kfree(data);
1754 }
1755
1756 return 0;
1757 }
1758
1759 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1760 u8 *randomizer)
1761 {
1762 struct oob_data *data;
1763
1764 data = hci_find_remote_oob_data(hdev, bdaddr);
1765
1766 if (!data) {
1767 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1768 if (!data)
1769 return -ENOMEM;
1770
1771 bacpy(&data->bdaddr, bdaddr);
1772 list_add(&data->list, &hdev->remote_oob_data);
1773 }
1774
1775 memcpy(data->hash, hash, sizeof(data->hash));
1776 memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1777
1778 BT_DBG("%s for %pMR", hdev->name, bdaddr);
1779
1780 return 0;
1781 }
1782
1783 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
1784 {
1785 struct bdaddr_list *b;
1786
1787 list_for_each_entry(b, &hdev->blacklist, list)
1788 if (bacmp(bdaddr, &b->bdaddr) == 0)
1789 return b;
1790
1791 return NULL;
1792 }
1793
1794 int hci_blacklist_clear(struct hci_dev *hdev)
1795 {
1796 struct list_head *p, *n;
1797
1798 list_for_each_safe(p, n, &hdev->blacklist) {
1799 struct bdaddr_list *b;
1800
1801 b = list_entry(p, struct bdaddr_list, list);
1802
1803 list_del(p);
1804 kfree(b);
1805 }
1806
1807 return 0;
1808 }
1809
1810 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1811 {
1812 struct bdaddr_list *entry;
1813
1814 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1815 return -EBADF;
1816
1817 if (hci_blacklist_lookup(hdev, bdaddr))
1818 return -EEXIST;
1819
1820 entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1821 if (!entry)
1822 return -ENOMEM;
1823
1824 bacpy(&entry->bdaddr, bdaddr);
1825
1826 list_add(&entry->list, &hdev->blacklist);
1827
1828 return mgmt_device_blocked(hdev, bdaddr, type);
1829 }
1830
1831 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1832 {
1833 struct bdaddr_list *entry;
1834
1835 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1836 return hci_blacklist_clear(hdev);
1837
1838 entry = hci_blacklist_lookup(hdev, bdaddr);
1839 if (!entry)
1840 return -ENOENT;
1841
1842 list_del(&entry->list);
1843 kfree(entry);
1844
1845 return mgmt_device_unblocked(hdev, bdaddr, type);
1846 }
1847
1848 static void le_scan_param_req(struct hci_request *req, unsigned long opt)
1849 {
1850 struct le_scan_params *param = (struct le_scan_params *) opt;
1851 struct hci_cp_le_set_scan_param cp;
1852
1853 memset(&cp, 0, sizeof(cp));
1854 cp.type = param->type;
1855 cp.interval = cpu_to_le16(param->interval);
1856 cp.window = cpu_to_le16(param->window);
1857
1858 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(cp), &cp);
1859 }
1860
1861 static void le_scan_enable_req(struct hci_request *req, unsigned long opt)
1862 {
1863 struct hci_cp_le_set_scan_enable cp;
1864
1865 memset(&cp, 0, sizeof(cp));
1866 cp.enable = 1;
1867 cp.filter_dup = 1;
1868
1869 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1870 }
1871
1872 static int hci_do_le_scan(struct hci_dev *hdev, u8 type, u16 interval,
1873 u16 window, int timeout)
1874 {
1875 long timeo = msecs_to_jiffies(3000);
1876 struct le_scan_params param;
1877 int err;
1878
1879 BT_DBG("%s", hdev->name);
1880
1881 if (test_bit(HCI_LE_SCAN, &hdev->dev_flags))
1882 return -EINPROGRESS;
1883
1884 param.type = type;
1885 param.interval = interval;
1886 param.window = window;
1887
1888 hci_req_lock(hdev);
1889
1890 err = __hci_req_sync(hdev, le_scan_param_req, (unsigned long) &param,
1891 timeo);
1892 if (!err)
1893 err = __hci_req_sync(hdev, le_scan_enable_req, 0, timeo);
1894
1895 hci_req_unlock(hdev);
1896
1897 if (err < 0)
1898 return err;
1899
1900 queue_delayed_work(hdev->workqueue, &hdev->le_scan_disable,
1901 msecs_to_jiffies(timeout));
1902
1903 return 0;
1904 }
1905
1906 int hci_cancel_le_scan(struct hci_dev *hdev)
1907 {
1908 BT_DBG("%s", hdev->name);
1909
1910 if (!test_bit(HCI_LE_SCAN, &hdev->dev_flags))
1911 return -EALREADY;
1912
1913 if (cancel_delayed_work(&hdev->le_scan_disable)) {
1914 struct hci_cp_le_set_scan_enable cp;
1915
1916 /* Send HCI command to disable LE Scan */
1917 memset(&cp, 0, sizeof(cp));
1918 hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1919 }
1920
1921 return 0;
1922 }
1923
1924 static void le_scan_disable_work(struct work_struct *work)
1925 {
1926 struct hci_dev *hdev = container_of(work, struct hci_dev,
1927 le_scan_disable.work);
1928 struct hci_cp_le_set_scan_enable cp;
1929
1930 BT_DBG("%s", hdev->name);
1931
1932 memset(&cp, 0, sizeof(cp));
1933
1934 hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1935 }
1936
1937 static void le_scan_work(struct work_struct *work)
1938 {
1939 struct hci_dev *hdev = container_of(work, struct hci_dev, le_scan);
1940 struct le_scan_params *param = &hdev->le_scan_params;
1941
1942 BT_DBG("%s", hdev->name);
1943
1944 hci_do_le_scan(hdev, param->type, param->interval, param->window,
1945 param->timeout);
1946 }
1947
1948 int hci_le_scan(struct hci_dev *hdev, u8 type, u16 interval, u16 window,
1949 int timeout)
1950 {
1951 struct le_scan_params *param = &hdev->le_scan_params;
1952
1953 BT_DBG("%s", hdev->name);
1954
1955 if (test_bit(HCI_LE_PERIPHERAL, &hdev->dev_flags))
1956 return -ENOTSUPP;
1957
1958 if (work_busy(&hdev->le_scan))
1959 return -EINPROGRESS;
1960
1961 param->type = type;
1962 param->interval = interval;
1963 param->window = window;
1964 param->timeout = timeout;
1965
1966 queue_work(system_long_wq, &hdev->le_scan);
1967
1968 return 0;
1969 }
1970
1971 /* Alloc HCI device */
1972 struct hci_dev *hci_alloc_dev(void)
1973 {
1974 struct hci_dev *hdev;
1975
1976 hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
1977 if (!hdev)
1978 return NULL;
1979
1980 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1981 hdev->esco_type = (ESCO_HV1);
1982 hdev->link_mode = (HCI_LM_ACCEPT);
1983 hdev->io_capability = 0x03; /* No Input No Output */
1984 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
1985 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
1986
1987 hdev->sniff_max_interval = 800;
1988 hdev->sniff_min_interval = 80;
1989
1990 mutex_init(&hdev->lock);
1991 mutex_init(&hdev->req_lock);
1992
1993 INIT_LIST_HEAD(&hdev->mgmt_pending);
1994 INIT_LIST_HEAD(&hdev->blacklist);
1995 INIT_LIST_HEAD(&hdev->uuids);
1996 INIT_LIST_HEAD(&hdev->link_keys);
1997 INIT_LIST_HEAD(&hdev->long_term_keys);
1998 INIT_LIST_HEAD(&hdev->remote_oob_data);
1999 INIT_LIST_HEAD(&hdev->conn_hash.list);
2000
2001 INIT_WORK(&hdev->rx_work, hci_rx_work);
2002 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2003 INIT_WORK(&hdev->tx_work, hci_tx_work);
2004 INIT_WORK(&hdev->power_on, hci_power_on);
2005 INIT_WORK(&hdev->le_scan, le_scan_work);
2006
2007 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2008 INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
2009 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2010
2011 skb_queue_head_init(&hdev->driver_init);
2012 skb_queue_head_init(&hdev->rx_q);
2013 skb_queue_head_init(&hdev->cmd_q);
2014 skb_queue_head_init(&hdev->raw_q);
2015
2016 init_waitqueue_head(&hdev->req_wait_q);
2017
2018 setup_timer(&hdev->cmd_timer, hci_cmd_timeout, (unsigned long) hdev);
2019
2020 hci_init_sysfs(hdev);
2021 discovery_init(hdev);
2022
2023 return hdev;
2024 }
2025 EXPORT_SYMBOL(hci_alloc_dev);
2026
2027 /* Free HCI device */
2028 void hci_free_dev(struct hci_dev *hdev)
2029 {
2030 skb_queue_purge(&hdev->driver_init);
2031
2032 /* will free via device release */
2033 put_device(&hdev->dev);
2034 }
2035 EXPORT_SYMBOL(hci_free_dev);
2036
2037 /* Register HCI device */
2038 int hci_register_dev(struct hci_dev *hdev)
2039 {
2040 int id, error;
2041
2042 if (!hdev->open || !hdev->close)
2043 return -EINVAL;
2044
2045 /* Do not allow HCI_AMP devices to register at index 0,
2046 * so the index can be used as the AMP controller ID.
2047 */
2048 switch (hdev->dev_type) {
2049 case HCI_BREDR:
2050 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
2051 break;
2052 case HCI_AMP:
2053 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
2054 break;
2055 default:
2056 return -EINVAL;
2057 }
2058
2059 if (id < 0)
2060 return id;
2061
2062 sprintf(hdev->name, "hci%d", id);
2063 hdev->id = id;
2064
2065 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2066
2067 write_lock(&hci_dev_list_lock);
2068 list_add(&hdev->list, &hci_dev_list);
2069 write_unlock(&hci_dev_list_lock);
2070
2071 hdev->workqueue = alloc_workqueue(hdev->name, WQ_HIGHPRI | WQ_UNBOUND |
2072 WQ_MEM_RECLAIM, 1);
2073 if (!hdev->workqueue) {
2074 error = -ENOMEM;
2075 goto err;
2076 }
2077
2078 hdev->req_workqueue = alloc_workqueue(hdev->name,
2079 WQ_HIGHPRI | WQ_UNBOUND |
2080 WQ_MEM_RECLAIM, 1);
2081 if (!hdev->req_workqueue) {
2082 destroy_workqueue(hdev->workqueue);
2083 error = -ENOMEM;
2084 goto err;
2085 }
2086
2087 error = hci_add_sysfs(hdev);
2088 if (error < 0)
2089 goto err_wqueue;
2090
2091 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2092 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2093 hdev);
2094 if (hdev->rfkill) {
2095 if (rfkill_register(hdev->rfkill) < 0) {
2096 rfkill_destroy(hdev->rfkill);
2097 hdev->rfkill = NULL;
2098 }
2099 }
2100
2101 set_bit(HCI_SETUP, &hdev->dev_flags);
2102
2103 if (hdev->dev_type != HCI_AMP)
2104 set_bit(HCI_AUTO_OFF, &hdev->dev_flags);
2105
2106 hci_notify(hdev, HCI_DEV_REG);
2107 hci_dev_hold(hdev);
2108
2109 queue_work(hdev->req_workqueue, &hdev->power_on);
2110
2111 return id;
2112
2113 err_wqueue:
2114 destroy_workqueue(hdev->workqueue);
2115 destroy_workqueue(hdev->req_workqueue);
2116 err:
2117 ida_simple_remove(&hci_index_ida, hdev->id);
2118 write_lock(&hci_dev_list_lock);
2119 list_del(&hdev->list);
2120 write_unlock(&hci_dev_list_lock);
2121
2122 return error;
2123 }
2124 EXPORT_SYMBOL(hci_register_dev);
2125
2126 /* Unregister HCI device */
2127 void hci_unregister_dev(struct hci_dev *hdev)
2128 {
2129 int i, id;
2130
2131 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2132
2133 set_bit(HCI_UNREGISTER, &hdev->dev_flags);
2134
2135 id = hdev->id;
2136
2137 write_lock(&hci_dev_list_lock);
2138 list_del(&hdev->list);
2139 write_unlock(&hci_dev_list_lock);
2140
2141 hci_dev_do_close(hdev);
2142
2143 for (i = 0; i < NUM_REASSEMBLY; i++)
2144 kfree_skb(hdev->reassembly[i]);
2145
2146 cancel_work_sync(&hdev->power_on);
2147
2148 if (!test_bit(HCI_INIT, &hdev->flags) &&
2149 !test_bit(HCI_SETUP, &hdev->dev_flags)) {
2150 hci_dev_lock(hdev);
2151 mgmt_index_removed(hdev);
2152 hci_dev_unlock(hdev);
2153 }
2154
2155 /* mgmt_index_removed should take care of emptying the
2156 * pending list */
2157 BUG_ON(!list_empty(&hdev->mgmt_pending));
2158
2159 hci_notify(hdev, HCI_DEV_UNREG);
2160
2161 if (hdev->rfkill) {
2162 rfkill_unregister(hdev->rfkill);
2163 rfkill_destroy(hdev->rfkill);
2164 }
2165
2166 hci_del_sysfs(hdev);
2167
2168 destroy_workqueue(hdev->workqueue);
2169 destroy_workqueue(hdev->req_workqueue);
2170
2171 hci_dev_lock(hdev);
2172 hci_blacklist_clear(hdev);
2173 hci_uuids_clear(hdev);
2174 hci_link_keys_clear(hdev);
2175 hci_smp_ltks_clear(hdev);
2176 hci_remote_oob_data_clear(hdev);
2177 hci_dev_unlock(hdev);
2178
2179 hci_dev_put(hdev);
2180
2181 ida_simple_remove(&hci_index_ida, id);
2182 }
2183 EXPORT_SYMBOL(hci_unregister_dev);
2184
2185 /* Suspend HCI device */
2186 int hci_suspend_dev(struct hci_dev *hdev)
2187 {
2188 hci_notify(hdev, HCI_DEV_SUSPEND);
2189 return 0;
2190 }
2191 EXPORT_SYMBOL(hci_suspend_dev);
2192
2193 /* Resume HCI device */
2194 int hci_resume_dev(struct hci_dev *hdev)
2195 {
2196 hci_notify(hdev, HCI_DEV_RESUME);
2197 return 0;
2198 }
2199 EXPORT_SYMBOL(hci_resume_dev);
2200
2201 /* Receive frame from HCI drivers */
2202 int hci_recv_frame(struct sk_buff *skb)
2203 {
2204 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
2205 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2206 && !test_bit(HCI_INIT, &hdev->flags))) {
2207 kfree_skb(skb);
2208 return -ENXIO;
2209 }
2210
2211 /* Incoming skb */
2212 bt_cb(skb)->incoming = 1;
2213
2214 /* Time stamp */
2215 __net_timestamp(skb);
2216
2217 skb_queue_tail(&hdev->rx_q, skb);
2218 queue_work(hdev->workqueue, &hdev->rx_work);
2219
2220 return 0;
2221 }
2222 EXPORT_SYMBOL(hci_recv_frame);
2223
2224 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
2225 int count, __u8 index)
2226 {
2227 int len = 0;
2228 int hlen = 0;
2229 int remain = count;
2230 struct sk_buff *skb;
2231 struct bt_skb_cb *scb;
2232
2233 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
2234 index >= NUM_REASSEMBLY)
2235 return -EILSEQ;
2236
2237 skb = hdev->reassembly[index];
2238
2239 if (!skb) {
2240 switch (type) {
2241 case HCI_ACLDATA_PKT:
2242 len = HCI_MAX_FRAME_SIZE;
2243 hlen = HCI_ACL_HDR_SIZE;
2244 break;
2245 case HCI_EVENT_PKT:
2246 len = HCI_MAX_EVENT_SIZE;
2247 hlen = HCI_EVENT_HDR_SIZE;
2248 break;
2249 case HCI_SCODATA_PKT:
2250 len = HCI_MAX_SCO_SIZE;
2251 hlen = HCI_SCO_HDR_SIZE;
2252 break;
2253 }
2254
2255 skb = bt_skb_alloc(len, GFP_ATOMIC);
2256 if (!skb)
2257 return -ENOMEM;
2258
2259 scb = (void *) skb->cb;
2260 scb->expect = hlen;
2261 scb->pkt_type = type;
2262
2263 skb->dev = (void *) hdev;
2264 hdev->reassembly[index] = skb;
2265 }
2266
2267 while (count) {
2268 scb = (void *) skb->cb;
2269 len = min_t(uint, scb->expect, count);
2270
2271 memcpy(skb_put(skb, len), data, len);
2272
2273 count -= len;
2274 data += len;
2275 scb->expect -= len;
2276 remain = count;
2277
2278 switch (type) {
2279 case HCI_EVENT_PKT:
2280 if (skb->len == HCI_EVENT_HDR_SIZE) {
2281 struct hci_event_hdr *h = hci_event_hdr(skb);
2282 scb->expect = h->plen;
2283
2284 if (skb_tailroom(skb) < scb->expect) {
2285 kfree_skb(skb);
2286 hdev->reassembly[index] = NULL;
2287 return -ENOMEM;
2288 }
2289 }
2290 break;
2291
2292 case HCI_ACLDATA_PKT:
2293 if (skb->len == HCI_ACL_HDR_SIZE) {
2294 struct hci_acl_hdr *h = hci_acl_hdr(skb);
2295 scb->expect = __le16_to_cpu(h->dlen);
2296
2297 if (skb_tailroom(skb) < scb->expect) {
2298 kfree_skb(skb);
2299 hdev->reassembly[index] = NULL;
2300 return -ENOMEM;
2301 }
2302 }
2303 break;
2304
2305 case HCI_SCODATA_PKT:
2306 if (skb->len == HCI_SCO_HDR_SIZE) {
2307 struct hci_sco_hdr *h = hci_sco_hdr(skb);
2308 scb->expect = h->dlen;
2309
2310 if (skb_tailroom(skb) < scb->expect) {
2311 kfree_skb(skb);
2312 hdev->reassembly[index] = NULL;
2313 return -ENOMEM;
2314 }
2315 }
2316 break;
2317 }
2318
2319 if (scb->expect == 0) {
2320 /* Complete frame */
2321
2322 bt_cb(skb)->pkt_type = type;
2323 hci_recv_frame(skb);
2324
2325 hdev->reassembly[index] = NULL;
2326 return remain;
2327 }
2328 }
2329
2330 return remain;
2331 }
2332
2333 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
2334 {
2335 int rem = 0;
2336
2337 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
2338 return -EILSEQ;
2339
2340 while (count) {
2341 rem = hci_reassembly(hdev, type, data, count, type - 1);
2342 if (rem < 0)
2343 return rem;
2344
2345 data += (count - rem);
2346 count = rem;
2347 }
2348
2349 return rem;
2350 }
2351 EXPORT_SYMBOL(hci_recv_fragment);
2352
2353 #define STREAM_REASSEMBLY 0
2354
2355 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
2356 {
2357 int type;
2358 int rem = 0;
2359
2360 while (count) {
2361 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
2362
2363 if (!skb) {
2364 struct { char type; } *pkt;
2365
2366 /* Start of the frame */
2367 pkt = data;
2368 type = pkt->type;
2369
2370 data++;
2371 count--;
2372 } else
2373 type = bt_cb(skb)->pkt_type;
2374
2375 rem = hci_reassembly(hdev, type, data, count,
2376 STREAM_REASSEMBLY);
2377 if (rem < 0)
2378 return rem;
2379
2380 data += (count - rem);
2381 count = rem;
2382 }
2383
2384 return rem;
2385 }
2386 EXPORT_SYMBOL(hci_recv_stream_fragment);
2387
2388 /* ---- Interface to upper protocols ---- */
2389
2390 int hci_register_cb(struct hci_cb *cb)
2391 {
2392 BT_DBG("%p name %s", cb, cb->name);
2393
2394 write_lock(&hci_cb_list_lock);
2395 list_add(&cb->list, &hci_cb_list);
2396 write_unlock(&hci_cb_list_lock);
2397
2398 return 0;
2399 }
2400 EXPORT_SYMBOL(hci_register_cb);
2401
2402 int hci_unregister_cb(struct hci_cb *cb)
2403 {
2404 BT_DBG("%p name %s", cb, cb->name);
2405
2406 write_lock(&hci_cb_list_lock);
2407 list_del(&cb->list);
2408 write_unlock(&hci_cb_list_lock);
2409
2410 return 0;
2411 }
2412 EXPORT_SYMBOL(hci_unregister_cb);
2413
2414 static int hci_send_frame(struct sk_buff *skb)
2415 {
2416 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
2417
2418 if (!hdev) {
2419 kfree_skb(skb);
2420 return -ENODEV;
2421 }
2422
2423 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
2424
2425 /* Time stamp */
2426 __net_timestamp(skb);
2427
2428 /* Send copy to monitor */
2429 hci_send_to_monitor(hdev, skb);
2430
2431 if (atomic_read(&hdev->promisc)) {
2432 /* Send copy to the sockets */
2433 hci_send_to_sock(hdev, skb);
2434 }
2435
2436 /* Get rid of skb owner, prior to sending to the driver. */
2437 skb_orphan(skb);
2438
2439 return hdev->send(skb);
2440 }
2441
2442 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
2443 {
2444 skb_queue_head_init(&req->cmd_q);
2445 req->hdev = hdev;
2446 }
2447
2448 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
2449 {
2450 struct hci_dev *hdev = req->hdev;
2451 struct sk_buff *skb;
2452 unsigned long flags;
2453
2454 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
2455
2456 /* Do not allow empty requests */
2457 if (skb_queue_empty(&req->cmd_q))
2458 return -ENODATA;
2459
2460 skb = skb_peek_tail(&req->cmd_q);
2461 bt_cb(skb)->req.complete = complete;
2462
2463 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
2464 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
2465 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
2466
2467 queue_work(hdev->workqueue, &hdev->cmd_work);
2468
2469 return 0;
2470 }
2471
2472 static struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode,
2473 u32 plen, void *param)
2474 {
2475 int len = HCI_COMMAND_HDR_SIZE + plen;
2476 struct hci_command_hdr *hdr;
2477 struct sk_buff *skb;
2478
2479 skb = bt_skb_alloc(len, GFP_ATOMIC);
2480 if (!skb)
2481 return NULL;
2482
2483 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
2484 hdr->opcode = cpu_to_le16(opcode);
2485 hdr->plen = plen;
2486
2487 if (plen)
2488 memcpy(skb_put(skb, plen), param, plen);
2489
2490 BT_DBG("skb len %d", skb->len);
2491
2492 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
2493 skb->dev = (void *) hdev;
2494
2495 return skb;
2496 }
2497
2498 /* Send HCI command */
2499 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
2500 {
2501 struct sk_buff *skb;
2502
2503 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
2504
2505 skb = hci_prepare_cmd(hdev, opcode, plen, param);
2506 if (!skb) {
2507 BT_ERR("%s no memory for command", hdev->name);
2508 return -ENOMEM;
2509 }
2510
2511 /* Stand-alone HCI commands must be flaged as
2512 * single-command requests.
2513 */
2514 bt_cb(skb)->req.start = true;
2515
2516 skb_queue_tail(&hdev->cmd_q, skb);
2517 queue_work(hdev->workqueue, &hdev->cmd_work);
2518
2519 return 0;
2520 }
2521
2522 /* Queue a command to an asynchronous HCI request */
2523 int hci_req_add(struct hci_request *req, u16 opcode, u32 plen, void *param)
2524 {
2525 struct hci_dev *hdev = req->hdev;
2526 struct sk_buff *skb;
2527
2528 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
2529
2530 skb = hci_prepare_cmd(hdev, opcode, plen, param);
2531 if (!skb) {
2532 BT_ERR("%s no memory for command", hdev->name);
2533 return -ENOMEM;
2534 }
2535
2536 if (skb_queue_empty(&req->cmd_q))
2537 bt_cb(skb)->req.start = true;
2538
2539 skb_queue_tail(&req->cmd_q, skb);
2540
2541 return 0;
2542 }
2543
2544 /* Get data from the previously sent command */
2545 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
2546 {
2547 struct hci_command_hdr *hdr;
2548
2549 if (!hdev->sent_cmd)
2550 return NULL;
2551
2552 hdr = (void *) hdev->sent_cmd->data;
2553
2554 if (hdr->opcode != cpu_to_le16(opcode))
2555 return NULL;
2556
2557 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
2558
2559 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
2560 }
2561
2562 /* Send ACL data */
2563 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
2564 {
2565 struct hci_acl_hdr *hdr;
2566 int len = skb->len;
2567
2568 skb_push(skb, HCI_ACL_HDR_SIZE);
2569 skb_reset_transport_header(skb);
2570 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
2571 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
2572 hdr->dlen = cpu_to_le16(len);
2573 }
2574
2575 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
2576 struct sk_buff *skb, __u16 flags)
2577 {
2578 struct hci_conn *conn = chan->conn;
2579 struct hci_dev *hdev = conn->hdev;
2580 struct sk_buff *list;
2581
2582 skb->len = skb_headlen(skb);
2583 skb->data_len = 0;
2584
2585 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2586
2587 switch (hdev->dev_type) {
2588 case HCI_BREDR:
2589 hci_add_acl_hdr(skb, conn->handle, flags);
2590 break;
2591 case HCI_AMP:
2592 hci_add_acl_hdr(skb, chan->handle, flags);
2593 break;
2594 default:
2595 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
2596 return;
2597 }
2598
2599 list = skb_shinfo(skb)->frag_list;
2600 if (!list) {
2601 /* Non fragmented */
2602 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
2603
2604 skb_queue_tail(queue, skb);
2605 } else {
2606 /* Fragmented */
2607 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2608
2609 skb_shinfo(skb)->frag_list = NULL;
2610
2611 /* Queue all fragments atomically */
2612 spin_lock(&queue->lock);
2613
2614 __skb_queue_tail(queue, skb);
2615
2616 flags &= ~ACL_START;
2617 flags |= ACL_CONT;
2618 do {
2619 skb = list; list = list->next;
2620
2621 skb->dev = (void *) hdev;
2622 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2623 hci_add_acl_hdr(skb, conn->handle, flags);
2624
2625 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2626
2627 __skb_queue_tail(queue, skb);
2628 } while (list);
2629
2630 spin_unlock(&queue->lock);
2631 }
2632 }
2633
2634 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
2635 {
2636 struct hci_dev *hdev = chan->conn->hdev;
2637
2638 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
2639
2640 skb->dev = (void *) hdev;
2641
2642 hci_queue_acl(chan, &chan->data_q, skb, flags);
2643
2644 queue_work(hdev->workqueue, &hdev->tx_work);
2645 }
2646
2647 /* Send SCO data */
2648 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2649 {
2650 struct hci_dev *hdev = conn->hdev;
2651 struct hci_sco_hdr hdr;
2652
2653 BT_DBG("%s len %d", hdev->name, skb->len);
2654
2655 hdr.handle = cpu_to_le16(conn->handle);
2656 hdr.dlen = skb->len;
2657
2658 skb_push(skb, HCI_SCO_HDR_SIZE);
2659 skb_reset_transport_header(skb);
2660 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2661
2662 skb->dev = (void *) hdev;
2663 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2664
2665 skb_queue_tail(&conn->data_q, skb);
2666 queue_work(hdev->workqueue, &hdev->tx_work);
2667 }
2668
2669 /* ---- HCI TX task (outgoing data) ---- */
2670
2671 /* HCI Connection scheduler */
2672 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
2673 int *quote)
2674 {
2675 struct hci_conn_hash *h = &hdev->conn_hash;
2676 struct hci_conn *conn = NULL, *c;
2677 unsigned int num = 0, min = ~0;
2678
2679 /* We don't have to lock device here. Connections are always
2680 * added and removed with TX task disabled. */
2681
2682 rcu_read_lock();
2683
2684 list_for_each_entry_rcu(c, &h->list, list) {
2685 if (c->type != type || skb_queue_empty(&c->data_q))
2686 continue;
2687
2688 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2689 continue;
2690
2691 num++;
2692
2693 if (c->sent < min) {
2694 min = c->sent;
2695 conn = c;
2696 }
2697
2698 if (hci_conn_num(hdev, type) == num)
2699 break;
2700 }
2701
2702 rcu_read_unlock();
2703
2704 if (conn) {
2705 int cnt, q;
2706
2707 switch (conn->type) {
2708 case ACL_LINK:
2709 cnt = hdev->acl_cnt;
2710 break;
2711 case SCO_LINK:
2712 case ESCO_LINK:
2713 cnt = hdev->sco_cnt;
2714 break;
2715 case LE_LINK:
2716 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2717 break;
2718 default:
2719 cnt = 0;
2720 BT_ERR("Unknown link type");
2721 }
2722
2723 q = cnt / num;
2724 *quote = q ? q : 1;
2725 } else
2726 *quote = 0;
2727
2728 BT_DBG("conn %p quote %d", conn, *quote);
2729 return conn;
2730 }
2731
2732 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2733 {
2734 struct hci_conn_hash *h = &hdev->conn_hash;
2735 struct hci_conn *c;
2736
2737 BT_ERR("%s link tx timeout", hdev->name);
2738
2739 rcu_read_lock();
2740
2741 /* Kill stalled connections */
2742 list_for_each_entry_rcu(c, &h->list, list) {
2743 if (c->type == type && c->sent) {
2744 BT_ERR("%s killing stalled connection %pMR",
2745 hdev->name, &c->dst);
2746 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
2747 }
2748 }
2749
2750 rcu_read_unlock();
2751 }
2752
2753 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
2754 int *quote)
2755 {
2756 struct hci_conn_hash *h = &hdev->conn_hash;
2757 struct hci_chan *chan = NULL;
2758 unsigned int num = 0, min = ~0, cur_prio = 0;
2759 struct hci_conn *conn;
2760 int cnt, q, conn_num = 0;
2761
2762 BT_DBG("%s", hdev->name);
2763
2764 rcu_read_lock();
2765
2766 list_for_each_entry_rcu(conn, &h->list, list) {
2767 struct hci_chan *tmp;
2768
2769 if (conn->type != type)
2770 continue;
2771
2772 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2773 continue;
2774
2775 conn_num++;
2776
2777 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
2778 struct sk_buff *skb;
2779
2780 if (skb_queue_empty(&tmp->data_q))
2781 continue;
2782
2783 skb = skb_peek(&tmp->data_q);
2784 if (skb->priority < cur_prio)
2785 continue;
2786
2787 if (skb->priority > cur_prio) {
2788 num = 0;
2789 min = ~0;
2790 cur_prio = skb->priority;
2791 }
2792
2793 num++;
2794
2795 if (conn->sent < min) {
2796 min = conn->sent;
2797 chan = tmp;
2798 }
2799 }
2800
2801 if (hci_conn_num(hdev, type) == conn_num)
2802 break;
2803 }
2804
2805 rcu_read_unlock();
2806
2807 if (!chan)
2808 return NULL;
2809
2810 switch (chan->conn->type) {
2811 case ACL_LINK:
2812 cnt = hdev->acl_cnt;
2813 break;
2814 case AMP_LINK:
2815 cnt = hdev->block_cnt;
2816 break;
2817 case SCO_LINK:
2818 case ESCO_LINK:
2819 cnt = hdev->sco_cnt;
2820 break;
2821 case LE_LINK:
2822 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2823 break;
2824 default:
2825 cnt = 0;
2826 BT_ERR("Unknown link type");
2827 }
2828
2829 q = cnt / num;
2830 *quote = q ? q : 1;
2831 BT_DBG("chan %p quote %d", chan, *quote);
2832 return chan;
2833 }
2834
2835 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
2836 {
2837 struct hci_conn_hash *h = &hdev->conn_hash;
2838 struct hci_conn *conn;
2839 int num = 0;
2840
2841 BT_DBG("%s", hdev->name);
2842
2843 rcu_read_lock();
2844
2845 list_for_each_entry_rcu(conn, &h->list, list) {
2846 struct hci_chan *chan;
2847
2848 if (conn->type != type)
2849 continue;
2850
2851 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2852 continue;
2853
2854 num++;
2855
2856 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
2857 struct sk_buff *skb;
2858
2859 if (chan->sent) {
2860 chan->sent = 0;
2861 continue;
2862 }
2863
2864 if (skb_queue_empty(&chan->data_q))
2865 continue;
2866
2867 skb = skb_peek(&chan->data_q);
2868 if (skb->priority >= HCI_PRIO_MAX - 1)
2869 continue;
2870
2871 skb->priority = HCI_PRIO_MAX - 1;
2872
2873 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
2874 skb->priority);
2875 }
2876
2877 if (hci_conn_num(hdev, type) == num)
2878 break;
2879 }
2880
2881 rcu_read_unlock();
2882
2883 }
2884
2885 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
2886 {
2887 /* Calculate count of blocks used by this packet */
2888 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
2889 }
2890
2891 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
2892 {
2893 if (!test_bit(HCI_RAW, &hdev->flags)) {
2894 /* ACL tx timeout must be longer than maximum
2895 * link supervision timeout (40.9 seconds) */
2896 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
2897 HCI_ACL_TX_TIMEOUT))
2898 hci_link_tx_to(hdev, ACL_LINK);
2899 }
2900 }
2901
2902 static void hci_sched_acl_pkt(struct hci_dev *hdev)
2903 {
2904 unsigned int cnt = hdev->acl_cnt;
2905 struct hci_chan *chan;
2906 struct sk_buff *skb;
2907 int quote;
2908
2909 __check_timeout(hdev, cnt);
2910
2911 while (hdev->acl_cnt &&
2912 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
2913 u32 priority = (skb_peek(&chan->data_q))->priority;
2914 while (quote-- && (skb = skb_peek(&chan->data_q))) {
2915 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2916 skb->len, skb->priority);
2917
2918 /* Stop if priority has changed */
2919 if (skb->priority < priority)
2920 break;
2921
2922 skb = skb_dequeue(&chan->data_q);
2923
2924 hci_conn_enter_active_mode(chan->conn,
2925 bt_cb(skb)->force_active);
2926
2927 hci_send_frame(skb);
2928 hdev->acl_last_tx = jiffies;
2929
2930 hdev->acl_cnt--;
2931 chan->sent++;
2932 chan->conn->sent++;
2933 }
2934 }
2935
2936 if (cnt != hdev->acl_cnt)
2937 hci_prio_recalculate(hdev, ACL_LINK);
2938 }
2939
2940 static void hci_sched_acl_blk(struct hci_dev *hdev)
2941 {
2942 unsigned int cnt = hdev->block_cnt;
2943 struct hci_chan *chan;
2944 struct sk_buff *skb;
2945 int quote;
2946 u8 type;
2947
2948 __check_timeout(hdev, cnt);
2949
2950 BT_DBG("%s", hdev->name);
2951
2952 if (hdev->dev_type == HCI_AMP)
2953 type = AMP_LINK;
2954 else
2955 type = ACL_LINK;
2956
2957 while (hdev->block_cnt > 0 &&
2958 (chan = hci_chan_sent(hdev, type, &quote))) {
2959 u32 priority = (skb_peek(&chan->data_q))->priority;
2960 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
2961 int blocks;
2962
2963 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2964 skb->len, skb->priority);
2965
2966 /* Stop if priority has changed */
2967 if (skb->priority < priority)
2968 break;
2969
2970 skb = skb_dequeue(&chan->data_q);
2971
2972 blocks = __get_blocks(hdev, skb);
2973 if (blocks > hdev->block_cnt)
2974 return;
2975
2976 hci_conn_enter_active_mode(chan->conn,
2977 bt_cb(skb)->force_active);
2978
2979 hci_send_frame(skb);
2980 hdev->acl_last_tx = jiffies;
2981
2982 hdev->block_cnt -= blocks;
2983 quote -= blocks;
2984
2985 chan->sent += blocks;
2986 chan->conn->sent += blocks;
2987 }
2988 }
2989
2990 if (cnt != hdev->block_cnt)
2991 hci_prio_recalculate(hdev, type);
2992 }
2993
2994 static void hci_sched_acl(struct hci_dev *hdev)
2995 {
2996 BT_DBG("%s", hdev->name);
2997
2998 /* No ACL link over BR/EDR controller */
2999 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3000 return;
3001
3002 /* No AMP link over AMP controller */
3003 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3004 return;
3005
3006 switch (hdev->flow_ctl_mode) {
3007 case HCI_FLOW_CTL_MODE_PACKET_BASED:
3008 hci_sched_acl_pkt(hdev);
3009 break;
3010
3011 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3012 hci_sched_acl_blk(hdev);
3013 break;
3014 }
3015 }
3016
3017 /* Schedule SCO */
3018 static void hci_sched_sco(struct hci_dev *hdev)
3019 {
3020 struct hci_conn *conn;
3021 struct sk_buff *skb;
3022 int quote;
3023
3024 BT_DBG("%s", hdev->name);
3025
3026 if (!hci_conn_num(hdev, SCO_LINK))
3027 return;
3028
3029 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3030 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3031 BT_DBG("skb %p len %d", skb, skb->len);
3032 hci_send_frame(skb);
3033
3034 conn->sent++;
3035 if (conn->sent == ~0)
3036 conn->sent = 0;
3037 }
3038 }
3039 }
3040
3041 static void hci_sched_esco(struct hci_dev *hdev)
3042 {
3043 struct hci_conn *conn;
3044 struct sk_buff *skb;
3045 int quote;
3046
3047 BT_DBG("%s", hdev->name);
3048
3049 if (!hci_conn_num(hdev, ESCO_LINK))
3050 return;
3051
3052 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3053 &quote))) {
3054 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3055 BT_DBG("skb %p len %d", skb, skb->len);
3056 hci_send_frame(skb);
3057
3058 conn->sent++;
3059 if (conn->sent == ~0)
3060 conn->sent = 0;
3061 }
3062 }
3063 }
3064
3065 static void hci_sched_le(struct hci_dev *hdev)
3066 {
3067 struct hci_chan *chan;
3068 struct sk_buff *skb;
3069 int quote, cnt, tmp;
3070
3071 BT_DBG("%s", hdev->name);
3072
3073 if (!hci_conn_num(hdev, LE_LINK))
3074 return;
3075
3076 if (!test_bit(HCI_RAW, &hdev->flags)) {
3077 /* LE tx timeout must be longer than maximum
3078 * link supervision timeout (40.9 seconds) */
3079 if (!hdev->le_cnt && hdev->le_pkts &&
3080 time_after(jiffies, hdev->le_last_tx + HZ * 45))
3081 hci_link_tx_to(hdev, LE_LINK);
3082 }
3083
3084 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3085 tmp = cnt;
3086 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3087 u32 priority = (skb_peek(&chan->data_q))->priority;
3088 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3089 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3090 skb->len, skb->priority);
3091
3092 /* Stop if priority has changed */
3093 if (skb->priority < priority)
3094 break;
3095
3096 skb = skb_dequeue(&chan->data_q);
3097
3098 hci_send_frame(skb);
3099 hdev->le_last_tx = jiffies;
3100
3101 cnt--;
3102 chan->sent++;
3103 chan->conn->sent++;
3104 }
3105 }
3106
3107 if (hdev->le_pkts)
3108 hdev->le_cnt = cnt;
3109 else
3110 hdev->acl_cnt = cnt;
3111
3112 if (cnt != tmp)
3113 hci_prio_recalculate(hdev, LE_LINK);
3114 }
3115
3116 static void hci_tx_work(struct work_struct *work)
3117 {
3118 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3119 struct sk_buff *skb;
3120
3121 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3122 hdev->sco_cnt, hdev->le_cnt);
3123
3124 /* Schedule queues and send stuff to HCI driver */
3125
3126 hci_sched_acl(hdev);
3127
3128 hci_sched_sco(hdev);
3129
3130 hci_sched_esco(hdev);
3131
3132 hci_sched_le(hdev);
3133
3134 /* Send next queued raw (unknown type) packet */
3135 while ((skb = skb_dequeue(&hdev->raw_q)))
3136 hci_send_frame(skb);
3137 }
3138
3139 /* ----- HCI RX task (incoming data processing) ----- */
3140
3141 /* ACL data packet */
3142 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3143 {
3144 struct hci_acl_hdr *hdr = (void *) skb->data;
3145 struct hci_conn *conn;
3146 __u16 handle, flags;
3147
3148 skb_pull(skb, HCI_ACL_HDR_SIZE);
3149
3150 handle = __le16_to_cpu(hdr->handle);
3151 flags = hci_flags(handle);
3152 handle = hci_handle(handle);
3153
3154 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3155 handle, flags);
3156
3157 hdev->stat.acl_rx++;
3158
3159 hci_dev_lock(hdev);
3160 conn = hci_conn_hash_lookup_handle(hdev, handle);
3161 hci_dev_unlock(hdev);
3162
3163 if (conn) {
3164 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3165
3166 /* Send to upper protocol */
3167 l2cap_recv_acldata(conn, skb, flags);
3168 return;
3169 } else {
3170 BT_ERR("%s ACL packet for unknown connection handle %d",
3171 hdev->name, handle);
3172 }
3173
3174 kfree_skb(skb);
3175 }
3176
3177 /* SCO data packet */
3178 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3179 {
3180 struct hci_sco_hdr *hdr = (void *) skb->data;
3181 struct hci_conn *conn;
3182 __u16 handle;
3183
3184 skb_pull(skb, HCI_SCO_HDR_SIZE);
3185
3186 handle = __le16_to_cpu(hdr->handle);
3187
3188 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
3189
3190 hdev->stat.sco_rx++;
3191
3192 hci_dev_lock(hdev);
3193 conn = hci_conn_hash_lookup_handle(hdev, handle);
3194 hci_dev_unlock(hdev);
3195
3196 if (conn) {
3197 /* Send to upper protocol */
3198 sco_recv_scodata(conn, skb);
3199 return;
3200 } else {
3201 BT_ERR("%s SCO packet for unknown connection handle %d",
3202 hdev->name, handle);
3203 }
3204
3205 kfree_skb(skb);
3206 }
3207
3208 static bool hci_req_is_complete(struct hci_dev *hdev)
3209 {
3210 struct sk_buff *skb;
3211
3212 skb = skb_peek(&hdev->cmd_q);
3213 if (!skb)
3214 return true;
3215
3216 return bt_cb(skb)->req.start;
3217 }
3218
3219 static void hci_resend_last(struct hci_dev *hdev)
3220 {
3221 struct hci_command_hdr *sent;
3222 struct sk_buff *skb;
3223 u16 opcode;
3224
3225 if (!hdev->sent_cmd)
3226 return;
3227
3228 sent = (void *) hdev->sent_cmd->data;
3229 opcode = __le16_to_cpu(sent->opcode);
3230 if (opcode == HCI_OP_RESET)
3231 return;
3232
3233 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3234 if (!skb)
3235 return;
3236
3237 skb_queue_head(&hdev->cmd_q, skb);
3238 queue_work(hdev->workqueue, &hdev->cmd_work);
3239 }
3240
3241 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status)
3242 {
3243 hci_req_complete_t req_complete = NULL;
3244 struct sk_buff *skb;
3245 unsigned long flags;
3246
3247 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3248
3249 /* If the completed command doesn't match the last one that was
3250 * sent we need to do special handling of it.
3251 */
3252 if (!hci_sent_cmd_data(hdev, opcode)) {
3253 /* Some CSR based controllers generate a spontaneous
3254 * reset complete event during init and any pending
3255 * command will never be completed. In such a case we
3256 * need to resend whatever was the last sent
3257 * command.
3258 */
3259 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3260 hci_resend_last(hdev);
3261
3262 return;
3263 }
3264
3265 /* If the command succeeded and there's still more commands in
3266 * this request the request is not yet complete.
3267 */
3268 if (!status && !hci_req_is_complete(hdev))
3269 return;
3270
3271 /* If this was the last command in a request the complete
3272 * callback would be found in hdev->sent_cmd instead of the
3273 * command queue (hdev->cmd_q).
3274 */
3275 if (hdev->sent_cmd) {
3276 req_complete = bt_cb(hdev->sent_cmd)->req.complete;
3277 if (req_complete)
3278 goto call_complete;
3279 }
3280
3281 /* Remove all pending commands belonging to this request */
3282 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3283 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3284 if (bt_cb(skb)->req.start) {
3285 __skb_queue_head(&hdev->cmd_q, skb);
3286 break;
3287 }
3288
3289 req_complete = bt_cb(skb)->req.complete;
3290 kfree_skb(skb);
3291 }
3292 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3293
3294 call_complete:
3295 if (req_complete)
3296 req_complete(hdev, status);
3297 }
3298
3299 void hci_req_cmd_status(struct hci_dev *hdev, u16 opcode, u8 status)
3300 {
3301 hci_req_complete_t req_complete = NULL;
3302
3303 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3304
3305 if (status) {
3306 hci_req_cmd_complete(hdev, opcode, status);
3307 return;
3308 }
3309
3310 /* No need to handle success status if there are more commands */
3311 if (!hci_req_is_complete(hdev))
3312 return;
3313
3314 if (hdev->sent_cmd)
3315 req_complete = bt_cb(hdev->sent_cmd)->req.complete;
3316
3317 /* If the request doesn't have a complete callback or there
3318 * are other commands/requests in the hdev queue we consider
3319 * this request as completed.
3320 */
3321 if (!req_complete || !skb_queue_empty(&hdev->cmd_q))
3322 hci_req_cmd_complete(hdev, opcode, status);
3323 }
3324
3325 static void hci_rx_work(struct work_struct *work)
3326 {
3327 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3328 struct sk_buff *skb;
3329
3330 BT_DBG("%s", hdev->name);
3331
3332 while ((skb = skb_dequeue(&hdev->rx_q))) {
3333 /* Send copy to monitor */
3334 hci_send_to_monitor(hdev, skb);
3335
3336 if (atomic_read(&hdev->promisc)) {
3337 /* Send copy to the sockets */
3338 hci_send_to_sock(hdev, skb);
3339 }
3340
3341 if (test_bit(HCI_RAW, &hdev->flags)) {
3342 kfree_skb(skb);
3343 continue;
3344 }
3345
3346 if (test_bit(HCI_INIT, &hdev->flags)) {
3347 /* Don't process data packets in this states. */
3348 switch (bt_cb(skb)->pkt_type) {
3349 case HCI_ACLDATA_PKT:
3350 case HCI_SCODATA_PKT:
3351 kfree_skb(skb);
3352 continue;
3353 }
3354 }
3355
3356 /* Process frame */
3357 switch (bt_cb(skb)->pkt_type) {
3358 case HCI_EVENT_PKT:
3359 BT_DBG("%s Event packet", hdev->name);
3360 hci_event_packet(hdev, skb);
3361 break;
3362
3363 case HCI_ACLDATA_PKT:
3364 BT_DBG("%s ACL data packet", hdev->name);
3365 hci_acldata_packet(hdev, skb);
3366 break;
3367
3368 case HCI_SCODATA_PKT:
3369 BT_DBG("%s SCO data packet", hdev->name);
3370 hci_scodata_packet(hdev, skb);
3371 break;
3372
3373 default:
3374 kfree_skb(skb);
3375 break;
3376 }
3377 }
3378 }
3379
3380 static void hci_cmd_work(struct work_struct *work)
3381 {
3382 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
3383 struct sk_buff *skb;
3384
3385 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
3386 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
3387
3388 /* Send queued commands */
3389 if (atomic_read(&hdev->cmd_cnt)) {
3390 skb = skb_dequeue(&hdev->cmd_q);
3391 if (!skb)
3392 return;
3393
3394 kfree_skb(hdev->sent_cmd);
3395
3396 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
3397 if (hdev->sent_cmd) {
3398 atomic_dec(&hdev->cmd_cnt);
3399 hci_send_frame(skb);
3400 if (test_bit(HCI_RESET, &hdev->flags))
3401 del_timer(&hdev->cmd_timer);
3402 else
3403 mod_timer(&hdev->cmd_timer,
3404 jiffies + HCI_CMD_TIMEOUT);
3405 } else {
3406 skb_queue_head(&hdev->cmd_q, skb);
3407 queue_work(hdev->workqueue, &hdev->cmd_work);
3408 }
3409 }
3410 }
3411
3412 int hci_do_inquiry(struct hci_dev *hdev, u8 length)
3413 {
3414 /* General inquiry access code (GIAC) */
3415 u8 lap[3] = { 0x33, 0x8b, 0x9e };
3416 struct hci_cp_inquiry cp;
3417
3418 BT_DBG("%s", hdev->name);
3419
3420 if (test_bit(HCI_INQUIRY, &hdev->flags))
3421 return -EINPROGRESS;
3422
3423 inquiry_cache_flush(hdev);
3424
3425 memset(&cp, 0, sizeof(cp));
3426 memcpy(&cp.lap, lap, sizeof(cp.lap));
3427 cp.length = length;
3428
3429 return hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
3430 }
3431
3432 int hci_cancel_inquiry(struct hci_dev *hdev)
3433 {
3434 BT_DBG("%s", hdev->name);
3435
3436 if (!test_bit(HCI_INQUIRY, &hdev->flags))
3437 return -EALREADY;
3438
3439 return hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
3440 }
3441
3442 u8 bdaddr_to_le(u8 bdaddr_type)
3443 {
3444 switch (bdaddr_type) {
3445 case BDADDR_LE_PUBLIC:
3446 return ADDR_LE_DEV_PUBLIC;
3447
3448 default:
3449 /* Fallback to LE Random address type */
3450 return ADDR_LE_DEV_RANDOM;
3451 }
3452 }