Bluetooth: Use system workqueue to schedule power_on
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI core. */
26
27 #include <linux/jiffies.h>
28 #include <linux/module.h>
29 #include <linux/kmod.h>
30
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fcntl.h>
38 #include <linux/init.h>
39 #include <linux/skbuff.h>
40 #include <linux/workqueue.h>
41 #include <linux/interrupt.h>
42 #include <linux/notifier.h>
43 #include <linux/rfkill.h>
44 #include <linux/timer.h>
45 #include <linux/crypto.h>
46 #include <net/sock.h>
47
48 #include <asm/system.h>
49 #include <linux/uaccess.h>
50 #include <asm/unaligned.h>
51
52 #include <net/bluetooth/bluetooth.h>
53 #include <net/bluetooth/hci_core.h>
54
55 #define AUTO_OFF_TIMEOUT 2000
56
57 int enable_hs;
58
59 static void hci_rx_work(struct work_struct *work);
60 static void hci_cmd_work(struct work_struct *work);
61 static void hci_tx_work(struct work_struct *work);
62
63 static DEFINE_MUTEX(hci_task_lock);
64
65 /* HCI device list */
66 LIST_HEAD(hci_dev_list);
67 DEFINE_RWLOCK(hci_dev_list_lock);
68
69 /* HCI callback list */
70 LIST_HEAD(hci_cb_list);
71 DEFINE_RWLOCK(hci_cb_list_lock);
72
73 /* HCI protocols */
74 #define HCI_MAX_PROTO 2
75 struct hci_proto *hci_proto[HCI_MAX_PROTO];
76
77 /* HCI notifiers list */
78 static ATOMIC_NOTIFIER_HEAD(hci_notifier);
79
80 /* ---- HCI notifications ---- */
81
82 int hci_register_notifier(struct notifier_block *nb)
83 {
84 return atomic_notifier_chain_register(&hci_notifier, nb);
85 }
86
87 int hci_unregister_notifier(struct notifier_block *nb)
88 {
89 return atomic_notifier_chain_unregister(&hci_notifier, nb);
90 }
91
92 static void hci_notify(struct hci_dev *hdev, int event)
93 {
94 atomic_notifier_call_chain(&hci_notifier, event, hdev);
95 }
96
97 /* ---- HCI requests ---- */
98
99 void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
100 {
101 BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
102
103 /* If this is the init phase check if the completed command matches
104 * the last init command, and if not just return.
105 */
106 if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd)
107 return;
108
109 if (hdev->req_status == HCI_REQ_PEND) {
110 hdev->req_result = result;
111 hdev->req_status = HCI_REQ_DONE;
112 wake_up_interruptible(&hdev->req_wait_q);
113 }
114 }
115
116 static void hci_req_cancel(struct hci_dev *hdev, int err)
117 {
118 BT_DBG("%s err 0x%2.2x", hdev->name, err);
119
120 if (hdev->req_status == HCI_REQ_PEND) {
121 hdev->req_result = err;
122 hdev->req_status = HCI_REQ_CANCELED;
123 wake_up_interruptible(&hdev->req_wait_q);
124 }
125 }
126
127 /* Execute request and wait for completion. */
128 static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
129 unsigned long opt, __u32 timeout)
130 {
131 DECLARE_WAITQUEUE(wait, current);
132 int err = 0;
133
134 BT_DBG("%s start", hdev->name);
135
136 hdev->req_status = HCI_REQ_PEND;
137
138 add_wait_queue(&hdev->req_wait_q, &wait);
139 set_current_state(TASK_INTERRUPTIBLE);
140
141 req(hdev, opt);
142 schedule_timeout(timeout);
143
144 remove_wait_queue(&hdev->req_wait_q, &wait);
145
146 if (signal_pending(current))
147 return -EINTR;
148
149 switch (hdev->req_status) {
150 case HCI_REQ_DONE:
151 err = -bt_to_errno(hdev->req_result);
152 break;
153
154 case HCI_REQ_CANCELED:
155 err = -hdev->req_result;
156 break;
157
158 default:
159 err = -ETIMEDOUT;
160 break;
161 }
162
163 hdev->req_status = hdev->req_result = 0;
164
165 BT_DBG("%s end: err %d", hdev->name, err);
166
167 return err;
168 }
169
170 static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
171 unsigned long opt, __u32 timeout)
172 {
173 int ret;
174
175 if (!test_bit(HCI_UP, &hdev->flags))
176 return -ENETDOWN;
177
178 /* Serialize all requests */
179 hci_req_lock(hdev);
180 ret = __hci_request(hdev, req, opt, timeout);
181 hci_req_unlock(hdev);
182
183 return ret;
184 }
185
186 static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
187 {
188 BT_DBG("%s %ld", hdev->name, opt);
189
190 /* Reset device */
191 set_bit(HCI_RESET, &hdev->flags);
192 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
193 }
194
195 static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
196 {
197 struct hci_cp_delete_stored_link_key cp;
198 struct sk_buff *skb;
199 __le16 param;
200 __u8 flt_type;
201
202 BT_DBG("%s %ld", hdev->name, opt);
203
204 /* Driver initialization */
205
206 /* Special commands */
207 while ((skb = skb_dequeue(&hdev->driver_init))) {
208 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
209 skb->dev = (void *) hdev;
210
211 skb_queue_tail(&hdev->cmd_q, skb);
212 queue_work(hdev->workqueue, &hdev->cmd_work);
213 }
214 skb_queue_purge(&hdev->driver_init);
215
216 /* Mandatory initialization */
217
218 /* Reset */
219 if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
220 set_bit(HCI_RESET, &hdev->flags);
221 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
222 }
223
224 /* Read Local Supported Features */
225 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
226
227 /* Read Local Version */
228 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
229
230 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
231 hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
232
233 /* Read BD Address */
234 hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
235
236 /* Read Class of Device */
237 hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
238
239 /* Read Local Name */
240 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
241
242 /* Read Voice Setting */
243 hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
244
245 /* Optional initialization */
246
247 /* Clear Event Filters */
248 flt_type = HCI_FLT_CLEAR_ALL;
249 hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
250
251 /* Connection accept timeout ~20 secs */
252 param = cpu_to_le16(0x7d00);
253 hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
254
255 bacpy(&cp.bdaddr, BDADDR_ANY);
256 cp.delete_all = 1;
257 hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
258 }
259
260 static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
261 {
262 BT_DBG("%s", hdev->name);
263
264 /* Read LE buffer size */
265 hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
266 }
267
268 static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
269 {
270 __u8 scan = opt;
271
272 BT_DBG("%s %x", hdev->name, scan);
273
274 /* Inquiry and Page scans */
275 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
276 }
277
278 static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
279 {
280 __u8 auth = opt;
281
282 BT_DBG("%s %x", hdev->name, auth);
283
284 /* Authentication */
285 hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
286 }
287
288 static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
289 {
290 __u8 encrypt = opt;
291
292 BT_DBG("%s %x", hdev->name, encrypt);
293
294 /* Encryption */
295 hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
296 }
297
298 static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
299 {
300 __le16 policy = cpu_to_le16(opt);
301
302 BT_DBG("%s %x", hdev->name, policy);
303
304 /* Default link policy */
305 hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
306 }
307
308 /* Get HCI device by index.
309 * Device is held on return. */
310 struct hci_dev *hci_dev_get(int index)
311 {
312 struct hci_dev *hdev = NULL, *d;
313
314 BT_DBG("%d", index);
315
316 if (index < 0)
317 return NULL;
318
319 read_lock(&hci_dev_list_lock);
320 list_for_each_entry(d, &hci_dev_list, list) {
321 if (d->id == index) {
322 hdev = hci_dev_hold(d);
323 break;
324 }
325 }
326 read_unlock(&hci_dev_list_lock);
327 return hdev;
328 }
329
330 /* ---- Inquiry support ---- */
331 static void inquiry_cache_flush(struct hci_dev *hdev)
332 {
333 struct inquiry_cache *cache = &hdev->inq_cache;
334 struct inquiry_entry *next = cache->list, *e;
335
336 BT_DBG("cache %p", cache);
337
338 cache->list = NULL;
339 while ((e = next)) {
340 next = e->next;
341 kfree(e);
342 }
343 }
344
345 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
346 {
347 struct inquiry_cache *cache = &hdev->inq_cache;
348 struct inquiry_entry *e;
349
350 BT_DBG("cache %p, %s", cache, batostr(bdaddr));
351
352 for (e = cache->list; e; e = e->next)
353 if (!bacmp(&e->data.bdaddr, bdaddr))
354 break;
355 return e;
356 }
357
358 void hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data)
359 {
360 struct inquiry_cache *cache = &hdev->inq_cache;
361 struct inquiry_entry *ie;
362
363 BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
364
365 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
366 if (!ie) {
367 /* Entry not in the cache. Add new one. */
368 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
369 if (!ie)
370 return;
371
372 ie->next = cache->list;
373 cache->list = ie;
374 }
375
376 memcpy(&ie->data, data, sizeof(*data));
377 ie->timestamp = jiffies;
378 cache->timestamp = jiffies;
379 }
380
381 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
382 {
383 struct inquiry_cache *cache = &hdev->inq_cache;
384 struct inquiry_info *info = (struct inquiry_info *) buf;
385 struct inquiry_entry *e;
386 int copied = 0;
387
388 for (e = cache->list; e && copied < num; e = e->next, copied++) {
389 struct inquiry_data *data = &e->data;
390 bacpy(&info->bdaddr, &data->bdaddr);
391 info->pscan_rep_mode = data->pscan_rep_mode;
392 info->pscan_period_mode = data->pscan_period_mode;
393 info->pscan_mode = data->pscan_mode;
394 memcpy(info->dev_class, data->dev_class, 3);
395 info->clock_offset = data->clock_offset;
396 info++;
397 }
398
399 BT_DBG("cache %p, copied %d", cache, copied);
400 return copied;
401 }
402
403 static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
404 {
405 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
406 struct hci_cp_inquiry cp;
407
408 BT_DBG("%s", hdev->name);
409
410 if (test_bit(HCI_INQUIRY, &hdev->flags))
411 return;
412
413 /* Start Inquiry */
414 memcpy(&cp.lap, &ir->lap, 3);
415 cp.length = ir->length;
416 cp.num_rsp = ir->num_rsp;
417 hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
418 }
419
420 int hci_inquiry(void __user *arg)
421 {
422 __u8 __user *ptr = arg;
423 struct hci_inquiry_req ir;
424 struct hci_dev *hdev;
425 int err = 0, do_inquiry = 0, max_rsp;
426 long timeo;
427 __u8 *buf;
428
429 if (copy_from_user(&ir, ptr, sizeof(ir)))
430 return -EFAULT;
431
432 hdev = hci_dev_get(ir.dev_id);
433 if (!hdev)
434 return -ENODEV;
435
436 hci_dev_lock(hdev);
437 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
438 inquiry_cache_empty(hdev) ||
439 ir.flags & IREQ_CACHE_FLUSH) {
440 inquiry_cache_flush(hdev);
441 do_inquiry = 1;
442 }
443 hci_dev_unlock(hdev);
444
445 timeo = ir.length * msecs_to_jiffies(2000);
446
447 if (do_inquiry) {
448 err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
449 if (err < 0)
450 goto done;
451 }
452
453 /* for unlimited number of responses we will use buffer with 255 entries */
454 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
455
456 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
457 * copy it to the user space.
458 */
459 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
460 if (!buf) {
461 err = -ENOMEM;
462 goto done;
463 }
464
465 hci_dev_lock(hdev);
466 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
467 hci_dev_unlock(hdev);
468
469 BT_DBG("num_rsp %d", ir.num_rsp);
470
471 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
472 ptr += sizeof(ir);
473 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
474 ir.num_rsp))
475 err = -EFAULT;
476 } else
477 err = -EFAULT;
478
479 kfree(buf);
480
481 done:
482 hci_dev_put(hdev);
483 return err;
484 }
485
486 /* ---- HCI ioctl helpers ---- */
487
488 int hci_dev_open(__u16 dev)
489 {
490 struct hci_dev *hdev;
491 int ret = 0;
492
493 hdev = hci_dev_get(dev);
494 if (!hdev)
495 return -ENODEV;
496
497 BT_DBG("%s %p", hdev->name, hdev);
498
499 hci_req_lock(hdev);
500
501 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
502 ret = -ERFKILL;
503 goto done;
504 }
505
506 if (test_bit(HCI_UP, &hdev->flags)) {
507 ret = -EALREADY;
508 goto done;
509 }
510
511 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
512 set_bit(HCI_RAW, &hdev->flags);
513
514 /* Treat all non BR/EDR controllers as raw devices if
515 enable_hs is not set */
516 if (hdev->dev_type != HCI_BREDR && !enable_hs)
517 set_bit(HCI_RAW, &hdev->flags);
518
519 if (hdev->open(hdev)) {
520 ret = -EIO;
521 goto done;
522 }
523
524 if (!test_bit(HCI_RAW, &hdev->flags)) {
525 atomic_set(&hdev->cmd_cnt, 1);
526 set_bit(HCI_INIT, &hdev->flags);
527 hdev->init_last_cmd = 0;
528
529 ret = __hci_request(hdev, hci_init_req, 0,
530 msecs_to_jiffies(HCI_INIT_TIMEOUT));
531
532 if (lmp_host_le_capable(hdev))
533 ret = __hci_request(hdev, hci_le_init_req, 0,
534 msecs_to_jiffies(HCI_INIT_TIMEOUT));
535
536 clear_bit(HCI_INIT, &hdev->flags);
537 }
538
539 if (!ret) {
540 hci_dev_hold(hdev);
541 set_bit(HCI_UP, &hdev->flags);
542 hci_notify(hdev, HCI_DEV_UP);
543 if (!test_bit(HCI_SETUP, &hdev->flags)) {
544 hci_dev_lock(hdev);
545 mgmt_powered(hdev, 1);
546 hci_dev_unlock(hdev);
547 }
548 } else {
549 /* Init failed, cleanup */
550 flush_work(&hdev->tx_work);
551 flush_work(&hdev->cmd_work);
552 flush_work(&hdev->rx_work);
553
554 skb_queue_purge(&hdev->cmd_q);
555 skb_queue_purge(&hdev->rx_q);
556
557 if (hdev->flush)
558 hdev->flush(hdev);
559
560 if (hdev->sent_cmd) {
561 kfree_skb(hdev->sent_cmd);
562 hdev->sent_cmd = NULL;
563 }
564
565 hdev->close(hdev);
566 hdev->flags = 0;
567 }
568
569 done:
570 hci_req_unlock(hdev);
571 hci_dev_put(hdev);
572 return ret;
573 }
574
575 static int hci_dev_do_close(struct hci_dev *hdev)
576 {
577 BT_DBG("%s %p", hdev->name, hdev);
578
579 hci_req_cancel(hdev, ENODEV);
580 hci_req_lock(hdev);
581
582 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
583 del_timer_sync(&hdev->cmd_timer);
584 hci_req_unlock(hdev);
585 return 0;
586 }
587
588 /* Flush RX and TX works */
589 flush_work(&hdev->tx_work);
590 flush_work(&hdev->rx_work);
591
592 if (hdev->discov_timeout > 0) {
593 cancel_delayed_work(&hdev->discov_off);
594 hdev->discov_timeout = 0;
595 }
596
597 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->flags))
598 cancel_delayed_work(&hdev->power_off);
599
600 hci_dev_lock(hdev);
601 inquiry_cache_flush(hdev);
602 hci_conn_hash_flush(hdev);
603 hci_dev_unlock(hdev);
604
605 hci_notify(hdev, HCI_DEV_DOWN);
606
607 if (hdev->flush)
608 hdev->flush(hdev);
609
610 /* Reset device */
611 skb_queue_purge(&hdev->cmd_q);
612 atomic_set(&hdev->cmd_cnt, 1);
613 if (!test_bit(HCI_RAW, &hdev->flags)) {
614 set_bit(HCI_INIT, &hdev->flags);
615 __hci_request(hdev, hci_reset_req, 0,
616 msecs_to_jiffies(HCI_INIT_TIMEOUT));
617 clear_bit(HCI_INIT, &hdev->flags);
618 }
619
620 /* flush cmd work */
621 flush_work(&hdev->cmd_work);
622
623 /* Drop queues */
624 skb_queue_purge(&hdev->rx_q);
625 skb_queue_purge(&hdev->cmd_q);
626 skb_queue_purge(&hdev->raw_q);
627
628 /* Drop last sent command */
629 if (hdev->sent_cmd) {
630 del_timer_sync(&hdev->cmd_timer);
631 kfree_skb(hdev->sent_cmd);
632 hdev->sent_cmd = NULL;
633 }
634
635 /* After this point our queues are empty
636 * and no tasks are scheduled. */
637 hdev->close(hdev);
638
639 hci_dev_lock(hdev);
640 mgmt_powered(hdev, 0);
641 hci_dev_unlock(hdev);
642
643 /* Clear flags */
644 hdev->flags = 0;
645
646 hci_req_unlock(hdev);
647
648 hci_dev_put(hdev);
649 return 0;
650 }
651
652 int hci_dev_close(__u16 dev)
653 {
654 struct hci_dev *hdev;
655 int err;
656
657 hdev = hci_dev_get(dev);
658 if (!hdev)
659 return -ENODEV;
660 err = hci_dev_do_close(hdev);
661 hci_dev_put(hdev);
662 return err;
663 }
664
665 int hci_dev_reset(__u16 dev)
666 {
667 struct hci_dev *hdev;
668 int ret = 0;
669
670 hdev = hci_dev_get(dev);
671 if (!hdev)
672 return -ENODEV;
673
674 hci_req_lock(hdev);
675
676 if (!test_bit(HCI_UP, &hdev->flags))
677 goto done;
678
679 /* Drop queues */
680 skb_queue_purge(&hdev->rx_q);
681 skb_queue_purge(&hdev->cmd_q);
682
683 hci_dev_lock(hdev);
684 inquiry_cache_flush(hdev);
685 hci_conn_hash_flush(hdev);
686 hci_dev_unlock(hdev);
687
688 if (hdev->flush)
689 hdev->flush(hdev);
690
691 atomic_set(&hdev->cmd_cnt, 1);
692 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
693
694 if (!test_bit(HCI_RAW, &hdev->flags))
695 ret = __hci_request(hdev, hci_reset_req, 0,
696 msecs_to_jiffies(HCI_INIT_TIMEOUT));
697
698 done:
699 hci_req_unlock(hdev);
700 hci_dev_put(hdev);
701 return ret;
702 }
703
704 int hci_dev_reset_stat(__u16 dev)
705 {
706 struct hci_dev *hdev;
707 int ret = 0;
708
709 hdev = hci_dev_get(dev);
710 if (!hdev)
711 return -ENODEV;
712
713 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
714
715 hci_dev_put(hdev);
716
717 return ret;
718 }
719
720 int hci_dev_cmd(unsigned int cmd, void __user *arg)
721 {
722 struct hci_dev *hdev;
723 struct hci_dev_req dr;
724 int err = 0;
725
726 if (copy_from_user(&dr, arg, sizeof(dr)))
727 return -EFAULT;
728
729 hdev = hci_dev_get(dr.dev_id);
730 if (!hdev)
731 return -ENODEV;
732
733 switch (cmd) {
734 case HCISETAUTH:
735 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
736 msecs_to_jiffies(HCI_INIT_TIMEOUT));
737 break;
738
739 case HCISETENCRYPT:
740 if (!lmp_encrypt_capable(hdev)) {
741 err = -EOPNOTSUPP;
742 break;
743 }
744
745 if (!test_bit(HCI_AUTH, &hdev->flags)) {
746 /* Auth must be enabled first */
747 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
748 msecs_to_jiffies(HCI_INIT_TIMEOUT));
749 if (err)
750 break;
751 }
752
753 err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
754 msecs_to_jiffies(HCI_INIT_TIMEOUT));
755 break;
756
757 case HCISETSCAN:
758 err = hci_request(hdev, hci_scan_req, dr.dev_opt,
759 msecs_to_jiffies(HCI_INIT_TIMEOUT));
760 break;
761
762 case HCISETLINKPOL:
763 err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
764 msecs_to_jiffies(HCI_INIT_TIMEOUT));
765 break;
766
767 case HCISETLINKMODE:
768 hdev->link_mode = ((__u16) dr.dev_opt) &
769 (HCI_LM_MASTER | HCI_LM_ACCEPT);
770 break;
771
772 case HCISETPTYPE:
773 hdev->pkt_type = (__u16) dr.dev_opt;
774 break;
775
776 case HCISETACLMTU:
777 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
778 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
779 break;
780
781 case HCISETSCOMTU:
782 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
783 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
784 break;
785
786 default:
787 err = -EINVAL;
788 break;
789 }
790
791 hci_dev_put(hdev);
792 return err;
793 }
794
795 int hci_get_dev_list(void __user *arg)
796 {
797 struct hci_dev *hdev;
798 struct hci_dev_list_req *dl;
799 struct hci_dev_req *dr;
800 int n = 0, size, err;
801 __u16 dev_num;
802
803 if (get_user(dev_num, (__u16 __user *) arg))
804 return -EFAULT;
805
806 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
807 return -EINVAL;
808
809 size = sizeof(*dl) + dev_num * sizeof(*dr);
810
811 dl = kzalloc(size, GFP_KERNEL);
812 if (!dl)
813 return -ENOMEM;
814
815 dr = dl->dev_req;
816
817 read_lock_bh(&hci_dev_list_lock);
818 list_for_each_entry(hdev, &hci_dev_list, list) {
819 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->flags))
820 cancel_delayed_work(&hdev->power_off);
821
822 if (!test_bit(HCI_MGMT, &hdev->flags))
823 set_bit(HCI_PAIRABLE, &hdev->flags);
824
825 (dr + n)->dev_id = hdev->id;
826 (dr + n)->dev_opt = hdev->flags;
827
828 if (++n >= dev_num)
829 break;
830 }
831 read_unlock_bh(&hci_dev_list_lock);
832
833 dl->dev_num = n;
834 size = sizeof(*dl) + n * sizeof(*dr);
835
836 err = copy_to_user(arg, dl, size);
837 kfree(dl);
838
839 return err ? -EFAULT : 0;
840 }
841
842 int hci_get_dev_info(void __user *arg)
843 {
844 struct hci_dev *hdev;
845 struct hci_dev_info di;
846 int err = 0;
847
848 if (copy_from_user(&di, arg, sizeof(di)))
849 return -EFAULT;
850
851 hdev = hci_dev_get(di.dev_id);
852 if (!hdev)
853 return -ENODEV;
854
855 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->flags))
856 cancel_delayed_work_sync(&hdev->power_off);
857
858 if (!test_bit(HCI_MGMT, &hdev->flags))
859 set_bit(HCI_PAIRABLE, &hdev->flags);
860
861 strcpy(di.name, hdev->name);
862 di.bdaddr = hdev->bdaddr;
863 di.type = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
864 di.flags = hdev->flags;
865 di.pkt_type = hdev->pkt_type;
866 di.acl_mtu = hdev->acl_mtu;
867 di.acl_pkts = hdev->acl_pkts;
868 di.sco_mtu = hdev->sco_mtu;
869 di.sco_pkts = hdev->sco_pkts;
870 di.link_policy = hdev->link_policy;
871 di.link_mode = hdev->link_mode;
872
873 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
874 memcpy(&di.features, &hdev->features, sizeof(di.features));
875
876 if (copy_to_user(arg, &di, sizeof(di)))
877 err = -EFAULT;
878
879 hci_dev_put(hdev);
880
881 return err;
882 }
883
884 /* ---- Interface to HCI drivers ---- */
885
886 static int hci_rfkill_set_block(void *data, bool blocked)
887 {
888 struct hci_dev *hdev = data;
889
890 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
891
892 if (!blocked)
893 return 0;
894
895 hci_dev_do_close(hdev);
896
897 return 0;
898 }
899
900 static const struct rfkill_ops hci_rfkill_ops = {
901 .set_block = hci_rfkill_set_block,
902 };
903
904 /* Alloc HCI device */
905 struct hci_dev *hci_alloc_dev(void)
906 {
907 struct hci_dev *hdev;
908
909 hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
910 if (!hdev)
911 return NULL;
912
913 hci_init_sysfs(hdev);
914 skb_queue_head_init(&hdev->driver_init);
915
916 return hdev;
917 }
918 EXPORT_SYMBOL(hci_alloc_dev);
919
920 /* Free HCI device */
921 void hci_free_dev(struct hci_dev *hdev)
922 {
923 skb_queue_purge(&hdev->driver_init);
924
925 /* will free via device release */
926 put_device(&hdev->dev);
927 }
928 EXPORT_SYMBOL(hci_free_dev);
929
930 static void hci_power_on(struct work_struct *work)
931 {
932 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
933
934 BT_DBG("%s", hdev->name);
935
936 if (hci_dev_open(hdev->id) < 0)
937 return;
938
939 if (test_bit(HCI_AUTO_OFF, &hdev->flags))
940 schedule_delayed_work(&hdev->power_off,
941 msecs_to_jiffies(AUTO_OFF_TIMEOUT));
942
943 if (test_and_clear_bit(HCI_SETUP, &hdev->flags))
944 mgmt_index_added(hdev);
945 }
946
947 static void hci_power_off(struct work_struct *work)
948 {
949 struct hci_dev *hdev = container_of(work, struct hci_dev,
950 power_off.work);
951
952 BT_DBG("%s", hdev->name);
953
954 clear_bit(HCI_AUTO_OFF, &hdev->flags);
955
956 hci_dev_close(hdev->id);
957 }
958
959 static void hci_discov_off(struct work_struct *work)
960 {
961 struct hci_dev *hdev;
962 u8 scan = SCAN_PAGE;
963
964 hdev = container_of(work, struct hci_dev, discov_off.work);
965
966 BT_DBG("%s", hdev->name);
967
968 hci_dev_lock(hdev);
969
970 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, sizeof(scan), &scan);
971
972 hdev->discov_timeout = 0;
973
974 hci_dev_unlock(hdev);
975 }
976
977 int hci_uuids_clear(struct hci_dev *hdev)
978 {
979 struct list_head *p, *n;
980
981 list_for_each_safe(p, n, &hdev->uuids) {
982 struct bt_uuid *uuid;
983
984 uuid = list_entry(p, struct bt_uuid, list);
985
986 list_del(p);
987 kfree(uuid);
988 }
989
990 return 0;
991 }
992
993 int hci_link_keys_clear(struct hci_dev *hdev)
994 {
995 struct list_head *p, *n;
996
997 list_for_each_safe(p, n, &hdev->link_keys) {
998 struct link_key *key;
999
1000 key = list_entry(p, struct link_key, list);
1001
1002 list_del(p);
1003 kfree(key);
1004 }
1005
1006 return 0;
1007 }
1008
1009 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1010 {
1011 struct link_key *k;
1012
1013 list_for_each_entry(k, &hdev->link_keys, list)
1014 if (bacmp(bdaddr, &k->bdaddr) == 0)
1015 return k;
1016
1017 return NULL;
1018 }
1019
1020 static int hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1021 u8 key_type, u8 old_key_type)
1022 {
1023 /* Legacy key */
1024 if (key_type < 0x03)
1025 return 1;
1026
1027 /* Debug keys are insecure so don't store them persistently */
1028 if (key_type == HCI_LK_DEBUG_COMBINATION)
1029 return 0;
1030
1031 /* Changed combination key and there's no previous one */
1032 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1033 return 0;
1034
1035 /* Security mode 3 case */
1036 if (!conn)
1037 return 1;
1038
1039 /* Neither local nor remote side had no-bonding as requirement */
1040 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1041 return 1;
1042
1043 /* Local side had dedicated bonding as requirement */
1044 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1045 return 1;
1046
1047 /* Remote side had dedicated bonding as requirement */
1048 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1049 return 1;
1050
1051 /* If none of the above criteria match, then don't store the key
1052 * persistently */
1053 return 0;
1054 }
1055
1056 struct link_key *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1057 {
1058 struct link_key *k;
1059
1060 list_for_each_entry(k, &hdev->link_keys, list) {
1061 struct key_master_id *id;
1062
1063 if (k->type != HCI_LK_SMP_LTK)
1064 continue;
1065
1066 if (k->dlen != sizeof(*id))
1067 continue;
1068
1069 id = (void *) &k->data;
1070 if (id->ediv == ediv &&
1071 (memcmp(rand, id->rand, sizeof(id->rand)) == 0))
1072 return k;
1073 }
1074
1075 return NULL;
1076 }
1077 EXPORT_SYMBOL(hci_find_ltk);
1078
1079 struct link_key *hci_find_link_key_type(struct hci_dev *hdev,
1080 bdaddr_t *bdaddr, u8 type)
1081 {
1082 struct link_key *k;
1083
1084 list_for_each_entry(k, &hdev->link_keys, list)
1085 if (k->type == type && bacmp(bdaddr, &k->bdaddr) == 0)
1086 return k;
1087
1088 return NULL;
1089 }
1090 EXPORT_SYMBOL(hci_find_link_key_type);
1091
1092 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1093 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1094 {
1095 struct link_key *key, *old_key;
1096 u8 old_key_type, persistent;
1097
1098 old_key = hci_find_link_key(hdev, bdaddr);
1099 if (old_key) {
1100 old_key_type = old_key->type;
1101 key = old_key;
1102 } else {
1103 old_key_type = conn ? conn->key_type : 0xff;
1104 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1105 if (!key)
1106 return -ENOMEM;
1107 list_add(&key->list, &hdev->link_keys);
1108 }
1109
1110 BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1111
1112 /* Some buggy controller combinations generate a changed
1113 * combination key for legacy pairing even when there's no
1114 * previous key */
1115 if (type == HCI_LK_CHANGED_COMBINATION &&
1116 (!conn || conn->remote_auth == 0xff) &&
1117 old_key_type == 0xff) {
1118 type = HCI_LK_COMBINATION;
1119 if (conn)
1120 conn->key_type = type;
1121 }
1122
1123 bacpy(&key->bdaddr, bdaddr);
1124 memcpy(key->val, val, 16);
1125 key->pin_len = pin_len;
1126
1127 if (type == HCI_LK_CHANGED_COMBINATION)
1128 key->type = old_key_type;
1129 else
1130 key->type = type;
1131
1132 if (!new_key)
1133 return 0;
1134
1135 persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1136
1137 mgmt_new_link_key(hdev, key, persistent);
1138
1139 if (!persistent) {
1140 list_del(&key->list);
1141 kfree(key);
1142 }
1143
1144 return 0;
1145 }
1146
1147 int hci_add_ltk(struct hci_dev *hdev, int new_key, bdaddr_t *bdaddr,
1148 u8 key_size, __le16 ediv, u8 rand[8], u8 ltk[16])
1149 {
1150 struct link_key *key, *old_key;
1151 struct key_master_id *id;
1152 u8 old_key_type;
1153
1154 BT_DBG("%s addr %s", hdev->name, batostr(bdaddr));
1155
1156 old_key = hci_find_link_key_type(hdev, bdaddr, HCI_LK_SMP_LTK);
1157 if (old_key) {
1158 key = old_key;
1159 old_key_type = old_key->type;
1160 } else {
1161 key = kzalloc(sizeof(*key) + sizeof(*id), GFP_ATOMIC);
1162 if (!key)
1163 return -ENOMEM;
1164 list_add(&key->list, &hdev->link_keys);
1165 old_key_type = 0xff;
1166 }
1167
1168 key->dlen = sizeof(*id);
1169
1170 bacpy(&key->bdaddr, bdaddr);
1171 memcpy(key->val, ltk, sizeof(key->val));
1172 key->type = HCI_LK_SMP_LTK;
1173 key->pin_len = key_size;
1174
1175 id = (void *) &key->data;
1176 id->ediv = ediv;
1177 memcpy(id->rand, rand, sizeof(id->rand));
1178
1179 if (new_key)
1180 mgmt_new_link_key(hdev, key, old_key_type);
1181
1182 return 0;
1183 }
1184
1185 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1186 {
1187 struct link_key *key;
1188
1189 key = hci_find_link_key(hdev, bdaddr);
1190 if (!key)
1191 return -ENOENT;
1192
1193 BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1194
1195 list_del(&key->list);
1196 kfree(key);
1197
1198 return 0;
1199 }
1200
1201 /* HCI command timer function */
1202 static void hci_cmd_timer(unsigned long arg)
1203 {
1204 struct hci_dev *hdev = (void *) arg;
1205
1206 BT_ERR("%s command tx timeout", hdev->name);
1207 atomic_set(&hdev->cmd_cnt, 1);
1208 queue_work(hdev->workqueue, &hdev->cmd_work);
1209 }
1210
1211 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1212 bdaddr_t *bdaddr)
1213 {
1214 struct oob_data *data;
1215
1216 list_for_each_entry(data, &hdev->remote_oob_data, list)
1217 if (bacmp(bdaddr, &data->bdaddr) == 0)
1218 return data;
1219
1220 return NULL;
1221 }
1222
1223 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1224 {
1225 struct oob_data *data;
1226
1227 data = hci_find_remote_oob_data(hdev, bdaddr);
1228 if (!data)
1229 return -ENOENT;
1230
1231 BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1232
1233 list_del(&data->list);
1234 kfree(data);
1235
1236 return 0;
1237 }
1238
1239 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1240 {
1241 struct oob_data *data, *n;
1242
1243 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1244 list_del(&data->list);
1245 kfree(data);
1246 }
1247
1248 return 0;
1249 }
1250
1251 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1252 u8 *randomizer)
1253 {
1254 struct oob_data *data;
1255
1256 data = hci_find_remote_oob_data(hdev, bdaddr);
1257
1258 if (!data) {
1259 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1260 if (!data)
1261 return -ENOMEM;
1262
1263 bacpy(&data->bdaddr, bdaddr);
1264 list_add(&data->list, &hdev->remote_oob_data);
1265 }
1266
1267 memcpy(data->hash, hash, sizeof(data->hash));
1268 memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1269
1270 BT_DBG("%s for %s", hdev->name, batostr(bdaddr));
1271
1272 return 0;
1273 }
1274
1275 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
1276 bdaddr_t *bdaddr)
1277 {
1278 struct bdaddr_list *b;
1279
1280 list_for_each_entry(b, &hdev->blacklist, list)
1281 if (bacmp(bdaddr, &b->bdaddr) == 0)
1282 return b;
1283
1284 return NULL;
1285 }
1286
1287 int hci_blacklist_clear(struct hci_dev *hdev)
1288 {
1289 struct list_head *p, *n;
1290
1291 list_for_each_safe(p, n, &hdev->blacklist) {
1292 struct bdaddr_list *b;
1293
1294 b = list_entry(p, struct bdaddr_list, list);
1295
1296 list_del(p);
1297 kfree(b);
1298 }
1299
1300 return 0;
1301 }
1302
1303 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr)
1304 {
1305 struct bdaddr_list *entry;
1306
1307 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1308 return -EBADF;
1309
1310 if (hci_blacklist_lookup(hdev, bdaddr))
1311 return -EEXIST;
1312
1313 entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1314 if (!entry)
1315 return -ENOMEM;
1316
1317 bacpy(&entry->bdaddr, bdaddr);
1318
1319 list_add(&entry->list, &hdev->blacklist);
1320
1321 return mgmt_device_blocked(hdev, bdaddr);
1322 }
1323
1324 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr)
1325 {
1326 struct bdaddr_list *entry;
1327
1328 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1329 return hci_blacklist_clear(hdev);
1330
1331 entry = hci_blacklist_lookup(hdev, bdaddr);
1332 if (!entry)
1333 return -ENOENT;
1334
1335 list_del(&entry->list);
1336 kfree(entry);
1337
1338 return mgmt_device_unblocked(hdev, bdaddr);
1339 }
1340
1341 static void hci_clear_adv_cache(struct work_struct *work)
1342 {
1343 struct hci_dev *hdev = container_of(work, struct hci_dev,
1344 adv_work.work);
1345
1346 hci_dev_lock(hdev);
1347
1348 hci_adv_entries_clear(hdev);
1349
1350 hci_dev_unlock(hdev);
1351 }
1352
1353 int hci_adv_entries_clear(struct hci_dev *hdev)
1354 {
1355 struct adv_entry *entry, *tmp;
1356
1357 list_for_each_entry_safe(entry, tmp, &hdev->adv_entries, list) {
1358 list_del(&entry->list);
1359 kfree(entry);
1360 }
1361
1362 BT_DBG("%s adv cache cleared", hdev->name);
1363
1364 return 0;
1365 }
1366
1367 struct adv_entry *hci_find_adv_entry(struct hci_dev *hdev, bdaddr_t *bdaddr)
1368 {
1369 struct adv_entry *entry;
1370
1371 list_for_each_entry(entry, &hdev->adv_entries, list)
1372 if (bacmp(bdaddr, &entry->bdaddr) == 0)
1373 return entry;
1374
1375 return NULL;
1376 }
1377
1378 static inline int is_connectable_adv(u8 evt_type)
1379 {
1380 if (evt_type == ADV_IND || evt_type == ADV_DIRECT_IND)
1381 return 1;
1382
1383 return 0;
1384 }
1385
1386 int hci_add_adv_entry(struct hci_dev *hdev,
1387 struct hci_ev_le_advertising_info *ev)
1388 {
1389 struct adv_entry *entry;
1390
1391 if (!is_connectable_adv(ev->evt_type))
1392 return -EINVAL;
1393
1394 /* Only new entries should be added to adv_entries. So, if
1395 * bdaddr was found, don't add it. */
1396 if (hci_find_adv_entry(hdev, &ev->bdaddr))
1397 return 0;
1398
1399 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1400 if (!entry)
1401 return -ENOMEM;
1402
1403 bacpy(&entry->bdaddr, &ev->bdaddr);
1404 entry->bdaddr_type = ev->bdaddr_type;
1405
1406 list_add(&entry->list, &hdev->adv_entries);
1407
1408 BT_DBG("%s adv entry added: address %s type %u", hdev->name,
1409 batostr(&entry->bdaddr), entry->bdaddr_type);
1410
1411 return 0;
1412 }
1413
1414 /* Register HCI device */
1415 int hci_register_dev(struct hci_dev *hdev)
1416 {
1417 struct list_head *head = &hci_dev_list, *p;
1418 int i, id, error;
1419
1420 BT_DBG("%p name %s bus %d owner %p", hdev, hdev->name,
1421 hdev->bus, hdev->owner);
1422
1423 if (!hdev->open || !hdev->close || !hdev->destruct)
1424 return -EINVAL;
1425
1426 /* Do not allow HCI_AMP devices to register at index 0,
1427 * so the index can be used as the AMP controller ID.
1428 */
1429 id = (hdev->dev_type == HCI_BREDR) ? 0 : 1;
1430
1431 write_lock_bh(&hci_dev_list_lock);
1432
1433 /* Find first available device id */
1434 list_for_each(p, &hci_dev_list) {
1435 if (list_entry(p, struct hci_dev, list)->id != id)
1436 break;
1437 head = p; id++;
1438 }
1439
1440 sprintf(hdev->name, "hci%d", id);
1441 hdev->id = id;
1442 list_add_tail(&hdev->list, head);
1443
1444 atomic_set(&hdev->refcnt, 1);
1445 mutex_init(&hdev->lock);
1446
1447 hdev->flags = 0;
1448 hdev->dev_flags = 0;
1449 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1450 hdev->esco_type = (ESCO_HV1);
1451 hdev->link_mode = (HCI_LM_ACCEPT);
1452 hdev->io_capability = 0x03; /* No Input No Output */
1453
1454 hdev->idle_timeout = 0;
1455 hdev->sniff_max_interval = 800;
1456 hdev->sniff_min_interval = 80;
1457
1458 INIT_WORK(&hdev->rx_work, hci_rx_work);
1459 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
1460 INIT_WORK(&hdev->tx_work, hci_tx_work);
1461
1462
1463 skb_queue_head_init(&hdev->rx_q);
1464 skb_queue_head_init(&hdev->cmd_q);
1465 skb_queue_head_init(&hdev->raw_q);
1466
1467 setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
1468
1469 for (i = 0; i < NUM_REASSEMBLY; i++)
1470 hdev->reassembly[i] = NULL;
1471
1472 init_waitqueue_head(&hdev->req_wait_q);
1473 mutex_init(&hdev->req_lock);
1474
1475 inquiry_cache_init(hdev);
1476
1477 hci_conn_hash_init(hdev);
1478
1479 INIT_LIST_HEAD(&hdev->mgmt_pending);
1480
1481 INIT_LIST_HEAD(&hdev->blacklist);
1482
1483 INIT_LIST_HEAD(&hdev->uuids);
1484
1485 INIT_LIST_HEAD(&hdev->link_keys);
1486
1487 INIT_LIST_HEAD(&hdev->remote_oob_data);
1488
1489 INIT_LIST_HEAD(&hdev->adv_entries);
1490
1491 INIT_DELAYED_WORK(&hdev->adv_work, hci_clear_adv_cache);
1492 INIT_WORK(&hdev->power_on, hci_power_on);
1493 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
1494
1495 INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
1496
1497 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1498
1499 atomic_set(&hdev->promisc, 0);
1500
1501 write_unlock_bh(&hci_dev_list_lock);
1502
1503 hdev->workqueue = alloc_workqueue(hdev->name, WQ_HIGHPRI | WQ_UNBOUND |
1504 WQ_MEM_RECLAIM, 1);
1505 if (!hdev->workqueue) {
1506 error = -ENOMEM;
1507 goto err;
1508 }
1509
1510 error = hci_add_sysfs(hdev);
1511 if (error < 0)
1512 goto err_wqueue;
1513
1514 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1515 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
1516 if (hdev->rfkill) {
1517 if (rfkill_register(hdev->rfkill) < 0) {
1518 rfkill_destroy(hdev->rfkill);
1519 hdev->rfkill = NULL;
1520 }
1521 }
1522
1523 set_bit(HCI_AUTO_OFF, &hdev->flags);
1524 set_bit(HCI_SETUP, &hdev->flags);
1525 schedule_work(&hdev->power_on);
1526
1527 hci_notify(hdev, HCI_DEV_REG);
1528
1529 return id;
1530
1531 err_wqueue:
1532 destroy_workqueue(hdev->workqueue);
1533 err:
1534 write_lock_bh(&hci_dev_list_lock);
1535 list_del(&hdev->list);
1536 write_unlock_bh(&hci_dev_list_lock);
1537
1538 return error;
1539 }
1540 EXPORT_SYMBOL(hci_register_dev);
1541
1542 /* Unregister HCI device */
1543 void hci_unregister_dev(struct hci_dev *hdev)
1544 {
1545 int i;
1546
1547 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1548
1549 write_lock_bh(&hci_dev_list_lock);
1550 list_del(&hdev->list);
1551 write_unlock_bh(&hci_dev_list_lock);
1552
1553 hci_dev_do_close(hdev);
1554
1555 for (i = 0; i < NUM_REASSEMBLY; i++)
1556 kfree_skb(hdev->reassembly[i]);
1557
1558 if (!test_bit(HCI_INIT, &hdev->flags) &&
1559 !test_bit(HCI_SETUP, &hdev->flags)) {
1560 hci_dev_lock(hdev);
1561 mgmt_index_removed(hdev);
1562 hci_dev_unlock(hdev);
1563 }
1564
1565 /* mgmt_index_removed should take care of emptying the
1566 * pending list */
1567 BUG_ON(!list_empty(&hdev->mgmt_pending));
1568
1569 hci_notify(hdev, HCI_DEV_UNREG);
1570
1571 if (hdev->rfkill) {
1572 rfkill_unregister(hdev->rfkill);
1573 rfkill_destroy(hdev->rfkill);
1574 }
1575
1576 hci_del_sysfs(hdev);
1577
1578 cancel_delayed_work_sync(&hdev->adv_work);
1579
1580 destroy_workqueue(hdev->workqueue);
1581
1582 hci_dev_lock(hdev);
1583 hci_blacklist_clear(hdev);
1584 hci_uuids_clear(hdev);
1585 hci_link_keys_clear(hdev);
1586 hci_remote_oob_data_clear(hdev);
1587 hci_adv_entries_clear(hdev);
1588 hci_dev_unlock(hdev);
1589
1590 __hci_dev_put(hdev);
1591 }
1592 EXPORT_SYMBOL(hci_unregister_dev);
1593
1594 /* Suspend HCI device */
1595 int hci_suspend_dev(struct hci_dev *hdev)
1596 {
1597 hci_notify(hdev, HCI_DEV_SUSPEND);
1598 return 0;
1599 }
1600 EXPORT_SYMBOL(hci_suspend_dev);
1601
1602 /* Resume HCI device */
1603 int hci_resume_dev(struct hci_dev *hdev)
1604 {
1605 hci_notify(hdev, HCI_DEV_RESUME);
1606 return 0;
1607 }
1608 EXPORT_SYMBOL(hci_resume_dev);
1609
1610 /* Receive frame from HCI drivers */
1611 int hci_recv_frame(struct sk_buff *skb)
1612 {
1613 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1614 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1615 && !test_bit(HCI_INIT, &hdev->flags))) {
1616 kfree_skb(skb);
1617 return -ENXIO;
1618 }
1619
1620 /* Incomming skb */
1621 bt_cb(skb)->incoming = 1;
1622
1623 /* Time stamp */
1624 __net_timestamp(skb);
1625
1626 skb_queue_tail(&hdev->rx_q, skb);
1627 queue_work(hdev->workqueue, &hdev->rx_work);
1628
1629 return 0;
1630 }
1631 EXPORT_SYMBOL(hci_recv_frame);
1632
1633 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1634 int count, __u8 index)
1635 {
1636 int len = 0;
1637 int hlen = 0;
1638 int remain = count;
1639 struct sk_buff *skb;
1640 struct bt_skb_cb *scb;
1641
1642 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1643 index >= NUM_REASSEMBLY)
1644 return -EILSEQ;
1645
1646 skb = hdev->reassembly[index];
1647
1648 if (!skb) {
1649 switch (type) {
1650 case HCI_ACLDATA_PKT:
1651 len = HCI_MAX_FRAME_SIZE;
1652 hlen = HCI_ACL_HDR_SIZE;
1653 break;
1654 case HCI_EVENT_PKT:
1655 len = HCI_MAX_EVENT_SIZE;
1656 hlen = HCI_EVENT_HDR_SIZE;
1657 break;
1658 case HCI_SCODATA_PKT:
1659 len = HCI_MAX_SCO_SIZE;
1660 hlen = HCI_SCO_HDR_SIZE;
1661 break;
1662 }
1663
1664 skb = bt_skb_alloc(len, GFP_ATOMIC);
1665 if (!skb)
1666 return -ENOMEM;
1667
1668 scb = (void *) skb->cb;
1669 scb->expect = hlen;
1670 scb->pkt_type = type;
1671
1672 skb->dev = (void *) hdev;
1673 hdev->reassembly[index] = skb;
1674 }
1675
1676 while (count) {
1677 scb = (void *) skb->cb;
1678 len = min(scb->expect, (__u16)count);
1679
1680 memcpy(skb_put(skb, len), data, len);
1681
1682 count -= len;
1683 data += len;
1684 scb->expect -= len;
1685 remain = count;
1686
1687 switch (type) {
1688 case HCI_EVENT_PKT:
1689 if (skb->len == HCI_EVENT_HDR_SIZE) {
1690 struct hci_event_hdr *h = hci_event_hdr(skb);
1691 scb->expect = h->plen;
1692
1693 if (skb_tailroom(skb) < scb->expect) {
1694 kfree_skb(skb);
1695 hdev->reassembly[index] = NULL;
1696 return -ENOMEM;
1697 }
1698 }
1699 break;
1700
1701 case HCI_ACLDATA_PKT:
1702 if (skb->len == HCI_ACL_HDR_SIZE) {
1703 struct hci_acl_hdr *h = hci_acl_hdr(skb);
1704 scb->expect = __le16_to_cpu(h->dlen);
1705
1706 if (skb_tailroom(skb) < scb->expect) {
1707 kfree_skb(skb);
1708 hdev->reassembly[index] = NULL;
1709 return -ENOMEM;
1710 }
1711 }
1712 break;
1713
1714 case HCI_SCODATA_PKT:
1715 if (skb->len == HCI_SCO_HDR_SIZE) {
1716 struct hci_sco_hdr *h = hci_sco_hdr(skb);
1717 scb->expect = h->dlen;
1718
1719 if (skb_tailroom(skb) < scb->expect) {
1720 kfree_skb(skb);
1721 hdev->reassembly[index] = NULL;
1722 return -ENOMEM;
1723 }
1724 }
1725 break;
1726 }
1727
1728 if (scb->expect == 0) {
1729 /* Complete frame */
1730
1731 bt_cb(skb)->pkt_type = type;
1732 hci_recv_frame(skb);
1733
1734 hdev->reassembly[index] = NULL;
1735 return remain;
1736 }
1737 }
1738
1739 return remain;
1740 }
1741
1742 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
1743 {
1744 int rem = 0;
1745
1746 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
1747 return -EILSEQ;
1748
1749 while (count) {
1750 rem = hci_reassembly(hdev, type, data, count, type - 1);
1751 if (rem < 0)
1752 return rem;
1753
1754 data += (count - rem);
1755 count = rem;
1756 }
1757
1758 return rem;
1759 }
1760 EXPORT_SYMBOL(hci_recv_fragment);
1761
1762 #define STREAM_REASSEMBLY 0
1763
1764 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
1765 {
1766 int type;
1767 int rem = 0;
1768
1769 while (count) {
1770 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
1771
1772 if (!skb) {
1773 struct { char type; } *pkt;
1774
1775 /* Start of the frame */
1776 pkt = data;
1777 type = pkt->type;
1778
1779 data++;
1780 count--;
1781 } else
1782 type = bt_cb(skb)->pkt_type;
1783
1784 rem = hci_reassembly(hdev, type, data, count,
1785 STREAM_REASSEMBLY);
1786 if (rem < 0)
1787 return rem;
1788
1789 data += (count - rem);
1790 count = rem;
1791 }
1792
1793 return rem;
1794 }
1795 EXPORT_SYMBOL(hci_recv_stream_fragment);
1796
1797 /* ---- Interface to upper protocols ---- */
1798
1799 /* Register/Unregister protocols.
1800 * hci_task_lock is used to ensure that no tasks are running. */
1801 int hci_register_proto(struct hci_proto *hp)
1802 {
1803 int err = 0;
1804
1805 BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1806
1807 if (hp->id >= HCI_MAX_PROTO)
1808 return -EINVAL;
1809
1810 mutex_lock(&hci_task_lock);
1811
1812 if (!hci_proto[hp->id])
1813 hci_proto[hp->id] = hp;
1814 else
1815 err = -EEXIST;
1816
1817 mutex_unlock(&hci_task_lock);
1818
1819 return err;
1820 }
1821 EXPORT_SYMBOL(hci_register_proto);
1822
1823 int hci_unregister_proto(struct hci_proto *hp)
1824 {
1825 int err = 0;
1826
1827 BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1828
1829 if (hp->id >= HCI_MAX_PROTO)
1830 return -EINVAL;
1831
1832 mutex_lock(&hci_task_lock);
1833
1834 if (hci_proto[hp->id])
1835 hci_proto[hp->id] = NULL;
1836 else
1837 err = -ENOENT;
1838
1839 mutex_unlock(&hci_task_lock);
1840
1841 return err;
1842 }
1843 EXPORT_SYMBOL(hci_unregister_proto);
1844
1845 int hci_register_cb(struct hci_cb *cb)
1846 {
1847 BT_DBG("%p name %s", cb, cb->name);
1848
1849 write_lock_bh(&hci_cb_list_lock);
1850 list_add(&cb->list, &hci_cb_list);
1851 write_unlock_bh(&hci_cb_list_lock);
1852
1853 return 0;
1854 }
1855 EXPORT_SYMBOL(hci_register_cb);
1856
1857 int hci_unregister_cb(struct hci_cb *cb)
1858 {
1859 BT_DBG("%p name %s", cb, cb->name);
1860
1861 write_lock_bh(&hci_cb_list_lock);
1862 list_del(&cb->list);
1863 write_unlock_bh(&hci_cb_list_lock);
1864
1865 return 0;
1866 }
1867 EXPORT_SYMBOL(hci_unregister_cb);
1868
1869 static int hci_send_frame(struct sk_buff *skb)
1870 {
1871 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1872
1873 if (!hdev) {
1874 kfree_skb(skb);
1875 return -ENODEV;
1876 }
1877
1878 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
1879
1880 if (atomic_read(&hdev->promisc)) {
1881 /* Time stamp */
1882 __net_timestamp(skb);
1883
1884 hci_send_to_sock(hdev, skb, NULL);
1885 }
1886
1887 /* Get rid of skb owner, prior to sending to the driver. */
1888 skb_orphan(skb);
1889
1890 return hdev->send(skb);
1891 }
1892
1893 /* Send HCI command */
1894 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
1895 {
1896 int len = HCI_COMMAND_HDR_SIZE + plen;
1897 struct hci_command_hdr *hdr;
1898 struct sk_buff *skb;
1899
1900 BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
1901
1902 skb = bt_skb_alloc(len, GFP_ATOMIC);
1903 if (!skb) {
1904 BT_ERR("%s no memory for command", hdev->name);
1905 return -ENOMEM;
1906 }
1907
1908 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
1909 hdr->opcode = cpu_to_le16(opcode);
1910 hdr->plen = plen;
1911
1912 if (plen)
1913 memcpy(skb_put(skb, plen), param, plen);
1914
1915 BT_DBG("skb len %d", skb->len);
1916
1917 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
1918 skb->dev = (void *) hdev;
1919
1920 if (test_bit(HCI_INIT, &hdev->flags))
1921 hdev->init_last_cmd = opcode;
1922
1923 skb_queue_tail(&hdev->cmd_q, skb);
1924 queue_work(hdev->workqueue, &hdev->cmd_work);
1925
1926 return 0;
1927 }
1928
1929 /* Get data from the previously sent command */
1930 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
1931 {
1932 struct hci_command_hdr *hdr;
1933
1934 if (!hdev->sent_cmd)
1935 return NULL;
1936
1937 hdr = (void *) hdev->sent_cmd->data;
1938
1939 if (hdr->opcode != cpu_to_le16(opcode))
1940 return NULL;
1941
1942 BT_DBG("%s opcode 0x%x", hdev->name, opcode);
1943
1944 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
1945 }
1946
1947 /* Send ACL data */
1948 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
1949 {
1950 struct hci_acl_hdr *hdr;
1951 int len = skb->len;
1952
1953 skb_push(skb, HCI_ACL_HDR_SIZE);
1954 skb_reset_transport_header(skb);
1955 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
1956 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
1957 hdr->dlen = cpu_to_le16(len);
1958 }
1959
1960 static void hci_queue_acl(struct hci_conn *conn, struct sk_buff_head *queue,
1961 struct sk_buff *skb, __u16 flags)
1962 {
1963 struct hci_dev *hdev = conn->hdev;
1964 struct sk_buff *list;
1965
1966 list = skb_shinfo(skb)->frag_list;
1967 if (!list) {
1968 /* Non fragmented */
1969 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
1970
1971 skb_queue_tail(queue, skb);
1972 } else {
1973 /* Fragmented */
1974 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1975
1976 skb_shinfo(skb)->frag_list = NULL;
1977
1978 /* Queue all fragments atomically */
1979 spin_lock_bh(&queue->lock);
1980
1981 __skb_queue_tail(queue, skb);
1982
1983 flags &= ~ACL_START;
1984 flags |= ACL_CONT;
1985 do {
1986 skb = list; list = list->next;
1987
1988 skb->dev = (void *) hdev;
1989 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1990 hci_add_acl_hdr(skb, conn->handle, flags);
1991
1992 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1993
1994 __skb_queue_tail(queue, skb);
1995 } while (list);
1996
1997 spin_unlock_bh(&queue->lock);
1998 }
1999 }
2000
2001 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
2002 {
2003 struct hci_conn *conn = chan->conn;
2004 struct hci_dev *hdev = conn->hdev;
2005
2006 BT_DBG("%s chan %p flags 0x%x", hdev->name, chan, flags);
2007
2008 skb->dev = (void *) hdev;
2009 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2010 hci_add_acl_hdr(skb, conn->handle, flags);
2011
2012 hci_queue_acl(conn, &chan->data_q, skb, flags);
2013
2014 queue_work(hdev->workqueue, &hdev->tx_work);
2015 }
2016 EXPORT_SYMBOL(hci_send_acl);
2017
2018 /* Send SCO data */
2019 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2020 {
2021 struct hci_dev *hdev = conn->hdev;
2022 struct hci_sco_hdr hdr;
2023
2024 BT_DBG("%s len %d", hdev->name, skb->len);
2025
2026 hdr.handle = cpu_to_le16(conn->handle);
2027 hdr.dlen = skb->len;
2028
2029 skb_push(skb, HCI_SCO_HDR_SIZE);
2030 skb_reset_transport_header(skb);
2031 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2032
2033 skb->dev = (void *) hdev;
2034 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2035
2036 skb_queue_tail(&conn->data_q, skb);
2037 queue_work(hdev->workqueue, &hdev->tx_work);
2038 }
2039 EXPORT_SYMBOL(hci_send_sco);
2040
2041 /* ---- HCI TX task (outgoing data) ---- */
2042
2043 /* HCI Connection scheduler */
2044 static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
2045 {
2046 struct hci_conn_hash *h = &hdev->conn_hash;
2047 struct hci_conn *conn = NULL, *c;
2048 int num = 0, min = ~0;
2049
2050 /* We don't have to lock device here. Connections are always
2051 * added and removed with TX task disabled. */
2052
2053 rcu_read_lock();
2054
2055 list_for_each_entry_rcu(c, &h->list, list) {
2056 if (c->type != type || skb_queue_empty(&c->data_q))
2057 continue;
2058
2059 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2060 continue;
2061
2062 num++;
2063
2064 if (c->sent < min) {
2065 min = c->sent;
2066 conn = c;
2067 }
2068
2069 if (hci_conn_num(hdev, type) == num)
2070 break;
2071 }
2072
2073 rcu_read_unlock();
2074
2075 if (conn) {
2076 int cnt, q;
2077
2078 switch (conn->type) {
2079 case ACL_LINK:
2080 cnt = hdev->acl_cnt;
2081 break;
2082 case SCO_LINK:
2083 case ESCO_LINK:
2084 cnt = hdev->sco_cnt;
2085 break;
2086 case LE_LINK:
2087 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2088 break;
2089 default:
2090 cnt = 0;
2091 BT_ERR("Unknown link type");
2092 }
2093
2094 q = cnt / num;
2095 *quote = q ? q : 1;
2096 } else
2097 *quote = 0;
2098
2099 BT_DBG("conn %p quote %d", conn, *quote);
2100 return conn;
2101 }
2102
2103 static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2104 {
2105 struct hci_conn_hash *h = &hdev->conn_hash;
2106 struct hci_conn *c;
2107
2108 BT_ERR("%s link tx timeout", hdev->name);
2109
2110 rcu_read_lock();
2111
2112 /* Kill stalled connections */
2113 list_for_each_entry_rcu(c, &h->list, list) {
2114 if (c->type == type && c->sent) {
2115 BT_ERR("%s killing stalled connection %s",
2116 hdev->name, batostr(&c->dst));
2117 hci_acl_disconn(c, 0x13);
2118 }
2119 }
2120
2121 rcu_read_unlock();
2122 }
2123
2124 static inline struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
2125 int *quote)
2126 {
2127 struct hci_conn_hash *h = &hdev->conn_hash;
2128 struct hci_chan *chan = NULL;
2129 int num = 0, min = ~0, cur_prio = 0;
2130 struct hci_conn *conn;
2131 int cnt, q, conn_num = 0;
2132
2133 BT_DBG("%s", hdev->name);
2134
2135 rcu_read_lock();
2136
2137 list_for_each_entry_rcu(conn, &h->list, list) {
2138 struct hci_chan *tmp;
2139
2140 if (conn->type != type)
2141 continue;
2142
2143 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2144 continue;
2145
2146 conn_num++;
2147
2148 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
2149 struct sk_buff *skb;
2150
2151 if (skb_queue_empty(&tmp->data_q))
2152 continue;
2153
2154 skb = skb_peek(&tmp->data_q);
2155 if (skb->priority < cur_prio)
2156 continue;
2157
2158 if (skb->priority > cur_prio) {
2159 num = 0;
2160 min = ~0;
2161 cur_prio = skb->priority;
2162 }
2163
2164 num++;
2165
2166 if (conn->sent < min) {
2167 min = conn->sent;
2168 chan = tmp;
2169 }
2170 }
2171
2172 if (hci_conn_num(hdev, type) == conn_num)
2173 break;
2174 }
2175
2176 rcu_read_unlock();
2177
2178 if (!chan)
2179 return NULL;
2180
2181 switch (chan->conn->type) {
2182 case ACL_LINK:
2183 cnt = hdev->acl_cnt;
2184 break;
2185 case SCO_LINK:
2186 case ESCO_LINK:
2187 cnt = hdev->sco_cnt;
2188 break;
2189 case LE_LINK:
2190 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2191 break;
2192 default:
2193 cnt = 0;
2194 BT_ERR("Unknown link type");
2195 }
2196
2197 q = cnt / num;
2198 *quote = q ? q : 1;
2199 BT_DBG("chan %p quote %d", chan, *quote);
2200 return chan;
2201 }
2202
2203 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
2204 {
2205 struct hci_conn_hash *h = &hdev->conn_hash;
2206 struct hci_conn *conn;
2207 int num = 0;
2208
2209 BT_DBG("%s", hdev->name);
2210
2211 rcu_read_lock();
2212
2213 list_for_each_entry_rcu(conn, &h->list, list) {
2214 struct hci_chan *chan;
2215
2216 if (conn->type != type)
2217 continue;
2218
2219 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2220 continue;
2221
2222 num++;
2223
2224 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
2225 struct sk_buff *skb;
2226
2227 if (chan->sent) {
2228 chan->sent = 0;
2229 continue;
2230 }
2231
2232 if (skb_queue_empty(&chan->data_q))
2233 continue;
2234
2235 skb = skb_peek(&chan->data_q);
2236 if (skb->priority >= HCI_PRIO_MAX - 1)
2237 continue;
2238
2239 skb->priority = HCI_PRIO_MAX - 1;
2240
2241 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
2242 skb->priority);
2243 }
2244
2245 if (hci_conn_num(hdev, type) == num)
2246 break;
2247 }
2248
2249 rcu_read_unlock();
2250
2251 }
2252
2253 static inline void hci_sched_acl(struct hci_dev *hdev)
2254 {
2255 struct hci_chan *chan;
2256 struct sk_buff *skb;
2257 int quote;
2258 unsigned int cnt;
2259
2260 BT_DBG("%s", hdev->name);
2261
2262 if (!hci_conn_num(hdev, ACL_LINK))
2263 return;
2264
2265 if (!test_bit(HCI_RAW, &hdev->flags)) {
2266 /* ACL tx timeout must be longer than maximum
2267 * link supervision timeout (40.9 seconds) */
2268 if (!hdev->acl_cnt && time_after(jiffies, hdev->acl_last_tx + HZ * 45))
2269 hci_link_tx_to(hdev, ACL_LINK);
2270 }
2271
2272 cnt = hdev->acl_cnt;
2273
2274 while (hdev->acl_cnt &&
2275 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
2276 u32 priority = (skb_peek(&chan->data_q))->priority;
2277 while (quote-- && (skb = skb_peek(&chan->data_q))) {
2278 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2279 skb->len, skb->priority);
2280
2281 /* Stop if priority has changed */
2282 if (skb->priority < priority)
2283 break;
2284
2285 skb = skb_dequeue(&chan->data_q);
2286
2287 hci_conn_enter_active_mode(chan->conn,
2288 bt_cb(skb)->force_active);
2289
2290 hci_send_frame(skb);
2291 hdev->acl_last_tx = jiffies;
2292
2293 hdev->acl_cnt--;
2294 chan->sent++;
2295 chan->conn->sent++;
2296 }
2297 }
2298
2299 if (cnt != hdev->acl_cnt)
2300 hci_prio_recalculate(hdev, ACL_LINK);
2301 }
2302
2303 /* Schedule SCO */
2304 static inline void hci_sched_sco(struct hci_dev *hdev)
2305 {
2306 struct hci_conn *conn;
2307 struct sk_buff *skb;
2308 int quote;
2309
2310 BT_DBG("%s", hdev->name);
2311
2312 if (!hci_conn_num(hdev, SCO_LINK))
2313 return;
2314
2315 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
2316 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2317 BT_DBG("skb %p len %d", skb, skb->len);
2318 hci_send_frame(skb);
2319
2320 conn->sent++;
2321 if (conn->sent == ~0)
2322 conn->sent = 0;
2323 }
2324 }
2325 }
2326
2327 static inline void hci_sched_esco(struct hci_dev *hdev)
2328 {
2329 struct hci_conn *conn;
2330 struct sk_buff *skb;
2331 int quote;
2332
2333 BT_DBG("%s", hdev->name);
2334
2335 if (!hci_conn_num(hdev, ESCO_LINK))
2336 return;
2337
2338 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
2339 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2340 BT_DBG("skb %p len %d", skb, skb->len);
2341 hci_send_frame(skb);
2342
2343 conn->sent++;
2344 if (conn->sent == ~0)
2345 conn->sent = 0;
2346 }
2347 }
2348 }
2349
2350 static inline void hci_sched_le(struct hci_dev *hdev)
2351 {
2352 struct hci_chan *chan;
2353 struct sk_buff *skb;
2354 int quote, cnt, tmp;
2355
2356 BT_DBG("%s", hdev->name);
2357
2358 if (!hci_conn_num(hdev, LE_LINK))
2359 return;
2360
2361 if (!test_bit(HCI_RAW, &hdev->flags)) {
2362 /* LE tx timeout must be longer than maximum
2363 * link supervision timeout (40.9 seconds) */
2364 if (!hdev->le_cnt && hdev->le_pkts &&
2365 time_after(jiffies, hdev->le_last_tx + HZ * 45))
2366 hci_link_tx_to(hdev, LE_LINK);
2367 }
2368
2369 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
2370 tmp = cnt;
2371 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
2372 u32 priority = (skb_peek(&chan->data_q))->priority;
2373 while (quote-- && (skb = skb_peek(&chan->data_q))) {
2374 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2375 skb->len, skb->priority);
2376
2377 /* Stop if priority has changed */
2378 if (skb->priority < priority)
2379 break;
2380
2381 skb = skb_dequeue(&chan->data_q);
2382
2383 hci_send_frame(skb);
2384 hdev->le_last_tx = jiffies;
2385
2386 cnt--;
2387 chan->sent++;
2388 chan->conn->sent++;
2389 }
2390 }
2391
2392 if (hdev->le_pkts)
2393 hdev->le_cnt = cnt;
2394 else
2395 hdev->acl_cnt = cnt;
2396
2397 if (cnt != tmp)
2398 hci_prio_recalculate(hdev, LE_LINK);
2399 }
2400
2401 static void hci_tx_work(struct work_struct *work)
2402 {
2403 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
2404 struct sk_buff *skb;
2405
2406 mutex_lock(&hci_task_lock);
2407
2408 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
2409 hdev->sco_cnt, hdev->le_cnt);
2410
2411 /* Schedule queues and send stuff to HCI driver */
2412
2413 hci_sched_acl(hdev);
2414
2415 hci_sched_sco(hdev);
2416
2417 hci_sched_esco(hdev);
2418
2419 hci_sched_le(hdev);
2420
2421 /* Send next queued raw (unknown type) packet */
2422 while ((skb = skb_dequeue(&hdev->raw_q)))
2423 hci_send_frame(skb);
2424
2425 mutex_unlock(&hci_task_lock);
2426 }
2427
2428 /* ----- HCI RX task (incoming data processing) ----- */
2429
2430 /* ACL data packet */
2431 static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2432 {
2433 struct hci_acl_hdr *hdr = (void *) skb->data;
2434 struct hci_conn *conn;
2435 __u16 handle, flags;
2436
2437 skb_pull(skb, HCI_ACL_HDR_SIZE);
2438
2439 handle = __le16_to_cpu(hdr->handle);
2440 flags = hci_flags(handle);
2441 handle = hci_handle(handle);
2442
2443 BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
2444
2445 hdev->stat.acl_rx++;
2446
2447 hci_dev_lock(hdev);
2448 conn = hci_conn_hash_lookup_handle(hdev, handle);
2449 hci_dev_unlock(hdev);
2450
2451 if (conn) {
2452 register struct hci_proto *hp;
2453
2454 hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2455
2456 /* Send to upper protocol */
2457 hp = hci_proto[HCI_PROTO_L2CAP];
2458 if (hp && hp->recv_acldata) {
2459 hp->recv_acldata(conn, skb, flags);
2460 return;
2461 }
2462 } else {
2463 BT_ERR("%s ACL packet for unknown connection handle %d",
2464 hdev->name, handle);
2465 }
2466
2467 kfree_skb(skb);
2468 }
2469
2470 /* SCO data packet */
2471 static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2472 {
2473 struct hci_sco_hdr *hdr = (void *) skb->data;
2474 struct hci_conn *conn;
2475 __u16 handle;
2476
2477 skb_pull(skb, HCI_SCO_HDR_SIZE);
2478
2479 handle = __le16_to_cpu(hdr->handle);
2480
2481 BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
2482
2483 hdev->stat.sco_rx++;
2484
2485 hci_dev_lock(hdev);
2486 conn = hci_conn_hash_lookup_handle(hdev, handle);
2487 hci_dev_unlock(hdev);
2488
2489 if (conn) {
2490 register struct hci_proto *hp;
2491
2492 /* Send to upper protocol */
2493 hp = hci_proto[HCI_PROTO_SCO];
2494 if (hp && hp->recv_scodata) {
2495 hp->recv_scodata(conn, skb);
2496 return;
2497 }
2498 } else {
2499 BT_ERR("%s SCO packet for unknown connection handle %d",
2500 hdev->name, handle);
2501 }
2502
2503 kfree_skb(skb);
2504 }
2505
2506 static void hci_rx_work(struct work_struct *work)
2507 {
2508 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
2509 struct sk_buff *skb;
2510
2511 BT_DBG("%s", hdev->name);
2512
2513 mutex_lock(&hci_task_lock);
2514
2515 while ((skb = skb_dequeue(&hdev->rx_q))) {
2516 if (atomic_read(&hdev->promisc)) {
2517 /* Send copy to the sockets */
2518 hci_send_to_sock(hdev, skb, NULL);
2519 }
2520
2521 if (test_bit(HCI_RAW, &hdev->flags)) {
2522 kfree_skb(skb);
2523 continue;
2524 }
2525
2526 if (test_bit(HCI_INIT, &hdev->flags)) {
2527 /* Don't process data packets in this states. */
2528 switch (bt_cb(skb)->pkt_type) {
2529 case HCI_ACLDATA_PKT:
2530 case HCI_SCODATA_PKT:
2531 kfree_skb(skb);
2532 continue;
2533 }
2534 }
2535
2536 /* Process frame */
2537 switch (bt_cb(skb)->pkt_type) {
2538 case HCI_EVENT_PKT:
2539 BT_DBG("%s Event packet", hdev->name);
2540 hci_event_packet(hdev, skb);
2541 break;
2542
2543 case HCI_ACLDATA_PKT:
2544 BT_DBG("%s ACL data packet", hdev->name);
2545 hci_acldata_packet(hdev, skb);
2546 break;
2547
2548 case HCI_SCODATA_PKT:
2549 BT_DBG("%s SCO data packet", hdev->name);
2550 hci_scodata_packet(hdev, skb);
2551 break;
2552
2553 default:
2554 kfree_skb(skb);
2555 break;
2556 }
2557 }
2558
2559 mutex_unlock(&hci_task_lock);
2560 }
2561
2562 static void hci_cmd_work(struct work_struct *work)
2563 {
2564 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
2565 struct sk_buff *skb;
2566
2567 BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
2568
2569 /* Send queued commands */
2570 if (atomic_read(&hdev->cmd_cnt)) {
2571 skb = skb_dequeue(&hdev->cmd_q);
2572 if (!skb)
2573 return;
2574
2575 kfree_skb(hdev->sent_cmd);
2576
2577 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2578 if (hdev->sent_cmd) {
2579 atomic_dec(&hdev->cmd_cnt);
2580 hci_send_frame(skb);
2581 if (test_bit(HCI_RESET, &hdev->flags))
2582 del_timer(&hdev->cmd_timer);
2583 else
2584 mod_timer(&hdev->cmd_timer,
2585 jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
2586 } else {
2587 skb_queue_head(&hdev->cmd_q, skb);
2588 queue_work(hdev->workqueue, &hdev->cmd_work);
2589 }
2590 }
2591 }
2592
2593 int hci_do_inquiry(struct hci_dev *hdev, u8 length)
2594 {
2595 /* General inquiry access code (GIAC) */
2596 u8 lap[3] = { 0x33, 0x8b, 0x9e };
2597 struct hci_cp_inquiry cp;
2598
2599 BT_DBG("%s", hdev->name);
2600
2601 if (test_bit(HCI_INQUIRY, &hdev->flags))
2602 return -EINPROGRESS;
2603
2604 memset(&cp, 0, sizeof(cp));
2605 memcpy(&cp.lap, lap, sizeof(cp.lap));
2606 cp.length = length;
2607
2608 return hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
2609 }
2610
2611 int hci_cancel_inquiry(struct hci_dev *hdev)
2612 {
2613 BT_DBG("%s", hdev->name);
2614
2615 if (!test_bit(HCI_INQUIRY, &hdev->flags))
2616 return -EPERM;
2617
2618 return hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2619 }
2620
2621 module_param(enable_hs, bool, 0644);
2622 MODULE_PARM_DESC(enable_hs, "Enable High Speed");