Merge tag 'gpio-for-linus' of git://git.secretlab.ca/git/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30
31 #include <linux/rfkill.h>
32
33 #include <net/bluetooth/bluetooth.h>
34 #include <net/bluetooth/hci_core.h>
35
36 static void hci_rx_work(struct work_struct *work);
37 static void hci_cmd_work(struct work_struct *work);
38 static void hci_tx_work(struct work_struct *work);
39
40 /* HCI device list */
41 LIST_HEAD(hci_dev_list);
42 DEFINE_RWLOCK(hci_dev_list_lock);
43
44 /* HCI callback list */
45 LIST_HEAD(hci_cb_list);
46 DEFINE_RWLOCK(hci_cb_list_lock);
47
48 /* HCI ID Numbering */
49 static DEFINE_IDA(hci_index_ida);
50
51 /* ---- HCI notifications ---- */
52
53 static void hci_notify(struct hci_dev *hdev, int event)
54 {
55 hci_sock_dev_event(hdev, event);
56 }
57
58 /* ---- HCI requests ---- */
59
60 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result)
61 {
62 BT_DBG("%s result 0x%2.2x", hdev->name, result);
63
64 if (hdev->req_status == HCI_REQ_PEND) {
65 hdev->req_result = result;
66 hdev->req_status = HCI_REQ_DONE;
67 wake_up_interruptible(&hdev->req_wait_q);
68 }
69 }
70
71 static void hci_req_cancel(struct hci_dev *hdev, int err)
72 {
73 BT_DBG("%s err 0x%2.2x", hdev->name, err);
74
75 if (hdev->req_status == HCI_REQ_PEND) {
76 hdev->req_result = err;
77 hdev->req_status = HCI_REQ_CANCELED;
78 wake_up_interruptible(&hdev->req_wait_q);
79 }
80 }
81
82 static struct sk_buff *hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode,
83 u8 event)
84 {
85 struct hci_ev_cmd_complete *ev;
86 struct hci_event_hdr *hdr;
87 struct sk_buff *skb;
88
89 hci_dev_lock(hdev);
90
91 skb = hdev->recv_evt;
92 hdev->recv_evt = NULL;
93
94 hci_dev_unlock(hdev);
95
96 if (!skb)
97 return ERR_PTR(-ENODATA);
98
99 if (skb->len < sizeof(*hdr)) {
100 BT_ERR("Too short HCI event");
101 goto failed;
102 }
103
104 hdr = (void *) skb->data;
105 skb_pull(skb, HCI_EVENT_HDR_SIZE);
106
107 if (event) {
108 if (hdr->evt != event)
109 goto failed;
110 return skb;
111 }
112
113 if (hdr->evt != HCI_EV_CMD_COMPLETE) {
114 BT_DBG("Last event is not cmd complete (0x%2.2x)", hdr->evt);
115 goto failed;
116 }
117
118 if (skb->len < sizeof(*ev)) {
119 BT_ERR("Too short cmd_complete event");
120 goto failed;
121 }
122
123 ev = (void *) skb->data;
124 skb_pull(skb, sizeof(*ev));
125
126 if (opcode == __le16_to_cpu(ev->opcode))
127 return skb;
128
129 BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode,
130 __le16_to_cpu(ev->opcode));
131
132 failed:
133 kfree_skb(skb);
134 return ERR_PTR(-ENODATA);
135 }
136
137 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
138 const void *param, u8 event, u32 timeout)
139 {
140 DECLARE_WAITQUEUE(wait, current);
141 struct hci_request req;
142 int err = 0;
143
144 BT_DBG("%s", hdev->name);
145
146 hci_req_init(&req, hdev);
147
148 hci_req_add_ev(&req, opcode, plen, param, event);
149
150 hdev->req_status = HCI_REQ_PEND;
151
152 err = hci_req_run(&req, hci_req_sync_complete);
153 if (err < 0)
154 return ERR_PTR(err);
155
156 add_wait_queue(&hdev->req_wait_q, &wait);
157 set_current_state(TASK_INTERRUPTIBLE);
158
159 schedule_timeout(timeout);
160
161 remove_wait_queue(&hdev->req_wait_q, &wait);
162
163 if (signal_pending(current))
164 return ERR_PTR(-EINTR);
165
166 switch (hdev->req_status) {
167 case HCI_REQ_DONE:
168 err = -bt_to_errno(hdev->req_result);
169 break;
170
171 case HCI_REQ_CANCELED:
172 err = -hdev->req_result;
173 break;
174
175 default:
176 err = -ETIMEDOUT;
177 break;
178 }
179
180 hdev->req_status = hdev->req_result = 0;
181
182 BT_DBG("%s end: err %d", hdev->name, err);
183
184 if (err < 0)
185 return ERR_PTR(err);
186
187 return hci_get_cmd_complete(hdev, opcode, event);
188 }
189 EXPORT_SYMBOL(__hci_cmd_sync_ev);
190
191 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
192 const void *param, u32 timeout)
193 {
194 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
195 }
196 EXPORT_SYMBOL(__hci_cmd_sync);
197
198 /* Execute request and wait for completion. */
199 static int __hci_req_sync(struct hci_dev *hdev,
200 void (*func)(struct hci_request *req,
201 unsigned long opt),
202 unsigned long opt, __u32 timeout)
203 {
204 struct hci_request req;
205 DECLARE_WAITQUEUE(wait, current);
206 int err = 0;
207
208 BT_DBG("%s start", hdev->name);
209
210 hci_req_init(&req, hdev);
211
212 hdev->req_status = HCI_REQ_PEND;
213
214 func(&req, opt);
215
216 err = hci_req_run(&req, hci_req_sync_complete);
217 if (err < 0) {
218 hdev->req_status = 0;
219
220 /* ENODATA means the HCI request command queue is empty.
221 * This can happen when a request with conditionals doesn't
222 * trigger any commands to be sent. This is normal behavior
223 * and should not trigger an error return.
224 */
225 if (err == -ENODATA)
226 return 0;
227
228 return err;
229 }
230
231 add_wait_queue(&hdev->req_wait_q, &wait);
232 set_current_state(TASK_INTERRUPTIBLE);
233
234 schedule_timeout(timeout);
235
236 remove_wait_queue(&hdev->req_wait_q, &wait);
237
238 if (signal_pending(current))
239 return -EINTR;
240
241 switch (hdev->req_status) {
242 case HCI_REQ_DONE:
243 err = -bt_to_errno(hdev->req_result);
244 break;
245
246 case HCI_REQ_CANCELED:
247 err = -hdev->req_result;
248 break;
249
250 default:
251 err = -ETIMEDOUT;
252 break;
253 }
254
255 hdev->req_status = hdev->req_result = 0;
256
257 BT_DBG("%s end: err %d", hdev->name, err);
258
259 return err;
260 }
261
262 static int hci_req_sync(struct hci_dev *hdev,
263 void (*req)(struct hci_request *req,
264 unsigned long opt),
265 unsigned long opt, __u32 timeout)
266 {
267 int ret;
268
269 if (!test_bit(HCI_UP, &hdev->flags))
270 return -ENETDOWN;
271
272 /* Serialize all requests */
273 hci_req_lock(hdev);
274 ret = __hci_req_sync(hdev, req, opt, timeout);
275 hci_req_unlock(hdev);
276
277 return ret;
278 }
279
280 static void hci_reset_req(struct hci_request *req, unsigned long opt)
281 {
282 BT_DBG("%s %ld", req->hdev->name, opt);
283
284 /* Reset device */
285 set_bit(HCI_RESET, &req->hdev->flags);
286 hci_req_add(req, HCI_OP_RESET, 0, NULL);
287 }
288
289 static void bredr_init(struct hci_request *req)
290 {
291 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
292
293 /* Read Local Supported Features */
294 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
295
296 /* Read Local Version */
297 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
298
299 /* Read BD Address */
300 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
301 }
302
303 static void amp_init(struct hci_request *req)
304 {
305 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
306
307 /* Read Local Version */
308 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
309
310 /* Read Local AMP Info */
311 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
312
313 /* Read Data Blk size */
314 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
315 }
316
317 static void hci_init1_req(struct hci_request *req, unsigned long opt)
318 {
319 struct hci_dev *hdev = req->hdev;
320
321 BT_DBG("%s %ld", hdev->name, opt);
322
323 /* Reset */
324 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
325 hci_reset_req(req, 0);
326
327 switch (hdev->dev_type) {
328 case HCI_BREDR:
329 bredr_init(req);
330 break;
331
332 case HCI_AMP:
333 amp_init(req);
334 break;
335
336 default:
337 BT_ERR("Unknown device type %d", hdev->dev_type);
338 break;
339 }
340 }
341
342 static void bredr_setup(struct hci_request *req)
343 {
344 struct hci_cp_delete_stored_link_key cp;
345 __le16 param;
346 __u8 flt_type;
347
348 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
349 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
350
351 /* Read Class of Device */
352 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
353
354 /* Read Local Name */
355 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
356
357 /* Read Voice Setting */
358 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
359
360 /* Clear Event Filters */
361 flt_type = HCI_FLT_CLEAR_ALL;
362 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
363
364 /* Connection accept timeout ~20 secs */
365 param = __constant_cpu_to_le16(0x7d00);
366 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
367
368 bacpy(&cp.bdaddr, BDADDR_ANY);
369 cp.delete_all = 0x01;
370 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
371
372 /* Read page scan parameters */
373 if (req->hdev->hci_ver > BLUETOOTH_VER_1_1) {
374 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
375 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
376 }
377 }
378
379 static void le_setup(struct hci_request *req)
380 {
381 struct hci_dev *hdev = req->hdev;
382
383 /* Read LE Buffer Size */
384 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
385
386 /* Read LE Local Supported Features */
387 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
388
389 /* Read LE Advertising Channel TX Power */
390 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
391
392 /* Read LE White List Size */
393 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL);
394
395 /* Read LE Supported States */
396 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
397
398 /* LE-only controllers have LE implicitly enabled */
399 if (!lmp_bredr_capable(hdev))
400 set_bit(HCI_LE_ENABLED, &hdev->dev_flags);
401 }
402
403 static u8 hci_get_inquiry_mode(struct hci_dev *hdev)
404 {
405 if (lmp_ext_inq_capable(hdev))
406 return 0x02;
407
408 if (lmp_inq_rssi_capable(hdev))
409 return 0x01;
410
411 if (hdev->manufacturer == 11 && hdev->hci_rev == 0x00 &&
412 hdev->lmp_subver == 0x0757)
413 return 0x01;
414
415 if (hdev->manufacturer == 15) {
416 if (hdev->hci_rev == 0x03 && hdev->lmp_subver == 0x6963)
417 return 0x01;
418 if (hdev->hci_rev == 0x09 && hdev->lmp_subver == 0x6963)
419 return 0x01;
420 if (hdev->hci_rev == 0x00 && hdev->lmp_subver == 0x6965)
421 return 0x01;
422 }
423
424 if (hdev->manufacturer == 31 && hdev->hci_rev == 0x2005 &&
425 hdev->lmp_subver == 0x1805)
426 return 0x01;
427
428 return 0x00;
429 }
430
431 static void hci_setup_inquiry_mode(struct hci_request *req)
432 {
433 u8 mode;
434
435 mode = hci_get_inquiry_mode(req->hdev);
436
437 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
438 }
439
440 static void hci_setup_event_mask(struct hci_request *req)
441 {
442 struct hci_dev *hdev = req->hdev;
443
444 /* The second byte is 0xff instead of 0x9f (two reserved bits
445 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
446 * command otherwise.
447 */
448 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
449
450 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
451 * any event mask for pre 1.2 devices.
452 */
453 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
454 return;
455
456 if (lmp_bredr_capable(hdev)) {
457 events[4] |= 0x01; /* Flow Specification Complete */
458 events[4] |= 0x02; /* Inquiry Result with RSSI */
459 events[4] |= 0x04; /* Read Remote Extended Features Complete */
460 events[5] |= 0x08; /* Synchronous Connection Complete */
461 events[5] |= 0x10; /* Synchronous Connection Changed */
462 }
463
464 if (lmp_inq_rssi_capable(hdev))
465 events[4] |= 0x02; /* Inquiry Result with RSSI */
466
467 if (lmp_sniffsubr_capable(hdev))
468 events[5] |= 0x20; /* Sniff Subrating */
469
470 if (lmp_pause_enc_capable(hdev))
471 events[5] |= 0x80; /* Encryption Key Refresh Complete */
472
473 if (lmp_ext_inq_capable(hdev))
474 events[5] |= 0x40; /* Extended Inquiry Result */
475
476 if (lmp_no_flush_capable(hdev))
477 events[7] |= 0x01; /* Enhanced Flush Complete */
478
479 if (lmp_lsto_capable(hdev))
480 events[6] |= 0x80; /* Link Supervision Timeout Changed */
481
482 if (lmp_ssp_capable(hdev)) {
483 events[6] |= 0x01; /* IO Capability Request */
484 events[6] |= 0x02; /* IO Capability Response */
485 events[6] |= 0x04; /* User Confirmation Request */
486 events[6] |= 0x08; /* User Passkey Request */
487 events[6] |= 0x10; /* Remote OOB Data Request */
488 events[6] |= 0x20; /* Simple Pairing Complete */
489 events[7] |= 0x04; /* User Passkey Notification */
490 events[7] |= 0x08; /* Keypress Notification */
491 events[7] |= 0x10; /* Remote Host Supported
492 * Features Notification
493 */
494 }
495
496 if (lmp_le_capable(hdev))
497 events[7] |= 0x20; /* LE Meta-Event */
498
499 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
500
501 if (lmp_le_capable(hdev)) {
502 memset(events, 0, sizeof(events));
503 events[0] = 0x1f;
504 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK,
505 sizeof(events), events);
506 }
507 }
508
509 static void hci_init2_req(struct hci_request *req, unsigned long opt)
510 {
511 struct hci_dev *hdev = req->hdev;
512
513 if (lmp_bredr_capable(hdev))
514 bredr_setup(req);
515
516 if (lmp_le_capable(hdev))
517 le_setup(req);
518
519 hci_setup_event_mask(req);
520
521 if (hdev->hci_ver > BLUETOOTH_VER_1_1)
522 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
523
524 if (lmp_ssp_capable(hdev)) {
525 if (test_bit(HCI_SSP_ENABLED, &hdev->dev_flags)) {
526 u8 mode = 0x01;
527 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
528 sizeof(mode), &mode);
529 } else {
530 struct hci_cp_write_eir cp;
531
532 memset(hdev->eir, 0, sizeof(hdev->eir));
533 memset(&cp, 0, sizeof(cp));
534
535 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
536 }
537 }
538
539 if (lmp_inq_rssi_capable(hdev))
540 hci_setup_inquiry_mode(req);
541
542 if (lmp_inq_tx_pwr_capable(hdev))
543 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
544
545 if (lmp_ext_feat_capable(hdev)) {
546 struct hci_cp_read_local_ext_features cp;
547
548 cp.page = 0x01;
549 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
550 sizeof(cp), &cp);
551 }
552
553 if (test_bit(HCI_LINK_SECURITY, &hdev->dev_flags)) {
554 u8 enable = 1;
555 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
556 &enable);
557 }
558 }
559
560 static void hci_setup_link_policy(struct hci_request *req)
561 {
562 struct hci_dev *hdev = req->hdev;
563 struct hci_cp_write_def_link_policy cp;
564 u16 link_policy = 0;
565
566 if (lmp_rswitch_capable(hdev))
567 link_policy |= HCI_LP_RSWITCH;
568 if (lmp_hold_capable(hdev))
569 link_policy |= HCI_LP_HOLD;
570 if (lmp_sniff_capable(hdev))
571 link_policy |= HCI_LP_SNIFF;
572 if (lmp_park_capable(hdev))
573 link_policy |= HCI_LP_PARK;
574
575 cp.policy = cpu_to_le16(link_policy);
576 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
577 }
578
579 static void hci_set_le_support(struct hci_request *req)
580 {
581 struct hci_dev *hdev = req->hdev;
582 struct hci_cp_write_le_host_supported cp;
583
584 /* LE-only devices do not support explicit enablement */
585 if (!lmp_bredr_capable(hdev))
586 return;
587
588 memset(&cp, 0, sizeof(cp));
589
590 if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) {
591 cp.le = 0x01;
592 cp.simul = lmp_le_br_capable(hdev);
593 }
594
595 if (cp.le != lmp_host_le_capable(hdev))
596 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
597 &cp);
598 }
599
600 static void hci_init3_req(struct hci_request *req, unsigned long opt)
601 {
602 struct hci_dev *hdev = req->hdev;
603 u8 p;
604
605 if (hdev->commands[5] & 0x10)
606 hci_setup_link_policy(req);
607
608 if (lmp_le_capable(hdev)) {
609 hci_set_le_support(req);
610 hci_update_ad(req);
611 }
612
613 /* Read features beyond page 1 if available */
614 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
615 struct hci_cp_read_local_ext_features cp;
616
617 cp.page = p;
618 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
619 sizeof(cp), &cp);
620 }
621 }
622
623 static int __hci_init(struct hci_dev *hdev)
624 {
625 int err;
626
627 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT);
628 if (err < 0)
629 return err;
630
631 /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
632 * BR/EDR/LE type controllers. AMP controllers only need the
633 * first stage init.
634 */
635 if (hdev->dev_type != HCI_BREDR)
636 return 0;
637
638 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT);
639 if (err < 0)
640 return err;
641
642 return __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT);
643 }
644
645 static void hci_scan_req(struct hci_request *req, unsigned long opt)
646 {
647 __u8 scan = opt;
648
649 BT_DBG("%s %x", req->hdev->name, scan);
650
651 /* Inquiry and Page scans */
652 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
653 }
654
655 static void hci_auth_req(struct hci_request *req, unsigned long opt)
656 {
657 __u8 auth = opt;
658
659 BT_DBG("%s %x", req->hdev->name, auth);
660
661 /* Authentication */
662 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
663 }
664
665 static void hci_encrypt_req(struct hci_request *req, unsigned long opt)
666 {
667 __u8 encrypt = opt;
668
669 BT_DBG("%s %x", req->hdev->name, encrypt);
670
671 /* Encryption */
672 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
673 }
674
675 static void hci_linkpol_req(struct hci_request *req, unsigned long opt)
676 {
677 __le16 policy = cpu_to_le16(opt);
678
679 BT_DBG("%s %x", req->hdev->name, policy);
680
681 /* Default link policy */
682 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
683 }
684
685 /* Get HCI device by index.
686 * Device is held on return. */
687 struct hci_dev *hci_dev_get(int index)
688 {
689 struct hci_dev *hdev = NULL, *d;
690
691 BT_DBG("%d", index);
692
693 if (index < 0)
694 return NULL;
695
696 read_lock(&hci_dev_list_lock);
697 list_for_each_entry(d, &hci_dev_list, list) {
698 if (d->id == index) {
699 hdev = hci_dev_hold(d);
700 break;
701 }
702 }
703 read_unlock(&hci_dev_list_lock);
704 return hdev;
705 }
706
707 /* ---- Inquiry support ---- */
708
709 bool hci_discovery_active(struct hci_dev *hdev)
710 {
711 struct discovery_state *discov = &hdev->discovery;
712
713 switch (discov->state) {
714 case DISCOVERY_FINDING:
715 case DISCOVERY_RESOLVING:
716 return true;
717
718 default:
719 return false;
720 }
721 }
722
723 void hci_discovery_set_state(struct hci_dev *hdev, int state)
724 {
725 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
726
727 if (hdev->discovery.state == state)
728 return;
729
730 switch (state) {
731 case DISCOVERY_STOPPED:
732 if (hdev->discovery.state != DISCOVERY_STARTING)
733 mgmt_discovering(hdev, 0);
734 break;
735 case DISCOVERY_STARTING:
736 break;
737 case DISCOVERY_FINDING:
738 mgmt_discovering(hdev, 1);
739 break;
740 case DISCOVERY_RESOLVING:
741 break;
742 case DISCOVERY_STOPPING:
743 break;
744 }
745
746 hdev->discovery.state = state;
747 }
748
749 static void inquiry_cache_flush(struct hci_dev *hdev)
750 {
751 struct discovery_state *cache = &hdev->discovery;
752 struct inquiry_entry *p, *n;
753
754 list_for_each_entry_safe(p, n, &cache->all, all) {
755 list_del(&p->all);
756 kfree(p);
757 }
758
759 INIT_LIST_HEAD(&cache->unknown);
760 INIT_LIST_HEAD(&cache->resolve);
761 }
762
763 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
764 bdaddr_t *bdaddr)
765 {
766 struct discovery_state *cache = &hdev->discovery;
767 struct inquiry_entry *e;
768
769 BT_DBG("cache %p, %pMR", cache, bdaddr);
770
771 list_for_each_entry(e, &cache->all, all) {
772 if (!bacmp(&e->data.bdaddr, bdaddr))
773 return e;
774 }
775
776 return NULL;
777 }
778
779 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
780 bdaddr_t *bdaddr)
781 {
782 struct discovery_state *cache = &hdev->discovery;
783 struct inquiry_entry *e;
784
785 BT_DBG("cache %p, %pMR", cache, bdaddr);
786
787 list_for_each_entry(e, &cache->unknown, list) {
788 if (!bacmp(&e->data.bdaddr, bdaddr))
789 return e;
790 }
791
792 return NULL;
793 }
794
795 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
796 bdaddr_t *bdaddr,
797 int state)
798 {
799 struct discovery_state *cache = &hdev->discovery;
800 struct inquiry_entry *e;
801
802 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
803
804 list_for_each_entry(e, &cache->resolve, list) {
805 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
806 return e;
807 if (!bacmp(&e->data.bdaddr, bdaddr))
808 return e;
809 }
810
811 return NULL;
812 }
813
814 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
815 struct inquiry_entry *ie)
816 {
817 struct discovery_state *cache = &hdev->discovery;
818 struct list_head *pos = &cache->resolve;
819 struct inquiry_entry *p;
820
821 list_del(&ie->list);
822
823 list_for_each_entry(p, &cache->resolve, list) {
824 if (p->name_state != NAME_PENDING &&
825 abs(p->data.rssi) >= abs(ie->data.rssi))
826 break;
827 pos = &p->list;
828 }
829
830 list_add(&ie->list, pos);
831 }
832
833 bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
834 bool name_known, bool *ssp)
835 {
836 struct discovery_state *cache = &hdev->discovery;
837 struct inquiry_entry *ie;
838
839 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
840
841 hci_remove_remote_oob_data(hdev, &data->bdaddr);
842
843 if (ssp)
844 *ssp = data->ssp_mode;
845
846 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
847 if (ie) {
848 if (ie->data.ssp_mode && ssp)
849 *ssp = true;
850
851 if (ie->name_state == NAME_NEEDED &&
852 data->rssi != ie->data.rssi) {
853 ie->data.rssi = data->rssi;
854 hci_inquiry_cache_update_resolve(hdev, ie);
855 }
856
857 goto update;
858 }
859
860 /* Entry not in the cache. Add new one. */
861 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
862 if (!ie)
863 return false;
864
865 list_add(&ie->all, &cache->all);
866
867 if (name_known) {
868 ie->name_state = NAME_KNOWN;
869 } else {
870 ie->name_state = NAME_NOT_KNOWN;
871 list_add(&ie->list, &cache->unknown);
872 }
873
874 update:
875 if (name_known && ie->name_state != NAME_KNOWN &&
876 ie->name_state != NAME_PENDING) {
877 ie->name_state = NAME_KNOWN;
878 list_del(&ie->list);
879 }
880
881 memcpy(&ie->data, data, sizeof(*data));
882 ie->timestamp = jiffies;
883 cache->timestamp = jiffies;
884
885 if (ie->name_state == NAME_NOT_KNOWN)
886 return false;
887
888 return true;
889 }
890
891 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
892 {
893 struct discovery_state *cache = &hdev->discovery;
894 struct inquiry_info *info = (struct inquiry_info *) buf;
895 struct inquiry_entry *e;
896 int copied = 0;
897
898 list_for_each_entry(e, &cache->all, all) {
899 struct inquiry_data *data = &e->data;
900
901 if (copied >= num)
902 break;
903
904 bacpy(&info->bdaddr, &data->bdaddr);
905 info->pscan_rep_mode = data->pscan_rep_mode;
906 info->pscan_period_mode = data->pscan_period_mode;
907 info->pscan_mode = data->pscan_mode;
908 memcpy(info->dev_class, data->dev_class, 3);
909 info->clock_offset = data->clock_offset;
910
911 info++;
912 copied++;
913 }
914
915 BT_DBG("cache %p, copied %d", cache, copied);
916 return copied;
917 }
918
919 static void hci_inq_req(struct hci_request *req, unsigned long opt)
920 {
921 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
922 struct hci_dev *hdev = req->hdev;
923 struct hci_cp_inquiry cp;
924
925 BT_DBG("%s", hdev->name);
926
927 if (test_bit(HCI_INQUIRY, &hdev->flags))
928 return;
929
930 /* Start Inquiry */
931 memcpy(&cp.lap, &ir->lap, 3);
932 cp.length = ir->length;
933 cp.num_rsp = ir->num_rsp;
934 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
935 }
936
937 static int wait_inquiry(void *word)
938 {
939 schedule();
940 return signal_pending(current);
941 }
942
943 int hci_inquiry(void __user *arg)
944 {
945 __u8 __user *ptr = arg;
946 struct hci_inquiry_req ir;
947 struct hci_dev *hdev;
948 int err = 0, do_inquiry = 0, max_rsp;
949 long timeo;
950 __u8 *buf;
951
952 if (copy_from_user(&ir, ptr, sizeof(ir)))
953 return -EFAULT;
954
955 hdev = hci_dev_get(ir.dev_id);
956 if (!hdev)
957 return -ENODEV;
958
959 hci_dev_lock(hdev);
960 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
961 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
962 inquiry_cache_flush(hdev);
963 do_inquiry = 1;
964 }
965 hci_dev_unlock(hdev);
966
967 timeo = ir.length * msecs_to_jiffies(2000);
968
969 if (do_inquiry) {
970 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
971 timeo);
972 if (err < 0)
973 goto done;
974
975 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
976 * cleared). If it is interrupted by a signal, return -EINTR.
977 */
978 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, wait_inquiry,
979 TASK_INTERRUPTIBLE))
980 return -EINTR;
981 }
982
983 /* for unlimited number of responses we will use buffer with
984 * 255 entries
985 */
986 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
987
988 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
989 * copy it to the user space.
990 */
991 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
992 if (!buf) {
993 err = -ENOMEM;
994 goto done;
995 }
996
997 hci_dev_lock(hdev);
998 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
999 hci_dev_unlock(hdev);
1000
1001 BT_DBG("num_rsp %d", ir.num_rsp);
1002
1003 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1004 ptr += sizeof(ir);
1005 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1006 ir.num_rsp))
1007 err = -EFAULT;
1008 } else
1009 err = -EFAULT;
1010
1011 kfree(buf);
1012
1013 done:
1014 hci_dev_put(hdev);
1015 return err;
1016 }
1017
1018 static u8 create_ad(struct hci_dev *hdev, u8 *ptr)
1019 {
1020 u8 ad_len = 0, flags = 0;
1021 size_t name_len;
1022
1023 if (test_bit(HCI_LE_PERIPHERAL, &hdev->dev_flags))
1024 flags |= LE_AD_GENERAL;
1025
1026 if (!lmp_bredr_capable(hdev))
1027 flags |= LE_AD_NO_BREDR;
1028
1029 if (lmp_le_br_capable(hdev))
1030 flags |= LE_AD_SIM_LE_BREDR_CTRL;
1031
1032 if (lmp_host_le_br_capable(hdev))
1033 flags |= LE_AD_SIM_LE_BREDR_HOST;
1034
1035 if (flags) {
1036 BT_DBG("adv flags 0x%02x", flags);
1037
1038 ptr[0] = 2;
1039 ptr[1] = EIR_FLAGS;
1040 ptr[2] = flags;
1041
1042 ad_len += 3;
1043 ptr += 3;
1044 }
1045
1046 if (hdev->adv_tx_power != HCI_TX_POWER_INVALID) {
1047 ptr[0] = 2;
1048 ptr[1] = EIR_TX_POWER;
1049 ptr[2] = (u8) hdev->adv_tx_power;
1050
1051 ad_len += 3;
1052 ptr += 3;
1053 }
1054
1055 name_len = strlen(hdev->dev_name);
1056 if (name_len > 0) {
1057 size_t max_len = HCI_MAX_AD_LENGTH - ad_len - 2;
1058
1059 if (name_len > max_len) {
1060 name_len = max_len;
1061 ptr[1] = EIR_NAME_SHORT;
1062 } else
1063 ptr[1] = EIR_NAME_COMPLETE;
1064
1065 ptr[0] = name_len + 1;
1066
1067 memcpy(ptr + 2, hdev->dev_name, name_len);
1068
1069 ad_len += (name_len + 2);
1070 ptr += (name_len + 2);
1071 }
1072
1073 return ad_len;
1074 }
1075
1076 void hci_update_ad(struct hci_request *req)
1077 {
1078 struct hci_dev *hdev = req->hdev;
1079 struct hci_cp_le_set_adv_data cp;
1080 u8 len;
1081
1082 if (!lmp_le_capable(hdev))
1083 return;
1084
1085 memset(&cp, 0, sizeof(cp));
1086
1087 len = create_ad(hdev, cp.data);
1088
1089 if (hdev->adv_data_len == len &&
1090 memcmp(cp.data, hdev->adv_data, len) == 0)
1091 return;
1092
1093 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1094 hdev->adv_data_len = len;
1095
1096 cp.length = len;
1097
1098 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1099 }
1100
1101 /* ---- HCI ioctl helpers ---- */
1102
1103 int hci_dev_open(__u16 dev)
1104 {
1105 struct hci_dev *hdev;
1106 int ret = 0;
1107
1108 hdev = hci_dev_get(dev);
1109 if (!hdev)
1110 return -ENODEV;
1111
1112 BT_DBG("%s %p", hdev->name, hdev);
1113
1114 hci_req_lock(hdev);
1115
1116 if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) {
1117 ret = -ENODEV;
1118 goto done;
1119 }
1120
1121 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
1122 ret = -ERFKILL;
1123 goto done;
1124 }
1125
1126 if (test_bit(HCI_UP, &hdev->flags)) {
1127 ret = -EALREADY;
1128 goto done;
1129 }
1130
1131 if (hdev->open(hdev)) {
1132 ret = -EIO;
1133 goto done;
1134 }
1135
1136 atomic_set(&hdev->cmd_cnt, 1);
1137 set_bit(HCI_INIT, &hdev->flags);
1138
1139 if (hdev->setup && test_bit(HCI_SETUP, &hdev->dev_flags))
1140 ret = hdev->setup(hdev);
1141
1142 if (!ret) {
1143 /* Treat all non BR/EDR controllers as raw devices if
1144 * enable_hs is not set.
1145 */
1146 if (hdev->dev_type != HCI_BREDR && !enable_hs)
1147 set_bit(HCI_RAW, &hdev->flags);
1148
1149 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
1150 set_bit(HCI_RAW, &hdev->flags);
1151
1152 if (!test_bit(HCI_RAW, &hdev->flags))
1153 ret = __hci_init(hdev);
1154 }
1155
1156 clear_bit(HCI_INIT, &hdev->flags);
1157
1158 if (!ret) {
1159 hci_dev_hold(hdev);
1160 set_bit(HCI_UP, &hdev->flags);
1161 hci_notify(hdev, HCI_DEV_UP);
1162 if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
1163 mgmt_valid_hdev(hdev)) {
1164 hci_dev_lock(hdev);
1165 mgmt_powered(hdev, 1);
1166 hci_dev_unlock(hdev);
1167 }
1168 } else {
1169 /* Init failed, cleanup */
1170 flush_work(&hdev->tx_work);
1171 flush_work(&hdev->cmd_work);
1172 flush_work(&hdev->rx_work);
1173
1174 skb_queue_purge(&hdev->cmd_q);
1175 skb_queue_purge(&hdev->rx_q);
1176
1177 if (hdev->flush)
1178 hdev->flush(hdev);
1179
1180 if (hdev->sent_cmd) {
1181 kfree_skb(hdev->sent_cmd);
1182 hdev->sent_cmd = NULL;
1183 }
1184
1185 hdev->close(hdev);
1186 hdev->flags = 0;
1187 }
1188
1189 done:
1190 hci_req_unlock(hdev);
1191 hci_dev_put(hdev);
1192 return ret;
1193 }
1194
1195 static int hci_dev_do_close(struct hci_dev *hdev)
1196 {
1197 BT_DBG("%s %p", hdev->name, hdev);
1198
1199 cancel_work_sync(&hdev->le_scan);
1200
1201 cancel_delayed_work(&hdev->power_off);
1202
1203 hci_req_cancel(hdev, ENODEV);
1204 hci_req_lock(hdev);
1205
1206 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1207 del_timer_sync(&hdev->cmd_timer);
1208 hci_req_unlock(hdev);
1209 return 0;
1210 }
1211
1212 /* Flush RX and TX works */
1213 flush_work(&hdev->tx_work);
1214 flush_work(&hdev->rx_work);
1215
1216 if (hdev->discov_timeout > 0) {
1217 cancel_delayed_work(&hdev->discov_off);
1218 hdev->discov_timeout = 0;
1219 clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags);
1220 }
1221
1222 if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags))
1223 cancel_delayed_work(&hdev->service_cache);
1224
1225 cancel_delayed_work_sync(&hdev->le_scan_disable);
1226
1227 hci_dev_lock(hdev);
1228 inquiry_cache_flush(hdev);
1229 hci_conn_hash_flush(hdev);
1230 hci_dev_unlock(hdev);
1231
1232 hci_notify(hdev, HCI_DEV_DOWN);
1233
1234 if (hdev->flush)
1235 hdev->flush(hdev);
1236
1237 /* Reset device */
1238 skb_queue_purge(&hdev->cmd_q);
1239 atomic_set(&hdev->cmd_cnt, 1);
1240 if (!test_bit(HCI_RAW, &hdev->flags) &&
1241 test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
1242 set_bit(HCI_INIT, &hdev->flags);
1243 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT);
1244 clear_bit(HCI_INIT, &hdev->flags);
1245 }
1246
1247 /* flush cmd work */
1248 flush_work(&hdev->cmd_work);
1249
1250 /* Drop queues */
1251 skb_queue_purge(&hdev->rx_q);
1252 skb_queue_purge(&hdev->cmd_q);
1253 skb_queue_purge(&hdev->raw_q);
1254
1255 /* Drop last sent command */
1256 if (hdev->sent_cmd) {
1257 del_timer_sync(&hdev->cmd_timer);
1258 kfree_skb(hdev->sent_cmd);
1259 hdev->sent_cmd = NULL;
1260 }
1261
1262 kfree_skb(hdev->recv_evt);
1263 hdev->recv_evt = NULL;
1264
1265 /* After this point our queues are empty
1266 * and no tasks are scheduled. */
1267 hdev->close(hdev);
1268
1269 /* Clear flags */
1270 hdev->flags = 0;
1271 hdev->dev_flags &= ~HCI_PERSISTENT_MASK;
1272
1273 if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags) &&
1274 mgmt_valid_hdev(hdev)) {
1275 hci_dev_lock(hdev);
1276 mgmt_powered(hdev, 0);
1277 hci_dev_unlock(hdev);
1278 }
1279
1280 /* Controller radio is available but is currently powered down */
1281 hdev->amp_status = 0;
1282
1283 memset(hdev->eir, 0, sizeof(hdev->eir));
1284 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1285
1286 hci_req_unlock(hdev);
1287
1288 hci_dev_put(hdev);
1289 return 0;
1290 }
1291
1292 int hci_dev_close(__u16 dev)
1293 {
1294 struct hci_dev *hdev;
1295 int err;
1296
1297 hdev = hci_dev_get(dev);
1298 if (!hdev)
1299 return -ENODEV;
1300
1301 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1302 cancel_delayed_work(&hdev->power_off);
1303
1304 err = hci_dev_do_close(hdev);
1305
1306 hci_dev_put(hdev);
1307 return err;
1308 }
1309
1310 int hci_dev_reset(__u16 dev)
1311 {
1312 struct hci_dev *hdev;
1313 int ret = 0;
1314
1315 hdev = hci_dev_get(dev);
1316 if (!hdev)
1317 return -ENODEV;
1318
1319 hci_req_lock(hdev);
1320
1321 if (!test_bit(HCI_UP, &hdev->flags))
1322 goto done;
1323
1324 /* Drop queues */
1325 skb_queue_purge(&hdev->rx_q);
1326 skb_queue_purge(&hdev->cmd_q);
1327
1328 hci_dev_lock(hdev);
1329 inquiry_cache_flush(hdev);
1330 hci_conn_hash_flush(hdev);
1331 hci_dev_unlock(hdev);
1332
1333 if (hdev->flush)
1334 hdev->flush(hdev);
1335
1336 atomic_set(&hdev->cmd_cnt, 1);
1337 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1338
1339 if (!test_bit(HCI_RAW, &hdev->flags))
1340 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT);
1341
1342 done:
1343 hci_req_unlock(hdev);
1344 hci_dev_put(hdev);
1345 return ret;
1346 }
1347
1348 int hci_dev_reset_stat(__u16 dev)
1349 {
1350 struct hci_dev *hdev;
1351 int ret = 0;
1352
1353 hdev = hci_dev_get(dev);
1354 if (!hdev)
1355 return -ENODEV;
1356
1357 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1358
1359 hci_dev_put(hdev);
1360
1361 return ret;
1362 }
1363
1364 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1365 {
1366 struct hci_dev *hdev;
1367 struct hci_dev_req dr;
1368 int err = 0;
1369
1370 if (copy_from_user(&dr, arg, sizeof(dr)))
1371 return -EFAULT;
1372
1373 hdev = hci_dev_get(dr.dev_id);
1374 if (!hdev)
1375 return -ENODEV;
1376
1377 switch (cmd) {
1378 case HCISETAUTH:
1379 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1380 HCI_INIT_TIMEOUT);
1381 break;
1382
1383 case HCISETENCRYPT:
1384 if (!lmp_encrypt_capable(hdev)) {
1385 err = -EOPNOTSUPP;
1386 break;
1387 }
1388
1389 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1390 /* Auth must be enabled first */
1391 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1392 HCI_INIT_TIMEOUT);
1393 if (err)
1394 break;
1395 }
1396
1397 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1398 HCI_INIT_TIMEOUT);
1399 break;
1400
1401 case HCISETSCAN:
1402 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1403 HCI_INIT_TIMEOUT);
1404 break;
1405
1406 case HCISETLINKPOL:
1407 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1408 HCI_INIT_TIMEOUT);
1409 break;
1410
1411 case HCISETLINKMODE:
1412 hdev->link_mode = ((__u16) dr.dev_opt) &
1413 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1414 break;
1415
1416 case HCISETPTYPE:
1417 hdev->pkt_type = (__u16) dr.dev_opt;
1418 break;
1419
1420 case HCISETACLMTU:
1421 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1422 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1423 break;
1424
1425 case HCISETSCOMTU:
1426 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1427 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1428 break;
1429
1430 default:
1431 err = -EINVAL;
1432 break;
1433 }
1434
1435 hci_dev_put(hdev);
1436 return err;
1437 }
1438
1439 int hci_get_dev_list(void __user *arg)
1440 {
1441 struct hci_dev *hdev;
1442 struct hci_dev_list_req *dl;
1443 struct hci_dev_req *dr;
1444 int n = 0, size, err;
1445 __u16 dev_num;
1446
1447 if (get_user(dev_num, (__u16 __user *) arg))
1448 return -EFAULT;
1449
1450 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1451 return -EINVAL;
1452
1453 size = sizeof(*dl) + dev_num * sizeof(*dr);
1454
1455 dl = kzalloc(size, GFP_KERNEL);
1456 if (!dl)
1457 return -ENOMEM;
1458
1459 dr = dl->dev_req;
1460
1461 read_lock(&hci_dev_list_lock);
1462 list_for_each_entry(hdev, &hci_dev_list, list) {
1463 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1464 cancel_delayed_work(&hdev->power_off);
1465
1466 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1467 set_bit(HCI_PAIRABLE, &hdev->dev_flags);
1468
1469 (dr + n)->dev_id = hdev->id;
1470 (dr + n)->dev_opt = hdev->flags;
1471
1472 if (++n >= dev_num)
1473 break;
1474 }
1475 read_unlock(&hci_dev_list_lock);
1476
1477 dl->dev_num = n;
1478 size = sizeof(*dl) + n * sizeof(*dr);
1479
1480 err = copy_to_user(arg, dl, size);
1481 kfree(dl);
1482
1483 return err ? -EFAULT : 0;
1484 }
1485
1486 int hci_get_dev_info(void __user *arg)
1487 {
1488 struct hci_dev *hdev;
1489 struct hci_dev_info di;
1490 int err = 0;
1491
1492 if (copy_from_user(&di, arg, sizeof(di)))
1493 return -EFAULT;
1494
1495 hdev = hci_dev_get(di.dev_id);
1496 if (!hdev)
1497 return -ENODEV;
1498
1499 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1500 cancel_delayed_work_sync(&hdev->power_off);
1501
1502 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1503 set_bit(HCI_PAIRABLE, &hdev->dev_flags);
1504
1505 strcpy(di.name, hdev->name);
1506 di.bdaddr = hdev->bdaddr;
1507 di.type = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
1508 di.flags = hdev->flags;
1509 di.pkt_type = hdev->pkt_type;
1510 if (lmp_bredr_capable(hdev)) {
1511 di.acl_mtu = hdev->acl_mtu;
1512 di.acl_pkts = hdev->acl_pkts;
1513 di.sco_mtu = hdev->sco_mtu;
1514 di.sco_pkts = hdev->sco_pkts;
1515 } else {
1516 di.acl_mtu = hdev->le_mtu;
1517 di.acl_pkts = hdev->le_pkts;
1518 di.sco_mtu = 0;
1519 di.sco_pkts = 0;
1520 }
1521 di.link_policy = hdev->link_policy;
1522 di.link_mode = hdev->link_mode;
1523
1524 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1525 memcpy(&di.features, &hdev->features, sizeof(di.features));
1526
1527 if (copy_to_user(arg, &di, sizeof(di)))
1528 err = -EFAULT;
1529
1530 hci_dev_put(hdev);
1531
1532 return err;
1533 }
1534
1535 /* ---- Interface to HCI drivers ---- */
1536
1537 static int hci_rfkill_set_block(void *data, bool blocked)
1538 {
1539 struct hci_dev *hdev = data;
1540
1541 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1542
1543 if (!blocked)
1544 return 0;
1545
1546 hci_dev_do_close(hdev);
1547
1548 return 0;
1549 }
1550
1551 static const struct rfkill_ops hci_rfkill_ops = {
1552 .set_block = hci_rfkill_set_block,
1553 };
1554
1555 static void hci_power_on(struct work_struct *work)
1556 {
1557 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
1558
1559 BT_DBG("%s", hdev->name);
1560
1561 if (hci_dev_open(hdev->id) < 0)
1562 return;
1563
1564 if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1565 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1566 HCI_AUTO_OFF_TIMEOUT);
1567
1568 if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags))
1569 mgmt_index_added(hdev);
1570 }
1571
1572 static void hci_power_off(struct work_struct *work)
1573 {
1574 struct hci_dev *hdev = container_of(work, struct hci_dev,
1575 power_off.work);
1576
1577 BT_DBG("%s", hdev->name);
1578
1579 hci_dev_do_close(hdev);
1580 }
1581
1582 static void hci_discov_off(struct work_struct *work)
1583 {
1584 struct hci_dev *hdev;
1585 u8 scan = SCAN_PAGE;
1586
1587 hdev = container_of(work, struct hci_dev, discov_off.work);
1588
1589 BT_DBG("%s", hdev->name);
1590
1591 hci_dev_lock(hdev);
1592
1593 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, sizeof(scan), &scan);
1594
1595 hdev->discov_timeout = 0;
1596
1597 hci_dev_unlock(hdev);
1598 }
1599
1600 int hci_uuids_clear(struct hci_dev *hdev)
1601 {
1602 struct bt_uuid *uuid, *tmp;
1603
1604 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1605 list_del(&uuid->list);
1606 kfree(uuid);
1607 }
1608
1609 return 0;
1610 }
1611
1612 int hci_link_keys_clear(struct hci_dev *hdev)
1613 {
1614 struct list_head *p, *n;
1615
1616 list_for_each_safe(p, n, &hdev->link_keys) {
1617 struct link_key *key;
1618
1619 key = list_entry(p, struct link_key, list);
1620
1621 list_del(p);
1622 kfree(key);
1623 }
1624
1625 return 0;
1626 }
1627
1628 int hci_smp_ltks_clear(struct hci_dev *hdev)
1629 {
1630 struct smp_ltk *k, *tmp;
1631
1632 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1633 list_del(&k->list);
1634 kfree(k);
1635 }
1636
1637 return 0;
1638 }
1639
1640 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1641 {
1642 struct link_key *k;
1643
1644 list_for_each_entry(k, &hdev->link_keys, list)
1645 if (bacmp(bdaddr, &k->bdaddr) == 0)
1646 return k;
1647
1648 return NULL;
1649 }
1650
1651 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1652 u8 key_type, u8 old_key_type)
1653 {
1654 /* Legacy key */
1655 if (key_type < 0x03)
1656 return true;
1657
1658 /* Debug keys are insecure so don't store them persistently */
1659 if (key_type == HCI_LK_DEBUG_COMBINATION)
1660 return false;
1661
1662 /* Changed combination key and there's no previous one */
1663 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1664 return false;
1665
1666 /* Security mode 3 case */
1667 if (!conn)
1668 return true;
1669
1670 /* Neither local nor remote side had no-bonding as requirement */
1671 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1672 return true;
1673
1674 /* Local side had dedicated bonding as requirement */
1675 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1676 return true;
1677
1678 /* Remote side had dedicated bonding as requirement */
1679 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1680 return true;
1681
1682 /* If none of the above criteria match, then don't store the key
1683 * persistently */
1684 return false;
1685 }
1686
1687 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1688 {
1689 struct smp_ltk *k;
1690
1691 list_for_each_entry(k, &hdev->long_term_keys, list) {
1692 if (k->ediv != ediv ||
1693 memcmp(rand, k->rand, sizeof(k->rand)))
1694 continue;
1695
1696 return k;
1697 }
1698
1699 return NULL;
1700 }
1701
1702 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1703 u8 addr_type)
1704 {
1705 struct smp_ltk *k;
1706
1707 list_for_each_entry(k, &hdev->long_term_keys, list)
1708 if (addr_type == k->bdaddr_type &&
1709 bacmp(bdaddr, &k->bdaddr) == 0)
1710 return k;
1711
1712 return NULL;
1713 }
1714
1715 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1716 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1717 {
1718 struct link_key *key, *old_key;
1719 u8 old_key_type;
1720 bool persistent;
1721
1722 old_key = hci_find_link_key(hdev, bdaddr);
1723 if (old_key) {
1724 old_key_type = old_key->type;
1725 key = old_key;
1726 } else {
1727 old_key_type = conn ? conn->key_type : 0xff;
1728 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1729 if (!key)
1730 return -ENOMEM;
1731 list_add(&key->list, &hdev->link_keys);
1732 }
1733
1734 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1735
1736 /* Some buggy controller combinations generate a changed
1737 * combination key for legacy pairing even when there's no
1738 * previous key */
1739 if (type == HCI_LK_CHANGED_COMBINATION &&
1740 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1741 type = HCI_LK_COMBINATION;
1742 if (conn)
1743 conn->key_type = type;
1744 }
1745
1746 bacpy(&key->bdaddr, bdaddr);
1747 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1748 key->pin_len = pin_len;
1749
1750 if (type == HCI_LK_CHANGED_COMBINATION)
1751 key->type = old_key_type;
1752 else
1753 key->type = type;
1754
1755 if (!new_key)
1756 return 0;
1757
1758 persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1759
1760 mgmt_new_link_key(hdev, key, persistent);
1761
1762 if (conn)
1763 conn->flush_key = !persistent;
1764
1765 return 0;
1766 }
1767
1768 int hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type,
1769 int new_key, u8 authenticated, u8 tk[16], u8 enc_size, __le16
1770 ediv, u8 rand[8])
1771 {
1772 struct smp_ltk *key, *old_key;
1773
1774 if (!(type & HCI_SMP_STK) && !(type & HCI_SMP_LTK))
1775 return 0;
1776
1777 old_key = hci_find_ltk_by_addr(hdev, bdaddr, addr_type);
1778 if (old_key)
1779 key = old_key;
1780 else {
1781 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1782 if (!key)
1783 return -ENOMEM;
1784 list_add(&key->list, &hdev->long_term_keys);
1785 }
1786
1787 bacpy(&key->bdaddr, bdaddr);
1788 key->bdaddr_type = addr_type;
1789 memcpy(key->val, tk, sizeof(key->val));
1790 key->authenticated = authenticated;
1791 key->ediv = ediv;
1792 key->enc_size = enc_size;
1793 key->type = type;
1794 memcpy(key->rand, rand, sizeof(key->rand));
1795
1796 if (!new_key)
1797 return 0;
1798
1799 if (type & HCI_SMP_LTK)
1800 mgmt_new_ltk(hdev, key, 1);
1801
1802 return 0;
1803 }
1804
1805 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1806 {
1807 struct link_key *key;
1808
1809 key = hci_find_link_key(hdev, bdaddr);
1810 if (!key)
1811 return -ENOENT;
1812
1813 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1814
1815 list_del(&key->list);
1816 kfree(key);
1817
1818 return 0;
1819 }
1820
1821 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr)
1822 {
1823 struct smp_ltk *k, *tmp;
1824
1825 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1826 if (bacmp(bdaddr, &k->bdaddr))
1827 continue;
1828
1829 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1830
1831 list_del(&k->list);
1832 kfree(k);
1833 }
1834
1835 return 0;
1836 }
1837
1838 /* HCI command timer function */
1839 static void hci_cmd_timeout(unsigned long arg)
1840 {
1841 struct hci_dev *hdev = (void *) arg;
1842
1843 if (hdev->sent_cmd) {
1844 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1845 u16 opcode = __le16_to_cpu(sent->opcode);
1846
1847 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
1848 } else {
1849 BT_ERR("%s command tx timeout", hdev->name);
1850 }
1851
1852 atomic_set(&hdev->cmd_cnt, 1);
1853 queue_work(hdev->workqueue, &hdev->cmd_work);
1854 }
1855
1856 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1857 bdaddr_t *bdaddr)
1858 {
1859 struct oob_data *data;
1860
1861 list_for_each_entry(data, &hdev->remote_oob_data, list)
1862 if (bacmp(bdaddr, &data->bdaddr) == 0)
1863 return data;
1864
1865 return NULL;
1866 }
1867
1868 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1869 {
1870 struct oob_data *data;
1871
1872 data = hci_find_remote_oob_data(hdev, bdaddr);
1873 if (!data)
1874 return -ENOENT;
1875
1876 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1877
1878 list_del(&data->list);
1879 kfree(data);
1880
1881 return 0;
1882 }
1883
1884 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1885 {
1886 struct oob_data *data, *n;
1887
1888 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1889 list_del(&data->list);
1890 kfree(data);
1891 }
1892
1893 return 0;
1894 }
1895
1896 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1897 u8 *randomizer)
1898 {
1899 struct oob_data *data;
1900
1901 data = hci_find_remote_oob_data(hdev, bdaddr);
1902
1903 if (!data) {
1904 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1905 if (!data)
1906 return -ENOMEM;
1907
1908 bacpy(&data->bdaddr, bdaddr);
1909 list_add(&data->list, &hdev->remote_oob_data);
1910 }
1911
1912 memcpy(data->hash, hash, sizeof(data->hash));
1913 memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1914
1915 BT_DBG("%s for %pMR", hdev->name, bdaddr);
1916
1917 return 0;
1918 }
1919
1920 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
1921 {
1922 struct bdaddr_list *b;
1923
1924 list_for_each_entry(b, &hdev->blacklist, list)
1925 if (bacmp(bdaddr, &b->bdaddr) == 0)
1926 return b;
1927
1928 return NULL;
1929 }
1930
1931 int hci_blacklist_clear(struct hci_dev *hdev)
1932 {
1933 struct list_head *p, *n;
1934
1935 list_for_each_safe(p, n, &hdev->blacklist) {
1936 struct bdaddr_list *b;
1937
1938 b = list_entry(p, struct bdaddr_list, list);
1939
1940 list_del(p);
1941 kfree(b);
1942 }
1943
1944 return 0;
1945 }
1946
1947 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1948 {
1949 struct bdaddr_list *entry;
1950
1951 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1952 return -EBADF;
1953
1954 if (hci_blacklist_lookup(hdev, bdaddr))
1955 return -EEXIST;
1956
1957 entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1958 if (!entry)
1959 return -ENOMEM;
1960
1961 bacpy(&entry->bdaddr, bdaddr);
1962
1963 list_add(&entry->list, &hdev->blacklist);
1964
1965 return mgmt_device_blocked(hdev, bdaddr, type);
1966 }
1967
1968 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1969 {
1970 struct bdaddr_list *entry;
1971
1972 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1973 return hci_blacklist_clear(hdev);
1974
1975 entry = hci_blacklist_lookup(hdev, bdaddr);
1976 if (!entry)
1977 return -ENOENT;
1978
1979 list_del(&entry->list);
1980 kfree(entry);
1981
1982 return mgmt_device_unblocked(hdev, bdaddr, type);
1983 }
1984
1985 static void le_scan_param_req(struct hci_request *req, unsigned long opt)
1986 {
1987 struct le_scan_params *param = (struct le_scan_params *) opt;
1988 struct hci_cp_le_set_scan_param cp;
1989
1990 memset(&cp, 0, sizeof(cp));
1991 cp.type = param->type;
1992 cp.interval = cpu_to_le16(param->interval);
1993 cp.window = cpu_to_le16(param->window);
1994
1995 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(cp), &cp);
1996 }
1997
1998 static void le_scan_enable_req(struct hci_request *req, unsigned long opt)
1999 {
2000 struct hci_cp_le_set_scan_enable cp;
2001
2002 memset(&cp, 0, sizeof(cp));
2003 cp.enable = LE_SCAN_ENABLE;
2004 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2005
2006 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2007 }
2008
2009 static int hci_do_le_scan(struct hci_dev *hdev, u8 type, u16 interval,
2010 u16 window, int timeout)
2011 {
2012 long timeo = msecs_to_jiffies(3000);
2013 struct le_scan_params param;
2014 int err;
2015
2016 BT_DBG("%s", hdev->name);
2017
2018 if (test_bit(HCI_LE_SCAN, &hdev->dev_flags))
2019 return -EINPROGRESS;
2020
2021 param.type = type;
2022 param.interval = interval;
2023 param.window = window;
2024
2025 hci_req_lock(hdev);
2026
2027 err = __hci_req_sync(hdev, le_scan_param_req, (unsigned long) &param,
2028 timeo);
2029 if (!err)
2030 err = __hci_req_sync(hdev, le_scan_enable_req, 0, timeo);
2031
2032 hci_req_unlock(hdev);
2033
2034 if (err < 0)
2035 return err;
2036
2037 queue_delayed_work(hdev->workqueue, &hdev->le_scan_disable,
2038 timeout);
2039
2040 return 0;
2041 }
2042
2043 int hci_cancel_le_scan(struct hci_dev *hdev)
2044 {
2045 BT_DBG("%s", hdev->name);
2046
2047 if (!test_bit(HCI_LE_SCAN, &hdev->dev_flags))
2048 return -EALREADY;
2049
2050 if (cancel_delayed_work(&hdev->le_scan_disable)) {
2051 struct hci_cp_le_set_scan_enable cp;
2052
2053 /* Send HCI command to disable LE Scan */
2054 memset(&cp, 0, sizeof(cp));
2055 hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2056 }
2057
2058 return 0;
2059 }
2060
2061 static void le_scan_disable_work(struct work_struct *work)
2062 {
2063 struct hci_dev *hdev = container_of(work, struct hci_dev,
2064 le_scan_disable.work);
2065 struct hci_cp_le_set_scan_enable cp;
2066
2067 BT_DBG("%s", hdev->name);
2068
2069 memset(&cp, 0, sizeof(cp));
2070
2071 hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2072 }
2073
2074 static void le_scan_work(struct work_struct *work)
2075 {
2076 struct hci_dev *hdev = container_of(work, struct hci_dev, le_scan);
2077 struct le_scan_params *param = &hdev->le_scan_params;
2078
2079 BT_DBG("%s", hdev->name);
2080
2081 hci_do_le_scan(hdev, param->type, param->interval, param->window,
2082 param->timeout);
2083 }
2084
2085 int hci_le_scan(struct hci_dev *hdev, u8 type, u16 interval, u16 window,
2086 int timeout)
2087 {
2088 struct le_scan_params *param = &hdev->le_scan_params;
2089
2090 BT_DBG("%s", hdev->name);
2091
2092 if (test_bit(HCI_LE_PERIPHERAL, &hdev->dev_flags))
2093 return -ENOTSUPP;
2094
2095 if (work_busy(&hdev->le_scan))
2096 return -EINPROGRESS;
2097
2098 param->type = type;
2099 param->interval = interval;
2100 param->window = window;
2101 param->timeout = timeout;
2102
2103 queue_work(system_long_wq, &hdev->le_scan);
2104
2105 return 0;
2106 }
2107
2108 /* Alloc HCI device */
2109 struct hci_dev *hci_alloc_dev(void)
2110 {
2111 struct hci_dev *hdev;
2112
2113 hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
2114 if (!hdev)
2115 return NULL;
2116
2117 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2118 hdev->esco_type = (ESCO_HV1);
2119 hdev->link_mode = (HCI_LM_ACCEPT);
2120 hdev->io_capability = 0x03; /* No Input No Output */
2121 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2122 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2123
2124 hdev->sniff_max_interval = 800;
2125 hdev->sniff_min_interval = 80;
2126
2127 mutex_init(&hdev->lock);
2128 mutex_init(&hdev->req_lock);
2129
2130 INIT_LIST_HEAD(&hdev->mgmt_pending);
2131 INIT_LIST_HEAD(&hdev->blacklist);
2132 INIT_LIST_HEAD(&hdev->uuids);
2133 INIT_LIST_HEAD(&hdev->link_keys);
2134 INIT_LIST_HEAD(&hdev->long_term_keys);
2135 INIT_LIST_HEAD(&hdev->remote_oob_data);
2136 INIT_LIST_HEAD(&hdev->conn_hash.list);
2137
2138 INIT_WORK(&hdev->rx_work, hci_rx_work);
2139 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2140 INIT_WORK(&hdev->tx_work, hci_tx_work);
2141 INIT_WORK(&hdev->power_on, hci_power_on);
2142 INIT_WORK(&hdev->le_scan, le_scan_work);
2143
2144 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2145 INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
2146 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2147
2148 skb_queue_head_init(&hdev->rx_q);
2149 skb_queue_head_init(&hdev->cmd_q);
2150 skb_queue_head_init(&hdev->raw_q);
2151
2152 init_waitqueue_head(&hdev->req_wait_q);
2153
2154 setup_timer(&hdev->cmd_timer, hci_cmd_timeout, (unsigned long) hdev);
2155
2156 hci_init_sysfs(hdev);
2157 discovery_init(hdev);
2158
2159 return hdev;
2160 }
2161 EXPORT_SYMBOL(hci_alloc_dev);
2162
2163 /* Free HCI device */
2164 void hci_free_dev(struct hci_dev *hdev)
2165 {
2166 /* will free via device release */
2167 put_device(&hdev->dev);
2168 }
2169 EXPORT_SYMBOL(hci_free_dev);
2170
2171 /* Register HCI device */
2172 int hci_register_dev(struct hci_dev *hdev)
2173 {
2174 int id, error;
2175
2176 if (!hdev->open || !hdev->close)
2177 return -EINVAL;
2178
2179 /* Do not allow HCI_AMP devices to register at index 0,
2180 * so the index can be used as the AMP controller ID.
2181 */
2182 switch (hdev->dev_type) {
2183 case HCI_BREDR:
2184 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
2185 break;
2186 case HCI_AMP:
2187 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
2188 break;
2189 default:
2190 return -EINVAL;
2191 }
2192
2193 if (id < 0)
2194 return id;
2195
2196 sprintf(hdev->name, "hci%d", id);
2197 hdev->id = id;
2198
2199 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2200
2201 write_lock(&hci_dev_list_lock);
2202 list_add(&hdev->list, &hci_dev_list);
2203 write_unlock(&hci_dev_list_lock);
2204
2205 hdev->workqueue = alloc_workqueue(hdev->name, WQ_HIGHPRI | WQ_UNBOUND |
2206 WQ_MEM_RECLAIM, 1);
2207 if (!hdev->workqueue) {
2208 error = -ENOMEM;
2209 goto err;
2210 }
2211
2212 hdev->req_workqueue = alloc_workqueue(hdev->name,
2213 WQ_HIGHPRI | WQ_UNBOUND |
2214 WQ_MEM_RECLAIM, 1);
2215 if (!hdev->req_workqueue) {
2216 destroy_workqueue(hdev->workqueue);
2217 error = -ENOMEM;
2218 goto err;
2219 }
2220
2221 error = hci_add_sysfs(hdev);
2222 if (error < 0)
2223 goto err_wqueue;
2224
2225 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2226 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2227 hdev);
2228 if (hdev->rfkill) {
2229 if (rfkill_register(hdev->rfkill) < 0) {
2230 rfkill_destroy(hdev->rfkill);
2231 hdev->rfkill = NULL;
2232 }
2233 }
2234
2235 set_bit(HCI_SETUP, &hdev->dev_flags);
2236
2237 if (hdev->dev_type != HCI_AMP)
2238 set_bit(HCI_AUTO_OFF, &hdev->dev_flags);
2239
2240 hci_notify(hdev, HCI_DEV_REG);
2241 hci_dev_hold(hdev);
2242
2243 queue_work(hdev->req_workqueue, &hdev->power_on);
2244
2245 return id;
2246
2247 err_wqueue:
2248 destroy_workqueue(hdev->workqueue);
2249 destroy_workqueue(hdev->req_workqueue);
2250 err:
2251 ida_simple_remove(&hci_index_ida, hdev->id);
2252 write_lock(&hci_dev_list_lock);
2253 list_del(&hdev->list);
2254 write_unlock(&hci_dev_list_lock);
2255
2256 return error;
2257 }
2258 EXPORT_SYMBOL(hci_register_dev);
2259
2260 /* Unregister HCI device */
2261 void hci_unregister_dev(struct hci_dev *hdev)
2262 {
2263 int i, id;
2264
2265 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2266
2267 set_bit(HCI_UNREGISTER, &hdev->dev_flags);
2268
2269 id = hdev->id;
2270
2271 write_lock(&hci_dev_list_lock);
2272 list_del(&hdev->list);
2273 write_unlock(&hci_dev_list_lock);
2274
2275 hci_dev_do_close(hdev);
2276
2277 for (i = 0; i < NUM_REASSEMBLY; i++)
2278 kfree_skb(hdev->reassembly[i]);
2279
2280 cancel_work_sync(&hdev->power_on);
2281
2282 if (!test_bit(HCI_INIT, &hdev->flags) &&
2283 !test_bit(HCI_SETUP, &hdev->dev_flags)) {
2284 hci_dev_lock(hdev);
2285 mgmt_index_removed(hdev);
2286 hci_dev_unlock(hdev);
2287 }
2288
2289 /* mgmt_index_removed should take care of emptying the
2290 * pending list */
2291 BUG_ON(!list_empty(&hdev->mgmt_pending));
2292
2293 hci_notify(hdev, HCI_DEV_UNREG);
2294
2295 if (hdev->rfkill) {
2296 rfkill_unregister(hdev->rfkill);
2297 rfkill_destroy(hdev->rfkill);
2298 }
2299
2300 hci_del_sysfs(hdev);
2301
2302 destroy_workqueue(hdev->workqueue);
2303 destroy_workqueue(hdev->req_workqueue);
2304
2305 hci_dev_lock(hdev);
2306 hci_blacklist_clear(hdev);
2307 hci_uuids_clear(hdev);
2308 hci_link_keys_clear(hdev);
2309 hci_smp_ltks_clear(hdev);
2310 hci_remote_oob_data_clear(hdev);
2311 hci_dev_unlock(hdev);
2312
2313 hci_dev_put(hdev);
2314
2315 ida_simple_remove(&hci_index_ida, id);
2316 }
2317 EXPORT_SYMBOL(hci_unregister_dev);
2318
2319 /* Suspend HCI device */
2320 int hci_suspend_dev(struct hci_dev *hdev)
2321 {
2322 hci_notify(hdev, HCI_DEV_SUSPEND);
2323 return 0;
2324 }
2325 EXPORT_SYMBOL(hci_suspend_dev);
2326
2327 /* Resume HCI device */
2328 int hci_resume_dev(struct hci_dev *hdev)
2329 {
2330 hci_notify(hdev, HCI_DEV_RESUME);
2331 return 0;
2332 }
2333 EXPORT_SYMBOL(hci_resume_dev);
2334
2335 /* Receive frame from HCI drivers */
2336 int hci_recv_frame(struct sk_buff *skb)
2337 {
2338 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
2339 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2340 && !test_bit(HCI_INIT, &hdev->flags))) {
2341 kfree_skb(skb);
2342 return -ENXIO;
2343 }
2344
2345 /* Incoming skb */
2346 bt_cb(skb)->incoming = 1;
2347
2348 /* Time stamp */
2349 __net_timestamp(skb);
2350
2351 skb_queue_tail(&hdev->rx_q, skb);
2352 queue_work(hdev->workqueue, &hdev->rx_work);
2353
2354 return 0;
2355 }
2356 EXPORT_SYMBOL(hci_recv_frame);
2357
2358 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
2359 int count, __u8 index)
2360 {
2361 int len = 0;
2362 int hlen = 0;
2363 int remain = count;
2364 struct sk_buff *skb;
2365 struct bt_skb_cb *scb;
2366
2367 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
2368 index >= NUM_REASSEMBLY)
2369 return -EILSEQ;
2370
2371 skb = hdev->reassembly[index];
2372
2373 if (!skb) {
2374 switch (type) {
2375 case HCI_ACLDATA_PKT:
2376 len = HCI_MAX_FRAME_SIZE;
2377 hlen = HCI_ACL_HDR_SIZE;
2378 break;
2379 case HCI_EVENT_PKT:
2380 len = HCI_MAX_EVENT_SIZE;
2381 hlen = HCI_EVENT_HDR_SIZE;
2382 break;
2383 case HCI_SCODATA_PKT:
2384 len = HCI_MAX_SCO_SIZE;
2385 hlen = HCI_SCO_HDR_SIZE;
2386 break;
2387 }
2388
2389 skb = bt_skb_alloc(len, GFP_ATOMIC);
2390 if (!skb)
2391 return -ENOMEM;
2392
2393 scb = (void *) skb->cb;
2394 scb->expect = hlen;
2395 scb->pkt_type = type;
2396
2397 skb->dev = (void *) hdev;
2398 hdev->reassembly[index] = skb;
2399 }
2400
2401 while (count) {
2402 scb = (void *) skb->cb;
2403 len = min_t(uint, scb->expect, count);
2404
2405 memcpy(skb_put(skb, len), data, len);
2406
2407 count -= len;
2408 data += len;
2409 scb->expect -= len;
2410 remain = count;
2411
2412 switch (type) {
2413 case HCI_EVENT_PKT:
2414 if (skb->len == HCI_EVENT_HDR_SIZE) {
2415 struct hci_event_hdr *h = hci_event_hdr(skb);
2416 scb->expect = h->plen;
2417
2418 if (skb_tailroom(skb) < scb->expect) {
2419 kfree_skb(skb);
2420 hdev->reassembly[index] = NULL;
2421 return -ENOMEM;
2422 }
2423 }
2424 break;
2425
2426 case HCI_ACLDATA_PKT:
2427 if (skb->len == HCI_ACL_HDR_SIZE) {
2428 struct hci_acl_hdr *h = hci_acl_hdr(skb);
2429 scb->expect = __le16_to_cpu(h->dlen);
2430
2431 if (skb_tailroom(skb) < scb->expect) {
2432 kfree_skb(skb);
2433 hdev->reassembly[index] = NULL;
2434 return -ENOMEM;
2435 }
2436 }
2437 break;
2438
2439 case HCI_SCODATA_PKT:
2440 if (skb->len == HCI_SCO_HDR_SIZE) {
2441 struct hci_sco_hdr *h = hci_sco_hdr(skb);
2442 scb->expect = h->dlen;
2443
2444 if (skb_tailroom(skb) < scb->expect) {
2445 kfree_skb(skb);
2446 hdev->reassembly[index] = NULL;
2447 return -ENOMEM;
2448 }
2449 }
2450 break;
2451 }
2452
2453 if (scb->expect == 0) {
2454 /* Complete frame */
2455
2456 bt_cb(skb)->pkt_type = type;
2457 hci_recv_frame(skb);
2458
2459 hdev->reassembly[index] = NULL;
2460 return remain;
2461 }
2462 }
2463
2464 return remain;
2465 }
2466
2467 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
2468 {
2469 int rem = 0;
2470
2471 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
2472 return -EILSEQ;
2473
2474 while (count) {
2475 rem = hci_reassembly(hdev, type, data, count, type - 1);
2476 if (rem < 0)
2477 return rem;
2478
2479 data += (count - rem);
2480 count = rem;
2481 }
2482
2483 return rem;
2484 }
2485 EXPORT_SYMBOL(hci_recv_fragment);
2486
2487 #define STREAM_REASSEMBLY 0
2488
2489 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
2490 {
2491 int type;
2492 int rem = 0;
2493
2494 while (count) {
2495 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
2496
2497 if (!skb) {
2498 struct { char type; } *pkt;
2499
2500 /* Start of the frame */
2501 pkt = data;
2502 type = pkt->type;
2503
2504 data++;
2505 count--;
2506 } else
2507 type = bt_cb(skb)->pkt_type;
2508
2509 rem = hci_reassembly(hdev, type, data, count,
2510 STREAM_REASSEMBLY);
2511 if (rem < 0)
2512 return rem;
2513
2514 data += (count - rem);
2515 count = rem;
2516 }
2517
2518 return rem;
2519 }
2520 EXPORT_SYMBOL(hci_recv_stream_fragment);
2521
2522 /* ---- Interface to upper protocols ---- */
2523
2524 int hci_register_cb(struct hci_cb *cb)
2525 {
2526 BT_DBG("%p name %s", cb, cb->name);
2527
2528 write_lock(&hci_cb_list_lock);
2529 list_add(&cb->list, &hci_cb_list);
2530 write_unlock(&hci_cb_list_lock);
2531
2532 return 0;
2533 }
2534 EXPORT_SYMBOL(hci_register_cb);
2535
2536 int hci_unregister_cb(struct hci_cb *cb)
2537 {
2538 BT_DBG("%p name %s", cb, cb->name);
2539
2540 write_lock(&hci_cb_list_lock);
2541 list_del(&cb->list);
2542 write_unlock(&hci_cb_list_lock);
2543
2544 return 0;
2545 }
2546 EXPORT_SYMBOL(hci_unregister_cb);
2547
2548 static int hci_send_frame(struct sk_buff *skb)
2549 {
2550 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
2551
2552 if (!hdev) {
2553 kfree_skb(skb);
2554 return -ENODEV;
2555 }
2556
2557 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
2558
2559 /* Time stamp */
2560 __net_timestamp(skb);
2561
2562 /* Send copy to monitor */
2563 hci_send_to_monitor(hdev, skb);
2564
2565 if (atomic_read(&hdev->promisc)) {
2566 /* Send copy to the sockets */
2567 hci_send_to_sock(hdev, skb);
2568 }
2569
2570 /* Get rid of skb owner, prior to sending to the driver. */
2571 skb_orphan(skb);
2572
2573 return hdev->send(skb);
2574 }
2575
2576 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
2577 {
2578 skb_queue_head_init(&req->cmd_q);
2579 req->hdev = hdev;
2580 req->err = 0;
2581 }
2582
2583 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
2584 {
2585 struct hci_dev *hdev = req->hdev;
2586 struct sk_buff *skb;
2587 unsigned long flags;
2588
2589 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
2590
2591 /* If an error occured during request building, remove all HCI
2592 * commands queued on the HCI request queue.
2593 */
2594 if (req->err) {
2595 skb_queue_purge(&req->cmd_q);
2596 return req->err;
2597 }
2598
2599 /* Do not allow empty requests */
2600 if (skb_queue_empty(&req->cmd_q))
2601 return -ENODATA;
2602
2603 skb = skb_peek_tail(&req->cmd_q);
2604 bt_cb(skb)->req.complete = complete;
2605
2606 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
2607 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
2608 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
2609
2610 queue_work(hdev->workqueue, &hdev->cmd_work);
2611
2612 return 0;
2613 }
2614
2615 static struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode,
2616 u32 plen, const void *param)
2617 {
2618 int len = HCI_COMMAND_HDR_SIZE + plen;
2619 struct hci_command_hdr *hdr;
2620 struct sk_buff *skb;
2621
2622 skb = bt_skb_alloc(len, GFP_ATOMIC);
2623 if (!skb)
2624 return NULL;
2625
2626 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
2627 hdr->opcode = cpu_to_le16(opcode);
2628 hdr->plen = plen;
2629
2630 if (plen)
2631 memcpy(skb_put(skb, plen), param, plen);
2632
2633 BT_DBG("skb len %d", skb->len);
2634
2635 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
2636 skb->dev = (void *) hdev;
2637
2638 return skb;
2639 }
2640
2641 /* Send HCI command */
2642 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
2643 const void *param)
2644 {
2645 struct sk_buff *skb;
2646
2647 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
2648
2649 skb = hci_prepare_cmd(hdev, opcode, plen, param);
2650 if (!skb) {
2651 BT_ERR("%s no memory for command", hdev->name);
2652 return -ENOMEM;
2653 }
2654
2655 /* Stand-alone HCI commands must be flaged as
2656 * single-command requests.
2657 */
2658 bt_cb(skb)->req.start = true;
2659
2660 skb_queue_tail(&hdev->cmd_q, skb);
2661 queue_work(hdev->workqueue, &hdev->cmd_work);
2662
2663 return 0;
2664 }
2665
2666 /* Queue a command to an asynchronous HCI request */
2667 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
2668 const void *param, u8 event)
2669 {
2670 struct hci_dev *hdev = req->hdev;
2671 struct sk_buff *skb;
2672
2673 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
2674
2675 /* If an error occured during request building, there is no point in
2676 * queueing the HCI command. We can simply return.
2677 */
2678 if (req->err)
2679 return;
2680
2681 skb = hci_prepare_cmd(hdev, opcode, plen, param);
2682 if (!skb) {
2683 BT_ERR("%s no memory for command (opcode 0x%4.4x)",
2684 hdev->name, opcode);
2685 req->err = -ENOMEM;
2686 return;
2687 }
2688
2689 if (skb_queue_empty(&req->cmd_q))
2690 bt_cb(skb)->req.start = true;
2691
2692 bt_cb(skb)->req.event = event;
2693
2694 skb_queue_tail(&req->cmd_q, skb);
2695 }
2696
2697 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
2698 const void *param)
2699 {
2700 hci_req_add_ev(req, opcode, plen, param, 0);
2701 }
2702
2703 /* Get data from the previously sent command */
2704 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
2705 {
2706 struct hci_command_hdr *hdr;
2707
2708 if (!hdev->sent_cmd)
2709 return NULL;
2710
2711 hdr = (void *) hdev->sent_cmd->data;
2712
2713 if (hdr->opcode != cpu_to_le16(opcode))
2714 return NULL;
2715
2716 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
2717
2718 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
2719 }
2720
2721 /* Send ACL data */
2722 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
2723 {
2724 struct hci_acl_hdr *hdr;
2725 int len = skb->len;
2726
2727 skb_push(skb, HCI_ACL_HDR_SIZE);
2728 skb_reset_transport_header(skb);
2729 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
2730 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
2731 hdr->dlen = cpu_to_le16(len);
2732 }
2733
2734 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
2735 struct sk_buff *skb, __u16 flags)
2736 {
2737 struct hci_conn *conn = chan->conn;
2738 struct hci_dev *hdev = conn->hdev;
2739 struct sk_buff *list;
2740
2741 skb->len = skb_headlen(skb);
2742 skb->data_len = 0;
2743
2744 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2745
2746 switch (hdev->dev_type) {
2747 case HCI_BREDR:
2748 hci_add_acl_hdr(skb, conn->handle, flags);
2749 break;
2750 case HCI_AMP:
2751 hci_add_acl_hdr(skb, chan->handle, flags);
2752 break;
2753 default:
2754 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
2755 return;
2756 }
2757
2758 list = skb_shinfo(skb)->frag_list;
2759 if (!list) {
2760 /* Non fragmented */
2761 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
2762
2763 skb_queue_tail(queue, skb);
2764 } else {
2765 /* Fragmented */
2766 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2767
2768 skb_shinfo(skb)->frag_list = NULL;
2769
2770 /* Queue all fragments atomically */
2771 spin_lock(&queue->lock);
2772
2773 __skb_queue_tail(queue, skb);
2774
2775 flags &= ~ACL_START;
2776 flags |= ACL_CONT;
2777 do {
2778 skb = list; list = list->next;
2779
2780 skb->dev = (void *) hdev;
2781 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2782 hci_add_acl_hdr(skb, conn->handle, flags);
2783
2784 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2785
2786 __skb_queue_tail(queue, skb);
2787 } while (list);
2788
2789 spin_unlock(&queue->lock);
2790 }
2791 }
2792
2793 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
2794 {
2795 struct hci_dev *hdev = chan->conn->hdev;
2796
2797 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
2798
2799 skb->dev = (void *) hdev;
2800
2801 hci_queue_acl(chan, &chan->data_q, skb, flags);
2802
2803 queue_work(hdev->workqueue, &hdev->tx_work);
2804 }
2805
2806 /* Send SCO data */
2807 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2808 {
2809 struct hci_dev *hdev = conn->hdev;
2810 struct hci_sco_hdr hdr;
2811
2812 BT_DBG("%s len %d", hdev->name, skb->len);
2813
2814 hdr.handle = cpu_to_le16(conn->handle);
2815 hdr.dlen = skb->len;
2816
2817 skb_push(skb, HCI_SCO_HDR_SIZE);
2818 skb_reset_transport_header(skb);
2819 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2820
2821 skb->dev = (void *) hdev;
2822 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2823
2824 skb_queue_tail(&conn->data_q, skb);
2825 queue_work(hdev->workqueue, &hdev->tx_work);
2826 }
2827
2828 /* ---- HCI TX task (outgoing data) ---- */
2829
2830 /* HCI Connection scheduler */
2831 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
2832 int *quote)
2833 {
2834 struct hci_conn_hash *h = &hdev->conn_hash;
2835 struct hci_conn *conn = NULL, *c;
2836 unsigned int num = 0, min = ~0;
2837
2838 /* We don't have to lock device here. Connections are always
2839 * added and removed with TX task disabled. */
2840
2841 rcu_read_lock();
2842
2843 list_for_each_entry_rcu(c, &h->list, list) {
2844 if (c->type != type || skb_queue_empty(&c->data_q))
2845 continue;
2846
2847 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2848 continue;
2849
2850 num++;
2851
2852 if (c->sent < min) {
2853 min = c->sent;
2854 conn = c;
2855 }
2856
2857 if (hci_conn_num(hdev, type) == num)
2858 break;
2859 }
2860
2861 rcu_read_unlock();
2862
2863 if (conn) {
2864 int cnt, q;
2865
2866 switch (conn->type) {
2867 case ACL_LINK:
2868 cnt = hdev->acl_cnt;
2869 break;
2870 case SCO_LINK:
2871 case ESCO_LINK:
2872 cnt = hdev->sco_cnt;
2873 break;
2874 case LE_LINK:
2875 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2876 break;
2877 default:
2878 cnt = 0;
2879 BT_ERR("Unknown link type");
2880 }
2881
2882 q = cnt / num;
2883 *quote = q ? q : 1;
2884 } else
2885 *quote = 0;
2886
2887 BT_DBG("conn %p quote %d", conn, *quote);
2888 return conn;
2889 }
2890
2891 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2892 {
2893 struct hci_conn_hash *h = &hdev->conn_hash;
2894 struct hci_conn *c;
2895
2896 BT_ERR("%s link tx timeout", hdev->name);
2897
2898 rcu_read_lock();
2899
2900 /* Kill stalled connections */
2901 list_for_each_entry_rcu(c, &h->list, list) {
2902 if (c->type == type && c->sent) {
2903 BT_ERR("%s killing stalled connection %pMR",
2904 hdev->name, &c->dst);
2905 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
2906 }
2907 }
2908
2909 rcu_read_unlock();
2910 }
2911
2912 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
2913 int *quote)
2914 {
2915 struct hci_conn_hash *h = &hdev->conn_hash;
2916 struct hci_chan *chan = NULL;
2917 unsigned int num = 0, min = ~0, cur_prio = 0;
2918 struct hci_conn *conn;
2919 int cnt, q, conn_num = 0;
2920
2921 BT_DBG("%s", hdev->name);
2922
2923 rcu_read_lock();
2924
2925 list_for_each_entry_rcu(conn, &h->list, list) {
2926 struct hci_chan *tmp;
2927
2928 if (conn->type != type)
2929 continue;
2930
2931 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2932 continue;
2933
2934 conn_num++;
2935
2936 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
2937 struct sk_buff *skb;
2938
2939 if (skb_queue_empty(&tmp->data_q))
2940 continue;
2941
2942 skb = skb_peek(&tmp->data_q);
2943 if (skb->priority < cur_prio)
2944 continue;
2945
2946 if (skb->priority > cur_prio) {
2947 num = 0;
2948 min = ~0;
2949 cur_prio = skb->priority;
2950 }
2951
2952 num++;
2953
2954 if (conn->sent < min) {
2955 min = conn->sent;
2956 chan = tmp;
2957 }
2958 }
2959
2960 if (hci_conn_num(hdev, type) == conn_num)
2961 break;
2962 }
2963
2964 rcu_read_unlock();
2965
2966 if (!chan)
2967 return NULL;
2968
2969 switch (chan->conn->type) {
2970 case ACL_LINK:
2971 cnt = hdev->acl_cnt;
2972 break;
2973 case AMP_LINK:
2974 cnt = hdev->block_cnt;
2975 break;
2976 case SCO_LINK:
2977 case ESCO_LINK:
2978 cnt = hdev->sco_cnt;
2979 break;
2980 case LE_LINK:
2981 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2982 break;
2983 default:
2984 cnt = 0;
2985 BT_ERR("Unknown link type");
2986 }
2987
2988 q = cnt / num;
2989 *quote = q ? q : 1;
2990 BT_DBG("chan %p quote %d", chan, *quote);
2991 return chan;
2992 }
2993
2994 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
2995 {
2996 struct hci_conn_hash *h = &hdev->conn_hash;
2997 struct hci_conn *conn;
2998 int num = 0;
2999
3000 BT_DBG("%s", hdev->name);
3001
3002 rcu_read_lock();
3003
3004 list_for_each_entry_rcu(conn, &h->list, list) {
3005 struct hci_chan *chan;
3006
3007 if (conn->type != type)
3008 continue;
3009
3010 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3011 continue;
3012
3013 num++;
3014
3015 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3016 struct sk_buff *skb;
3017
3018 if (chan->sent) {
3019 chan->sent = 0;
3020 continue;
3021 }
3022
3023 if (skb_queue_empty(&chan->data_q))
3024 continue;
3025
3026 skb = skb_peek(&chan->data_q);
3027 if (skb->priority >= HCI_PRIO_MAX - 1)
3028 continue;
3029
3030 skb->priority = HCI_PRIO_MAX - 1;
3031
3032 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3033 skb->priority);
3034 }
3035
3036 if (hci_conn_num(hdev, type) == num)
3037 break;
3038 }
3039
3040 rcu_read_unlock();
3041
3042 }
3043
3044 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3045 {
3046 /* Calculate count of blocks used by this packet */
3047 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3048 }
3049
3050 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3051 {
3052 if (!test_bit(HCI_RAW, &hdev->flags)) {
3053 /* ACL tx timeout must be longer than maximum
3054 * link supervision timeout (40.9 seconds) */
3055 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3056 HCI_ACL_TX_TIMEOUT))
3057 hci_link_tx_to(hdev, ACL_LINK);
3058 }
3059 }
3060
3061 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3062 {
3063 unsigned int cnt = hdev->acl_cnt;
3064 struct hci_chan *chan;
3065 struct sk_buff *skb;
3066 int quote;
3067
3068 __check_timeout(hdev, cnt);
3069
3070 while (hdev->acl_cnt &&
3071 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3072 u32 priority = (skb_peek(&chan->data_q))->priority;
3073 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3074 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3075 skb->len, skb->priority);
3076
3077 /* Stop if priority has changed */
3078 if (skb->priority < priority)
3079 break;
3080
3081 skb = skb_dequeue(&chan->data_q);
3082
3083 hci_conn_enter_active_mode(chan->conn,
3084 bt_cb(skb)->force_active);
3085
3086 hci_send_frame(skb);
3087 hdev->acl_last_tx = jiffies;
3088
3089 hdev->acl_cnt--;
3090 chan->sent++;
3091 chan->conn->sent++;
3092 }
3093 }
3094
3095 if (cnt != hdev->acl_cnt)
3096 hci_prio_recalculate(hdev, ACL_LINK);
3097 }
3098
3099 static void hci_sched_acl_blk(struct hci_dev *hdev)
3100 {
3101 unsigned int cnt = hdev->block_cnt;
3102 struct hci_chan *chan;
3103 struct sk_buff *skb;
3104 int quote;
3105 u8 type;
3106
3107 __check_timeout(hdev, cnt);
3108
3109 BT_DBG("%s", hdev->name);
3110
3111 if (hdev->dev_type == HCI_AMP)
3112 type = AMP_LINK;
3113 else
3114 type = ACL_LINK;
3115
3116 while (hdev->block_cnt > 0 &&
3117 (chan = hci_chan_sent(hdev, type, &quote))) {
3118 u32 priority = (skb_peek(&chan->data_q))->priority;
3119 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3120 int blocks;
3121
3122 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3123 skb->len, skb->priority);
3124
3125 /* Stop if priority has changed */
3126 if (skb->priority < priority)
3127 break;
3128
3129 skb = skb_dequeue(&chan->data_q);
3130
3131 blocks = __get_blocks(hdev, skb);
3132 if (blocks > hdev->block_cnt)
3133 return;
3134
3135 hci_conn_enter_active_mode(chan->conn,
3136 bt_cb(skb)->force_active);
3137
3138 hci_send_frame(skb);
3139 hdev->acl_last_tx = jiffies;
3140
3141 hdev->block_cnt -= blocks;
3142 quote -= blocks;
3143
3144 chan->sent += blocks;
3145 chan->conn->sent += blocks;
3146 }
3147 }
3148
3149 if (cnt != hdev->block_cnt)
3150 hci_prio_recalculate(hdev, type);
3151 }
3152
3153 static void hci_sched_acl(struct hci_dev *hdev)
3154 {
3155 BT_DBG("%s", hdev->name);
3156
3157 /* No ACL link over BR/EDR controller */
3158 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3159 return;
3160
3161 /* No AMP link over AMP controller */
3162 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3163 return;
3164
3165 switch (hdev->flow_ctl_mode) {
3166 case HCI_FLOW_CTL_MODE_PACKET_BASED:
3167 hci_sched_acl_pkt(hdev);
3168 break;
3169
3170 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3171 hci_sched_acl_blk(hdev);
3172 break;
3173 }
3174 }
3175
3176 /* Schedule SCO */
3177 static void hci_sched_sco(struct hci_dev *hdev)
3178 {
3179 struct hci_conn *conn;
3180 struct sk_buff *skb;
3181 int quote;
3182
3183 BT_DBG("%s", hdev->name);
3184
3185 if (!hci_conn_num(hdev, SCO_LINK))
3186 return;
3187
3188 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3189 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3190 BT_DBG("skb %p len %d", skb, skb->len);
3191 hci_send_frame(skb);
3192
3193 conn->sent++;
3194 if (conn->sent == ~0)
3195 conn->sent = 0;
3196 }
3197 }
3198 }
3199
3200 static void hci_sched_esco(struct hci_dev *hdev)
3201 {
3202 struct hci_conn *conn;
3203 struct sk_buff *skb;
3204 int quote;
3205
3206 BT_DBG("%s", hdev->name);
3207
3208 if (!hci_conn_num(hdev, ESCO_LINK))
3209 return;
3210
3211 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3212 &quote))) {
3213 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3214 BT_DBG("skb %p len %d", skb, skb->len);
3215 hci_send_frame(skb);
3216
3217 conn->sent++;
3218 if (conn->sent == ~0)
3219 conn->sent = 0;
3220 }
3221 }
3222 }
3223
3224 static void hci_sched_le(struct hci_dev *hdev)
3225 {
3226 struct hci_chan *chan;
3227 struct sk_buff *skb;
3228 int quote, cnt, tmp;
3229
3230 BT_DBG("%s", hdev->name);
3231
3232 if (!hci_conn_num(hdev, LE_LINK))
3233 return;
3234
3235 if (!test_bit(HCI_RAW, &hdev->flags)) {
3236 /* LE tx timeout must be longer than maximum
3237 * link supervision timeout (40.9 seconds) */
3238 if (!hdev->le_cnt && hdev->le_pkts &&
3239 time_after(jiffies, hdev->le_last_tx + HZ * 45))
3240 hci_link_tx_to(hdev, LE_LINK);
3241 }
3242
3243 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3244 tmp = cnt;
3245 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3246 u32 priority = (skb_peek(&chan->data_q))->priority;
3247 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3248 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3249 skb->len, skb->priority);
3250
3251 /* Stop if priority has changed */
3252 if (skb->priority < priority)
3253 break;
3254
3255 skb = skb_dequeue(&chan->data_q);
3256
3257 hci_send_frame(skb);
3258 hdev->le_last_tx = jiffies;
3259
3260 cnt--;
3261 chan->sent++;
3262 chan->conn->sent++;
3263 }
3264 }
3265
3266 if (hdev->le_pkts)
3267 hdev->le_cnt = cnt;
3268 else
3269 hdev->acl_cnt = cnt;
3270
3271 if (cnt != tmp)
3272 hci_prio_recalculate(hdev, LE_LINK);
3273 }
3274
3275 static void hci_tx_work(struct work_struct *work)
3276 {
3277 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3278 struct sk_buff *skb;
3279
3280 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3281 hdev->sco_cnt, hdev->le_cnt);
3282
3283 /* Schedule queues and send stuff to HCI driver */
3284
3285 hci_sched_acl(hdev);
3286
3287 hci_sched_sco(hdev);
3288
3289 hci_sched_esco(hdev);
3290
3291 hci_sched_le(hdev);
3292
3293 /* Send next queued raw (unknown type) packet */
3294 while ((skb = skb_dequeue(&hdev->raw_q)))
3295 hci_send_frame(skb);
3296 }
3297
3298 /* ----- HCI RX task (incoming data processing) ----- */
3299
3300 /* ACL data packet */
3301 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3302 {
3303 struct hci_acl_hdr *hdr = (void *) skb->data;
3304 struct hci_conn *conn;
3305 __u16 handle, flags;
3306
3307 skb_pull(skb, HCI_ACL_HDR_SIZE);
3308
3309 handle = __le16_to_cpu(hdr->handle);
3310 flags = hci_flags(handle);
3311 handle = hci_handle(handle);
3312
3313 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3314 handle, flags);
3315
3316 hdev->stat.acl_rx++;
3317
3318 hci_dev_lock(hdev);
3319 conn = hci_conn_hash_lookup_handle(hdev, handle);
3320 hci_dev_unlock(hdev);
3321
3322 if (conn) {
3323 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3324
3325 /* Send to upper protocol */
3326 l2cap_recv_acldata(conn, skb, flags);
3327 return;
3328 } else {
3329 BT_ERR("%s ACL packet for unknown connection handle %d",
3330 hdev->name, handle);
3331 }
3332
3333 kfree_skb(skb);
3334 }
3335
3336 /* SCO data packet */
3337 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3338 {
3339 struct hci_sco_hdr *hdr = (void *) skb->data;
3340 struct hci_conn *conn;
3341 __u16 handle;
3342
3343 skb_pull(skb, HCI_SCO_HDR_SIZE);
3344
3345 handle = __le16_to_cpu(hdr->handle);
3346
3347 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
3348
3349 hdev->stat.sco_rx++;
3350
3351 hci_dev_lock(hdev);
3352 conn = hci_conn_hash_lookup_handle(hdev, handle);
3353 hci_dev_unlock(hdev);
3354
3355 if (conn) {
3356 /* Send to upper protocol */
3357 sco_recv_scodata(conn, skb);
3358 return;
3359 } else {
3360 BT_ERR("%s SCO packet for unknown connection handle %d",
3361 hdev->name, handle);
3362 }
3363
3364 kfree_skb(skb);
3365 }
3366
3367 static bool hci_req_is_complete(struct hci_dev *hdev)
3368 {
3369 struct sk_buff *skb;
3370
3371 skb = skb_peek(&hdev->cmd_q);
3372 if (!skb)
3373 return true;
3374
3375 return bt_cb(skb)->req.start;
3376 }
3377
3378 static void hci_resend_last(struct hci_dev *hdev)
3379 {
3380 struct hci_command_hdr *sent;
3381 struct sk_buff *skb;
3382 u16 opcode;
3383
3384 if (!hdev->sent_cmd)
3385 return;
3386
3387 sent = (void *) hdev->sent_cmd->data;
3388 opcode = __le16_to_cpu(sent->opcode);
3389 if (opcode == HCI_OP_RESET)
3390 return;
3391
3392 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3393 if (!skb)
3394 return;
3395
3396 skb_queue_head(&hdev->cmd_q, skb);
3397 queue_work(hdev->workqueue, &hdev->cmd_work);
3398 }
3399
3400 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status)
3401 {
3402 hci_req_complete_t req_complete = NULL;
3403 struct sk_buff *skb;
3404 unsigned long flags;
3405
3406 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3407
3408 /* If the completed command doesn't match the last one that was
3409 * sent we need to do special handling of it.
3410 */
3411 if (!hci_sent_cmd_data(hdev, opcode)) {
3412 /* Some CSR based controllers generate a spontaneous
3413 * reset complete event during init and any pending
3414 * command will never be completed. In such a case we
3415 * need to resend whatever was the last sent
3416 * command.
3417 */
3418 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3419 hci_resend_last(hdev);
3420
3421 return;
3422 }
3423
3424 /* If the command succeeded and there's still more commands in
3425 * this request the request is not yet complete.
3426 */
3427 if (!status && !hci_req_is_complete(hdev))
3428 return;
3429
3430 /* If this was the last command in a request the complete
3431 * callback would be found in hdev->sent_cmd instead of the
3432 * command queue (hdev->cmd_q).
3433 */
3434 if (hdev->sent_cmd) {
3435 req_complete = bt_cb(hdev->sent_cmd)->req.complete;
3436 if (req_complete)
3437 goto call_complete;
3438 }
3439
3440 /* Remove all pending commands belonging to this request */
3441 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3442 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3443 if (bt_cb(skb)->req.start) {
3444 __skb_queue_head(&hdev->cmd_q, skb);
3445 break;
3446 }
3447
3448 req_complete = bt_cb(skb)->req.complete;
3449 kfree_skb(skb);
3450 }
3451 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3452
3453 call_complete:
3454 if (req_complete)
3455 req_complete(hdev, status);
3456 }
3457
3458 static void hci_rx_work(struct work_struct *work)
3459 {
3460 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3461 struct sk_buff *skb;
3462
3463 BT_DBG("%s", hdev->name);
3464
3465 while ((skb = skb_dequeue(&hdev->rx_q))) {
3466 /* Send copy to monitor */
3467 hci_send_to_monitor(hdev, skb);
3468
3469 if (atomic_read(&hdev->promisc)) {
3470 /* Send copy to the sockets */
3471 hci_send_to_sock(hdev, skb);
3472 }
3473
3474 if (test_bit(HCI_RAW, &hdev->flags)) {
3475 kfree_skb(skb);
3476 continue;
3477 }
3478
3479 if (test_bit(HCI_INIT, &hdev->flags)) {
3480 /* Don't process data packets in this states. */
3481 switch (bt_cb(skb)->pkt_type) {
3482 case HCI_ACLDATA_PKT:
3483 case HCI_SCODATA_PKT:
3484 kfree_skb(skb);
3485 continue;
3486 }
3487 }
3488
3489 /* Process frame */
3490 switch (bt_cb(skb)->pkt_type) {
3491 case HCI_EVENT_PKT:
3492 BT_DBG("%s Event packet", hdev->name);
3493 hci_event_packet(hdev, skb);
3494 break;
3495
3496 case HCI_ACLDATA_PKT:
3497 BT_DBG("%s ACL data packet", hdev->name);
3498 hci_acldata_packet(hdev, skb);
3499 break;
3500
3501 case HCI_SCODATA_PKT:
3502 BT_DBG("%s SCO data packet", hdev->name);
3503 hci_scodata_packet(hdev, skb);
3504 break;
3505
3506 default:
3507 kfree_skb(skb);
3508 break;
3509 }
3510 }
3511 }
3512
3513 static void hci_cmd_work(struct work_struct *work)
3514 {
3515 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
3516 struct sk_buff *skb;
3517
3518 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
3519 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
3520
3521 /* Send queued commands */
3522 if (atomic_read(&hdev->cmd_cnt)) {
3523 skb = skb_dequeue(&hdev->cmd_q);
3524 if (!skb)
3525 return;
3526
3527 kfree_skb(hdev->sent_cmd);
3528
3529 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
3530 if (hdev->sent_cmd) {
3531 atomic_dec(&hdev->cmd_cnt);
3532 hci_send_frame(skb);
3533 if (test_bit(HCI_RESET, &hdev->flags))
3534 del_timer(&hdev->cmd_timer);
3535 else
3536 mod_timer(&hdev->cmd_timer,
3537 jiffies + HCI_CMD_TIMEOUT);
3538 } else {
3539 skb_queue_head(&hdev->cmd_q, skb);
3540 queue_work(hdev->workqueue, &hdev->cmd_work);
3541 }
3542 }
3543 }
3544
3545 int hci_do_inquiry(struct hci_dev *hdev, u8 length)
3546 {
3547 /* General inquiry access code (GIAC) */
3548 u8 lap[3] = { 0x33, 0x8b, 0x9e };
3549 struct hci_cp_inquiry cp;
3550
3551 BT_DBG("%s", hdev->name);
3552
3553 if (test_bit(HCI_INQUIRY, &hdev->flags))
3554 return -EINPROGRESS;
3555
3556 inquiry_cache_flush(hdev);
3557
3558 memset(&cp, 0, sizeof(cp));
3559 memcpy(&cp.lap, lap, sizeof(cp.lap));
3560 cp.length = length;
3561
3562 return hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
3563 }
3564
3565 int hci_cancel_inquiry(struct hci_dev *hdev)
3566 {
3567 BT_DBG("%s", hdev->name);
3568
3569 if (!test_bit(HCI_INQUIRY, &hdev->flags))
3570 return -EALREADY;
3571
3572 return hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
3573 }
3574
3575 u8 bdaddr_to_le(u8 bdaddr_type)
3576 {
3577 switch (bdaddr_type) {
3578 case BDADDR_LE_PUBLIC:
3579 return ADDR_LE_DEV_PUBLIC;
3580
3581 default:
3582 /* Fallback to LE Random address type */
3583 return ADDR_LE_DEV_RANDOM;
3584 }
3585 }