Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30
31 #include <linux/rfkill.h>
32
33 #include <net/bluetooth/bluetooth.h>
34 #include <net/bluetooth/hci_core.h>
35
36 static void hci_rx_work(struct work_struct *work);
37 static void hci_cmd_work(struct work_struct *work);
38 static void hci_tx_work(struct work_struct *work);
39
40 /* HCI device list */
41 LIST_HEAD(hci_dev_list);
42 DEFINE_RWLOCK(hci_dev_list_lock);
43
44 /* HCI callback list */
45 LIST_HEAD(hci_cb_list);
46 DEFINE_RWLOCK(hci_cb_list_lock);
47
48 /* HCI ID Numbering */
49 static DEFINE_IDA(hci_index_ida);
50
51 /* ---- HCI notifications ---- */
52
53 static void hci_notify(struct hci_dev *hdev, int event)
54 {
55 hci_sock_dev_event(hdev, event);
56 }
57
58 /* ---- HCI requests ---- */
59
60 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result)
61 {
62 BT_DBG("%s result 0x%2.2x", hdev->name, result);
63
64 if (hdev->req_status == HCI_REQ_PEND) {
65 hdev->req_result = result;
66 hdev->req_status = HCI_REQ_DONE;
67 wake_up_interruptible(&hdev->req_wait_q);
68 }
69 }
70
71 static void hci_req_cancel(struct hci_dev *hdev, int err)
72 {
73 BT_DBG("%s err 0x%2.2x", hdev->name, err);
74
75 if (hdev->req_status == HCI_REQ_PEND) {
76 hdev->req_result = err;
77 hdev->req_status = HCI_REQ_CANCELED;
78 wake_up_interruptible(&hdev->req_wait_q);
79 }
80 }
81
82 static struct sk_buff *hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode,
83 u8 event)
84 {
85 struct hci_ev_cmd_complete *ev;
86 struct hci_event_hdr *hdr;
87 struct sk_buff *skb;
88
89 hci_dev_lock(hdev);
90
91 skb = hdev->recv_evt;
92 hdev->recv_evt = NULL;
93
94 hci_dev_unlock(hdev);
95
96 if (!skb)
97 return ERR_PTR(-ENODATA);
98
99 if (skb->len < sizeof(*hdr)) {
100 BT_ERR("Too short HCI event");
101 goto failed;
102 }
103
104 hdr = (void *) skb->data;
105 skb_pull(skb, HCI_EVENT_HDR_SIZE);
106
107 if (event) {
108 if (hdr->evt != event)
109 goto failed;
110 return skb;
111 }
112
113 if (hdr->evt != HCI_EV_CMD_COMPLETE) {
114 BT_DBG("Last event is not cmd complete (0x%2.2x)", hdr->evt);
115 goto failed;
116 }
117
118 if (skb->len < sizeof(*ev)) {
119 BT_ERR("Too short cmd_complete event");
120 goto failed;
121 }
122
123 ev = (void *) skb->data;
124 skb_pull(skb, sizeof(*ev));
125
126 if (opcode == __le16_to_cpu(ev->opcode))
127 return skb;
128
129 BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode,
130 __le16_to_cpu(ev->opcode));
131
132 failed:
133 kfree_skb(skb);
134 return ERR_PTR(-ENODATA);
135 }
136
137 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
138 const void *param, u8 event, u32 timeout)
139 {
140 DECLARE_WAITQUEUE(wait, current);
141 struct hci_request req;
142 int err = 0;
143
144 BT_DBG("%s", hdev->name);
145
146 hci_req_init(&req, hdev);
147
148 hci_req_add_ev(&req, opcode, plen, param, event);
149
150 hdev->req_status = HCI_REQ_PEND;
151
152 err = hci_req_run(&req, hci_req_sync_complete);
153 if (err < 0)
154 return ERR_PTR(err);
155
156 add_wait_queue(&hdev->req_wait_q, &wait);
157 set_current_state(TASK_INTERRUPTIBLE);
158
159 schedule_timeout(timeout);
160
161 remove_wait_queue(&hdev->req_wait_q, &wait);
162
163 if (signal_pending(current))
164 return ERR_PTR(-EINTR);
165
166 switch (hdev->req_status) {
167 case HCI_REQ_DONE:
168 err = -bt_to_errno(hdev->req_result);
169 break;
170
171 case HCI_REQ_CANCELED:
172 err = -hdev->req_result;
173 break;
174
175 default:
176 err = -ETIMEDOUT;
177 break;
178 }
179
180 hdev->req_status = hdev->req_result = 0;
181
182 BT_DBG("%s end: err %d", hdev->name, err);
183
184 if (err < 0)
185 return ERR_PTR(err);
186
187 return hci_get_cmd_complete(hdev, opcode, event);
188 }
189 EXPORT_SYMBOL(__hci_cmd_sync_ev);
190
191 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
192 const void *param, u32 timeout)
193 {
194 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
195 }
196 EXPORT_SYMBOL(__hci_cmd_sync);
197
198 /* Execute request and wait for completion. */
199 static int __hci_req_sync(struct hci_dev *hdev,
200 void (*func)(struct hci_request *req,
201 unsigned long opt),
202 unsigned long opt, __u32 timeout)
203 {
204 struct hci_request req;
205 DECLARE_WAITQUEUE(wait, current);
206 int err = 0;
207
208 BT_DBG("%s start", hdev->name);
209
210 hci_req_init(&req, hdev);
211
212 hdev->req_status = HCI_REQ_PEND;
213
214 func(&req, opt);
215
216 err = hci_req_run(&req, hci_req_sync_complete);
217 if (err < 0) {
218 hdev->req_status = 0;
219
220 /* ENODATA means the HCI request command queue is empty.
221 * This can happen when a request with conditionals doesn't
222 * trigger any commands to be sent. This is normal behavior
223 * and should not trigger an error return.
224 */
225 if (err == -ENODATA)
226 return 0;
227
228 return err;
229 }
230
231 add_wait_queue(&hdev->req_wait_q, &wait);
232 set_current_state(TASK_INTERRUPTIBLE);
233
234 schedule_timeout(timeout);
235
236 remove_wait_queue(&hdev->req_wait_q, &wait);
237
238 if (signal_pending(current))
239 return -EINTR;
240
241 switch (hdev->req_status) {
242 case HCI_REQ_DONE:
243 err = -bt_to_errno(hdev->req_result);
244 break;
245
246 case HCI_REQ_CANCELED:
247 err = -hdev->req_result;
248 break;
249
250 default:
251 err = -ETIMEDOUT;
252 break;
253 }
254
255 hdev->req_status = hdev->req_result = 0;
256
257 BT_DBG("%s end: err %d", hdev->name, err);
258
259 return err;
260 }
261
262 static int hci_req_sync(struct hci_dev *hdev,
263 void (*req)(struct hci_request *req,
264 unsigned long opt),
265 unsigned long opt, __u32 timeout)
266 {
267 int ret;
268
269 if (!test_bit(HCI_UP, &hdev->flags))
270 return -ENETDOWN;
271
272 /* Serialize all requests */
273 hci_req_lock(hdev);
274 ret = __hci_req_sync(hdev, req, opt, timeout);
275 hci_req_unlock(hdev);
276
277 return ret;
278 }
279
280 static void hci_reset_req(struct hci_request *req, unsigned long opt)
281 {
282 BT_DBG("%s %ld", req->hdev->name, opt);
283
284 /* Reset device */
285 set_bit(HCI_RESET, &req->hdev->flags);
286 hci_req_add(req, HCI_OP_RESET, 0, NULL);
287 }
288
289 static void bredr_init(struct hci_request *req)
290 {
291 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
292
293 /* Read Local Supported Features */
294 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
295
296 /* Read Local Version */
297 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
298
299 /* Read BD Address */
300 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
301 }
302
303 static void amp_init(struct hci_request *req)
304 {
305 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
306
307 /* Read Local Version */
308 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
309
310 /* Read Local AMP Info */
311 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
312
313 /* Read Data Blk size */
314 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
315 }
316
317 static void hci_init1_req(struct hci_request *req, unsigned long opt)
318 {
319 struct hci_dev *hdev = req->hdev;
320
321 BT_DBG("%s %ld", hdev->name, opt);
322
323 /* Reset */
324 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
325 hci_reset_req(req, 0);
326
327 switch (hdev->dev_type) {
328 case HCI_BREDR:
329 bredr_init(req);
330 break;
331
332 case HCI_AMP:
333 amp_init(req);
334 break;
335
336 default:
337 BT_ERR("Unknown device type %d", hdev->dev_type);
338 break;
339 }
340 }
341
342 static void bredr_setup(struct hci_request *req)
343 {
344 struct hci_cp_delete_stored_link_key cp;
345 __le16 param;
346 __u8 flt_type;
347
348 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
349 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
350
351 /* Read Class of Device */
352 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
353
354 /* Read Local Name */
355 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
356
357 /* Read Voice Setting */
358 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
359
360 /* Clear Event Filters */
361 flt_type = HCI_FLT_CLEAR_ALL;
362 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
363
364 /* Connection accept timeout ~20 secs */
365 param = __constant_cpu_to_le16(0x7d00);
366 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
367
368 bacpy(&cp.bdaddr, BDADDR_ANY);
369 cp.delete_all = 0x01;
370 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
371
372 /* Read page scan parameters */
373 if (req->hdev->hci_ver > BLUETOOTH_VER_1_1) {
374 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
375 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
376 }
377 }
378
379 static void le_setup(struct hci_request *req)
380 {
381 struct hci_dev *hdev = req->hdev;
382
383 /* Read LE Buffer Size */
384 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
385
386 /* Read LE Local Supported Features */
387 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
388
389 /* Read LE Advertising Channel TX Power */
390 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
391
392 /* Read LE White List Size */
393 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL);
394
395 /* Read LE Supported States */
396 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
397
398 /* LE-only controllers have LE implicitly enabled */
399 if (!lmp_bredr_capable(hdev))
400 set_bit(HCI_LE_ENABLED, &hdev->dev_flags);
401 }
402
403 static u8 hci_get_inquiry_mode(struct hci_dev *hdev)
404 {
405 if (lmp_ext_inq_capable(hdev))
406 return 0x02;
407
408 if (lmp_inq_rssi_capable(hdev))
409 return 0x01;
410
411 if (hdev->manufacturer == 11 && hdev->hci_rev == 0x00 &&
412 hdev->lmp_subver == 0x0757)
413 return 0x01;
414
415 if (hdev->manufacturer == 15) {
416 if (hdev->hci_rev == 0x03 && hdev->lmp_subver == 0x6963)
417 return 0x01;
418 if (hdev->hci_rev == 0x09 && hdev->lmp_subver == 0x6963)
419 return 0x01;
420 if (hdev->hci_rev == 0x00 && hdev->lmp_subver == 0x6965)
421 return 0x01;
422 }
423
424 if (hdev->manufacturer == 31 && hdev->hci_rev == 0x2005 &&
425 hdev->lmp_subver == 0x1805)
426 return 0x01;
427
428 return 0x00;
429 }
430
431 static void hci_setup_inquiry_mode(struct hci_request *req)
432 {
433 u8 mode;
434
435 mode = hci_get_inquiry_mode(req->hdev);
436
437 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
438 }
439
440 static void hci_setup_event_mask(struct hci_request *req)
441 {
442 struct hci_dev *hdev = req->hdev;
443
444 /* The second byte is 0xff instead of 0x9f (two reserved bits
445 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
446 * command otherwise.
447 */
448 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
449
450 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
451 * any event mask for pre 1.2 devices.
452 */
453 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
454 return;
455
456 if (lmp_bredr_capable(hdev)) {
457 events[4] |= 0x01; /* Flow Specification Complete */
458 events[4] |= 0x02; /* Inquiry Result with RSSI */
459 events[4] |= 0x04; /* Read Remote Extended Features Complete */
460 events[5] |= 0x08; /* Synchronous Connection Complete */
461 events[5] |= 0x10; /* Synchronous Connection Changed */
462 }
463
464 if (lmp_inq_rssi_capable(hdev))
465 events[4] |= 0x02; /* Inquiry Result with RSSI */
466
467 if (lmp_sniffsubr_capable(hdev))
468 events[5] |= 0x20; /* Sniff Subrating */
469
470 if (lmp_pause_enc_capable(hdev))
471 events[5] |= 0x80; /* Encryption Key Refresh Complete */
472
473 if (lmp_ext_inq_capable(hdev))
474 events[5] |= 0x40; /* Extended Inquiry Result */
475
476 if (lmp_no_flush_capable(hdev))
477 events[7] |= 0x01; /* Enhanced Flush Complete */
478
479 if (lmp_lsto_capable(hdev))
480 events[6] |= 0x80; /* Link Supervision Timeout Changed */
481
482 if (lmp_ssp_capable(hdev)) {
483 events[6] |= 0x01; /* IO Capability Request */
484 events[6] |= 0x02; /* IO Capability Response */
485 events[6] |= 0x04; /* User Confirmation Request */
486 events[6] |= 0x08; /* User Passkey Request */
487 events[6] |= 0x10; /* Remote OOB Data Request */
488 events[6] |= 0x20; /* Simple Pairing Complete */
489 events[7] |= 0x04; /* User Passkey Notification */
490 events[7] |= 0x08; /* Keypress Notification */
491 events[7] |= 0x10; /* Remote Host Supported
492 * Features Notification
493 */
494 }
495
496 if (lmp_le_capable(hdev))
497 events[7] |= 0x20; /* LE Meta-Event */
498
499 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
500
501 if (lmp_le_capable(hdev)) {
502 memset(events, 0, sizeof(events));
503 events[0] = 0x1f;
504 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK,
505 sizeof(events), events);
506 }
507 }
508
509 static void hci_init2_req(struct hci_request *req, unsigned long opt)
510 {
511 struct hci_dev *hdev = req->hdev;
512
513 if (lmp_bredr_capable(hdev))
514 bredr_setup(req);
515
516 if (lmp_le_capable(hdev))
517 le_setup(req);
518
519 hci_setup_event_mask(req);
520
521 if (hdev->hci_ver > BLUETOOTH_VER_1_1)
522 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
523
524 if (lmp_ssp_capable(hdev)) {
525 if (test_bit(HCI_SSP_ENABLED, &hdev->dev_flags)) {
526 u8 mode = 0x01;
527 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
528 sizeof(mode), &mode);
529 } else {
530 struct hci_cp_write_eir cp;
531
532 memset(hdev->eir, 0, sizeof(hdev->eir));
533 memset(&cp, 0, sizeof(cp));
534
535 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
536 }
537 }
538
539 if (lmp_inq_rssi_capable(hdev))
540 hci_setup_inquiry_mode(req);
541
542 if (lmp_inq_tx_pwr_capable(hdev))
543 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
544
545 if (lmp_ext_feat_capable(hdev)) {
546 struct hci_cp_read_local_ext_features cp;
547
548 cp.page = 0x01;
549 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
550 sizeof(cp), &cp);
551 }
552
553 if (test_bit(HCI_LINK_SECURITY, &hdev->dev_flags)) {
554 u8 enable = 1;
555 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
556 &enable);
557 }
558 }
559
560 static void hci_setup_link_policy(struct hci_request *req)
561 {
562 struct hci_dev *hdev = req->hdev;
563 struct hci_cp_write_def_link_policy cp;
564 u16 link_policy = 0;
565
566 if (lmp_rswitch_capable(hdev))
567 link_policy |= HCI_LP_RSWITCH;
568 if (lmp_hold_capable(hdev))
569 link_policy |= HCI_LP_HOLD;
570 if (lmp_sniff_capable(hdev))
571 link_policy |= HCI_LP_SNIFF;
572 if (lmp_park_capable(hdev))
573 link_policy |= HCI_LP_PARK;
574
575 cp.policy = cpu_to_le16(link_policy);
576 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
577 }
578
579 static void hci_set_le_support(struct hci_request *req)
580 {
581 struct hci_dev *hdev = req->hdev;
582 struct hci_cp_write_le_host_supported cp;
583
584 /* LE-only devices do not support explicit enablement */
585 if (!lmp_bredr_capable(hdev))
586 return;
587
588 memset(&cp, 0, sizeof(cp));
589
590 if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) {
591 cp.le = 0x01;
592 cp.simul = lmp_le_br_capable(hdev);
593 }
594
595 if (cp.le != lmp_host_le_capable(hdev))
596 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
597 &cp);
598 }
599
600 static void hci_init3_req(struct hci_request *req, unsigned long opt)
601 {
602 struct hci_dev *hdev = req->hdev;
603 u8 p;
604
605 if (hdev->commands[5] & 0x10)
606 hci_setup_link_policy(req);
607
608 if (lmp_le_capable(hdev)) {
609 hci_set_le_support(req);
610 hci_update_ad(req);
611 }
612
613 /* Read features beyond page 1 if available */
614 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
615 struct hci_cp_read_local_ext_features cp;
616
617 cp.page = p;
618 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
619 sizeof(cp), &cp);
620 }
621 }
622
623 static int __hci_init(struct hci_dev *hdev)
624 {
625 int err;
626
627 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT);
628 if (err < 0)
629 return err;
630
631 /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
632 * BR/EDR/LE type controllers. AMP controllers only need the
633 * first stage init.
634 */
635 if (hdev->dev_type != HCI_BREDR)
636 return 0;
637
638 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT);
639 if (err < 0)
640 return err;
641
642 return __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT);
643 }
644
645 static void hci_scan_req(struct hci_request *req, unsigned long opt)
646 {
647 __u8 scan = opt;
648
649 BT_DBG("%s %x", req->hdev->name, scan);
650
651 /* Inquiry and Page scans */
652 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
653 }
654
655 static void hci_auth_req(struct hci_request *req, unsigned long opt)
656 {
657 __u8 auth = opt;
658
659 BT_DBG("%s %x", req->hdev->name, auth);
660
661 /* Authentication */
662 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
663 }
664
665 static void hci_encrypt_req(struct hci_request *req, unsigned long opt)
666 {
667 __u8 encrypt = opt;
668
669 BT_DBG("%s %x", req->hdev->name, encrypt);
670
671 /* Encryption */
672 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
673 }
674
675 static void hci_linkpol_req(struct hci_request *req, unsigned long opt)
676 {
677 __le16 policy = cpu_to_le16(opt);
678
679 BT_DBG("%s %x", req->hdev->name, policy);
680
681 /* Default link policy */
682 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
683 }
684
685 /* Get HCI device by index.
686 * Device is held on return. */
687 struct hci_dev *hci_dev_get(int index)
688 {
689 struct hci_dev *hdev = NULL, *d;
690
691 BT_DBG("%d", index);
692
693 if (index < 0)
694 return NULL;
695
696 read_lock(&hci_dev_list_lock);
697 list_for_each_entry(d, &hci_dev_list, list) {
698 if (d->id == index) {
699 hdev = hci_dev_hold(d);
700 break;
701 }
702 }
703 read_unlock(&hci_dev_list_lock);
704 return hdev;
705 }
706
707 /* ---- Inquiry support ---- */
708
709 bool hci_discovery_active(struct hci_dev *hdev)
710 {
711 struct discovery_state *discov = &hdev->discovery;
712
713 switch (discov->state) {
714 case DISCOVERY_FINDING:
715 case DISCOVERY_RESOLVING:
716 return true;
717
718 default:
719 return false;
720 }
721 }
722
723 void hci_discovery_set_state(struct hci_dev *hdev, int state)
724 {
725 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
726
727 if (hdev->discovery.state == state)
728 return;
729
730 switch (state) {
731 case DISCOVERY_STOPPED:
732 if (hdev->discovery.state != DISCOVERY_STARTING)
733 mgmt_discovering(hdev, 0);
734 break;
735 case DISCOVERY_STARTING:
736 break;
737 case DISCOVERY_FINDING:
738 mgmt_discovering(hdev, 1);
739 break;
740 case DISCOVERY_RESOLVING:
741 break;
742 case DISCOVERY_STOPPING:
743 break;
744 }
745
746 hdev->discovery.state = state;
747 }
748
749 static void inquiry_cache_flush(struct hci_dev *hdev)
750 {
751 struct discovery_state *cache = &hdev->discovery;
752 struct inquiry_entry *p, *n;
753
754 list_for_each_entry_safe(p, n, &cache->all, all) {
755 list_del(&p->all);
756 kfree(p);
757 }
758
759 INIT_LIST_HEAD(&cache->unknown);
760 INIT_LIST_HEAD(&cache->resolve);
761 }
762
763 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
764 bdaddr_t *bdaddr)
765 {
766 struct discovery_state *cache = &hdev->discovery;
767 struct inquiry_entry *e;
768
769 BT_DBG("cache %p, %pMR", cache, bdaddr);
770
771 list_for_each_entry(e, &cache->all, all) {
772 if (!bacmp(&e->data.bdaddr, bdaddr))
773 return e;
774 }
775
776 return NULL;
777 }
778
779 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
780 bdaddr_t *bdaddr)
781 {
782 struct discovery_state *cache = &hdev->discovery;
783 struct inquiry_entry *e;
784
785 BT_DBG("cache %p, %pMR", cache, bdaddr);
786
787 list_for_each_entry(e, &cache->unknown, list) {
788 if (!bacmp(&e->data.bdaddr, bdaddr))
789 return e;
790 }
791
792 return NULL;
793 }
794
795 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
796 bdaddr_t *bdaddr,
797 int state)
798 {
799 struct discovery_state *cache = &hdev->discovery;
800 struct inquiry_entry *e;
801
802 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
803
804 list_for_each_entry(e, &cache->resolve, list) {
805 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
806 return e;
807 if (!bacmp(&e->data.bdaddr, bdaddr))
808 return e;
809 }
810
811 return NULL;
812 }
813
814 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
815 struct inquiry_entry *ie)
816 {
817 struct discovery_state *cache = &hdev->discovery;
818 struct list_head *pos = &cache->resolve;
819 struct inquiry_entry *p;
820
821 list_del(&ie->list);
822
823 list_for_each_entry(p, &cache->resolve, list) {
824 if (p->name_state != NAME_PENDING &&
825 abs(p->data.rssi) >= abs(ie->data.rssi))
826 break;
827 pos = &p->list;
828 }
829
830 list_add(&ie->list, pos);
831 }
832
833 bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
834 bool name_known, bool *ssp)
835 {
836 struct discovery_state *cache = &hdev->discovery;
837 struct inquiry_entry *ie;
838
839 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
840
841 hci_remove_remote_oob_data(hdev, &data->bdaddr);
842
843 if (ssp)
844 *ssp = data->ssp_mode;
845
846 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
847 if (ie) {
848 if (ie->data.ssp_mode && ssp)
849 *ssp = true;
850
851 if (ie->name_state == NAME_NEEDED &&
852 data->rssi != ie->data.rssi) {
853 ie->data.rssi = data->rssi;
854 hci_inquiry_cache_update_resolve(hdev, ie);
855 }
856
857 goto update;
858 }
859
860 /* Entry not in the cache. Add new one. */
861 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
862 if (!ie)
863 return false;
864
865 list_add(&ie->all, &cache->all);
866
867 if (name_known) {
868 ie->name_state = NAME_KNOWN;
869 } else {
870 ie->name_state = NAME_NOT_KNOWN;
871 list_add(&ie->list, &cache->unknown);
872 }
873
874 update:
875 if (name_known && ie->name_state != NAME_KNOWN &&
876 ie->name_state != NAME_PENDING) {
877 ie->name_state = NAME_KNOWN;
878 list_del(&ie->list);
879 }
880
881 memcpy(&ie->data, data, sizeof(*data));
882 ie->timestamp = jiffies;
883 cache->timestamp = jiffies;
884
885 if (ie->name_state == NAME_NOT_KNOWN)
886 return false;
887
888 return true;
889 }
890
891 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
892 {
893 struct discovery_state *cache = &hdev->discovery;
894 struct inquiry_info *info = (struct inquiry_info *) buf;
895 struct inquiry_entry *e;
896 int copied = 0;
897
898 list_for_each_entry(e, &cache->all, all) {
899 struct inquiry_data *data = &e->data;
900
901 if (copied >= num)
902 break;
903
904 bacpy(&info->bdaddr, &data->bdaddr);
905 info->pscan_rep_mode = data->pscan_rep_mode;
906 info->pscan_period_mode = data->pscan_period_mode;
907 info->pscan_mode = data->pscan_mode;
908 memcpy(info->dev_class, data->dev_class, 3);
909 info->clock_offset = data->clock_offset;
910
911 info++;
912 copied++;
913 }
914
915 BT_DBG("cache %p, copied %d", cache, copied);
916 return copied;
917 }
918
919 static void hci_inq_req(struct hci_request *req, unsigned long opt)
920 {
921 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
922 struct hci_dev *hdev = req->hdev;
923 struct hci_cp_inquiry cp;
924
925 BT_DBG("%s", hdev->name);
926
927 if (test_bit(HCI_INQUIRY, &hdev->flags))
928 return;
929
930 /* Start Inquiry */
931 memcpy(&cp.lap, &ir->lap, 3);
932 cp.length = ir->length;
933 cp.num_rsp = ir->num_rsp;
934 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
935 }
936
937 static int wait_inquiry(void *word)
938 {
939 schedule();
940 return signal_pending(current);
941 }
942
943 int hci_inquiry(void __user *arg)
944 {
945 __u8 __user *ptr = arg;
946 struct hci_inquiry_req ir;
947 struct hci_dev *hdev;
948 int err = 0, do_inquiry = 0, max_rsp;
949 long timeo;
950 __u8 *buf;
951
952 if (copy_from_user(&ir, ptr, sizeof(ir)))
953 return -EFAULT;
954
955 hdev = hci_dev_get(ir.dev_id);
956 if (!hdev)
957 return -ENODEV;
958
959 hci_dev_lock(hdev);
960 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
961 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
962 inquiry_cache_flush(hdev);
963 do_inquiry = 1;
964 }
965 hci_dev_unlock(hdev);
966
967 timeo = ir.length * msecs_to_jiffies(2000);
968
969 if (do_inquiry) {
970 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
971 timeo);
972 if (err < 0)
973 goto done;
974
975 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
976 * cleared). If it is interrupted by a signal, return -EINTR.
977 */
978 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, wait_inquiry,
979 TASK_INTERRUPTIBLE))
980 return -EINTR;
981 }
982
983 /* for unlimited number of responses we will use buffer with
984 * 255 entries
985 */
986 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
987
988 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
989 * copy it to the user space.
990 */
991 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
992 if (!buf) {
993 err = -ENOMEM;
994 goto done;
995 }
996
997 hci_dev_lock(hdev);
998 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
999 hci_dev_unlock(hdev);
1000
1001 BT_DBG("num_rsp %d", ir.num_rsp);
1002
1003 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1004 ptr += sizeof(ir);
1005 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1006 ir.num_rsp))
1007 err = -EFAULT;
1008 } else
1009 err = -EFAULT;
1010
1011 kfree(buf);
1012
1013 done:
1014 hci_dev_put(hdev);
1015 return err;
1016 }
1017
1018 static u8 create_ad(struct hci_dev *hdev, u8 *ptr)
1019 {
1020 u8 ad_len = 0, flags = 0;
1021 size_t name_len;
1022
1023 if (test_bit(HCI_LE_PERIPHERAL, &hdev->dev_flags))
1024 flags |= LE_AD_GENERAL;
1025
1026 if (!lmp_bredr_capable(hdev))
1027 flags |= LE_AD_NO_BREDR;
1028
1029 if (lmp_le_br_capable(hdev))
1030 flags |= LE_AD_SIM_LE_BREDR_CTRL;
1031
1032 if (lmp_host_le_br_capable(hdev))
1033 flags |= LE_AD_SIM_LE_BREDR_HOST;
1034
1035 if (flags) {
1036 BT_DBG("adv flags 0x%02x", flags);
1037
1038 ptr[0] = 2;
1039 ptr[1] = EIR_FLAGS;
1040 ptr[2] = flags;
1041
1042 ad_len += 3;
1043 ptr += 3;
1044 }
1045
1046 if (hdev->adv_tx_power != HCI_TX_POWER_INVALID) {
1047 ptr[0] = 2;
1048 ptr[1] = EIR_TX_POWER;
1049 ptr[2] = (u8) hdev->adv_tx_power;
1050
1051 ad_len += 3;
1052 ptr += 3;
1053 }
1054
1055 name_len = strlen(hdev->dev_name);
1056 if (name_len > 0) {
1057 size_t max_len = HCI_MAX_AD_LENGTH - ad_len - 2;
1058
1059 if (name_len > max_len) {
1060 name_len = max_len;
1061 ptr[1] = EIR_NAME_SHORT;
1062 } else
1063 ptr[1] = EIR_NAME_COMPLETE;
1064
1065 ptr[0] = name_len + 1;
1066
1067 memcpy(ptr + 2, hdev->dev_name, name_len);
1068
1069 ad_len += (name_len + 2);
1070 ptr += (name_len + 2);
1071 }
1072
1073 return ad_len;
1074 }
1075
1076 void hci_update_ad(struct hci_request *req)
1077 {
1078 struct hci_dev *hdev = req->hdev;
1079 struct hci_cp_le_set_adv_data cp;
1080 u8 len;
1081
1082 if (!lmp_le_capable(hdev))
1083 return;
1084
1085 memset(&cp, 0, sizeof(cp));
1086
1087 len = create_ad(hdev, cp.data);
1088
1089 if (hdev->adv_data_len == len &&
1090 memcmp(cp.data, hdev->adv_data, len) == 0)
1091 return;
1092
1093 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1094 hdev->adv_data_len = len;
1095
1096 cp.length = len;
1097
1098 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1099 }
1100
1101 /* ---- HCI ioctl helpers ---- */
1102
1103 int hci_dev_open(__u16 dev)
1104 {
1105 struct hci_dev *hdev;
1106 int ret = 0;
1107
1108 hdev = hci_dev_get(dev);
1109 if (!hdev)
1110 return -ENODEV;
1111
1112 BT_DBG("%s %p", hdev->name, hdev);
1113
1114 hci_req_lock(hdev);
1115
1116 if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) {
1117 ret = -ENODEV;
1118 goto done;
1119 }
1120
1121 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
1122 ret = -ERFKILL;
1123 goto done;
1124 }
1125
1126 if (test_bit(HCI_UP, &hdev->flags)) {
1127 ret = -EALREADY;
1128 goto done;
1129 }
1130
1131 if (hdev->open(hdev)) {
1132 ret = -EIO;
1133 goto done;
1134 }
1135
1136 atomic_set(&hdev->cmd_cnt, 1);
1137 set_bit(HCI_INIT, &hdev->flags);
1138
1139 if (hdev->setup && test_bit(HCI_SETUP, &hdev->dev_flags))
1140 ret = hdev->setup(hdev);
1141
1142 if (!ret) {
1143 /* Treat all non BR/EDR controllers as raw devices if
1144 * enable_hs is not set.
1145 */
1146 if (hdev->dev_type != HCI_BREDR && !enable_hs)
1147 set_bit(HCI_RAW, &hdev->flags);
1148
1149 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
1150 set_bit(HCI_RAW, &hdev->flags);
1151
1152 if (!test_bit(HCI_RAW, &hdev->flags))
1153 ret = __hci_init(hdev);
1154 }
1155
1156 clear_bit(HCI_INIT, &hdev->flags);
1157
1158 if (!ret) {
1159 hci_dev_hold(hdev);
1160 set_bit(HCI_UP, &hdev->flags);
1161 hci_notify(hdev, HCI_DEV_UP);
1162 if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
1163 mgmt_valid_hdev(hdev)) {
1164 hci_dev_lock(hdev);
1165 mgmt_powered(hdev, 1);
1166 hci_dev_unlock(hdev);
1167 }
1168 } else {
1169 /* Init failed, cleanup */
1170 flush_work(&hdev->tx_work);
1171 flush_work(&hdev->cmd_work);
1172 flush_work(&hdev->rx_work);
1173
1174 skb_queue_purge(&hdev->cmd_q);
1175 skb_queue_purge(&hdev->rx_q);
1176
1177 if (hdev->flush)
1178 hdev->flush(hdev);
1179
1180 if (hdev->sent_cmd) {
1181 kfree_skb(hdev->sent_cmd);
1182 hdev->sent_cmd = NULL;
1183 }
1184
1185 hdev->close(hdev);
1186 hdev->flags = 0;
1187 }
1188
1189 done:
1190 hci_req_unlock(hdev);
1191 hci_dev_put(hdev);
1192 return ret;
1193 }
1194
1195 static int hci_dev_do_close(struct hci_dev *hdev)
1196 {
1197 BT_DBG("%s %p", hdev->name, hdev);
1198
1199 cancel_work_sync(&hdev->le_scan);
1200
1201 cancel_delayed_work(&hdev->power_off);
1202
1203 hci_req_cancel(hdev, ENODEV);
1204 hci_req_lock(hdev);
1205
1206 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1207 del_timer_sync(&hdev->cmd_timer);
1208 hci_req_unlock(hdev);
1209 return 0;
1210 }
1211
1212 /* Flush RX and TX works */
1213 flush_work(&hdev->tx_work);
1214 flush_work(&hdev->rx_work);
1215
1216 if (hdev->discov_timeout > 0) {
1217 cancel_delayed_work(&hdev->discov_off);
1218 hdev->discov_timeout = 0;
1219 clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags);
1220 }
1221
1222 if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags))
1223 cancel_delayed_work(&hdev->service_cache);
1224
1225 cancel_delayed_work_sync(&hdev->le_scan_disable);
1226
1227 hci_dev_lock(hdev);
1228 inquiry_cache_flush(hdev);
1229 hci_conn_hash_flush(hdev);
1230 hci_dev_unlock(hdev);
1231
1232 hci_notify(hdev, HCI_DEV_DOWN);
1233
1234 if (hdev->flush)
1235 hdev->flush(hdev);
1236
1237 /* Reset device */
1238 skb_queue_purge(&hdev->cmd_q);
1239 atomic_set(&hdev->cmd_cnt, 1);
1240 if (!test_bit(HCI_RAW, &hdev->flags) &&
1241 test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
1242 set_bit(HCI_INIT, &hdev->flags);
1243 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT);
1244 clear_bit(HCI_INIT, &hdev->flags);
1245 }
1246
1247 /* flush cmd work */
1248 flush_work(&hdev->cmd_work);
1249
1250 /* Drop queues */
1251 skb_queue_purge(&hdev->rx_q);
1252 skb_queue_purge(&hdev->cmd_q);
1253 skb_queue_purge(&hdev->raw_q);
1254
1255 /* Drop last sent command */
1256 if (hdev->sent_cmd) {
1257 del_timer_sync(&hdev->cmd_timer);
1258 kfree_skb(hdev->sent_cmd);
1259 hdev->sent_cmd = NULL;
1260 }
1261
1262 kfree_skb(hdev->recv_evt);
1263 hdev->recv_evt = NULL;
1264
1265 /* After this point our queues are empty
1266 * and no tasks are scheduled. */
1267 hdev->close(hdev);
1268
1269 /* Clear flags */
1270 hdev->flags = 0;
1271 hdev->dev_flags &= ~HCI_PERSISTENT_MASK;
1272
1273 if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags) &&
1274 mgmt_valid_hdev(hdev)) {
1275 hci_dev_lock(hdev);
1276 mgmt_powered(hdev, 0);
1277 hci_dev_unlock(hdev);
1278 }
1279
1280 /* Controller radio is available but is currently powered down */
1281 hdev->amp_status = 0;
1282
1283 memset(hdev->eir, 0, sizeof(hdev->eir));
1284 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1285
1286 hci_req_unlock(hdev);
1287
1288 hci_dev_put(hdev);
1289 return 0;
1290 }
1291
1292 int hci_dev_close(__u16 dev)
1293 {
1294 struct hci_dev *hdev;
1295 int err;
1296
1297 hdev = hci_dev_get(dev);
1298 if (!hdev)
1299 return -ENODEV;
1300
1301 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1302 cancel_delayed_work(&hdev->power_off);
1303
1304 err = hci_dev_do_close(hdev);
1305
1306 hci_dev_put(hdev);
1307 return err;
1308 }
1309
1310 int hci_dev_reset(__u16 dev)
1311 {
1312 struct hci_dev *hdev;
1313 int ret = 0;
1314
1315 hdev = hci_dev_get(dev);
1316 if (!hdev)
1317 return -ENODEV;
1318
1319 hci_req_lock(hdev);
1320
1321 if (!test_bit(HCI_UP, &hdev->flags))
1322 goto done;
1323
1324 /* Drop queues */
1325 skb_queue_purge(&hdev->rx_q);
1326 skb_queue_purge(&hdev->cmd_q);
1327
1328 hci_dev_lock(hdev);
1329 inquiry_cache_flush(hdev);
1330 hci_conn_hash_flush(hdev);
1331 hci_dev_unlock(hdev);
1332
1333 if (hdev->flush)
1334 hdev->flush(hdev);
1335
1336 atomic_set(&hdev->cmd_cnt, 1);
1337 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1338
1339 if (!test_bit(HCI_RAW, &hdev->flags))
1340 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT);
1341
1342 done:
1343 hci_req_unlock(hdev);
1344 hci_dev_put(hdev);
1345 return ret;
1346 }
1347
1348 int hci_dev_reset_stat(__u16 dev)
1349 {
1350 struct hci_dev *hdev;
1351 int ret = 0;
1352
1353 hdev = hci_dev_get(dev);
1354 if (!hdev)
1355 return -ENODEV;
1356
1357 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1358
1359 hci_dev_put(hdev);
1360
1361 return ret;
1362 }
1363
1364 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1365 {
1366 struct hci_dev *hdev;
1367 struct hci_dev_req dr;
1368 int err = 0;
1369
1370 if (copy_from_user(&dr, arg, sizeof(dr)))
1371 return -EFAULT;
1372
1373 hdev = hci_dev_get(dr.dev_id);
1374 if (!hdev)
1375 return -ENODEV;
1376
1377 switch (cmd) {
1378 case HCISETAUTH:
1379 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1380 HCI_INIT_TIMEOUT);
1381 break;
1382
1383 case HCISETENCRYPT:
1384 if (!lmp_encrypt_capable(hdev)) {
1385 err = -EOPNOTSUPP;
1386 break;
1387 }
1388
1389 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1390 /* Auth must be enabled first */
1391 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1392 HCI_INIT_TIMEOUT);
1393 if (err)
1394 break;
1395 }
1396
1397 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1398 HCI_INIT_TIMEOUT);
1399 break;
1400
1401 case HCISETSCAN:
1402 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1403 HCI_INIT_TIMEOUT);
1404 break;
1405
1406 case HCISETLINKPOL:
1407 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1408 HCI_INIT_TIMEOUT);
1409 break;
1410
1411 case HCISETLINKMODE:
1412 hdev->link_mode = ((__u16) dr.dev_opt) &
1413 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1414 break;
1415
1416 case HCISETPTYPE:
1417 hdev->pkt_type = (__u16) dr.dev_opt;
1418 break;
1419
1420 case HCISETACLMTU:
1421 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1422 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1423 break;
1424
1425 case HCISETSCOMTU:
1426 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1427 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1428 break;
1429
1430 default:
1431 err = -EINVAL;
1432 break;
1433 }
1434
1435 hci_dev_put(hdev);
1436 return err;
1437 }
1438
1439 int hci_get_dev_list(void __user *arg)
1440 {
1441 struct hci_dev *hdev;
1442 struct hci_dev_list_req *dl;
1443 struct hci_dev_req *dr;
1444 int n = 0, size, err;
1445 __u16 dev_num;
1446
1447 if (get_user(dev_num, (__u16 __user *) arg))
1448 return -EFAULT;
1449
1450 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1451 return -EINVAL;
1452
1453 size = sizeof(*dl) + dev_num * sizeof(*dr);
1454
1455 dl = kzalloc(size, GFP_KERNEL);
1456 if (!dl)
1457 return -ENOMEM;
1458
1459 dr = dl->dev_req;
1460
1461 read_lock(&hci_dev_list_lock);
1462 list_for_each_entry(hdev, &hci_dev_list, list) {
1463 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1464 cancel_delayed_work(&hdev->power_off);
1465
1466 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1467 set_bit(HCI_PAIRABLE, &hdev->dev_flags);
1468
1469 (dr + n)->dev_id = hdev->id;
1470 (dr + n)->dev_opt = hdev->flags;
1471
1472 if (++n >= dev_num)
1473 break;
1474 }
1475 read_unlock(&hci_dev_list_lock);
1476
1477 dl->dev_num = n;
1478 size = sizeof(*dl) + n * sizeof(*dr);
1479
1480 err = copy_to_user(arg, dl, size);
1481 kfree(dl);
1482
1483 return err ? -EFAULT : 0;
1484 }
1485
1486 int hci_get_dev_info(void __user *arg)
1487 {
1488 struct hci_dev *hdev;
1489 struct hci_dev_info di;
1490 int err = 0;
1491
1492 if (copy_from_user(&di, arg, sizeof(di)))
1493 return -EFAULT;
1494
1495 hdev = hci_dev_get(di.dev_id);
1496 if (!hdev)
1497 return -ENODEV;
1498
1499 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1500 cancel_delayed_work_sync(&hdev->power_off);
1501
1502 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1503 set_bit(HCI_PAIRABLE, &hdev->dev_flags);
1504
1505 strcpy(di.name, hdev->name);
1506 di.bdaddr = hdev->bdaddr;
1507 di.type = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
1508 di.flags = hdev->flags;
1509 di.pkt_type = hdev->pkt_type;
1510 if (lmp_bredr_capable(hdev)) {
1511 di.acl_mtu = hdev->acl_mtu;
1512 di.acl_pkts = hdev->acl_pkts;
1513 di.sco_mtu = hdev->sco_mtu;
1514 di.sco_pkts = hdev->sco_pkts;
1515 } else {
1516 di.acl_mtu = hdev->le_mtu;
1517 di.acl_pkts = hdev->le_pkts;
1518 di.sco_mtu = 0;
1519 di.sco_pkts = 0;
1520 }
1521 di.link_policy = hdev->link_policy;
1522 di.link_mode = hdev->link_mode;
1523
1524 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1525 memcpy(&di.features, &hdev->features, sizeof(di.features));
1526
1527 if (copy_to_user(arg, &di, sizeof(di)))
1528 err = -EFAULT;
1529
1530 hci_dev_put(hdev);
1531
1532 return err;
1533 }
1534
1535 /* ---- Interface to HCI drivers ---- */
1536
1537 static int hci_rfkill_set_block(void *data, bool blocked)
1538 {
1539 struct hci_dev *hdev = data;
1540
1541 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1542
1543 if (!blocked)
1544 return 0;
1545
1546 hci_dev_do_close(hdev);
1547
1548 return 0;
1549 }
1550
1551 static const struct rfkill_ops hci_rfkill_ops = {
1552 .set_block = hci_rfkill_set_block,
1553 };
1554
1555 static void hci_power_on(struct work_struct *work)
1556 {
1557 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
1558 int err;
1559
1560 BT_DBG("%s", hdev->name);
1561
1562 err = hci_dev_open(hdev->id);
1563 if (err < 0) {
1564 mgmt_set_powered_failed(hdev, err);
1565 return;
1566 }
1567
1568 if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1569 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1570 HCI_AUTO_OFF_TIMEOUT);
1571
1572 if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags))
1573 mgmt_index_added(hdev);
1574 }
1575
1576 static void hci_power_off(struct work_struct *work)
1577 {
1578 struct hci_dev *hdev = container_of(work, struct hci_dev,
1579 power_off.work);
1580
1581 BT_DBG("%s", hdev->name);
1582
1583 hci_dev_do_close(hdev);
1584 }
1585
1586 static void hci_discov_off(struct work_struct *work)
1587 {
1588 struct hci_dev *hdev;
1589 u8 scan = SCAN_PAGE;
1590
1591 hdev = container_of(work, struct hci_dev, discov_off.work);
1592
1593 BT_DBG("%s", hdev->name);
1594
1595 hci_dev_lock(hdev);
1596
1597 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, sizeof(scan), &scan);
1598
1599 hdev->discov_timeout = 0;
1600
1601 hci_dev_unlock(hdev);
1602 }
1603
1604 int hci_uuids_clear(struct hci_dev *hdev)
1605 {
1606 struct bt_uuid *uuid, *tmp;
1607
1608 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1609 list_del(&uuid->list);
1610 kfree(uuid);
1611 }
1612
1613 return 0;
1614 }
1615
1616 int hci_link_keys_clear(struct hci_dev *hdev)
1617 {
1618 struct list_head *p, *n;
1619
1620 list_for_each_safe(p, n, &hdev->link_keys) {
1621 struct link_key *key;
1622
1623 key = list_entry(p, struct link_key, list);
1624
1625 list_del(p);
1626 kfree(key);
1627 }
1628
1629 return 0;
1630 }
1631
1632 int hci_smp_ltks_clear(struct hci_dev *hdev)
1633 {
1634 struct smp_ltk *k, *tmp;
1635
1636 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1637 list_del(&k->list);
1638 kfree(k);
1639 }
1640
1641 return 0;
1642 }
1643
1644 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1645 {
1646 struct link_key *k;
1647
1648 list_for_each_entry(k, &hdev->link_keys, list)
1649 if (bacmp(bdaddr, &k->bdaddr) == 0)
1650 return k;
1651
1652 return NULL;
1653 }
1654
1655 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1656 u8 key_type, u8 old_key_type)
1657 {
1658 /* Legacy key */
1659 if (key_type < 0x03)
1660 return true;
1661
1662 /* Debug keys are insecure so don't store them persistently */
1663 if (key_type == HCI_LK_DEBUG_COMBINATION)
1664 return false;
1665
1666 /* Changed combination key and there's no previous one */
1667 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1668 return false;
1669
1670 /* Security mode 3 case */
1671 if (!conn)
1672 return true;
1673
1674 /* Neither local nor remote side had no-bonding as requirement */
1675 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1676 return true;
1677
1678 /* Local side had dedicated bonding as requirement */
1679 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1680 return true;
1681
1682 /* Remote side had dedicated bonding as requirement */
1683 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1684 return true;
1685
1686 /* If none of the above criteria match, then don't store the key
1687 * persistently */
1688 return false;
1689 }
1690
1691 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1692 {
1693 struct smp_ltk *k;
1694
1695 list_for_each_entry(k, &hdev->long_term_keys, list) {
1696 if (k->ediv != ediv ||
1697 memcmp(rand, k->rand, sizeof(k->rand)))
1698 continue;
1699
1700 return k;
1701 }
1702
1703 return NULL;
1704 }
1705
1706 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1707 u8 addr_type)
1708 {
1709 struct smp_ltk *k;
1710
1711 list_for_each_entry(k, &hdev->long_term_keys, list)
1712 if (addr_type == k->bdaddr_type &&
1713 bacmp(bdaddr, &k->bdaddr) == 0)
1714 return k;
1715
1716 return NULL;
1717 }
1718
1719 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1720 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1721 {
1722 struct link_key *key, *old_key;
1723 u8 old_key_type;
1724 bool persistent;
1725
1726 old_key = hci_find_link_key(hdev, bdaddr);
1727 if (old_key) {
1728 old_key_type = old_key->type;
1729 key = old_key;
1730 } else {
1731 old_key_type = conn ? conn->key_type : 0xff;
1732 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1733 if (!key)
1734 return -ENOMEM;
1735 list_add(&key->list, &hdev->link_keys);
1736 }
1737
1738 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1739
1740 /* Some buggy controller combinations generate a changed
1741 * combination key for legacy pairing even when there's no
1742 * previous key */
1743 if (type == HCI_LK_CHANGED_COMBINATION &&
1744 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1745 type = HCI_LK_COMBINATION;
1746 if (conn)
1747 conn->key_type = type;
1748 }
1749
1750 bacpy(&key->bdaddr, bdaddr);
1751 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1752 key->pin_len = pin_len;
1753
1754 if (type == HCI_LK_CHANGED_COMBINATION)
1755 key->type = old_key_type;
1756 else
1757 key->type = type;
1758
1759 if (!new_key)
1760 return 0;
1761
1762 persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1763
1764 mgmt_new_link_key(hdev, key, persistent);
1765
1766 if (conn)
1767 conn->flush_key = !persistent;
1768
1769 return 0;
1770 }
1771
1772 int hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type,
1773 int new_key, u8 authenticated, u8 tk[16], u8 enc_size, __le16
1774 ediv, u8 rand[8])
1775 {
1776 struct smp_ltk *key, *old_key;
1777
1778 if (!(type & HCI_SMP_STK) && !(type & HCI_SMP_LTK))
1779 return 0;
1780
1781 old_key = hci_find_ltk_by_addr(hdev, bdaddr, addr_type);
1782 if (old_key)
1783 key = old_key;
1784 else {
1785 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1786 if (!key)
1787 return -ENOMEM;
1788 list_add(&key->list, &hdev->long_term_keys);
1789 }
1790
1791 bacpy(&key->bdaddr, bdaddr);
1792 key->bdaddr_type = addr_type;
1793 memcpy(key->val, tk, sizeof(key->val));
1794 key->authenticated = authenticated;
1795 key->ediv = ediv;
1796 key->enc_size = enc_size;
1797 key->type = type;
1798 memcpy(key->rand, rand, sizeof(key->rand));
1799
1800 if (!new_key)
1801 return 0;
1802
1803 if (type & HCI_SMP_LTK)
1804 mgmt_new_ltk(hdev, key, 1);
1805
1806 return 0;
1807 }
1808
1809 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1810 {
1811 struct link_key *key;
1812
1813 key = hci_find_link_key(hdev, bdaddr);
1814 if (!key)
1815 return -ENOENT;
1816
1817 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1818
1819 list_del(&key->list);
1820 kfree(key);
1821
1822 return 0;
1823 }
1824
1825 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr)
1826 {
1827 struct smp_ltk *k, *tmp;
1828
1829 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1830 if (bacmp(bdaddr, &k->bdaddr))
1831 continue;
1832
1833 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1834
1835 list_del(&k->list);
1836 kfree(k);
1837 }
1838
1839 return 0;
1840 }
1841
1842 /* HCI command timer function */
1843 static void hci_cmd_timeout(unsigned long arg)
1844 {
1845 struct hci_dev *hdev = (void *) arg;
1846
1847 if (hdev->sent_cmd) {
1848 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1849 u16 opcode = __le16_to_cpu(sent->opcode);
1850
1851 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
1852 } else {
1853 BT_ERR("%s command tx timeout", hdev->name);
1854 }
1855
1856 atomic_set(&hdev->cmd_cnt, 1);
1857 queue_work(hdev->workqueue, &hdev->cmd_work);
1858 }
1859
1860 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1861 bdaddr_t *bdaddr)
1862 {
1863 struct oob_data *data;
1864
1865 list_for_each_entry(data, &hdev->remote_oob_data, list)
1866 if (bacmp(bdaddr, &data->bdaddr) == 0)
1867 return data;
1868
1869 return NULL;
1870 }
1871
1872 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1873 {
1874 struct oob_data *data;
1875
1876 data = hci_find_remote_oob_data(hdev, bdaddr);
1877 if (!data)
1878 return -ENOENT;
1879
1880 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1881
1882 list_del(&data->list);
1883 kfree(data);
1884
1885 return 0;
1886 }
1887
1888 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1889 {
1890 struct oob_data *data, *n;
1891
1892 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1893 list_del(&data->list);
1894 kfree(data);
1895 }
1896
1897 return 0;
1898 }
1899
1900 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1901 u8 *randomizer)
1902 {
1903 struct oob_data *data;
1904
1905 data = hci_find_remote_oob_data(hdev, bdaddr);
1906
1907 if (!data) {
1908 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1909 if (!data)
1910 return -ENOMEM;
1911
1912 bacpy(&data->bdaddr, bdaddr);
1913 list_add(&data->list, &hdev->remote_oob_data);
1914 }
1915
1916 memcpy(data->hash, hash, sizeof(data->hash));
1917 memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1918
1919 BT_DBG("%s for %pMR", hdev->name, bdaddr);
1920
1921 return 0;
1922 }
1923
1924 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
1925 {
1926 struct bdaddr_list *b;
1927
1928 list_for_each_entry(b, &hdev->blacklist, list)
1929 if (bacmp(bdaddr, &b->bdaddr) == 0)
1930 return b;
1931
1932 return NULL;
1933 }
1934
1935 int hci_blacklist_clear(struct hci_dev *hdev)
1936 {
1937 struct list_head *p, *n;
1938
1939 list_for_each_safe(p, n, &hdev->blacklist) {
1940 struct bdaddr_list *b;
1941
1942 b = list_entry(p, struct bdaddr_list, list);
1943
1944 list_del(p);
1945 kfree(b);
1946 }
1947
1948 return 0;
1949 }
1950
1951 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1952 {
1953 struct bdaddr_list *entry;
1954
1955 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1956 return -EBADF;
1957
1958 if (hci_blacklist_lookup(hdev, bdaddr))
1959 return -EEXIST;
1960
1961 entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1962 if (!entry)
1963 return -ENOMEM;
1964
1965 bacpy(&entry->bdaddr, bdaddr);
1966
1967 list_add(&entry->list, &hdev->blacklist);
1968
1969 return mgmt_device_blocked(hdev, bdaddr, type);
1970 }
1971
1972 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1973 {
1974 struct bdaddr_list *entry;
1975
1976 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1977 return hci_blacklist_clear(hdev);
1978
1979 entry = hci_blacklist_lookup(hdev, bdaddr);
1980 if (!entry)
1981 return -ENOENT;
1982
1983 list_del(&entry->list);
1984 kfree(entry);
1985
1986 return mgmt_device_unblocked(hdev, bdaddr, type);
1987 }
1988
1989 static void le_scan_param_req(struct hci_request *req, unsigned long opt)
1990 {
1991 struct le_scan_params *param = (struct le_scan_params *) opt;
1992 struct hci_cp_le_set_scan_param cp;
1993
1994 memset(&cp, 0, sizeof(cp));
1995 cp.type = param->type;
1996 cp.interval = cpu_to_le16(param->interval);
1997 cp.window = cpu_to_le16(param->window);
1998
1999 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(cp), &cp);
2000 }
2001
2002 static void le_scan_enable_req(struct hci_request *req, unsigned long opt)
2003 {
2004 struct hci_cp_le_set_scan_enable cp;
2005
2006 memset(&cp, 0, sizeof(cp));
2007 cp.enable = LE_SCAN_ENABLE;
2008 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2009
2010 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2011 }
2012
2013 static int hci_do_le_scan(struct hci_dev *hdev, u8 type, u16 interval,
2014 u16 window, int timeout)
2015 {
2016 long timeo = msecs_to_jiffies(3000);
2017 struct le_scan_params param;
2018 int err;
2019
2020 BT_DBG("%s", hdev->name);
2021
2022 if (test_bit(HCI_LE_SCAN, &hdev->dev_flags))
2023 return -EINPROGRESS;
2024
2025 param.type = type;
2026 param.interval = interval;
2027 param.window = window;
2028
2029 hci_req_lock(hdev);
2030
2031 err = __hci_req_sync(hdev, le_scan_param_req, (unsigned long) &param,
2032 timeo);
2033 if (!err)
2034 err = __hci_req_sync(hdev, le_scan_enable_req, 0, timeo);
2035
2036 hci_req_unlock(hdev);
2037
2038 if (err < 0)
2039 return err;
2040
2041 queue_delayed_work(hdev->workqueue, &hdev->le_scan_disable,
2042 timeout);
2043
2044 return 0;
2045 }
2046
2047 int hci_cancel_le_scan(struct hci_dev *hdev)
2048 {
2049 BT_DBG("%s", hdev->name);
2050
2051 if (!test_bit(HCI_LE_SCAN, &hdev->dev_flags))
2052 return -EALREADY;
2053
2054 if (cancel_delayed_work(&hdev->le_scan_disable)) {
2055 struct hci_cp_le_set_scan_enable cp;
2056
2057 /* Send HCI command to disable LE Scan */
2058 memset(&cp, 0, sizeof(cp));
2059 hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2060 }
2061
2062 return 0;
2063 }
2064
2065 static void le_scan_disable_work(struct work_struct *work)
2066 {
2067 struct hci_dev *hdev = container_of(work, struct hci_dev,
2068 le_scan_disable.work);
2069 struct hci_cp_le_set_scan_enable cp;
2070
2071 BT_DBG("%s", hdev->name);
2072
2073 memset(&cp, 0, sizeof(cp));
2074
2075 hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2076 }
2077
2078 static void le_scan_work(struct work_struct *work)
2079 {
2080 struct hci_dev *hdev = container_of(work, struct hci_dev, le_scan);
2081 struct le_scan_params *param = &hdev->le_scan_params;
2082
2083 BT_DBG("%s", hdev->name);
2084
2085 hci_do_le_scan(hdev, param->type, param->interval, param->window,
2086 param->timeout);
2087 }
2088
2089 int hci_le_scan(struct hci_dev *hdev, u8 type, u16 interval, u16 window,
2090 int timeout)
2091 {
2092 struct le_scan_params *param = &hdev->le_scan_params;
2093
2094 BT_DBG("%s", hdev->name);
2095
2096 if (test_bit(HCI_LE_PERIPHERAL, &hdev->dev_flags))
2097 return -ENOTSUPP;
2098
2099 if (work_busy(&hdev->le_scan))
2100 return -EINPROGRESS;
2101
2102 param->type = type;
2103 param->interval = interval;
2104 param->window = window;
2105 param->timeout = timeout;
2106
2107 queue_work(system_long_wq, &hdev->le_scan);
2108
2109 return 0;
2110 }
2111
2112 /* Alloc HCI device */
2113 struct hci_dev *hci_alloc_dev(void)
2114 {
2115 struct hci_dev *hdev;
2116
2117 hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
2118 if (!hdev)
2119 return NULL;
2120
2121 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2122 hdev->esco_type = (ESCO_HV1);
2123 hdev->link_mode = (HCI_LM_ACCEPT);
2124 hdev->io_capability = 0x03; /* No Input No Output */
2125 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2126 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2127
2128 hdev->sniff_max_interval = 800;
2129 hdev->sniff_min_interval = 80;
2130
2131 mutex_init(&hdev->lock);
2132 mutex_init(&hdev->req_lock);
2133
2134 INIT_LIST_HEAD(&hdev->mgmt_pending);
2135 INIT_LIST_HEAD(&hdev->blacklist);
2136 INIT_LIST_HEAD(&hdev->uuids);
2137 INIT_LIST_HEAD(&hdev->link_keys);
2138 INIT_LIST_HEAD(&hdev->long_term_keys);
2139 INIT_LIST_HEAD(&hdev->remote_oob_data);
2140 INIT_LIST_HEAD(&hdev->conn_hash.list);
2141
2142 INIT_WORK(&hdev->rx_work, hci_rx_work);
2143 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2144 INIT_WORK(&hdev->tx_work, hci_tx_work);
2145 INIT_WORK(&hdev->power_on, hci_power_on);
2146 INIT_WORK(&hdev->le_scan, le_scan_work);
2147
2148 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2149 INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
2150 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2151
2152 skb_queue_head_init(&hdev->rx_q);
2153 skb_queue_head_init(&hdev->cmd_q);
2154 skb_queue_head_init(&hdev->raw_q);
2155
2156 init_waitqueue_head(&hdev->req_wait_q);
2157
2158 setup_timer(&hdev->cmd_timer, hci_cmd_timeout, (unsigned long) hdev);
2159
2160 hci_init_sysfs(hdev);
2161 discovery_init(hdev);
2162
2163 return hdev;
2164 }
2165 EXPORT_SYMBOL(hci_alloc_dev);
2166
2167 /* Free HCI device */
2168 void hci_free_dev(struct hci_dev *hdev)
2169 {
2170 /* will free via device release */
2171 put_device(&hdev->dev);
2172 }
2173 EXPORT_SYMBOL(hci_free_dev);
2174
2175 /* Register HCI device */
2176 int hci_register_dev(struct hci_dev *hdev)
2177 {
2178 int id, error;
2179
2180 if (!hdev->open || !hdev->close)
2181 return -EINVAL;
2182
2183 /* Do not allow HCI_AMP devices to register at index 0,
2184 * so the index can be used as the AMP controller ID.
2185 */
2186 switch (hdev->dev_type) {
2187 case HCI_BREDR:
2188 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
2189 break;
2190 case HCI_AMP:
2191 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
2192 break;
2193 default:
2194 return -EINVAL;
2195 }
2196
2197 if (id < 0)
2198 return id;
2199
2200 sprintf(hdev->name, "hci%d", id);
2201 hdev->id = id;
2202
2203 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2204
2205 write_lock(&hci_dev_list_lock);
2206 list_add(&hdev->list, &hci_dev_list);
2207 write_unlock(&hci_dev_list_lock);
2208
2209 hdev->workqueue = alloc_workqueue(hdev->name, WQ_HIGHPRI | WQ_UNBOUND |
2210 WQ_MEM_RECLAIM, 1);
2211 if (!hdev->workqueue) {
2212 error = -ENOMEM;
2213 goto err;
2214 }
2215
2216 hdev->req_workqueue = alloc_workqueue(hdev->name,
2217 WQ_HIGHPRI | WQ_UNBOUND |
2218 WQ_MEM_RECLAIM, 1);
2219 if (!hdev->req_workqueue) {
2220 destroy_workqueue(hdev->workqueue);
2221 error = -ENOMEM;
2222 goto err;
2223 }
2224
2225 error = hci_add_sysfs(hdev);
2226 if (error < 0)
2227 goto err_wqueue;
2228
2229 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2230 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2231 hdev);
2232 if (hdev->rfkill) {
2233 if (rfkill_register(hdev->rfkill) < 0) {
2234 rfkill_destroy(hdev->rfkill);
2235 hdev->rfkill = NULL;
2236 }
2237 }
2238
2239 set_bit(HCI_SETUP, &hdev->dev_flags);
2240
2241 if (hdev->dev_type != HCI_AMP)
2242 set_bit(HCI_AUTO_OFF, &hdev->dev_flags);
2243
2244 hci_notify(hdev, HCI_DEV_REG);
2245 hci_dev_hold(hdev);
2246
2247 queue_work(hdev->req_workqueue, &hdev->power_on);
2248
2249 return id;
2250
2251 err_wqueue:
2252 destroy_workqueue(hdev->workqueue);
2253 destroy_workqueue(hdev->req_workqueue);
2254 err:
2255 ida_simple_remove(&hci_index_ida, hdev->id);
2256 write_lock(&hci_dev_list_lock);
2257 list_del(&hdev->list);
2258 write_unlock(&hci_dev_list_lock);
2259
2260 return error;
2261 }
2262 EXPORT_SYMBOL(hci_register_dev);
2263
2264 /* Unregister HCI device */
2265 void hci_unregister_dev(struct hci_dev *hdev)
2266 {
2267 int i, id;
2268
2269 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2270
2271 set_bit(HCI_UNREGISTER, &hdev->dev_flags);
2272
2273 id = hdev->id;
2274
2275 write_lock(&hci_dev_list_lock);
2276 list_del(&hdev->list);
2277 write_unlock(&hci_dev_list_lock);
2278
2279 hci_dev_do_close(hdev);
2280
2281 for (i = 0; i < NUM_REASSEMBLY; i++)
2282 kfree_skb(hdev->reassembly[i]);
2283
2284 cancel_work_sync(&hdev->power_on);
2285
2286 if (!test_bit(HCI_INIT, &hdev->flags) &&
2287 !test_bit(HCI_SETUP, &hdev->dev_flags)) {
2288 hci_dev_lock(hdev);
2289 mgmt_index_removed(hdev);
2290 hci_dev_unlock(hdev);
2291 }
2292
2293 /* mgmt_index_removed should take care of emptying the
2294 * pending list */
2295 BUG_ON(!list_empty(&hdev->mgmt_pending));
2296
2297 hci_notify(hdev, HCI_DEV_UNREG);
2298
2299 if (hdev->rfkill) {
2300 rfkill_unregister(hdev->rfkill);
2301 rfkill_destroy(hdev->rfkill);
2302 }
2303
2304 hci_del_sysfs(hdev);
2305
2306 destroy_workqueue(hdev->workqueue);
2307 destroy_workqueue(hdev->req_workqueue);
2308
2309 hci_dev_lock(hdev);
2310 hci_blacklist_clear(hdev);
2311 hci_uuids_clear(hdev);
2312 hci_link_keys_clear(hdev);
2313 hci_smp_ltks_clear(hdev);
2314 hci_remote_oob_data_clear(hdev);
2315 hci_dev_unlock(hdev);
2316
2317 hci_dev_put(hdev);
2318
2319 ida_simple_remove(&hci_index_ida, id);
2320 }
2321 EXPORT_SYMBOL(hci_unregister_dev);
2322
2323 /* Suspend HCI device */
2324 int hci_suspend_dev(struct hci_dev *hdev)
2325 {
2326 hci_notify(hdev, HCI_DEV_SUSPEND);
2327 return 0;
2328 }
2329 EXPORT_SYMBOL(hci_suspend_dev);
2330
2331 /* Resume HCI device */
2332 int hci_resume_dev(struct hci_dev *hdev)
2333 {
2334 hci_notify(hdev, HCI_DEV_RESUME);
2335 return 0;
2336 }
2337 EXPORT_SYMBOL(hci_resume_dev);
2338
2339 /* Receive frame from HCI drivers */
2340 int hci_recv_frame(struct sk_buff *skb)
2341 {
2342 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
2343 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2344 && !test_bit(HCI_INIT, &hdev->flags))) {
2345 kfree_skb(skb);
2346 return -ENXIO;
2347 }
2348
2349 /* Incoming skb */
2350 bt_cb(skb)->incoming = 1;
2351
2352 /* Time stamp */
2353 __net_timestamp(skb);
2354
2355 skb_queue_tail(&hdev->rx_q, skb);
2356 queue_work(hdev->workqueue, &hdev->rx_work);
2357
2358 return 0;
2359 }
2360 EXPORT_SYMBOL(hci_recv_frame);
2361
2362 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
2363 int count, __u8 index)
2364 {
2365 int len = 0;
2366 int hlen = 0;
2367 int remain = count;
2368 struct sk_buff *skb;
2369 struct bt_skb_cb *scb;
2370
2371 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
2372 index >= NUM_REASSEMBLY)
2373 return -EILSEQ;
2374
2375 skb = hdev->reassembly[index];
2376
2377 if (!skb) {
2378 switch (type) {
2379 case HCI_ACLDATA_PKT:
2380 len = HCI_MAX_FRAME_SIZE;
2381 hlen = HCI_ACL_HDR_SIZE;
2382 break;
2383 case HCI_EVENT_PKT:
2384 len = HCI_MAX_EVENT_SIZE;
2385 hlen = HCI_EVENT_HDR_SIZE;
2386 break;
2387 case HCI_SCODATA_PKT:
2388 len = HCI_MAX_SCO_SIZE;
2389 hlen = HCI_SCO_HDR_SIZE;
2390 break;
2391 }
2392
2393 skb = bt_skb_alloc(len, GFP_ATOMIC);
2394 if (!skb)
2395 return -ENOMEM;
2396
2397 scb = (void *) skb->cb;
2398 scb->expect = hlen;
2399 scb->pkt_type = type;
2400
2401 skb->dev = (void *) hdev;
2402 hdev->reassembly[index] = skb;
2403 }
2404
2405 while (count) {
2406 scb = (void *) skb->cb;
2407 len = min_t(uint, scb->expect, count);
2408
2409 memcpy(skb_put(skb, len), data, len);
2410
2411 count -= len;
2412 data += len;
2413 scb->expect -= len;
2414 remain = count;
2415
2416 switch (type) {
2417 case HCI_EVENT_PKT:
2418 if (skb->len == HCI_EVENT_HDR_SIZE) {
2419 struct hci_event_hdr *h = hci_event_hdr(skb);
2420 scb->expect = h->plen;
2421
2422 if (skb_tailroom(skb) < scb->expect) {
2423 kfree_skb(skb);
2424 hdev->reassembly[index] = NULL;
2425 return -ENOMEM;
2426 }
2427 }
2428 break;
2429
2430 case HCI_ACLDATA_PKT:
2431 if (skb->len == HCI_ACL_HDR_SIZE) {
2432 struct hci_acl_hdr *h = hci_acl_hdr(skb);
2433 scb->expect = __le16_to_cpu(h->dlen);
2434
2435 if (skb_tailroom(skb) < scb->expect) {
2436 kfree_skb(skb);
2437 hdev->reassembly[index] = NULL;
2438 return -ENOMEM;
2439 }
2440 }
2441 break;
2442
2443 case HCI_SCODATA_PKT:
2444 if (skb->len == HCI_SCO_HDR_SIZE) {
2445 struct hci_sco_hdr *h = hci_sco_hdr(skb);
2446 scb->expect = h->dlen;
2447
2448 if (skb_tailroom(skb) < scb->expect) {
2449 kfree_skb(skb);
2450 hdev->reassembly[index] = NULL;
2451 return -ENOMEM;
2452 }
2453 }
2454 break;
2455 }
2456
2457 if (scb->expect == 0) {
2458 /* Complete frame */
2459
2460 bt_cb(skb)->pkt_type = type;
2461 hci_recv_frame(skb);
2462
2463 hdev->reassembly[index] = NULL;
2464 return remain;
2465 }
2466 }
2467
2468 return remain;
2469 }
2470
2471 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
2472 {
2473 int rem = 0;
2474
2475 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
2476 return -EILSEQ;
2477
2478 while (count) {
2479 rem = hci_reassembly(hdev, type, data, count, type - 1);
2480 if (rem < 0)
2481 return rem;
2482
2483 data += (count - rem);
2484 count = rem;
2485 }
2486
2487 return rem;
2488 }
2489 EXPORT_SYMBOL(hci_recv_fragment);
2490
2491 #define STREAM_REASSEMBLY 0
2492
2493 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
2494 {
2495 int type;
2496 int rem = 0;
2497
2498 while (count) {
2499 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
2500
2501 if (!skb) {
2502 struct { char type; } *pkt;
2503
2504 /* Start of the frame */
2505 pkt = data;
2506 type = pkt->type;
2507
2508 data++;
2509 count--;
2510 } else
2511 type = bt_cb(skb)->pkt_type;
2512
2513 rem = hci_reassembly(hdev, type, data, count,
2514 STREAM_REASSEMBLY);
2515 if (rem < 0)
2516 return rem;
2517
2518 data += (count - rem);
2519 count = rem;
2520 }
2521
2522 return rem;
2523 }
2524 EXPORT_SYMBOL(hci_recv_stream_fragment);
2525
2526 /* ---- Interface to upper protocols ---- */
2527
2528 int hci_register_cb(struct hci_cb *cb)
2529 {
2530 BT_DBG("%p name %s", cb, cb->name);
2531
2532 write_lock(&hci_cb_list_lock);
2533 list_add(&cb->list, &hci_cb_list);
2534 write_unlock(&hci_cb_list_lock);
2535
2536 return 0;
2537 }
2538 EXPORT_SYMBOL(hci_register_cb);
2539
2540 int hci_unregister_cb(struct hci_cb *cb)
2541 {
2542 BT_DBG("%p name %s", cb, cb->name);
2543
2544 write_lock(&hci_cb_list_lock);
2545 list_del(&cb->list);
2546 write_unlock(&hci_cb_list_lock);
2547
2548 return 0;
2549 }
2550 EXPORT_SYMBOL(hci_unregister_cb);
2551
2552 static int hci_send_frame(struct sk_buff *skb)
2553 {
2554 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
2555
2556 if (!hdev) {
2557 kfree_skb(skb);
2558 return -ENODEV;
2559 }
2560
2561 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
2562
2563 /* Time stamp */
2564 __net_timestamp(skb);
2565
2566 /* Send copy to monitor */
2567 hci_send_to_monitor(hdev, skb);
2568
2569 if (atomic_read(&hdev->promisc)) {
2570 /* Send copy to the sockets */
2571 hci_send_to_sock(hdev, skb);
2572 }
2573
2574 /* Get rid of skb owner, prior to sending to the driver. */
2575 skb_orphan(skb);
2576
2577 return hdev->send(skb);
2578 }
2579
2580 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
2581 {
2582 skb_queue_head_init(&req->cmd_q);
2583 req->hdev = hdev;
2584 req->err = 0;
2585 }
2586
2587 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
2588 {
2589 struct hci_dev *hdev = req->hdev;
2590 struct sk_buff *skb;
2591 unsigned long flags;
2592
2593 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
2594
2595 /* If an error occured during request building, remove all HCI
2596 * commands queued on the HCI request queue.
2597 */
2598 if (req->err) {
2599 skb_queue_purge(&req->cmd_q);
2600 return req->err;
2601 }
2602
2603 /* Do not allow empty requests */
2604 if (skb_queue_empty(&req->cmd_q))
2605 return -ENODATA;
2606
2607 skb = skb_peek_tail(&req->cmd_q);
2608 bt_cb(skb)->req.complete = complete;
2609
2610 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
2611 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
2612 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
2613
2614 queue_work(hdev->workqueue, &hdev->cmd_work);
2615
2616 return 0;
2617 }
2618
2619 static struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode,
2620 u32 plen, const void *param)
2621 {
2622 int len = HCI_COMMAND_HDR_SIZE + plen;
2623 struct hci_command_hdr *hdr;
2624 struct sk_buff *skb;
2625
2626 skb = bt_skb_alloc(len, GFP_ATOMIC);
2627 if (!skb)
2628 return NULL;
2629
2630 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
2631 hdr->opcode = cpu_to_le16(opcode);
2632 hdr->plen = plen;
2633
2634 if (plen)
2635 memcpy(skb_put(skb, plen), param, plen);
2636
2637 BT_DBG("skb len %d", skb->len);
2638
2639 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
2640 skb->dev = (void *) hdev;
2641
2642 return skb;
2643 }
2644
2645 /* Send HCI command */
2646 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
2647 const void *param)
2648 {
2649 struct sk_buff *skb;
2650
2651 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
2652
2653 skb = hci_prepare_cmd(hdev, opcode, plen, param);
2654 if (!skb) {
2655 BT_ERR("%s no memory for command", hdev->name);
2656 return -ENOMEM;
2657 }
2658
2659 /* Stand-alone HCI commands must be flaged as
2660 * single-command requests.
2661 */
2662 bt_cb(skb)->req.start = true;
2663
2664 skb_queue_tail(&hdev->cmd_q, skb);
2665 queue_work(hdev->workqueue, &hdev->cmd_work);
2666
2667 return 0;
2668 }
2669
2670 /* Queue a command to an asynchronous HCI request */
2671 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
2672 const void *param, u8 event)
2673 {
2674 struct hci_dev *hdev = req->hdev;
2675 struct sk_buff *skb;
2676
2677 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
2678
2679 /* If an error occured during request building, there is no point in
2680 * queueing the HCI command. We can simply return.
2681 */
2682 if (req->err)
2683 return;
2684
2685 skb = hci_prepare_cmd(hdev, opcode, plen, param);
2686 if (!skb) {
2687 BT_ERR("%s no memory for command (opcode 0x%4.4x)",
2688 hdev->name, opcode);
2689 req->err = -ENOMEM;
2690 return;
2691 }
2692
2693 if (skb_queue_empty(&req->cmd_q))
2694 bt_cb(skb)->req.start = true;
2695
2696 bt_cb(skb)->req.event = event;
2697
2698 skb_queue_tail(&req->cmd_q, skb);
2699 }
2700
2701 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
2702 const void *param)
2703 {
2704 hci_req_add_ev(req, opcode, plen, param, 0);
2705 }
2706
2707 /* Get data from the previously sent command */
2708 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
2709 {
2710 struct hci_command_hdr *hdr;
2711
2712 if (!hdev->sent_cmd)
2713 return NULL;
2714
2715 hdr = (void *) hdev->sent_cmd->data;
2716
2717 if (hdr->opcode != cpu_to_le16(opcode))
2718 return NULL;
2719
2720 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
2721
2722 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
2723 }
2724
2725 /* Send ACL data */
2726 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
2727 {
2728 struct hci_acl_hdr *hdr;
2729 int len = skb->len;
2730
2731 skb_push(skb, HCI_ACL_HDR_SIZE);
2732 skb_reset_transport_header(skb);
2733 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
2734 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
2735 hdr->dlen = cpu_to_le16(len);
2736 }
2737
2738 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
2739 struct sk_buff *skb, __u16 flags)
2740 {
2741 struct hci_conn *conn = chan->conn;
2742 struct hci_dev *hdev = conn->hdev;
2743 struct sk_buff *list;
2744
2745 skb->len = skb_headlen(skb);
2746 skb->data_len = 0;
2747
2748 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2749
2750 switch (hdev->dev_type) {
2751 case HCI_BREDR:
2752 hci_add_acl_hdr(skb, conn->handle, flags);
2753 break;
2754 case HCI_AMP:
2755 hci_add_acl_hdr(skb, chan->handle, flags);
2756 break;
2757 default:
2758 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
2759 return;
2760 }
2761
2762 list = skb_shinfo(skb)->frag_list;
2763 if (!list) {
2764 /* Non fragmented */
2765 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
2766
2767 skb_queue_tail(queue, skb);
2768 } else {
2769 /* Fragmented */
2770 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2771
2772 skb_shinfo(skb)->frag_list = NULL;
2773
2774 /* Queue all fragments atomically */
2775 spin_lock(&queue->lock);
2776
2777 __skb_queue_tail(queue, skb);
2778
2779 flags &= ~ACL_START;
2780 flags |= ACL_CONT;
2781 do {
2782 skb = list; list = list->next;
2783
2784 skb->dev = (void *) hdev;
2785 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2786 hci_add_acl_hdr(skb, conn->handle, flags);
2787
2788 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2789
2790 __skb_queue_tail(queue, skb);
2791 } while (list);
2792
2793 spin_unlock(&queue->lock);
2794 }
2795 }
2796
2797 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
2798 {
2799 struct hci_dev *hdev = chan->conn->hdev;
2800
2801 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
2802
2803 skb->dev = (void *) hdev;
2804
2805 hci_queue_acl(chan, &chan->data_q, skb, flags);
2806
2807 queue_work(hdev->workqueue, &hdev->tx_work);
2808 }
2809
2810 /* Send SCO data */
2811 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2812 {
2813 struct hci_dev *hdev = conn->hdev;
2814 struct hci_sco_hdr hdr;
2815
2816 BT_DBG("%s len %d", hdev->name, skb->len);
2817
2818 hdr.handle = cpu_to_le16(conn->handle);
2819 hdr.dlen = skb->len;
2820
2821 skb_push(skb, HCI_SCO_HDR_SIZE);
2822 skb_reset_transport_header(skb);
2823 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2824
2825 skb->dev = (void *) hdev;
2826 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2827
2828 skb_queue_tail(&conn->data_q, skb);
2829 queue_work(hdev->workqueue, &hdev->tx_work);
2830 }
2831
2832 /* ---- HCI TX task (outgoing data) ---- */
2833
2834 /* HCI Connection scheduler */
2835 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
2836 int *quote)
2837 {
2838 struct hci_conn_hash *h = &hdev->conn_hash;
2839 struct hci_conn *conn = NULL, *c;
2840 unsigned int num = 0, min = ~0;
2841
2842 /* We don't have to lock device here. Connections are always
2843 * added and removed with TX task disabled. */
2844
2845 rcu_read_lock();
2846
2847 list_for_each_entry_rcu(c, &h->list, list) {
2848 if (c->type != type || skb_queue_empty(&c->data_q))
2849 continue;
2850
2851 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2852 continue;
2853
2854 num++;
2855
2856 if (c->sent < min) {
2857 min = c->sent;
2858 conn = c;
2859 }
2860
2861 if (hci_conn_num(hdev, type) == num)
2862 break;
2863 }
2864
2865 rcu_read_unlock();
2866
2867 if (conn) {
2868 int cnt, q;
2869
2870 switch (conn->type) {
2871 case ACL_LINK:
2872 cnt = hdev->acl_cnt;
2873 break;
2874 case SCO_LINK:
2875 case ESCO_LINK:
2876 cnt = hdev->sco_cnt;
2877 break;
2878 case LE_LINK:
2879 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2880 break;
2881 default:
2882 cnt = 0;
2883 BT_ERR("Unknown link type");
2884 }
2885
2886 q = cnt / num;
2887 *quote = q ? q : 1;
2888 } else
2889 *quote = 0;
2890
2891 BT_DBG("conn %p quote %d", conn, *quote);
2892 return conn;
2893 }
2894
2895 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2896 {
2897 struct hci_conn_hash *h = &hdev->conn_hash;
2898 struct hci_conn *c;
2899
2900 BT_ERR("%s link tx timeout", hdev->name);
2901
2902 rcu_read_lock();
2903
2904 /* Kill stalled connections */
2905 list_for_each_entry_rcu(c, &h->list, list) {
2906 if (c->type == type && c->sent) {
2907 BT_ERR("%s killing stalled connection %pMR",
2908 hdev->name, &c->dst);
2909 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
2910 }
2911 }
2912
2913 rcu_read_unlock();
2914 }
2915
2916 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
2917 int *quote)
2918 {
2919 struct hci_conn_hash *h = &hdev->conn_hash;
2920 struct hci_chan *chan = NULL;
2921 unsigned int num = 0, min = ~0, cur_prio = 0;
2922 struct hci_conn *conn;
2923 int cnt, q, conn_num = 0;
2924
2925 BT_DBG("%s", hdev->name);
2926
2927 rcu_read_lock();
2928
2929 list_for_each_entry_rcu(conn, &h->list, list) {
2930 struct hci_chan *tmp;
2931
2932 if (conn->type != type)
2933 continue;
2934
2935 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2936 continue;
2937
2938 conn_num++;
2939
2940 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
2941 struct sk_buff *skb;
2942
2943 if (skb_queue_empty(&tmp->data_q))
2944 continue;
2945
2946 skb = skb_peek(&tmp->data_q);
2947 if (skb->priority < cur_prio)
2948 continue;
2949
2950 if (skb->priority > cur_prio) {
2951 num = 0;
2952 min = ~0;
2953 cur_prio = skb->priority;
2954 }
2955
2956 num++;
2957
2958 if (conn->sent < min) {
2959 min = conn->sent;
2960 chan = tmp;
2961 }
2962 }
2963
2964 if (hci_conn_num(hdev, type) == conn_num)
2965 break;
2966 }
2967
2968 rcu_read_unlock();
2969
2970 if (!chan)
2971 return NULL;
2972
2973 switch (chan->conn->type) {
2974 case ACL_LINK:
2975 cnt = hdev->acl_cnt;
2976 break;
2977 case AMP_LINK:
2978 cnt = hdev->block_cnt;
2979 break;
2980 case SCO_LINK:
2981 case ESCO_LINK:
2982 cnt = hdev->sco_cnt;
2983 break;
2984 case LE_LINK:
2985 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2986 break;
2987 default:
2988 cnt = 0;
2989 BT_ERR("Unknown link type");
2990 }
2991
2992 q = cnt / num;
2993 *quote = q ? q : 1;
2994 BT_DBG("chan %p quote %d", chan, *quote);
2995 return chan;
2996 }
2997
2998 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
2999 {
3000 struct hci_conn_hash *h = &hdev->conn_hash;
3001 struct hci_conn *conn;
3002 int num = 0;
3003
3004 BT_DBG("%s", hdev->name);
3005
3006 rcu_read_lock();
3007
3008 list_for_each_entry_rcu(conn, &h->list, list) {
3009 struct hci_chan *chan;
3010
3011 if (conn->type != type)
3012 continue;
3013
3014 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3015 continue;
3016
3017 num++;
3018
3019 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3020 struct sk_buff *skb;
3021
3022 if (chan->sent) {
3023 chan->sent = 0;
3024 continue;
3025 }
3026
3027 if (skb_queue_empty(&chan->data_q))
3028 continue;
3029
3030 skb = skb_peek(&chan->data_q);
3031 if (skb->priority >= HCI_PRIO_MAX - 1)
3032 continue;
3033
3034 skb->priority = HCI_PRIO_MAX - 1;
3035
3036 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3037 skb->priority);
3038 }
3039
3040 if (hci_conn_num(hdev, type) == num)
3041 break;
3042 }
3043
3044 rcu_read_unlock();
3045
3046 }
3047
3048 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3049 {
3050 /* Calculate count of blocks used by this packet */
3051 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3052 }
3053
3054 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3055 {
3056 if (!test_bit(HCI_RAW, &hdev->flags)) {
3057 /* ACL tx timeout must be longer than maximum
3058 * link supervision timeout (40.9 seconds) */
3059 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3060 HCI_ACL_TX_TIMEOUT))
3061 hci_link_tx_to(hdev, ACL_LINK);
3062 }
3063 }
3064
3065 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3066 {
3067 unsigned int cnt = hdev->acl_cnt;
3068 struct hci_chan *chan;
3069 struct sk_buff *skb;
3070 int quote;
3071
3072 __check_timeout(hdev, cnt);
3073
3074 while (hdev->acl_cnt &&
3075 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3076 u32 priority = (skb_peek(&chan->data_q))->priority;
3077 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3078 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3079 skb->len, skb->priority);
3080
3081 /* Stop if priority has changed */
3082 if (skb->priority < priority)
3083 break;
3084
3085 skb = skb_dequeue(&chan->data_q);
3086
3087 hci_conn_enter_active_mode(chan->conn,
3088 bt_cb(skb)->force_active);
3089
3090 hci_send_frame(skb);
3091 hdev->acl_last_tx = jiffies;
3092
3093 hdev->acl_cnt--;
3094 chan->sent++;
3095 chan->conn->sent++;
3096 }
3097 }
3098
3099 if (cnt != hdev->acl_cnt)
3100 hci_prio_recalculate(hdev, ACL_LINK);
3101 }
3102
3103 static void hci_sched_acl_blk(struct hci_dev *hdev)
3104 {
3105 unsigned int cnt = hdev->block_cnt;
3106 struct hci_chan *chan;
3107 struct sk_buff *skb;
3108 int quote;
3109 u8 type;
3110
3111 __check_timeout(hdev, cnt);
3112
3113 BT_DBG("%s", hdev->name);
3114
3115 if (hdev->dev_type == HCI_AMP)
3116 type = AMP_LINK;
3117 else
3118 type = ACL_LINK;
3119
3120 while (hdev->block_cnt > 0 &&
3121 (chan = hci_chan_sent(hdev, type, &quote))) {
3122 u32 priority = (skb_peek(&chan->data_q))->priority;
3123 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3124 int blocks;
3125
3126 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3127 skb->len, skb->priority);
3128
3129 /* Stop if priority has changed */
3130 if (skb->priority < priority)
3131 break;
3132
3133 skb = skb_dequeue(&chan->data_q);
3134
3135 blocks = __get_blocks(hdev, skb);
3136 if (blocks > hdev->block_cnt)
3137 return;
3138
3139 hci_conn_enter_active_mode(chan->conn,
3140 bt_cb(skb)->force_active);
3141
3142 hci_send_frame(skb);
3143 hdev->acl_last_tx = jiffies;
3144
3145 hdev->block_cnt -= blocks;
3146 quote -= blocks;
3147
3148 chan->sent += blocks;
3149 chan->conn->sent += blocks;
3150 }
3151 }
3152
3153 if (cnt != hdev->block_cnt)
3154 hci_prio_recalculate(hdev, type);
3155 }
3156
3157 static void hci_sched_acl(struct hci_dev *hdev)
3158 {
3159 BT_DBG("%s", hdev->name);
3160
3161 /* No ACL link over BR/EDR controller */
3162 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3163 return;
3164
3165 /* No AMP link over AMP controller */
3166 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3167 return;
3168
3169 switch (hdev->flow_ctl_mode) {
3170 case HCI_FLOW_CTL_MODE_PACKET_BASED:
3171 hci_sched_acl_pkt(hdev);
3172 break;
3173
3174 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3175 hci_sched_acl_blk(hdev);
3176 break;
3177 }
3178 }
3179
3180 /* Schedule SCO */
3181 static void hci_sched_sco(struct hci_dev *hdev)
3182 {
3183 struct hci_conn *conn;
3184 struct sk_buff *skb;
3185 int quote;
3186
3187 BT_DBG("%s", hdev->name);
3188
3189 if (!hci_conn_num(hdev, SCO_LINK))
3190 return;
3191
3192 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3193 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3194 BT_DBG("skb %p len %d", skb, skb->len);
3195 hci_send_frame(skb);
3196
3197 conn->sent++;
3198 if (conn->sent == ~0)
3199 conn->sent = 0;
3200 }
3201 }
3202 }
3203
3204 static void hci_sched_esco(struct hci_dev *hdev)
3205 {
3206 struct hci_conn *conn;
3207 struct sk_buff *skb;
3208 int quote;
3209
3210 BT_DBG("%s", hdev->name);
3211
3212 if (!hci_conn_num(hdev, ESCO_LINK))
3213 return;
3214
3215 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3216 &quote))) {
3217 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3218 BT_DBG("skb %p len %d", skb, skb->len);
3219 hci_send_frame(skb);
3220
3221 conn->sent++;
3222 if (conn->sent == ~0)
3223 conn->sent = 0;
3224 }
3225 }
3226 }
3227
3228 static void hci_sched_le(struct hci_dev *hdev)
3229 {
3230 struct hci_chan *chan;
3231 struct sk_buff *skb;
3232 int quote, cnt, tmp;
3233
3234 BT_DBG("%s", hdev->name);
3235
3236 if (!hci_conn_num(hdev, LE_LINK))
3237 return;
3238
3239 if (!test_bit(HCI_RAW, &hdev->flags)) {
3240 /* LE tx timeout must be longer than maximum
3241 * link supervision timeout (40.9 seconds) */
3242 if (!hdev->le_cnt && hdev->le_pkts &&
3243 time_after(jiffies, hdev->le_last_tx + HZ * 45))
3244 hci_link_tx_to(hdev, LE_LINK);
3245 }
3246
3247 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3248 tmp = cnt;
3249 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3250 u32 priority = (skb_peek(&chan->data_q))->priority;
3251 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3252 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3253 skb->len, skb->priority);
3254
3255 /* Stop if priority has changed */
3256 if (skb->priority < priority)
3257 break;
3258
3259 skb = skb_dequeue(&chan->data_q);
3260
3261 hci_send_frame(skb);
3262 hdev->le_last_tx = jiffies;
3263
3264 cnt--;
3265 chan->sent++;
3266 chan->conn->sent++;
3267 }
3268 }
3269
3270 if (hdev->le_pkts)
3271 hdev->le_cnt = cnt;
3272 else
3273 hdev->acl_cnt = cnt;
3274
3275 if (cnt != tmp)
3276 hci_prio_recalculate(hdev, LE_LINK);
3277 }
3278
3279 static void hci_tx_work(struct work_struct *work)
3280 {
3281 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3282 struct sk_buff *skb;
3283
3284 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3285 hdev->sco_cnt, hdev->le_cnt);
3286
3287 /* Schedule queues and send stuff to HCI driver */
3288
3289 hci_sched_acl(hdev);
3290
3291 hci_sched_sco(hdev);
3292
3293 hci_sched_esco(hdev);
3294
3295 hci_sched_le(hdev);
3296
3297 /* Send next queued raw (unknown type) packet */
3298 while ((skb = skb_dequeue(&hdev->raw_q)))
3299 hci_send_frame(skb);
3300 }
3301
3302 /* ----- HCI RX task (incoming data processing) ----- */
3303
3304 /* ACL data packet */
3305 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3306 {
3307 struct hci_acl_hdr *hdr = (void *) skb->data;
3308 struct hci_conn *conn;
3309 __u16 handle, flags;
3310
3311 skb_pull(skb, HCI_ACL_HDR_SIZE);
3312
3313 handle = __le16_to_cpu(hdr->handle);
3314 flags = hci_flags(handle);
3315 handle = hci_handle(handle);
3316
3317 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3318 handle, flags);
3319
3320 hdev->stat.acl_rx++;
3321
3322 hci_dev_lock(hdev);
3323 conn = hci_conn_hash_lookup_handle(hdev, handle);
3324 hci_dev_unlock(hdev);
3325
3326 if (conn) {
3327 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3328
3329 /* Send to upper protocol */
3330 l2cap_recv_acldata(conn, skb, flags);
3331 return;
3332 } else {
3333 BT_ERR("%s ACL packet for unknown connection handle %d",
3334 hdev->name, handle);
3335 }
3336
3337 kfree_skb(skb);
3338 }
3339
3340 /* SCO data packet */
3341 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3342 {
3343 struct hci_sco_hdr *hdr = (void *) skb->data;
3344 struct hci_conn *conn;
3345 __u16 handle;
3346
3347 skb_pull(skb, HCI_SCO_HDR_SIZE);
3348
3349 handle = __le16_to_cpu(hdr->handle);
3350
3351 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
3352
3353 hdev->stat.sco_rx++;
3354
3355 hci_dev_lock(hdev);
3356 conn = hci_conn_hash_lookup_handle(hdev, handle);
3357 hci_dev_unlock(hdev);
3358
3359 if (conn) {
3360 /* Send to upper protocol */
3361 sco_recv_scodata(conn, skb);
3362 return;
3363 } else {
3364 BT_ERR("%s SCO packet for unknown connection handle %d",
3365 hdev->name, handle);
3366 }
3367
3368 kfree_skb(skb);
3369 }
3370
3371 static bool hci_req_is_complete(struct hci_dev *hdev)
3372 {
3373 struct sk_buff *skb;
3374
3375 skb = skb_peek(&hdev->cmd_q);
3376 if (!skb)
3377 return true;
3378
3379 return bt_cb(skb)->req.start;
3380 }
3381
3382 static void hci_resend_last(struct hci_dev *hdev)
3383 {
3384 struct hci_command_hdr *sent;
3385 struct sk_buff *skb;
3386 u16 opcode;
3387
3388 if (!hdev->sent_cmd)
3389 return;
3390
3391 sent = (void *) hdev->sent_cmd->data;
3392 opcode = __le16_to_cpu(sent->opcode);
3393 if (opcode == HCI_OP_RESET)
3394 return;
3395
3396 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3397 if (!skb)
3398 return;
3399
3400 skb_queue_head(&hdev->cmd_q, skb);
3401 queue_work(hdev->workqueue, &hdev->cmd_work);
3402 }
3403
3404 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status)
3405 {
3406 hci_req_complete_t req_complete = NULL;
3407 struct sk_buff *skb;
3408 unsigned long flags;
3409
3410 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3411
3412 /* If the completed command doesn't match the last one that was
3413 * sent we need to do special handling of it.
3414 */
3415 if (!hci_sent_cmd_data(hdev, opcode)) {
3416 /* Some CSR based controllers generate a spontaneous
3417 * reset complete event during init and any pending
3418 * command will never be completed. In such a case we
3419 * need to resend whatever was the last sent
3420 * command.
3421 */
3422 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3423 hci_resend_last(hdev);
3424
3425 return;
3426 }
3427
3428 /* If the command succeeded and there's still more commands in
3429 * this request the request is not yet complete.
3430 */
3431 if (!status && !hci_req_is_complete(hdev))
3432 return;
3433
3434 /* If this was the last command in a request the complete
3435 * callback would be found in hdev->sent_cmd instead of the
3436 * command queue (hdev->cmd_q).
3437 */
3438 if (hdev->sent_cmd) {
3439 req_complete = bt_cb(hdev->sent_cmd)->req.complete;
3440 if (req_complete)
3441 goto call_complete;
3442 }
3443
3444 /* Remove all pending commands belonging to this request */
3445 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3446 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3447 if (bt_cb(skb)->req.start) {
3448 __skb_queue_head(&hdev->cmd_q, skb);
3449 break;
3450 }
3451
3452 req_complete = bt_cb(skb)->req.complete;
3453 kfree_skb(skb);
3454 }
3455 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3456
3457 call_complete:
3458 if (req_complete)
3459 req_complete(hdev, status);
3460 }
3461
3462 static void hci_rx_work(struct work_struct *work)
3463 {
3464 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3465 struct sk_buff *skb;
3466
3467 BT_DBG("%s", hdev->name);
3468
3469 while ((skb = skb_dequeue(&hdev->rx_q))) {
3470 /* Send copy to monitor */
3471 hci_send_to_monitor(hdev, skb);
3472
3473 if (atomic_read(&hdev->promisc)) {
3474 /* Send copy to the sockets */
3475 hci_send_to_sock(hdev, skb);
3476 }
3477
3478 if (test_bit(HCI_RAW, &hdev->flags)) {
3479 kfree_skb(skb);
3480 continue;
3481 }
3482
3483 if (test_bit(HCI_INIT, &hdev->flags)) {
3484 /* Don't process data packets in this states. */
3485 switch (bt_cb(skb)->pkt_type) {
3486 case HCI_ACLDATA_PKT:
3487 case HCI_SCODATA_PKT:
3488 kfree_skb(skb);
3489 continue;
3490 }
3491 }
3492
3493 /* Process frame */
3494 switch (bt_cb(skb)->pkt_type) {
3495 case HCI_EVENT_PKT:
3496 BT_DBG("%s Event packet", hdev->name);
3497 hci_event_packet(hdev, skb);
3498 break;
3499
3500 case HCI_ACLDATA_PKT:
3501 BT_DBG("%s ACL data packet", hdev->name);
3502 hci_acldata_packet(hdev, skb);
3503 break;
3504
3505 case HCI_SCODATA_PKT:
3506 BT_DBG("%s SCO data packet", hdev->name);
3507 hci_scodata_packet(hdev, skb);
3508 break;
3509
3510 default:
3511 kfree_skb(skb);
3512 break;
3513 }
3514 }
3515 }
3516
3517 static void hci_cmd_work(struct work_struct *work)
3518 {
3519 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
3520 struct sk_buff *skb;
3521
3522 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
3523 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
3524
3525 /* Send queued commands */
3526 if (atomic_read(&hdev->cmd_cnt)) {
3527 skb = skb_dequeue(&hdev->cmd_q);
3528 if (!skb)
3529 return;
3530
3531 kfree_skb(hdev->sent_cmd);
3532
3533 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
3534 if (hdev->sent_cmd) {
3535 atomic_dec(&hdev->cmd_cnt);
3536 hci_send_frame(skb);
3537 if (test_bit(HCI_RESET, &hdev->flags))
3538 del_timer(&hdev->cmd_timer);
3539 else
3540 mod_timer(&hdev->cmd_timer,
3541 jiffies + HCI_CMD_TIMEOUT);
3542 } else {
3543 skb_queue_head(&hdev->cmd_q, skb);
3544 queue_work(hdev->workqueue, &hdev->cmd_work);
3545 }
3546 }
3547 }
3548
3549 int hci_do_inquiry(struct hci_dev *hdev, u8 length)
3550 {
3551 /* General inquiry access code (GIAC) */
3552 u8 lap[3] = { 0x33, 0x8b, 0x9e };
3553 struct hci_cp_inquiry cp;
3554
3555 BT_DBG("%s", hdev->name);
3556
3557 if (test_bit(HCI_INQUIRY, &hdev->flags))
3558 return -EINPROGRESS;
3559
3560 inquiry_cache_flush(hdev);
3561
3562 memset(&cp, 0, sizeof(cp));
3563 memcpy(&cp.lap, lap, sizeof(cp.lap));
3564 cp.length = length;
3565
3566 return hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
3567 }
3568
3569 int hci_cancel_inquiry(struct hci_dev *hdev)
3570 {
3571 BT_DBG("%s", hdev->name);
3572
3573 if (!test_bit(HCI_INQUIRY, &hdev->flags))
3574 return -EALREADY;
3575
3576 return hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
3577 }
3578
3579 u8 bdaddr_to_le(u8 bdaddr_type)
3580 {
3581 switch (bdaddr_type) {
3582 case BDADDR_LE_PUBLIC:
3583 return ADDR_LE_DEV_PUBLIC;
3584
3585 default:
3586 /* Fallback to LE Random address type */
3587 return ADDR_LE_DEV_RANDOM;
3588 }
3589 }