Bluetooth: Rename hci_request to hci_req_sync
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30
31 #include <linux/rfkill.h>
32
33 #include <net/bluetooth/bluetooth.h>
34 #include <net/bluetooth/hci_core.h>
35
36 static void hci_rx_work(struct work_struct *work);
37 static void hci_cmd_work(struct work_struct *work);
38 static void hci_tx_work(struct work_struct *work);
39
40 /* HCI device list */
41 LIST_HEAD(hci_dev_list);
42 DEFINE_RWLOCK(hci_dev_list_lock);
43
44 /* HCI callback list */
45 LIST_HEAD(hci_cb_list);
46 DEFINE_RWLOCK(hci_cb_list_lock);
47
48 /* HCI ID Numbering */
49 static DEFINE_IDA(hci_index_ida);
50
51 /* ---- HCI notifications ---- */
52
53 static void hci_notify(struct hci_dev *hdev, int event)
54 {
55 hci_sock_dev_event(hdev, event);
56 }
57
58 /* ---- HCI requests ---- */
59
60 void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
61 {
62 BT_DBG("%s command 0x%4.4x result 0x%2.2x", hdev->name, cmd, result);
63
64 /* If this is the init phase check if the completed command matches
65 * the last init command, and if not just return.
66 */
67 if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd) {
68 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
69 u16 opcode = __le16_to_cpu(sent->opcode);
70 struct sk_buff *skb;
71
72 /* Some CSR based controllers generate a spontaneous
73 * reset complete event during init and any pending
74 * command will never be completed. In such a case we
75 * need to resend whatever was the last sent
76 * command.
77 */
78
79 if (cmd != HCI_OP_RESET || opcode == HCI_OP_RESET)
80 return;
81
82 skb = skb_clone(hdev->sent_cmd, GFP_ATOMIC);
83 if (skb) {
84 skb_queue_head(&hdev->cmd_q, skb);
85 queue_work(hdev->workqueue, &hdev->cmd_work);
86 }
87
88 return;
89 }
90
91 if (hdev->req_status == HCI_REQ_PEND) {
92 hdev->req_result = result;
93 hdev->req_status = HCI_REQ_DONE;
94 wake_up_interruptible(&hdev->req_wait_q);
95 }
96 }
97
98 static void hci_req_cancel(struct hci_dev *hdev, int err)
99 {
100 BT_DBG("%s err 0x%2.2x", hdev->name, err);
101
102 if (hdev->req_status == HCI_REQ_PEND) {
103 hdev->req_result = err;
104 hdev->req_status = HCI_REQ_CANCELED;
105 wake_up_interruptible(&hdev->req_wait_q);
106 }
107 }
108
109 /* Execute request and wait for completion. */
110 static int __hci_req_sync(struct hci_dev *hdev,
111 void (*req)(struct hci_dev *hdev, unsigned long opt),
112 unsigned long opt, __u32 timeout)
113 {
114 DECLARE_WAITQUEUE(wait, current);
115 int err = 0;
116
117 BT_DBG("%s start", hdev->name);
118
119 hdev->req_status = HCI_REQ_PEND;
120
121 add_wait_queue(&hdev->req_wait_q, &wait);
122 set_current_state(TASK_INTERRUPTIBLE);
123
124 req(hdev, opt);
125 schedule_timeout(timeout);
126
127 remove_wait_queue(&hdev->req_wait_q, &wait);
128
129 if (signal_pending(current))
130 return -EINTR;
131
132 switch (hdev->req_status) {
133 case HCI_REQ_DONE:
134 err = -bt_to_errno(hdev->req_result);
135 break;
136
137 case HCI_REQ_CANCELED:
138 err = -hdev->req_result;
139 break;
140
141 default:
142 err = -ETIMEDOUT;
143 break;
144 }
145
146 hdev->req_status = hdev->req_result = 0;
147
148 BT_DBG("%s end: err %d", hdev->name, err);
149
150 return err;
151 }
152
153 static int hci_req_sync(struct hci_dev *hdev,
154 void (*req)(struct hci_dev *hdev, unsigned long opt),
155 unsigned long opt, __u32 timeout)
156 {
157 int ret;
158
159 if (!test_bit(HCI_UP, &hdev->flags))
160 return -ENETDOWN;
161
162 /* Serialize all requests */
163 hci_req_lock(hdev);
164 ret = __hci_req_sync(hdev, req, opt, timeout);
165 hci_req_unlock(hdev);
166
167 return ret;
168 }
169
170 static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
171 {
172 BT_DBG("%s %ld", hdev->name, opt);
173
174 /* Reset device */
175 set_bit(HCI_RESET, &hdev->flags);
176 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
177 }
178
179 static void bredr_init(struct hci_dev *hdev)
180 {
181 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
182
183 /* Read Local Supported Features */
184 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
185
186 /* Read Local Version */
187 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
188 }
189
190 static void amp_init(struct hci_dev *hdev)
191 {
192 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
193
194 /* Read Local Version */
195 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
196
197 /* Read Local AMP Info */
198 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
199
200 /* Read Data Blk size */
201 hci_send_cmd(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
202 }
203
204 static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
205 {
206 struct sk_buff *skb;
207
208 BT_DBG("%s %ld", hdev->name, opt);
209
210 /* Driver initialization */
211
212 /* Special commands */
213 while ((skb = skb_dequeue(&hdev->driver_init))) {
214 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
215 skb->dev = (void *) hdev;
216
217 skb_queue_tail(&hdev->cmd_q, skb);
218 queue_work(hdev->workqueue, &hdev->cmd_work);
219 }
220 skb_queue_purge(&hdev->driver_init);
221
222 /* Reset */
223 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
224 hci_reset_req(hdev, 0);
225
226 switch (hdev->dev_type) {
227 case HCI_BREDR:
228 bredr_init(hdev);
229 break;
230
231 case HCI_AMP:
232 amp_init(hdev);
233 break;
234
235 default:
236 BT_ERR("Unknown device type %d", hdev->dev_type);
237 break;
238 }
239 }
240
241 static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
242 {
243 __u8 scan = opt;
244
245 BT_DBG("%s %x", hdev->name, scan);
246
247 /* Inquiry and Page scans */
248 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
249 }
250
251 static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
252 {
253 __u8 auth = opt;
254
255 BT_DBG("%s %x", hdev->name, auth);
256
257 /* Authentication */
258 hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
259 }
260
261 static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
262 {
263 __u8 encrypt = opt;
264
265 BT_DBG("%s %x", hdev->name, encrypt);
266
267 /* Encryption */
268 hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
269 }
270
271 static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
272 {
273 __le16 policy = cpu_to_le16(opt);
274
275 BT_DBG("%s %x", hdev->name, policy);
276
277 /* Default link policy */
278 hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
279 }
280
281 /* Get HCI device by index.
282 * Device is held on return. */
283 struct hci_dev *hci_dev_get(int index)
284 {
285 struct hci_dev *hdev = NULL, *d;
286
287 BT_DBG("%d", index);
288
289 if (index < 0)
290 return NULL;
291
292 read_lock(&hci_dev_list_lock);
293 list_for_each_entry(d, &hci_dev_list, list) {
294 if (d->id == index) {
295 hdev = hci_dev_hold(d);
296 break;
297 }
298 }
299 read_unlock(&hci_dev_list_lock);
300 return hdev;
301 }
302
303 /* ---- Inquiry support ---- */
304
305 bool hci_discovery_active(struct hci_dev *hdev)
306 {
307 struct discovery_state *discov = &hdev->discovery;
308
309 switch (discov->state) {
310 case DISCOVERY_FINDING:
311 case DISCOVERY_RESOLVING:
312 return true;
313
314 default:
315 return false;
316 }
317 }
318
319 void hci_discovery_set_state(struct hci_dev *hdev, int state)
320 {
321 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
322
323 if (hdev->discovery.state == state)
324 return;
325
326 switch (state) {
327 case DISCOVERY_STOPPED:
328 if (hdev->discovery.state != DISCOVERY_STARTING)
329 mgmt_discovering(hdev, 0);
330 break;
331 case DISCOVERY_STARTING:
332 break;
333 case DISCOVERY_FINDING:
334 mgmt_discovering(hdev, 1);
335 break;
336 case DISCOVERY_RESOLVING:
337 break;
338 case DISCOVERY_STOPPING:
339 break;
340 }
341
342 hdev->discovery.state = state;
343 }
344
345 static void inquiry_cache_flush(struct hci_dev *hdev)
346 {
347 struct discovery_state *cache = &hdev->discovery;
348 struct inquiry_entry *p, *n;
349
350 list_for_each_entry_safe(p, n, &cache->all, all) {
351 list_del(&p->all);
352 kfree(p);
353 }
354
355 INIT_LIST_HEAD(&cache->unknown);
356 INIT_LIST_HEAD(&cache->resolve);
357 }
358
359 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
360 bdaddr_t *bdaddr)
361 {
362 struct discovery_state *cache = &hdev->discovery;
363 struct inquiry_entry *e;
364
365 BT_DBG("cache %p, %pMR", cache, bdaddr);
366
367 list_for_each_entry(e, &cache->all, all) {
368 if (!bacmp(&e->data.bdaddr, bdaddr))
369 return e;
370 }
371
372 return NULL;
373 }
374
375 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
376 bdaddr_t *bdaddr)
377 {
378 struct discovery_state *cache = &hdev->discovery;
379 struct inquiry_entry *e;
380
381 BT_DBG("cache %p, %pMR", cache, bdaddr);
382
383 list_for_each_entry(e, &cache->unknown, list) {
384 if (!bacmp(&e->data.bdaddr, bdaddr))
385 return e;
386 }
387
388 return NULL;
389 }
390
391 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
392 bdaddr_t *bdaddr,
393 int state)
394 {
395 struct discovery_state *cache = &hdev->discovery;
396 struct inquiry_entry *e;
397
398 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
399
400 list_for_each_entry(e, &cache->resolve, list) {
401 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
402 return e;
403 if (!bacmp(&e->data.bdaddr, bdaddr))
404 return e;
405 }
406
407 return NULL;
408 }
409
410 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
411 struct inquiry_entry *ie)
412 {
413 struct discovery_state *cache = &hdev->discovery;
414 struct list_head *pos = &cache->resolve;
415 struct inquiry_entry *p;
416
417 list_del(&ie->list);
418
419 list_for_each_entry(p, &cache->resolve, list) {
420 if (p->name_state != NAME_PENDING &&
421 abs(p->data.rssi) >= abs(ie->data.rssi))
422 break;
423 pos = &p->list;
424 }
425
426 list_add(&ie->list, pos);
427 }
428
429 bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
430 bool name_known, bool *ssp)
431 {
432 struct discovery_state *cache = &hdev->discovery;
433 struct inquiry_entry *ie;
434
435 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
436
437 hci_remove_remote_oob_data(hdev, &data->bdaddr);
438
439 if (ssp)
440 *ssp = data->ssp_mode;
441
442 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
443 if (ie) {
444 if (ie->data.ssp_mode && ssp)
445 *ssp = true;
446
447 if (ie->name_state == NAME_NEEDED &&
448 data->rssi != ie->data.rssi) {
449 ie->data.rssi = data->rssi;
450 hci_inquiry_cache_update_resolve(hdev, ie);
451 }
452
453 goto update;
454 }
455
456 /* Entry not in the cache. Add new one. */
457 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
458 if (!ie)
459 return false;
460
461 list_add(&ie->all, &cache->all);
462
463 if (name_known) {
464 ie->name_state = NAME_KNOWN;
465 } else {
466 ie->name_state = NAME_NOT_KNOWN;
467 list_add(&ie->list, &cache->unknown);
468 }
469
470 update:
471 if (name_known && ie->name_state != NAME_KNOWN &&
472 ie->name_state != NAME_PENDING) {
473 ie->name_state = NAME_KNOWN;
474 list_del(&ie->list);
475 }
476
477 memcpy(&ie->data, data, sizeof(*data));
478 ie->timestamp = jiffies;
479 cache->timestamp = jiffies;
480
481 if (ie->name_state == NAME_NOT_KNOWN)
482 return false;
483
484 return true;
485 }
486
487 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
488 {
489 struct discovery_state *cache = &hdev->discovery;
490 struct inquiry_info *info = (struct inquiry_info *) buf;
491 struct inquiry_entry *e;
492 int copied = 0;
493
494 list_for_each_entry(e, &cache->all, all) {
495 struct inquiry_data *data = &e->data;
496
497 if (copied >= num)
498 break;
499
500 bacpy(&info->bdaddr, &data->bdaddr);
501 info->pscan_rep_mode = data->pscan_rep_mode;
502 info->pscan_period_mode = data->pscan_period_mode;
503 info->pscan_mode = data->pscan_mode;
504 memcpy(info->dev_class, data->dev_class, 3);
505 info->clock_offset = data->clock_offset;
506
507 info++;
508 copied++;
509 }
510
511 BT_DBG("cache %p, copied %d", cache, copied);
512 return copied;
513 }
514
515 static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
516 {
517 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
518 struct hci_cp_inquiry cp;
519
520 BT_DBG("%s", hdev->name);
521
522 if (test_bit(HCI_INQUIRY, &hdev->flags))
523 return;
524
525 /* Start Inquiry */
526 memcpy(&cp.lap, &ir->lap, 3);
527 cp.length = ir->length;
528 cp.num_rsp = ir->num_rsp;
529 hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
530 }
531
532 int hci_inquiry(void __user *arg)
533 {
534 __u8 __user *ptr = arg;
535 struct hci_inquiry_req ir;
536 struct hci_dev *hdev;
537 int err = 0, do_inquiry = 0, max_rsp;
538 long timeo;
539 __u8 *buf;
540
541 if (copy_from_user(&ir, ptr, sizeof(ir)))
542 return -EFAULT;
543
544 hdev = hci_dev_get(ir.dev_id);
545 if (!hdev)
546 return -ENODEV;
547
548 hci_dev_lock(hdev);
549 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
550 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
551 inquiry_cache_flush(hdev);
552 do_inquiry = 1;
553 }
554 hci_dev_unlock(hdev);
555
556 timeo = ir.length * msecs_to_jiffies(2000);
557
558 if (do_inquiry) {
559 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
560 timeo);
561 if (err < 0)
562 goto done;
563 }
564
565 /* for unlimited number of responses we will use buffer with
566 * 255 entries
567 */
568 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
569
570 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
571 * copy it to the user space.
572 */
573 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
574 if (!buf) {
575 err = -ENOMEM;
576 goto done;
577 }
578
579 hci_dev_lock(hdev);
580 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
581 hci_dev_unlock(hdev);
582
583 BT_DBG("num_rsp %d", ir.num_rsp);
584
585 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
586 ptr += sizeof(ir);
587 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
588 ir.num_rsp))
589 err = -EFAULT;
590 } else
591 err = -EFAULT;
592
593 kfree(buf);
594
595 done:
596 hci_dev_put(hdev);
597 return err;
598 }
599
600 static u8 create_ad(struct hci_dev *hdev, u8 *ptr)
601 {
602 u8 ad_len = 0, flags = 0;
603 size_t name_len;
604
605 if (test_bit(HCI_LE_PERIPHERAL, &hdev->dev_flags))
606 flags |= LE_AD_GENERAL;
607
608 if (!lmp_bredr_capable(hdev))
609 flags |= LE_AD_NO_BREDR;
610
611 if (lmp_le_br_capable(hdev))
612 flags |= LE_AD_SIM_LE_BREDR_CTRL;
613
614 if (lmp_host_le_br_capable(hdev))
615 flags |= LE_AD_SIM_LE_BREDR_HOST;
616
617 if (flags) {
618 BT_DBG("adv flags 0x%02x", flags);
619
620 ptr[0] = 2;
621 ptr[1] = EIR_FLAGS;
622 ptr[2] = flags;
623
624 ad_len += 3;
625 ptr += 3;
626 }
627
628 if (hdev->adv_tx_power != HCI_TX_POWER_INVALID) {
629 ptr[0] = 2;
630 ptr[1] = EIR_TX_POWER;
631 ptr[2] = (u8) hdev->adv_tx_power;
632
633 ad_len += 3;
634 ptr += 3;
635 }
636
637 name_len = strlen(hdev->dev_name);
638 if (name_len > 0) {
639 size_t max_len = HCI_MAX_AD_LENGTH - ad_len - 2;
640
641 if (name_len > max_len) {
642 name_len = max_len;
643 ptr[1] = EIR_NAME_SHORT;
644 } else
645 ptr[1] = EIR_NAME_COMPLETE;
646
647 ptr[0] = name_len + 1;
648
649 memcpy(ptr + 2, hdev->dev_name, name_len);
650
651 ad_len += (name_len + 2);
652 ptr += (name_len + 2);
653 }
654
655 return ad_len;
656 }
657
658 int hci_update_ad(struct hci_dev *hdev)
659 {
660 struct hci_cp_le_set_adv_data cp;
661 u8 len;
662 int err;
663
664 hci_dev_lock(hdev);
665
666 if (!lmp_le_capable(hdev)) {
667 err = -EINVAL;
668 goto unlock;
669 }
670
671 memset(&cp, 0, sizeof(cp));
672
673 len = create_ad(hdev, cp.data);
674
675 if (hdev->adv_data_len == len &&
676 memcmp(cp.data, hdev->adv_data, len) == 0) {
677 err = 0;
678 goto unlock;
679 }
680
681 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
682 hdev->adv_data_len = len;
683
684 cp.length = len;
685 err = hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
686
687 unlock:
688 hci_dev_unlock(hdev);
689
690 return err;
691 }
692
693 /* ---- HCI ioctl helpers ---- */
694
695 int hci_dev_open(__u16 dev)
696 {
697 struct hci_dev *hdev;
698 int ret = 0;
699
700 hdev = hci_dev_get(dev);
701 if (!hdev)
702 return -ENODEV;
703
704 BT_DBG("%s %p", hdev->name, hdev);
705
706 hci_req_lock(hdev);
707
708 if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) {
709 ret = -ENODEV;
710 goto done;
711 }
712
713 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
714 ret = -ERFKILL;
715 goto done;
716 }
717
718 if (test_bit(HCI_UP, &hdev->flags)) {
719 ret = -EALREADY;
720 goto done;
721 }
722
723 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
724 set_bit(HCI_RAW, &hdev->flags);
725
726 /* Treat all non BR/EDR controllers as raw devices if
727 enable_hs is not set */
728 if (hdev->dev_type != HCI_BREDR && !enable_hs)
729 set_bit(HCI_RAW, &hdev->flags);
730
731 if (hdev->open(hdev)) {
732 ret = -EIO;
733 goto done;
734 }
735
736 if (!test_bit(HCI_RAW, &hdev->flags)) {
737 atomic_set(&hdev->cmd_cnt, 1);
738 set_bit(HCI_INIT, &hdev->flags);
739 hdev->init_last_cmd = 0;
740
741 ret = __hci_req_sync(hdev, hci_init_req, 0, HCI_INIT_TIMEOUT);
742
743 clear_bit(HCI_INIT, &hdev->flags);
744 }
745
746 if (!ret) {
747 hci_dev_hold(hdev);
748 set_bit(HCI_UP, &hdev->flags);
749 hci_notify(hdev, HCI_DEV_UP);
750 hci_update_ad(hdev);
751 if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
752 mgmt_valid_hdev(hdev)) {
753 hci_dev_lock(hdev);
754 mgmt_powered(hdev, 1);
755 hci_dev_unlock(hdev);
756 }
757 } else {
758 /* Init failed, cleanup */
759 flush_work(&hdev->tx_work);
760 flush_work(&hdev->cmd_work);
761 flush_work(&hdev->rx_work);
762
763 skb_queue_purge(&hdev->cmd_q);
764 skb_queue_purge(&hdev->rx_q);
765
766 if (hdev->flush)
767 hdev->flush(hdev);
768
769 if (hdev->sent_cmd) {
770 kfree_skb(hdev->sent_cmd);
771 hdev->sent_cmd = NULL;
772 }
773
774 hdev->close(hdev);
775 hdev->flags = 0;
776 }
777
778 done:
779 hci_req_unlock(hdev);
780 hci_dev_put(hdev);
781 return ret;
782 }
783
784 static int hci_dev_do_close(struct hci_dev *hdev)
785 {
786 BT_DBG("%s %p", hdev->name, hdev);
787
788 cancel_work_sync(&hdev->le_scan);
789
790 cancel_delayed_work(&hdev->power_off);
791
792 hci_req_cancel(hdev, ENODEV);
793 hci_req_lock(hdev);
794
795 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
796 del_timer_sync(&hdev->cmd_timer);
797 hci_req_unlock(hdev);
798 return 0;
799 }
800
801 /* Flush RX and TX works */
802 flush_work(&hdev->tx_work);
803 flush_work(&hdev->rx_work);
804
805 if (hdev->discov_timeout > 0) {
806 cancel_delayed_work(&hdev->discov_off);
807 hdev->discov_timeout = 0;
808 clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags);
809 }
810
811 if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags))
812 cancel_delayed_work(&hdev->service_cache);
813
814 cancel_delayed_work_sync(&hdev->le_scan_disable);
815
816 hci_dev_lock(hdev);
817 inquiry_cache_flush(hdev);
818 hci_conn_hash_flush(hdev);
819 hci_dev_unlock(hdev);
820
821 hci_notify(hdev, HCI_DEV_DOWN);
822
823 if (hdev->flush)
824 hdev->flush(hdev);
825
826 /* Reset device */
827 skb_queue_purge(&hdev->cmd_q);
828 atomic_set(&hdev->cmd_cnt, 1);
829 if (!test_bit(HCI_RAW, &hdev->flags) &&
830 test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
831 set_bit(HCI_INIT, &hdev->flags);
832 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT);
833 clear_bit(HCI_INIT, &hdev->flags);
834 }
835
836 /* flush cmd work */
837 flush_work(&hdev->cmd_work);
838
839 /* Drop queues */
840 skb_queue_purge(&hdev->rx_q);
841 skb_queue_purge(&hdev->cmd_q);
842 skb_queue_purge(&hdev->raw_q);
843
844 /* Drop last sent command */
845 if (hdev->sent_cmd) {
846 del_timer_sync(&hdev->cmd_timer);
847 kfree_skb(hdev->sent_cmd);
848 hdev->sent_cmd = NULL;
849 }
850
851 /* After this point our queues are empty
852 * and no tasks are scheduled. */
853 hdev->close(hdev);
854
855 if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags) &&
856 mgmt_valid_hdev(hdev)) {
857 hci_dev_lock(hdev);
858 mgmt_powered(hdev, 0);
859 hci_dev_unlock(hdev);
860 }
861
862 /* Clear flags */
863 hdev->flags = 0;
864
865 /* Controller radio is available but is currently powered down */
866 hdev->amp_status = 0;
867
868 memset(hdev->eir, 0, sizeof(hdev->eir));
869 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
870
871 hci_req_unlock(hdev);
872
873 hci_dev_put(hdev);
874 return 0;
875 }
876
877 int hci_dev_close(__u16 dev)
878 {
879 struct hci_dev *hdev;
880 int err;
881
882 hdev = hci_dev_get(dev);
883 if (!hdev)
884 return -ENODEV;
885
886 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
887 cancel_delayed_work(&hdev->power_off);
888
889 err = hci_dev_do_close(hdev);
890
891 hci_dev_put(hdev);
892 return err;
893 }
894
895 int hci_dev_reset(__u16 dev)
896 {
897 struct hci_dev *hdev;
898 int ret = 0;
899
900 hdev = hci_dev_get(dev);
901 if (!hdev)
902 return -ENODEV;
903
904 hci_req_lock(hdev);
905
906 if (!test_bit(HCI_UP, &hdev->flags))
907 goto done;
908
909 /* Drop queues */
910 skb_queue_purge(&hdev->rx_q);
911 skb_queue_purge(&hdev->cmd_q);
912
913 hci_dev_lock(hdev);
914 inquiry_cache_flush(hdev);
915 hci_conn_hash_flush(hdev);
916 hci_dev_unlock(hdev);
917
918 if (hdev->flush)
919 hdev->flush(hdev);
920
921 atomic_set(&hdev->cmd_cnt, 1);
922 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
923
924 if (!test_bit(HCI_RAW, &hdev->flags))
925 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT);
926
927 done:
928 hci_req_unlock(hdev);
929 hci_dev_put(hdev);
930 return ret;
931 }
932
933 int hci_dev_reset_stat(__u16 dev)
934 {
935 struct hci_dev *hdev;
936 int ret = 0;
937
938 hdev = hci_dev_get(dev);
939 if (!hdev)
940 return -ENODEV;
941
942 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
943
944 hci_dev_put(hdev);
945
946 return ret;
947 }
948
949 int hci_dev_cmd(unsigned int cmd, void __user *arg)
950 {
951 struct hci_dev *hdev;
952 struct hci_dev_req dr;
953 int err = 0;
954
955 if (copy_from_user(&dr, arg, sizeof(dr)))
956 return -EFAULT;
957
958 hdev = hci_dev_get(dr.dev_id);
959 if (!hdev)
960 return -ENODEV;
961
962 switch (cmd) {
963 case HCISETAUTH:
964 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
965 HCI_INIT_TIMEOUT);
966 break;
967
968 case HCISETENCRYPT:
969 if (!lmp_encrypt_capable(hdev)) {
970 err = -EOPNOTSUPP;
971 break;
972 }
973
974 if (!test_bit(HCI_AUTH, &hdev->flags)) {
975 /* Auth must be enabled first */
976 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
977 HCI_INIT_TIMEOUT);
978 if (err)
979 break;
980 }
981
982 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
983 HCI_INIT_TIMEOUT);
984 break;
985
986 case HCISETSCAN:
987 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
988 HCI_INIT_TIMEOUT);
989 break;
990
991 case HCISETLINKPOL:
992 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
993 HCI_INIT_TIMEOUT);
994 break;
995
996 case HCISETLINKMODE:
997 hdev->link_mode = ((__u16) dr.dev_opt) &
998 (HCI_LM_MASTER | HCI_LM_ACCEPT);
999 break;
1000
1001 case HCISETPTYPE:
1002 hdev->pkt_type = (__u16) dr.dev_opt;
1003 break;
1004
1005 case HCISETACLMTU:
1006 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1007 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1008 break;
1009
1010 case HCISETSCOMTU:
1011 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1012 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1013 break;
1014
1015 default:
1016 err = -EINVAL;
1017 break;
1018 }
1019
1020 hci_dev_put(hdev);
1021 return err;
1022 }
1023
1024 int hci_get_dev_list(void __user *arg)
1025 {
1026 struct hci_dev *hdev;
1027 struct hci_dev_list_req *dl;
1028 struct hci_dev_req *dr;
1029 int n = 0, size, err;
1030 __u16 dev_num;
1031
1032 if (get_user(dev_num, (__u16 __user *) arg))
1033 return -EFAULT;
1034
1035 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1036 return -EINVAL;
1037
1038 size = sizeof(*dl) + dev_num * sizeof(*dr);
1039
1040 dl = kzalloc(size, GFP_KERNEL);
1041 if (!dl)
1042 return -ENOMEM;
1043
1044 dr = dl->dev_req;
1045
1046 read_lock(&hci_dev_list_lock);
1047 list_for_each_entry(hdev, &hci_dev_list, list) {
1048 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1049 cancel_delayed_work(&hdev->power_off);
1050
1051 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1052 set_bit(HCI_PAIRABLE, &hdev->dev_flags);
1053
1054 (dr + n)->dev_id = hdev->id;
1055 (dr + n)->dev_opt = hdev->flags;
1056
1057 if (++n >= dev_num)
1058 break;
1059 }
1060 read_unlock(&hci_dev_list_lock);
1061
1062 dl->dev_num = n;
1063 size = sizeof(*dl) + n * sizeof(*dr);
1064
1065 err = copy_to_user(arg, dl, size);
1066 kfree(dl);
1067
1068 return err ? -EFAULT : 0;
1069 }
1070
1071 int hci_get_dev_info(void __user *arg)
1072 {
1073 struct hci_dev *hdev;
1074 struct hci_dev_info di;
1075 int err = 0;
1076
1077 if (copy_from_user(&di, arg, sizeof(di)))
1078 return -EFAULT;
1079
1080 hdev = hci_dev_get(di.dev_id);
1081 if (!hdev)
1082 return -ENODEV;
1083
1084 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1085 cancel_delayed_work_sync(&hdev->power_off);
1086
1087 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1088 set_bit(HCI_PAIRABLE, &hdev->dev_flags);
1089
1090 strcpy(di.name, hdev->name);
1091 di.bdaddr = hdev->bdaddr;
1092 di.type = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
1093 di.flags = hdev->flags;
1094 di.pkt_type = hdev->pkt_type;
1095 if (lmp_bredr_capable(hdev)) {
1096 di.acl_mtu = hdev->acl_mtu;
1097 di.acl_pkts = hdev->acl_pkts;
1098 di.sco_mtu = hdev->sco_mtu;
1099 di.sco_pkts = hdev->sco_pkts;
1100 } else {
1101 di.acl_mtu = hdev->le_mtu;
1102 di.acl_pkts = hdev->le_pkts;
1103 di.sco_mtu = 0;
1104 di.sco_pkts = 0;
1105 }
1106 di.link_policy = hdev->link_policy;
1107 di.link_mode = hdev->link_mode;
1108
1109 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1110 memcpy(&di.features, &hdev->features, sizeof(di.features));
1111
1112 if (copy_to_user(arg, &di, sizeof(di)))
1113 err = -EFAULT;
1114
1115 hci_dev_put(hdev);
1116
1117 return err;
1118 }
1119
1120 /* ---- Interface to HCI drivers ---- */
1121
1122 static int hci_rfkill_set_block(void *data, bool blocked)
1123 {
1124 struct hci_dev *hdev = data;
1125
1126 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1127
1128 if (!blocked)
1129 return 0;
1130
1131 hci_dev_do_close(hdev);
1132
1133 return 0;
1134 }
1135
1136 static const struct rfkill_ops hci_rfkill_ops = {
1137 .set_block = hci_rfkill_set_block,
1138 };
1139
1140 static void hci_power_on(struct work_struct *work)
1141 {
1142 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
1143
1144 BT_DBG("%s", hdev->name);
1145
1146 if (hci_dev_open(hdev->id) < 0)
1147 return;
1148
1149 if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1150 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1151 HCI_AUTO_OFF_TIMEOUT);
1152
1153 if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags))
1154 mgmt_index_added(hdev);
1155 }
1156
1157 static void hci_power_off(struct work_struct *work)
1158 {
1159 struct hci_dev *hdev = container_of(work, struct hci_dev,
1160 power_off.work);
1161
1162 BT_DBG("%s", hdev->name);
1163
1164 hci_dev_do_close(hdev);
1165 }
1166
1167 static void hci_discov_off(struct work_struct *work)
1168 {
1169 struct hci_dev *hdev;
1170 u8 scan = SCAN_PAGE;
1171
1172 hdev = container_of(work, struct hci_dev, discov_off.work);
1173
1174 BT_DBG("%s", hdev->name);
1175
1176 hci_dev_lock(hdev);
1177
1178 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, sizeof(scan), &scan);
1179
1180 hdev->discov_timeout = 0;
1181
1182 hci_dev_unlock(hdev);
1183 }
1184
1185 int hci_uuids_clear(struct hci_dev *hdev)
1186 {
1187 struct bt_uuid *uuid, *tmp;
1188
1189 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1190 list_del(&uuid->list);
1191 kfree(uuid);
1192 }
1193
1194 return 0;
1195 }
1196
1197 int hci_link_keys_clear(struct hci_dev *hdev)
1198 {
1199 struct list_head *p, *n;
1200
1201 list_for_each_safe(p, n, &hdev->link_keys) {
1202 struct link_key *key;
1203
1204 key = list_entry(p, struct link_key, list);
1205
1206 list_del(p);
1207 kfree(key);
1208 }
1209
1210 return 0;
1211 }
1212
1213 int hci_smp_ltks_clear(struct hci_dev *hdev)
1214 {
1215 struct smp_ltk *k, *tmp;
1216
1217 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1218 list_del(&k->list);
1219 kfree(k);
1220 }
1221
1222 return 0;
1223 }
1224
1225 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1226 {
1227 struct link_key *k;
1228
1229 list_for_each_entry(k, &hdev->link_keys, list)
1230 if (bacmp(bdaddr, &k->bdaddr) == 0)
1231 return k;
1232
1233 return NULL;
1234 }
1235
1236 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1237 u8 key_type, u8 old_key_type)
1238 {
1239 /* Legacy key */
1240 if (key_type < 0x03)
1241 return true;
1242
1243 /* Debug keys are insecure so don't store them persistently */
1244 if (key_type == HCI_LK_DEBUG_COMBINATION)
1245 return false;
1246
1247 /* Changed combination key and there's no previous one */
1248 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1249 return false;
1250
1251 /* Security mode 3 case */
1252 if (!conn)
1253 return true;
1254
1255 /* Neither local nor remote side had no-bonding as requirement */
1256 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1257 return true;
1258
1259 /* Local side had dedicated bonding as requirement */
1260 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1261 return true;
1262
1263 /* Remote side had dedicated bonding as requirement */
1264 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1265 return true;
1266
1267 /* If none of the above criteria match, then don't store the key
1268 * persistently */
1269 return false;
1270 }
1271
1272 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1273 {
1274 struct smp_ltk *k;
1275
1276 list_for_each_entry(k, &hdev->long_term_keys, list) {
1277 if (k->ediv != ediv ||
1278 memcmp(rand, k->rand, sizeof(k->rand)))
1279 continue;
1280
1281 return k;
1282 }
1283
1284 return NULL;
1285 }
1286
1287 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1288 u8 addr_type)
1289 {
1290 struct smp_ltk *k;
1291
1292 list_for_each_entry(k, &hdev->long_term_keys, list)
1293 if (addr_type == k->bdaddr_type &&
1294 bacmp(bdaddr, &k->bdaddr) == 0)
1295 return k;
1296
1297 return NULL;
1298 }
1299
1300 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1301 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1302 {
1303 struct link_key *key, *old_key;
1304 u8 old_key_type;
1305 bool persistent;
1306
1307 old_key = hci_find_link_key(hdev, bdaddr);
1308 if (old_key) {
1309 old_key_type = old_key->type;
1310 key = old_key;
1311 } else {
1312 old_key_type = conn ? conn->key_type : 0xff;
1313 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1314 if (!key)
1315 return -ENOMEM;
1316 list_add(&key->list, &hdev->link_keys);
1317 }
1318
1319 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1320
1321 /* Some buggy controller combinations generate a changed
1322 * combination key for legacy pairing even when there's no
1323 * previous key */
1324 if (type == HCI_LK_CHANGED_COMBINATION &&
1325 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1326 type = HCI_LK_COMBINATION;
1327 if (conn)
1328 conn->key_type = type;
1329 }
1330
1331 bacpy(&key->bdaddr, bdaddr);
1332 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1333 key->pin_len = pin_len;
1334
1335 if (type == HCI_LK_CHANGED_COMBINATION)
1336 key->type = old_key_type;
1337 else
1338 key->type = type;
1339
1340 if (!new_key)
1341 return 0;
1342
1343 persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1344
1345 mgmt_new_link_key(hdev, key, persistent);
1346
1347 if (conn)
1348 conn->flush_key = !persistent;
1349
1350 return 0;
1351 }
1352
1353 int hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type,
1354 int new_key, u8 authenticated, u8 tk[16], u8 enc_size, __le16
1355 ediv, u8 rand[8])
1356 {
1357 struct smp_ltk *key, *old_key;
1358
1359 if (!(type & HCI_SMP_STK) && !(type & HCI_SMP_LTK))
1360 return 0;
1361
1362 old_key = hci_find_ltk_by_addr(hdev, bdaddr, addr_type);
1363 if (old_key)
1364 key = old_key;
1365 else {
1366 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1367 if (!key)
1368 return -ENOMEM;
1369 list_add(&key->list, &hdev->long_term_keys);
1370 }
1371
1372 bacpy(&key->bdaddr, bdaddr);
1373 key->bdaddr_type = addr_type;
1374 memcpy(key->val, tk, sizeof(key->val));
1375 key->authenticated = authenticated;
1376 key->ediv = ediv;
1377 key->enc_size = enc_size;
1378 key->type = type;
1379 memcpy(key->rand, rand, sizeof(key->rand));
1380
1381 if (!new_key)
1382 return 0;
1383
1384 if (type & HCI_SMP_LTK)
1385 mgmt_new_ltk(hdev, key, 1);
1386
1387 return 0;
1388 }
1389
1390 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1391 {
1392 struct link_key *key;
1393
1394 key = hci_find_link_key(hdev, bdaddr);
1395 if (!key)
1396 return -ENOENT;
1397
1398 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1399
1400 list_del(&key->list);
1401 kfree(key);
1402
1403 return 0;
1404 }
1405
1406 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr)
1407 {
1408 struct smp_ltk *k, *tmp;
1409
1410 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1411 if (bacmp(bdaddr, &k->bdaddr))
1412 continue;
1413
1414 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1415
1416 list_del(&k->list);
1417 kfree(k);
1418 }
1419
1420 return 0;
1421 }
1422
1423 /* HCI command timer function */
1424 static void hci_cmd_timeout(unsigned long arg)
1425 {
1426 struct hci_dev *hdev = (void *) arg;
1427
1428 if (hdev->sent_cmd) {
1429 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1430 u16 opcode = __le16_to_cpu(sent->opcode);
1431
1432 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
1433 } else {
1434 BT_ERR("%s command tx timeout", hdev->name);
1435 }
1436
1437 atomic_set(&hdev->cmd_cnt, 1);
1438 queue_work(hdev->workqueue, &hdev->cmd_work);
1439 }
1440
1441 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1442 bdaddr_t *bdaddr)
1443 {
1444 struct oob_data *data;
1445
1446 list_for_each_entry(data, &hdev->remote_oob_data, list)
1447 if (bacmp(bdaddr, &data->bdaddr) == 0)
1448 return data;
1449
1450 return NULL;
1451 }
1452
1453 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1454 {
1455 struct oob_data *data;
1456
1457 data = hci_find_remote_oob_data(hdev, bdaddr);
1458 if (!data)
1459 return -ENOENT;
1460
1461 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1462
1463 list_del(&data->list);
1464 kfree(data);
1465
1466 return 0;
1467 }
1468
1469 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1470 {
1471 struct oob_data *data, *n;
1472
1473 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1474 list_del(&data->list);
1475 kfree(data);
1476 }
1477
1478 return 0;
1479 }
1480
1481 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1482 u8 *randomizer)
1483 {
1484 struct oob_data *data;
1485
1486 data = hci_find_remote_oob_data(hdev, bdaddr);
1487
1488 if (!data) {
1489 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1490 if (!data)
1491 return -ENOMEM;
1492
1493 bacpy(&data->bdaddr, bdaddr);
1494 list_add(&data->list, &hdev->remote_oob_data);
1495 }
1496
1497 memcpy(data->hash, hash, sizeof(data->hash));
1498 memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1499
1500 BT_DBG("%s for %pMR", hdev->name, bdaddr);
1501
1502 return 0;
1503 }
1504
1505 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
1506 {
1507 struct bdaddr_list *b;
1508
1509 list_for_each_entry(b, &hdev->blacklist, list)
1510 if (bacmp(bdaddr, &b->bdaddr) == 0)
1511 return b;
1512
1513 return NULL;
1514 }
1515
1516 int hci_blacklist_clear(struct hci_dev *hdev)
1517 {
1518 struct list_head *p, *n;
1519
1520 list_for_each_safe(p, n, &hdev->blacklist) {
1521 struct bdaddr_list *b;
1522
1523 b = list_entry(p, struct bdaddr_list, list);
1524
1525 list_del(p);
1526 kfree(b);
1527 }
1528
1529 return 0;
1530 }
1531
1532 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1533 {
1534 struct bdaddr_list *entry;
1535
1536 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1537 return -EBADF;
1538
1539 if (hci_blacklist_lookup(hdev, bdaddr))
1540 return -EEXIST;
1541
1542 entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1543 if (!entry)
1544 return -ENOMEM;
1545
1546 bacpy(&entry->bdaddr, bdaddr);
1547
1548 list_add(&entry->list, &hdev->blacklist);
1549
1550 return mgmt_device_blocked(hdev, bdaddr, type);
1551 }
1552
1553 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1554 {
1555 struct bdaddr_list *entry;
1556
1557 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1558 return hci_blacklist_clear(hdev);
1559
1560 entry = hci_blacklist_lookup(hdev, bdaddr);
1561 if (!entry)
1562 return -ENOENT;
1563
1564 list_del(&entry->list);
1565 kfree(entry);
1566
1567 return mgmt_device_unblocked(hdev, bdaddr, type);
1568 }
1569
1570 static void le_scan_param_req(struct hci_dev *hdev, unsigned long opt)
1571 {
1572 struct le_scan_params *param = (struct le_scan_params *) opt;
1573 struct hci_cp_le_set_scan_param cp;
1574
1575 memset(&cp, 0, sizeof(cp));
1576 cp.type = param->type;
1577 cp.interval = cpu_to_le16(param->interval);
1578 cp.window = cpu_to_le16(param->window);
1579
1580 hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_PARAM, sizeof(cp), &cp);
1581 }
1582
1583 static void le_scan_enable_req(struct hci_dev *hdev, unsigned long opt)
1584 {
1585 struct hci_cp_le_set_scan_enable cp;
1586
1587 memset(&cp, 0, sizeof(cp));
1588 cp.enable = 1;
1589 cp.filter_dup = 1;
1590
1591 hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1592 }
1593
1594 static int hci_do_le_scan(struct hci_dev *hdev, u8 type, u16 interval,
1595 u16 window, int timeout)
1596 {
1597 long timeo = msecs_to_jiffies(3000);
1598 struct le_scan_params param;
1599 int err;
1600
1601 BT_DBG("%s", hdev->name);
1602
1603 if (test_bit(HCI_LE_SCAN, &hdev->dev_flags))
1604 return -EINPROGRESS;
1605
1606 param.type = type;
1607 param.interval = interval;
1608 param.window = window;
1609
1610 hci_req_lock(hdev);
1611
1612 err = __hci_req_sync(hdev, le_scan_param_req, (unsigned long) &param,
1613 timeo);
1614 if (!err)
1615 err = __hci_req_sync(hdev, le_scan_enable_req, 0, timeo);
1616
1617 hci_req_unlock(hdev);
1618
1619 if (err < 0)
1620 return err;
1621
1622 queue_delayed_work(hdev->workqueue, &hdev->le_scan_disable,
1623 msecs_to_jiffies(timeout));
1624
1625 return 0;
1626 }
1627
1628 int hci_cancel_le_scan(struct hci_dev *hdev)
1629 {
1630 BT_DBG("%s", hdev->name);
1631
1632 if (!test_bit(HCI_LE_SCAN, &hdev->dev_flags))
1633 return -EALREADY;
1634
1635 if (cancel_delayed_work(&hdev->le_scan_disable)) {
1636 struct hci_cp_le_set_scan_enable cp;
1637
1638 /* Send HCI command to disable LE Scan */
1639 memset(&cp, 0, sizeof(cp));
1640 hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1641 }
1642
1643 return 0;
1644 }
1645
1646 static void le_scan_disable_work(struct work_struct *work)
1647 {
1648 struct hci_dev *hdev = container_of(work, struct hci_dev,
1649 le_scan_disable.work);
1650 struct hci_cp_le_set_scan_enable cp;
1651
1652 BT_DBG("%s", hdev->name);
1653
1654 memset(&cp, 0, sizeof(cp));
1655
1656 hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1657 }
1658
1659 static void le_scan_work(struct work_struct *work)
1660 {
1661 struct hci_dev *hdev = container_of(work, struct hci_dev, le_scan);
1662 struct le_scan_params *param = &hdev->le_scan_params;
1663
1664 BT_DBG("%s", hdev->name);
1665
1666 hci_do_le_scan(hdev, param->type, param->interval, param->window,
1667 param->timeout);
1668 }
1669
1670 int hci_le_scan(struct hci_dev *hdev, u8 type, u16 interval, u16 window,
1671 int timeout)
1672 {
1673 struct le_scan_params *param = &hdev->le_scan_params;
1674
1675 BT_DBG("%s", hdev->name);
1676
1677 if (test_bit(HCI_LE_PERIPHERAL, &hdev->dev_flags))
1678 return -ENOTSUPP;
1679
1680 if (work_busy(&hdev->le_scan))
1681 return -EINPROGRESS;
1682
1683 param->type = type;
1684 param->interval = interval;
1685 param->window = window;
1686 param->timeout = timeout;
1687
1688 queue_work(system_long_wq, &hdev->le_scan);
1689
1690 return 0;
1691 }
1692
1693 /* Alloc HCI device */
1694 struct hci_dev *hci_alloc_dev(void)
1695 {
1696 struct hci_dev *hdev;
1697
1698 hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
1699 if (!hdev)
1700 return NULL;
1701
1702 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1703 hdev->esco_type = (ESCO_HV1);
1704 hdev->link_mode = (HCI_LM_ACCEPT);
1705 hdev->io_capability = 0x03; /* No Input No Output */
1706 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
1707 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
1708
1709 hdev->sniff_max_interval = 800;
1710 hdev->sniff_min_interval = 80;
1711
1712 mutex_init(&hdev->lock);
1713 mutex_init(&hdev->req_lock);
1714
1715 INIT_LIST_HEAD(&hdev->mgmt_pending);
1716 INIT_LIST_HEAD(&hdev->blacklist);
1717 INIT_LIST_HEAD(&hdev->uuids);
1718 INIT_LIST_HEAD(&hdev->link_keys);
1719 INIT_LIST_HEAD(&hdev->long_term_keys);
1720 INIT_LIST_HEAD(&hdev->remote_oob_data);
1721 INIT_LIST_HEAD(&hdev->conn_hash.list);
1722
1723 INIT_WORK(&hdev->rx_work, hci_rx_work);
1724 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
1725 INIT_WORK(&hdev->tx_work, hci_tx_work);
1726 INIT_WORK(&hdev->power_on, hci_power_on);
1727 INIT_WORK(&hdev->le_scan, le_scan_work);
1728
1729 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
1730 INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
1731 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
1732
1733 skb_queue_head_init(&hdev->driver_init);
1734 skb_queue_head_init(&hdev->rx_q);
1735 skb_queue_head_init(&hdev->cmd_q);
1736 skb_queue_head_init(&hdev->raw_q);
1737
1738 init_waitqueue_head(&hdev->req_wait_q);
1739
1740 setup_timer(&hdev->cmd_timer, hci_cmd_timeout, (unsigned long) hdev);
1741
1742 hci_init_sysfs(hdev);
1743 discovery_init(hdev);
1744
1745 return hdev;
1746 }
1747 EXPORT_SYMBOL(hci_alloc_dev);
1748
1749 /* Free HCI device */
1750 void hci_free_dev(struct hci_dev *hdev)
1751 {
1752 skb_queue_purge(&hdev->driver_init);
1753
1754 /* will free via device release */
1755 put_device(&hdev->dev);
1756 }
1757 EXPORT_SYMBOL(hci_free_dev);
1758
1759 /* Register HCI device */
1760 int hci_register_dev(struct hci_dev *hdev)
1761 {
1762 int id, error;
1763
1764 if (!hdev->open || !hdev->close)
1765 return -EINVAL;
1766
1767 /* Do not allow HCI_AMP devices to register at index 0,
1768 * so the index can be used as the AMP controller ID.
1769 */
1770 switch (hdev->dev_type) {
1771 case HCI_BREDR:
1772 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
1773 break;
1774 case HCI_AMP:
1775 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
1776 break;
1777 default:
1778 return -EINVAL;
1779 }
1780
1781 if (id < 0)
1782 return id;
1783
1784 sprintf(hdev->name, "hci%d", id);
1785 hdev->id = id;
1786
1787 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1788
1789 write_lock(&hci_dev_list_lock);
1790 list_add(&hdev->list, &hci_dev_list);
1791 write_unlock(&hci_dev_list_lock);
1792
1793 hdev->workqueue = alloc_workqueue(hdev->name, WQ_HIGHPRI | WQ_UNBOUND |
1794 WQ_MEM_RECLAIM, 1);
1795 if (!hdev->workqueue) {
1796 error = -ENOMEM;
1797 goto err;
1798 }
1799
1800 hdev->req_workqueue = alloc_workqueue(hdev->name,
1801 WQ_HIGHPRI | WQ_UNBOUND |
1802 WQ_MEM_RECLAIM, 1);
1803 if (!hdev->req_workqueue) {
1804 destroy_workqueue(hdev->workqueue);
1805 error = -ENOMEM;
1806 goto err;
1807 }
1808
1809 error = hci_add_sysfs(hdev);
1810 if (error < 0)
1811 goto err_wqueue;
1812
1813 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1814 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
1815 hdev);
1816 if (hdev->rfkill) {
1817 if (rfkill_register(hdev->rfkill) < 0) {
1818 rfkill_destroy(hdev->rfkill);
1819 hdev->rfkill = NULL;
1820 }
1821 }
1822
1823 set_bit(HCI_SETUP, &hdev->dev_flags);
1824
1825 if (hdev->dev_type != HCI_AMP)
1826 set_bit(HCI_AUTO_OFF, &hdev->dev_flags);
1827
1828 hci_notify(hdev, HCI_DEV_REG);
1829 hci_dev_hold(hdev);
1830
1831 queue_work(hdev->req_workqueue, &hdev->power_on);
1832
1833 return id;
1834
1835 err_wqueue:
1836 destroy_workqueue(hdev->workqueue);
1837 destroy_workqueue(hdev->req_workqueue);
1838 err:
1839 ida_simple_remove(&hci_index_ida, hdev->id);
1840 write_lock(&hci_dev_list_lock);
1841 list_del(&hdev->list);
1842 write_unlock(&hci_dev_list_lock);
1843
1844 return error;
1845 }
1846 EXPORT_SYMBOL(hci_register_dev);
1847
1848 /* Unregister HCI device */
1849 void hci_unregister_dev(struct hci_dev *hdev)
1850 {
1851 int i, id;
1852
1853 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1854
1855 set_bit(HCI_UNREGISTER, &hdev->dev_flags);
1856
1857 id = hdev->id;
1858
1859 write_lock(&hci_dev_list_lock);
1860 list_del(&hdev->list);
1861 write_unlock(&hci_dev_list_lock);
1862
1863 hci_dev_do_close(hdev);
1864
1865 for (i = 0; i < NUM_REASSEMBLY; i++)
1866 kfree_skb(hdev->reassembly[i]);
1867
1868 cancel_work_sync(&hdev->power_on);
1869
1870 if (!test_bit(HCI_INIT, &hdev->flags) &&
1871 !test_bit(HCI_SETUP, &hdev->dev_flags)) {
1872 hci_dev_lock(hdev);
1873 mgmt_index_removed(hdev);
1874 hci_dev_unlock(hdev);
1875 }
1876
1877 /* mgmt_index_removed should take care of emptying the
1878 * pending list */
1879 BUG_ON(!list_empty(&hdev->mgmt_pending));
1880
1881 hci_notify(hdev, HCI_DEV_UNREG);
1882
1883 if (hdev->rfkill) {
1884 rfkill_unregister(hdev->rfkill);
1885 rfkill_destroy(hdev->rfkill);
1886 }
1887
1888 hci_del_sysfs(hdev);
1889
1890 destroy_workqueue(hdev->workqueue);
1891 destroy_workqueue(hdev->req_workqueue);
1892
1893 hci_dev_lock(hdev);
1894 hci_blacklist_clear(hdev);
1895 hci_uuids_clear(hdev);
1896 hci_link_keys_clear(hdev);
1897 hci_smp_ltks_clear(hdev);
1898 hci_remote_oob_data_clear(hdev);
1899 hci_dev_unlock(hdev);
1900
1901 hci_dev_put(hdev);
1902
1903 ida_simple_remove(&hci_index_ida, id);
1904 }
1905 EXPORT_SYMBOL(hci_unregister_dev);
1906
1907 /* Suspend HCI device */
1908 int hci_suspend_dev(struct hci_dev *hdev)
1909 {
1910 hci_notify(hdev, HCI_DEV_SUSPEND);
1911 return 0;
1912 }
1913 EXPORT_SYMBOL(hci_suspend_dev);
1914
1915 /* Resume HCI device */
1916 int hci_resume_dev(struct hci_dev *hdev)
1917 {
1918 hci_notify(hdev, HCI_DEV_RESUME);
1919 return 0;
1920 }
1921 EXPORT_SYMBOL(hci_resume_dev);
1922
1923 /* Receive frame from HCI drivers */
1924 int hci_recv_frame(struct sk_buff *skb)
1925 {
1926 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1927 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1928 && !test_bit(HCI_INIT, &hdev->flags))) {
1929 kfree_skb(skb);
1930 return -ENXIO;
1931 }
1932
1933 /* Incoming skb */
1934 bt_cb(skb)->incoming = 1;
1935
1936 /* Time stamp */
1937 __net_timestamp(skb);
1938
1939 skb_queue_tail(&hdev->rx_q, skb);
1940 queue_work(hdev->workqueue, &hdev->rx_work);
1941
1942 return 0;
1943 }
1944 EXPORT_SYMBOL(hci_recv_frame);
1945
1946 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1947 int count, __u8 index)
1948 {
1949 int len = 0;
1950 int hlen = 0;
1951 int remain = count;
1952 struct sk_buff *skb;
1953 struct bt_skb_cb *scb;
1954
1955 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1956 index >= NUM_REASSEMBLY)
1957 return -EILSEQ;
1958
1959 skb = hdev->reassembly[index];
1960
1961 if (!skb) {
1962 switch (type) {
1963 case HCI_ACLDATA_PKT:
1964 len = HCI_MAX_FRAME_SIZE;
1965 hlen = HCI_ACL_HDR_SIZE;
1966 break;
1967 case HCI_EVENT_PKT:
1968 len = HCI_MAX_EVENT_SIZE;
1969 hlen = HCI_EVENT_HDR_SIZE;
1970 break;
1971 case HCI_SCODATA_PKT:
1972 len = HCI_MAX_SCO_SIZE;
1973 hlen = HCI_SCO_HDR_SIZE;
1974 break;
1975 }
1976
1977 skb = bt_skb_alloc(len, GFP_ATOMIC);
1978 if (!skb)
1979 return -ENOMEM;
1980
1981 scb = (void *) skb->cb;
1982 scb->expect = hlen;
1983 scb->pkt_type = type;
1984
1985 skb->dev = (void *) hdev;
1986 hdev->reassembly[index] = skb;
1987 }
1988
1989 while (count) {
1990 scb = (void *) skb->cb;
1991 len = min_t(uint, scb->expect, count);
1992
1993 memcpy(skb_put(skb, len), data, len);
1994
1995 count -= len;
1996 data += len;
1997 scb->expect -= len;
1998 remain = count;
1999
2000 switch (type) {
2001 case HCI_EVENT_PKT:
2002 if (skb->len == HCI_EVENT_HDR_SIZE) {
2003 struct hci_event_hdr *h = hci_event_hdr(skb);
2004 scb->expect = h->plen;
2005
2006 if (skb_tailroom(skb) < scb->expect) {
2007 kfree_skb(skb);
2008 hdev->reassembly[index] = NULL;
2009 return -ENOMEM;
2010 }
2011 }
2012 break;
2013
2014 case HCI_ACLDATA_PKT:
2015 if (skb->len == HCI_ACL_HDR_SIZE) {
2016 struct hci_acl_hdr *h = hci_acl_hdr(skb);
2017 scb->expect = __le16_to_cpu(h->dlen);
2018
2019 if (skb_tailroom(skb) < scb->expect) {
2020 kfree_skb(skb);
2021 hdev->reassembly[index] = NULL;
2022 return -ENOMEM;
2023 }
2024 }
2025 break;
2026
2027 case HCI_SCODATA_PKT:
2028 if (skb->len == HCI_SCO_HDR_SIZE) {
2029 struct hci_sco_hdr *h = hci_sco_hdr(skb);
2030 scb->expect = h->dlen;
2031
2032 if (skb_tailroom(skb) < scb->expect) {
2033 kfree_skb(skb);
2034 hdev->reassembly[index] = NULL;
2035 return -ENOMEM;
2036 }
2037 }
2038 break;
2039 }
2040
2041 if (scb->expect == 0) {
2042 /* Complete frame */
2043
2044 bt_cb(skb)->pkt_type = type;
2045 hci_recv_frame(skb);
2046
2047 hdev->reassembly[index] = NULL;
2048 return remain;
2049 }
2050 }
2051
2052 return remain;
2053 }
2054
2055 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
2056 {
2057 int rem = 0;
2058
2059 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
2060 return -EILSEQ;
2061
2062 while (count) {
2063 rem = hci_reassembly(hdev, type, data, count, type - 1);
2064 if (rem < 0)
2065 return rem;
2066
2067 data += (count - rem);
2068 count = rem;
2069 }
2070
2071 return rem;
2072 }
2073 EXPORT_SYMBOL(hci_recv_fragment);
2074
2075 #define STREAM_REASSEMBLY 0
2076
2077 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
2078 {
2079 int type;
2080 int rem = 0;
2081
2082 while (count) {
2083 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
2084
2085 if (!skb) {
2086 struct { char type; } *pkt;
2087
2088 /* Start of the frame */
2089 pkt = data;
2090 type = pkt->type;
2091
2092 data++;
2093 count--;
2094 } else
2095 type = bt_cb(skb)->pkt_type;
2096
2097 rem = hci_reassembly(hdev, type, data, count,
2098 STREAM_REASSEMBLY);
2099 if (rem < 0)
2100 return rem;
2101
2102 data += (count - rem);
2103 count = rem;
2104 }
2105
2106 return rem;
2107 }
2108 EXPORT_SYMBOL(hci_recv_stream_fragment);
2109
2110 /* ---- Interface to upper protocols ---- */
2111
2112 int hci_register_cb(struct hci_cb *cb)
2113 {
2114 BT_DBG("%p name %s", cb, cb->name);
2115
2116 write_lock(&hci_cb_list_lock);
2117 list_add(&cb->list, &hci_cb_list);
2118 write_unlock(&hci_cb_list_lock);
2119
2120 return 0;
2121 }
2122 EXPORT_SYMBOL(hci_register_cb);
2123
2124 int hci_unregister_cb(struct hci_cb *cb)
2125 {
2126 BT_DBG("%p name %s", cb, cb->name);
2127
2128 write_lock(&hci_cb_list_lock);
2129 list_del(&cb->list);
2130 write_unlock(&hci_cb_list_lock);
2131
2132 return 0;
2133 }
2134 EXPORT_SYMBOL(hci_unregister_cb);
2135
2136 static int hci_send_frame(struct sk_buff *skb)
2137 {
2138 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
2139
2140 if (!hdev) {
2141 kfree_skb(skb);
2142 return -ENODEV;
2143 }
2144
2145 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
2146
2147 /* Time stamp */
2148 __net_timestamp(skb);
2149
2150 /* Send copy to monitor */
2151 hci_send_to_monitor(hdev, skb);
2152
2153 if (atomic_read(&hdev->promisc)) {
2154 /* Send copy to the sockets */
2155 hci_send_to_sock(hdev, skb);
2156 }
2157
2158 /* Get rid of skb owner, prior to sending to the driver. */
2159 skb_orphan(skb);
2160
2161 return hdev->send(skb);
2162 }
2163
2164 /* Send HCI command */
2165 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
2166 {
2167 int len = HCI_COMMAND_HDR_SIZE + plen;
2168 struct hci_command_hdr *hdr;
2169 struct sk_buff *skb;
2170
2171 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
2172
2173 skb = bt_skb_alloc(len, GFP_ATOMIC);
2174 if (!skb) {
2175 BT_ERR("%s no memory for command", hdev->name);
2176 return -ENOMEM;
2177 }
2178
2179 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
2180 hdr->opcode = cpu_to_le16(opcode);
2181 hdr->plen = plen;
2182
2183 if (plen)
2184 memcpy(skb_put(skb, plen), param, plen);
2185
2186 BT_DBG("skb len %d", skb->len);
2187
2188 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
2189 skb->dev = (void *) hdev;
2190
2191 if (test_bit(HCI_INIT, &hdev->flags))
2192 hdev->init_last_cmd = opcode;
2193
2194 skb_queue_tail(&hdev->cmd_q, skb);
2195 queue_work(hdev->workqueue, &hdev->cmd_work);
2196
2197 return 0;
2198 }
2199
2200 /* Get data from the previously sent command */
2201 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
2202 {
2203 struct hci_command_hdr *hdr;
2204
2205 if (!hdev->sent_cmd)
2206 return NULL;
2207
2208 hdr = (void *) hdev->sent_cmd->data;
2209
2210 if (hdr->opcode != cpu_to_le16(opcode))
2211 return NULL;
2212
2213 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
2214
2215 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
2216 }
2217
2218 /* Send ACL data */
2219 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
2220 {
2221 struct hci_acl_hdr *hdr;
2222 int len = skb->len;
2223
2224 skb_push(skb, HCI_ACL_HDR_SIZE);
2225 skb_reset_transport_header(skb);
2226 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
2227 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
2228 hdr->dlen = cpu_to_le16(len);
2229 }
2230
2231 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
2232 struct sk_buff *skb, __u16 flags)
2233 {
2234 struct hci_conn *conn = chan->conn;
2235 struct hci_dev *hdev = conn->hdev;
2236 struct sk_buff *list;
2237
2238 skb->len = skb_headlen(skb);
2239 skb->data_len = 0;
2240
2241 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2242
2243 switch (hdev->dev_type) {
2244 case HCI_BREDR:
2245 hci_add_acl_hdr(skb, conn->handle, flags);
2246 break;
2247 case HCI_AMP:
2248 hci_add_acl_hdr(skb, chan->handle, flags);
2249 break;
2250 default:
2251 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
2252 return;
2253 }
2254
2255 list = skb_shinfo(skb)->frag_list;
2256 if (!list) {
2257 /* Non fragmented */
2258 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
2259
2260 skb_queue_tail(queue, skb);
2261 } else {
2262 /* Fragmented */
2263 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2264
2265 skb_shinfo(skb)->frag_list = NULL;
2266
2267 /* Queue all fragments atomically */
2268 spin_lock(&queue->lock);
2269
2270 __skb_queue_tail(queue, skb);
2271
2272 flags &= ~ACL_START;
2273 flags |= ACL_CONT;
2274 do {
2275 skb = list; list = list->next;
2276
2277 skb->dev = (void *) hdev;
2278 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2279 hci_add_acl_hdr(skb, conn->handle, flags);
2280
2281 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2282
2283 __skb_queue_tail(queue, skb);
2284 } while (list);
2285
2286 spin_unlock(&queue->lock);
2287 }
2288 }
2289
2290 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
2291 {
2292 struct hci_dev *hdev = chan->conn->hdev;
2293
2294 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
2295
2296 skb->dev = (void *) hdev;
2297
2298 hci_queue_acl(chan, &chan->data_q, skb, flags);
2299
2300 queue_work(hdev->workqueue, &hdev->tx_work);
2301 }
2302
2303 /* Send SCO data */
2304 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2305 {
2306 struct hci_dev *hdev = conn->hdev;
2307 struct hci_sco_hdr hdr;
2308
2309 BT_DBG("%s len %d", hdev->name, skb->len);
2310
2311 hdr.handle = cpu_to_le16(conn->handle);
2312 hdr.dlen = skb->len;
2313
2314 skb_push(skb, HCI_SCO_HDR_SIZE);
2315 skb_reset_transport_header(skb);
2316 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2317
2318 skb->dev = (void *) hdev;
2319 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2320
2321 skb_queue_tail(&conn->data_q, skb);
2322 queue_work(hdev->workqueue, &hdev->tx_work);
2323 }
2324
2325 /* ---- HCI TX task (outgoing data) ---- */
2326
2327 /* HCI Connection scheduler */
2328 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
2329 int *quote)
2330 {
2331 struct hci_conn_hash *h = &hdev->conn_hash;
2332 struct hci_conn *conn = NULL, *c;
2333 unsigned int num = 0, min = ~0;
2334
2335 /* We don't have to lock device here. Connections are always
2336 * added and removed with TX task disabled. */
2337
2338 rcu_read_lock();
2339
2340 list_for_each_entry_rcu(c, &h->list, list) {
2341 if (c->type != type || skb_queue_empty(&c->data_q))
2342 continue;
2343
2344 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2345 continue;
2346
2347 num++;
2348
2349 if (c->sent < min) {
2350 min = c->sent;
2351 conn = c;
2352 }
2353
2354 if (hci_conn_num(hdev, type) == num)
2355 break;
2356 }
2357
2358 rcu_read_unlock();
2359
2360 if (conn) {
2361 int cnt, q;
2362
2363 switch (conn->type) {
2364 case ACL_LINK:
2365 cnt = hdev->acl_cnt;
2366 break;
2367 case SCO_LINK:
2368 case ESCO_LINK:
2369 cnt = hdev->sco_cnt;
2370 break;
2371 case LE_LINK:
2372 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2373 break;
2374 default:
2375 cnt = 0;
2376 BT_ERR("Unknown link type");
2377 }
2378
2379 q = cnt / num;
2380 *quote = q ? q : 1;
2381 } else
2382 *quote = 0;
2383
2384 BT_DBG("conn %p quote %d", conn, *quote);
2385 return conn;
2386 }
2387
2388 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2389 {
2390 struct hci_conn_hash *h = &hdev->conn_hash;
2391 struct hci_conn *c;
2392
2393 BT_ERR("%s link tx timeout", hdev->name);
2394
2395 rcu_read_lock();
2396
2397 /* Kill stalled connections */
2398 list_for_each_entry_rcu(c, &h->list, list) {
2399 if (c->type == type && c->sent) {
2400 BT_ERR("%s killing stalled connection %pMR",
2401 hdev->name, &c->dst);
2402 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
2403 }
2404 }
2405
2406 rcu_read_unlock();
2407 }
2408
2409 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
2410 int *quote)
2411 {
2412 struct hci_conn_hash *h = &hdev->conn_hash;
2413 struct hci_chan *chan = NULL;
2414 unsigned int num = 0, min = ~0, cur_prio = 0;
2415 struct hci_conn *conn;
2416 int cnt, q, conn_num = 0;
2417
2418 BT_DBG("%s", hdev->name);
2419
2420 rcu_read_lock();
2421
2422 list_for_each_entry_rcu(conn, &h->list, list) {
2423 struct hci_chan *tmp;
2424
2425 if (conn->type != type)
2426 continue;
2427
2428 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2429 continue;
2430
2431 conn_num++;
2432
2433 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
2434 struct sk_buff *skb;
2435
2436 if (skb_queue_empty(&tmp->data_q))
2437 continue;
2438
2439 skb = skb_peek(&tmp->data_q);
2440 if (skb->priority < cur_prio)
2441 continue;
2442
2443 if (skb->priority > cur_prio) {
2444 num = 0;
2445 min = ~0;
2446 cur_prio = skb->priority;
2447 }
2448
2449 num++;
2450
2451 if (conn->sent < min) {
2452 min = conn->sent;
2453 chan = tmp;
2454 }
2455 }
2456
2457 if (hci_conn_num(hdev, type) == conn_num)
2458 break;
2459 }
2460
2461 rcu_read_unlock();
2462
2463 if (!chan)
2464 return NULL;
2465
2466 switch (chan->conn->type) {
2467 case ACL_LINK:
2468 cnt = hdev->acl_cnt;
2469 break;
2470 case AMP_LINK:
2471 cnt = hdev->block_cnt;
2472 break;
2473 case SCO_LINK:
2474 case ESCO_LINK:
2475 cnt = hdev->sco_cnt;
2476 break;
2477 case LE_LINK:
2478 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2479 break;
2480 default:
2481 cnt = 0;
2482 BT_ERR("Unknown link type");
2483 }
2484
2485 q = cnt / num;
2486 *quote = q ? q : 1;
2487 BT_DBG("chan %p quote %d", chan, *quote);
2488 return chan;
2489 }
2490
2491 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
2492 {
2493 struct hci_conn_hash *h = &hdev->conn_hash;
2494 struct hci_conn *conn;
2495 int num = 0;
2496
2497 BT_DBG("%s", hdev->name);
2498
2499 rcu_read_lock();
2500
2501 list_for_each_entry_rcu(conn, &h->list, list) {
2502 struct hci_chan *chan;
2503
2504 if (conn->type != type)
2505 continue;
2506
2507 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2508 continue;
2509
2510 num++;
2511
2512 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
2513 struct sk_buff *skb;
2514
2515 if (chan->sent) {
2516 chan->sent = 0;
2517 continue;
2518 }
2519
2520 if (skb_queue_empty(&chan->data_q))
2521 continue;
2522
2523 skb = skb_peek(&chan->data_q);
2524 if (skb->priority >= HCI_PRIO_MAX - 1)
2525 continue;
2526
2527 skb->priority = HCI_PRIO_MAX - 1;
2528
2529 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
2530 skb->priority);
2531 }
2532
2533 if (hci_conn_num(hdev, type) == num)
2534 break;
2535 }
2536
2537 rcu_read_unlock();
2538
2539 }
2540
2541 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
2542 {
2543 /* Calculate count of blocks used by this packet */
2544 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
2545 }
2546
2547 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
2548 {
2549 if (!test_bit(HCI_RAW, &hdev->flags)) {
2550 /* ACL tx timeout must be longer than maximum
2551 * link supervision timeout (40.9 seconds) */
2552 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
2553 HCI_ACL_TX_TIMEOUT))
2554 hci_link_tx_to(hdev, ACL_LINK);
2555 }
2556 }
2557
2558 static void hci_sched_acl_pkt(struct hci_dev *hdev)
2559 {
2560 unsigned int cnt = hdev->acl_cnt;
2561 struct hci_chan *chan;
2562 struct sk_buff *skb;
2563 int quote;
2564
2565 __check_timeout(hdev, cnt);
2566
2567 while (hdev->acl_cnt &&
2568 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
2569 u32 priority = (skb_peek(&chan->data_q))->priority;
2570 while (quote-- && (skb = skb_peek(&chan->data_q))) {
2571 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2572 skb->len, skb->priority);
2573
2574 /* Stop if priority has changed */
2575 if (skb->priority < priority)
2576 break;
2577
2578 skb = skb_dequeue(&chan->data_q);
2579
2580 hci_conn_enter_active_mode(chan->conn,
2581 bt_cb(skb)->force_active);
2582
2583 hci_send_frame(skb);
2584 hdev->acl_last_tx = jiffies;
2585
2586 hdev->acl_cnt--;
2587 chan->sent++;
2588 chan->conn->sent++;
2589 }
2590 }
2591
2592 if (cnt != hdev->acl_cnt)
2593 hci_prio_recalculate(hdev, ACL_LINK);
2594 }
2595
2596 static void hci_sched_acl_blk(struct hci_dev *hdev)
2597 {
2598 unsigned int cnt = hdev->block_cnt;
2599 struct hci_chan *chan;
2600 struct sk_buff *skb;
2601 int quote;
2602 u8 type;
2603
2604 __check_timeout(hdev, cnt);
2605
2606 BT_DBG("%s", hdev->name);
2607
2608 if (hdev->dev_type == HCI_AMP)
2609 type = AMP_LINK;
2610 else
2611 type = ACL_LINK;
2612
2613 while (hdev->block_cnt > 0 &&
2614 (chan = hci_chan_sent(hdev, type, &quote))) {
2615 u32 priority = (skb_peek(&chan->data_q))->priority;
2616 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
2617 int blocks;
2618
2619 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2620 skb->len, skb->priority);
2621
2622 /* Stop if priority has changed */
2623 if (skb->priority < priority)
2624 break;
2625
2626 skb = skb_dequeue(&chan->data_q);
2627
2628 blocks = __get_blocks(hdev, skb);
2629 if (blocks > hdev->block_cnt)
2630 return;
2631
2632 hci_conn_enter_active_mode(chan->conn,
2633 bt_cb(skb)->force_active);
2634
2635 hci_send_frame(skb);
2636 hdev->acl_last_tx = jiffies;
2637
2638 hdev->block_cnt -= blocks;
2639 quote -= blocks;
2640
2641 chan->sent += blocks;
2642 chan->conn->sent += blocks;
2643 }
2644 }
2645
2646 if (cnt != hdev->block_cnt)
2647 hci_prio_recalculate(hdev, type);
2648 }
2649
2650 static void hci_sched_acl(struct hci_dev *hdev)
2651 {
2652 BT_DBG("%s", hdev->name);
2653
2654 /* No ACL link over BR/EDR controller */
2655 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
2656 return;
2657
2658 /* No AMP link over AMP controller */
2659 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
2660 return;
2661
2662 switch (hdev->flow_ctl_mode) {
2663 case HCI_FLOW_CTL_MODE_PACKET_BASED:
2664 hci_sched_acl_pkt(hdev);
2665 break;
2666
2667 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
2668 hci_sched_acl_blk(hdev);
2669 break;
2670 }
2671 }
2672
2673 /* Schedule SCO */
2674 static void hci_sched_sco(struct hci_dev *hdev)
2675 {
2676 struct hci_conn *conn;
2677 struct sk_buff *skb;
2678 int quote;
2679
2680 BT_DBG("%s", hdev->name);
2681
2682 if (!hci_conn_num(hdev, SCO_LINK))
2683 return;
2684
2685 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
2686 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2687 BT_DBG("skb %p len %d", skb, skb->len);
2688 hci_send_frame(skb);
2689
2690 conn->sent++;
2691 if (conn->sent == ~0)
2692 conn->sent = 0;
2693 }
2694 }
2695 }
2696
2697 static void hci_sched_esco(struct hci_dev *hdev)
2698 {
2699 struct hci_conn *conn;
2700 struct sk_buff *skb;
2701 int quote;
2702
2703 BT_DBG("%s", hdev->name);
2704
2705 if (!hci_conn_num(hdev, ESCO_LINK))
2706 return;
2707
2708 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
2709 &quote))) {
2710 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2711 BT_DBG("skb %p len %d", skb, skb->len);
2712 hci_send_frame(skb);
2713
2714 conn->sent++;
2715 if (conn->sent == ~0)
2716 conn->sent = 0;
2717 }
2718 }
2719 }
2720
2721 static void hci_sched_le(struct hci_dev *hdev)
2722 {
2723 struct hci_chan *chan;
2724 struct sk_buff *skb;
2725 int quote, cnt, tmp;
2726
2727 BT_DBG("%s", hdev->name);
2728
2729 if (!hci_conn_num(hdev, LE_LINK))
2730 return;
2731
2732 if (!test_bit(HCI_RAW, &hdev->flags)) {
2733 /* LE tx timeout must be longer than maximum
2734 * link supervision timeout (40.9 seconds) */
2735 if (!hdev->le_cnt && hdev->le_pkts &&
2736 time_after(jiffies, hdev->le_last_tx + HZ * 45))
2737 hci_link_tx_to(hdev, LE_LINK);
2738 }
2739
2740 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
2741 tmp = cnt;
2742 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
2743 u32 priority = (skb_peek(&chan->data_q))->priority;
2744 while (quote-- && (skb = skb_peek(&chan->data_q))) {
2745 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2746 skb->len, skb->priority);
2747
2748 /* Stop if priority has changed */
2749 if (skb->priority < priority)
2750 break;
2751
2752 skb = skb_dequeue(&chan->data_q);
2753
2754 hci_send_frame(skb);
2755 hdev->le_last_tx = jiffies;
2756
2757 cnt--;
2758 chan->sent++;
2759 chan->conn->sent++;
2760 }
2761 }
2762
2763 if (hdev->le_pkts)
2764 hdev->le_cnt = cnt;
2765 else
2766 hdev->acl_cnt = cnt;
2767
2768 if (cnt != tmp)
2769 hci_prio_recalculate(hdev, LE_LINK);
2770 }
2771
2772 static void hci_tx_work(struct work_struct *work)
2773 {
2774 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
2775 struct sk_buff *skb;
2776
2777 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
2778 hdev->sco_cnt, hdev->le_cnt);
2779
2780 /* Schedule queues and send stuff to HCI driver */
2781
2782 hci_sched_acl(hdev);
2783
2784 hci_sched_sco(hdev);
2785
2786 hci_sched_esco(hdev);
2787
2788 hci_sched_le(hdev);
2789
2790 /* Send next queued raw (unknown type) packet */
2791 while ((skb = skb_dequeue(&hdev->raw_q)))
2792 hci_send_frame(skb);
2793 }
2794
2795 /* ----- HCI RX task (incoming data processing) ----- */
2796
2797 /* ACL data packet */
2798 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2799 {
2800 struct hci_acl_hdr *hdr = (void *) skb->data;
2801 struct hci_conn *conn;
2802 __u16 handle, flags;
2803
2804 skb_pull(skb, HCI_ACL_HDR_SIZE);
2805
2806 handle = __le16_to_cpu(hdr->handle);
2807 flags = hci_flags(handle);
2808 handle = hci_handle(handle);
2809
2810 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
2811 handle, flags);
2812
2813 hdev->stat.acl_rx++;
2814
2815 hci_dev_lock(hdev);
2816 conn = hci_conn_hash_lookup_handle(hdev, handle);
2817 hci_dev_unlock(hdev);
2818
2819 if (conn) {
2820 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
2821
2822 /* Send to upper protocol */
2823 l2cap_recv_acldata(conn, skb, flags);
2824 return;
2825 } else {
2826 BT_ERR("%s ACL packet for unknown connection handle %d",
2827 hdev->name, handle);
2828 }
2829
2830 kfree_skb(skb);
2831 }
2832
2833 /* SCO data packet */
2834 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2835 {
2836 struct hci_sco_hdr *hdr = (void *) skb->data;
2837 struct hci_conn *conn;
2838 __u16 handle;
2839
2840 skb_pull(skb, HCI_SCO_HDR_SIZE);
2841
2842 handle = __le16_to_cpu(hdr->handle);
2843
2844 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
2845
2846 hdev->stat.sco_rx++;
2847
2848 hci_dev_lock(hdev);
2849 conn = hci_conn_hash_lookup_handle(hdev, handle);
2850 hci_dev_unlock(hdev);
2851
2852 if (conn) {
2853 /* Send to upper protocol */
2854 sco_recv_scodata(conn, skb);
2855 return;
2856 } else {
2857 BT_ERR("%s SCO packet for unknown connection handle %d",
2858 hdev->name, handle);
2859 }
2860
2861 kfree_skb(skb);
2862 }
2863
2864 static void hci_rx_work(struct work_struct *work)
2865 {
2866 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
2867 struct sk_buff *skb;
2868
2869 BT_DBG("%s", hdev->name);
2870
2871 while ((skb = skb_dequeue(&hdev->rx_q))) {
2872 /* Send copy to monitor */
2873 hci_send_to_monitor(hdev, skb);
2874
2875 if (atomic_read(&hdev->promisc)) {
2876 /* Send copy to the sockets */
2877 hci_send_to_sock(hdev, skb);
2878 }
2879
2880 if (test_bit(HCI_RAW, &hdev->flags)) {
2881 kfree_skb(skb);
2882 continue;
2883 }
2884
2885 if (test_bit(HCI_INIT, &hdev->flags)) {
2886 /* Don't process data packets in this states. */
2887 switch (bt_cb(skb)->pkt_type) {
2888 case HCI_ACLDATA_PKT:
2889 case HCI_SCODATA_PKT:
2890 kfree_skb(skb);
2891 continue;
2892 }
2893 }
2894
2895 /* Process frame */
2896 switch (bt_cb(skb)->pkt_type) {
2897 case HCI_EVENT_PKT:
2898 BT_DBG("%s Event packet", hdev->name);
2899 hci_event_packet(hdev, skb);
2900 break;
2901
2902 case HCI_ACLDATA_PKT:
2903 BT_DBG("%s ACL data packet", hdev->name);
2904 hci_acldata_packet(hdev, skb);
2905 break;
2906
2907 case HCI_SCODATA_PKT:
2908 BT_DBG("%s SCO data packet", hdev->name);
2909 hci_scodata_packet(hdev, skb);
2910 break;
2911
2912 default:
2913 kfree_skb(skb);
2914 break;
2915 }
2916 }
2917 }
2918
2919 static void hci_cmd_work(struct work_struct *work)
2920 {
2921 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
2922 struct sk_buff *skb;
2923
2924 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
2925 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
2926
2927 /* Send queued commands */
2928 if (atomic_read(&hdev->cmd_cnt)) {
2929 skb = skb_dequeue(&hdev->cmd_q);
2930 if (!skb)
2931 return;
2932
2933 kfree_skb(hdev->sent_cmd);
2934
2935 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2936 if (hdev->sent_cmd) {
2937 atomic_dec(&hdev->cmd_cnt);
2938 hci_send_frame(skb);
2939 if (test_bit(HCI_RESET, &hdev->flags))
2940 del_timer(&hdev->cmd_timer);
2941 else
2942 mod_timer(&hdev->cmd_timer,
2943 jiffies + HCI_CMD_TIMEOUT);
2944 } else {
2945 skb_queue_head(&hdev->cmd_q, skb);
2946 queue_work(hdev->workqueue, &hdev->cmd_work);
2947 }
2948 }
2949 }
2950
2951 int hci_do_inquiry(struct hci_dev *hdev, u8 length)
2952 {
2953 /* General inquiry access code (GIAC) */
2954 u8 lap[3] = { 0x33, 0x8b, 0x9e };
2955 struct hci_cp_inquiry cp;
2956
2957 BT_DBG("%s", hdev->name);
2958
2959 if (test_bit(HCI_INQUIRY, &hdev->flags))
2960 return -EINPROGRESS;
2961
2962 inquiry_cache_flush(hdev);
2963
2964 memset(&cp, 0, sizeof(cp));
2965 memcpy(&cp.lap, lap, sizeof(cp.lap));
2966 cp.length = length;
2967
2968 return hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
2969 }
2970
2971 int hci_cancel_inquiry(struct hci_dev *hdev)
2972 {
2973 BT_DBG("%s", hdev->name);
2974
2975 if (!test_bit(HCI_INQUIRY, &hdev->flags))
2976 return -EALREADY;
2977
2978 return hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2979 }
2980
2981 u8 bdaddr_to_le(u8 bdaddr_type)
2982 {
2983 switch (bdaddr_type) {
2984 case BDADDR_LE_PUBLIC:
2985 return ADDR_LE_DEV_PUBLIC;
2986
2987 default:
2988 /* Fallback to LE Random address type */
2989 return ADDR_LE_DEV_RANDOM;
2990 }
2991 }