Bluetooth: Fix conditions for HCI_Delete_Stored_Link_Key
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30
31 #include <linux/rfkill.h>
32
33 #include <net/bluetooth/bluetooth.h>
34 #include <net/bluetooth/hci_core.h>
35
36 static void hci_rx_work(struct work_struct *work);
37 static void hci_cmd_work(struct work_struct *work);
38 static void hci_tx_work(struct work_struct *work);
39
40 /* HCI device list */
41 LIST_HEAD(hci_dev_list);
42 DEFINE_RWLOCK(hci_dev_list_lock);
43
44 /* HCI callback list */
45 LIST_HEAD(hci_cb_list);
46 DEFINE_RWLOCK(hci_cb_list_lock);
47
48 /* HCI ID Numbering */
49 static DEFINE_IDA(hci_index_ida);
50
51 /* ---- HCI notifications ---- */
52
53 static void hci_notify(struct hci_dev *hdev, int event)
54 {
55 hci_sock_dev_event(hdev, event);
56 }
57
58 /* ---- HCI requests ---- */
59
60 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result)
61 {
62 BT_DBG("%s result 0x%2.2x", hdev->name, result);
63
64 if (hdev->req_status == HCI_REQ_PEND) {
65 hdev->req_result = result;
66 hdev->req_status = HCI_REQ_DONE;
67 wake_up_interruptible(&hdev->req_wait_q);
68 }
69 }
70
71 static void hci_req_cancel(struct hci_dev *hdev, int err)
72 {
73 BT_DBG("%s err 0x%2.2x", hdev->name, err);
74
75 if (hdev->req_status == HCI_REQ_PEND) {
76 hdev->req_result = err;
77 hdev->req_status = HCI_REQ_CANCELED;
78 wake_up_interruptible(&hdev->req_wait_q);
79 }
80 }
81
82 static struct sk_buff *hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode,
83 u8 event)
84 {
85 struct hci_ev_cmd_complete *ev;
86 struct hci_event_hdr *hdr;
87 struct sk_buff *skb;
88
89 hci_dev_lock(hdev);
90
91 skb = hdev->recv_evt;
92 hdev->recv_evt = NULL;
93
94 hci_dev_unlock(hdev);
95
96 if (!skb)
97 return ERR_PTR(-ENODATA);
98
99 if (skb->len < sizeof(*hdr)) {
100 BT_ERR("Too short HCI event");
101 goto failed;
102 }
103
104 hdr = (void *) skb->data;
105 skb_pull(skb, HCI_EVENT_HDR_SIZE);
106
107 if (event) {
108 if (hdr->evt != event)
109 goto failed;
110 return skb;
111 }
112
113 if (hdr->evt != HCI_EV_CMD_COMPLETE) {
114 BT_DBG("Last event is not cmd complete (0x%2.2x)", hdr->evt);
115 goto failed;
116 }
117
118 if (skb->len < sizeof(*ev)) {
119 BT_ERR("Too short cmd_complete event");
120 goto failed;
121 }
122
123 ev = (void *) skb->data;
124 skb_pull(skb, sizeof(*ev));
125
126 if (opcode == __le16_to_cpu(ev->opcode))
127 return skb;
128
129 BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode,
130 __le16_to_cpu(ev->opcode));
131
132 failed:
133 kfree_skb(skb);
134 return ERR_PTR(-ENODATA);
135 }
136
137 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
138 const void *param, u8 event, u32 timeout)
139 {
140 DECLARE_WAITQUEUE(wait, current);
141 struct hci_request req;
142 int err = 0;
143
144 BT_DBG("%s", hdev->name);
145
146 hci_req_init(&req, hdev);
147
148 hci_req_add_ev(&req, opcode, plen, param, event);
149
150 hdev->req_status = HCI_REQ_PEND;
151
152 err = hci_req_run(&req, hci_req_sync_complete);
153 if (err < 0)
154 return ERR_PTR(err);
155
156 add_wait_queue(&hdev->req_wait_q, &wait);
157 set_current_state(TASK_INTERRUPTIBLE);
158
159 schedule_timeout(timeout);
160
161 remove_wait_queue(&hdev->req_wait_q, &wait);
162
163 if (signal_pending(current))
164 return ERR_PTR(-EINTR);
165
166 switch (hdev->req_status) {
167 case HCI_REQ_DONE:
168 err = -bt_to_errno(hdev->req_result);
169 break;
170
171 case HCI_REQ_CANCELED:
172 err = -hdev->req_result;
173 break;
174
175 default:
176 err = -ETIMEDOUT;
177 break;
178 }
179
180 hdev->req_status = hdev->req_result = 0;
181
182 BT_DBG("%s end: err %d", hdev->name, err);
183
184 if (err < 0)
185 return ERR_PTR(err);
186
187 return hci_get_cmd_complete(hdev, opcode, event);
188 }
189 EXPORT_SYMBOL(__hci_cmd_sync_ev);
190
191 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
192 const void *param, u32 timeout)
193 {
194 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
195 }
196 EXPORT_SYMBOL(__hci_cmd_sync);
197
198 /* Execute request and wait for completion. */
199 static int __hci_req_sync(struct hci_dev *hdev,
200 void (*func)(struct hci_request *req,
201 unsigned long opt),
202 unsigned long opt, __u32 timeout)
203 {
204 struct hci_request req;
205 DECLARE_WAITQUEUE(wait, current);
206 int err = 0;
207
208 BT_DBG("%s start", hdev->name);
209
210 hci_req_init(&req, hdev);
211
212 hdev->req_status = HCI_REQ_PEND;
213
214 func(&req, opt);
215
216 err = hci_req_run(&req, hci_req_sync_complete);
217 if (err < 0) {
218 hdev->req_status = 0;
219
220 /* ENODATA means the HCI request command queue is empty.
221 * This can happen when a request with conditionals doesn't
222 * trigger any commands to be sent. This is normal behavior
223 * and should not trigger an error return.
224 */
225 if (err == -ENODATA)
226 return 0;
227
228 return err;
229 }
230
231 add_wait_queue(&hdev->req_wait_q, &wait);
232 set_current_state(TASK_INTERRUPTIBLE);
233
234 schedule_timeout(timeout);
235
236 remove_wait_queue(&hdev->req_wait_q, &wait);
237
238 if (signal_pending(current))
239 return -EINTR;
240
241 switch (hdev->req_status) {
242 case HCI_REQ_DONE:
243 err = -bt_to_errno(hdev->req_result);
244 break;
245
246 case HCI_REQ_CANCELED:
247 err = -hdev->req_result;
248 break;
249
250 default:
251 err = -ETIMEDOUT;
252 break;
253 }
254
255 hdev->req_status = hdev->req_result = 0;
256
257 BT_DBG("%s end: err %d", hdev->name, err);
258
259 return err;
260 }
261
262 static int hci_req_sync(struct hci_dev *hdev,
263 void (*req)(struct hci_request *req,
264 unsigned long opt),
265 unsigned long opt, __u32 timeout)
266 {
267 int ret;
268
269 if (!test_bit(HCI_UP, &hdev->flags))
270 return -ENETDOWN;
271
272 /* Serialize all requests */
273 hci_req_lock(hdev);
274 ret = __hci_req_sync(hdev, req, opt, timeout);
275 hci_req_unlock(hdev);
276
277 return ret;
278 }
279
280 static void hci_reset_req(struct hci_request *req, unsigned long opt)
281 {
282 BT_DBG("%s %ld", req->hdev->name, opt);
283
284 /* Reset device */
285 set_bit(HCI_RESET, &req->hdev->flags);
286 hci_req_add(req, HCI_OP_RESET, 0, NULL);
287 }
288
289 static void bredr_init(struct hci_request *req)
290 {
291 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
292
293 /* Read Local Supported Features */
294 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
295
296 /* Read Local Version */
297 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
298
299 /* Read BD Address */
300 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
301 }
302
303 static void amp_init(struct hci_request *req)
304 {
305 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
306
307 /* Read Local Version */
308 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
309
310 /* Read Local AMP Info */
311 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
312
313 /* Read Data Blk size */
314 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
315 }
316
317 static void hci_init1_req(struct hci_request *req, unsigned long opt)
318 {
319 struct hci_dev *hdev = req->hdev;
320
321 BT_DBG("%s %ld", hdev->name, opt);
322
323 /* Reset */
324 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
325 hci_reset_req(req, 0);
326
327 switch (hdev->dev_type) {
328 case HCI_BREDR:
329 bredr_init(req);
330 break;
331
332 case HCI_AMP:
333 amp_init(req);
334 break;
335
336 default:
337 BT_ERR("Unknown device type %d", hdev->dev_type);
338 break;
339 }
340 }
341
342 static void bredr_setup(struct hci_request *req)
343 {
344 __le16 param;
345 __u8 flt_type;
346
347 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
348 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
349
350 /* Read Class of Device */
351 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
352
353 /* Read Local Name */
354 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
355
356 /* Read Voice Setting */
357 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
358
359 /* Clear Event Filters */
360 flt_type = HCI_FLT_CLEAR_ALL;
361 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
362
363 /* Connection accept timeout ~20 secs */
364 param = __constant_cpu_to_le16(0x7d00);
365 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
366
367 /* Read page scan parameters */
368 if (req->hdev->hci_ver > BLUETOOTH_VER_1_1) {
369 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
370 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
371 }
372 }
373
374 static void le_setup(struct hci_request *req)
375 {
376 struct hci_dev *hdev = req->hdev;
377
378 /* Read LE Buffer Size */
379 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
380
381 /* Read LE Local Supported Features */
382 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
383
384 /* Read LE Advertising Channel TX Power */
385 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
386
387 /* Read LE White List Size */
388 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL);
389
390 /* Read LE Supported States */
391 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
392
393 /* LE-only controllers have LE implicitly enabled */
394 if (!lmp_bredr_capable(hdev))
395 set_bit(HCI_LE_ENABLED, &hdev->dev_flags);
396 }
397
398 static u8 hci_get_inquiry_mode(struct hci_dev *hdev)
399 {
400 if (lmp_ext_inq_capable(hdev))
401 return 0x02;
402
403 if (lmp_inq_rssi_capable(hdev))
404 return 0x01;
405
406 if (hdev->manufacturer == 11 && hdev->hci_rev == 0x00 &&
407 hdev->lmp_subver == 0x0757)
408 return 0x01;
409
410 if (hdev->manufacturer == 15) {
411 if (hdev->hci_rev == 0x03 && hdev->lmp_subver == 0x6963)
412 return 0x01;
413 if (hdev->hci_rev == 0x09 && hdev->lmp_subver == 0x6963)
414 return 0x01;
415 if (hdev->hci_rev == 0x00 && hdev->lmp_subver == 0x6965)
416 return 0x01;
417 }
418
419 if (hdev->manufacturer == 31 && hdev->hci_rev == 0x2005 &&
420 hdev->lmp_subver == 0x1805)
421 return 0x01;
422
423 return 0x00;
424 }
425
426 static void hci_setup_inquiry_mode(struct hci_request *req)
427 {
428 u8 mode;
429
430 mode = hci_get_inquiry_mode(req->hdev);
431
432 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
433 }
434
435 static void hci_setup_event_mask(struct hci_request *req)
436 {
437 struct hci_dev *hdev = req->hdev;
438
439 /* The second byte is 0xff instead of 0x9f (two reserved bits
440 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
441 * command otherwise.
442 */
443 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
444
445 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
446 * any event mask for pre 1.2 devices.
447 */
448 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
449 return;
450
451 if (lmp_bredr_capable(hdev)) {
452 events[4] |= 0x01; /* Flow Specification Complete */
453 events[4] |= 0x02; /* Inquiry Result with RSSI */
454 events[4] |= 0x04; /* Read Remote Extended Features Complete */
455 events[5] |= 0x08; /* Synchronous Connection Complete */
456 events[5] |= 0x10; /* Synchronous Connection Changed */
457 }
458
459 if (lmp_inq_rssi_capable(hdev))
460 events[4] |= 0x02; /* Inquiry Result with RSSI */
461
462 if (lmp_sniffsubr_capable(hdev))
463 events[5] |= 0x20; /* Sniff Subrating */
464
465 if (lmp_pause_enc_capable(hdev))
466 events[5] |= 0x80; /* Encryption Key Refresh Complete */
467
468 if (lmp_ext_inq_capable(hdev))
469 events[5] |= 0x40; /* Extended Inquiry Result */
470
471 if (lmp_no_flush_capable(hdev))
472 events[7] |= 0x01; /* Enhanced Flush Complete */
473
474 if (lmp_lsto_capable(hdev))
475 events[6] |= 0x80; /* Link Supervision Timeout Changed */
476
477 if (lmp_ssp_capable(hdev)) {
478 events[6] |= 0x01; /* IO Capability Request */
479 events[6] |= 0x02; /* IO Capability Response */
480 events[6] |= 0x04; /* User Confirmation Request */
481 events[6] |= 0x08; /* User Passkey Request */
482 events[6] |= 0x10; /* Remote OOB Data Request */
483 events[6] |= 0x20; /* Simple Pairing Complete */
484 events[7] |= 0x04; /* User Passkey Notification */
485 events[7] |= 0x08; /* Keypress Notification */
486 events[7] |= 0x10; /* Remote Host Supported
487 * Features Notification
488 */
489 }
490
491 if (lmp_le_capable(hdev))
492 events[7] |= 0x20; /* LE Meta-Event */
493
494 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
495
496 if (lmp_le_capable(hdev)) {
497 memset(events, 0, sizeof(events));
498 events[0] = 0x1f;
499 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK,
500 sizeof(events), events);
501 }
502 }
503
504 static void hci_init2_req(struct hci_request *req, unsigned long opt)
505 {
506 struct hci_dev *hdev = req->hdev;
507
508 if (lmp_bredr_capable(hdev))
509 bredr_setup(req);
510
511 if (lmp_le_capable(hdev))
512 le_setup(req);
513
514 hci_setup_event_mask(req);
515
516 if (hdev->hci_ver > BLUETOOTH_VER_1_1)
517 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
518
519 if (lmp_ssp_capable(hdev)) {
520 if (test_bit(HCI_SSP_ENABLED, &hdev->dev_flags)) {
521 u8 mode = 0x01;
522 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
523 sizeof(mode), &mode);
524 } else {
525 struct hci_cp_write_eir cp;
526
527 memset(hdev->eir, 0, sizeof(hdev->eir));
528 memset(&cp, 0, sizeof(cp));
529
530 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
531 }
532 }
533
534 if (lmp_inq_rssi_capable(hdev))
535 hci_setup_inquiry_mode(req);
536
537 if (lmp_inq_tx_pwr_capable(hdev))
538 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
539
540 if (lmp_ext_feat_capable(hdev)) {
541 struct hci_cp_read_local_ext_features cp;
542
543 cp.page = 0x01;
544 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
545 sizeof(cp), &cp);
546 }
547
548 if (test_bit(HCI_LINK_SECURITY, &hdev->dev_flags)) {
549 u8 enable = 1;
550 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
551 &enable);
552 }
553 }
554
555 static void hci_setup_link_policy(struct hci_request *req)
556 {
557 struct hci_dev *hdev = req->hdev;
558 struct hci_cp_write_def_link_policy cp;
559 u16 link_policy = 0;
560
561 if (lmp_rswitch_capable(hdev))
562 link_policy |= HCI_LP_RSWITCH;
563 if (lmp_hold_capable(hdev))
564 link_policy |= HCI_LP_HOLD;
565 if (lmp_sniff_capable(hdev))
566 link_policy |= HCI_LP_SNIFF;
567 if (lmp_park_capable(hdev))
568 link_policy |= HCI_LP_PARK;
569
570 cp.policy = cpu_to_le16(link_policy);
571 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
572 }
573
574 static void hci_set_le_support(struct hci_request *req)
575 {
576 struct hci_dev *hdev = req->hdev;
577 struct hci_cp_write_le_host_supported cp;
578
579 /* LE-only devices do not support explicit enablement */
580 if (!lmp_bredr_capable(hdev))
581 return;
582
583 memset(&cp, 0, sizeof(cp));
584
585 if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) {
586 cp.le = 0x01;
587 cp.simul = lmp_le_br_capable(hdev);
588 }
589
590 if (cp.le != lmp_host_le_capable(hdev))
591 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
592 &cp);
593 }
594
595 static void hci_init3_req(struct hci_request *req, unsigned long opt)
596 {
597 struct hci_dev *hdev = req->hdev;
598 u8 p;
599
600 /* Only send HCI_Delete_Stored_Link_Key if it is supported */
601 if (hdev->commands[6] & 0x80) {
602 struct hci_cp_delete_stored_link_key cp;
603
604 bacpy(&cp.bdaddr, BDADDR_ANY);
605 cp.delete_all = 0x01;
606 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
607 sizeof(cp), &cp);
608 }
609
610 if (hdev->commands[5] & 0x10)
611 hci_setup_link_policy(req);
612
613 if (lmp_le_capable(hdev)) {
614 hci_set_le_support(req);
615 hci_update_ad(req);
616 }
617
618 /* Read features beyond page 1 if available */
619 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
620 struct hci_cp_read_local_ext_features cp;
621
622 cp.page = p;
623 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
624 sizeof(cp), &cp);
625 }
626 }
627
628 static int __hci_init(struct hci_dev *hdev)
629 {
630 int err;
631
632 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT);
633 if (err < 0)
634 return err;
635
636 /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
637 * BR/EDR/LE type controllers. AMP controllers only need the
638 * first stage init.
639 */
640 if (hdev->dev_type != HCI_BREDR)
641 return 0;
642
643 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT);
644 if (err < 0)
645 return err;
646
647 return __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT);
648 }
649
650 static void hci_scan_req(struct hci_request *req, unsigned long opt)
651 {
652 __u8 scan = opt;
653
654 BT_DBG("%s %x", req->hdev->name, scan);
655
656 /* Inquiry and Page scans */
657 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
658 }
659
660 static void hci_auth_req(struct hci_request *req, unsigned long opt)
661 {
662 __u8 auth = opt;
663
664 BT_DBG("%s %x", req->hdev->name, auth);
665
666 /* Authentication */
667 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
668 }
669
670 static void hci_encrypt_req(struct hci_request *req, unsigned long opt)
671 {
672 __u8 encrypt = opt;
673
674 BT_DBG("%s %x", req->hdev->name, encrypt);
675
676 /* Encryption */
677 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
678 }
679
680 static void hci_linkpol_req(struct hci_request *req, unsigned long opt)
681 {
682 __le16 policy = cpu_to_le16(opt);
683
684 BT_DBG("%s %x", req->hdev->name, policy);
685
686 /* Default link policy */
687 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
688 }
689
690 /* Get HCI device by index.
691 * Device is held on return. */
692 struct hci_dev *hci_dev_get(int index)
693 {
694 struct hci_dev *hdev = NULL, *d;
695
696 BT_DBG("%d", index);
697
698 if (index < 0)
699 return NULL;
700
701 read_lock(&hci_dev_list_lock);
702 list_for_each_entry(d, &hci_dev_list, list) {
703 if (d->id == index) {
704 hdev = hci_dev_hold(d);
705 break;
706 }
707 }
708 read_unlock(&hci_dev_list_lock);
709 return hdev;
710 }
711
712 /* ---- Inquiry support ---- */
713
714 bool hci_discovery_active(struct hci_dev *hdev)
715 {
716 struct discovery_state *discov = &hdev->discovery;
717
718 switch (discov->state) {
719 case DISCOVERY_FINDING:
720 case DISCOVERY_RESOLVING:
721 return true;
722
723 default:
724 return false;
725 }
726 }
727
728 void hci_discovery_set_state(struct hci_dev *hdev, int state)
729 {
730 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
731
732 if (hdev->discovery.state == state)
733 return;
734
735 switch (state) {
736 case DISCOVERY_STOPPED:
737 if (hdev->discovery.state != DISCOVERY_STARTING)
738 mgmt_discovering(hdev, 0);
739 break;
740 case DISCOVERY_STARTING:
741 break;
742 case DISCOVERY_FINDING:
743 mgmt_discovering(hdev, 1);
744 break;
745 case DISCOVERY_RESOLVING:
746 break;
747 case DISCOVERY_STOPPING:
748 break;
749 }
750
751 hdev->discovery.state = state;
752 }
753
754 static void inquiry_cache_flush(struct hci_dev *hdev)
755 {
756 struct discovery_state *cache = &hdev->discovery;
757 struct inquiry_entry *p, *n;
758
759 list_for_each_entry_safe(p, n, &cache->all, all) {
760 list_del(&p->all);
761 kfree(p);
762 }
763
764 INIT_LIST_HEAD(&cache->unknown);
765 INIT_LIST_HEAD(&cache->resolve);
766 }
767
768 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
769 bdaddr_t *bdaddr)
770 {
771 struct discovery_state *cache = &hdev->discovery;
772 struct inquiry_entry *e;
773
774 BT_DBG("cache %p, %pMR", cache, bdaddr);
775
776 list_for_each_entry(e, &cache->all, all) {
777 if (!bacmp(&e->data.bdaddr, bdaddr))
778 return e;
779 }
780
781 return NULL;
782 }
783
784 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
785 bdaddr_t *bdaddr)
786 {
787 struct discovery_state *cache = &hdev->discovery;
788 struct inquiry_entry *e;
789
790 BT_DBG("cache %p, %pMR", cache, bdaddr);
791
792 list_for_each_entry(e, &cache->unknown, list) {
793 if (!bacmp(&e->data.bdaddr, bdaddr))
794 return e;
795 }
796
797 return NULL;
798 }
799
800 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
801 bdaddr_t *bdaddr,
802 int state)
803 {
804 struct discovery_state *cache = &hdev->discovery;
805 struct inquiry_entry *e;
806
807 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
808
809 list_for_each_entry(e, &cache->resolve, list) {
810 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
811 return e;
812 if (!bacmp(&e->data.bdaddr, bdaddr))
813 return e;
814 }
815
816 return NULL;
817 }
818
819 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
820 struct inquiry_entry *ie)
821 {
822 struct discovery_state *cache = &hdev->discovery;
823 struct list_head *pos = &cache->resolve;
824 struct inquiry_entry *p;
825
826 list_del(&ie->list);
827
828 list_for_each_entry(p, &cache->resolve, list) {
829 if (p->name_state != NAME_PENDING &&
830 abs(p->data.rssi) >= abs(ie->data.rssi))
831 break;
832 pos = &p->list;
833 }
834
835 list_add(&ie->list, pos);
836 }
837
838 bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
839 bool name_known, bool *ssp)
840 {
841 struct discovery_state *cache = &hdev->discovery;
842 struct inquiry_entry *ie;
843
844 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
845
846 hci_remove_remote_oob_data(hdev, &data->bdaddr);
847
848 if (ssp)
849 *ssp = data->ssp_mode;
850
851 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
852 if (ie) {
853 if (ie->data.ssp_mode && ssp)
854 *ssp = true;
855
856 if (ie->name_state == NAME_NEEDED &&
857 data->rssi != ie->data.rssi) {
858 ie->data.rssi = data->rssi;
859 hci_inquiry_cache_update_resolve(hdev, ie);
860 }
861
862 goto update;
863 }
864
865 /* Entry not in the cache. Add new one. */
866 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
867 if (!ie)
868 return false;
869
870 list_add(&ie->all, &cache->all);
871
872 if (name_known) {
873 ie->name_state = NAME_KNOWN;
874 } else {
875 ie->name_state = NAME_NOT_KNOWN;
876 list_add(&ie->list, &cache->unknown);
877 }
878
879 update:
880 if (name_known && ie->name_state != NAME_KNOWN &&
881 ie->name_state != NAME_PENDING) {
882 ie->name_state = NAME_KNOWN;
883 list_del(&ie->list);
884 }
885
886 memcpy(&ie->data, data, sizeof(*data));
887 ie->timestamp = jiffies;
888 cache->timestamp = jiffies;
889
890 if (ie->name_state == NAME_NOT_KNOWN)
891 return false;
892
893 return true;
894 }
895
896 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
897 {
898 struct discovery_state *cache = &hdev->discovery;
899 struct inquiry_info *info = (struct inquiry_info *) buf;
900 struct inquiry_entry *e;
901 int copied = 0;
902
903 list_for_each_entry(e, &cache->all, all) {
904 struct inquiry_data *data = &e->data;
905
906 if (copied >= num)
907 break;
908
909 bacpy(&info->bdaddr, &data->bdaddr);
910 info->pscan_rep_mode = data->pscan_rep_mode;
911 info->pscan_period_mode = data->pscan_period_mode;
912 info->pscan_mode = data->pscan_mode;
913 memcpy(info->dev_class, data->dev_class, 3);
914 info->clock_offset = data->clock_offset;
915
916 info++;
917 copied++;
918 }
919
920 BT_DBG("cache %p, copied %d", cache, copied);
921 return copied;
922 }
923
924 static void hci_inq_req(struct hci_request *req, unsigned long opt)
925 {
926 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
927 struct hci_dev *hdev = req->hdev;
928 struct hci_cp_inquiry cp;
929
930 BT_DBG("%s", hdev->name);
931
932 if (test_bit(HCI_INQUIRY, &hdev->flags))
933 return;
934
935 /* Start Inquiry */
936 memcpy(&cp.lap, &ir->lap, 3);
937 cp.length = ir->length;
938 cp.num_rsp = ir->num_rsp;
939 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
940 }
941
942 static int wait_inquiry(void *word)
943 {
944 schedule();
945 return signal_pending(current);
946 }
947
948 int hci_inquiry(void __user *arg)
949 {
950 __u8 __user *ptr = arg;
951 struct hci_inquiry_req ir;
952 struct hci_dev *hdev;
953 int err = 0, do_inquiry = 0, max_rsp;
954 long timeo;
955 __u8 *buf;
956
957 if (copy_from_user(&ir, ptr, sizeof(ir)))
958 return -EFAULT;
959
960 hdev = hci_dev_get(ir.dev_id);
961 if (!hdev)
962 return -ENODEV;
963
964 hci_dev_lock(hdev);
965 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
966 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
967 inquiry_cache_flush(hdev);
968 do_inquiry = 1;
969 }
970 hci_dev_unlock(hdev);
971
972 timeo = ir.length * msecs_to_jiffies(2000);
973
974 if (do_inquiry) {
975 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
976 timeo);
977 if (err < 0)
978 goto done;
979
980 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
981 * cleared). If it is interrupted by a signal, return -EINTR.
982 */
983 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, wait_inquiry,
984 TASK_INTERRUPTIBLE))
985 return -EINTR;
986 }
987
988 /* for unlimited number of responses we will use buffer with
989 * 255 entries
990 */
991 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
992
993 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
994 * copy it to the user space.
995 */
996 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
997 if (!buf) {
998 err = -ENOMEM;
999 goto done;
1000 }
1001
1002 hci_dev_lock(hdev);
1003 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1004 hci_dev_unlock(hdev);
1005
1006 BT_DBG("num_rsp %d", ir.num_rsp);
1007
1008 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1009 ptr += sizeof(ir);
1010 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1011 ir.num_rsp))
1012 err = -EFAULT;
1013 } else
1014 err = -EFAULT;
1015
1016 kfree(buf);
1017
1018 done:
1019 hci_dev_put(hdev);
1020 return err;
1021 }
1022
1023 static u8 create_ad(struct hci_dev *hdev, u8 *ptr)
1024 {
1025 u8 ad_len = 0, flags = 0;
1026 size_t name_len;
1027
1028 if (test_bit(HCI_LE_PERIPHERAL, &hdev->dev_flags))
1029 flags |= LE_AD_GENERAL;
1030
1031 if (!lmp_bredr_capable(hdev))
1032 flags |= LE_AD_NO_BREDR;
1033
1034 if (lmp_le_br_capable(hdev))
1035 flags |= LE_AD_SIM_LE_BREDR_CTRL;
1036
1037 if (lmp_host_le_br_capable(hdev))
1038 flags |= LE_AD_SIM_LE_BREDR_HOST;
1039
1040 if (flags) {
1041 BT_DBG("adv flags 0x%02x", flags);
1042
1043 ptr[0] = 2;
1044 ptr[1] = EIR_FLAGS;
1045 ptr[2] = flags;
1046
1047 ad_len += 3;
1048 ptr += 3;
1049 }
1050
1051 if (hdev->adv_tx_power != HCI_TX_POWER_INVALID) {
1052 ptr[0] = 2;
1053 ptr[1] = EIR_TX_POWER;
1054 ptr[2] = (u8) hdev->adv_tx_power;
1055
1056 ad_len += 3;
1057 ptr += 3;
1058 }
1059
1060 name_len = strlen(hdev->dev_name);
1061 if (name_len > 0) {
1062 size_t max_len = HCI_MAX_AD_LENGTH - ad_len - 2;
1063
1064 if (name_len > max_len) {
1065 name_len = max_len;
1066 ptr[1] = EIR_NAME_SHORT;
1067 } else
1068 ptr[1] = EIR_NAME_COMPLETE;
1069
1070 ptr[0] = name_len + 1;
1071
1072 memcpy(ptr + 2, hdev->dev_name, name_len);
1073
1074 ad_len += (name_len + 2);
1075 ptr += (name_len + 2);
1076 }
1077
1078 return ad_len;
1079 }
1080
1081 void hci_update_ad(struct hci_request *req)
1082 {
1083 struct hci_dev *hdev = req->hdev;
1084 struct hci_cp_le_set_adv_data cp;
1085 u8 len;
1086
1087 if (!lmp_le_capable(hdev))
1088 return;
1089
1090 memset(&cp, 0, sizeof(cp));
1091
1092 len = create_ad(hdev, cp.data);
1093
1094 if (hdev->adv_data_len == len &&
1095 memcmp(cp.data, hdev->adv_data, len) == 0)
1096 return;
1097
1098 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1099 hdev->adv_data_len = len;
1100
1101 cp.length = len;
1102
1103 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1104 }
1105
1106 /* ---- HCI ioctl helpers ---- */
1107
1108 int hci_dev_open(__u16 dev)
1109 {
1110 struct hci_dev *hdev;
1111 int ret = 0;
1112
1113 hdev = hci_dev_get(dev);
1114 if (!hdev)
1115 return -ENODEV;
1116
1117 BT_DBG("%s %p", hdev->name, hdev);
1118
1119 hci_req_lock(hdev);
1120
1121 if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) {
1122 ret = -ENODEV;
1123 goto done;
1124 }
1125
1126 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
1127 ret = -ERFKILL;
1128 goto done;
1129 }
1130
1131 if (test_bit(HCI_UP, &hdev->flags)) {
1132 ret = -EALREADY;
1133 goto done;
1134 }
1135
1136 if (hdev->open(hdev)) {
1137 ret = -EIO;
1138 goto done;
1139 }
1140
1141 atomic_set(&hdev->cmd_cnt, 1);
1142 set_bit(HCI_INIT, &hdev->flags);
1143
1144 if (hdev->setup && test_bit(HCI_SETUP, &hdev->dev_flags))
1145 ret = hdev->setup(hdev);
1146
1147 if (!ret) {
1148 /* Treat all non BR/EDR controllers as raw devices if
1149 * enable_hs is not set.
1150 */
1151 if (hdev->dev_type != HCI_BREDR && !enable_hs)
1152 set_bit(HCI_RAW, &hdev->flags);
1153
1154 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
1155 set_bit(HCI_RAW, &hdev->flags);
1156
1157 if (!test_bit(HCI_RAW, &hdev->flags))
1158 ret = __hci_init(hdev);
1159 }
1160
1161 clear_bit(HCI_INIT, &hdev->flags);
1162
1163 if (!ret) {
1164 hci_dev_hold(hdev);
1165 set_bit(HCI_UP, &hdev->flags);
1166 hci_notify(hdev, HCI_DEV_UP);
1167 if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
1168 mgmt_valid_hdev(hdev)) {
1169 hci_dev_lock(hdev);
1170 mgmt_powered(hdev, 1);
1171 hci_dev_unlock(hdev);
1172 }
1173 } else {
1174 /* Init failed, cleanup */
1175 flush_work(&hdev->tx_work);
1176 flush_work(&hdev->cmd_work);
1177 flush_work(&hdev->rx_work);
1178
1179 skb_queue_purge(&hdev->cmd_q);
1180 skb_queue_purge(&hdev->rx_q);
1181
1182 if (hdev->flush)
1183 hdev->flush(hdev);
1184
1185 if (hdev->sent_cmd) {
1186 kfree_skb(hdev->sent_cmd);
1187 hdev->sent_cmd = NULL;
1188 }
1189
1190 hdev->close(hdev);
1191 hdev->flags = 0;
1192 }
1193
1194 done:
1195 hci_req_unlock(hdev);
1196 hci_dev_put(hdev);
1197 return ret;
1198 }
1199
1200 static int hci_dev_do_close(struct hci_dev *hdev)
1201 {
1202 BT_DBG("%s %p", hdev->name, hdev);
1203
1204 cancel_work_sync(&hdev->le_scan);
1205
1206 cancel_delayed_work(&hdev->power_off);
1207
1208 hci_req_cancel(hdev, ENODEV);
1209 hci_req_lock(hdev);
1210
1211 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1212 del_timer_sync(&hdev->cmd_timer);
1213 hci_req_unlock(hdev);
1214 return 0;
1215 }
1216
1217 /* Flush RX and TX works */
1218 flush_work(&hdev->tx_work);
1219 flush_work(&hdev->rx_work);
1220
1221 if (hdev->discov_timeout > 0) {
1222 cancel_delayed_work(&hdev->discov_off);
1223 hdev->discov_timeout = 0;
1224 clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags);
1225 }
1226
1227 if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags))
1228 cancel_delayed_work(&hdev->service_cache);
1229
1230 cancel_delayed_work_sync(&hdev->le_scan_disable);
1231
1232 hci_dev_lock(hdev);
1233 inquiry_cache_flush(hdev);
1234 hci_conn_hash_flush(hdev);
1235 hci_dev_unlock(hdev);
1236
1237 hci_notify(hdev, HCI_DEV_DOWN);
1238
1239 if (hdev->flush)
1240 hdev->flush(hdev);
1241
1242 /* Reset device */
1243 skb_queue_purge(&hdev->cmd_q);
1244 atomic_set(&hdev->cmd_cnt, 1);
1245 if (!test_bit(HCI_RAW, &hdev->flags) &&
1246 test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
1247 set_bit(HCI_INIT, &hdev->flags);
1248 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT);
1249 clear_bit(HCI_INIT, &hdev->flags);
1250 }
1251
1252 /* flush cmd work */
1253 flush_work(&hdev->cmd_work);
1254
1255 /* Drop queues */
1256 skb_queue_purge(&hdev->rx_q);
1257 skb_queue_purge(&hdev->cmd_q);
1258 skb_queue_purge(&hdev->raw_q);
1259
1260 /* Drop last sent command */
1261 if (hdev->sent_cmd) {
1262 del_timer_sync(&hdev->cmd_timer);
1263 kfree_skb(hdev->sent_cmd);
1264 hdev->sent_cmd = NULL;
1265 }
1266
1267 kfree_skb(hdev->recv_evt);
1268 hdev->recv_evt = NULL;
1269
1270 /* After this point our queues are empty
1271 * and no tasks are scheduled. */
1272 hdev->close(hdev);
1273
1274 /* Clear flags */
1275 hdev->flags = 0;
1276 hdev->dev_flags &= ~HCI_PERSISTENT_MASK;
1277
1278 if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags) &&
1279 mgmt_valid_hdev(hdev)) {
1280 hci_dev_lock(hdev);
1281 mgmt_powered(hdev, 0);
1282 hci_dev_unlock(hdev);
1283 }
1284
1285 /* Controller radio is available but is currently powered down */
1286 hdev->amp_status = 0;
1287
1288 memset(hdev->eir, 0, sizeof(hdev->eir));
1289 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1290
1291 hci_req_unlock(hdev);
1292
1293 hci_dev_put(hdev);
1294 return 0;
1295 }
1296
1297 int hci_dev_close(__u16 dev)
1298 {
1299 struct hci_dev *hdev;
1300 int err;
1301
1302 hdev = hci_dev_get(dev);
1303 if (!hdev)
1304 return -ENODEV;
1305
1306 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1307 cancel_delayed_work(&hdev->power_off);
1308
1309 err = hci_dev_do_close(hdev);
1310
1311 hci_dev_put(hdev);
1312 return err;
1313 }
1314
1315 int hci_dev_reset(__u16 dev)
1316 {
1317 struct hci_dev *hdev;
1318 int ret = 0;
1319
1320 hdev = hci_dev_get(dev);
1321 if (!hdev)
1322 return -ENODEV;
1323
1324 hci_req_lock(hdev);
1325
1326 if (!test_bit(HCI_UP, &hdev->flags))
1327 goto done;
1328
1329 /* Drop queues */
1330 skb_queue_purge(&hdev->rx_q);
1331 skb_queue_purge(&hdev->cmd_q);
1332
1333 hci_dev_lock(hdev);
1334 inquiry_cache_flush(hdev);
1335 hci_conn_hash_flush(hdev);
1336 hci_dev_unlock(hdev);
1337
1338 if (hdev->flush)
1339 hdev->flush(hdev);
1340
1341 atomic_set(&hdev->cmd_cnt, 1);
1342 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1343
1344 if (!test_bit(HCI_RAW, &hdev->flags))
1345 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT);
1346
1347 done:
1348 hci_req_unlock(hdev);
1349 hci_dev_put(hdev);
1350 return ret;
1351 }
1352
1353 int hci_dev_reset_stat(__u16 dev)
1354 {
1355 struct hci_dev *hdev;
1356 int ret = 0;
1357
1358 hdev = hci_dev_get(dev);
1359 if (!hdev)
1360 return -ENODEV;
1361
1362 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1363
1364 hci_dev_put(hdev);
1365
1366 return ret;
1367 }
1368
1369 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1370 {
1371 struct hci_dev *hdev;
1372 struct hci_dev_req dr;
1373 int err = 0;
1374
1375 if (copy_from_user(&dr, arg, sizeof(dr)))
1376 return -EFAULT;
1377
1378 hdev = hci_dev_get(dr.dev_id);
1379 if (!hdev)
1380 return -ENODEV;
1381
1382 switch (cmd) {
1383 case HCISETAUTH:
1384 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1385 HCI_INIT_TIMEOUT);
1386 break;
1387
1388 case HCISETENCRYPT:
1389 if (!lmp_encrypt_capable(hdev)) {
1390 err = -EOPNOTSUPP;
1391 break;
1392 }
1393
1394 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1395 /* Auth must be enabled first */
1396 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1397 HCI_INIT_TIMEOUT);
1398 if (err)
1399 break;
1400 }
1401
1402 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1403 HCI_INIT_TIMEOUT);
1404 break;
1405
1406 case HCISETSCAN:
1407 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1408 HCI_INIT_TIMEOUT);
1409 break;
1410
1411 case HCISETLINKPOL:
1412 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1413 HCI_INIT_TIMEOUT);
1414 break;
1415
1416 case HCISETLINKMODE:
1417 hdev->link_mode = ((__u16) dr.dev_opt) &
1418 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1419 break;
1420
1421 case HCISETPTYPE:
1422 hdev->pkt_type = (__u16) dr.dev_opt;
1423 break;
1424
1425 case HCISETACLMTU:
1426 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1427 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1428 break;
1429
1430 case HCISETSCOMTU:
1431 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1432 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1433 break;
1434
1435 default:
1436 err = -EINVAL;
1437 break;
1438 }
1439
1440 hci_dev_put(hdev);
1441 return err;
1442 }
1443
1444 int hci_get_dev_list(void __user *arg)
1445 {
1446 struct hci_dev *hdev;
1447 struct hci_dev_list_req *dl;
1448 struct hci_dev_req *dr;
1449 int n = 0, size, err;
1450 __u16 dev_num;
1451
1452 if (get_user(dev_num, (__u16 __user *) arg))
1453 return -EFAULT;
1454
1455 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1456 return -EINVAL;
1457
1458 size = sizeof(*dl) + dev_num * sizeof(*dr);
1459
1460 dl = kzalloc(size, GFP_KERNEL);
1461 if (!dl)
1462 return -ENOMEM;
1463
1464 dr = dl->dev_req;
1465
1466 read_lock(&hci_dev_list_lock);
1467 list_for_each_entry(hdev, &hci_dev_list, list) {
1468 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1469 cancel_delayed_work(&hdev->power_off);
1470
1471 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1472 set_bit(HCI_PAIRABLE, &hdev->dev_flags);
1473
1474 (dr + n)->dev_id = hdev->id;
1475 (dr + n)->dev_opt = hdev->flags;
1476
1477 if (++n >= dev_num)
1478 break;
1479 }
1480 read_unlock(&hci_dev_list_lock);
1481
1482 dl->dev_num = n;
1483 size = sizeof(*dl) + n * sizeof(*dr);
1484
1485 err = copy_to_user(arg, dl, size);
1486 kfree(dl);
1487
1488 return err ? -EFAULT : 0;
1489 }
1490
1491 int hci_get_dev_info(void __user *arg)
1492 {
1493 struct hci_dev *hdev;
1494 struct hci_dev_info di;
1495 int err = 0;
1496
1497 if (copy_from_user(&di, arg, sizeof(di)))
1498 return -EFAULT;
1499
1500 hdev = hci_dev_get(di.dev_id);
1501 if (!hdev)
1502 return -ENODEV;
1503
1504 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1505 cancel_delayed_work_sync(&hdev->power_off);
1506
1507 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1508 set_bit(HCI_PAIRABLE, &hdev->dev_flags);
1509
1510 strcpy(di.name, hdev->name);
1511 di.bdaddr = hdev->bdaddr;
1512 di.type = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
1513 di.flags = hdev->flags;
1514 di.pkt_type = hdev->pkt_type;
1515 if (lmp_bredr_capable(hdev)) {
1516 di.acl_mtu = hdev->acl_mtu;
1517 di.acl_pkts = hdev->acl_pkts;
1518 di.sco_mtu = hdev->sco_mtu;
1519 di.sco_pkts = hdev->sco_pkts;
1520 } else {
1521 di.acl_mtu = hdev->le_mtu;
1522 di.acl_pkts = hdev->le_pkts;
1523 di.sco_mtu = 0;
1524 di.sco_pkts = 0;
1525 }
1526 di.link_policy = hdev->link_policy;
1527 di.link_mode = hdev->link_mode;
1528
1529 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1530 memcpy(&di.features, &hdev->features, sizeof(di.features));
1531
1532 if (copy_to_user(arg, &di, sizeof(di)))
1533 err = -EFAULT;
1534
1535 hci_dev_put(hdev);
1536
1537 return err;
1538 }
1539
1540 /* ---- Interface to HCI drivers ---- */
1541
1542 static int hci_rfkill_set_block(void *data, bool blocked)
1543 {
1544 struct hci_dev *hdev = data;
1545
1546 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1547
1548 if (!blocked)
1549 return 0;
1550
1551 hci_dev_do_close(hdev);
1552
1553 return 0;
1554 }
1555
1556 static const struct rfkill_ops hci_rfkill_ops = {
1557 .set_block = hci_rfkill_set_block,
1558 };
1559
1560 static void hci_power_on(struct work_struct *work)
1561 {
1562 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
1563 int err;
1564
1565 BT_DBG("%s", hdev->name);
1566
1567 err = hci_dev_open(hdev->id);
1568 if (err < 0) {
1569 mgmt_set_powered_failed(hdev, err);
1570 return;
1571 }
1572
1573 if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1574 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1575 HCI_AUTO_OFF_TIMEOUT);
1576
1577 if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags))
1578 mgmt_index_added(hdev);
1579 }
1580
1581 static void hci_power_off(struct work_struct *work)
1582 {
1583 struct hci_dev *hdev = container_of(work, struct hci_dev,
1584 power_off.work);
1585
1586 BT_DBG("%s", hdev->name);
1587
1588 hci_dev_do_close(hdev);
1589 }
1590
1591 static void hci_discov_off(struct work_struct *work)
1592 {
1593 struct hci_dev *hdev;
1594 u8 scan = SCAN_PAGE;
1595
1596 hdev = container_of(work, struct hci_dev, discov_off.work);
1597
1598 BT_DBG("%s", hdev->name);
1599
1600 hci_dev_lock(hdev);
1601
1602 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, sizeof(scan), &scan);
1603
1604 hdev->discov_timeout = 0;
1605
1606 hci_dev_unlock(hdev);
1607 }
1608
1609 int hci_uuids_clear(struct hci_dev *hdev)
1610 {
1611 struct bt_uuid *uuid, *tmp;
1612
1613 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1614 list_del(&uuid->list);
1615 kfree(uuid);
1616 }
1617
1618 return 0;
1619 }
1620
1621 int hci_link_keys_clear(struct hci_dev *hdev)
1622 {
1623 struct list_head *p, *n;
1624
1625 list_for_each_safe(p, n, &hdev->link_keys) {
1626 struct link_key *key;
1627
1628 key = list_entry(p, struct link_key, list);
1629
1630 list_del(p);
1631 kfree(key);
1632 }
1633
1634 return 0;
1635 }
1636
1637 int hci_smp_ltks_clear(struct hci_dev *hdev)
1638 {
1639 struct smp_ltk *k, *tmp;
1640
1641 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1642 list_del(&k->list);
1643 kfree(k);
1644 }
1645
1646 return 0;
1647 }
1648
1649 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1650 {
1651 struct link_key *k;
1652
1653 list_for_each_entry(k, &hdev->link_keys, list)
1654 if (bacmp(bdaddr, &k->bdaddr) == 0)
1655 return k;
1656
1657 return NULL;
1658 }
1659
1660 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1661 u8 key_type, u8 old_key_type)
1662 {
1663 /* Legacy key */
1664 if (key_type < 0x03)
1665 return true;
1666
1667 /* Debug keys are insecure so don't store them persistently */
1668 if (key_type == HCI_LK_DEBUG_COMBINATION)
1669 return false;
1670
1671 /* Changed combination key and there's no previous one */
1672 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1673 return false;
1674
1675 /* Security mode 3 case */
1676 if (!conn)
1677 return true;
1678
1679 /* Neither local nor remote side had no-bonding as requirement */
1680 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1681 return true;
1682
1683 /* Local side had dedicated bonding as requirement */
1684 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1685 return true;
1686
1687 /* Remote side had dedicated bonding as requirement */
1688 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1689 return true;
1690
1691 /* If none of the above criteria match, then don't store the key
1692 * persistently */
1693 return false;
1694 }
1695
1696 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1697 {
1698 struct smp_ltk *k;
1699
1700 list_for_each_entry(k, &hdev->long_term_keys, list) {
1701 if (k->ediv != ediv ||
1702 memcmp(rand, k->rand, sizeof(k->rand)))
1703 continue;
1704
1705 return k;
1706 }
1707
1708 return NULL;
1709 }
1710
1711 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1712 u8 addr_type)
1713 {
1714 struct smp_ltk *k;
1715
1716 list_for_each_entry(k, &hdev->long_term_keys, list)
1717 if (addr_type == k->bdaddr_type &&
1718 bacmp(bdaddr, &k->bdaddr) == 0)
1719 return k;
1720
1721 return NULL;
1722 }
1723
1724 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1725 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1726 {
1727 struct link_key *key, *old_key;
1728 u8 old_key_type;
1729 bool persistent;
1730
1731 old_key = hci_find_link_key(hdev, bdaddr);
1732 if (old_key) {
1733 old_key_type = old_key->type;
1734 key = old_key;
1735 } else {
1736 old_key_type = conn ? conn->key_type : 0xff;
1737 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1738 if (!key)
1739 return -ENOMEM;
1740 list_add(&key->list, &hdev->link_keys);
1741 }
1742
1743 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1744
1745 /* Some buggy controller combinations generate a changed
1746 * combination key for legacy pairing even when there's no
1747 * previous key */
1748 if (type == HCI_LK_CHANGED_COMBINATION &&
1749 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1750 type = HCI_LK_COMBINATION;
1751 if (conn)
1752 conn->key_type = type;
1753 }
1754
1755 bacpy(&key->bdaddr, bdaddr);
1756 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1757 key->pin_len = pin_len;
1758
1759 if (type == HCI_LK_CHANGED_COMBINATION)
1760 key->type = old_key_type;
1761 else
1762 key->type = type;
1763
1764 if (!new_key)
1765 return 0;
1766
1767 persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1768
1769 mgmt_new_link_key(hdev, key, persistent);
1770
1771 if (conn)
1772 conn->flush_key = !persistent;
1773
1774 return 0;
1775 }
1776
1777 int hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type,
1778 int new_key, u8 authenticated, u8 tk[16], u8 enc_size, __le16
1779 ediv, u8 rand[8])
1780 {
1781 struct smp_ltk *key, *old_key;
1782
1783 if (!(type & HCI_SMP_STK) && !(type & HCI_SMP_LTK))
1784 return 0;
1785
1786 old_key = hci_find_ltk_by_addr(hdev, bdaddr, addr_type);
1787 if (old_key)
1788 key = old_key;
1789 else {
1790 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1791 if (!key)
1792 return -ENOMEM;
1793 list_add(&key->list, &hdev->long_term_keys);
1794 }
1795
1796 bacpy(&key->bdaddr, bdaddr);
1797 key->bdaddr_type = addr_type;
1798 memcpy(key->val, tk, sizeof(key->val));
1799 key->authenticated = authenticated;
1800 key->ediv = ediv;
1801 key->enc_size = enc_size;
1802 key->type = type;
1803 memcpy(key->rand, rand, sizeof(key->rand));
1804
1805 if (!new_key)
1806 return 0;
1807
1808 if (type & HCI_SMP_LTK)
1809 mgmt_new_ltk(hdev, key, 1);
1810
1811 return 0;
1812 }
1813
1814 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1815 {
1816 struct link_key *key;
1817
1818 key = hci_find_link_key(hdev, bdaddr);
1819 if (!key)
1820 return -ENOENT;
1821
1822 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1823
1824 list_del(&key->list);
1825 kfree(key);
1826
1827 return 0;
1828 }
1829
1830 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr)
1831 {
1832 struct smp_ltk *k, *tmp;
1833
1834 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1835 if (bacmp(bdaddr, &k->bdaddr))
1836 continue;
1837
1838 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1839
1840 list_del(&k->list);
1841 kfree(k);
1842 }
1843
1844 return 0;
1845 }
1846
1847 /* HCI command timer function */
1848 static void hci_cmd_timeout(unsigned long arg)
1849 {
1850 struct hci_dev *hdev = (void *) arg;
1851
1852 if (hdev->sent_cmd) {
1853 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1854 u16 opcode = __le16_to_cpu(sent->opcode);
1855
1856 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
1857 } else {
1858 BT_ERR("%s command tx timeout", hdev->name);
1859 }
1860
1861 atomic_set(&hdev->cmd_cnt, 1);
1862 queue_work(hdev->workqueue, &hdev->cmd_work);
1863 }
1864
1865 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1866 bdaddr_t *bdaddr)
1867 {
1868 struct oob_data *data;
1869
1870 list_for_each_entry(data, &hdev->remote_oob_data, list)
1871 if (bacmp(bdaddr, &data->bdaddr) == 0)
1872 return data;
1873
1874 return NULL;
1875 }
1876
1877 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1878 {
1879 struct oob_data *data;
1880
1881 data = hci_find_remote_oob_data(hdev, bdaddr);
1882 if (!data)
1883 return -ENOENT;
1884
1885 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1886
1887 list_del(&data->list);
1888 kfree(data);
1889
1890 return 0;
1891 }
1892
1893 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1894 {
1895 struct oob_data *data, *n;
1896
1897 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1898 list_del(&data->list);
1899 kfree(data);
1900 }
1901
1902 return 0;
1903 }
1904
1905 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1906 u8 *randomizer)
1907 {
1908 struct oob_data *data;
1909
1910 data = hci_find_remote_oob_data(hdev, bdaddr);
1911
1912 if (!data) {
1913 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1914 if (!data)
1915 return -ENOMEM;
1916
1917 bacpy(&data->bdaddr, bdaddr);
1918 list_add(&data->list, &hdev->remote_oob_data);
1919 }
1920
1921 memcpy(data->hash, hash, sizeof(data->hash));
1922 memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1923
1924 BT_DBG("%s for %pMR", hdev->name, bdaddr);
1925
1926 return 0;
1927 }
1928
1929 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
1930 {
1931 struct bdaddr_list *b;
1932
1933 list_for_each_entry(b, &hdev->blacklist, list)
1934 if (bacmp(bdaddr, &b->bdaddr) == 0)
1935 return b;
1936
1937 return NULL;
1938 }
1939
1940 int hci_blacklist_clear(struct hci_dev *hdev)
1941 {
1942 struct list_head *p, *n;
1943
1944 list_for_each_safe(p, n, &hdev->blacklist) {
1945 struct bdaddr_list *b;
1946
1947 b = list_entry(p, struct bdaddr_list, list);
1948
1949 list_del(p);
1950 kfree(b);
1951 }
1952
1953 return 0;
1954 }
1955
1956 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1957 {
1958 struct bdaddr_list *entry;
1959
1960 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1961 return -EBADF;
1962
1963 if (hci_blacklist_lookup(hdev, bdaddr))
1964 return -EEXIST;
1965
1966 entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1967 if (!entry)
1968 return -ENOMEM;
1969
1970 bacpy(&entry->bdaddr, bdaddr);
1971
1972 list_add(&entry->list, &hdev->blacklist);
1973
1974 return mgmt_device_blocked(hdev, bdaddr, type);
1975 }
1976
1977 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1978 {
1979 struct bdaddr_list *entry;
1980
1981 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1982 return hci_blacklist_clear(hdev);
1983
1984 entry = hci_blacklist_lookup(hdev, bdaddr);
1985 if (!entry)
1986 return -ENOENT;
1987
1988 list_del(&entry->list);
1989 kfree(entry);
1990
1991 return mgmt_device_unblocked(hdev, bdaddr, type);
1992 }
1993
1994 static void le_scan_param_req(struct hci_request *req, unsigned long opt)
1995 {
1996 struct le_scan_params *param = (struct le_scan_params *) opt;
1997 struct hci_cp_le_set_scan_param cp;
1998
1999 memset(&cp, 0, sizeof(cp));
2000 cp.type = param->type;
2001 cp.interval = cpu_to_le16(param->interval);
2002 cp.window = cpu_to_le16(param->window);
2003
2004 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(cp), &cp);
2005 }
2006
2007 static void le_scan_enable_req(struct hci_request *req, unsigned long opt)
2008 {
2009 struct hci_cp_le_set_scan_enable cp;
2010
2011 memset(&cp, 0, sizeof(cp));
2012 cp.enable = LE_SCAN_ENABLE;
2013 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2014
2015 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2016 }
2017
2018 static int hci_do_le_scan(struct hci_dev *hdev, u8 type, u16 interval,
2019 u16 window, int timeout)
2020 {
2021 long timeo = msecs_to_jiffies(3000);
2022 struct le_scan_params param;
2023 int err;
2024
2025 BT_DBG("%s", hdev->name);
2026
2027 if (test_bit(HCI_LE_SCAN, &hdev->dev_flags))
2028 return -EINPROGRESS;
2029
2030 param.type = type;
2031 param.interval = interval;
2032 param.window = window;
2033
2034 hci_req_lock(hdev);
2035
2036 err = __hci_req_sync(hdev, le_scan_param_req, (unsigned long) &param,
2037 timeo);
2038 if (!err)
2039 err = __hci_req_sync(hdev, le_scan_enable_req, 0, timeo);
2040
2041 hci_req_unlock(hdev);
2042
2043 if (err < 0)
2044 return err;
2045
2046 queue_delayed_work(hdev->workqueue, &hdev->le_scan_disable,
2047 timeout);
2048
2049 return 0;
2050 }
2051
2052 int hci_cancel_le_scan(struct hci_dev *hdev)
2053 {
2054 BT_DBG("%s", hdev->name);
2055
2056 if (!test_bit(HCI_LE_SCAN, &hdev->dev_flags))
2057 return -EALREADY;
2058
2059 if (cancel_delayed_work(&hdev->le_scan_disable)) {
2060 struct hci_cp_le_set_scan_enable cp;
2061
2062 /* Send HCI command to disable LE Scan */
2063 memset(&cp, 0, sizeof(cp));
2064 hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2065 }
2066
2067 return 0;
2068 }
2069
2070 static void le_scan_disable_work(struct work_struct *work)
2071 {
2072 struct hci_dev *hdev = container_of(work, struct hci_dev,
2073 le_scan_disable.work);
2074 struct hci_cp_le_set_scan_enable cp;
2075
2076 BT_DBG("%s", hdev->name);
2077
2078 memset(&cp, 0, sizeof(cp));
2079
2080 hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2081 }
2082
2083 static void le_scan_work(struct work_struct *work)
2084 {
2085 struct hci_dev *hdev = container_of(work, struct hci_dev, le_scan);
2086 struct le_scan_params *param = &hdev->le_scan_params;
2087
2088 BT_DBG("%s", hdev->name);
2089
2090 hci_do_le_scan(hdev, param->type, param->interval, param->window,
2091 param->timeout);
2092 }
2093
2094 int hci_le_scan(struct hci_dev *hdev, u8 type, u16 interval, u16 window,
2095 int timeout)
2096 {
2097 struct le_scan_params *param = &hdev->le_scan_params;
2098
2099 BT_DBG("%s", hdev->name);
2100
2101 if (test_bit(HCI_LE_PERIPHERAL, &hdev->dev_flags))
2102 return -ENOTSUPP;
2103
2104 if (work_busy(&hdev->le_scan))
2105 return -EINPROGRESS;
2106
2107 param->type = type;
2108 param->interval = interval;
2109 param->window = window;
2110 param->timeout = timeout;
2111
2112 queue_work(system_long_wq, &hdev->le_scan);
2113
2114 return 0;
2115 }
2116
2117 /* Alloc HCI device */
2118 struct hci_dev *hci_alloc_dev(void)
2119 {
2120 struct hci_dev *hdev;
2121
2122 hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
2123 if (!hdev)
2124 return NULL;
2125
2126 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2127 hdev->esco_type = (ESCO_HV1);
2128 hdev->link_mode = (HCI_LM_ACCEPT);
2129 hdev->io_capability = 0x03; /* No Input No Output */
2130 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2131 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2132
2133 hdev->sniff_max_interval = 800;
2134 hdev->sniff_min_interval = 80;
2135
2136 mutex_init(&hdev->lock);
2137 mutex_init(&hdev->req_lock);
2138
2139 INIT_LIST_HEAD(&hdev->mgmt_pending);
2140 INIT_LIST_HEAD(&hdev->blacklist);
2141 INIT_LIST_HEAD(&hdev->uuids);
2142 INIT_LIST_HEAD(&hdev->link_keys);
2143 INIT_LIST_HEAD(&hdev->long_term_keys);
2144 INIT_LIST_HEAD(&hdev->remote_oob_data);
2145 INIT_LIST_HEAD(&hdev->conn_hash.list);
2146
2147 INIT_WORK(&hdev->rx_work, hci_rx_work);
2148 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2149 INIT_WORK(&hdev->tx_work, hci_tx_work);
2150 INIT_WORK(&hdev->power_on, hci_power_on);
2151 INIT_WORK(&hdev->le_scan, le_scan_work);
2152
2153 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2154 INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
2155 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2156
2157 skb_queue_head_init(&hdev->rx_q);
2158 skb_queue_head_init(&hdev->cmd_q);
2159 skb_queue_head_init(&hdev->raw_q);
2160
2161 init_waitqueue_head(&hdev->req_wait_q);
2162
2163 setup_timer(&hdev->cmd_timer, hci_cmd_timeout, (unsigned long) hdev);
2164
2165 hci_init_sysfs(hdev);
2166 discovery_init(hdev);
2167
2168 return hdev;
2169 }
2170 EXPORT_SYMBOL(hci_alloc_dev);
2171
2172 /* Free HCI device */
2173 void hci_free_dev(struct hci_dev *hdev)
2174 {
2175 /* will free via device release */
2176 put_device(&hdev->dev);
2177 }
2178 EXPORT_SYMBOL(hci_free_dev);
2179
2180 /* Register HCI device */
2181 int hci_register_dev(struct hci_dev *hdev)
2182 {
2183 int id, error;
2184
2185 if (!hdev->open || !hdev->close)
2186 return -EINVAL;
2187
2188 /* Do not allow HCI_AMP devices to register at index 0,
2189 * so the index can be used as the AMP controller ID.
2190 */
2191 switch (hdev->dev_type) {
2192 case HCI_BREDR:
2193 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
2194 break;
2195 case HCI_AMP:
2196 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
2197 break;
2198 default:
2199 return -EINVAL;
2200 }
2201
2202 if (id < 0)
2203 return id;
2204
2205 sprintf(hdev->name, "hci%d", id);
2206 hdev->id = id;
2207
2208 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2209
2210 write_lock(&hci_dev_list_lock);
2211 list_add(&hdev->list, &hci_dev_list);
2212 write_unlock(&hci_dev_list_lock);
2213
2214 hdev->workqueue = alloc_workqueue(hdev->name, WQ_HIGHPRI | WQ_UNBOUND |
2215 WQ_MEM_RECLAIM, 1);
2216 if (!hdev->workqueue) {
2217 error = -ENOMEM;
2218 goto err;
2219 }
2220
2221 hdev->req_workqueue = alloc_workqueue(hdev->name,
2222 WQ_HIGHPRI | WQ_UNBOUND |
2223 WQ_MEM_RECLAIM, 1);
2224 if (!hdev->req_workqueue) {
2225 destroy_workqueue(hdev->workqueue);
2226 error = -ENOMEM;
2227 goto err;
2228 }
2229
2230 error = hci_add_sysfs(hdev);
2231 if (error < 0)
2232 goto err_wqueue;
2233
2234 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2235 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2236 hdev);
2237 if (hdev->rfkill) {
2238 if (rfkill_register(hdev->rfkill) < 0) {
2239 rfkill_destroy(hdev->rfkill);
2240 hdev->rfkill = NULL;
2241 }
2242 }
2243
2244 set_bit(HCI_SETUP, &hdev->dev_flags);
2245
2246 if (hdev->dev_type != HCI_AMP)
2247 set_bit(HCI_AUTO_OFF, &hdev->dev_flags);
2248
2249 hci_notify(hdev, HCI_DEV_REG);
2250 hci_dev_hold(hdev);
2251
2252 queue_work(hdev->req_workqueue, &hdev->power_on);
2253
2254 return id;
2255
2256 err_wqueue:
2257 destroy_workqueue(hdev->workqueue);
2258 destroy_workqueue(hdev->req_workqueue);
2259 err:
2260 ida_simple_remove(&hci_index_ida, hdev->id);
2261 write_lock(&hci_dev_list_lock);
2262 list_del(&hdev->list);
2263 write_unlock(&hci_dev_list_lock);
2264
2265 return error;
2266 }
2267 EXPORT_SYMBOL(hci_register_dev);
2268
2269 /* Unregister HCI device */
2270 void hci_unregister_dev(struct hci_dev *hdev)
2271 {
2272 int i, id;
2273
2274 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2275
2276 set_bit(HCI_UNREGISTER, &hdev->dev_flags);
2277
2278 id = hdev->id;
2279
2280 write_lock(&hci_dev_list_lock);
2281 list_del(&hdev->list);
2282 write_unlock(&hci_dev_list_lock);
2283
2284 hci_dev_do_close(hdev);
2285
2286 for (i = 0; i < NUM_REASSEMBLY; i++)
2287 kfree_skb(hdev->reassembly[i]);
2288
2289 cancel_work_sync(&hdev->power_on);
2290
2291 if (!test_bit(HCI_INIT, &hdev->flags) &&
2292 !test_bit(HCI_SETUP, &hdev->dev_flags)) {
2293 hci_dev_lock(hdev);
2294 mgmt_index_removed(hdev);
2295 hci_dev_unlock(hdev);
2296 }
2297
2298 /* mgmt_index_removed should take care of emptying the
2299 * pending list */
2300 BUG_ON(!list_empty(&hdev->mgmt_pending));
2301
2302 hci_notify(hdev, HCI_DEV_UNREG);
2303
2304 if (hdev->rfkill) {
2305 rfkill_unregister(hdev->rfkill);
2306 rfkill_destroy(hdev->rfkill);
2307 }
2308
2309 hci_del_sysfs(hdev);
2310
2311 destroy_workqueue(hdev->workqueue);
2312 destroy_workqueue(hdev->req_workqueue);
2313
2314 hci_dev_lock(hdev);
2315 hci_blacklist_clear(hdev);
2316 hci_uuids_clear(hdev);
2317 hci_link_keys_clear(hdev);
2318 hci_smp_ltks_clear(hdev);
2319 hci_remote_oob_data_clear(hdev);
2320 hci_dev_unlock(hdev);
2321
2322 hci_dev_put(hdev);
2323
2324 ida_simple_remove(&hci_index_ida, id);
2325 }
2326 EXPORT_SYMBOL(hci_unregister_dev);
2327
2328 /* Suspend HCI device */
2329 int hci_suspend_dev(struct hci_dev *hdev)
2330 {
2331 hci_notify(hdev, HCI_DEV_SUSPEND);
2332 return 0;
2333 }
2334 EXPORT_SYMBOL(hci_suspend_dev);
2335
2336 /* Resume HCI device */
2337 int hci_resume_dev(struct hci_dev *hdev)
2338 {
2339 hci_notify(hdev, HCI_DEV_RESUME);
2340 return 0;
2341 }
2342 EXPORT_SYMBOL(hci_resume_dev);
2343
2344 /* Receive frame from HCI drivers */
2345 int hci_recv_frame(struct sk_buff *skb)
2346 {
2347 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
2348 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2349 && !test_bit(HCI_INIT, &hdev->flags))) {
2350 kfree_skb(skb);
2351 return -ENXIO;
2352 }
2353
2354 /* Incoming skb */
2355 bt_cb(skb)->incoming = 1;
2356
2357 /* Time stamp */
2358 __net_timestamp(skb);
2359
2360 skb_queue_tail(&hdev->rx_q, skb);
2361 queue_work(hdev->workqueue, &hdev->rx_work);
2362
2363 return 0;
2364 }
2365 EXPORT_SYMBOL(hci_recv_frame);
2366
2367 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
2368 int count, __u8 index)
2369 {
2370 int len = 0;
2371 int hlen = 0;
2372 int remain = count;
2373 struct sk_buff *skb;
2374 struct bt_skb_cb *scb;
2375
2376 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
2377 index >= NUM_REASSEMBLY)
2378 return -EILSEQ;
2379
2380 skb = hdev->reassembly[index];
2381
2382 if (!skb) {
2383 switch (type) {
2384 case HCI_ACLDATA_PKT:
2385 len = HCI_MAX_FRAME_SIZE;
2386 hlen = HCI_ACL_HDR_SIZE;
2387 break;
2388 case HCI_EVENT_PKT:
2389 len = HCI_MAX_EVENT_SIZE;
2390 hlen = HCI_EVENT_HDR_SIZE;
2391 break;
2392 case HCI_SCODATA_PKT:
2393 len = HCI_MAX_SCO_SIZE;
2394 hlen = HCI_SCO_HDR_SIZE;
2395 break;
2396 }
2397
2398 skb = bt_skb_alloc(len, GFP_ATOMIC);
2399 if (!skb)
2400 return -ENOMEM;
2401
2402 scb = (void *) skb->cb;
2403 scb->expect = hlen;
2404 scb->pkt_type = type;
2405
2406 skb->dev = (void *) hdev;
2407 hdev->reassembly[index] = skb;
2408 }
2409
2410 while (count) {
2411 scb = (void *) skb->cb;
2412 len = min_t(uint, scb->expect, count);
2413
2414 memcpy(skb_put(skb, len), data, len);
2415
2416 count -= len;
2417 data += len;
2418 scb->expect -= len;
2419 remain = count;
2420
2421 switch (type) {
2422 case HCI_EVENT_PKT:
2423 if (skb->len == HCI_EVENT_HDR_SIZE) {
2424 struct hci_event_hdr *h = hci_event_hdr(skb);
2425 scb->expect = h->plen;
2426
2427 if (skb_tailroom(skb) < scb->expect) {
2428 kfree_skb(skb);
2429 hdev->reassembly[index] = NULL;
2430 return -ENOMEM;
2431 }
2432 }
2433 break;
2434
2435 case HCI_ACLDATA_PKT:
2436 if (skb->len == HCI_ACL_HDR_SIZE) {
2437 struct hci_acl_hdr *h = hci_acl_hdr(skb);
2438 scb->expect = __le16_to_cpu(h->dlen);
2439
2440 if (skb_tailroom(skb) < scb->expect) {
2441 kfree_skb(skb);
2442 hdev->reassembly[index] = NULL;
2443 return -ENOMEM;
2444 }
2445 }
2446 break;
2447
2448 case HCI_SCODATA_PKT:
2449 if (skb->len == HCI_SCO_HDR_SIZE) {
2450 struct hci_sco_hdr *h = hci_sco_hdr(skb);
2451 scb->expect = h->dlen;
2452
2453 if (skb_tailroom(skb) < scb->expect) {
2454 kfree_skb(skb);
2455 hdev->reassembly[index] = NULL;
2456 return -ENOMEM;
2457 }
2458 }
2459 break;
2460 }
2461
2462 if (scb->expect == 0) {
2463 /* Complete frame */
2464
2465 bt_cb(skb)->pkt_type = type;
2466 hci_recv_frame(skb);
2467
2468 hdev->reassembly[index] = NULL;
2469 return remain;
2470 }
2471 }
2472
2473 return remain;
2474 }
2475
2476 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
2477 {
2478 int rem = 0;
2479
2480 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
2481 return -EILSEQ;
2482
2483 while (count) {
2484 rem = hci_reassembly(hdev, type, data, count, type - 1);
2485 if (rem < 0)
2486 return rem;
2487
2488 data += (count - rem);
2489 count = rem;
2490 }
2491
2492 return rem;
2493 }
2494 EXPORT_SYMBOL(hci_recv_fragment);
2495
2496 #define STREAM_REASSEMBLY 0
2497
2498 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
2499 {
2500 int type;
2501 int rem = 0;
2502
2503 while (count) {
2504 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
2505
2506 if (!skb) {
2507 struct { char type; } *pkt;
2508
2509 /* Start of the frame */
2510 pkt = data;
2511 type = pkt->type;
2512
2513 data++;
2514 count--;
2515 } else
2516 type = bt_cb(skb)->pkt_type;
2517
2518 rem = hci_reassembly(hdev, type, data, count,
2519 STREAM_REASSEMBLY);
2520 if (rem < 0)
2521 return rem;
2522
2523 data += (count - rem);
2524 count = rem;
2525 }
2526
2527 return rem;
2528 }
2529 EXPORT_SYMBOL(hci_recv_stream_fragment);
2530
2531 /* ---- Interface to upper protocols ---- */
2532
2533 int hci_register_cb(struct hci_cb *cb)
2534 {
2535 BT_DBG("%p name %s", cb, cb->name);
2536
2537 write_lock(&hci_cb_list_lock);
2538 list_add(&cb->list, &hci_cb_list);
2539 write_unlock(&hci_cb_list_lock);
2540
2541 return 0;
2542 }
2543 EXPORT_SYMBOL(hci_register_cb);
2544
2545 int hci_unregister_cb(struct hci_cb *cb)
2546 {
2547 BT_DBG("%p name %s", cb, cb->name);
2548
2549 write_lock(&hci_cb_list_lock);
2550 list_del(&cb->list);
2551 write_unlock(&hci_cb_list_lock);
2552
2553 return 0;
2554 }
2555 EXPORT_SYMBOL(hci_unregister_cb);
2556
2557 static int hci_send_frame(struct sk_buff *skb)
2558 {
2559 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
2560
2561 if (!hdev) {
2562 kfree_skb(skb);
2563 return -ENODEV;
2564 }
2565
2566 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
2567
2568 /* Time stamp */
2569 __net_timestamp(skb);
2570
2571 /* Send copy to monitor */
2572 hci_send_to_monitor(hdev, skb);
2573
2574 if (atomic_read(&hdev->promisc)) {
2575 /* Send copy to the sockets */
2576 hci_send_to_sock(hdev, skb);
2577 }
2578
2579 /* Get rid of skb owner, prior to sending to the driver. */
2580 skb_orphan(skb);
2581
2582 return hdev->send(skb);
2583 }
2584
2585 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
2586 {
2587 skb_queue_head_init(&req->cmd_q);
2588 req->hdev = hdev;
2589 req->err = 0;
2590 }
2591
2592 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
2593 {
2594 struct hci_dev *hdev = req->hdev;
2595 struct sk_buff *skb;
2596 unsigned long flags;
2597
2598 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
2599
2600 /* If an error occured during request building, remove all HCI
2601 * commands queued on the HCI request queue.
2602 */
2603 if (req->err) {
2604 skb_queue_purge(&req->cmd_q);
2605 return req->err;
2606 }
2607
2608 /* Do not allow empty requests */
2609 if (skb_queue_empty(&req->cmd_q))
2610 return -ENODATA;
2611
2612 skb = skb_peek_tail(&req->cmd_q);
2613 bt_cb(skb)->req.complete = complete;
2614
2615 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
2616 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
2617 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
2618
2619 queue_work(hdev->workqueue, &hdev->cmd_work);
2620
2621 return 0;
2622 }
2623
2624 static struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode,
2625 u32 plen, const void *param)
2626 {
2627 int len = HCI_COMMAND_HDR_SIZE + plen;
2628 struct hci_command_hdr *hdr;
2629 struct sk_buff *skb;
2630
2631 skb = bt_skb_alloc(len, GFP_ATOMIC);
2632 if (!skb)
2633 return NULL;
2634
2635 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
2636 hdr->opcode = cpu_to_le16(opcode);
2637 hdr->plen = plen;
2638
2639 if (plen)
2640 memcpy(skb_put(skb, plen), param, plen);
2641
2642 BT_DBG("skb len %d", skb->len);
2643
2644 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
2645 skb->dev = (void *) hdev;
2646
2647 return skb;
2648 }
2649
2650 /* Send HCI command */
2651 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
2652 const void *param)
2653 {
2654 struct sk_buff *skb;
2655
2656 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
2657
2658 skb = hci_prepare_cmd(hdev, opcode, plen, param);
2659 if (!skb) {
2660 BT_ERR("%s no memory for command", hdev->name);
2661 return -ENOMEM;
2662 }
2663
2664 /* Stand-alone HCI commands must be flaged as
2665 * single-command requests.
2666 */
2667 bt_cb(skb)->req.start = true;
2668
2669 skb_queue_tail(&hdev->cmd_q, skb);
2670 queue_work(hdev->workqueue, &hdev->cmd_work);
2671
2672 return 0;
2673 }
2674
2675 /* Queue a command to an asynchronous HCI request */
2676 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
2677 const void *param, u8 event)
2678 {
2679 struct hci_dev *hdev = req->hdev;
2680 struct sk_buff *skb;
2681
2682 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
2683
2684 /* If an error occured during request building, there is no point in
2685 * queueing the HCI command. We can simply return.
2686 */
2687 if (req->err)
2688 return;
2689
2690 skb = hci_prepare_cmd(hdev, opcode, plen, param);
2691 if (!skb) {
2692 BT_ERR("%s no memory for command (opcode 0x%4.4x)",
2693 hdev->name, opcode);
2694 req->err = -ENOMEM;
2695 return;
2696 }
2697
2698 if (skb_queue_empty(&req->cmd_q))
2699 bt_cb(skb)->req.start = true;
2700
2701 bt_cb(skb)->req.event = event;
2702
2703 skb_queue_tail(&req->cmd_q, skb);
2704 }
2705
2706 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
2707 const void *param)
2708 {
2709 hci_req_add_ev(req, opcode, plen, param, 0);
2710 }
2711
2712 /* Get data from the previously sent command */
2713 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
2714 {
2715 struct hci_command_hdr *hdr;
2716
2717 if (!hdev->sent_cmd)
2718 return NULL;
2719
2720 hdr = (void *) hdev->sent_cmd->data;
2721
2722 if (hdr->opcode != cpu_to_le16(opcode))
2723 return NULL;
2724
2725 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
2726
2727 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
2728 }
2729
2730 /* Send ACL data */
2731 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
2732 {
2733 struct hci_acl_hdr *hdr;
2734 int len = skb->len;
2735
2736 skb_push(skb, HCI_ACL_HDR_SIZE);
2737 skb_reset_transport_header(skb);
2738 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
2739 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
2740 hdr->dlen = cpu_to_le16(len);
2741 }
2742
2743 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
2744 struct sk_buff *skb, __u16 flags)
2745 {
2746 struct hci_conn *conn = chan->conn;
2747 struct hci_dev *hdev = conn->hdev;
2748 struct sk_buff *list;
2749
2750 skb->len = skb_headlen(skb);
2751 skb->data_len = 0;
2752
2753 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2754
2755 switch (hdev->dev_type) {
2756 case HCI_BREDR:
2757 hci_add_acl_hdr(skb, conn->handle, flags);
2758 break;
2759 case HCI_AMP:
2760 hci_add_acl_hdr(skb, chan->handle, flags);
2761 break;
2762 default:
2763 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
2764 return;
2765 }
2766
2767 list = skb_shinfo(skb)->frag_list;
2768 if (!list) {
2769 /* Non fragmented */
2770 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
2771
2772 skb_queue_tail(queue, skb);
2773 } else {
2774 /* Fragmented */
2775 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2776
2777 skb_shinfo(skb)->frag_list = NULL;
2778
2779 /* Queue all fragments atomically */
2780 spin_lock(&queue->lock);
2781
2782 __skb_queue_tail(queue, skb);
2783
2784 flags &= ~ACL_START;
2785 flags |= ACL_CONT;
2786 do {
2787 skb = list; list = list->next;
2788
2789 skb->dev = (void *) hdev;
2790 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2791 hci_add_acl_hdr(skb, conn->handle, flags);
2792
2793 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2794
2795 __skb_queue_tail(queue, skb);
2796 } while (list);
2797
2798 spin_unlock(&queue->lock);
2799 }
2800 }
2801
2802 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
2803 {
2804 struct hci_dev *hdev = chan->conn->hdev;
2805
2806 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
2807
2808 skb->dev = (void *) hdev;
2809
2810 hci_queue_acl(chan, &chan->data_q, skb, flags);
2811
2812 queue_work(hdev->workqueue, &hdev->tx_work);
2813 }
2814
2815 /* Send SCO data */
2816 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2817 {
2818 struct hci_dev *hdev = conn->hdev;
2819 struct hci_sco_hdr hdr;
2820
2821 BT_DBG("%s len %d", hdev->name, skb->len);
2822
2823 hdr.handle = cpu_to_le16(conn->handle);
2824 hdr.dlen = skb->len;
2825
2826 skb_push(skb, HCI_SCO_HDR_SIZE);
2827 skb_reset_transport_header(skb);
2828 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2829
2830 skb->dev = (void *) hdev;
2831 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2832
2833 skb_queue_tail(&conn->data_q, skb);
2834 queue_work(hdev->workqueue, &hdev->tx_work);
2835 }
2836
2837 /* ---- HCI TX task (outgoing data) ---- */
2838
2839 /* HCI Connection scheduler */
2840 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
2841 int *quote)
2842 {
2843 struct hci_conn_hash *h = &hdev->conn_hash;
2844 struct hci_conn *conn = NULL, *c;
2845 unsigned int num = 0, min = ~0;
2846
2847 /* We don't have to lock device here. Connections are always
2848 * added and removed with TX task disabled. */
2849
2850 rcu_read_lock();
2851
2852 list_for_each_entry_rcu(c, &h->list, list) {
2853 if (c->type != type || skb_queue_empty(&c->data_q))
2854 continue;
2855
2856 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2857 continue;
2858
2859 num++;
2860
2861 if (c->sent < min) {
2862 min = c->sent;
2863 conn = c;
2864 }
2865
2866 if (hci_conn_num(hdev, type) == num)
2867 break;
2868 }
2869
2870 rcu_read_unlock();
2871
2872 if (conn) {
2873 int cnt, q;
2874
2875 switch (conn->type) {
2876 case ACL_LINK:
2877 cnt = hdev->acl_cnt;
2878 break;
2879 case SCO_LINK:
2880 case ESCO_LINK:
2881 cnt = hdev->sco_cnt;
2882 break;
2883 case LE_LINK:
2884 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2885 break;
2886 default:
2887 cnt = 0;
2888 BT_ERR("Unknown link type");
2889 }
2890
2891 q = cnt / num;
2892 *quote = q ? q : 1;
2893 } else
2894 *quote = 0;
2895
2896 BT_DBG("conn %p quote %d", conn, *quote);
2897 return conn;
2898 }
2899
2900 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2901 {
2902 struct hci_conn_hash *h = &hdev->conn_hash;
2903 struct hci_conn *c;
2904
2905 BT_ERR("%s link tx timeout", hdev->name);
2906
2907 rcu_read_lock();
2908
2909 /* Kill stalled connections */
2910 list_for_each_entry_rcu(c, &h->list, list) {
2911 if (c->type == type && c->sent) {
2912 BT_ERR("%s killing stalled connection %pMR",
2913 hdev->name, &c->dst);
2914 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
2915 }
2916 }
2917
2918 rcu_read_unlock();
2919 }
2920
2921 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
2922 int *quote)
2923 {
2924 struct hci_conn_hash *h = &hdev->conn_hash;
2925 struct hci_chan *chan = NULL;
2926 unsigned int num = 0, min = ~0, cur_prio = 0;
2927 struct hci_conn *conn;
2928 int cnt, q, conn_num = 0;
2929
2930 BT_DBG("%s", hdev->name);
2931
2932 rcu_read_lock();
2933
2934 list_for_each_entry_rcu(conn, &h->list, list) {
2935 struct hci_chan *tmp;
2936
2937 if (conn->type != type)
2938 continue;
2939
2940 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2941 continue;
2942
2943 conn_num++;
2944
2945 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
2946 struct sk_buff *skb;
2947
2948 if (skb_queue_empty(&tmp->data_q))
2949 continue;
2950
2951 skb = skb_peek(&tmp->data_q);
2952 if (skb->priority < cur_prio)
2953 continue;
2954
2955 if (skb->priority > cur_prio) {
2956 num = 0;
2957 min = ~0;
2958 cur_prio = skb->priority;
2959 }
2960
2961 num++;
2962
2963 if (conn->sent < min) {
2964 min = conn->sent;
2965 chan = tmp;
2966 }
2967 }
2968
2969 if (hci_conn_num(hdev, type) == conn_num)
2970 break;
2971 }
2972
2973 rcu_read_unlock();
2974
2975 if (!chan)
2976 return NULL;
2977
2978 switch (chan->conn->type) {
2979 case ACL_LINK:
2980 cnt = hdev->acl_cnt;
2981 break;
2982 case AMP_LINK:
2983 cnt = hdev->block_cnt;
2984 break;
2985 case SCO_LINK:
2986 case ESCO_LINK:
2987 cnt = hdev->sco_cnt;
2988 break;
2989 case LE_LINK:
2990 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2991 break;
2992 default:
2993 cnt = 0;
2994 BT_ERR("Unknown link type");
2995 }
2996
2997 q = cnt / num;
2998 *quote = q ? q : 1;
2999 BT_DBG("chan %p quote %d", chan, *quote);
3000 return chan;
3001 }
3002
3003 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3004 {
3005 struct hci_conn_hash *h = &hdev->conn_hash;
3006 struct hci_conn *conn;
3007 int num = 0;
3008
3009 BT_DBG("%s", hdev->name);
3010
3011 rcu_read_lock();
3012
3013 list_for_each_entry_rcu(conn, &h->list, list) {
3014 struct hci_chan *chan;
3015
3016 if (conn->type != type)
3017 continue;
3018
3019 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3020 continue;
3021
3022 num++;
3023
3024 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3025 struct sk_buff *skb;
3026
3027 if (chan->sent) {
3028 chan->sent = 0;
3029 continue;
3030 }
3031
3032 if (skb_queue_empty(&chan->data_q))
3033 continue;
3034
3035 skb = skb_peek(&chan->data_q);
3036 if (skb->priority >= HCI_PRIO_MAX - 1)
3037 continue;
3038
3039 skb->priority = HCI_PRIO_MAX - 1;
3040
3041 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3042 skb->priority);
3043 }
3044
3045 if (hci_conn_num(hdev, type) == num)
3046 break;
3047 }
3048
3049 rcu_read_unlock();
3050
3051 }
3052
3053 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3054 {
3055 /* Calculate count of blocks used by this packet */
3056 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3057 }
3058
3059 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3060 {
3061 if (!test_bit(HCI_RAW, &hdev->flags)) {
3062 /* ACL tx timeout must be longer than maximum
3063 * link supervision timeout (40.9 seconds) */
3064 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3065 HCI_ACL_TX_TIMEOUT))
3066 hci_link_tx_to(hdev, ACL_LINK);
3067 }
3068 }
3069
3070 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3071 {
3072 unsigned int cnt = hdev->acl_cnt;
3073 struct hci_chan *chan;
3074 struct sk_buff *skb;
3075 int quote;
3076
3077 __check_timeout(hdev, cnt);
3078
3079 while (hdev->acl_cnt &&
3080 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3081 u32 priority = (skb_peek(&chan->data_q))->priority;
3082 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3083 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3084 skb->len, skb->priority);
3085
3086 /* Stop if priority has changed */
3087 if (skb->priority < priority)
3088 break;
3089
3090 skb = skb_dequeue(&chan->data_q);
3091
3092 hci_conn_enter_active_mode(chan->conn,
3093 bt_cb(skb)->force_active);
3094
3095 hci_send_frame(skb);
3096 hdev->acl_last_tx = jiffies;
3097
3098 hdev->acl_cnt--;
3099 chan->sent++;
3100 chan->conn->sent++;
3101 }
3102 }
3103
3104 if (cnt != hdev->acl_cnt)
3105 hci_prio_recalculate(hdev, ACL_LINK);
3106 }
3107
3108 static void hci_sched_acl_blk(struct hci_dev *hdev)
3109 {
3110 unsigned int cnt = hdev->block_cnt;
3111 struct hci_chan *chan;
3112 struct sk_buff *skb;
3113 int quote;
3114 u8 type;
3115
3116 __check_timeout(hdev, cnt);
3117
3118 BT_DBG("%s", hdev->name);
3119
3120 if (hdev->dev_type == HCI_AMP)
3121 type = AMP_LINK;
3122 else
3123 type = ACL_LINK;
3124
3125 while (hdev->block_cnt > 0 &&
3126 (chan = hci_chan_sent(hdev, type, &quote))) {
3127 u32 priority = (skb_peek(&chan->data_q))->priority;
3128 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3129 int blocks;
3130
3131 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3132 skb->len, skb->priority);
3133
3134 /* Stop if priority has changed */
3135 if (skb->priority < priority)
3136 break;
3137
3138 skb = skb_dequeue(&chan->data_q);
3139
3140 blocks = __get_blocks(hdev, skb);
3141 if (blocks > hdev->block_cnt)
3142 return;
3143
3144 hci_conn_enter_active_mode(chan->conn,
3145 bt_cb(skb)->force_active);
3146
3147 hci_send_frame(skb);
3148 hdev->acl_last_tx = jiffies;
3149
3150 hdev->block_cnt -= blocks;
3151 quote -= blocks;
3152
3153 chan->sent += blocks;
3154 chan->conn->sent += blocks;
3155 }
3156 }
3157
3158 if (cnt != hdev->block_cnt)
3159 hci_prio_recalculate(hdev, type);
3160 }
3161
3162 static void hci_sched_acl(struct hci_dev *hdev)
3163 {
3164 BT_DBG("%s", hdev->name);
3165
3166 /* No ACL link over BR/EDR controller */
3167 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3168 return;
3169
3170 /* No AMP link over AMP controller */
3171 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3172 return;
3173
3174 switch (hdev->flow_ctl_mode) {
3175 case HCI_FLOW_CTL_MODE_PACKET_BASED:
3176 hci_sched_acl_pkt(hdev);
3177 break;
3178
3179 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3180 hci_sched_acl_blk(hdev);
3181 break;
3182 }
3183 }
3184
3185 /* Schedule SCO */
3186 static void hci_sched_sco(struct hci_dev *hdev)
3187 {
3188 struct hci_conn *conn;
3189 struct sk_buff *skb;
3190 int quote;
3191
3192 BT_DBG("%s", hdev->name);
3193
3194 if (!hci_conn_num(hdev, SCO_LINK))
3195 return;
3196
3197 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3198 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3199 BT_DBG("skb %p len %d", skb, skb->len);
3200 hci_send_frame(skb);
3201
3202 conn->sent++;
3203 if (conn->sent == ~0)
3204 conn->sent = 0;
3205 }
3206 }
3207 }
3208
3209 static void hci_sched_esco(struct hci_dev *hdev)
3210 {
3211 struct hci_conn *conn;
3212 struct sk_buff *skb;
3213 int quote;
3214
3215 BT_DBG("%s", hdev->name);
3216
3217 if (!hci_conn_num(hdev, ESCO_LINK))
3218 return;
3219
3220 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3221 &quote))) {
3222 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3223 BT_DBG("skb %p len %d", skb, skb->len);
3224 hci_send_frame(skb);
3225
3226 conn->sent++;
3227 if (conn->sent == ~0)
3228 conn->sent = 0;
3229 }
3230 }
3231 }
3232
3233 static void hci_sched_le(struct hci_dev *hdev)
3234 {
3235 struct hci_chan *chan;
3236 struct sk_buff *skb;
3237 int quote, cnt, tmp;
3238
3239 BT_DBG("%s", hdev->name);
3240
3241 if (!hci_conn_num(hdev, LE_LINK))
3242 return;
3243
3244 if (!test_bit(HCI_RAW, &hdev->flags)) {
3245 /* LE tx timeout must be longer than maximum
3246 * link supervision timeout (40.9 seconds) */
3247 if (!hdev->le_cnt && hdev->le_pkts &&
3248 time_after(jiffies, hdev->le_last_tx + HZ * 45))
3249 hci_link_tx_to(hdev, LE_LINK);
3250 }
3251
3252 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3253 tmp = cnt;
3254 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3255 u32 priority = (skb_peek(&chan->data_q))->priority;
3256 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3257 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3258 skb->len, skb->priority);
3259
3260 /* Stop if priority has changed */
3261 if (skb->priority < priority)
3262 break;
3263
3264 skb = skb_dequeue(&chan->data_q);
3265
3266 hci_send_frame(skb);
3267 hdev->le_last_tx = jiffies;
3268
3269 cnt--;
3270 chan->sent++;
3271 chan->conn->sent++;
3272 }
3273 }
3274
3275 if (hdev->le_pkts)
3276 hdev->le_cnt = cnt;
3277 else
3278 hdev->acl_cnt = cnt;
3279
3280 if (cnt != tmp)
3281 hci_prio_recalculate(hdev, LE_LINK);
3282 }
3283
3284 static void hci_tx_work(struct work_struct *work)
3285 {
3286 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3287 struct sk_buff *skb;
3288
3289 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3290 hdev->sco_cnt, hdev->le_cnt);
3291
3292 /* Schedule queues and send stuff to HCI driver */
3293
3294 hci_sched_acl(hdev);
3295
3296 hci_sched_sco(hdev);
3297
3298 hci_sched_esco(hdev);
3299
3300 hci_sched_le(hdev);
3301
3302 /* Send next queued raw (unknown type) packet */
3303 while ((skb = skb_dequeue(&hdev->raw_q)))
3304 hci_send_frame(skb);
3305 }
3306
3307 /* ----- HCI RX task (incoming data processing) ----- */
3308
3309 /* ACL data packet */
3310 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3311 {
3312 struct hci_acl_hdr *hdr = (void *) skb->data;
3313 struct hci_conn *conn;
3314 __u16 handle, flags;
3315
3316 skb_pull(skb, HCI_ACL_HDR_SIZE);
3317
3318 handle = __le16_to_cpu(hdr->handle);
3319 flags = hci_flags(handle);
3320 handle = hci_handle(handle);
3321
3322 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3323 handle, flags);
3324
3325 hdev->stat.acl_rx++;
3326
3327 hci_dev_lock(hdev);
3328 conn = hci_conn_hash_lookup_handle(hdev, handle);
3329 hci_dev_unlock(hdev);
3330
3331 if (conn) {
3332 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3333
3334 /* Send to upper protocol */
3335 l2cap_recv_acldata(conn, skb, flags);
3336 return;
3337 } else {
3338 BT_ERR("%s ACL packet for unknown connection handle %d",
3339 hdev->name, handle);
3340 }
3341
3342 kfree_skb(skb);
3343 }
3344
3345 /* SCO data packet */
3346 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3347 {
3348 struct hci_sco_hdr *hdr = (void *) skb->data;
3349 struct hci_conn *conn;
3350 __u16 handle;
3351
3352 skb_pull(skb, HCI_SCO_HDR_SIZE);
3353
3354 handle = __le16_to_cpu(hdr->handle);
3355
3356 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
3357
3358 hdev->stat.sco_rx++;
3359
3360 hci_dev_lock(hdev);
3361 conn = hci_conn_hash_lookup_handle(hdev, handle);
3362 hci_dev_unlock(hdev);
3363
3364 if (conn) {
3365 /* Send to upper protocol */
3366 sco_recv_scodata(conn, skb);
3367 return;
3368 } else {
3369 BT_ERR("%s SCO packet for unknown connection handle %d",
3370 hdev->name, handle);
3371 }
3372
3373 kfree_skb(skb);
3374 }
3375
3376 static bool hci_req_is_complete(struct hci_dev *hdev)
3377 {
3378 struct sk_buff *skb;
3379
3380 skb = skb_peek(&hdev->cmd_q);
3381 if (!skb)
3382 return true;
3383
3384 return bt_cb(skb)->req.start;
3385 }
3386
3387 static void hci_resend_last(struct hci_dev *hdev)
3388 {
3389 struct hci_command_hdr *sent;
3390 struct sk_buff *skb;
3391 u16 opcode;
3392
3393 if (!hdev->sent_cmd)
3394 return;
3395
3396 sent = (void *) hdev->sent_cmd->data;
3397 opcode = __le16_to_cpu(sent->opcode);
3398 if (opcode == HCI_OP_RESET)
3399 return;
3400
3401 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3402 if (!skb)
3403 return;
3404
3405 skb_queue_head(&hdev->cmd_q, skb);
3406 queue_work(hdev->workqueue, &hdev->cmd_work);
3407 }
3408
3409 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status)
3410 {
3411 hci_req_complete_t req_complete = NULL;
3412 struct sk_buff *skb;
3413 unsigned long flags;
3414
3415 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3416
3417 /* If the completed command doesn't match the last one that was
3418 * sent we need to do special handling of it.
3419 */
3420 if (!hci_sent_cmd_data(hdev, opcode)) {
3421 /* Some CSR based controllers generate a spontaneous
3422 * reset complete event during init and any pending
3423 * command will never be completed. In such a case we
3424 * need to resend whatever was the last sent
3425 * command.
3426 */
3427 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3428 hci_resend_last(hdev);
3429
3430 return;
3431 }
3432
3433 /* If the command succeeded and there's still more commands in
3434 * this request the request is not yet complete.
3435 */
3436 if (!status && !hci_req_is_complete(hdev))
3437 return;
3438
3439 /* If this was the last command in a request the complete
3440 * callback would be found in hdev->sent_cmd instead of the
3441 * command queue (hdev->cmd_q).
3442 */
3443 if (hdev->sent_cmd) {
3444 req_complete = bt_cb(hdev->sent_cmd)->req.complete;
3445 if (req_complete)
3446 goto call_complete;
3447 }
3448
3449 /* Remove all pending commands belonging to this request */
3450 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3451 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3452 if (bt_cb(skb)->req.start) {
3453 __skb_queue_head(&hdev->cmd_q, skb);
3454 break;
3455 }
3456
3457 req_complete = bt_cb(skb)->req.complete;
3458 kfree_skb(skb);
3459 }
3460 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3461
3462 call_complete:
3463 if (req_complete)
3464 req_complete(hdev, status);
3465 }
3466
3467 static void hci_rx_work(struct work_struct *work)
3468 {
3469 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3470 struct sk_buff *skb;
3471
3472 BT_DBG("%s", hdev->name);
3473
3474 while ((skb = skb_dequeue(&hdev->rx_q))) {
3475 /* Send copy to monitor */
3476 hci_send_to_monitor(hdev, skb);
3477
3478 if (atomic_read(&hdev->promisc)) {
3479 /* Send copy to the sockets */
3480 hci_send_to_sock(hdev, skb);
3481 }
3482
3483 if (test_bit(HCI_RAW, &hdev->flags)) {
3484 kfree_skb(skb);
3485 continue;
3486 }
3487
3488 if (test_bit(HCI_INIT, &hdev->flags)) {
3489 /* Don't process data packets in this states. */
3490 switch (bt_cb(skb)->pkt_type) {
3491 case HCI_ACLDATA_PKT:
3492 case HCI_SCODATA_PKT:
3493 kfree_skb(skb);
3494 continue;
3495 }
3496 }
3497
3498 /* Process frame */
3499 switch (bt_cb(skb)->pkt_type) {
3500 case HCI_EVENT_PKT:
3501 BT_DBG("%s Event packet", hdev->name);
3502 hci_event_packet(hdev, skb);
3503 break;
3504
3505 case HCI_ACLDATA_PKT:
3506 BT_DBG("%s ACL data packet", hdev->name);
3507 hci_acldata_packet(hdev, skb);
3508 break;
3509
3510 case HCI_SCODATA_PKT:
3511 BT_DBG("%s SCO data packet", hdev->name);
3512 hci_scodata_packet(hdev, skb);
3513 break;
3514
3515 default:
3516 kfree_skb(skb);
3517 break;
3518 }
3519 }
3520 }
3521
3522 static void hci_cmd_work(struct work_struct *work)
3523 {
3524 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
3525 struct sk_buff *skb;
3526
3527 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
3528 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
3529
3530 /* Send queued commands */
3531 if (atomic_read(&hdev->cmd_cnt)) {
3532 skb = skb_dequeue(&hdev->cmd_q);
3533 if (!skb)
3534 return;
3535
3536 kfree_skb(hdev->sent_cmd);
3537
3538 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
3539 if (hdev->sent_cmd) {
3540 atomic_dec(&hdev->cmd_cnt);
3541 hci_send_frame(skb);
3542 if (test_bit(HCI_RESET, &hdev->flags))
3543 del_timer(&hdev->cmd_timer);
3544 else
3545 mod_timer(&hdev->cmd_timer,
3546 jiffies + HCI_CMD_TIMEOUT);
3547 } else {
3548 skb_queue_head(&hdev->cmd_q, skb);
3549 queue_work(hdev->workqueue, &hdev->cmd_work);
3550 }
3551 }
3552 }
3553
3554 int hci_do_inquiry(struct hci_dev *hdev, u8 length)
3555 {
3556 /* General inquiry access code (GIAC) */
3557 u8 lap[3] = { 0x33, 0x8b, 0x9e };
3558 struct hci_cp_inquiry cp;
3559
3560 BT_DBG("%s", hdev->name);
3561
3562 if (test_bit(HCI_INQUIRY, &hdev->flags))
3563 return -EINPROGRESS;
3564
3565 inquiry_cache_flush(hdev);
3566
3567 memset(&cp, 0, sizeof(cp));
3568 memcpy(&cp.lap, lap, sizeof(cp.lap));
3569 cp.length = length;
3570
3571 return hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
3572 }
3573
3574 int hci_cancel_inquiry(struct hci_dev *hdev)
3575 {
3576 BT_DBG("%s", hdev->name);
3577
3578 if (!test_bit(HCI_INQUIRY, &hdev->flags))
3579 return -EALREADY;
3580
3581 return hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
3582 }
3583
3584 u8 bdaddr_to_le(u8 bdaddr_type)
3585 {
3586 switch (bdaddr_type) {
3587 case BDADDR_LE_PUBLIC:
3588 return ADDR_LE_DEV_PUBLIC;
3589
3590 default:
3591 /* Fallback to LE Random address type */
3592 return ADDR_LE_DEV_RANDOM;
3593 }
3594 }