a28e637152fe1d81e8ea1fe1829bcd0800df73fd
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/jiffies.h>
29 #include <linux/module.h>
30 #include <linux/kmod.h>
31
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <linux/poll.h>
38 #include <linux/fcntl.h>
39 #include <linux/init.h>
40 #include <linux/skbuff.h>
41 #include <linux/workqueue.h>
42 #include <linux/interrupt.h>
43 #include <linux/notifier.h>
44 #include <linux/rfkill.h>
45 #include <linux/timer.h>
46 #include <linux/crypto.h>
47 #include <net/sock.h>
48
49 #include <asm/system.h>
50 #include <linux/uaccess.h>
51 #include <asm/unaligned.h>
52
53 #include <net/bluetooth/bluetooth.h>
54 #include <net/bluetooth/hci_core.h>
55
56 #define AUTO_OFF_TIMEOUT 2000
57
58 bool enable_hs;
59
60 static void hci_rx_work(struct work_struct *work);
61 static void hci_cmd_work(struct work_struct *work);
62 static void hci_tx_work(struct work_struct *work);
63
64 /* HCI device list */
65 LIST_HEAD(hci_dev_list);
66 DEFINE_RWLOCK(hci_dev_list_lock);
67
68 /* HCI callback list */
69 LIST_HEAD(hci_cb_list);
70 DEFINE_RWLOCK(hci_cb_list_lock);
71
72 /* HCI notifiers list */
73 static ATOMIC_NOTIFIER_HEAD(hci_notifier);
74
75 /* ---- HCI notifications ---- */
76
77 int hci_register_notifier(struct notifier_block *nb)
78 {
79 return atomic_notifier_chain_register(&hci_notifier, nb);
80 }
81
82 int hci_unregister_notifier(struct notifier_block *nb)
83 {
84 return atomic_notifier_chain_unregister(&hci_notifier, nb);
85 }
86
87 static void hci_notify(struct hci_dev *hdev, int event)
88 {
89 atomic_notifier_call_chain(&hci_notifier, event, hdev);
90 }
91
92 /* ---- HCI requests ---- */
93
94 void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
95 {
96 BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
97
98 /* If this is the init phase check if the completed command matches
99 * the last init command, and if not just return.
100 */
101 if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd)
102 return;
103
104 if (hdev->req_status == HCI_REQ_PEND) {
105 hdev->req_result = result;
106 hdev->req_status = HCI_REQ_DONE;
107 wake_up_interruptible(&hdev->req_wait_q);
108 }
109 }
110
111 static void hci_req_cancel(struct hci_dev *hdev, int err)
112 {
113 BT_DBG("%s err 0x%2.2x", hdev->name, err);
114
115 if (hdev->req_status == HCI_REQ_PEND) {
116 hdev->req_result = err;
117 hdev->req_status = HCI_REQ_CANCELED;
118 wake_up_interruptible(&hdev->req_wait_q);
119 }
120 }
121
122 /* Execute request and wait for completion. */
123 static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
124 unsigned long opt, __u32 timeout)
125 {
126 DECLARE_WAITQUEUE(wait, current);
127 int err = 0;
128
129 BT_DBG("%s start", hdev->name);
130
131 hdev->req_status = HCI_REQ_PEND;
132
133 add_wait_queue(&hdev->req_wait_q, &wait);
134 set_current_state(TASK_INTERRUPTIBLE);
135
136 req(hdev, opt);
137 schedule_timeout(timeout);
138
139 remove_wait_queue(&hdev->req_wait_q, &wait);
140
141 if (signal_pending(current))
142 return -EINTR;
143
144 switch (hdev->req_status) {
145 case HCI_REQ_DONE:
146 err = -bt_to_errno(hdev->req_result);
147 break;
148
149 case HCI_REQ_CANCELED:
150 err = -hdev->req_result;
151 break;
152
153 default:
154 err = -ETIMEDOUT;
155 break;
156 }
157
158 hdev->req_status = hdev->req_result = 0;
159
160 BT_DBG("%s end: err %d", hdev->name, err);
161
162 return err;
163 }
164
165 static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
166 unsigned long opt, __u32 timeout)
167 {
168 int ret;
169
170 if (!test_bit(HCI_UP, &hdev->flags))
171 return -ENETDOWN;
172
173 /* Serialize all requests */
174 hci_req_lock(hdev);
175 ret = __hci_request(hdev, req, opt, timeout);
176 hci_req_unlock(hdev);
177
178 return ret;
179 }
180
181 static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
182 {
183 BT_DBG("%s %ld", hdev->name, opt);
184
185 /* Reset device */
186 set_bit(HCI_RESET, &hdev->flags);
187 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
188 }
189
190 static void bredr_init(struct hci_dev *hdev)
191 {
192 struct hci_cp_delete_stored_link_key cp;
193 __le16 param;
194 __u8 flt_type;
195
196 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
197
198 /* Mandatory initialization */
199
200 /* Reset */
201 if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
202 set_bit(HCI_RESET, &hdev->flags);
203 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
204 }
205
206 /* Read Local Supported Features */
207 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
208
209 /* Read Local Version */
210 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
211
212 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
213 hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
214
215 /* Read BD Address */
216 hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
217
218 /* Read Class of Device */
219 hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
220
221 /* Read Local Name */
222 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
223
224 /* Read Voice Setting */
225 hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
226
227 /* Optional initialization */
228
229 /* Clear Event Filters */
230 flt_type = HCI_FLT_CLEAR_ALL;
231 hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
232
233 /* Connection accept timeout ~20 secs */
234 param = cpu_to_le16(0x7d00);
235 hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
236
237 bacpy(&cp.bdaddr, BDADDR_ANY);
238 cp.delete_all = 1;
239 hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
240 }
241
242 static void amp_init(struct hci_dev *hdev)
243 {
244 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
245
246 /* Reset */
247 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
248
249 /* Read Local Version */
250 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
251 }
252
253 static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
254 {
255 struct sk_buff *skb;
256
257 BT_DBG("%s %ld", hdev->name, opt);
258
259 /* Driver initialization */
260
261 /* Special commands */
262 while ((skb = skb_dequeue(&hdev->driver_init))) {
263 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
264 skb->dev = (void *) hdev;
265
266 skb_queue_tail(&hdev->cmd_q, skb);
267 queue_work(hdev->workqueue, &hdev->cmd_work);
268 }
269 skb_queue_purge(&hdev->driver_init);
270
271 switch (hdev->dev_type) {
272 case HCI_BREDR:
273 bredr_init(hdev);
274 break;
275
276 case HCI_AMP:
277 amp_init(hdev);
278 break;
279
280 default:
281 BT_ERR("Unknown device type %d", hdev->dev_type);
282 break;
283 }
284
285 }
286
287 static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
288 {
289 BT_DBG("%s", hdev->name);
290
291 /* Read LE buffer size */
292 hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
293 }
294
295 static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
296 {
297 __u8 scan = opt;
298
299 BT_DBG("%s %x", hdev->name, scan);
300
301 /* Inquiry and Page scans */
302 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
303 }
304
305 static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
306 {
307 __u8 auth = opt;
308
309 BT_DBG("%s %x", hdev->name, auth);
310
311 /* Authentication */
312 hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
313 }
314
315 static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
316 {
317 __u8 encrypt = opt;
318
319 BT_DBG("%s %x", hdev->name, encrypt);
320
321 /* Encryption */
322 hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
323 }
324
325 static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
326 {
327 __le16 policy = cpu_to_le16(opt);
328
329 BT_DBG("%s %x", hdev->name, policy);
330
331 /* Default link policy */
332 hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
333 }
334
335 /* Get HCI device by index.
336 * Device is held on return. */
337 struct hci_dev *hci_dev_get(int index)
338 {
339 struct hci_dev *hdev = NULL, *d;
340
341 BT_DBG("%d", index);
342
343 if (index < 0)
344 return NULL;
345
346 read_lock(&hci_dev_list_lock);
347 list_for_each_entry(d, &hci_dev_list, list) {
348 if (d->id == index) {
349 hdev = hci_dev_hold(d);
350 break;
351 }
352 }
353 read_unlock(&hci_dev_list_lock);
354 return hdev;
355 }
356
357 /* ---- Inquiry support ---- */
358
359 bool hci_discovery_active(struct hci_dev *hdev)
360 {
361 struct discovery_state *discov = &hdev->discovery;
362
363 if (discov->state == DISCOVERY_INQUIRY ||
364 discov->state == DISCOVERY_RESOLVING)
365 return true;
366
367 return false;
368 }
369
370 void hci_discovery_set_state(struct hci_dev *hdev, int state)
371 {
372 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
373
374 if (hdev->discovery.state == state)
375 return;
376
377 switch (state) {
378 case DISCOVERY_STOPPED:
379 mgmt_discovering(hdev, 0);
380 break;
381 case DISCOVERY_STARTING:
382 break;
383 case DISCOVERY_INQUIRY:
384 mgmt_discovering(hdev, 1);
385 break;
386 case DISCOVERY_RESOLVING:
387 break;
388 case DISCOVERY_STOPPING:
389 break;
390 }
391
392 hdev->discovery.state = state;
393 }
394
395 static void inquiry_cache_flush(struct hci_dev *hdev)
396 {
397 struct discovery_state *cache = &hdev->discovery;
398 struct inquiry_entry *p, *n;
399
400 list_for_each_entry_safe(p, n, &cache->all, all) {
401 list_del(&p->all);
402 kfree(p);
403 }
404
405 INIT_LIST_HEAD(&cache->unknown);
406 INIT_LIST_HEAD(&cache->resolve);
407 cache->state = DISCOVERY_STOPPED;
408 }
409
410 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
411 {
412 struct discovery_state *cache = &hdev->discovery;
413 struct inquiry_entry *e;
414
415 BT_DBG("cache %p, %s", cache, batostr(bdaddr));
416
417 list_for_each_entry(e, &cache->all, all) {
418 if (!bacmp(&e->data.bdaddr, bdaddr))
419 return e;
420 }
421
422 return NULL;
423 }
424
425 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
426 bdaddr_t *bdaddr)
427 {
428 struct discovery_state *cache = &hdev->discovery;
429 struct inquiry_entry *e;
430
431 BT_DBG("cache %p, %s", cache, batostr(bdaddr));
432
433 list_for_each_entry(e, &cache->unknown, list) {
434 if (!bacmp(&e->data.bdaddr, bdaddr))
435 return e;
436 }
437
438 return NULL;
439 }
440
441 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
442 bdaddr_t *bdaddr,
443 int state)
444 {
445 struct discovery_state *cache = &hdev->discovery;
446 struct inquiry_entry *e;
447
448 BT_DBG("cache %p bdaddr %s state %d", cache, batostr(bdaddr), state);
449
450 list_for_each_entry(e, &cache->resolve, list) {
451 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
452 return e;
453 if (!bacmp(&e->data.bdaddr, bdaddr))
454 return e;
455 }
456
457 return NULL;
458 }
459
460 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
461 struct inquiry_entry *ie)
462 {
463 struct discovery_state *cache = &hdev->discovery;
464 struct list_head *pos = &cache->resolve;
465 struct inquiry_entry *p;
466
467 list_del(&ie->list);
468
469 list_for_each_entry(p, &cache->resolve, list) {
470 if (p->name_state != NAME_PENDING &&
471 abs(p->data.rssi) >= abs(ie->data.rssi))
472 break;
473 pos = &p->list;
474 }
475
476 list_add(&ie->list, pos);
477 }
478
479 bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
480 bool name_known)
481 {
482 struct discovery_state *cache = &hdev->discovery;
483 struct inquiry_entry *ie;
484
485 BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
486
487 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
488 if (ie) {
489 if (ie->name_state == NAME_NEEDED &&
490 data->rssi != ie->data.rssi) {
491 ie->data.rssi = data->rssi;
492 hci_inquiry_cache_update_resolve(hdev, ie);
493 }
494
495 goto update;
496 }
497
498 /* Entry not in the cache. Add new one. */
499 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
500 if (!ie)
501 return false;
502
503 list_add(&ie->all, &cache->all);
504
505 if (name_known) {
506 ie->name_state = NAME_KNOWN;
507 } else {
508 ie->name_state = NAME_NOT_KNOWN;
509 list_add(&ie->list, &cache->unknown);
510 }
511
512 update:
513 if (name_known && ie->name_state != NAME_KNOWN &&
514 ie->name_state != NAME_PENDING) {
515 ie->name_state = NAME_KNOWN;
516 list_del(&ie->list);
517 }
518
519 memcpy(&ie->data, data, sizeof(*data));
520 ie->timestamp = jiffies;
521 cache->timestamp = jiffies;
522
523 if (ie->name_state == NAME_NOT_KNOWN)
524 return false;
525
526 return true;
527 }
528
529 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
530 {
531 struct discovery_state *cache = &hdev->discovery;
532 struct inquiry_info *info = (struct inquiry_info *) buf;
533 struct inquiry_entry *e;
534 int copied = 0;
535
536 list_for_each_entry(e, &cache->all, all) {
537 struct inquiry_data *data = &e->data;
538
539 if (copied >= num)
540 break;
541
542 bacpy(&info->bdaddr, &data->bdaddr);
543 info->pscan_rep_mode = data->pscan_rep_mode;
544 info->pscan_period_mode = data->pscan_period_mode;
545 info->pscan_mode = data->pscan_mode;
546 memcpy(info->dev_class, data->dev_class, 3);
547 info->clock_offset = data->clock_offset;
548
549 info++;
550 copied++;
551 }
552
553 BT_DBG("cache %p, copied %d", cache, copied);
554 return copied;
555 }
556
557 static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
558 {
559 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
560 struct hci_cp_inquiry cp;
561
562 BT_DBG("%s", hdev->name);
563
564 if (test_bit(HCI_INQUIRY, &hdev->flags))
565 return;
566
567 /* Start Inquiry */
568 memcpy(&cp.lap, &ir->lap, 3);
569 cp.length = ir->length;
570 cp.num_rsp = ir->num_rsp;
571 hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
572 }
573
574 int hci_inquiry(void __user *arg)
575 {
576 __u8 __user *ptr = arg;
577 struct hci_inquiry_req ir;
578 struct hci_dev *hdev;
579 int err = 0, do_inquiry = 0, max_rsp;
580 long timeo;
581 __u8 *buf;
582
583 if (copy_from_user(&ir, ptr, sizeof(ir)))
584 return -EFAULT;
585
586 hdev = hci_dev_get(ir.dev_id);
587 if (!hdev)
588 return -ENODEV;
589
590 hci_dev_lock(hdev);
591 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
592 inquiry_cache_empty(hdev) ||
593 ir.flags & IREQ_CACHE_FLUSH) {
594 inquiry_cache_flush(hdev);
595 do_inquiry = 1;
596 }
597 hci_dev_unlock(hdev);
598
599 timeo = ir.length * msecs_to_jiffies(2000);
600
601 if (do_inquiry) {
602 err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
603 if (err < 0)
604 goto done;
605 }
606
607 /* for unlimited number of responses we will use buffer with 255 entries */
608 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
609
610 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
611 * copy it to the user space.
612 */
613 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
614 if (!buf) {
615 err = -ENOMEM;
616 goto done;
617 }
618
619 hci_dev_lock(hdev);
620 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
621 hci_dev_unlock(hdev);
622
623 BT_DBG("num_rsp %d", ir.num_rsp);
624
625 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
626 ptr += sizeof(ir);
627 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
628 ir.num_rsp))
629 err = -EFAULT;
630 } else
631 err = -EFAULT;
632
633 kfree(buf);
634
635 done:
636 hci_dev_put(hdev);
637 return err;
638 }
639
640 /* ---- HCI ioctl helpers ---- */
641
642 int hci_dev_open(__u16 dev)
643 {
644 struct hci_dev *hdev;
645 int ret = 0;
646
647 hdev = hci_dev_get(dev);
648 if (!hdev)
649 return -ENODEV;
650
651 BT_DBG("%s %p", hdev->name, hdev);
652
653 hci_req_lock(hdev);
654
655 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
656 ret = -ERFKILL;
657 goto done;
658 }
659
660 if (test_bit(HCI_UP, &hdev->flags)) {
661 ret = -EALREADY;
662 goto done;
663 }
664
665 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
666 set_bit(HCI_RAW, &hdev->flags);
667
668 /* Treat all non BR/EDR controllers as raw devices if
669 enable_hs is not set */
670 if (hdev->dev_type != HCI_BREDR && !enable_hs)
671 set_bit(HCI_RAW, &hdev->flags);
672
673 if (hdev->open(hdev)) {
674 ret = -EIO;
675 goto done;
676 }
677
678 if (!test_bit(HCI_RAW, &hdev->flags)) {
679 atomic_set(&hdev->cmd_cnt, 1);
680 set_bit(HCI_INIT, &hdev->flags);
681 hdev->init_last_cmd = 0;
682
683 ret = __hci_request(hdev, hci_init_req, 0,
684 msecs_to_jiffies(HCI_INIT_TIMEOUT));
685
686 if (lmp_host_le_capable(hdev))
687 ret = __hci_request(hdev, hci_le_init_req, 0,
688 msecs_to_jiffies(HCI_INIT_TIMEOUT));
689
690 clear_bit(HCI_INIT, &hdev->flags);
691 }
692
693 if (!ret) {
694 hci_dev_hold(hdev);
695 set_bit(HCI_UP, &hdev->flags);
696 hci_notify(hdev, HCI_DEV_UP);
697 if (!test_bit(HCI_SETUP, &hdev->dev_flags)) {
698 hci_dev_lock(hdev);
699 mgmt_powered(hdev, 1);
700 hci_dev_unlock(hdev);
701 }
702 } else {
703 /* Init failed, cleanup */
704 flush_work(&hdev->tx_work);
705 flush_work(&hdev->cmd_work);
706 flush_work(&hdev->rx_work);
707
708 skb_queue_purge(&hdev->cmd_q);
709 skb_queue_purge(&hdev->rx_q);
710
711 if (hdev->flush)
712 hdev->flush(hdev);
713
714 if (hdev->sent_cmd) {
715 kfree_skb(hdev->sent_cmd);
716 hdev->sent_cmd = NULL;
717 }
718
719 hdev->close(hdev);
720 hdev->flags = 0;
721 }
722
723 done:
724 hci_req_unlock(hdev);
725 hci_dev_put(hdev);
726 return ret;
727 }
728
729 static int hci_dev_do_close(struct hci_dev *hdev)
730 {
731 BT_DBG("%s %p", hdev->name, hdev);
732
733 hci_req_cancel(hdev, ENODEV);
734 hci_req_lock(hdev);
735
736 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
737 del_timer_sync(&hdev->cmd_timer);
738 hci_req_unlock(hdev);
739 return 0;
740 }
741
742 /* Flush RX and TX works */
743 flush_work(&hdev->tx_work);
744 flush_work(&hdev->rx_work);
745
746 if (hdev->discov_timeout > 0) {
747 cancel_delayed_work(&hdev->discov_off);
748 hdev->discov_timeout = 0;
749 }
750
751 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
752 cancel_delayed_work(&hdev->power_off);
753
754 if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags))
755 cancel_delayed_work(&hdev->service_cache);
756
757 hci_dev_lock(hdev);
758 inquiry_cache_flush(hdev);
759 hci_conn_hash_flush(hdev);
760 hci_dev_unlock(hdev);
761
762 hci_notify(hdev, HCI_DEV_DOWN);
763
764 if (hdev->flush)
765 hdev->flush(hdev);
766
767 /* Reset device */
768 skb_queue_purge(&hdev->cmd_q);
769 atomic_set(&hdev->cmd_cnt, 1);
770 if (!test_bit(HCI_RAW, &hdev->flags)) {
771 set_bit(HCI_INIT, &hdev->flags);
772 __hci_request(hdev, hci_reset_req, 0,
773 msecs_to_jiffies(250));
774 clear_bit(HCI_INIT, &hdev->flags);
775 }
776
777 /* flush cmd work */
778 flush_work(&hdev->cmd_work);
779
780 /* Drop queues */
781 skb_queue_purge(&hdev->rx_q);
782 skb_queue_purge(&hdev->cmd_q);
783 skb_queue_purge(&hdev->raw_q);
784
785 /* Drop last sent command */
786 if (hdev->sent_cmd) {
787 del_timer_sync(&hdev->cmd_timer);
788 kfree_skb(hdev->sent_cmd);
789 hdev->sent_cmd = NULL;
790 }
791
792 /* After this point our queues are empty
793 * and no tasks are scheduled. */
794 hdev->close(hdev);
795
796 hci_dev_lock(hdev);
797 mgmt_powered(hdev, 0);
798 hci_dev_unlock(hdev);
799
800 /* Clear flags */
801 hdev->flags = 0;
802
803 hci_req_unlock(hdev);
804
805 hci_dev_put(hdev);
806 return 0;
807 }
808
809 int hci_dev_close(__u16 dev)
810 {
811 struct hci_dev *hdev;
812 int err;
813
814 hdev = hci_dev_get(dev);
815 if (!hdev)
816 return -ENODEV;
817 err = hci_dev_do_close(hdev);
818 hci_dev_put(hdev);
819 return err;
820 }
821
822 int hci_dev_reset(__u16 dev)
823 {
824 struct hci_dev *hdev;
825 int ret = 0;
826
827 hdev = hci_dev_get(dev);
828 if (!hdev)
829 return -ENODEV;
830
831 hci_req_lock(hdev);
832
833 if (!test_bit(HCI_UP, &hdev->flags))
834 goto done;
835
836 /* Drop queues */
837 skb_queue_purge(&hdev->rx_q);
838 skb_queue_purge(&hdev->cmd_q);
839
840 hci_dev_lock(hdev);
841 inquiry_cache_flush(hdev);
842 hci_conn_hash_flush(hdev);
843 hci_dev_unlock(hdev);
844
845 if (hdev->flush)
846 hdev->flush(hdev);
847
848 atomic_set(&hdev->cmd_cnt, 1);
849 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
850
851 if (!test_bit(HCI_RAW, &hdev->flags))
852 ret = __hci_request(hdev, hci_reset_req, 0,
853 msecs_to_jiffies(HCI_INIT_TIMEOUT));
854
855 done:
856 hci_req_unlock(hdev);
857 hci_dev_put(hdev);
858 return ret;
859 }
860
861 int hci_dev_reset_stat(__u16 dev)
862 {
863 struct hci_dev *hdev;
864 int ret = 0;
865
866 hdev = hci_dev_get(dev);
867 if (!hdev)
868 return -ENODEV;
869
870 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
871
872 hci_dev_put(hdev);
873
874 return ret;
875 }
876
877 int hci_dev_cmd(unsigned int cmd, void __user *arg)
878 {
879 struct hci_dev *hdev;
880 struct hci_dev_req dr;
881 int err = 0;
882
883 if (copy_from_user(&dr, arg, sizeof(dr)))
884 return -EFAULT;
885
886 hdev = hci_dev_get(dr.dev_id);
887 if (!hdev)
888 return -ENODEV;
889
890 switch (cmd) {
891 case HCISETAUTH:
892 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
893 msecs_to_jiffies(HCI_INIT_TIMEOUT));
894 break;
895
896 case HCISETENCRYPT:
897 if (!lmp_encrypt_capable(hdev)) {
898 err = -EOPNOTSUPP;
899 break;
900 }
901
902 if (!test_bit(HCI_AUTH, &hdev->flags)) {
903 /* Auth must be enabled first */
904 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
905 msecs_to_jiffies(HCI_INIT_TIMEOUT));
906 if (err)
907 break;
908 }
909
910 err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
911 msecs_to_jiffies(HCI_INIT_TIMEOUT));
912 break;
913
914 case HCISETSCAN:
915 err = hci_request(hdev, hci_scan_req, dr.dev_opt,
916 msecs_to_jiffies(HCI_INIT_TIMEOUT));
917 break;
918
919 case HCISETLINKPOL:
920 err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
921 msecs_to_jiffies(HCI_INIT_TIMEOUT));
922 break;
923
924 case HCISETLINKMODE:
925 hdev->link_mode = ((__u16) dr.dev_opt) &
926 (HCI_LM_MASTER | HCI_LM_ACCEPT);
927 break;
928
929 case HCISETPTYPE:
930 hdev->pkt_type = (__u16) dr.dev_opt;
931 break;
932
933 case HCISETACLMTU:
934 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
935 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
936 break;
937
938 case HCISETSCOMTU:
939 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
940 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
941 break;
942
943 default:
944 err = -EINVAL;
945 break;
946 }
947
948 hci_dev_put(hdev);
949 return err;
950 }
951
952 int hci_get_dev_list(void __user *arg)
953 {
954 struct hci_dev *hdev;
955 struct hci_dev_list_req *dl;
956 struct hci_dev_req *dr;
957 int n = 0, size, err;
958 __u16 dev_num;
959
960 if (get_user(dev_num, (__u16 __user *) arg))
961 return -EFAULT;
962
963 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
964 return -EINVAL;
965
966 size = sizeof(*dl) + dev_num * sizeof(*dr);
967
968 dl = kzalloc(size, GFP_KERNEL);
969 if (!dl)
970 return -ENOMEM;
971
972 dr = dl->dev_req;
973
974 read_lock(&hci_dev_list_lock);
975 list_for_each_entry(hdev, &hci_dev_list, list) {
976 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
977 cancel_delayed_work(&hdev->power_off);
978
979 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
980 set_bit(HCI_PAIRABLE, &hdev->dev_flags);
981
982 (dr + n)->dev_id = hdev->id;
983 (dr + n)->dev_opt = hdev->flags;
984
985 if (++n >= dev_num)
986 break;
987 }
988 read_unlock(&hci_dev_list_lock);
989
990 dl->dev_num = n;
991 size = sizeof(*dl) + n * sizeof(*dr);
992
993 err = copy_to_user(arg, dl, size);
994 kfree(dl);
995
996 return err ? -EFAULT : 0;
997 }
998
999 int hci_get_dev_info(void __user *arg)
1000 {
1001 struct hci_dev *hdev;
1002 struct hci_dev_info di;
1003 int err = 0;
1004
1005 if (copy_from_user(&di, arg, sizeof(di)))
1006 return -EFAULT;
1007
1008 hdev = hci_dev_get(di.dev_id);
1009 if (!hdev)
1010 return -ENODEV;
1011
1012 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1013 cancel_delayed_work_sync(&hdev->power_off);
1014
1015 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1016 set_bit(HCI_PAIRABLE, &hdev->dev_flags);
1017
1018 strcpy(di.name, hdev->name);
1019 di.bdaddr = hdev->bdaddr;
1020 di.type = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
1021 di.flags = hdev->flags;
1022 di.pkt_type = hdev->pkt_type;
1023 di.acl_mtu = hdev->acl_mtu;
1024 di.acl_pkts = hdev->acl_pkts;
1025 di.sco_mtu = hdev->sco_mtu;
1026 di.sco_pkts = hdev->sco_pkts;
1027 di.link_policy = hdev->link_policy;
1028 di.link_mode = hdev->link_mode;
1029
1030 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1031 memcpy(&di.features, &hdev->features, sizeof(di.features));
1032
1033 if (copy_to_user(arg, &di, sizeof(di)))
1034 err = -EFAULT;
1035
1036 hci_dev_put(hdev);
1037
1038 return err;
1039 }
1040
1041 /* ---- Interface to HCI drivers ---- */
1042
1043 static int hci_rfkill_set_block(void *data, bool blocked)
1044 {
1045 struct hci_dev *hdev = data;
1046
1047 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1048
1049 if (!blocked)
1050 return 0;
1051
1052 hci_dev_do_close(hdev);
1053
1054 return 0;
1055 }
1056
1057 static const struct rfkill_ops hci_rfkill_ops = {
1058 .set_block = hci_rfkill_set_block,
1059 };
1060
1061 /* Alloc HCI device */
1062 struct hci_dev *hci_alloc_dev(void)
1063 {
1064 struct hci_dev *hdev;
1065
1066 hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
1067 if (!hdev)
1068 return NULL;
1069
1070 hci_init_sysfs(hdev);
1071 skb_queue_head_init(&hdev->driver_init);
1072
1073 return hdev;
1074 }
1075 EXPORT_SYMBOL(hci_alloc_dev);
1076
1077 /* Free HCI device */
1078 void hci_free_dev(struct hci_dev *hdev)
1079 {
1080 skb_queue_purge(&hdev->driver_init);
1081
1082 /* will free via device release */
1083 put_device(&hdev->dev);
1084 }
1085 EXPORT_SYMBOL(hci_free_dev);
1086
1087 static void hci_power_on(struct work_struct *work)
1088 {
1089 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
1090
1091 BT_DBG("%s", hdev->name);
1092
1093 if (hci_dev_open(hdev->id) < 0)
1094 return;
1095
1096 if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1097 schedule_delayed_work(&hdev->power_off,
1098 msecs_to_jiffies(AUTO_OFF_TIMEOUT));
1099
1100 if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags))
1101 mgmt_index_added(hdev);
1102 }
1103
1104 static void hci_power_off(struct work_struct *work)
1105 {
1106 struct hci_dev *hdev = container_of(work, struct hci_dev,
1107 power_off.work);
1108
1109 BT_DBG("%s", hdev->name);
1110
1111 clear_bit(HCI_AUTO_OFF, &hdev->dev_flags);
1112
1113 hci_dev_close(hdev->id);
1114 }
1115
1116 static void hci_discov_off(struct work_struct *work)
1117 {
1118 struct hci_dev *hdev;
1119 u8 scan = SCAN_PAGE;
1120
1121 hdev = container_of(work, struct hci_dev, discov_off.work);
1122
1123 BT_DBG("%s", hdev->name);
1124
1125 hci_dev_lock(hdev);
1126
1127 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, sizeof(scan), &scan);
1128
1129 hdev->discov_timeout = 0;
1130
1131 hci_dev_unlock(hdev);
1132 }
1133
1134 int hci_uuids_clear(struct hci_dev *hdev)
1135 {
1136 struct list_head *p, *n;
1137
1138 list_for_each_safe(p, n, &hdev->uuids) {
1139 struct bt_uuid *uuid;
1140
1141 uuid = list_entry(p, struct bt_uuid, list);
1142
1143 list_del(p);
1144 kfree(uuid);
1145 }
1146
1147 return 0;
1148 }
1149
1150 int hci_link_keys_clear(struct hci_dev *hdev)
1151 {
1152 struct list_head *p, *n;
1153
1154 list_for_each_safe(p, n, &hdev->link_keys) {
1155 struct link_key *key;
1156
1157 key = list_entry(p, struct link_key, list);
1158
1159 list_del(p);
1160 kfree(key);
1161 }
1162
1163 return 0;
1164 }
1165
1166 int hci_smp_ltks_clear(struct hci_dev *hdev)
1167 {
1168 struct smp_ltk *k, *tmp;
1169
1170 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1171 list_del(&k->list);
1172 kfree(k);
1173 }
1174
1175 return 0;
1176 }
1177
1178 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1179 {
1180 struct link_key *k;
1181
1182 list_for_each_entry(k, &hdev->link_keys, list)
1183 if (bacmp(bdaddr, &k->bdaddr) == 0)
1184 return k;
1185
1186 return NULL;
1187 }
1188
1189 static int hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1190 u8 key_type, u8 old_key_type)
1191 {
1192 /* Legacy key */
1193 if (key_type < 0x03)
1194 return 1;
1195
1196 /* Debug keys are insecure so don't store them persistently */
1197 if (key_type == HCI_LK_DEBUG_COMBINATION)
1198 return 0;
1199
1200 /* Changed combination key and there's no previous one */
1201 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1202 return 0;
1203
1204 /* Security mode 3 case */
1205 if (!conn)
1206 return 1;
1207
1208 /* Neither local nor remote side had no-bonding as requirement */
1209 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1210 return 1;
1211
1212 /* Local side had dedicated bonding as requirement */
1213 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1214 return 1;
1215
1216 /* Remote side had dedicated bonding as requirement */
1217 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1218 return 1;
1219
1220 /* If none of the above criteria match, then don't store the key
1221 * persistently */
1222 return 0;
1223 }
1224
1225 struct link_key *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1226 {
1227 struct link_key *k;
1228
1229 list_for_each_entry(k, &hdev->link_keys, list) {
1230 struct key_master_id *id;
1231
1232 if (k->type != HCI_LK_SMP_LTK)
1233 continue;
1234
1235 if (k->dlen != sizeof(*id))
1236 continue;
1237
1238 id = (void *) &k->data;
1239 if (id->ediv == ediv &&
1240 (memcmp(rand, id->rand, sizeof(id->rand)) == 0))
1241 return k;
1242 }
1243
1244 return NULL;
1245 }
1246 EXPORT_SYMBOL(hci_find_ltk);
1247
1248 struct link_key *hci_find_link_key_type(struct hci_dev *hdev,
1249 bdaddr_t *bdaddr, u8 type)
1250 {
1251 struct link_key *k;
1252
1253 list_for_each_entry(k, &hdev->link_keys, list)
1254 if (k->type == type && bacmp(bdaddr, &k->bdaddr) == 0)
1255 return k;
1256
1257 return NULL;
1258 }
1259 EXPORT_SYMBOL(hci_find_link_key_type);
1260
1261 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1262 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1263 {
1264 struct link_key *key, *old_key;
1265 u8 old_key_type, persistent;
1266
1267 old_key = hci_find_link_key(hdev, bdaddr);
1268 if (old_key) {
1269 old_key_type = old_key->type;
1270 key = old_key;
1271 } else {
1272 old_key_type = conn ? conn->key_type : 0xff;
1273 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1274 if (!key)
1275 return -ENOMEM;
1276 list_add(&key->list, &hdev->link_keys);
1277 }
1278
1279 BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1280
1281 /* Some buggy controller combinations generate a changed
1282 * combination key for legacy pairing even when there's no
1283 * previous key */
1284 if (type == HCI_LK_CHANGED_COMBINATION &&
1285 (!conn || conn->remote_auth == 0xff) &&
1286 old_key_type == 0xff) {
1287 type = HCI_LK_COMBINATION;
1288 if (conn)
1289 conn->key_type = type;
1290 }
1291
1292 bacpy(&key->bdaddr, bdaddr);
1293 memcpy(key->val, val, 16);
1294 key->pin_len = pin_len;
1295
1296 if (type == HCI_LK_CHANGED_COMBINATION)
1297 key->type = old_key_type;
1298 else
1299 key->type = type;
1300
1301 if (!new_key)
1302 return 0;
1303
1304 persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1305
1306 mgmt_new_link_key(hdev, key, persistent);
1307
1308 if (!persistent) {
1309 list_del(&key->list);
1310 kfree(key);
1311 }
1312
1313 return 0;
1314 }
1315
1316 int hci_add_ltk(struct hci_dev *hdev, int new_key, bdaddr_t *bdaddr,
1317 u8 key_size, __le16 ediv, u8 rand[8], u8 ltk[16])
1318 {
1319 struct link_key *key, *old_key;
1320 struct key_master_id *id;
1321 u8 old_key_type;
1322
1323 BT_DBG("%s addr %s", hdev->name, batostr(bdaddr));
1324
1325 old_key = hci_find_link_key_type(hdev, bdaddr, HCI_LK_SMP_LTK);
1326 if (old_key) {
1327 key = old_key;
1328 old_key_type = old_key->type;
1329 } else {
1330 key = kzalloc(sizeof(*key) + sizeof(*id), GFP_ATOMIC);
1331 if (!key)
1332 return -ENOMEM;
1333 list_add(&key->list, &hdev->link_keys);
1334 old_key_type = 0xff;
1335 }
1336
1337 key->dlen = sizeof(*id);
1338
1339 bacpy(&key->bdaddr, bdaddr);
1340 memcpy(key->val, ltk, sizeof(key->val));
1341 key->type = HCI_LK_SMP_LTK;
1342 key->pin_len = key_size;
1343
1344 id = (void *) &key->data;
1345 id->ediv = ediv;
1346 memcpy(id->rand, rand, sizeof(id->rand));
1347
1348 if (new_key)
1349 mgmt_new_link_key(hdev, key, old_key_type);
1350
1351 return 0;
1352 }
1353
1354 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1355 {
1356 struct link_key *key;
1357
1358 key = hci_find_link_key(hdev, bdaddr);
1359 if (!key)
1360 return -ENOENT;
1361
1362 BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1363
1364 list_del(&key->list);
1365 kfree(key);
1366
1367 return 0;
1368 }
1369
1370 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr)
1371 {
1372 struct smp_ltk *k, *tmp;
1373
1374 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1375 if (bacmp(bdaddr, &k->bdaddr))
1376 continue;
1377
1378 BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1379
1380 list_del(&k->list);
1381 kfree(k);
1382 }
1383
1384 return 0;
1385 }
1386
1387 /* HCI command timer function */
1388 static void hci_cmd_timer(unsigned long arg)
1389 {
1390 struct hci_dev *hdev = (void *) arg;
1391
1392 BT_ERR("%s command tx timeout", hdev->name);
1393 atomic_set(&hdev->cmd_cnt, 1);
1394 queue_work(hdev->workqueue, &hdev->cmd_work);
1395 }
1396
1397 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1398 bdaddr_t *bdaddr)
1399 {
1400 struct oob_data *data;
1401
1402 list_for_each_entry(data, &hdev->remote_oob_data, list)
1403 if (bacmp(bdaddr, &data->bdaddr) == 0)
1404 return data;
1405
1406 return NULL;
1407 }
1408
1409 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1410 {
1411 struct oob_data *data;
1412
1413 data = hci_find_remote_oob_data(hdev, bdaddr);
1414 if (!data)
1415 return -ENOENT;
1416
1417 BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1418
1419 list_del(&data->list);
1420 kfree(data);
1421
1422 return 0;
1423 }
1424
1425 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1426 {
1427 struct oob_data *data, *n;
1428
1429 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1430 list_del(&data->list);
1431 kfree(data);
1432 }
1433
1434 return 0;
1435 }
1436
1437 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1438 u8 *randomizer)
1439 {
1440 struct oob_data *data;
1441
1442 data = hci_find_remote_oob_data(hdev, bdaddr);
1443
1444 if (!data) {
1445 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1446 if (!data)
1447 return -ENOMEM;
1448
1449 bacpy(&data->bdaddr, bdaddr);
1450 list_add(&data->list, &hdev->remote_oob_data);
1451 }
1452
1453 memcpy(data->hash, hash, sizeof(data->hash));
1454 memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1455
1456 BT_DBG("%s for %s", hdev->name, batostr(bdaddr));
1457
1458 return 0;
1459 }
1460
1461 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
1462 bdaddr_t *bdaddr)
1463 {
1464 struct bdaddr_list *b;
1465
1466 list_for_each_entry(b, &hdev->blacklist, list)
1467 if (bacmp(bdaddr, &b->bdaddr) == 0)
1468 return b;
1469
1470 return NULL;
1471 }
1472
1473 int hci_blacklist_clear(struct hci_dev *hdev)
1474 {
1475 struct list_head *p, *n;
1476
1477 list_for_each_safe(p, n, &hdev->blacklist) {
1478 struct bdaddr_list *b;
1479
1480 b = list_entry(p, struct bdaddr_list, list);
1481
1482 list_del(p);
1483 kfree(b);
1484 }
1485
1486 return 0;
1487 }
1488
1489 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr)
1490 {
1491 struct bdaddr_list *entry;
1492
1493 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1494 return -EBADF;
1495
1496 if (hci_blacklist_lookup(hdev, bdaddr))
1497 return -EEXIST;
1498
1499 entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1500 if (!entry)
1501 return -ENOMEM;
1502
1503 bacpy(&entry->bdaddr, bdaddr);
1504
1505 list_add(&entry->list, &hdev->blacklist);
1506
1507 return mgmt_device_blocked(hdev, bdaddr);
1508 }
1509
1510 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr)
1511 {
1512 struct bdaddr_list *entry;
1513
1514 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1515 return hci_blacklist_clear(hdev);
1516
1517 entry = hci_blacklist_lookup(hdev, bdaddr);
1518 if (!entry)
1519 return -ENOENT;
1520
1521 list_del(&entry->list);
1522 kfree(entry);
1523
1524 return mgmt_device_unblocked(hdev, bdaddr);
1525 }
1526
1527 static void hci_clear_adv_cache(struct work_struct *work)
1528 {
1529 struct hci_dev *hdev = container_of(work, struct hci_dev,
1530 adv_work.work);
1531
1532 hci_dev_lock(hdev);
1533
1534 hci_adv_entries_clear(hdev);
1535
1536 hci_dev_unlock(hdev);
1537 }
1538
1539 int hci_adv_entries_clear(struct hci_dev *hdev)
1540 {
1541 struct adv_entry *entry, *tmp;
1542
1543 list_for_each_entry_safe(entry, tmp, &hdev->adv_entries, list) {
1544 list_del(&entry->list);
1545 kfree(entry);
1546 }
1547
1548 BT_DBG("%s adv cache cleared", hdev->name);
1549
1550 return 0;
1551 }
1552
1553 struct adv_entry *hci_find_adv_entry(struct hci_dev *hdev, bdaddr_t *bdaddr)
1554 {
1555 struct adv_entry *entry;
1556
1557 list_for_each_entry(entry, &hdev->adv_entries, list)
1558 if (bacmp(bdaddr, &entry->bdaddr) == 0)
1559 return entry;
1560
1561 return NULL;
1562 }
1563
1564 static inline int is_connectable_adv(u8 evt_type)
1565 {
1566 if (evt_type == ADV_IND || evt_type == ADV_DIRECT_IND)
1567 return 1;
1568
1569 return 0;
1570 }
1571
1572 int hci_add_adv_entry(struct hci_dev *hdev,
1573 struct hci_ev_le_advertising_info *ev)
1574 {
1575 struct adv_entry *entry;
1576
1577 if (!is_connectable_adv(ev->evt_type))
1578 return -EINVAL;
1579
1580 /* Only new entries should be added to adv_entries. So, if
1581 * bdaddr was found, don't add it. */
1582 if (hci_find_adv_entry(hdev, &ev->bdaddr))
1583 return 0;
1584
1585 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1586 if (!entry)
1587 return -ENOMEM;
1588
1589 bacpy(&entry->bdaddr, &ev->bdaddr);
1590 entry->bdaddr_type = ev->bdaddr_type;
1591
1592 list_add(&entry->list, &hdev->adv_entries);
1593
1594 BT_DBG("%s adv entry added: address %s type %u", hdev->name,
1595 batostr(&entry->bdaddr), entry->bdaddr_type);
1596
1597 return 0;
1598 }
1599
1600 /* Register HCI device */
1601 int hci_register_dev(struct hci_dev *hdev)
1602 {
1603 struct list_head *head = &hci_dev_list, *p;
1604 int i, id, error;
1605
1606 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1607
1608 if (!hdev->open || !hdev->close)
1609 return -EINVAL;
1610
1611 /* Do not allow HCI_AMP devices to register at index 0,
1612 * so the index can be used as the AMP controller ID.
1613 */
1614 id = (hdev->dev_type == HCI_BREDR) ? 0 : 1;
1615
1616 write_lock(&hci_dev_list_lock);
1617
1618 /* Find first available device id */
1619 list_for_each(p, &hci_dev_list) {
1620 if (list_entry(p, struct hci_dev, list)->id != id)
1621 break;
1622 head = p; id++;
1623 }
1624
1625 sprintf(hdev->name, "hci%d", id);
1626 hdev->id = id;
1627 list_add_tail(&hdev->list, head);
1628
1629 mutex_init(&hdev->lock);
1630
1631 hdev->flags = 0;
1632 hdev->dev_flags = 0;
1633 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1634 hdev->esco_type = (ESCO_HV1);
1635 hdev->link_mode = (HCI_LM_ACCEPT);
1636 hdev->io_capability = 0x03; /* No Input No Output */
1637
1638 hdev->idle_timeout = 0;
1639 hdev->sniff_max_interval = 800;
1640 hdev->sniff_min_interval = 80;
1641
1642 INIT_WORK(&hdev->rx_work, hci_rx_work);
1643 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
1644 INIT_WORK(&hdev->tx_work, hci_tx_work);
1645
1646
1647 skb_queue_head_init(&hdev->rx_q);
1648 skb_queue_head_init(&hdev->cmd_q);
1649 skb_queue_head_init(&hdev->raw_q);
1650
1651 setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
1652
1653 for (i = 0; i < NUM_REASSEMBLY; i++)
1654 hdev->reassembly[i] = NULL;
1655
1656 init_waitqueue_head(&hdev->req_wait_q);
1657 mutex_init(&hdev->req_lock);
1658
1659 discovery_init(hdev);
1660
1661 hci_conn_hash_init(hdev);
1662
1663 INIT_LIST_HEAD(&hdev->mgmt_pending);
1664
1665 INIT_LIST_HEAD(&hdev->blacklist);
1666
1667 INIT_LIST_HEAD(&hdev->uuids);
1668
1669 INIT_LIST_HEAD(&hdev->link_keys);
1670 INIT_LIST_HEAD(&hdev->long_term_keys);
1671
1672 INIT_LIST_HEAD(&hdev->remote_oob_data);
1673
1674 INIT_LIST_HEAD(&hdev->adv_entries);
1675
1676 INIT_DELAYED_WORK(&hdev->adv_work, hci_clear_adv_cache);
1677 INIT_WORK(&hdev->power_on, hci_power_on);
1678 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
1679
1680 INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
1681
1682 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1683
1684 atomic_set(&hdev->promisc, 0);
1685
1686 write_unlock(&hci_dev_list_lock);
1687
1688 hdev->workqueue = alloc_workqueue(hdev->name, WQ_HIGHPRI | WQ_UNBOUND |
1689 WQ_MEM_RECLAIM, 1);
1690 if (!hdev->workqueue) {
1691 error = -ENOMEM;
1692 goto err;
1693 }
1694
1695 error = hci_add_sysfs(hdev);
1696 if (error < 0)
1697 goto err_wqueue;
1698
1699 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1700 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
1701 if (hdev->rfkill) {
1702 if (rfkill_register(hdev->rfkill) < 0) {
1703 rfkill_destroy(hdev->rfkill);
1704 hdev->rfkill = NULL;
1705 }
1706 }
1707
1708 set_bit(HCI_AUTO_OFF, &hdev->dev_flags);
1709 set_bit(HCI_SETUP, &hdev->dev_flags);
1710 schedule_work(&hdev->power_on);
1711
1712 hci_notify(hdev, HCI_DEV_REG);
1713 hci_dev_hold(hdev);
1714
1715 return id;
1716
1717 err_wqueue:
1718 destroy_workqueue(hdev->workqueue);
1719 err:
1720 write_lock(&hci_dev_list_lock);
1721 list_del(&hdev->list);
1722 write_unlock(&hci_dev_list_lock);
1723
1724 return error;
1725 }
1726 EXPORT_SYMBOL(hci_register_dev);
1727
1728 /* Unregister HCI device */
1729 void hci_unregister_dev(struct hci_dev *hdev)
1730 {
1731 int i;
1732
1733 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1734
1735 write_lock(&hci_dev_list_lock);
1736 list_del(&hdev->list);
1737 write_unlock(&hci_dev_list_lock);
1738
1739 hci_dev_do_close(hdev);
1740
1741 for (i = 0; i < NUM_REASSEMBLY; i++)
1742 kfree_skb(hdev->reassembly[i]);
1743
1744 if (!test_bit(HCI_INIT, &hdev->flags) &&
1745 !test_bit(HCI_SETUP, &hdev->dev_flags)) {
1746 hci_dev_lock(hdev);
1747 mgmt_index_removed(hdev);
1748 hci_dev_unlock(hdev);
1749 }
1750
1751 /* mgmt_index_removed should take care of emptying the
1752 * pending list */
1753 BUG_ON(!list_empty(&hdev->mgmt_pending));
1754
1755 hci_notify(hdev, HCI_DEV_UNREG);
1756
1757 if (hdev->rfkill) {
1758 rfkill_unregister(hdev->rfkill);
1759 rfkill_destroy(hdev->rfkill);
1760 }
1761
1762 hci_del_sysfs(hdev);
1763
1764 cancel_delayed_work_sync(&hdev->adv_work);
1765
1766 destroy_workqueue(hdev->workqueue);
1767
1768 hci_dev_lock(hdev);
1769 hci_blacklist_clear(hdev);
1770 hci_uuids_clear(hdev);
1771 hci_link_keys_clear(hdev);
1772 hci_smp_ltks_clear(hdev);
1773 hci_remote_oob_data_clear(hdev);
1774 hci_adv_entries_clear(hdev);
1775 hci_dev_unlock(hdev);
1776
1777 hci_dev_put(hdev);
1778 }
1779 EXPORT_SYMBOL(hci_unregister_dev);
1780
1781 /* Suspend HCI device */
1782 int hci_suspend_dev(struct hci_dev *hdev)
1783 {
1784 hci_notify(hdev, HCI_DEV_SUSPEND);
1785 return 0;
1786 }
1787 EXPORT_SYMBOL(hci_suspend_dev);
1788
1789 /* Resume HCI device */
1790 int hci_resume_dev(struct hci_dev *hdev)
1791 {
1792 hci_notify(hdev, HCI_DEV_RESUME);
1793 return 0;
1794 }
1795 EXPORT_SYMBOL(hci_resume_dev);
1796
1797 /* Receive frame from HCI drivers */
1798 int hci_recv_frame(struct sk_buff *skb)
1799 {
1800 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1801 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1802 && !test_bit(HCI_INIT, &hdev->flags))) {
1803 kfree_skb(skb);
1804 return -ENXIO;
1805 }
1806
1807 /* Incomming skb */
1808 bt_cb(skb)->incoming = 1;
1809
1810 /* Time stamp */
1811 __net_timestamp(skb);
1812
1813 skb_queue_tail(&hdev->rx_q, skb);
1814 queue_work(hdev->workqueue, &hdev->rx_work);
1815
1816 return 0;
1817 }
1818 EXPORT_SYMBOL(hci_recv_frame);
1819
1820 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1821 int count, __u8 index)
1822 {
1823 int len = 0;
1824 int hlen = 0;
1825 int remain = count;
1826 struct sk_buff *skb;
1827 struct bt_skb_cb *scb;
1828
1829 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1830 index >= NUM_REASSEMBLY)
1831 return -EILSEQ;
1832
1833 skb = hdev->reassembly[index];
1834
1835 if (!skb) {
1836 switch (type) {
1837 case HCI_ACLDATA_PKT:
1838 len = HCI_MAX_FRAME_SIZE;
1839 hlen = HCI_ACL_HDR_SIZE;
1840 break;
1841 case HCI_EVENT_PKT:
1842 len = HCI_MAX_EVENT_SIZE;
1843 hlen = HCI_EVENT_HDR_SIZE;
1844 break;
1845 case HCI_SCODATA_PKT:
1846 len = HCI_MAX_SCO_SIZE;
1847 hlen = HCI_SCO_HDR_SIZE;
1848 break;
1849 }
1850
1851 skb = bt_skb_alloc(len, GFP_ATOMIC);
1852 if (!skb)
1853 return -ENOMEM;
1854
1855 scb = (void *) skb->cb;
1856 scb->expect = hlen;
1857 scb->pkt_type = type;
1858
1859 skb->dev = (void *) hdev;
1860 hdev->reassembly[index] = skb;
1861 }
1862
1863 while (count) {
1864 scb = (void *) skb->cb;
1865 len = min(scb->expect, (__u16)count);
1866
1867 memcpy(skb_put(skb, len), data, len);
1868
1869 count -= len;
1870 data += len;
1871 scb->expect -= len;
1872 remain = count;
1873
1874 switch (type) {
1875 case HCI_EVENT_PKT:
1876 if (skb->len == HCI_EVENT_HDR_SIZE) {
1877 struct hci_event_hdr *h = hci_event_hdr(skb);
1878 scb->expect = h->plen;
1879
1880 if (skb_tailroom(skb) < scb->expect) {
1881 kfree_skb(skb);
1882 hdev->reassembly[index] = NULL;
1883 return -ENOMEM;
1884 }
1885 }
1886 break;
1887
1888 case HCI_ACLDATA_PKT:
1889 if (skb->len == HCI_ACL_HDR_SIZE) {
1890 struct hci_acl_hdr *h = hci_acl_hdr(skb);
1891 scb->expect = __le16_to_cpu(h->dlen);
1892
1893 if (skb_tailroom(skb) < scb->expect) {
1894 kfree_skb(skb);
1895 hdev->reassembly[index] = NULL;
1896 return -ENOMEM;
1897 }
1898 }
1899 break;
1900
1901 case HCI_SCODATA_PKT:
1902 if (skb->len == HCI_SCO_HDR_SIZE) {
1903 struct hci_sco_hdr *h = hci_sco_hdr(skb);
1904 scb->expect = h->dlen;
1905
1906 if (skb_tailroom(skb) < scb->expect) {
1907 kfree_skb(skb);
1908 hdev->reassembly[index] = NULL;
1909 return -ENOMEM;
1910 }
1911 }
1912 break;
1913 }
1914
1915 if (scb->expect == 0) {
1916 /* Complete frame */
1917
1918 bt_cb(skb)->pkt_type = type;
1919 hci_recv_frame(skb);
1920
1921 hdev->reassembly[index] = NULL;
1922 return remain;
1923 }
1924 }
1925
1926 return remain;
1927 }
1928
1929 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
1930 {
1931 int rem = 0;
1932
1933 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
1934 return -EILSEQ;
1935
1936 while (count) {
1937 rem = hci_reassembly(hdev, type, data, count, type - 1);
1938 if (rem < 0)
1939 return rem;
1940
1941 data += (count - rem);
1942 count = rem;
1943 }
1944
1945 return rem;
1946 }
1947 EXPORT_SYMBOL(hci_recv_fragment);
1948
1949 #define STREAM_REASSEMBLY 0
1950
1951 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
1952 {
1953 int type;
1954 int rem = 0;
1955
1956 while (count) {
1957 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
1958
1959 if (!skb) {
1960 struct { char type; } *pkt;
1961
1962 /* Start of the frame */
1963 pkt = data;
1964 type = pkt->type;
1965
1966 data++;
1967 count--;
1968 } else
1969 type = bt_cb(skb)->pkt_type;
1970
1971 rem = hci_reassembly(hdev, type, data, count,
1972 STREAM_REASSEMBLY);
1973 if (rem < 0)
1974 return rem;
1975
1976 data += (count - rem);
1977 count = rem;
1978 }
1979
1980 return rem;
1981 }
1982 EXPORT_SYMBOL(hci_recv_stream_fragment);
1983
1984 /* ---- Interface to upper protocols ---- */
1985
1986 int hci_register_cb(struct hci_cb *cb)
1987 {
1988 BT_DBG("%p name %s", cb, cb->name);
1989
1990 write_lock(&hci_cb_list_lock);
1991 list_add(&cb->list, &hci_cb_list);
1992 write_unlock(&hci_cb_list_lock);
1993
1994 return 0;
1995 }
1996 EXPORT_SYMBOL(hci_register_cb);
1997
1998 int hci_unregister_cb(struct hci_cb *cb)
1999 {
2000 BT_DBG("%p name %s", cb, cb->name);
2001
2002 write_lock(&hci_cb_list_lock);
2003 list_del(&cb->list);
2004 write_unlock(&hci_cb_list_lock);
2005
2006 return 0;
2007 }
2008 EXPORT_SYMBOL(hci_unregister_cb);
2009
2010 static int hci_send_frame(struct sk_buff *skb)
2011 {
2012 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
2013
2014 if (!hdev) {
2015 kfree_skb(skb);
2016 return -ENODEV;
2017 }
2018
2019 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
2020
2021 if (atomic_read(&hdev->promisc)) {
2022 /* Time stamp */
2023 __net_timestamp(skb);
2024
2025 hci_send_to_sock(hdev, skb, NULL);
2026 }
2027
2028 /* Get rid of skb owner, prior to sending to the driver. */
2029 skb_orphan(skb);
2030
2031 return hdev->send(skb);
2032 }
2033
2034 /* Send HCI command */
2035 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
2036 {
2037 int len = HCI_COMMAND_HDR_SIZE + plen;
2038 struct hci_command_hdr *hdr;
2039 struct sk_buff *skb;
2040
2041 BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
2042
2043 skb = bt_skb_alloc(len, GFP_ATOMIC);
2044 if (!skb) {
2045 BT_ERR("%s no memory for command", hdev->name);
2046 return -ENOMEM;
2047 }
2048
2049 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
2050 hdr->opcode = cpu_to_le16(opcode);
2051 hdr->plen = plen;
2052
2053 if (plen)
2054 memcpy(skb_put(skb, plen), param, plen);
2055
2056 BT_DBG("skb len %d", skb->len);
2057
2058 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
2059 skb->dev = (void *) hdev;
2060
2061 if (test_bit(HCI_INIT, &hdev->flags))
2062 hdev->init_last_cmd = opcode;
2063
2064 skb_queue_tail(&hdev->cmd_q, skb);
2065 queue_work(hdev->workqueue, &hdev->cmd_work);
2066
2067 return 0;
2068 }
2069
2070 /* Get data from the previously sent command */
2071 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
2072 {
2073 struct hci_command_hdr *hdr;
2074
2075 if (!hdev->sent_cmd)
2076 return NULL;
2077
2078 hdr = (void *) hdev->sent_cmd->data;
2079
2080 if (hdr->opcode != cpu_to_le16(opcode))
2081 return NULL;
2082
2083 BT_DBG("%s opcode 0x%x", hdev->name, opcode);
2084
2085 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
2086 }
2087
2088 /* Send ACL data */
2089 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
2090 {
2091 struct hci_acl_hdr *hdr;
2092 int len = skb->len;
2093
2094 skb_push(skb, HCI_ACL_HDR_SIZE);
2095 skb_reset_transport_header(skb);
2096 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
2097 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
2098 hdr->dlen = cpu_to_le16(len);
2099 }
2100
2101 static void hci_queue_acl(struct hci_conn *conn, struct sk_buff_head *queue,
2102 struct sk_buff *skb, __u16 flags)
2103 {
2104 struct hci_dev *hdev = conn->hdev;
2105 struct sk_buff *list;
2106
2107 list = skb_shinfo(skb)->frag_list;
2108 if (!list) {
2109 /* Non fragmented */
2110 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
2111
2112 skb_queue_tail(queue, skb);
2113 } else {
2114 /* Fragmented */
2115 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2116
2117 skb_shinfo(skb)->frag_list = NULL;
2118
2119 /* Queue all fragments atomically */
2120 spin_lock(&queue->lock);
2121
2122 __skb_queue_tail(queue, skb);
2123
2124 flags &= ~ACL_START;
2125 flags |= ACL_CONT;
2126 do {
2127 skb = list; list = list->next;
2128
2129 skb->dev = (void *) hdev;
2130 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2131 hci_add_acl_hdr(skb, conn->handle, flags);
2132
2133 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2134
2135 __skb_queue_tail(queue, skb);
2136 } while (list);
2137
2138 spin_unlock(&queue->lock);
2139 }
2140 }
2141
2142 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
2143 {
2144 struct hci_conn *conn = chan->conn;
2145 struct hci_dev *hdev = conn->hdev;
2146
2147 BT_DBG("%s chan %p flags 0x%x", hdev->name, chan, flags);
2148
2149 skb->dev = (void *) hdev;
2150 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2151 hci_add_acl_hdr(skb, conn->handle, flags);
2152
2153 hci_queue_acl(conn, &chan->data_q, skb, flags);
2154
2155 queue_work(hdev->workqueue, &hdev->tx_work);
2156 }
2157 EXPORT_SYMBOL(hci_send_acl);
2158
2159 /* Send SCO data */
2160 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2161 {
2162 struct hci_dev *hdev = conn->hdev;
2163 struct hci_sco_hdr hdr;
2164
2165 BT_DBG("%s len %d", hdev->name, skb->len);
2166
2167 hdr.handle = cpu_to_le16(conn->handle);
2168 hdr.dlen = skb->len;
2169
2170 skb_push(skb, HCI_SCO_HDR_SIZE);
2171 skb_reset_transport_header(skb);
2172 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2173
2174 skb->dev = (void *) hdev;
2175 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2176
2177 skb_queue_tail(&conn->data_q, skb);
2178 queue_work(hdev->workqueue, &hdev->tx_work);
2179 }
2180 EXPORT_SYMBOL(hci_send_sco);
2181
2182 /* ---- HCI TX task (outgoing data) ---- */
2183
2184 /* HCI Connection scheduler */
2185 static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
2186 {
2187 struct hci_conn_hash *h = &hdev->conn_hash;
2188 struct hci_conn *conn = NULL, *c;
2189 int num = 0, min = ~0;
2190
2191 /* We don't have to lock device here. Connections are always
2192 * added and removed with TX task disabled. */
2193
2194 rcu_read_lock();
2195
2196 list_for_each_entry_rcu(c, &h->list, list) {
2197 if (c->type != type || skb_queue_empty(&c->data_q))
2198 continue;
2199
2200 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2201 continue;
2202
2203 num++;
2204
2205 if (c->sent < min) {
2206 min = c->sent;
2207 conn = c;
2208 }
2209
2210 if (hci_conn_num(hdev, type) == num)
2211 break;
2212 }
2213
2214 rcu_read_unlock();
2215
2216 if (conn) {
2217 int cnt, q;
2218
2219 switch (conn->type) {
2220 case ACL_LINK:
2221 cnt = hdev->acl_cnt;
2222 break;
2223 case SCO_LINK:
2224 case ESCO_LINK:
2225 cnt = hdev->sco_cnt;
2226 break;
2227 case LE_LINK:
2228 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2229 break;
2230 default:
2231 cnt = 0;
2232 BT_ERR("Unknown link type");
2233 }
2234
2235 q = cnt / num;
2236 *quote = q ? q : 1;
2237 } else
2238 *quote = 0;
2239
2240 BT_DBG("conn %p quote %d", conn, *quote);
2241 return conn;
2242 }
2243
2244 static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2245 {
2246 struct hci_conn_hash *h = &hdev->conn_hash;
2247 struct hci_conn *c;
2248
2249 BT_ERR("%s link tx timeout", hdev->name);
2250
2251 rcu_read_lock();
2252
2253 /* Kill stalled connections */
2254 list_for_each_entry_rcu(c, &h->list, list) {
2255 if (c->type == type && c->sent) {
2256 BT_ERR("%s killing stalled connection %s",
2257 hdev->name, batostr(&c->dst));
2258 hci_acl_disconn(c, 0x13);
2259 }
2260 }
2261
2262 rcu_read_unlock();
2263 }
2264
2265 static inline struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
2266 int *quote)
2267 {
2268 struct hci_conn_hash *h = &hdev->conn_hash;
2269 struct hci_chan *chan = NULL;
2270 int num = 0, min = ~0, cur_prio = 0;
2271 struct hci_conn *conn;
2272 int cnt, q, conn_num = 0;
2273
2274 BT_DBG("%s", hdev->name);
2275
2276 rcu_read_lock();
2277
2278 list_for_each_entry_rcu(conn, &h->list, list) {
2279 struct hci_chan *tmp;
2280
2281 if (conn->type != type)
2282 continue;
2283
2284 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2285 continue;
2286
2287 conn_num++;
2288
2289 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
2290 struct sk_buff *skb;
2291
2292 if (skb_queue_empty(&tmp->data_q))
2293 continue;
2294
2295 skb = skb_peek(&tmp->data_q);
2296 if (skb->priority < cur_prio)
2297 continue;
2298
2299 if (skb->priority > cur_prio) {
2300 num = 0;
2301 min = ~0;
2302 cur_prio = skb->priority;
2303 }
2304
2305 num++;
2306
2307 if (conn->sent < min) {
2308 min = conn->sent;
2309 chan = tmp;
2310 }
2311 }
2312
2313 if (hci_conn_num(hdev, type) == conn_num)
2314 break;
2315 }
2316
2317 rcu_read_unlock();
2318
2319 if (!chan)
2320 return NULL;
2321
2322 switch (chan->conn->type) {
2323 case ACL_LINK:
2324 cnt = hdev->acl_cnt;
2325 break;
2326 case SCO_LINK:
2327 case ESCO_LINK:
2328 cnt = hdev->sco_cnt;
2329 break;
2330 case LE_LINK:
2331 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2332 break;
2333 default:
2334 cnt = 0;
2335 BT_ERR("Unknown link type");
2336 }
2337
2338 q = cnt / num;
2339 *quote = q ? q : 1;
2340 BT_DBG("chan %p quote %d", chan, *quote);
2341 return chan;
2342 }
2343
2344 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
2345 {
2346 struct hci_conn_hash *h = &hdev->conn_hash;
2347 struct hci_conn *conn;
2348 int num = 0;
2349
2350 BT_DBG("%s", hdev->name);
2351
2352 rcu_read_lock();
2353
2354 list_for_each_entry_rcu(conn, &h->list, list) {
2355 struct hci_chan *chan;
2356
2357 if (conn->type != type)
2358 continue;
2359
2360 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2361 continue;
2362
2363 num++;
2364
2365 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
2366 struct sk_buff *skb;
2367
2368 if (chan->sent) {
2369 chan->sent = 0;
2370 continue;
2371 }
2372
2373 if (skb_queue_empty(&chan->data_q))
2374 continue;
2375
2376 skb = skb_peek(&chan->data_q);
2377 if (skb->priority >= HCI_PRIO_MAX - 1)
2378 continue;
2379
2380 skb->priority = HCI_PRIO_MAX - 1;
2381
2382 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
2383 skb->priority);
2384 }
2385
2386 if (hci_conn_num(hdev, type) == num)
2387 break;
2388 }
2389
2390 rcu_read_unlock();
2391
2392 }
2393
2394 static inline void hci_sched_acl(struct hci_dev *hdev)
2395 {
2396 struct hci_chan *chan;
2397 struct sk_buff *skb;
2398 int quote;
2399 unsigned int cnt;
2400
2401 BT_DBG("%s", hdev->name);
2402
2403 if (!hci_conn_num(hdev, ACL_LINK))
2404 return;
2405
2406 if (!test_bit(HCI_RAW, &hdev->flags)) {
2407 /* ACL tx timeout must be longer than maximum
2408 * link supervision timeout (40.9 seconds) */
2409 if (!hdev->acl_cnt && time_after(jiffies, hdev->acl_last_tx +
2410 msecs_to_jiffies(HCI_ACL_TX_TIMEOUT)))
2411 hci_link_tx_to(hdev, ACL_LINK);
2412 }
2413
2414 cnt = hdev->acl_cnt;
2415
2416 while (hdev->acl_cnt &&
2417 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
2418 u32 priority = (skb_peek(&chan->data_q))->priority;
2419 while (quote-- && (skb = skb_peek(&chan->data_q))) {
2420 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2421 skb->len, skb->priority);
2422
2423 /* Stop if priority has changed */
2424 if (skb->priority < priority)
2425 break;
2426
2427 skb = skb_dequeue(&chan->data_q);
2428
2429 hci_conn_enter_active_mode(chan->conn,
2430 bt_cb(skb)->force_active);
2431
2432 hci_send_frame(skb);
2433 hdev->acl_last_tx = jiffies;
2434
2435 hdev->acl_cnt--;
2436 chan->sent++;
2437 chan->conn->sent++;
2438 }
2439 }
2440
2441 if (cnt != hdev->acl_cnt)
2442 hci_prio_recalculate(hdev, ACL_LINK);
2443 }
2444
2445 /* Schedule SCO */
2446 static inline void hci_sched_sco(struct hci_dev *hdev)
2447 {
2448 struct hci_conn *conn;
2449 struct sk_buff *skb;
2450 int quote;
2451
2452 BT_DBG("%s", hdev->name);
2453
2454 if (!hci_conn_num(hdev, SCO_LINK))
2455 return;
2456
2457 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
2458 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2459 BT_DBG("skb %p len %d", skb, skb->len);
2460 hci_send_frame(skb);
2461
2462 conn->sent++;
2463 if (conn->sent == ~0)
2464 conn->sent = 0;
2465 }
2466 }
2467 }
2468
2469 static inline void hci_sched_esco(struct hci_dev *hdev)
2470 {
2471 struct hci_conn *conn;
2472 struct sk_buff *skb;
2473 int quote;
2474
2475 BT_DBG("%s", hdev->name);
2476
2477 if (!hci_conn_num(hdev, ESCO_LINK))
2478 return;
2479
2480 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
2481 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2482 BT_DBG("skb %p len %d", skb, skb->len);
2483 hci_send_frame(skb);
2484
2485 conn->sent++;
2486 if (conn->sent == ~0)
2487 conn->sent = 0;
2488 }
2489 }
2490 }
2491
2492 static inline void hci_sched_le(struct hci_dev *hdev)
2493 {
2494 struct hci_chan *chan;
2495 struct sk_buff *skb;
2496 int quote, cnt, tmp;
2497
2498 BT_DBG("%s", hdev->name);
2499
2500 if (!hci_conn_num(hdev, LE_LINK))
2501 return;
2502
2503 if (!test_bit(HCI_RAW, &hdev->flags)) {
2504 /* LE tx timeout must be longer than maximum
2505 * link supervision timeout (40.9 seconds) */
2506 if (!hdev->le_cnt && hdev->le_pkts &&
2507 time_after(jiffies, hdev->le_last_tx + HZ * 45))
2508 hci_link_tx_to(hdev, LE_LINK);
2509 }
2510
2511 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
2512 tmp = cnt;
2513 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
2514 u32 priority = (skb_peek(&chan->data_q))->priority;
2515 while (quote-- && (skb = skb_peek(&chan->data_q))) {
2516 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2517 skb->len, skb->priority);
2518
2519 /* Stop if priority has changed */
2520 if (skb->priority < priority)
2521 break;
2522
2523 skb = skb_dequeue(&chan->data_q);
2524
2525 hci_send_frame(skb);
2526 hdev->le_last_tx = jiffies;
2527
2528 cnt--;
2529 chan->sent++;
2530 chan->conn->sent++;
2531 }
2532 }
2533
2534 if (hdev->le_pkts)
2535 hdev->le_cnt = cnt;
2536 else
2537 hdev->acl_cnt = cnt;
2538
2539 if (cnt != tmp)
2540 hci_prio_recalculate(hdev, LE_LINK);
2541 }
2542
2543 static void hci_tx_work(struct work_struct *work)
2544 {
2545 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
2546 struct sk_buff *skb;
2547
2548 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
2549 hdev->sco_cnt, hdev->le_cnt);
2550
2551 /* Schedule queues and send stuff to HCI driver */
2552
2553 hci_sched_acl(hdev);
2554
2555 hci_sched_sco(hdev);
2556
2557 hci_sched_esco(hdev);
2558
2559 hci_sched_le(hdev);
2560
2561 /* Send next queued raw (unknown type) packet */
2562 while ((skb = skb_dequeue(&hdev->raw_q)))
2563 hci_send_frame(skb);
2564 }
2565
2566 /* ----- HCI RX task (incoming data processing) ----- */
2567
2568 /* ACL data packet */
2569 static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2570 {
2571 struct hci_acl_hdr *hdr = (void *) skb->data;
2572 struct hci_conn *conn;
2573 __u16 handle, flags;
2574
2575 skb_pull(skb, HCI_ACL_HDR_SIZE);
2576
2577 handle = __le16_to_cpu(hdr->handle);
2578 flags = hci_flags(handle);
2579 handle = hci_handle(handle);
2580
2581 BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
2582
2583 hdev->stat.acl_rx++;
2584
2585 hci_dev_lock(hdev);
2586 conn = hci_conn_hash_lookup_handle(hdev, handle);
2587 hci_dev_unlock(hdev);
2588
2589 if (conn) {
2590 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
2591
2592 /* Send to upper protocol */
2593 l2cap_recv_acldata(conn, skb, flags);
2594 return;
2595 } else {
2596 BT_ERR("%s ACL packet for unknown connection handle %d",
2597 hdev->name, handle);
2598 }
2599
2600 kfree_skb(skb);
2601 }
2602
2603 /* SCO data packet */
2604 static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2605 {
2606 struct hci_sco_hdr *hdr = (void *) skb->data;
2607 struct hci_conn *conn;
2608 __u16 handle;
2609
2610 skb_pull(skb, HCI_SCO_HDR_SIZE);
2611
2612 handle = __le16_to_cpu(hdr->handle);
2613
2614 BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
2615
2616 hdev->stat.sco_rx++;
2617
2618 hci_dev_lock(hdev);
2619 conn = hci_conn_hash_lookup_handle(hdev, handle);
2620 hci_dev_unlock(hdev);
2621
2622 if (conn) {
2623 /* Send to upper protocol */
2624 sco_recv_scodata(conn, skb);
2625 return;
2626 } else {
2627 BT_ERR("%s SCO packet for unknown connection handle %d",
2628 hdev->name, handle);
2629 }
2630
2631 kfree_skb(skb);
2632 }
2633
2634 static void hci_rx_work(struct work_struct *work)
2635 {
2636 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
2637 struct sk_buff *skb;
2638
2639 BT_DBG("%s", hdev->name);
2640
2641 while ((skb = skb_dequeue(&hdev->rx_q))) {
2642 if (atomic_read(&hdev->promisc)) {
2643 /* Send copy to the sockets */
2644 hci_send_to_sock(hdev, skb, NULL);
2645 }
2646
2647 if (test_bit(HCI_RAW, &hdev->flags)) {
2648 kfree_skb(skb);
2649 continue;
2650 }
2651
2652 if (test_bit(HCI_INIT, &hdev->flags)) {
2653 /* Don't process data packets in this states. */
2654 switch (bt_cb(skb)->pkt_type) {
2655 case HCI_ACLDATA_PKT:
2656 case HCI_SCODATA_PKT:
2657 kfree_skb(skb);
2658 continue;
2659 }
2660 }
2661
2662 /* Process frame */
2663 switch (bt_cb(skb)->pkt_type) {
2664 case HCI_EVENT_PKT:
2665 BT_DBG("%s Event packet", hdev->name);
2666 hci_event_packet(hdev, skb);
2667 break;
2668
2669 case HCI_ACLDATA_PKT:
2670 BT_DBG("%s ACL data packet", hdev->name);
2671 hci_acldata_packet(hdev, skb);
2672 break;
2673
2674 case HCI_SCODATA_PKT:
2675 BT_DBG("%s SCO data packet", hdev->name);
2676 hci_scodata_packet(hdev, skb);
2677 break;
2678
2679 default:
2680 kfree_skb(skb);
2681 break;
2682 }
2683 }
2684 }
2685
2686 static void hci_cmd_work(struct work_struct *work)
2687 {
2688 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
2689 struct sk_buff *skb;
2690
2691 BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
2692
2693 /* Send queued commands */
2694 if (atomic_read(&hdev->cmd_cnt)) {
2695 skb = skb_dequeue(&hdev->cmd_q);
2696 if (!skb)
2697 return;
2698
2699 kfree_skb(hdev->sent_cmd);
2700
2701 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2702 if (hdev->sent_cmd) {
2703 atomic_dec(&hdev->cmd_cnt);
2704 hci_send_frame(skb);
2705 if (test_bit(HCI_RESET, &hdev->flags))
2706 del_timer(&hdev->cmd_timer);
2707 else
2708 mod_timer(&hdev->cmd_timer,
2709 jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
2710 } else {
2711 skb_queue_head(&hdev->cmd_q, skb);
2712 queue_work(hdev->workqueue, &hdev->cmd_work);
2713 }
2714 }
2715 }
2716
2717 int hci_do_inquiry(struct hci_dev *hdev, u8 length)
2718 {
2719 /* General inquiry access code (GIAC) */
2720 u8 lap[3] = { 0x33, 0x8b, 0x9e };
2721 struct hci_cp_inquiry cp;
2722
2723 BT_DBG("%s", hdev->name);
2724
2725 if (test_bit(HCI_INQUIRY, &hdev->flags))
2726 return -EINPROGRESS;
2727
2728 inquiry_cache_flush(hdev);
2729
2730 memset(&cp, 0, sizeof(cp));
2731 memcpy(&cp.lap, lap, sizeof(cp.lap));
2732 cp.length = length;
2733
2734 return hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
2735 }
2736
2737 int hci_cancel_inquiry(struct hci_dev *hdev)
2738 {
2739 BT_DBG("%s", hdev->name);
2740
2741 if (!test_bit(HCI_INQUIRY, &hdev->flags))
2742 return -EPERM;
2743
2744 return hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2745 }
2746
2747 module_param(enable_hs, bool, 0644);
2748 MODULE_PARM_DESC(enable_hs, "Enable High Speed");