Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
26
27 static void sum_vm_events(unsigned long *ret)
28 {
29 int cpu;
30 int i;
31
32 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33
34 for_each_online_cpu(cpu) {
35 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36
37 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 ret[i] += this->event[i];
39 }
40 }
41
42 /*
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
46 */
47 void all_vm_events(unsigned long *ret)
48 {
49 get_online_cpus();
50 sum_vm_events(ret);
51 put_online_cpus();
52 }
53 EXPORT_SYMBOL_GPL(all_vm_events);
54
55 /*
56 * Fold the foreign cpu events into our own.
57 *
58 * This is adding to the events on one processor
59 * but keeps the global counts constant.
60 */
61 void vm_events_fold_cpu(int cpu)
62 {
63 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
64 int i;
65
66 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
67 count_vm_events(i, fold_state->event[i]);
68 fold_state->event[i] = 0;
69 }
70 }
71
72 #endif /* CONFIG_VM_EVENT_COUNTERS */
73
74 /*
75 * Manage combined zone based / global counters
76 *
77 * vm_stat contains the global counters
78 */
79 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
80 EXPORT_SYMBOL(vm_stat);
81
82 #ifdef CONFIG_SMP
83
84 int calculate_pressure_threshold(struct zone *zone)
85 {
86 int threshold;
87 int watermark_distance;
88
89 /*
90 * As vmstats are not up to date, there is drift between the estimated
91 * and real values. For high thresholds and a high number of CPUs, it
92 * is possible for the min watermark to be breached while the estimated
93 * value looks fine. The pressure threshold is a reduced value such
94 * that even the maximum amount of drift will not accidentally breach
95 * the min watermark
96 */
97 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
98 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
99
100 /*
101 * Maximum threshold is 125
102 */
103 threshold = min(125, threshold);
104
105 return threshold;
106 }
107
108 int calculate_normal_threshold(struct zone *zone)
109 {
110 int threshold;
111 int mem; /* memory in 128 MB units */
112
113 /*
114 * The threshold scales with the number of processors and the amount
115 * of memory per zone. More memory means that we can defer updates for
116 * longer, more processors could lead to more contention.
117 * fls() is used to have a cheap way of logarithmic scaling.
118 *
119 * Some sample thresholds:
120 *
121 * Threshold Processors (fls) Zonesize fls(mem+1)
122 * ------------------------------------------------------------------
123 * 8 1 1 0.9-1 GB 4
124 * 16 2 2 0.9-1 GB 4
125 * 20 2 2 1-2 GB 5
126 * 24 2 2 2-4 GB 6
127 * 28 2 2 4-8 GB 7
128 * 32 2 2 8-16 GB 8
129 * 4 2 2 <128M 1
130 * 30 4 3 2-4 GB 5
131 * 48 4 3 8-16 GB 8
132 * 32 8 4 1-2 GB 4
133 * 32 8 4 0.9-1GB 4
134 * 10 16 5 <128M 1
135 * 40 16 5 900M 4
136 * 70 64 7 2-4 GB 5
137 * 84 64 7 4-8 GB 6
138 * 108 512 9 4-8 GB 6
139 * 125 1024 10 8-16 GB 8
140 * 125 1024 10 16-32 GB 9
141 */
142
143 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
144
145 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
146
147 /*
148 * Maximum threshold is 125
149 */
150 threshold = min(125, threshold);
151
152 return threshold;
153 }
154
155 /*
156 * Refresh the thresholds for each zone.
157 */
158 void refresh_zone_stat_thresholds(void)
159 {
160 struct zone *zone;
161 int cpu;
162 int threshold;
163
164 for_each_populated_zone(zone) {
165 unsigned long max_drift, tolerate_drift;
166
167 threshold = calculate_normal_threshold(zone);
168
169 for_each_online_cpu(cpu)
170 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
171 = threshold;
172
173 /*
174 * Only set percpu_drift_mark if there is a danger that
175 * NR_FREE_PAGES reports the low watermark is ok when in fact
176 * the min watermark could be breached by an allocation
177 */
178 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
179 max_drift = num_online_cpus() * threshold;
180 if (max_drift > tolerate_drift)
181 zone->percpu_drift_mark = high_wmark_pages(zone) +
182 max_drift;
183 }
184 }
185
186 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
187 int (*calculate_pressure)(struct zone *))
188 {
189 struct zone *zone;
190 int cpu;
191 int threshold;
192 int i;
193
194 for (i = 0; i < pgdat->nr_zones; i++) {
195 zone = &pgdat->node_zones[i];
196 if (!zone->percpu_drift_mark)
197 continue;
198
199 threshold = (*calculate_pressure)(zone);
200 for_each_possible_cpu(cpu)
201 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
202 = threshold;
203 }
204 }
205
206 /*
207 * For use when we know that interrupts are disabled.
208 */
209 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
210 int delta)
211 {
212 struct per_cpu_pageset __percpu *pcp = zone->pageset;
213 s8 __percpu *p = pcp->vm_stat_diff + item;
214 long x;
215 long t;
216
217 x = delta + __this_cpu_read(*p);
218
219 t = __this_cpu_read(pcp->stat_threshold);
220
221 if (unlikely(x > t || x < -t)) {
222 zone_page_state_add(x, zone, item);
223 x = 0;
224 }
225 __this_cpu_write(*p, x);
226 }
227 EXPORT_SYMBOL(__mod_zone_page_state);
228
229 /*
230 * Optimized increment and decrement functions.
231 *
232 * These are only for a single page and therefore can take a struct page *
233 * argument instead of struct zone *. This allows the inclusion of the code
234 * generated for page_zone(page) into the optimized functions.
235 *
236 * No overflow check is necessary and therefore the differential can be
237 * incremented or decremented in place which may allow the compilers to
238 * generate better code.
239 * The increment or decrement is known and therefore one boundary check can
240 * be omitted.
241 *
242 * NOTE: These functions are very performance sensitive. Change only
243 * with care.
244 *
245 * Some processors have inc/dec instructions that are atomic vs an interrupt.
246 * However, the code must first determine the differential location in a zone
247 * based on the processor number and then inc/dec the counter. There is no
248 * guarantee without disabling preemption that the processor will not change
249 * in between and therefore the atomicity vs. interrupt cannot be exploited
250 * in a useful way here.
251 */
252 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
253 {
254 struct per_cpu_pageset __percpu *pcp = zone->pageset;
255 s8 __percpu *p = pcp->vm_stat_diff + item;
256 s8 v, t;
257
258 v = __this_cpu_inc_return(*p);
259 t = __this_cpu_read(pcp->stat_threshold);
260 if (unlikely(v > t)) {
261 s8 overstep = t >> 1;
262
263 zone_page_state_add(v + overstep, zone, item);
264 __this_cpu_write(*p, -overstep);
265 }
266 }
267
268 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
269 {
270 __inc_zone_state(page_zone(page), item);
271 }
272 EXPORT_SYMBOL(__inc_zone_page_state);
273
274 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
275 {
276 struct per_cpu_pageset __percpu *pcp = zone->pageset;
277 s8 __percpu *p = pcp->vm_stat_diff + item;
278 s8 v, t;
279
280 v = __this_cpu_dec_return(*p);
281 t = __this_cpu_read(pcp->stat_threshold);
282 if (unlikely(v < - t)) {
283 s8 overstep = t >> 1;
284
285 zone_page_state_add(v - overstep, zone, item);
286 __this_cpu_write(*p, overstep);
287 }
288 }
289
290 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
291 {
292 __dec_zone_state(page_zone(page), item);
293 }
294 EXPORT_SYMBOL(__dec_zone_page_state);
295
296 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
297 /*
298 * If we have cmpxchg_local support then we do not need to incur the overhead
299 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
300 *
301 * mod_state() modifies the zone counter state through atomic per cpu
302 * operations.
303 *
304 * Overstep mode specifies how overstep should handled:
305 * 0 No overstepping
306 * 1 Overstepping half of threshold
307 * -1 Overstepping minus half of threshold
308 */
309 static inline void mod_state(struct zone *zone,
310 enum zone_stat_item item, int delta, int overstep_mode)
311 {
312 struct per_cpu_pageset __percpu *pcp = zone->pageset;
313 s8 __percpu *p = pcp->vm_stat_diff + item;
314 long o, n, t, z;
315
316 do {
317 z = 0; /* overflow to zone counters */
318
319 /*
320 * The fetching of the stat_threshold is racy. We may apply
321 * a counter threshold to the wrong the cpu if we get
322 * rescheduled while executing here. However, the next
323 * counter update will apply the threshold again and
324 * therefore bring the counter under the threshold again.
325 *
326 * Most of the time the thresholds are the same anyways
327 * for all cpus in a zone.
328 */
329 t = this_cpu_read(pcp->stat_threshold);
330
331 o = this_cpu_read(*p);
332 n = delta + o;
333
334 if (n > t || n < -t) {
335 int os = overstep_mode * (t >> 1) ;
336
337 /* Overflow must be added to zone counters */
338 z = n + os;
339 n = -os;
340 }
341 } while (this_cpu_cmpxchg(*p, o, n) != o);
342
343 if (z)
344 zone_page_state_add(z, zone, item);
345 }
346
347 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
348 int delta)
349 {
350 mod_state(zone, item, delta, 0);
351 }
352 EXPORT_SYMBOL(mod_zone_page_state);
353
354 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
355 {
356 mod_state(zone, item, 1, 1);
357 }
358
359 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
360 {
361 mod_state(page_zone(page), item, 1, 1);
362 }
363 EXPORT_SYMBOL(inc_zone_page_state);
364
365 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
366 {
367 mod_state(page_zone(page), item, -1, -1);
368 }
369 EXPORT_SYMBOL(dec_zone_page_state);
370 #else
371 /*
372 * Use interrupt disable to serialize counter updates
373 */
374 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
375 int delta)
376 {
377 unsigned long flags;
378
379 local_irq_save(flags);
380 __mod_zone_page_state(zone, item, delta);
381 local_irq_restore(flags);
382 }
383 EXPORT_SYMBOL(mod_zone_page_state);
384
385 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
386 {
387 unsigned long flags;
388
389 local_irq_save(flags);
390 __inc_zone_state(zone, item);
391 local_irq_restore(flags);
392 }
393
394 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
395 {
396 unsigned long flags;
397 struct zone *zone;
398
399 zone = page_zone(page);
400 local_irq_save(flags);
401 __inc_zone_state(zone, item);
402 local_irq_restore(flags);
403 }
404 EXPORT_SYMBOL(inc_zone_page_state);
405
406 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408 unsigned long flags;
409
410 local_irq_save(flags);
411 __dec_zone_page_state(page, item);
412 local_irq_restore(flags);
413 }
414 EXPORT_SYMBOL(dec_zone_page_state);
415 #endif
416
417 /*
418 * Update the zone counters for one cpu.
419 *
420 * The cpu specified must be either the current cpu or a processor that
421 * is not online. If it is the current cpu then the execution thread must
422 * be pinned to the current cpu.
423 *
424 * Note that refresh_cpu_vm_stats strives to only access
425 * node local memory. The per cpu pagesets on remote zones are placed
426 * in the memory local to the processor using that pageset. So the
427 * loop over all zones will access a series of cachelines local to
428 * the processor.
429 *
430 * The call to zone_page_state_add updates the cachelines with the
431 * statistics in the remote zone struct as well as the global cachelines
432 * with the global counters. These could cause remote node cache line
433 * bouncing and will have to be only done when necessary.
434 */
435 void refresh_cpu_vm_stats(int cpu)
436 {
437 struct zone *zone;
438 int i;
439 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
440
441 for_each_populated_zone(zone) {
442 struct per_cpu_pageset *p;
443
444 p = per_cpu_ptr(zone->pageset, cpu);
445
446 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
447 if (p->vm_stat_diff[i]) {
448 unsigned long flags;
449 int v;
450
451 local_irq_save(flags);
452 v = p->vm_stat_diff[i];
453 p->vm_stat_diff[i] = 0;
454 local_irq_restore(flags);
455 atomic_long_add(v, &zone->vm_stat[i]);
456 global_diff[i] += v;
457 #ifdef CONFIG_NUMA
458 /* 3 seconds idle till flush */
459 p->expire = 3;
460 #endif
461 }
462 cond_resched();
463 #ifdef CONFIG_NUMA
464 /*
465 * Deal with draining the remote pageset of this
466 * processor
467 *
468 * Check if there are pages remaining in this pageset
469 * if not then there is nothing to expire.
470 */
471 if (!p->expire || !p->pcp.count)
472 continue;
473
474 /*
475 * We never drain zones local to this processor.
476 */
477 if (zone_to_nid(zone) == numa_node_id()) {
478 p->expire = 0;
479 continue;
480 }
481
482 p->expire--;
483 if (p->expire)
484 continue;
485
486 if (p->pcp.count)
487 drain_zone_pages(zone, &p->pcp);
488 #endif
489 }
490
491 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
492 if (global_diff[i])
493 atomic_long_add(global_diff[i], &vm_stat[i]);
494 }
495
496 /*
497 * this is only called if !populated_zone(zone), which implies no other users of
498 * pset->vm_stat_diff[] exsist.
499 */
500 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
501 {
502 int i;
503
504 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
505 if (pset->vm_stat_diff[i]) {
506 int v = pset->vm_stat_diff[i];
507 pset->vm_stat_diff[i] = 0;
508 atomic_long_add(v, &zone->vm_stat[i]);
509 atomic_long_add(v, &vm_stat[i]);
510 }
511 }
512 #endif
513
514 #ifdef CONFIG_NUMA
515 /*
516 * zonelist = the list of zones passed to the allocator
517 * z = the zone from which the allocation occurred.
518 *
519 * Must be called with interrupts disabled.
520 *
521 * When __GFP_OTHER_NODE is set assume the node of the preferred
522 * zone is the local node. This is useful for daemons who allocate
523 * memory on behalf of other processes.
524 */
525 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
526 {
527 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
528 __inc_zone_state(z, NUMA_HIT);
529 } else {
530 __inc_zone_state(z, NUMA_MISS);
531 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
532 }
533 if (z->node == ((flags & __GFP_OTHER_NODE) ?
534 preferred_zone->node : numa_node_id()))
535 __inc_zone_state(z, NUMA_LOCAL);
536 else
537 __inc_zone_state(z, NUMA_OTHER);
538 }
539 #endif
540
541 #ifdef CONFIG_COMPACTION
542
543 struct contig_page_info {
544 unsigned long free_pages;
545 unsigned long free_blocks_total;
546 unsigned long free_blocks_suitable;
547 };
548
549 /*
550 * Calculate the number of free pages in a zone, how many contiguous
551 * pages are free and how many are large enough to satisfy an allocation of
552 * the target size. Note that this function makes no attempt to estimate
553 * how many suitable free blocks there *might* be if MOVABLE pages were
554 * migrated. Calculating that is possible, but expensive and can be
555 * figured out from userspace
556 */
557 static void fill_contig_page_info(struct zone *zone,
558 unsigned int suitable_order,
559 struct contig_page_info *info)
560 {
561 unsigned int order;
562
563 info->free_pages = 0;
564 info->free_blocks_total = 0;
565 info->free_blocks_suitable = 0;
566
567 for (order = 0; order < MAX_ORDER; order++) {
568 unsigned long blocks;
569
570 /* Count number of free blocks */
571 blocks = zone->free_area[order].nr_free;
572 info->free_blocks_total += blocks;
573
574 /* Count free base pages */
575 info->free_pages += blocks << order;
576
577 /* Count the suitable free blocks */
578 if (order >= suitable_order)
579 info->free_blocks_suitable += blocks <<
580 (order - suitable_order);
581 }
582 }
583
584 /*
585 * A fragmentation index only makes sense if an allocation of a requested
586 * size would fail. If that is true, the fragmentation index indicates
587 * whether external fragmentation or a lack of memory was the problem.
588 * The value can be used to determine if page reclaim or compaction
589 * should be used
590 */
591 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
592 {
593 unsigned long requested = 1UL << order;
594
595 if (!info->free_blocks_total)
596 return 0;
597
598 /* Fragmentation index only makes sense when a request would fail */
599 if (info->free_blocks_suitable)
600 return -1000;
601
602 /*
603 * Index is between 0 and 1 so return within 3 decimal places
604 *
605 * 0 => allocation would fail due to lack of memory
606 * 1 => allocation would fail due to fragmentation
607 */
608 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
609 }
610
611 /* Same as __fragmentation index but allocs contig_page_info on stack */
612 int fragmentation_index(struct zone *zone, unsigned int order)
613 {
614 struct contig_page_info info;
615
616 fill_contig_page_info(zone, order, &info);
617 return __fragmentation_index(order, &info);
618 }
619 #endif
620
621 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
622 #include <linux/proc_fs.h>
623 #include <linux/seq_file.h>
624
625 static char * const migratetype_names[MIGRATE_TYPES] = {
626 "Unmovable",
627 "Reclaimable",
628 "Movable",
629 #ifdef CONFIG_MTKPASR
630 "Mtkpasr",
631 #endif
632 "Reserve",
633 #ifdef CONFIG_CMA
634 "CMA",
635 #endif
636 #ifdef CONFIG_MEMORY_ISOLATION
637 "Isolate",
638 #endif
639 };
640
641 static void *frag_start(struct seq_file *m, loff_t *pos)
642 {
643 pg_data_t *pgdat;
644 loff_t node = *pos;
645 for (pgdat = first_online_pgdat();
646 pgdat && node;
647 pgdat = next_online_pgdat(pgdat))
648 --node;
649
650 return pgdat;
651 }
652
653 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
654 {
655 pg_data_t *pgdat = (pg_data_t *)arg;
656
657 (*pos)++;
658 return next_online_pgdat(pgdat);
659 }
660
661 static void frag_stop(struct seq_file *m, void *arg)
662 {
663 }
664
665 /* Walk all the zones in a node and print using a callback */
666 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
667 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
668 {
669 struct zone *zone;
670 struct zone *node_zones = pgdat->node_zones;
671 unsigned long flags;
672
673 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
674 if (!populated_zone(zone))
675 continue;
676
677 spin_lock_irqsave(&zone->lock, flags);
678 print(m, pgdat, zone);
679 spin_unlock_irqrestore(&zone->lock, flags);
680 }
681 }
682 #endif
683
684 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
685 #ifdef CONFIG_ZONE_DMA
686 #define TEXT_FOR_DMA(xx) xx "_dma",
687 #else
688 #define TEXT_FOR_DMA(xx)
689 #endif
690
691 #ifdef CONFIG_ZONE_DMA32
692 #define TEXT_FOR_DMA32(xx) xx "_dma32",
693 #else
694 #define TEXT_FOR_DMA32(xx)
695 #endif
696
697 #ifdef CONFIG_HIGHMEM
698 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
699 #else
700 #define TEXT_FOR_HIGHMEM(xx)
701 #endif
702
703 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
704 TEXT_FOR_HIGHMEM(xx) xx "_movable",
705
706 const char * const vmstat_text[] = {
707 /* Zoned VM counters */
708 "nr_free_pages",
709 "nr_inactive_anon",
710 "nr_active_anon",
711 "nr_inactive_file",
712 "nr_active_file",
713 "nr_unevictable",
714 "nr_mlock",
715 "nr_anon_pages",
716 "nr_mapped",
717 "nr_file_pages",
718 "nr_dirty",
719 "nr_writeback",
720 "nr_slab_reclaimable",
721 "nr_slab_unreclaimable",
722 "nr_page_table_pages",
723 "nr_kernel_stack",
724 "nr_unstable",
725 "nr_bounce",
726 "nr_vmscan_write",
727 "nr_vmscan_immediate_reclaim",
728 "nr_writeback_temp",
729 "nr_isolated_anon",
730 "nr_isolated_file",
731 "nr_shmem",
732 "nr_dirtied",
733 "nr_written",
734
735 #ifdef CONFIG_NUMA
736 "numa_hit",
737 "numa_miss",
738 "numa_foreign",
739 "numa_interleave",
740 "numa_local",
741 "numa_other",
742 #endif
743 "nr_anon_transparent_hugepages",
744 "nr_free_cma",
745 "nr_dirty_threshold",
746 "nr_dirty_background_threshold",
747
748 #ifdef CONFIG_VM_EVENT_COUNTERS
749 "pgpgin",
750 "pgpgout",
751 "pswpin",
752 "pswpout",
753
754 TEXTS_FOR_ZONES("pgalloc")
755
756 "pgfree",
757 "pgactivate",
758 "pgdeactivate",
759
760 "pgfault",
761 "pgmajfault",
762 "pgfmfault",
763
764 TEXTS_FOR_ZONES("pgrefill")
765 TEXTS_FOR_ZONES("pgsteal_kswapd")
766 TEXTS_FOR_ZONES("pgsteal_direct")
767 TEXTS_FOR_ZONES("pgscan_kswapd")
768 TEXTS_FOR_ZONES("pgscan_direct")
769 "pgscan_direct_throttle",
770
771 #ifdef CONFIG_NUMA
772 "zone_reclaim_failed",
773 #endif
774 "pginodesteal",
775 "slabs_scanned",
776 "kswapd_inodesteal",
777 "kswapd_low_wmark_hit_quickly",
778 "kswapd_high_wmark_hit_quickly",
779 "pageoutrun",
780 "allocstall",
781
782 "pgrotated",
783
784 #ifdef CONFIG_NUMA_BALANCING
785 "numa_pte_updates",
786 "numa_huge_pte_updates",
787 "numa_hint_faults",
788 "numa_hint_faults_local",
789 "numa_pages_migrated",
790 #endif
791 #ifdef CONFIG_MIGRATION
792 "pgmigrate_success",
793 "pgmigrate_fail",
794 #endif
795 #ifdef CONFIG_COMPACTION
796 "compact_migrate_scanned",
797 "compact_free_scanned",
798 "compact_isolated",
799 "compact_stall",
800 "compact_fail",
801 "compact_success",
802 #endif
803
804 #ifdef CONFIG_HUGETLB_PAGE
805 "htlb_buddy_alloc_success",
806 "htlb_buddy_alloc_fail",
807 #endif
808 "unevictable_pgs_culled",
809 "unevictable_pgs_scanned",
810 "unevictable_pgs_rescued",
811 "unevictable_pgs_mlocked",
812 "unevictable_pgs_munlocked",
813 "unevictable_pgs_cleared",
814 "unevictable_pgs_stranded",
815
816 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
817 "thp_fault_alloc",
818 "thp_fault_fallback",
819 "thp_collapse_alloc",
820 "thp_collapse_alloc_failed",
821 "thp_split",
822 "thp_zero_page_alloc",
823 "thp_zero_page_alloc_failed",
824 #endif
825
826 #endif /* CONFIG_VM_EVENTS_COUNTERS */
827 };
828 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
829
830
831 #ifdef CONFIG_PROC_FS
832 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
833 struct zone *zone)
834 {
835 int order;
836
837 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
838 for (order = 0; order < MAX_ORDER; ++order)
839 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
840 seq_putc(m, '\n');
841 }
842
843 /*
844 * This walks the free areas for each zone.
845 */
846 static int frag_show(struct seq_file *m, void *arg)
847 {
848 pg_data_t *pgdat = (pg_data_t *)arg;
849 walk_zones_in_node(m, pgdat, frag_show_print);
850 return 0;
851 }
852
853 static void pagetypeinfo_showfree_print(struct seq_file *m,
854 pg_data_t *pgdat, struct zone *zone)
855 {
856 int order, mtype;
857
858 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
859 seq_printf(m, "Node %4d, zone %8s, type %12s ",
860 pgdat->node_id,
861 zone->name,
862 migratetype_names[mtype]);
863 for (order = 0; order < MAX_ORDER; ++order) {
864 unsigned long freecount = 0;
865 struct free_area *area;
866 struct list_head *curr;
867
868 area = &(zone->free_area[order]);
869
870 list_for_each(curr, &area->free_list[mtype])
871 freecount++;
872 seq_printf(m, "%6lu ", freecount);
873 }
874 seq_putc(m, '\n');
875 }
876 }
877
878 /* Print out the free pages at each order for each migatetype */
879 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
880 {
881 int order;
882 pg_data_t *pgdat = (pg_data_t *)arg;
883
884 /* Print header */
885 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
886 for (order = 0; order < MAX_ORDER; ++order)
887 seq_printf(m, "%6d ", order);
888 seq_putc(m, '\n');
889
890 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
891
892 return 0;
893 }
894
895 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
896 pg_data_t *pgdat, struct zone *zone)
897 {
898 int mtype;
899 unsigned long pfn;
900 unsigned long start_pfn = zone->zone_start_pfn;
901 unsigned long end_pfn = zone_end_pfn(zone);
902 unsigned long count[MIGRATE_TYPES] = { 0, };
903
904 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
905 struct page *page;
906
907 if (!pfn_valid(pfn))
908 continue;
909
910 page = pfn_to_page(pfn);
911
912 /* Watch for unexpected holes punched in the memmap */
913 if (!memmap_valid_within(pfn, page, zone))
914 continue;
915
916 mtype = get_pageblock_migratetype(page);
917
918 if (mtype < MIGRATE_TYPES)
919 count[mtype]++;
920 }
921
922 /* Print counts */
923 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
924 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
925 seq_printf(m, "%12lu ", count[mtype]);
926 seq_putc(m, '\n');
927 }
928
929 /* Print out the free pages at each order for each migratetype */
930 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
931 {
932 int mtype;
933 pg_data_t *pgdat = (pg_data_t *)arg;
934
935 seq_printf(m, "\n%-23s", "Number of blocks type ");
936 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
937 seq_printf(m, "%12s ", migratetype_names[mtype]);
938 seq_putc(m, '\n');
939 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
940
941 return 0;
942 }
943
944 /*
945 * This prints out statistics in relation to grouping pages by mobility.
946 * It is expensive to collect so do not constantly read the file.
947 */
948 static int pagetypeinfo_show(struct seq_file *m, void *arg)
949 {
950 pg_data_t *pgdat = (pg_data_t *)arg;
951
952 /* check memoryless node */
953 if (!node_state(pgdat->node_id, N_MEMORY))
954 return 0;
955
956 seq_printf(m, "Page block order: %d\n", pageblock_order);
957 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
958 seq_putc(m, '\n');
959 pagetypeinfo_showfree(m, pgdat);
960 pagetypeinfo_showblockcount(m, pgdat);
961
962 return 0;
963 }
964
965 static const struct seq_operations fragmentation_op = {
966 .start = frag_start,
967 .next = frag_next,
968 .stop = frag_stop,
969 .show = frag_show,
970 };
971
972 static int fragmentation_open(struct inode *inode, struct file *file)
973 {
974 return seq_open(file, &fragmentation_op);
975 }
976
977 static const struct file_operations fragmentation_file_operations = {
978 .open = fragmentation_open,
979 .read = seq_read,
980 .llseek = seq_lseek,
981 .release = seq_release,
982 };
983
984 static const struct seq_operations pagetypeinfo_op = {
985 .start = frag_start,
986 .next = frag_next,
987 .stop = frag_stop,
988 .show = pagetypeinfo_show,
989 };
990
991 static int pagetypeinfo_open(struct inode *inode, struct file *file)
992 {
993 return seq_open(file, &pagetypeinfo_op);
994 }
995
996 static const struct file_operations pagetypeinfo_file_ops = {
997 .open = pagetypeinfo_open,
998 .read = seq_read,
999 .llseek = seq_lseek,
1000 .release = seq_release,
1001 };
1002
1003 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1004 struct zone *zone)
1005 {
1006 int i;
1007 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1008 seq_printf(m,
1009 "\n pages free %lu"
1010 "\n min %lu"
1011 "\n low %lu"
1012 "\n high %lu"
1013 "\n scanned %lu"
1014 "\n spanned %lu"
1015 "\n present %lu"
1016 "\n managed %lu",
1017 zone_page_state(zone, NR_FREE_PAGES),
1018 min_wmark_pages(zone),
1019 low_wmark_pages(zone),
1020 high_wmark_pages(zone),
1021 zone->pages_scanned,
1022 zone->spanned_pages,
1023 zone->present_pages,
1024 zone->managed_pages);
1025
1026 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1027 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1028 zone_page_state(zone, i));
1029
1030 seq_printf(m,
1031 "\n protection: (%lu",
1032 zone->lowmem_reserve[0]);
1033 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1034 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1035 seq_printf(m,
1036 ")"
1037 "\n pagesets");
1038 for_each_online_cpu(i) {
1039 struct per_cpu_pageset *pageset;
1040
1041 pageset = per_cpu_ptr(zone->pageset, i);
1042 seq_printf(m,
1043 "\n cpu: %i"
1044 "\n count: %i"
1045 "\n high: %i"
1046 "\n batch: %i",
1047 i,
1048 pageset->pcp.count,
1049 pageset->pcp.high,
1050 pageset->pcp.batch);
1051 #ifdef CONFIG_SMP
1052 seq_printf(m, "\n vm stats threshold: %d",
1053 pageset->stat_threshold);
1054 #endif
1055 }
1056 seq_printf(m,
1057 "\n all_unreclaimable: %u"
1058 "\n start_pfn: %lu"
1059 "\n inactive_ratio: %u",
1060 zone->all_unreclaimable,
1061 zone->zone_start_pfn,
1062 zone->inactive_ratio);
1063 seq_putc(m, '\n');
1064 }
1065
1066 /*
1067 * Output information about zones in @pgdat.
1068 */
1069 static int zoneinfo_show(struct seq_file *m, void *arg)
1070 {
1071 pg_data_t *pgdat = (pg_data_t *)arg;
1072 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1073 return 0;
1074 }
1075
1076 static const struct seq_operations zoneinfo_op = {
1077 .start = frag_start, /* iterate over all zones. The same as in
1078 * fragmentation. */
1079 .next = frag_next,
1080 .stop = frag_stop,
1081 .show = zoneinfo_show,
1082 };
1083
1084 static int zoneinfo_open(struct inode *inode, struct file *file)
1085 {
1086 return seq_open(file, &zoneinfo_op);
1087 }
1088
1089 static const struct file_operations proc_zoneinfo_file_operations = {
1090 .open = zoneinfo_open,
1091 .read = seq_read,
1092 .llseek = seq_lseek,
1093 .release = seq_release,
1094 };
1095
1096 enum writeback_stat_item {
1097 NR_DIRTY_THRESHOLD,
1098 NR_DIRTY_BG_THRESHOLD,
1099 NR_VM_WRITEBACK_STAT_ITEMS,
1100 };
1101
1102 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1103 {
1104 unsigned long *v;
1105 int i, stat_items_size;
1106
1107 if (*pos >= ARRAY_SIZE(vmstat_text))
1108 return NULL;
1109 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1110 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1111
1112 #ifdef CONFIG_VM_EVENT_COUNTERS
1113 stat_items_size += sizeof(struct vm_event_state);
1114 #endif
1115
1116 v = kmalloc(stat_items_size, GFP_KERNEL);
1117 m->private = v;
1118 if (!v)
1119 return ERR_PTR(-ENOMEM);
1120 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1121 v[i] = global_page_state(i);
1122 v += NR_VM_ZONE_STAT_ITEMS;
1123
1124 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1125 v + NR_DIRTY_THRESHOLD);
1126 v += NR_VM_WRITEBACK_STAT_ITEMS;
1127
1128 #ifdef CONFIG_VM_EVENT_COUNTERS
1129 all_vm_events(v);
1130 v[PGPGIN] /= 2; /* sectors -> kbytes */
1131 v[PGPGOUT] /= 2;
1132 #endif
1133 return (unsigned long *)m->private + *pos;
1134 }
1135
1136 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1137 {
1138 (*pos)++;
1139 if (*pos >= ARRAY_SIZE(vmstat_text))
1140 return NULL;
1141 return (unsigned long *)m->private + *pos;
1142 }
1143
1144 static int vmstat_show(struct seq_file *m, void *arg)
1145 {
1146 unsigned long *l = arg;
1147 unsigned long off = l - (unsigned long *)m->private;
1148
1149 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1150 return 0;
1151 }
1152
1153 static void vmstat_stop(struct seq_file *m, void *arg)
1154 {
1155 kfree(m->private);
1156 m->private = NULL;
1157 }
1158
1159 static const struct seq_operations vmstat_op = {
1160 .start = vmstat_start,
1161 .next = vmstat_next,
1162 .stop = vmstat_stop,
1163 .show = vmstat_show,
1164 };
1165
1166 static int vmstat_open(struct inode *inode, struct file *file)
1167 {
1168 return seq_open(file, &vmstat_op);
1169 }
1170
1171 static const struct file_operations proc_vmstat_file_operations = {
1172 .open = vmstat_open,
1173 .read = seq_read,
1174 .llseek = seq_lseek,
1175 .release = seq_release,
1176 };
1177 #endif /* CONFIG_PROC_FS */
1178
1179 #ifdef CONFIG_SMP
1180 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1181 int sysctl_stat_interval __read_mostly = HZ;
1182
1183 static void vmstat_update(struct work_struct *w)
1184 {
1185 refresh_cpu_vm_stats(smp_processor_id());
1186 schedule_delayed_work(&__get_cpu_var(vmstat_work),
1187 round_jiffies_relative(sysctl_stat_interval));
1188 }
1189
1190 static void __cpuinit start_cpu_timer(int cpu)
1191 {
1192 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1193
1194 INIT_DEFERRABLE_WORK(work, vmstat_update);
1195 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1196 }
1197
1198 /*
1199 * Use the cpu notifier to insure that the thresholds are recalculated
1200 * when necessary.
1201 */
1202 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1203 unsigned long action,
1204 void *hcpu)
1205 {
1206 long cpu = (long)hcpu;
1207
1208 switch (action) {
1209 case CPU_ONLINE:
1210 case CPU_ONLINE_FROZEN:
1211 refresh_zone_stat_thresholds();
1212 start_cpu_timer(cpu);
1213 node_set_state(cpu_to_node(cpu), N_CPU);
1214 break;
1215 case CPU_DOWN_PREPARE:
1216 case CPU_DOWN_PREPARE_FROZEN:
1217 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1218 per_cpu(vmstat_work, cpu).work.func = NULL;
1219 break;
1220 case CPU_DOWN_FAILED:
1221 case CPU_DOWN_FAILED_FROZEN:
1222 start_cpu_timer(cpu);
1223 break;
1224 case CPU_DEAD:
1225 case CPU_DEAD_FROZEN:
1226 refresh_zone_stat_thresholds();
1227 break;
1228 default:
1229 break;
1230 }
1231 return NOTIFY_OK;
1232 }
1233
1234 static struct notifier_block __cpuinitdata vmstat_notifier =
1235 { &vmstat_cpuup_callback, NULL, 0 };
1236 #endif
1237
1238 static int __init setup_vmstat(void)
1239 {
1240 #ifdef CONFIG_SMP
1241 int cpu;
1242
1243 register_cpu_notifier(&vmstat_notifier);
1244
1245 for_each_online_cpu(cpu)
1246 start_cpu_timer(cpu);
1247 #endif
1248 #ifdef CONFIG_PROC_FS
1249 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1250 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1251 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1252 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1253 #endif
1254 return 0;
1255 }
1256 module_init(setup_vmstat)
1257
1258 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1259 #include <linux/debugfs.h>
1260
1261
1262 /*
1263 * Return an index indicating how much of the available free memory is
1264 * unusable for an allocation of the requested size.
1265 */
1266 static int unusable_free_index(unsigned int order,
1267 struct contig_page_info *info)
1268 {
1269 /* No free memory is interpreted as all free memory is unusable */
1270 if (info->free_pages == 0)
1271 return 1000;
1272
1273 /*
1274 * Index should be a value between 0 and 1. Return a value to 3
1275 * decimal places.
1276 *
1277 * 0 => no fragmentation
1278 * 1 => high fragmentation
1279 */
1280 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1281
1282 }
1283
1284 static void unusable_show_print(struct seq_file *m,
1285 pg_data_t *pgdat, struct zone *zone)
1286 {
1287 unsigned int order;
1288 int index;
1289 struct contig_page_info info;
1290
1291 seq_printf(m, "Node %d, zone %8s ",
1292 pgdat->node_id,
1293 zone->name);
1294 for (order = 0; order < MAX_ORDER; ++order) {
1295 fill_contig_page_info(zone, order, &info);
1296 index = unusable_free_index(order, &info);
1297 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1298 }
1299
1300 seq_putc(m, '\n');
1301 }
1302
1303 /*
1304 * Display unusable free space index
1305 *
1306 * The unusable free space index measures how much of the available free
1307 * memory cannot be used to satisfy an allocation of a given size and is a
1308 * value between 0 and 1. The higher the value, the more of free memory is
1309 * unusable and by implication, the worse the external fragmentation is. This
1310 * can be expressed as a percentage by multiplying by 100.
1311 */
1312 static int unusable_show(struct seq_file *m, void *arg)
1313 {
1314 pg_data_t *pgdat = (pg_data_t *)arg;
1315
1316 /* check memoryless node */
1317 if (!node_state(pgdat->node_id, N_MEMORY))
1318 return 0;
1319
1320 walk_zones_in_node(m, pgdat, unusable_show_print);
1321
1322 return 0;
1323 }
1324
1325 static const struct seq_operations unusable_op = {
1326 .start = frag_start,
1327 .next = frag_next,
1328 .stop = frag_stop,
1329 .show = unusable_show,
1330 };
1331
1332 static int unusable_open(struct inode *inode, struct file *file)
1333 {
1334 return seq_open(file, &unusable_op);
1335 }
1336
1337 static const struct file_operations unusable_file_ops = {
1338 .open = unusable_open,
1339 .read = seq_read,
1340 .llseek = seq_lseek,
1341 .release = seq_release,
1342 };
1343
1344 static void extfrag_show_print(struct seq_file *m,
1345 pg_data_t *pgdat, struct zone *zone)
1346 {
1347 unsigned int order;
1348 int index;
1349
1350 /* Alloc on stack as interrupts are disabled for zone walk */
1351 struct contig_page_info info;
1352
1353 seq_printf(m, "Node %d, zone %8s ",
1354 pgdat->node_id,
1355 zone->name);
1356 for (order = 0; order < MAX_ORDER; ++order) {
1357 fill_contig_page_info(zone, order, &info);
1358 index = __fragmentation_index(order, &info);
1359 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1360 }
1361
1362 seq_putc(m, '\n');
1363 }
1364
1365 /*
1366 * Display fragmentation index for orders that allocations would fail for
1367 */
1368 static int extfrag_show(struct seq_file *m, void *arg)
1369 {
1370 pg_data_t *pgdat = (pg_data_t *)arg;
1371
1372 walk_zones_in_node(m, pgdat, extfrag_show_print);
1373
1374 return 0;
1375 }
1376
1377 static const struct seq_operations extfrag_op = {
1378 .start = frag_start,
1379 .next = frag_next,
1380 .stop = frag_stop,
1381 .show = extfrag_show,
1382 };
1383
1384 static int extfrag_open(struct inode *inode, struct file *file)
1385 {
1386 return seq_open(file, &extfrag_op);
1387 }
1388
1389 static const struct file_operations extfrag_file_ops = {
1390 .open = extfrag_open,
1391 .read = seq_read,
1392 .llseek = seq_lseek,
1393 .release = seq_release,
1394 };
1395
1396 static int __init extfrag_debug_init(void)
1397 {
1398 struct dentry *extfrag_debug_root;
1399
1400 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1401 if (!extfrag_debug_root)
1402 return -ENOMEM;
1403
1404 if (!debugfs_create_file("unusable_index", 0444,
1405 extfrag_debug_root, NULL, &unusable_file_ops))
1406 goto fail;
1407
1408 if (!debugfs_create_file("extfrag_index", 0444,
1409 extfrag_debug_root, NULL, &extfrag_file_ops))
1410 goto fail;
1411
1412 return 0;
1413 fail:
1414 debugfs_remove_recursive(extfrag_debug_root);
1415 return -ENOMEM;
1416 }
1417
1418 module_init(extfrag_debug_init);
1419 #endif