tmpfs: don't undo fallocate past its last page
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
26
27 static void sum_vm_events(unsigned long *ret)
28 {
29 int cpu;
30 int i;
31
32 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33
34 for_each_online_cpu(cpu) {
35 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36
37 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 ret[i] += this->event[i];
39 }
40 }
41
42 /*
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
46 */
47 void all_vm_events(unsigned long *ret)
48 {
49 get_online_cpus();
50 sum_vm_events(ret);
51 put_online_cpus();
52 }
53 EXPORT_SYMBOL_GPL(all_vm_events);
54
55 /*
56 * Fold the foreign cpu events into our own.
57 *
58 * This is adding to the events on one processor
59 * but keeps the global counts constant.
60 */
61 void vm_events_fold_cpu(int cpu)
62 {
63 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
64 int i;
65
66 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
67 count_vm_events(i, fold_state->event[i]);
68 fold_state->event[i] = 0;
69 }
70 }
71
72 #endif /* CONFIG_VM_EVENT_COUNTERS */
73
74 /*
75 * Manage combined zone based / global counters
76 *
77 * vm_stat contains the global counters
78 */
79 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
80 EXPORT_SYMBOL(vm_stat);
81
82 #ifdef CONFIG_SMP
83
84 int calculate_pressure_threshold(struct zone *zone)
85 {
86 int threshold;
87 int watermark_distance;
88
89 /*
90 * As vmstats are not up to date, there is drift between the estimated
91 * and real values. For high thresholds and a high number of CPUs, it
92 * is possible for the min watermark to be breached while the estimated
93 * value looks fine. The pressure threshold is a reduced value such
94 * that even the maximum amount of drift will not accidentally breach
95 * the min watermark
96 */
97 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
98 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
99
100 /*
101 * Maximum threshold is 125
102 */
103 threshold = min(125, threshold);
104
105 return threshold;
106 }
107
108 int calculate_normal_threshold(struct zone *zone)
109 {
110 int threshold;
111 int mem; /* memory in 128 MB units */
112
113 /*
114 * The threshold scales with the number of processors and the amount
115 * of memory per zone. More memory means that we can defer updates for
116 * longer, more processors could lead to more contention.
117 * fls() is used to have a cheap way of logarithmic scaling.
118 *
119 * Some sample thresholds:
120 *
121 * Threshold Processors (fls) Zonesize fls(mem+1)
122 * ------------------------------------------------------------------
123 * 8 1 1 0.9-1 GB 4
124 * 16 2 2 0.9-1 GB 4
125 * 20 2 2 1-2 GB 5
126 * 24 2 2 2-4 GB 6
127 * 28 2 2 4-8 GB 7
128 * 32 2 2 8-16 GB 8
129 * 4 2 2 <128M 1
130 * 30 4 3 2-4 GB 5
131 * 48 4 3 8-16 GB 8
132 * 32 8 4 1-2 GB 4
133 * 32 8 4 0.9-1GB 4
134 * 10 16 5 <128M 1
135 * 40 16 5 900M 4
136 * 70 64 7 2-4 GB 5
137 * 84 64 7 4-8 GB 6
138 * 108 512 9 4-8 GB 6
139 * 125 1024 10 8-16 GB 8
140 * 125 1024 10 16-32 GB 9
141 */
142
143 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
144
145 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
146
147 /*
148 * Maximum threshold is 125
149 */
150 threshold = min(125, threshold);
151
152 return threshold;
153 }
154
155 /*
156 * Refresh the thresholds for each zone.
157 */
158 void refresh_zone_stat_thresholds(void)
159 {
160 struct zone *zone;
161 int cpu;
162 int threshold;
163
164 for_each_populated_zone(zone) {
165 unsigned long max_drift, tolerate_drift;
166
167 threshold = calculate_normal_threshold(zone);
168
169 for_each_online_cpu(cpu)
170 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
171 = threshold;
172
173 /*
174 * Only set percpu_drift_mark if there is a danger that
175 * NR_FREE_PAGES reports the low watermark is ok when in fact
176 * the min watermark could be breached by an allocation
177 */
178 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
179 max_drift = num_online_cpus() * threshold;
180 if (max_drift > tolerate_drift)
181 zone->percpu_drift_mark = high_wmark_pages(zone) +
182 max_drift;
183 }
184 }
185
186 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
187 int (*calculate_pressure)(struct zone *))
188 {
189 struct zone *zone;
190 int cpu;
191 int threshold;
192 int i;
193
194 for (i = 0; i < pgdat->nr_zones; i++) {
195 zone = &pgdat->node_zones[i];
196 if (!zone->percpu_drift_mark)
197 continue;
198
199 threshold = (*calculate_pressure)(zone);
200 for_each_possible_cpu(cpu)
201 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
202 = threshold;
203 }
204 }
205
206 /*
207 * For use when we know that interrupts are disabled.
208 */
209 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
210 int delta)
211 {
212 struct per_cpu_pageset __percpu *pcp = zone->pageset;
213 s8 __percpu *p = pcp->vm_stat_diff + item;
214 long x;
215 long t;
216
217 x = delta + __this_cpu_read(*p);
218
219 t = __this_cpu_read(pcp->stat_threshold);
220
221 if (unlikely(x > t || x < -t)) {
222 zone_page_state_add(x, zone, item);
223 x = 0;
224 }
225 __this_cpu_write(*p, x);
226 }
227 EXPORT_SYMBOL(__mod_zone_page_state);
228
229 /*
230 * Optimized increment and decrement functions.
231 *
232 * These are only for a single page and therefore can take a struct page *
233 * argument instead of struct zone *. This allows the inclusion of the code
234 * generated for page_zone(page) into the optimized functions.
235 *
236 * No overflow check is necessary and therefore the differential can be
237 * incremented or decremented in place which may allow the compilers to
238 * generate better code.
239 * The increment or decrement is known and therefore one boundary check can
240 * be omitted.
241 *
242 * NOTE: These functions are very performance sensitive. Change only
243 * with care.
244 *
245 * Some processors have inc/dec instructions that are atomic vs an interrupt.
246 * However, the code must first determine the differential location in a zone
247 * based on the processor number and then inc/dec the counter. There is no
248 * guarantee without disabling preemption that the processor will not change
249 * in between and therefore the atomicity vs. interrupt cannot be exploited
250 * in a useful way here.
251 */
252 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
253 {
254 struct per_cpu_pageset __percpu *pcp = zone->pageset;
255 s8 __percpu *p = pcp->vm_stat_diff + item;
256 s8 v, t;
257
258 v = __this_cpu_inc_return(*p);
259 t = __this_cpu_read(pcp->stat_threshold);
260 if (unlikely(v > t)) {
261 s8 overstep = t >> 1;
262
263 zone_page_state_add(v + overstep, zone, item);
264 __this_cpu_write(*p, -overstep);
265 }
266 }
267
268 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
269 {
270 __inc_zone_state(page_zone(page), item);
271 }
272 EXPORT_SYMBOL(__inc_zone_page_state);
273
274 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
275 {
276 struct per_cpu_pageset __percpu *pcp = zone->pageset;
277 s8 __percpu *p = pcp->vm_stat_diff + item;
278 s8 v, t;
279
280 v = __this_cpu_dec_return(*p);
281 t = __this_cpu_read(pcp->stat_threshold);
282 if (unlikely(v < - t)) {
283 s8 overstep = t >> 1;
284
285 zone_page_state_add(v - overstep, zone, item);
286 __this_cpu_write(*p, overstep);
287 }
288 }
289
290 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
291 {
292 __dec_zone_state(page_zone(page), item);
293 }
294 EXPORT_SYMBOL(__dec_zone_page_state);
295
296 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
297 /*
298 * If we have cmpxchg_local support then we do not need to incur the overhead
299 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
300 *
301 * mod_state() modifies the zone counter state through atomic per cpu
302 * operations.
303 *
304 * Overstep mode specifies how overstep should handled:
305 * 0 No overstepping
306 * 1 Overstepping half of threshold
307 * -1 Overstepping minus half of threshold
308 */
309 static inline void mod_state(struct zone *zone,
310 enum zone_stat_item item, int delta, int overstep_mode)
311 {
312 struct per_cpu_pageset __percpu *pcp = zone->pageset;
313 s8 __percpu *p = pcp->vm_stat_diff + item;
314 long o, n, t, z;
315
316 do {
317 z = 0; /* overflow to zone counters */
318
319 /*
320 * The fetching of the stat_threshold is racy. We may apply
321 * a counter threshold to the wrong the cpu if we get
322 * rescheduled while executing here. However, the next
323 * counter update will apply the threshold again and
324 * therefore bring the counter under the threshold again.
325 *
326 * Most of the time the thresholds are the same anyways
327 * for all cpus in a zone.
328 */
329 t = this_cpu_read(pcp->stat_threshold);
330
331 o = this_cpu_read(*p);
332 n = delta + o;
333
334 if (n > t || n < -t) {
335 int os = overstep_mode * (t >> 1) ;
336
337 /* Overflow must be added to zone counters */
338 z = n + os;
339 n = -os;
340 }
341 } while (this_cpu_cmpxchg(*p, o, n) != o);
342
343 if (z)
344 zone_page_state_add(z, zone, item);
345 }
346
347 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
348 int delta)
349 {
350 mod_state(zone, item, delta, 0);
351 }
352 EXPORT_SYMBOL(mod_zone_page_state);
353
354 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
355 {
356 mod_state(zone, item, 1, 1);
357 }
358
359 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
360 {
361 mod_state(page_zone(page), item, 1, 1);
362 }
363 EXPORT_SYMBOL(inc_zone_page_state);
364
365 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
366 {
367 mod_state(page_zone(page), item, -1, -1);
368 }
369 EXPORT_SYMBOL(dec_zone_page_state);
370 #else
371 /*
372 * Use interrupt disable to serialize counter updates
373 */
374 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
375 int delta)
376 {
377 unsigned long flags;
378
379 local_irq_save(flags);
380 __mod_zone_page_state(zone, item, delta);
381 local_irq_restore(flags);
382 }
383 EXPORT_SYMBOL(mod_zone_page_state);
384
385 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
386 {
387 unsigned long flags;
388
389 local_irq_save(flags);
390 __inc_zone_state(zone, item);
391 local_irq_restore(flags);
392 }
393
394 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
395 {
396 unsigned long flags;
397 struct zone *zone;
398
399 zone = page_zone(page);
400 local_irq_save(flags);
401 __inc_zone_state(zone, item);
402 local_irq_restore(flags);
403 }
404 EXPORT_SYMBOL(inc_zone_page_state);
405
406 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408 unsigned long flags;
409
410 local_irq_save(flags);
411 __dec_zone_page_state(page, item);
412 local_irq_restore(flags);
413 }
414 EXPORT_SYMBOL(dec_zone_page_state);
415 #endif
416
417 /*
418 * Update the zone counters for one cpu.
419 *
420 * The cpu specified must be either the current cpu or a processor that
421 * is not online. If it is the current cpu then the execution thread must
422 * be pinned to the current cpu.
423 *
424 * Note that refresh_cpu_vm_stats strives to only access
425 * node local memory. The per cpu pagesets on remote zones are placed
426 * in the memory local to the processor using that pageset. So the
427 * loop over all zones will access a series of cachelines local to
428 * the processor.
429 *
430 * The call to zone_page_state_add updates the cachelines with the
431 * statistics in the remote zone struct as well as the global cachelines
432 * with the global counters. These could cause remote node cache line
433 * bouncing and will have to be only done when necessary.
434 */
435 void refresh_cpu_vm_stats(int cpu)
436 {
437 struct zone *zone;
438 int i;
439 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
440
441 for_each_populated_zone(zone) {
442 struct per_cpu_pageset *p;
443
444 p = per_cpu_ptr(zone->pageset, cpu);
445
446 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
447 if (p->vm_stat_diff[i]) {
448 unsigned long flags;
449 int v;
450
451 local_irq_save(flags);
452 v = p->vm_stat_diff[i];
453 p->vm_stat_diff[i] = 0;
454 local_irq_restore(flags);
455 atomic_long_add(v, &zone->vm_stat[i]);
456 global_diff[i] += v;
457 #ifdef CONFIG_NUMA
458 /* 3 seconds idle till flush */
459 p->expire = 3;
460 #endif
461 }
462 cond_resched();
463 #ifdef CONFIG_NUMA
464 /*
465 * Deal with draining the remote pageset of this
466 * processor
467 *
468 * Check if there are pages remaining in this pageset
469 * if not then there is nothing to expire.
470 */
471 if (!p->expire || !p->pcp.count)
472 continue;
473
474 /*
475 * We never drain zones local to this processor.
476 */
477 if (zone_to_nid(zone) == numa_node_id()) {
478 p->expire = 0;
479 continue;
480 }
481
482 p->expire--;
483 if (p->expire)
484 continue;
485
486 if (p->pcp.count)
487 drain_zone_pages(zone, &p->pcp);
488 #endif
489 }
490
491 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
492 if (global_diff[i])
493 atomic_long_add(global_diff[i], &vm_stat[i]);
494 }
495
496 /*
497 * this is only called if !populated_zone(zone), which implies no other users of
498 * pset->vm_stat_diff[] exsist.
499 */
500 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
501 {
502 int i;
503
504 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
505 if (pset->vm_stat_diff[i]) {
506 int v = pset->vm_stat_diff[i];
507 pset->vm_stat_diff[i] = 0;
508 atomic_long_add(v, &zone->vm_stat[i]);
509 atomic_long_add(v, &vm_stat[i]);
510 }
511 }
512 #endif
513
514 #ifdef CONFIG_NUMA
515 /*
516 * zonelist = the list of zones passed to the allocator
517 * z = the zone from which the allocation occurred.
518 *
519 * Must be called with interrupts disabled.
520 *
521 * When __GFP_OTHER_NODE is set assume the node of the preferred
522 * zone is the local node. This is useful for daemons who allocate
523 * memory on behalf of other processes.
524 */
525 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
526 {
527 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
528 __inc_zone_state(z, NUMA_HIT);
529 } else {
530 __inc_zone_state(z, NUMA_MISS);
531 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
532 }
533 if (z->node == ((flags & __GFP_OTHER_NODE) ?
534 preferred_zone->node : numa_node_id()))
535 __inc_zone_state(z, NUMA_LOCAL);
536 else
537 __inc_zone_state(z, NUMA_OTHER);
538 }
539 #endif
540
541 #ifdef CONFIG_COMPACTION
542
543 struct contig_page_info {
544 unsigned long free_pages;
545 unsigned long free_blocks_total;
546 unsigned long free_blocks_suitable;
547 };
548
549 /*
550 * Calculate the number of free pages in a zone, how many contiguous
551 * pages are free and how many are large enough to satisfy an allocation of
552 * the target size. Note that this function makes no attempt to estimate
553 * how many suitable free blocks there *might* be if MOVABLE pages were
554 * migrated. Calculating that is possible, but expensive and can be
555 * figured out from userspace
556 */
557 static void fill_contig_page_info(struct zone *zone,
558 unsigned int suitable_order,
559 struct contig_page_info *info)
560 {
561 unsigned int order;
562
563 info->free_pages = 0;
564 info->free_blocks_total = 0;
565 info->free_blocks_suitable = 0;
566
567 for (order = 0; order < MAX_ORDER; order++) {
568 unsigned long blocks;
569
570 /* Count number of free blocks */
571 blocks = zone->free_area[order].nr_free;
572 info->free_blocks_total += blocks;
573
574 /* Count free base pages */
575 info->free_pages += blocks << order;
576
577 /* Count the suitable free blocks */
578 if (order >= suitable_order)
579 info->free_blocks_suitable += blocks <<
580 (order - suitable_order);
581 }
582 }
583
584 /*
585 * A fragmentation index only makes sense if an allocation of a requested
586 * size would fail. If that is true, the fragmentation index indicates
587 * whether external fragmentation or a lack of memory was the problem.
588 * The value can be used to determine if page reclaim or compaction
589 * should be used
590 */
591 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
592 {
593 unsigned long requested = 1UL << order;
594
595 if (!info->free_blocks_total)
596 return 0;
597
598 /* Fragmentation index only makes sense when a request would fail */
599 if (info->free_blocks_suitable)
600 return -1000;
601
602 /*
603 * Index is between 0 and 1 so return within 3 decimal places
604 *
605 * 0 => allocation would fail due to lack of memory
606 * 1 => allocation would fail due to fragmentation
607 */
608 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
609 }
610
611 /* Same as __fragmentation index but allocs contig_page_info on stack */
612 int fragmentation_index(struct zone *zone, unsigned int order)
613 {
614 struct contig_page_info info;
615
616 fill_contig_page_info(zone, order, &info);
617 return __fragmentation_index(order, &info);
618 }
619 #endif
620
621 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
622 #include <linux/proc_fs.h>
623 #include <linux/seq_file.h>
624
625 static char * const migratetype_names[MIGRATE_TYPES] = {
626 "Unmovable",
627 "Reclaimable",
628 "Movable",
629 "Reserve",
630 #ifdef CONFIG_CMA
631 "CMA",
632 #endif
633 #ifdef CONFIG_MEMORY_ISOLATION
634 "Isolate",
635 #endif
636 };
637
638 static void *frag_start(struct seq_file *m, loff_t *pos)
639 {
640 pg_data_t *pgdat;
641 loff_t node = *pos;
642 for (pgdat = first_online_pgdat();
643 pgdat && node;
644 pgdat = next_online_pgdat(pgdat))
645 --node;
646
647 return pgdat;
648 }
649
650 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
651 {
652 pg_data_t *pgdat = (pg_data_t *)arg;
653
654 (*pos)++;
655 return next_online_pgdat(pgdat);
656 }
657
658 static void frag_stop(struct seq_file *m, void *arg)
659 {
660 }
661
662 /* Walk all the zones in a node and print using a callback */
663 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
664 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
665 {
666 struct zone *zone;
667 struct zone *node_zones = pgdat->node_zones;
668 unsigned long flags;
669
670 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
671 if (!populated_zone(zone))
672 continue;
673
674 spin_lock_irqsave(&zone->lock, flags);
675 print(m, pgdat, zone);
676 spin_unlock_irqrestore(&zone->lock, flags);
677 }
678 }
679 #endif
680
681 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
682 #ifdef CONFIG_ZONE_DMA
683 #define TEXT_FOR_DMA(xx) xx "_dma",
684 #else
685 #define TEXT_FOR_DMA(xx)
686 #endif
687
688 #ifdef CONFIG_ZONE_DMA32
689 #define TEXT_FOR_DMA32(xx) xx "_dma32",
690 #else
691 #define TEXT_FOR_DMA32(xx)
692 #endif
693
694 #ifdef CONFIG_HIGHMEM
695 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
696 #else
697 #define TEXT_FOR_HIGHMEM(xx)
698 #endif
699
700 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
701 TEXT_FOR_HIGHMEM(xx) xx "_movable",
702
703 const char * const vmstat_text[] = {
704 /* Zoned VM counters */
705 "nr_free_pages",
706 "nr_inactive_anon",
707 "nr_active_anon",
708 "nr_inactive_file",
709 "nr_active_file",
710 "nr_unevictable",
711 "nr_mlock",
712 "nr_anon_pages",
713 "nr_mapped",
714 "nr_file_pages",
715 "nr_dirty",
716 "nr_writeback",
717 "nr_slab_reclaimable",
718 "nr_slab_unreclaimable",
719 "nr_page_table_pages",
720 "nr_kernel_stack",
721 "nr_unstable",
722 "nr_bounce",
723 "nr_vmscan_write",
724 "nr_vmscan_immediate_reclaim",
725 "nr_writeback_temp",
726 "nr_isolated_anon",
727 "nr_isolated_file",
728 "nr_shmem",
729 "nr_dirtied",
730 "nr_written",
731
732 #ifdef CONFIG_NUMA
733 "numa_hit",
734 "numa_miss",
735 "numa_foreign",
736 "numa_interleave",
737 "numa_local",
738 "numa_other",
739 #endif
740 "nr_anon_transparent_hugepages",
741 "nr_free_cma",
742 "nr_dirty_threshold",
743 "nr_dirty_background_threshold",
744
745 #ifdef CONFIG_VM_EVENT_COUNTERS
746 "pgpgin",
747 "pgpgout",
748 "pswpin",
749 "pswpout",
750
751 TEXTS_FOR_ZONES("pgalloc")
752
753 "pgfree",
754 "pgactivate",
755 "pgdeactivate",
756
757 "pgfault",
758 "pgmajfault",
759
760 TEXTS_FOR_ZONES("pgrefill")
761 TEXTS_FOR_ZONES("pgsteal_kswapd")
762 TEXTS_FOR_ZONES("pgsteal_direct")
763 TEXTS_FOR_ZONES("pgscan_kswapd")
764 TEXTS_FOR_ZONES("pgscan_direct")
765 "pgscan_direct_throttle",
766
767 #ifdef CONFIG_NUMA
768 "zone_reclaim_failed",
769 #endif
770 "pginodesteal",
771 "slabs_scanned",
772 "kswapd_inodesteal",
773 "kswapd_low_wmark_hit_quickly",
774 "kswapd_high_wmark_hit_quickly",
775 "pageoutrun",
776 "allocstall",
777
778 "pgrotated",
779
780 #ifdef CONFIG_NUMA_BALANCING
781 "numa_pte_updates",
782 "numa_huge_pte_updates",
783 "numa_hint_faults",
784 "numa_hint_faults_local",
785 "numa_pages_migrated",
786 #endif
787 #ifdef CONFIG_MIGRATION
788 "pgmigrate_success",
789 "pgmigrate_fail",
790 #endif
791 #ifdef CONFIG_COMPACTION
792 "compact_migrate_scanned",
793 "compact_free_scanned",
794 "compact_isolated",
795 "compact_stall",
796 "compact_fail",
797 "compact_success",
798 #endif
799
800 #ifdef CONFIG_HUGETLB_PAGE
801 "htlb_buddy_alloc_success",
802 "htlb_buddy_alloc_fail",
803 #endif
804 "unevictable_pgs_culled",
805 "unevictable_pgs_scanned",
806 "unevictable_pgs_rescued",
807 "unevictable_pgs_mlocked",
808 "unevictable_pgs_munlocked",
809 "unevictable_pgs_cleared",
810 "unevictable_pgs_stranded",
811
812 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
813 "thp_fault_alloc",
814 "thp_fault_fallback",
815 "thp_collapse_alloc",
816 "thp_collapse_alloc_failed",
817 "thp_split",
818 "thp_zero_page_alloc",
819 "thp_zero_page_alloc_failed",
820 #endif
821
822 #endif /* CONFIG_VM_EVENTS_COUNTERS */
823 };
824 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
825
826
827 #ifdef CONFIG_PROC_FS
828 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
829 struct zone *zone)
830 {
831 int order;
832
833 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
834 for (order = 0; order < MAX_ORDER; ++order)
835 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
836 seq_putc(m, '\n');
837 }
838
839 /*
840 * This walks the free areas for each zone.
841 */
842 static int frag_show(struct seq_file *m, void *arg)
843 {
844 pg_data_t *pgdat = (pg_data_t *)arg;
845 walk_zones_in_node(m, pgdat, frag_show_print);
846 return 0;
847 }
848
849 static void pagetypeinfo_showfree_print(struct seq_file *m,
850 pg_data_t *pgdat, struct zone *zone)
851 {
852 int order, mtype;
853
854 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
855 seq_printf(m, "Node %4d, zone %8s, type %12s ",
856 pgdat->node_id,
857 zone->name,
858 migratetype_names[mtype]);
859 for (order = 0; order < MAX_ORDER; ++order) {
860 unsigned long freecount = 0;
861 struct free_area *area;
862 struct list_head *curr;
863
864 area = &(zone->free_area[order]);
865
866 list_for_each(curr, &area->free_list[mtype])
867 freecount++;
868 seq_printf(m, "%6lu ", freecount);
869 }
870 seq_putc(m, '\n');
871 }
872 }
873
874 /* Print out the free pages at each order for each migatetype */
875 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
876 {
877 int order;
878 pg_data_t *pgdat = (pg_data_t *)arg;
879
880 /* Print header */
881 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
882 for (order = 0; order < MAX_ORDER; ++order)
883 seq_printf(m, "%6d ", order);
884 seq_putc(m, '\n');
885
886 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
887
888 return 0;
889 }
890
891 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
892 pg_data_t *pgdat, struct zone *zone)
893 {
894 int mtype;
895 unsigned long pfn;
896 unsigned long start_pfn = zone->zone_start_pfn;
897 unsigned long end_pfn = zone_end_pfn(zone);
898 unsigned long count[MIGRATE_TYPES] = { 0, };
899
900 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
901 struct page *page;
902
903 if (!pfn_valid(pfn))
904 continue;
905
906 page = pfn_to_page(pfn);
907
908 /* Watch for unexpected holes punched in the memmap */
909 if (!memmap_valid_within(pfn, page, zone))
910 continue;
911
912 mtype = get_pageblock_migratetype(page);
913
914 if (mtype < MIGRATE_TYPES)
915 count[mtype]++;
916 }
917
918 /* Print counts */
919 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
920 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
921 seq_printf(m, "%12lu ", count[mtype]);
922 seq_putc(m, '\n');
923 }
924
925 /* Print out the free pages at each order for each migratetype */
926 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
927 {
928 int mtype;
929 pg_data_t *pgdat = (pg_data_t *)arg;
930
931 seq_printf(m, "\n%-23s", "Number of blocks type ");
932 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
933 seq_printf(m, "%12s ", migratetype_names[mtype]);
934 seq_putc(m, '\n');
935 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
936
937 return 0;
938 }
939
940 /*
941 * This prints out statistics in relation to grouping pages by mobility.
942 * It is expensive to collect so do not constantly read the file.
943 */
944 static int pagetypeinfo_show(struct seq_file *m, void *arg)
945 {
946 pg_data_t *pgdat = (pg_data_t *)arg;
947
948 /* check memoryless node */
949 if (!node_state(pgdat->node_id, N_MEMORY))
950 return 0;
951
952 seq_printf(m, "Page block order: %d\n", pageblock_order);
953 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
954 seq_putc(m, '\n');
955 pagetypeinfo_showfree(m, pgdat);
956 pagetypeinfo_showblockcount(m, pgdat);
957
958 return 0;
959 }
960
961 static const struct seq_operations fragmentation_op = {
962 .start = frag_start,
963 .next = frag_next,
964 .stop = frag_stop,
965 .show = frag_show,
966 };
967
968 static int fragmentation_open(struct inode *inode, struct file *file)
969 {
970 return seq_open(file, &fragmentation_op);
971 }
972
973 static const struct file_operations fragmentation_file_operations = {
974 .open = fragmentation_open,
975 .read = seq_read,
976 .llseek = seq_lseek,
977 .release = seq_release,
978 };
979
980 static const struct seq_operations pagetypeinfo_op = {
981 .start = frag_start,
982 .next = frag_next,
983 .stop = frag_stop,
984 .show = pagetypeinfo_show,
985 };
986
987 static int pagetypeinfo_open(struct inode *inode, struct file *file)
988 {
989 return seq_open(file, &pagetypeinfo_op);
990 }
991
992 static const struct file_operations pagetypeinfo_file_ops = {
993 .open = pagetypeinfo_open,
994 .read = seq_read,
995 .llseek = seq_lseek,
996 .release = seq_release,
997 };
998
999 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1000 struct zone *zone)
1001 {
1002 int i;
1003 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1004 seq_printf(m,
1005 "\n pages free %lu"
1006 "\n min %lu"
1007 "\n low %lu"
1008 "\n high %lu"
1009 "\n scanned %lu"
1010 "\n spanned %lu"
1011 "\n present %lu"
1012 "\n managed %lu",
1013 zone_page_state(zone, NR_FREE_PAGES),
1014 min_wmark_pages(zone),
1015 low_wmark_pages(zone),
1016 high_wmark_pages(zone),
1017 zone->pages_scanned,
1018 zone->spanned_pages,
1019 zone->present_pages,
1020 zone->managed_pages);
1021
1022 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1023 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1024 zone_page_state(zone, i));
1025
1026 seq_printf(m,
1027 "\n protection: (%lu",
1028 zone->lowmem_reserve[0]);
1029 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1030 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1031 seq_printf(m,
1032 ")"
1033 "\n pagesets");
1034 for_each_online_cpu(i) {
1035 struct per_cpu_pageset *pageset;
1036
1037 pageset = per_cpu_ptr(zone->pageset, i);
1038 seq_printf(m,
1039 "\n cpu: %i"
1040 "\n count: %i"
1041 "\n high: %i"
1042 "\n batch: %i",
1043 i,
1044 pageset->pcp.count,
1045 pageset->pcp.high,
1046 pageset->pcp.batch);
1047 #ifdef CONFIG_SMP
1048 seq_printf(m, "\n vm stats threshold: %d",
1049 pageset->stat_threshold);
1050 #endif
1051 }
1052 seq_printf(m,
1053 "\n all_unreclaimable: %u"
1054 "\n start_pfn: %lu"
1055 "\n inactive_ratio: %u",
1056 zone->all_unreclaimable,
1057 zone->zone_start_pfn,
1058 zone->inactive_ratio);
1059 seq_putc(m, '\n');
1060 }
1061
1062 /*
1063 * Output information about zones in @pgdat.
1064 */
1065 static int zoneinfo_show(struct seq_file *m, void *arg)
1066 {
1067 pg_data_t *pgdat = (pg_data_t *)arg;
1068 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1069 return 0;
1070 }
1071
1072 static const struct seq_operations zoneinfo_op = {
1073 .start = frag_start, /* iterate over all zones. The same as in
1074 * fragmentation. */
1075 .next = frag_next,
1076 .stop = frag_stop,
1077 .show = zoneinfo_show,
1078 };
1079
1080 static int zoneinfo_open(struct inode *inode, struct file *file)
1081 {
1082 return seq_open(file, &zoneinfo_op);
1083 }
1084
1085 static const struct file_operations proc_zoneinfo_file_operations = {
1086 .open = zoneinfo_open,
1087 .read = seq_read,
1088 .llseek = seq_lseek,
1089 .release = seq_release,
1090 };
1091
1092 enum writeback_stat_item {
1093 NR_DIRTY_THRESHOLD,
1094 NR_DIRTY_BG_THRESHOLD,
1095 NR_VM_WRITEBACK_STAT_ITEMS,
1096 };
1097
1098 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1099 {
1100 unsigned long *v;
1101 int i, stat_items_size;
1102
1103 if (*pos >= ARRAY_SIZE(vmstat_text))
1104 return NULL;
1105 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1106 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1107
1108 #ifdef CONFIG_VM_EVENT_COUNTERS
1109 stat_items_size += sizeof(struct vm_event_state);
1110 #endif
1111
1112 v = kmalloc(stat_items_size, GFP_KERNEL);
1113 m->private = v;
1114 if (!v)
1115 return ERR_PTR(-ENOMEM);
1116 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1117 v[i] = global_page_state(i);
1118 v += NR_VM_ZONE_STAT_ITEMS;
1119
1120 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1121 v + NR_DIRTY_THRESHOLD);
1122 v += NR_VM_WRITEBACK_STAT_ITEMS;
1123
1124 #ifdef CONFIG_VM_EVENT_COUNTERS
1125 all_vm_events(v);
1126 v[PGPGIN] /= 2; /* sectors -> kbytes */
1127 v[PGPGOUT] /= 2;
1128 #endif
1129 return (unsigned long *)m->private + *pos;
1130 }
1131
1132 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1133 {
1134 (*pos)++;
1135 if (*pos >= ARRAY_SIZE(vmstat_text))
1136 return NULL;
1137 return (unsigned long *)m->private + *pos;
1138 }
1139
1140 static int vmstat_show(struct seq_file *m, void *arg)
1141 {
1142 unsigned long *l = arg;
1143 unsigned long off = l - (unsigned long *)m->private;
1144
1145 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1146 return 0;
1147 }
1148
1149 static void vmstat_stop(struct seq_file *m, void *arg)
1150 {
1151 kfree(m->private);
1152 m->private = NULL;
1153 }
1154
1155 static const struct seq_operations vmstat_op = {
1156 .start = vmstat_start,
1157 .next = vmstat_next,
1158 .stop = vmstat_stop,
1159 .show = vmstat_show,
1160 };
1161
1162 static int vmstat_open(struct inode *inode, struct file *file)
1163 {
1164 return seq_open(file, &vmstat_op);
1165 }
1166
1167 static const struct file_operations proc_vmstat_file_operations = {
1168 .open = vmstat_open,
1169 .read = seq_read,
1170 .llseek = seq_lseek,
1171 .release = seq_release,
1172 };
1173 #endif /* CONFIG_PROC_FS */
1174
1175 #ifdef CONFIG_SMP
1176 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1177 int sysctl_stat_interval __read_mostly = HZ;
1178
1179 static void vmstat_update(struct work_struct *w)
1180 {
1181 refresh_cpu_vm_stats(smp_processor_id());
1182 schedule_delayed_work(&__get_cpu_var(vmstat_work),
1183 round_jiffies_relative(sysctl_stat_interval));
1184 }
1185
1186 static void __cpuinit start_cpu_timer(int cpu)
1187 {
1188 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1189
1190 INIT_DEFERRABLE_WORK(work, vmstat_update);
1191 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1192 }
1193
1194 /*
1195 * Use the cpu notifier to insure that the thresholds are recalculated
1196 * when necessary.
1197 */
1198 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1199 unsigned long action,
1200 void *hcpu)
1201 {
1202 long cpu = (long)hcpu;
1203
1204 switch (action) {
1205 case CPU_ONLINE:
1206 case CPU_ONLINE_FROZEN:
1207 refresh_zone_stat_thresholds();
1208 start_cpu_timer(cpu);
1209 node_set_state(cpu_to_node(cpu), N_CPU);
1210 break;
1211 case CPU_DOWN_PREPARE:
1212 case CPU_DOWN_PREPARE_FROZEN:
1213 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1214 per_cpu(vmstat_work, cpu).work.func = NULL;
1215 break;
1216 case CPU_DOWN_FAILED:
1217 case CPU_DOWN_FAILED_FROZEN:
1218 start_cpu_timer(cpu);
1219 break;
1220 case CPU_DEAD:
1221 case CPU_DEAD_FROZEN:
1222 refresh_zone_stat_thresholds();
1223 break;
1224 default:
1225 break;
1226 }
1227 return NOTIFY_OK;
1228 }
1229
1230 static struct notifier_block __cpuinitdata vmstat_notifier =
1231 { &vmstat_cpuup_callback, NULL, 0 };
1232 #endif
1233
1234 static int __init setup_vmstat(void)
1235 {
1236 #ifdef CONFIG_SMP
1237 int cpu;
1238
1239 register_cpu_notifier(&vmstat_notifier);
1240
1241 for_each_online_cpu(cpu)
1242 start_cpu_timer(cpu);
1243 #endif
1244 #ifdef CONFIG_PROC_FS
1245 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1246 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1247 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1248 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1249 #endif
1250 return 0;
1251 }
1252 module_init(setup_vmstat)
1253
1254 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1255 #include <linux/debugfs.h>
1256
1257
1258 /*
1259 * Return an index indicating how much of the available free memory is
1260 * unusable for an allocation of the requested size.
1261 */
1262 static int unusable_free_index(unsigned int order,
1263 struct contig_page_info *info)
1264 {
1265 /* No free memory is interpreted as all free memory is unusable */
1266 if (info->free_pages == 0)
1267 return 1000;
1268
1269 /*
1270 * Index should be a value between 0 and 1. Return a value to 3
1271 * decimal places.
1272 *
1273 * 0 => no fragmentation
1274 * 1 => high fragmentation
1275 */
1276 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1277
1278 }
1279
1280 static void unusable_show_print(struct seq_file *m,
1281 pg_data_t *pgdat, struct zone *zone)
1282 {
1283 unsigned int order;
1284 int index;
1285 struct contig_page_info info;
1286
1287 seq_printf(m, "Node %d, zone %8s ",
1288 pgdat->node_id,
1289 zone->name);
1290 for (order = 0; order < MAX_ORDER; ++order) {
1291 fill_contig_page_info(zone, order, &info);
1292 index = unusable_free_index(order, &info);
1293 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1294 }
1295
1296 seq_putc(m, '\n');
1297 }
1298
1299 /*
1300 * Display unusable free space index
1301 *
1302 * The unusable free space index measures how much of the available free
1303 * memory cannot be used to satisfy an allocation of a given size and is a
1304 * value between 0 and 1. The higher the value, the more of free memory is
1305 * unusable and by implication, the worse the external fragmentation is. This
1306 * can be expressed as a percentage by multiplying by 100.
1307 */
1308 static int unusable_show(struct seq_file *m, void *arg)
1309 {
1310 pg_data_t *pgdat = (pg_data_t *)arg;
1311
1312 /* check memoryless node */
1313 if (!node_state(pgdat->node_id, N_MEMORY))
1314 return 0;
1315
1316 walk_zones_in_node(m, pgdat, unusable_show_print);
1317
1318 return 0;
1319 }
1320
1321 static const struct seq_operations unusable_op = {
1322 .start = frag_start,
1323 .next = frag_next,
1324 .stop = frag_stop,
1325 .show = unusable_show,
1326 };
1327
1328 static int unusable_open(struct inode *inode, struct file *file)
1329 {
1330 return seq_open(file, &unusable_op);
1331 }
1332
1333 static const struct file_operations unusable_file_ops = {
1334 .open = unusable_open,
1335 .read = seq_read,
1336 .llseek = seq_lseek,
1337 .release = seq_release,
1338 };
1339
1340 static void extfrag_show_print(struct seq_file *m,
1341 pg_data_t *pgdat, struct zone *zone)
1342 {
1343 unsigned int order;
1344 int index;
1345
1346 /* Alloc on stack as interrupts are disabled for zone walk */
1347 struct contig_page_info info;
1348
1349 seq_printf(m, "Node %d, zone %8s ",
1350 pgdat->node_id,
1351 zone->name);
1352 for (order = 0; order < MAX_ORDER; ++order) {
1353 fill_contig_page_info(zone, order, &info);
1354 index = __fragmentation_index(order, &info);
1355 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1356 }
1357
1358 seq_putc(m, '\n');
1359 }
1360
1361 /*
1362 * Display fragmentation index for orders that allocations would fail for
1363 */
1364 static int extfrag_show(struct seq_file *m, void *arg)
1365 {
1366 pg_data_t *pgdat = (pg_data_t *)arg;
1367
1368 walk_zones_in_node(m, pgdat, extfrag_show_print);
1369
1370 return 0;
1371 }
1372
1373 static const struct seq_operations extfrag_op = {
1374 .start = frag_start,
1375 .next = frag_next,
1376 .stop = frag_stop,
1377 .show = extfrag_show,
1378 };
1379
1380 static int extfrag_open(struct inode *inode, struct file *file)
1381 {
1382 return seq_open(file, &extfrag_op);
1383 }
1384
1385 static const struct file_operations extfrag_file_ops = {
1386 .open = extfrag_open,
1387 .read = seq_read,
1388 .llseek = seq_lseek,
1389 .release = seq_release,
1390 };
1391
1392 static int __init extfrag_debug_init(void)
1393 {
1394 struct dentry *extfrag_debug_root;
1395
1396 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1397 if (!extfrag_debug_root)
1398 return -ENOMEM;
1399
1400 if (!debugfs_create_file("unusable_index", 0444,
1401 extfrag_debug_root, NULL, &unusable_file_ops))
1402 goto fail;
1403
1404 if (!debugfs_create_file("extfrag_index", 0444,
1405 extfrag_debug_root, NULL, &extfrag_file_ops))
1406 goto fail;
1407
1408 return 0;
1409 fail:
1410 debugfs_remove_recursive(extfrag_debug_root);
1411 return -ENOMEM;
1412 }
1413
1414 module_init(extfrag_debug_init);
1415 #endif