tmpfs: don't undo fallocate past its last page
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51 #include <linux/balloon_compaction.h>
52
53 #include "internal.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/vmscan.h>
57
58 struct scan_control {
59 /* Incremented by the number of inactive pages that were scanned */
60 unsigned long nr_scanned;
61
62 /* Number of pages freed so far during a call to shrink_zones() */
63 unsigned long nr_reclaimed;
64
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
68 unsigned long hibernation_mode;
69
70 /* This context's GFP mask */
71 gfp_t gfp_mask;
72
73 int may_writepage;
74
75 /* Can mapped pages be reclaimed? */
76 int may_unmap;
77
78 /* Can pages be swapped as part of reclaim? */
79 int may_swap;
80
81 int order;
82
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 /*
87 * The memory cgroup that hit its limit and as a result is the
88 * primary target of this reclaim invocation.
89 */
90 struct mem_cgroup *target_mem_cgroup;
91
92 /*
93 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 * are scanned.
95 */
96 nodemask_t *nodemask;
97 };
98
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
109 } \
110 } while (0)
111 #else
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
123 } \
124 } while (0)
125 #else
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128
129 /*
130 * From 0 .. 100. Higher means more swappy.
131 */
132 int vm_swappiness = 60;
133 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
134
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
137
138 #ifdef CONFIG_MEMCG
139 static bool global_reclaim(struct scan_control *sc)
140 {
141 return !sc->target_mem_cgroup;
142 }
143 #else
144 static bool global_reclaim(struct scan_control *sc)
145 {
146 return true;
147 }
148 #endif
149
150 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
151 {
152 if (!mem_cgroup_disabled())
153 return mem_cgroup_get_lru_size(lruvec, lru);
154
155 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
156 }
157
158 /*
159 * Add a shrinker callback to be called from the vm
160 */
161 void register_shrinker(struct shrinker *shrinker)
162 {
163 atomic_long_set(&shrinker->nr_in_batch, 0);
164 down_write(&shrinker_rwsem);
165 list_add_tail(&shrinker->list, &shrinker_list);
166 up_write(&shrinker_rwsem);
167 }
168 EXPORT_SYMBOL(register_shrinker);
169
170 /*
171 * Remove one
172 */
173 void unregister_shrinker(struct shrinker *shrinker)
174 {
175 down_write(&shrinker_rwsem);
176 list_del(&shrinker->list);
177 up_write(&shrinker_rwsem);
178 }
179 EXPORT_SYMBOL(unregister_shrinker);
180
181 static inline int do_shrinker_shrink(struct shrinker *shrinker,
182 struct shrink_control *sc,
183 unsigned long nr_to_scan)
184 {
185 sc->nr_to_scan = nr_to_scan;
186 return (*shrinker->shrink)(shrinker, sc);
187 }
188
189 #define SHRINK_BATCH 128
190 /*
191 * Call the shrink functions to age shrinkable caches
192 *
193 * Here we assume it costs one seek to replace a lru page and that it also
194 * takes a seek to recreate a cache object. With this in mind we age equal
195 * percentages of the lru and ageable caches. This should balance the seeks
196 * generated by these structures.
197 *
198 * If the vm encountered mapped pages on the LRU it increase the pressure on
199 * slab to avoid swapping.
200 *
201 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
202 *
203 * `lru_pages' represents the number of on-LRU pages in all the zones which
204 * are eligible for the caller's allocation attempt. It is used for balancing
205 * slab reclaim versus page reclaim.
206 *
207 * Returns the number of slab objects which we shrunk.
208 */
209 unsigned long shrink_slab(struct shrink_control *shrink,
210 unsigned long nr_pages_scanned,
211 unsigned long lru_pages)
212 {
213 struct shrinker *shrinker;
214 unsigned long ret = 0;
215
216 if (nr_pages_scanned == 0)
217 nr_pages_scanned = SWAP_CLUSTER_MAX;
218
219 if (!down_read_trylock(&shrinker_rwsem)) {
220 /* Assume we'll be able to shrink next time */
221 ret = 1;
222 goto out;
223 }
224
225 list_for_each_entry(shrinker, &shrinker_list, list) {
226 unsigned long long delta;
227 long total_scan;
228 long max_pass;
229 int shrink_ret = 0;
230 long nr;
231 long new_nr;
232 long batch_size = shrinker->batch ? shrinker->batch
233 : SHRINK_BATCH;
234
235 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
236 if (max_pass <= 0)
237 continue;
238
239 /*
240 * copy the current shrinker scan count into a local variable
241 * and zero it so that other concurrent shrinker invocations
242 * don't also do this scanning work.
243 */
244 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
245
246 total_scan = nr;
247 delta = (4 * nr_pages_scanned) / shrinker->seeks;
248 delta *= max_pass;
249 do_div(delta, lru_pages + 1);
250 total_scan += delta;
251 if (total_scan < 0) {
252 printk(KERN_ERR "shrink_slab: %pF negative objects to "
253 "delete nr=%ld\n",
254 shrinker->shrink, total_scan);
255 total_scan = max_pass;
256 }
257
258 /*
259 * We need to avoid excessive windup on filesystem shrinkers
260 * due to large numbers of GFP_NOFS allocations causing the
261 * shrinkers to return -1 all the time. This results in a large
262 * nr being built up so when a shrink that can do some work
263 * comes along it empties the entire cache due to nr >>>
264 * max_pass. This is bad for sustaining a working set in
265 * memory.
266 *
267 * Hence only allow the shrinker to scan the entire cache when
268 * a large delta change is calculated directly.
269 */
270 if (delta < max_pass / 4)
271 total_scan = min(total_scan, max_pass / 2);
272
273 /*
274 * Avoid risking looping forever due to too large nr value:
275 * never try to free more than twice the estimate number of
276 * freeable entries.
277 */
278 if (total_scan > max_pass * 2)
279 total_scan = max_pass * 2;
280
281 trace_mm_shrink_slab_start(shrinker, shrink, nr,
282 nr_pages_scanned, lru_pages,
283 max_pass, delta, total_scan);
284
285 while (total_scan >= batch_size) {
286 int nr_before;
287
288 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
289 shrink_ret = do_shrinker_shrink(shrinker, shrink,
290 batch_size);
291 if (shrink_ret == -1)
292 break;
293 if (shrink_ret < nr_before)
294 ret += nr_before - shrink_ret;
295 count_vm_events(SLABS_SCANNED, batch_size);
296 total_scan -= batch_size;
297
298 cond_resched();
299 }
300
301 /*
302 * move the unused scan count back into the shrinker in a
303 * manner that handles concurrent updates. If we exhausted the
304 * scan, there is no need to do an update.
305 */
306 if (total_scan > 0)
307 new_nr = atomic_long_add_return(total_scan,
308 &shrinker->nr_in_batch);
309 else
310 new_nr = atomic_long_read(&shrinker->nr_in_batch);
311
312 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
313 }
314 up_read(&shrinker_rwsem);
315 out:
316 cond_resched();
317 return ret;
318 }
319
320 static inline int is_page_cache_freeable(struct page *page)
321 {
322 /*
323 * A freeable page cache page is referenced only by the caller
324 * that isolated the page, the page cache radix tree and
325 * optional buffer heads at page->private.
326 */
327 return page_count(page) - page_has_private(page) == 2;
328 }
329
330 static int may_write_to_queue(struct backing_dev_info *bdi,
331 struct scan_control *sc)
332 {
333 if (current->flags & PF_SWAPWRITE)
334 return 1;
335 if (!bdi_write_congested(bdi))
336 return 1;
337 if (bdi == current->backing_dev_info)
338 return 1;
339 return 0;
340 }
341
342 /*
343 * We detected a synchronous write error writing a page out. Probably
344 * -ENOSPC. We need to propagate that into the address_space for a subsequent
345 * fsync(), msync() or close().
346 *
347 * The tricky part is that after writepage we cannot touch the mapping: nothing
348 * prevents it from being freed up. But we have a ref on the page and once
349 * that page is locked, the mapping is pinned.
350 *
351 * We're allowed to run sleeping lock_page() here because we know the caller has
352 * __GFP_FS.
353 */
354 static void handle_write_error(struct address_space *mapping,
355 struct page *page, int error)
356 {
357 lock_page(page);
358 if (page_mapping(page) == mapping)
359 mapping_set_error(mapping, error);
360 unlock_page(page);
361 }
362
363 /* possible outcome of pageout() */
364 typedef enum {
365 /* failed to write page out, page is locked */
366 PAGE_KEEP,
367 /* move page to the active list, page is locked */
368 PAGE_ACTIVATE,
369 /* page has been sent to the disk successfully, page is unlocked */
370 PAGE_SUCCESS,
371 /* page is clean and locked */
372 PAGE_CLEAN,
373 } pageout_t;
374
375 /*
376 * pageout is called by shrink_page_list() for each dirty page.
377 * Calls ->writepage().
378 */
379 static pageout_t pageout(struct page *page, struct address_space *mapping,
380 struct scan_control *sc)
381 {
382 /*
383 * If the page is dirty, only perform writeback if that write
384 * will be non-blocking. To prevent this allocation from being
385 * stalled by pagecache activity. But note that there may be
386 * stalls if we need to run get_block(). We could test
387 * PagePrivate for that.
388 *
389 * If this process is currently in __generic_file_aio_write() against
390 * this page's queue, we can perform writeback even if that
391 * will block.
392 *
393 * If the page is swapcache, write it back even if that would
394 * block, for some throttling. This happens by accident, because
395 * swap_backing_dev_info is bust: it doesn't reflect the
396 * congestion state of the swapdevs. Easy to fix, if needed.
397 */
398 if (!is_page_cache_freeable(page))
399 return PAGE_KEEP;
400 if (!mapping) {
401 /*
402 * Some data journaling orphaned pages can have
403 * page->mapping == NULL while being dirty with clean buffers.
404 */
405 if (page_has_private(page)) {
406 if (try_to_free_buffers(page)) {
407 ClearPageDirty(page);
408 printk("%s: orphaned page\n", __func__);
409 return PAGE_CLEAN;
410 }
411 }
412 return PAGE_KEEP;
413 }
414 if (mapping->a_ops->writepage == NULL)
415 return PAGE_ACTIVATE;
416 if (!may_write_to_queue(mapping->backing_dev_info, sc))
417 return PAGE_KEEP;
418
419 if (clear_page_dirty_for_io(page)) {
420 int res;
421 struct writeback_control wbc = {
422 .sync_mode = WB_SYNC_NONE,
423 .nr_to_write = SWAP_CLUSTER_MAX,
424 .range_start = 0,
425 .range_end = LLONG_MAX,
426 .for_reclaim = 1,
427 };
428
429 SetPageReclaim(page);
430 res = mapping->a_ops->writepage(page, &wbc);
431 if (res < 0)
432 handle_write_error(mapping, page, res);
433 if (res == AOP_WRITEPAGE_ACTIVATE) {
434 ClearPageReclaim(page);
435 return PAGE_ACTIVATE;
436 }
437
438 if (!PageWriteback(page)) {
439 /* synchronous write or broken a_ops? */
440 ClearPageReclaim(page);
441 }
442 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
443 inc_zone_page_state(page, NR_VMSCAN_WRITE);
444 return PAGE_SUCCESS;
445 }
446
447 return PAGE_CLEAN;
448 }
449
450 /*
451 * Same as remove_mapping, but if the page is removed from the mapping, it
452 * gets returned with a refcount of 0.
453 */
454 static int __remove_mapping(struct address_space *mapping, struct page *page)
455 {
456 BUG_ON(!PageLocked(page));
457 BUG_ON(mapping != page_mapping(page));
458
459 spin_lock_irq(&mapping->tree_lock);
460 /*
461 * The non racy check for a busy page.
462 *
463 * Must be careful with the order of the tests. When someone has
464 * a ref to the page, it may be possible that they dirty it then
465 * drop the reference. So if PageDirty is tested before page_count
466 * here, then the following race may occur:
467 *
468 * get_user_pages(&page);
469 * [user mapping goes away]
470 * write_to(page);
471 * !PageDirty(page) [good]
472 * SetPageDirty(page);
473 * put_page(page);
474 * !page_count(page) [good, discard it]
475 *
476 * [oops, our write_to data is lost]
477 *
478 * Reversing the order of the tests ensures such a situation cannot
479 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
480 * load is not satisfied before that of page->_count.
481 *
482 * Note that if SetPageDirty is always performed via set_page_dirty,
483 * and thus under tree_lock, then this ordering is not required.
484 */
485 if (!page_freeze_refs(page, 2))
486 goto cannot_free;
487 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
488 if (unlikely(PageDirty(page))) {
489 page_unfreeze_refs(page, 2);
490 goto cannot_free;
491 }
492
493 if (PageSwapCache(page)) {
494 swp_entry_t swap = { .val = page_private(page) };
495 __delete_from_swap_cache(page);
496 spin_unlock_irq(&mapping->tree_lock);
497 swapcache_free(swap, page);
498 } else {
499 void (*freepage)(struct page *);
500
501 freepage = mapping->a_ops->freepage;
502
503 __delete_from_page_cache(page);
504 spin_unlock_irq(&mapping->tree_lock);
505 mem_cgroup_uncharge_cache_page(page);
506
507 if (freepage != NULL)
508 freepage(page);
509 }
510
511 return 1;
512
513 cannot_free:
514 spin_unlock_irq(&mapping->tree_lock);
515 return 0;
516 }
517
518 /*
519 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
520 * someone else has a ref on the page, abort and return 0. If it was
521 * successfully detached, return 1. Assumes the caller has a single ref on
522 * this page.
523 */
524 int remove_mapping(struct address_space *mapping, struct page *page)
525 {
526 if (__remove_mapping(mapping, page)) {
527 /*
528 * Unfreezing the refcount with 1 rather than 2 effectively
529 * drops the pagecache ref for us without requiring another
530 * atomic operation.
531 */
532 page_unfreeze_refs(page, 1);
533 return 1;
534 }
535 return 0;
536 }
537
538 /**
539 * putback_lru_page - put previously isolated page onto appropriate LRU list
540 * @page: page to be put back to appropriate lru list
541 *
542 * Add previously isolated @page to appropriate LRU list.
543 * Page may still be unevictable for other reasons.
544 *
545 * lru_lock must not be held, interrupts must be enabled.
546 */
547 void putback_lru_page(struct page *page)
548 {
549 int lru;
550 int active = !!TestClearPageActive(page);
551 int was_unevictable = PageUnevictable(page);
552
553 VM_BUG_ON(PageLRU(page));
554
555 redo:
556 ClearPageUnevictable(page);
557
558 if (page_evictable(page)) {
559 /*
560 * For evictable pages, we can use the cache.
561 * In event of a race, worst case is we end up with an
562 * unevictable page on [in]active list.
563 * We know how to handle that.
564 */
565 lru = active + page_lru_base_type(page);
566 lru_cache_add_lru(page, lru);
567 } else {
568 /*
569 * Put unevictable pages directly on zone's unevictable
570 * list.
571 */
572 lru = LRU_UNEVICTABLE;
573 add_page_to_unevictable_list(page);
574 /*
575 * When racing with an mlock or AS_UNEVICTABLE clearing
576 * (page is unlocked) make sure that if the other thread
577 * does not observe our setting of PG_lru and fails
578 * isolation/check_move_unevictable_pages,
579 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
580 * the page back to the evictable list.
581 *
582 * The other side is TestClearPageMlocked() or shmem_lock().
583 */
584 smp_mb();
585 }
586
587 /*
588 * page's status can change while we move it among lru. If an evictable
589 * page is on unevictable list, it never be freed. To avoid that,
590 * check after we added it to the list, again.
591 */
592 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
593 if (!isolate_lru_page(page)) {
594 put_page(page);
595 goto redo;
596 }
597 /* This means someone else dropped this page from LRU
598 * So, it will be freed or putback to LRU again. There is
599 * nothing to do here.
600 */
601 }
602
603 if (was_unevictable && lru != LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGRESCUED);
605 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
606 count_vm_event(UNEVICTABLE_PGCULLED);
607
608 put_page(page); /* drop ref from isolate */
609 }
610
611 enum page_references {
612 PAGEREF_RECLAIM,
613 PAGEREF_RECLAIM_CLEAN,
614 PAGEREF_KEEP,
615 PAGEREF_ACTIVATE,
616 };
617
618 static enum page_references page_check_references(struct page *page,
619 struct scan_control *sc)
620 {
621 int referenced_ptes, referenced_page;
622 unsigned long vm_flags;
623
624 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
625 &vm_flags);
626 referenced_page = TestClearPageReferenced(page);
627
628 /*
629 * Mlock lost the isolation race with us. Let try_to_unmap()
630 * move the page to the unevictable list.
631 */
632 if (vm_flags & VM_LOCKED)
633 return PAGEREF_RECLAIM;
634
635 if (referenced_ptes) {
636 if (PageSwapBacked(page))
637 return PAGEREF_ACTIVATE;
638 /*
639 * All mapped pages start out with page table
640 * references from the instantiating fault, so we need
641 * to look twice if a mapped file page is used more
642 * than once.
643 *
644 * Mark it and spare it for another trip around the
645 * inactive list. Another page table reference will
646 * lead to its activation.
647 *
648 * Note: the mark is set for activated pages as well
649 * so that recently deactivated but used pages are
650 * quickly recovered.
651 */
652 SetPageReferenced(page);
653
654 if (referenced_page || referenced_ptes > 1)
655 return PAGEREF_ACTIVATE;
656
657 /*
658 * Activate file-backed executable pages after first usage.
659 */
660 if (vm_flags & VM_EXEC)
661 return PAGEREF_ACTIVATE;
662
663 return PAGEREF_KEEP;
664 }
665
666 /* Reclaim if clean, defer dirty pages to writeback */
667 if (referenced_page && !PageSwapBacked(page))
668 return PAGEREF_RECLAIM_CLEAN;
669
670 return PAGEREF_RECLAIM;
671 }
672
673 /*
674 * shrink_page_list() returns the number of reclaimed pages
675 */
676 static unsigned long shrink_page_list(struct list_head *page_list,
677 struct zone *zone,
678 struct scan_control *sc,
679 enum ttu_flags ttu_flags,
680 unsigned long *ret_nr_dirty,
681 unsigned long *ret_nr_writeback,
682 bool force_reclaim)
683 {
684 LIST_HEAD(ret_pages);
685 LIST_HEAD(free_pages);
686 int pgactivate = 0;
687 unsigned long nr_dirty = 0;
688 unsigned long nr_congested = 0;
689 unsigned long nr_reclaimed = 0;
690 unsigned long nr_writeback = 0;
691
692 cond_resched();
693
694 mem_cgroup_uncharge_start();
695 while (!list_empty(page_list)) {
696 struct address_space *mapping;
697 struct page *page;
698 int may_enter_fs;
699 enum page_references references = PAGEREF_RECLAIM_CLEAN;
700
701 cond_resched();
702
703 page = lru_to_page(page_list);
704 list_del(&page->lru);
705
706 if (!trylock_page(page))
707 goto keep;
708
709 VM_BUG_ON(PageActive(page));
710 VM_BUG_ON(page_zone(page) != zone);
711
712 sc->nr_scanned++;
713
714 if (unlikely(!page_evictable(page)))
715 goto cull_mlocked;
716
717 if (!sc->may_unmap && page_mapped(page))
718 goto keep_locked;
719
720 /* Double the slab pressure for mapped and swapcache pages */
721 if (page_mapped(page) || PageSwapCache(page))
722 sc->nr_scanned++;
723
724 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
725 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
726
727 if (PageWriteback(page)) {
728 /*
729 * memcg doesn't have any dirty pages throttling so we
730 * could easily OOM just because too many pages are in
731 * writeback and there is nothing else to reclaim.
732 *
733 * Require may_enter_fs to wait on writeback, because
734 * fs may not have submitted IO yet. And a loop driver
735 * thread might enter reclaim, and deadlock if it waits
736 * on a page for which it is needed to do the write
737 * (loop masks off __GFP_IO|__GFP_FS for this reason);
738 * but more thought would probably show more reasons.
739 */
740 if (global_reclaim(sc) ||
741 !PageReclaim(page) || !may_enter_fs) {
742 /*
743 * This is slightly racy - end_page_writeback()
744 * might have just cleared PageReclaim, then
745 * setting PageReclaim here end up interpreted
746 * as PageReadahead - but that does not matter
747 * enough to care. What we do want is for this
748 * page to have PageReclaim set next time memcg
749 * reclaim reaches the tests above, so it will
750 * then wait_on_page_writeback() to avoid OOM;
751 * and it's also appropriate in global reclaim.
752 */
753 SetPageReclaim(page);
754 nr_writeback++;
755 goto keep_locked;
756 }
757 wait_on_page_writeback(page);
758 }
759
760 if (!force_reclaim)
761 references = page_check_references(page, sc);
762
763 switch (references) {
764 case PAGEREF_ACTIVATE:
765 goto activate_locked;
766 case PAGEREF_KEEP:
767 goto keep_locked;
768 case PAGEREF_RECLAIM:
769 case PAGEREF_RECLAIM_CLEAN:
770 ; /* try to reclaim the page below */
771 }
772
773 /*
774 * Anonymous process memory has backing store?
775 * Try to allocate it some swap space here.
776 */
777 if (PageAnon(page) && !PageSwapCache(page)) {
778 if (!(sc->gfp_mask & __GFP_IO))
779 goto keep_locked;
780 if (!add_to_swap(page, page_list))
781 goto activate_locked;
782 may_enter_fs = 1;
783 }
784
785 mapping = page_mapping(page);
786
787 /*
788 * The page is mapped into the page tables of one or more
789 * processes. Try to unmap it here.
790 */
791 if (page_mapped(page) && mapping) {
792 switch (try_to_unmap(page, ttu_flags)) {
793 case SWAP_FAIL:
794 goto activate_locked;
795 case SWAP_AGAIN:
796 goto keep_locked;
797 case SWAP_MLOCK:
798 goto cull_mlocked;
799 case SWAP_SUCCESS:
800 ; /* try to free the page below */
801 }
802 }
803
804 if (PageDirty(page)) {
805 nr_dirty++;
806
807 /*
808 * Only kswapd can writeback filesystem pages to
809 * avoid risk of stack overflow but do not writeback
810 * unless under significant pressure.
811 */
812 if (page_is_file_cache(page) &&
813 (!current_is_kswapd() ||
814 sc->priority >= DEF_PRIORITY - 2)) {
815 /*
816 * Immediately reclaim when written back.
817 * Similar in principal to deactivate_page()
818 * except we already have the page isolated
819 * and know it's dirty
820 */
821 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
822 SetPageReclaim(page);
823
824 goto keep_locked;
825 }
826
827 if (references == PAGEREF_RECLAIM_CLEAN)
828 goto keep_locked;
829 if (!may_enter_fs)
830 goto keep_locked;
831 if (!sc->may_writepage)
832 goto keep_locked;
833
834 /* Page is dirty, try to write it out here */
835 switch (pageout(page, mapping, sc)) {
836 case PAGE_KEEP:
837 nr_congested++;
838 goto keep_locked;
839 case PAGE_ACTIVATE:
840 goto activate_locked;
841 case PAGE_SUCCESS:
842 if (PageWriteback(page))
843 goto keep;
844 if (PageDirty(page))
845 goto keep;
846
847 /*
848 * A synchronous write - probably a ramdisk. Go
849 * ahead and try to reclaim the page.
850 */
851 if (!trylock_page(page))
852 goto keep;
853 if (PageDirty(page) || PageWriteback(page))
854 goto keep_locked;
855 mapping = page_mapping(page);
856 case PAGE_CLEAN:
857 ; /* try to free the page below */
858 }
859 }
860
861 /*
862 * If the page has buffers, try to free the buffer mappings
863 * associated with this page. If we succeed we try to free
864 * the page as well.
865 *
866 * We do this even if the page is PageDirty().
867 * try_to_release_page() does not perform I/O, but it is
868 * possible for a page to have PageDirty set, but it is actually
869 * clean (all its buffers are clean). This happens if the
870 * buffers were written out directly, with submit_bh(). ext3
871 * will do this, as well as the blockdev mapping.
872 * try_to_release_page() will discover that cleanness and will
873 * drop the buffers and mark the page clean - it can be freed.
874 *
875 * Rarely, pages can have buffers and no ->mapping. These are
876 * the pages which were not successfully invalidated in
877 * truncate_complete_page(). We try to drop those buffers here
878 * and if that worked, and the page is no longer mapped into
879 * process address space (page_count == 1) it can be freed.
880 * Otherwise, leave the page on the LRU so it is swappable.
881 */
882 if (page_has_private(page)) {
883 if (!try_to_release_page(page, sc->gfp_mask))
884 goto activate_locked;
885 if (!mapping && page_count(page) == 1) {
886 unlock_page(page);
887 if (put_page_testzero(page))
888 goto free_it;
889 else {
890 /*
891 * rare race with speculative reference.
892 * the speculative reference will free
893 * this page shortly, so we may
894 * increment nr_reclaimed here (and
895 * leave it off the LRU).
896 */
897 nr_reclaimed++;
898 continue;
899 }
900 }
901 }
902
903 if (!mapping || !__remove_mapping(mapping, page))
904 goto keep_locked;
905
906 /*
907 * At this point, we have no other references and there is
908 * no way to pick any more up (removed from LRU, removed
909 * from pagecache). Can use non-atomic bitops now (and
910 * we obviously don't have to worry about waking up a process
911 * waiting on the page lock, because there are no references.
912 */
913 __clear_page_locked(page);
914 free_it:
915 nr_reclaimed++;
916
917 /*
918 * Is there need to periodically free_page_list? It would
919 * appear not as the counts should be low
920 */
921 list_add(&page->lru, &free_pages);
922 continue;
923
924 cull_mlocked:
925 if (PageSwapCache(page))
926 try_to_free_swap(page);
927 unlock_page(page);
928 list_add(&page->lru, &ret_pages);
929 continue;
930
931 activate_locked:
932 /* Not a candidate for swapping, so reclaim swap space. */
933 if (PageSwapCache(page) && vm_swap_full())
934 try_to_free_swap(page);
935 VM_BUG_ON(PageActive(page));
936 SetPageActive(page);
937 pgactivate++;
938 keep_locked:
939 unlock_page(page);
940 keep:
941 list_add(&page->lru, &ret_pages);
942 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
943 }
944
945 /*
946 * Tag a zone as congested if all the dirty pages encountered were
947 * backed by a congested BDI. In this case, reclaimers should just
948 * back off and wait for congestion to clear because further reclaim
949 * will encounter the same problem
950 */
951 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
952 zone_set_flag(zone, ZONE_CONGESTED);
953
954 free_hot_cold_page_list(&free_pages, 1);
955
956 list_splice(&ret_pages, page_list);
957 count_vm_events(PGACTIVATE, pgactivate);
958 mem_cgroup_uncharge_end();
959 *ret_nr_dirty += nr_dirty;
960 *ret_nr_writeback += nr_writeback;
961 return nr_reclaimed;
962 }
963
964 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
965 struct list_head *page_list)
966 {
967 struct scan_control sc = {
968 .gfp_mask = GFP_KERNEL,
969 .priority = DEF_PRIORITY,
970 .may_unmap = 1,
971 };
972 unsigned long ret, dummy1, dummy2;
973 struct page *page, *next;
974 LIST_HEAD(clean_pages);
975
976 list_for_each_entry_safe(page, next, page_list, lru) {
977 if (page_is_file_cache(page) && !PageDirty(page) &&
978 !isolated_balloon_page(page)) {
979 ClearPageActive(page);
980 list_move(&page->lru, &clean_pages);
981 }
982 }
983
984 ret = shrink_page_list(&clean_pages, zone, &sc,
985 TTU_UNMAP|TTU_IGNORE_ACCESS,
986 &dummy1, &dummy2, true);
987 list_splice(&clean_pages, page_list);
988 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
989 return ret;
990 }
991
992 /*
993 * Attempt to remove the specified page from its LRU. Only take this page
994 * if it is of the appropriate PageActive status. Pages which are being
995 * freed elsewhere are also ignored.
996 *
997 * page: page to consider
998 * mode: one of the LRU isolation modes defined above
999 *
1000 * returns 0 on success, -ve errno on failure.
1001 */
1002 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1003 {
1004 int ret = -EINVAL;
1005
1006 /* Only take pages on the LRU. */
1007 if (!PageLRU(page))
1008 return ret;
1009
1010 /* Compaction should not handle unevictable pages but CMA can do so */
1011 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1012 return ret;
1013
1014 ret = -EBUSY;
1015
1016 /*
1017 * To minimise LRU disruption, the caller can indicate that it only
1018 * wants to isolate pages it will be able to operate on without
1019 * blocking - clean pages for the most part.
1020 *
1021 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1022 * is used by reclaim when it is cannot write to backing storage
1023 *
1024 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1025 * that it is possible to migrate without blocking
1026 */
1027 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1028 /* All the caller can do on PageWriteback is block */
1029 if (PageWriteback(page))
1030 return ret;
1031
1032 if (PageDirty(page)) {
1033 struct address_space *mapping;
1034
1035 /* ISOLATE_CLEAN means only clean pages */
1036 if (mode & ISOLATE_CLEAN)
1037 return ret;
1038
1039 /*
1040 * Only pages without mappings or that have a
1041 * ->migratepage callback are possible to migrate
1042 * without blocking
1043 */
1044 mapping = page_mapping(page);
1045 if (mapping && !mapping->a_ops->migratepage)
1046 return ret;
1047 }
1048 }
1049
1050 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1051 return ret;
1052
1053 if (likely(get_page_unless_zero(page))) {
1054 /*
1055 * Be careful not to clear PageLRU until after we're
1056 * sure the page is not being freed elsewhere -- the
1057 * page release code relies on it.
1058 */
1059 ClearPageLRU(page);
1060 ret = 0;
1061 }
1062
1063 return ret;
1064 }
1065
1066 /*
1067 * zone->lru_lock is heavily contended. Some of the functions that
1068 * shrink the lists perform better by taking out a batch of pages
1069 * and working on them outside the LRU lock.
1070 *
1071 * For pagecache intensive workloads, this function is the hottest
1072 * spot in the kernel (apart from copy_*_user functions).
1073 *
1074 * Appropriate locks must be held before calling this function.
1075 *
1076 * @nr_to_scan: The number of pages to look through on the list.
1077 * @lruvec: The LRU vector to pull pages from.
1078 * @dst: The temp list to put pages on to.
1079 * @nr_scanned: The number of pages that were scanned.
1080 * @sc: The scan_control struct for this reclaim session
1081 * @mode: One of the LRU isolation modes
1082 * @lru: LRU list id for isolating
1083 *
1084 * returns how many pages were moved onto *@dst.
1085 */
1086 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1087 struct lruvec *lruvec, struct list_head *dst,
1088 unsigned long *nr_scanned, struct scan_control *sc,
1089 isolate_mode_t mode, enum lru_list lru)
1090 {
1091 struct list_head *src = &lruvec->lists[lru];
1092 unsigned long nr_taken = 0;
1093 unsigned long scan;
1094
1095 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1096 struct page *page;
1097 int nr_pages;
1098
1099 page = lru_to_page(src);
1100 prefetchw_prev_lru_page(page, src, flags);
1101
1102 VM_BUG_ON(!PageLRU(page));
1103
1104 switch (__isolate_lru_page(page, mode)) {
1105 case 0:
1106 nr_pages = hpage_nr_pages(page);
1107 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1108 list_move(&page->lru, dst);
1109 nr_taken += nr_pages;
1110 break;
1111
1112 case -EBUSY:
1113 /* else it is being freed elsewhere */
1114 list_move(&page->lru, src);
1115 continue;
1116
1117 default:
1118 BUG();
1119 }
1120 }
1121
1122 *nr_scanned = scan;
1123 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1124 nr_taken, mode, is_file_lru(lru));
1125 return nr_taken;
1126 }
1127
1128 /**
1129 * isolate_lru_page - tries to isolate a page from its LRU list
1130 * @page: page to isolate from its LRU list
1131 *
1132 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1133 * vmstat statistic corresponding to whatever LRU list the page was on.
1134 *
1135 * Returns 0 if the page was removed from an LRU list.
1136 * Returns -EBUSY if the page was not on an LRU list.
1137 *
1138 * The returned page will have PageLRU() cleared. If it was found on
1139 * the active list, it will have PageActive set. If it was found on
1140 * the unevictable list, it will have the PageUnevictable bit set. That flag
1141 * may need to be cleared by the caller before letting the page go.
1142 *
1143 * The vmstat statistic corresponding to the list on which the page was
1144 * found will be decremented.
1145 *
1146 * Restrictions:
1147 * (1) Must be called with an elevated refcount on the page. This is a
1148 * fundamentnal difference from isolate_lru_pages (which is called
1149 * without a stable reference).
1150 * (2) the lru_lock must not be held.
1151 * (3) interrupts must be enabled.
1152 */
1153 int isolate_lru_page(struct page *page)
1154 {
1155 int ret = -EBUSY;
1156
1157 VM_BUG_ON(!page_count(page));
1158
1159 if (PageLRU(page)) {
1160 struct zone *zone = page_zone(page);
1161 struct lruvec *lruvec;
1162
1163 spin_lock_irq(&zone->lru_lock);
1164 lruvec = mem_cgroup_page_lruvec(page, zone);
1165 if (PageLRU(page)) {
1166 int lru = page_lru(page);
1167 get_page(page);
1168 ClearPageLRU(page);
1169 del_page_from_lru_list(page, lruvec, lru);
1170 ret = 0;
1171 }
1172 spin_unlock_irq(&zone->lru_lock);
1173 }
1174 return ret;
1175 }
1176
1177 /*
1178 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1179 * then get resheduled. When there are massive number of tasks doing page
1180 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1181 * the LRU list will go small and be scanned faster than necessary, leading to
1182 * unnecessary swapping, thrashing and OOM.
1183 */
1184 static int too_many_isolated(struct zone *zone, int file,
1185 struct scan_control *sc)
1186 {
1187 unsigned long inactive, isolated;
1188
1189 if (current_is_kswapd())
1190 return 0;
1191
1192 if (!global_reclaim(sc))
1193 return 0;
1194
1195 if (file) {
1196 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1197 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1198 } else {
1199 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1200 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1201 }
1202
1203 /*
1204 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1205 * won't get blocked by normal direct-reclaimers, forming a circular
1206 * deadlock.
1207 */
1208 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1209 inactive >>= 3;
1210
1211 return isolated > inactive;
1212 }
1213
1214 static noinline_for_stack void
1215 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1216 {
1217 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1218 struct zone *zone = lruvec_zone(lruvec);
1219 LIST_HEAD(pages_to_free);
1220
1221 /*
1222 * Put back any unfreeable pages.
1223 */
1224 while (!list_empty(page_list)) {
1225 struct page *page = lru_to_page(page_list);
1226 int lru;
1227
1228 VM_BUG_ON(PageLRU(page));
1229 list_del(&page->lru);
1230 if (unlikely(!page_evictable(page))) {
1231 spin_unlock_irq(&zone->lru_lock);
1232 putback_lru_page(page);
1233 spin_lock_irq(&zone->lru_lock);
1234 continue;
1235 }
1236
1237 lruvec = mem_cgroup_page_lruvec(page, zone);
1238
1239 SetPageLRU(page);
1240 lru = page_lru(page);
1241 add_page_to_lru_list(page, lruvec, lru);
1242
1243 if (is_active_lru(lru)) {
1244 int file = is_file_lru(lru);
1245 int numpages = hpage_nr_pages(page);
1246 reclaim_stat->recent_rotated[file] += numpages;
1247 }
1248 if (put_page_testzero(page)) {
1249 __ClearPageLRU(page);
1250 __ClearPageActive(page);
1251 del_page_from_lru_list(page, lruvec, lru);
1252
1253 if (unlikely(PageCompound(page))) {
1254 spin_unlock_irq(&zone->lru_lock);
1255 (*get_compound_page_dtor(page))(page);
1256 spin_lock_irq(&zone->lru_lock);
1257 } else
1258 list_add(&page->lru, &pages_to_free);
1259 }
1260 }
1261
1262 /*
1263 * To save our caller's stack, now use input list for pages to free.
1264 */
1265 list_splice(&pages_to_free, page_list);
1266 }
1267
1268 /*
1269 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1270 * of reclaimed pages
1271 */
1272 static noinline_for_stack unsigned long
1273 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1274 struct scan_control *sc, enum lru_list lru)
1275 {
1276 LIST_HEAD(page_list);
1277 unsigned long nr_scanned;
1278 unsigned long nr_reclaimed = 0;
1279 unsigned long nr_taken;
1280 unsigned long nr_dirty = 0;
1281 unsigned long nr_writeback = 0;
1282 isolate_mode_t isolate_mode = 0;
1283 int file = is_file_lru(lru);
1284 struct zone *zone = lruvec_zone(lruvec);
1285 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1286
1287 while (unlikely(too_many_isolated(zone, file, sc))) {
1288 congestion_wait(BLK_RW_ASYNC, HZ/10);
1289
1290 /* We are about to die and free our memory. Return now. */
1291 if (fatal_signal_pending(current))
1292 return SWAP_CLUSTER_MAX;
1293 }
1294
1295 lru_add_drain();
1296
1297 if (!sc->may_unmap)
1298 isolate_mode |= ISOLATE_UNMAPPED;
1299 if (!sc->may_writepage)
1300 isolate_mode |= ISOLATE_CLEAN;
1301
1302 spin_lock_irq(&zone->lru_lock);
1303
1304 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1305 &nr_scanned, sc, isolate_mode, lru);
1306
1307 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1308 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1309
1310 if (global_reclaim(sc)) {
1311 zone->pages_scanned += nr_scanned;
1312 if (current_is_kswapd())
1313 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1314 else
1315 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1316 }
1317 spin_unlock_irq(&zone->lru_lock);
1318
1319 if (nr_taken == 0)
1320 return 0;
1321
1322 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1323 &nr_dirty, &nr_writeback, false);
1324
1325 spin_lock_irq(&zone->lru_lock);
1326
1327 reclaim_stat->recent_scanned[file] += nr_taken;
1328
1329 if (global_reclaim(sc)) {
1330 if (current_is_kswapd())
1331 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1332 nr_reclaimed);
1333 else
1334 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1335 nr_reclaimed);
1336 }
1337
1338 putback_inactive_pages(lruvec, &page_list);
1339
1340 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1341
1342 spin_unlock_irq(&zone->lru_lock);
1343
1344 free_hot_cold_page_list(&page_list, 1);
1345
1346 /*
1347 * If reclaim is isolating dirty pages under writeback, it implies
1348 * that the long-lived page allocation rate is exceeding the page
1349 * laundering rate. Either the global limits are not being effective
1350 * at throttling processes due to the page distribution throughout
1351 * zones or there is heavy usage of a slow backing device. The
1352 * only option is to throttle from reclaim context which is not ideal
1353 * as there is no guarantee the dirtying process is throttled in the
1354 * same way balance_dirty_pages() manages.
1355 *
1356 * This scales the number of dirty pages that must be under writeback
1357 * before throttling depending on priority. It is a simple backoff
1358 * function that has the most effect in the range DEF_PRIORITY to
1359 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1360 * in trouble and reclaim is considered to be in trouble.
1361 *
1362 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1363 * DEF_PRIORITY-1 50% must be PageWriteback
1364 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1365 * ...
1366 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1367 * isolated page is PageWriteback
1368 */
1369 if (nr_writeback && nr_writeback >=
1370 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1371 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1372
1373 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1374 zone_idx(zone),
1375 nr_scanned, nr_reclaimed,
1376 sc->priority,
1377 trace_shrink_flags(file));
1378 return nr_reclaimed;
1379 }
1380
1381 /*
1382 * This moves pages from the active list to the inactive list.
1383 *
1384 * We move them the other way if the page is referenced by one or more
1385 * processes, from rmap.
1386 *
1387 * If the pages are mostly unmapped, the processing is fast and it is
1388 * appropriate to hold zone->lru_lock across the whole operation. But if
1389 * the pages are mapped, the processing is slow (page_referenced()) so we
1390 * should drop zone->lru_lock around each page. It's impossible to balance
1391 * this, so instead we remove the pages from the LRU while processing them.
1392 * It is safe to rely on PG_active against the non-LRU pages in here because
1393 * nobody will play with that bit on a non-LRU page.
1394 *
1395 * The downside is that we have to touch page->_count against each page.
1396 * But we had to alter page->flags anyway.
1397 */
1398
1399 static void move_active_pages_to_lru(struct lruvec *lruvec,
1400 struct list_head *list,
1401 struct list_head *pages_to_free,
1402 enum lru_list lru)
1403 {
1404 struct zone *zone = lruvec_zone(lruvec);
1405 unsigned long pgmoved = 0;
1406 struct page *page;
1407 int nr_pages;
1408
1409 while (!list_empty(list)) {
1410 page = lru_to_page(list);
1411 lruvec = mem_cgroup_page_lruvec(page, zone);
1412
1413 VM_BUG_ON(PageLRU(page));
1414 SetPageLRU(page);
1415
1416 nr_pages = hpage_nr_pages(page);
1417 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1418 list_move(&page->lru, &lruvec->lists[lru]);
1419 pgmoved += nr_pages;
1420
1421 if (put_page_testzero(page)) {
1422 __ClearPageLRU(page);
1423 __ClearPageActive(page);
1424 del_page_from_lru_list(page, lruvec, lru);
1425
1426 if (unlikely(PageCompound(page))) {
1427 spin_unlock_irq(&zone->lru_lock);
1428 (*get_compound_page_dtor(page))(page);
1429 spin_lock_irq(&zone->lru_lock);
1430 } else
1431 list_add(&page->lru, pages_to_free);
1432 }
1433 }
1434 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1435 if (!is_active_lru(lru))
1436 __count_vm_events(PGDEACTIVATE, pgmoved);
1437 }
1438
1439 static void shrink_active_list(unsigned long nr_to_scan,
1440 struct lruvec *lruvec,
1441 struct scan_control *sc,
1442 enum lru_list lru)
1443 {
1444 unsigned long nr_taken;
1445 unsigned long nr_scanned;
1446 unsigned long vm_flags;
1447 LIST_HEAD(l_hold); /* The pages which were snipped off */
1448 LIST_HEAD(l_active);
1449 LIST_HEAD(l_inactive);
1450 struct page *page;
1451 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1452 unsigned long nr_rotated = 0;
1453 isolate_mode_t isolate_mode = 0;
1454 int file = is_file_lru(lru);
1455 struct zone *zone = lruvec_zone(lruvec);
1456
1457 lru_add_drain();
1458
1459 if (!sc->may_unmap)
1460 isolate_mode |= ISOLATE_UNMAPPED;
1461 if (!sc->may_writepage)
1462 isolate_mode |= ISOLATE_CLEAN;
1463
1464 spin_lock_irq(&zone->lru_lock);
1465
1466 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1467 &nr_scanned, sc, isolate_mode, lru);
1468 if (global_reclaim(sc))
1469 zone->pages_scanned += nr_scanned;
1470
1471 reclaim_stat->recent_scanned[file] += nr_taken;
1472
1473 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1474 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1475 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1476 spin_unlock_irq(&zone->lru_lock);
1477
1478 while (!list_empty(&l_hold)) {
1479 cond_resched();
1480 page = lru_to_page(&l_hold);
1481 list_del(&page->lru);
1482
1483 if (unlikely(!page_evictable(page))) {
1484 putback_lru_page(page);
1485 continue;
1486 }
1487
1488 if (unlikely(buffer_heads_over_limit)) {
1489 if (page_has_private(page) && trylock_page(page)) {
1490 if (page_has_private(page))
1491 try_to_release_page(page, 0);
1492 unlock_page(page);
1493 }
1494 }
1495
1496 if (page_referenced(page, 0, sc->target_mem_cgroup,
1497 &vm_flags)) {
1498 nr_rotated += hpage_nr_pages(page);
1499 /*
1500 * Identify referenced, file-backed active pages and
1501 * give them one more trip around the active list. So
1502 * that executable code get better chances to stay in
1503 * memory under moderate memory pressure. Anon pages
1504 * are not likely to be evicted by use-once streaming
1505 * IO, plus JVM can create lots of anon VM_EXEC pages,
1506 * so we ignore them here.
1507 */
1508 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1509 list_add(&page->lru, &l_active);
1510 continue;
1511 }
1512 }
1513
1514 ClearPageActive(page); /* we are de-activating */
1515 list_add(&page->lru, &l_inactive);
1516 }
1517
1518 /*
1519 * Move pages back to the lru list.
1520 */
1521 spin_lock_irq(&zone->lru_lock);
1522 /*
1523 * Count referenced pages from currently used mappings as rotated,
1524 * even though only some of them are actually re-activated. This
1525 * helps balance scan pressure between file and anonymous pages in
1526 * get_scan_ratio.
1527 */
1528 reclaim_stat->recent_rotated[file] += nr_rotated;
1529
1530 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1531 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1532 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1533 spin_unlock_irq(&zone->lru_lock);
1534
1535 free_hot_cold_page_list(&l_hold, 1);
1536 }
1537
1538 #ifdef CONFIG_SWAP
1539 static int inactive_anon_is_low_global(struct zone *zone)
1540 {
1541 unsigned long active, inactive;
1542
1543 active = zone_page_state(zone, NR_ACTIVE_ANON);
1544 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1545
1546 if (inactive * zone->inactive_ratio < active)
1547 return 1;
1548
1549 return 0;
1550 }
1551
1552 /**
1553 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1554 * @lruvec: LRU vector to check
1555 *
1556 * Returns true if the zone does not have enough inactive anon pages,
1557 * meaning some active anon pages need to be deactivated.
1558 */
1559 static int inactive_anon_is_low(struct lruvec *lruvec)
1560 {
1561 /*
1562 * If we don't have swap space, anonymous page deactivation
1563 * is pointless.
1564 */
1565 if (!total_swap_pages)
1566 return 0;
1567
1568 if (!mem_cgroup_disabled())
1569 return mem_cgroup_inactive_anon_is_low(lruvec);
1570
1571 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1572 }
1573 #else
1574 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1575 {
1576 return 0;
1577 }
1578 #endif
1579
1580 /**
1581 * inactive_file_is_low - check if file pages need to be deactivated
1582 * @lruvec: LRU vector to check
1583 *
1584 * When the system is doing streaming IO, memory pressure here
1585 * ensures that active file pages get deactivated, until more
1586 * than half of the file pages are on the inactive list.
1587 *
1588 * Once we get to that situation, protect the system's working
1589 * set from being evicted by disabling active file page aging.
1590 *
1591 * This uses a different ratio than the anonymous pages, because
1592 * the page cache uses a use-once replacement algorithm.
1593 */
1594 static int inactive_file_is_low(struct lruvec *lruvec)
1595 {
1596 unsigned long inactive;
1597 unsigned long active;
1598
1599 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1600 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1601
1602 return active > inactive;
1603 }
1604
1605 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1606 {
1607 if (is_file_lru(lru))
1608 return inactive_file_is_low(lruvec);
1609 else
1610 return inactive_anon_is_low(lruvec);
1611 }
1612
1613 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1614 struct lruvec *lruvec, struct scan_control *sc)
1615 {
1616 if (is_active_lru(lru)) {
1617 if (inactive_list_is_low(lruvec, lru))
1618 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1619 return 0;
1620 }
1621
1622 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1623 }
1624
1625 static int vmscan_swappiness(struct scan_control *sc)
1626 {
1627 if (global_reclaim(sc))
1628 return vm_swappiness;
1629 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1630 }
1631
1632 enum scan_balance {
1633 SCAN_EQUAL,
1634 SCAN_FRACT,
1635 SCAN_ANON,
1636 SCAN_FILE,
1637 };
1638
1639 /*
1640 * Determine how aggressively the anon and file LRU lists should be
1641 * scanned. The relative value of each set of LRU lists is determined
1642 * by looking at the fraction of the pages scanned we did rotate back
1643 * onto the active list instead of evict.
1644 *
1645 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1646 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1647 */
1648 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1649 unsigned long *nr)
1650 {
1651 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1652 u64 fraction[2];
1653 u64 denominator = 0; /* gcc */
1654 struct zone *zone = lruvec_zone(lruvec);
1655 unsigned long anon_prio, file_prio;
1656 enum scan_balance scan_balance;
1657 unsigned long anon, file, free;
1658 bool force_scan = false;
1659 unsigned long ap, fp;
1660 enum lru_list lru;
1661
1662 /*
1663 * If the zone or memcg is small, nr[l] can be 0. This
1664 * results in no scanning on this priority and a potential
1665 * priority drop. Global direct reclaim can go to the next
1666 * zone and tends to have no problems. Global kswapd is for
1667 * zone balancing and it needs to scan a minimum amount. When
1668 * reclaiming for a memcg, a priority drop can cause high
1669 * latencies, so it's better to scan a minimum amount there as
1670 * well.
1671 */
1672 if (current_is_kswapd() && zone->all_unreclaimable)
1673 force_scan = true;
1674 if (!global_reclaim(sc))
1675 force_scan = true;
1676
1677 /* If we have no swap space, do not bother scanning anon pages. */
1678 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1679 scan_balance = SCAN_FILE;
1680 goto out;
1681 }
1682
1683 /*
1684 * Global reclaim will swap to prevent OOM even with no
1685 * swappiness, but memcg users want to use this knob to
1686 * disable swapping for individual groups completely when
1687 * using the memory controller's swap limit feature would be
1688 * too expensive.
1689 */
1690 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1691 scan_balance = SCAN_FILE;
1692 goto out;
1693 }
1694
1695 /*
1696 * Do not apply any pressure balancing cleverness when the
1697 * system is close to OOM, scan both anon and file equally
1698 * (unless the swappiness setting disagrees with swapping).
1699 */
1700 if (!sc->priority && vmscan_swappiness(sc)) {
1701 scan_balance = SCAN_EQUAL;
1702 goto out;
1703 }
1704
1705 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1706 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1707 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1708 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1709
1710 /*
1711 * If it's foreseeable that reclaiming the file cache won't be
1712 * enough to get the zone back into a desirable shape, we have
1713 * to swap. Better start now and leave the - probably heavily
1714 * thrashing - remaining file pages alone.
1715 */
1716 if (global_reclaim(sc)) {
1717 free = zone_page_state(zone, NR_FREE_PAGES);
1718 if (unlikely(file + free <= high_wmark_pages(zone))) {
1719 scan_balance = SCAN_ANON;
1720 goto out;
1721 }
1722 }
1723
1724 /*
1725 * There is enough inactive page cache, do not reclaim
1726 * anything from the anonymous working set right now.
1727 */
1728 if (!inactive_file_is_low(lruvec)) {
1729 scan_balance = SCAN_FILE;
1730 goto out;
1731 }
1732
1733 scan_balance = SCAN_FRACT;
1734
1735 /*
1736 * With swappiness at 100, anonymous and file have the same priority.
1737 * This scanning priority is essentially the inverse of IO cost.
1738 */
1739 anon_prio = vmscan_swappiness(sc);
1740 file_prio = 200 - anon_prio;
1741
1742 /*
1743 * OK, so we have swap space and a fair amount of page cache
1744 * pages. We use the recently rotated / recently scanned
1745 * ratios to determine how valuable each cache is.
1746 *
1747 * Because workloads change over time (and to avoid overflow)
1748 * we keep these statistics as a floating average, which ends
1749 * up weighing recent references more than old ones.
1750 *
1751 * anon in [0], file in [1]
1752 */
1753 spin_lock_irq(&zone->lru_lock);
1754 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1755 reclaim_stat->recent_scanned[0] /= 2;
1756 reclaim_stat->recent_rotated[0] /= 2;
1757 }
1758
1759 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1760 reclaim_stat->recent_scanned[1] /= 2;
1761 reclaim_stat->recent_rotated[1] /= 2;
1762 }
1763
1764 /*
1765 * The amount of pressure on anon vs file pages is inversely
1766 * proportional to the fraction of recently scanned pages on
1767 * each list that were recently referenced and in active use.
1768 */
1769 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1770 ap /= reclaim_stat->recent_rotated[0] + 1;
1771
1772 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1773 fp /= reclaim_stat->recent_rotated[1] + 1;
1774 spin_unlock_irq(&zone->lru_lock);
1775
1776 fraction[0] = ap;
1777 fraction[1] = fp;
1778 denominator = ap + fp + 1;
1779 out:
1780 for_each_evictable_lru(lru) {
1781 int file = is_file_lru(lru);
1782 unsigned long size;
1783 unsigned long scan;
1784
1785 size = get_lru_size(lruvec, lru);
1786 scan = size >> sc->priority;
1787
1788 if (!scan && force_scan)
1789 scan = min(size, SWAP_CLUSTER_MAX);
1790
1791 switch (scan_balance) {
1792 case SCAN_EQUAL:
1793 /* Scan lists relative to size */
1794 break;
1795 case SCAN_FRACT:
1796 /*
1797 * Scan types proportional to swappiness and
1798 * their relative recent reclaim efficiency.
1799 */
1800 scan = div64_u64(scan * fraction[file], denominator);
1801 break;
1802 case SCAN_FILE:
1803 case SCAN_ANON:
1804 /* Scan one type exclusively */
1805 if ((scan_balance == SCAN_FILE) != file)
1806 scan = 0;
1807 break;
1808 default:
1809 /* Look ma, no brain */
1810 BUG();
1811 }
1812 nr[lru] = scan;
1813 }
1814 }
1815
1816 /*
1817 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1818 */
1819 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1820 {
1821 unsigned long nr[NR_LRU_LISTS];
1822 unsigned long nr_to_scan;
1823 enum lru_list lru;
1824 unsigned long nr_reclaimed = 0;
1825 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1826 struct blk_plug plug;
1827
1828 get_scan_count(lruvec, sc, nr);
1829
1830 blk_start_plug(&plug);
1831 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1832 nr[LRU_INACTIVE_FILE]) {
1833 for_each_evictable_lru(lru) {
1834 if (nr[lru]) {
1835 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1836 nr[lru] -= nr_to_scan;
1837
1838 nr_reclaimed += shrink_list(lru, nr_to_scan,
1839 lruvec, sc);
1840 }
1841 }
1842 /*
1843 * On large memory systems, scan >> priority can become
1844 * really large. This is fine for the starting priority;
1845 * we want to put equal scanning pressure on each zone.
1846 * However, if the VM has a harder time of freeing pages,
1847 * with multiple processes reclaiming pages, the total
1848 * freeing target can get unreasonably large.
1849 */
1850 if (nr_reclaimed >= nr_to_reclaim &&
1851 sc->priority < DEF_PRIORITY)
1852 break;
1853 }
1854 blk_finish_plug(&plug);
1855 sc->nr_reclaimed += nr_reclaimed;
1856
1857 /*
1858 * Even if we did not try to evict anon pages at all, we want to
1859 * rebalance the anon lru active/inactive ratio.
1860 */
1861 if (inactive_anon_is_low(lruvec))
1862 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1863 sc, LRU_ACTIVE_ANON);
1864
1865 throttle_vm_writeout(sc->gfp_mask);
1866 }
1867
1868 /* Use reclaim/compaction for costly allocs or under memory pressure */
1869 static bool in_reclaim_compaction(struct scan_control *sc)
1870 {
1871 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
1872 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1873 sc->priority < DEF_PRIORITY - 2))
1874 return true;
1875
1876 return false;
1877 }
1878
1879 /*
1880 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1881 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1882 * true if more pages should be reclaimed such that when the page allocator
1883 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1884 * It will give up earlier than that if there is difficulty reclaiming pages.
1885 */
1886 static inline bool should_continue_reclaim(struct zone *zone,
1887 unsigned long nr_reclaimed,
1888 unsigned long nr_scanned,
1889 struct scan_control *sc)
1890 {
1891 unsigned long pages_for_compaction;
1892 unsigned long inactive_lru_pages;
1893
1894 /* If not in reclaim/compaction mode, stop */
1895 if (!in_reclaim_compaction(sc))
1896 return false;
1897
1898 /* Consider stopping depending on scan and reclaim activity */
1899 if (sc->gfp_mask & __GFP_REPEAT) {
1900 /*
1901 * For __GFP_REPEAT allocations, stop reclaiming if the
1902 * full LRU list has been scanned and we are still failing
1903 * to reclaim pages. This full LRU scan is potentially
1904 * expensive but a __GFP_REPEAT caller really wants to succeed
1905 */
1906 if (!nr_reclaimed && !nr_scanned)
1907 return false;
1908 } else {
1909 /*
1910 * For non-__GFP_REPEAT allocations which can presumably
1911 * fail without consequence, stop if we failed to reclaim
1912 * any pages from the last SWAP_CLUSTER_MAX number of
1913 * pages that were scanned. This will return to the
1914 * caller faster at the risk reclaim/compaction and
1915 * the resulting allocation attempt fails
1916 */
1917 if (!nr_reclaimed)
1918 return false;
1919 }
1920
1921 /*
1922 * If we have not reclaimed enough pages for compaction and the
1923 * inactive lists are large enough, continue reclaiming
1924 */
1925 pages_for_compaction = (2UL << sc->order);
1926 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
1927 if (get_nr_swap_pages() > 0)
1928 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
1929 if (sc->nr_reclaimed < pages_for_compaction &&
1930 inactive_lru_pages > pages_for_compaction)
1931 return true;
1932
1933 /* If compaction would go ahead or the allocation would succeed, stop */
1934 switch (compaction_suitable(zone, sc->order)) {
1935 case COMPACT_PARTIAL:
1936 case COMPACT_CONTINUE:
1937 return false;
1938 default:
1939 return true;
1940 }
1941 }
1942
1943 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1944 {
1945 unsigned long nr_reclaimed, nr_scanned;
1946
1947 do {
1948 struct mem_cgroup *root = sc->target_mem_cgroup;
1949 struct mem_cgroup_reclaim_cookie reclaim = {
1950 .zone = zone,
1951 .priority = sc->priority,
1952 };
1953 struct mem_cgroup *memcg;
1954
1955 nr_reclaimed = sc->nr_reclaimed;
1956 nr_scanned = sc->nr_scanned;
1957
1958 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1959 do {
1960 struct lruvec *lruvec;
1961
1962 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1963
1964 shrink_lruvec(lruvec, sc);
1965
1966 /*
1967 * Direct reclaim and kswapd have to scan all memory
1968 * cgroups to fulfill the overall scan target for the
1969 * zone.
1970 *
1971 * Limit reclaim, on the other hand, only cares about
1972 * nr_to_reclaim pages to be reclaimed and it will
1973 * retry with decreasing priority if one round over the
1974 * whole hierarchy is not sufficient.
1975 */
1976 if (!global_reclaim(sc) &&
1977 sc->nr_reclaimed >= sc->nr_to_reclaim) {
1978 mem_cgroup_iter_break(root, memcg);
1979 break;
1980 }
1981 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1982 } while (memcg);
1983
1984 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
1985 sc->nr_scanned - nr_scanned,
1986 sc->nr_reclaimed - nr_reclaimed);
1987
1988 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
1989 sc->nr_scanned - nr_scanned, sc));
1990 }
1991
1992 /* Returns true if compaction should go ahead for a high-order request */
1993 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1994 {
1995 unsigned long balance_gap, watermark;
1996 bool watermark_ok;
1997
1998 /* Do not consider compaction for orders reclaim is meant to satisfy */
1999 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2000 return false;
2001
2002 /*
2003 * Compaction takes time to run and there are potentially other
2004 * callers using the pages just freed. Continue reclaiming until
2005 * there is a buffer of free pages available to give compaction
2006 * a reasonable chance of completing and allocating the page
2007 */
2008 balance_gap = min(low_wmark_pages(zone),
2009 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2010 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2011 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2012 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2013
2014 /*
2015 * If compaction is deferred, reclaim up to a point where
2016 * compaction will have a chance of success when re-enabled
2017 */
2018 if (compaction_deferred(zone, sc->order))
2019 return watermark_ok;
2020
2021 /* If compaction is not ready to start, keep reclaiming */
2022 if (!compaction_suitable(zone, sc->order))
2023 return false;
2024
2025 return watermark_ok;
2026 }
2027
2028 /*
2029 * This is the direct reclaim path, for page-allocating processes. We only
2030 * try to reclaim pages from zones which will satisfy the caller's allocation
2031 * request.
2032 *
2033 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2034 * Because:
2035 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2036 * allocation or
2037 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2038 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2039 * zone defense algorithm.
2040 *
2041 * If a zone is deemed to be full of pinned pages then just give it a light
2042 * scan then give up on it.
2043 *
2044 * This function returns true if a zone is being reclaimed for a costly
2045 * high-order allocation and compaction is ready to begin. This indicates to
2046 * the caller that it should consider retrying the allocation instead of
2047 * further reclaim.
2048 */
2049 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2050 {
2051 struct zoneref *z;
2052 struct zone *zone;
2053 unsigned long nr_soft_reclaimed;
2054 unsigned long nr_soft_scanned;
2055 bool aborted_reclaim = false;
2056
2057 /*
2058 * If the number of buffer_heads in the machine exceeds the maximum
2059 * allowed level, force direct reclaim to scan the highmem zone as
2060 * highmem pages could be pinning lowmem pages storing buffer_heads
2061 */
2062 if (buffer_heads_over_limit)
2063 sc->gfp_mask |= __GFP_HIGHMEM;
2064
2065 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2066 gfp_zone(sc->gfp_mask), sc->nodemask) {
2067 if (!populated_zone(zone))
2068 continue;
2069 /*
2070 * Take care memory controller reclaiming has small influence
2071 * to global LRU.
2072 */
2073 if (global_reclaim(sc)) {
2074 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2075 continue;
2076 if (zone->all_unreclaimable &&
2077 sc->priority != DEF_PRIORITY)
2078 continue; /* Let kswapd poll it */
2079 if (IS_ENABLED(CONFIG_COMPACTION)) {
2080 /*
2081 * If we already have plenty of memory free for
2082 * compaction in this zone, don't free any more.
2083 * Even though compaction is invoked for any
2084 * non-zero order, only frequent costly order
2085 * reclamation is disruptive enough to become a
2086 * noticeable problem, like transparent huge
2087 * page allocations.
2088 */
2089 if (compaction_ready(zone, sc)) {
2090 aborted_reclaim = true;
2091 continue;
2092 }
2093 }
2094 /*
2095 * This steals pages from memory cgroups over softlimit
2096 * and returns the number of reclaimed pages and
2097 * scanned pages. This works for global memory pressure
2098 * and balancing, not for a memcg's limit.
2099 */
2100 nr_soft_scanned = 0;
2101 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2102 sc->order, sc->gfp_mask,
2103 &nr_soft_scanned);
2104 sc->nr_reclaimed += nr_soft_reclaimed;
2105 sc->nr_scanned += nr_soft_scanned;
2106 /* need some check for avoid more shrink_zone() */
2107 }
2108
2109 shrink_zone(zone, sc);
2110 }
2111
2112 return aborted_reclaim;
2113 }
2114
2115 static unsigned long zone_reclaimable_pages(struct zone *zone)
2116 {
2117 int nr;
2118
2119 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2120 zone_page_state(zone, NR_INACTIVE_FILE);
2121
2122 if (get_nr_swap_pages() > 0)
2123 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2124 zone_page_state(zone, NR_INACTIVE_ANON);
2125
2126 return nr;
2127 }
2128
2129 static bool zone_reclaimable(struct zone *zone)
2130 {
2131 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2132 }
2133
2134 /* All zones in zonelist are unreclaimable? */
2135 static bool all_unreclaimable(struct zonelist *zonelist,
2136 struct scan_control *sc)
2137 {
2138 struct zoneref *z;
2139 struct zone *zone;
2140
2141 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2142 gfp_zone(sc->gfp_mask), sc->nodemask) {
2143 if (!populated_zone(zone))
2144 continue;
2145 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2146 continue;
2147 if (!zone->all_unreclaimable)
2148 return false;
2149 }
2150
2151 return true;
2152 }
2153
2154 /*
2155 * This is the main entry point to direct page reclaim.
2156 *
2157 * If a full scan of the inactive list fails to free enough memory then we
2158 * are "out of memory" and something needs to be killed.
2159 *
2160 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2161 * high - the zone may be full of dirty or under-writeback pages, which this
2162 * caller can't do much about. We kick the writeback threads and take explicit
2163 * naps in the hope that some of these pages can be written. But if the
2164 * allocating task holds filesystem locks which prevent writeout this might not
2165 * work, and the allocation attempt will fail.
2166 *
2167 * returns: 0, if no pages reclaimed
2168 * else, the number of pages reclaimed
2169 */
2170 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2171 struct scan_control *sc,
2172 struct shrink_control *shrink)
2173 {
2174 unsigned long total_scanned = 0;
2175 struct reclaim_state *reclaim_state = current->reclaim_state;
2176 struct zoneref *z;
2177 struct zone *zone;
2178 unsigned long writeback_threshold;
2179 bool aborted_reclaim;
2180
2181 delayacct_freepages_start();
2182
2183 if (global_reclaim(sc))
2184 count_vm_event(ALLOCSTALL);
2185
2186 do {
2187 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2188 sc->priority);
2189 sc->nr_scanned = 0;
2190 aborted_reclaim = shrink_zones(zonelist, sc);
2191
2192 /*
2193 * Don't shrink slabs when reclaiming memory from
2194 * over limit cgroups
2195 */
2196 if (global_reclaim(sc)) {
2197 unsigned long lru_pages = 0;
2198 for_each_zone_zonelist(zone, z, zonelist,
2199 gfp_zone(sc->gfp_mask)) {
2200 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2201 continue;
2202
2203 lru_pages += zone_reclaimable_pages(zone);
2204 }
2205
2206 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2207 if (reclaim_state) {
2208 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2209 reclaim_state->reclaimed_slab = 0;
2210 }
2211 }
2212 total_scanned += sc->nr_scanned;
2213 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2214 goto out;
2215
2216 /*
2217 * If we're getting trouble reclaiming, start doing
2218 * writepage even in laptop mode.
2219 */
2220 if (sc->priority < DEF_PRIORITY - 2)
2221 sc->may_writepage = 1;
2222
2223 /*
2224 * Try to write back as many pages as we just scanned. This
2225 * tends to cause slow streaming writers to write data to the
2226 * disk smoothly, at the dirtying rate, which is nice. But
2227 * that's undesirable in laptop mode, where we *want* lumpy
2228 * writeout. So in laptop mode, write out the whole world.
2229 */
2230 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2231 if (total_scanned > writeback_threshold) {
2232 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2233 WB_REASON_TRY_TO_FREE_PAGES);
2234 sc->may_writepage = 1;
2235 }
2236
2237 /* Take a nap, wait for some writeback to complete */
2238 if (!sc->hibernation_mode && sc->nr_scanned &&
2239 sc->priority < DEF_PRIORITY - 2) {
2240 struct zone *preferred_zone;
2241
2242 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2243 &cpuset_current_mems_allowed,
2244 &preferred_zone);
2245 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2246 }
2247 } while (--sc->priority >= 0);
2248
2249 out:
2250 delayacct_freepages_end();
2251
2252 if (sc->nr_reclaimed)
2253 return sc->nr_reclaimed;
2254
2255 /*
2256 * As hibernation is going on, kswapd is freezed so that it can't mark
2257 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2258 * check.
2259 */
2260 if (oom_killer_disabled)
2261 return 0;
2262
2263 /* Aborted reclaim to try compaction? don't OOM, then */
2264 if (aborted_reclaim)
2265 return 1;
2266
2267 /* top priority shrink_zones still had more to do? don't OOM, then */
2268 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2269 return 1;
2270
2271 return 0;
2272 }
2273
2274 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2275 {
2276 struct zone *zone;
2277 unsigned long pfmemalloc_reserve = 0;
2278 unsigned long free_pages = 0;
2279 int i;
2280 bool wmark_ok;
2281
2282 for (i = 0; i <= ZONE_NORMAL; i++) {
2283 zone = &pgdat->node_zones[i];
2284 if (!populated_zone(zone))
2285 continue;
2286
2287 pfmemalloc_reserve += min_wmark_pages(zone);
2288 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2289 }
2290
2291 /* If there are no reserves (unexpected config) then do not throttle */
2292 if (!pfmemalloc_reserve)
2293 return true;
2294
2295 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2296
2297 /* kswapd must be awake if processes are being throttled */
2298 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2299 pgdat->classzone_idx = min(pgdat->classzone_idx,
2300 (enum zone_type)ZONE_NORMAL);
2301 wake_up_interruptible(&pgdat->kswapd_wait);
2302 }
2303
2304 return wmark_ok;
2305 }
2306
2307 /*
2308 * Throttle direct reclaimers if backing storage is backed by the network
2309 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2310 * depleted. kswapd will continue to make progress and wake the processes
2311 * when the low watermark is reached.
2312 *
2313 * Returns true if a fatal signal was delivered during throttling. If this
2314 * happens, the page allocator should not consider triggering the OOM killer.
2315 */
2316 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2317 nodemask_t *nodemask)
2318 {
2319 struct zoneref *z;
2320 struct zone *zone;
2321 pg_data_t *pgdat = NULL;
2322
2323 /*
2324 * Kernel threads should not be throttled as they may be indirectly
2325 * responsible for cleaning pages necessary for reclaim to make forward
2326 * progress. kjournald for example may enter direct reclaim while
2327 * committing a transaction where throttling it could forcing other
2328 * processes to block on log_wait_commit().
2329 */
2330 if (current->flags & PF_KTHREAD)
2331 goto out;
2332
2333 /*
2334 * If a fatal signal is pending, this process should not throttle.
2335 * It should return quickly so it can exit and free its memory
2336 */
2337 if (fatal_signal_pending(current))
2338 goto out;
2339
2340 /*
2341 * Check if the pfmemalloc reserves are ok by finding the first node
2342 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2343 * GFP_KERNEL will be required for allocating network buffers when
2344 * swapping over the network so ZONE_HIGHMEM is unusable.
2345 *
2346 * Throttling is based on the first usable node and throttled processes
2347 * wait on a queue until kswapd makes progress and wakes them. There
2348 * is an affinity then between processes waking up and where reclaim
2349 * progress has been made assuming the process wakes on the same node.
2350 * More importantly, processes running on remote nodes will not compete
2351 * for remote pfmemalloc reserves and processes on different nodes
2352 * should make reasonable progress.
2353 */
2354 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2355 gfp_mask, nodemask) {
2356 if (zone_idx(zone) > ZONE_NORMAL)
2357 continue;
2358
2359 /* Throttle based on the first usable node */
2360 pgdat = zone->zone_pgdat;
2361 if (pfmemalloc_watermark_ok(pgdat))
2362 goto out;
2363 break;
2364 }
2365
2366 /* If no zone was usable by the allocation flags then do not throttle */
2367 if (!pgdat)
2368 goto out;
2369
2370 /* Account for the throttling */
2371 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2372
2373 /*
2374 * If the caller cannot enter the filesystem, it's possible that it
2375 * is due to the caller holding an FS lock or performing a journal
2376 * transaction in the case of a filesystem like ext[3|4]. In this case,
2377 * it is not safe to block on pfmemalloc_wait as kswapd could be
2378 * blocked waiting on the same lock. Instead, throttle for up to a
2379 * second before continuing.
2380 */
2381 if (!(gfp_mask & __GFP_FS)) {
2382 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2383 pfmemalloc_watermark_ok(pgdat), HZ);
2384
2385 goto check_pending;
2386 }
2387
2388 /* Throttle until kswapd wakes the process */
2389 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2390 pfmemalloc_watermark_ok(pgdat));
2391
2392 check_pending:
2393 if (fatal_signal_pending(current))
2394 return true;
2395
2396 out:
2397 return false;
2398 }
2399
2400 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2401 gfp_t gfp_mask, nodemask_t *nodemask)
2402 {
2403 unsigned long nr_reclaimed;
2404 struct scan_control sc = {
2405 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2406 .may_writepage = !laptop_mode,
2407 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2408 .may_unmap = 1,
2409 .may_swap = 1,
2410 .order = order,
2411 .priority = DEF_PRIORITY,
2412 .target_mem_cgroup = NULL,
2413 .nodemask = nodemask,
2414 };
2415 struct shrink_control shrink = {
2416 .gfp_mask = sc.gfp_mask,
2417 };
2418
2419 /*
2420 * Do not enter reclaim if fatal signal was delivered while throttled.
2421 * 1 is returned so that the page allocator does not OOM kill at this
2422 * point.
2423 */
2424 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2425 return 1;
2426
2427 trace_mm_vmscan_direct_reclaim_begin(order,
2428 sc.may_writepage,
2429 gfp_mask);
2430
2431 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2432
2433 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2434
2435 return nr_reclaimed;
2436 }
2437
2438 #ifdef CONFIG_MEMCG
2439
2440 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2441 gfp_t gfp_mask, bool noswap,
2442 struct zone *zone,
2443 unsigned long *nr_scanned)
2444 {
2445 struct scan_control sc = {
2446 .nr_scanned = 0,
2447 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2448 .may_writepage = !laptop_mode,
2449 .may_unmap = 1,
2450 .may_swap = !noswap,
2451 .order = 0,
2452 .priority = 0,
2453 .target_mem_cgroup = memcg,
2454 };
2455 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2456
2457 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2458 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2459
2460 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2461 sc.may_writepage,
2462 sc.gfp_mask);
2463
2464 /*
2465 * NOTE: Although we can get the priority field, using it
2466 * here is not a good idea, since it limits the pages we can scan.
2467 * if we don't reclaim here, the shrink_zone from balance_pgdat
2468 * will pick up pages from other mem cgroup's as well. We hack
2469 * the priority and make it zero.
2470 */
2471 shrink_lruvec(lruvec, &sc);
2472
2473 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2474
2475 *nr_scanned = sc.nr_scanned;
2476 return sc.nr_reclaimed;
2477 }
2478
2479 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2480 gfp_t gfp_mask,
2481 bool noswap)
2482 {
2483 struct zonelist *zonelist;
2484 unsigned long nr_reclaimed;
2485 int nid;
2486 struct scan_control sc = {
2487 .may_writepage = !laptop_mode,
2488 .may_unmap = 1,
2489 .may_swap = !noswap,
2490 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2491 .order = 0,
2492 .priority = DEF_PRIORITY,
2493 .target_mem_cgroup = memcg,
2494 .nodemask = NULL, /* we don't care the placement */
2495 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2496 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2497 };
2498 struct shrink_control shrink = {
2499 .gfp_mask = sc.gfp_mask,
2500 };
2501
2502 /*
2503 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2504 * take care of from where we get pages. So the node where we start the
2505 * scan does not need to be the current node.
2506 */
2507 nid = mem_cgroup_select_victim_node(memcg);
2508
2509 zonelist = NODE_DATA(nid)->node_zonelists;
2510
2511 trace_mm_vmscan_memcg_reclaim_begin(0,
2512 sc.may_writepage,
2513 sc.gfp_mask);
2514
2515 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2516
2517 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2518
2519 return nr_reclaimed;
2520 }
2521 #endif
2522
2523 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2524 {
2525 struct mem_cgroup *memcg;
2526
2527 if (!total_swap_pages)
2528 return;
2529
2530 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2531 do {
2532 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2533
2534 if (inactive_anon_is_low(lruvec))
2535 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2536 sc, LRU_ACTIVE_ANON);
2537
2538 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2539 } while (memcg);
2540 }
2541
2542 static bool zone_balanced(struct zone *zone, int order,
2543 unsigned long balance_gap, int classzone_idx)
2544 {
2545 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2546 balance_gap, classzone_idx, 0))
2547 return false;
2548
2549 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2550 !compaction_suitable(zone, order))
2551 return false;
2552
2553 return true;
2554 }
2555
2556 /*
2557 * pgdat_balanced() is used when checking if a node is balanced.
2558 *
2559 * For order-0, all zones must be balanced!
2560 *
2561 * For high-order allocations only zones that meet watermarks and are in a
2562 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2563 * total of balanced pages must be at least 25% of the zones allowed by
2564 * classzone_idx for the node to be considered balanced. Forcing all zones to
2565 * be balanced for high orders can cause excessive reclaim when there are
2566 * imbalanced zones.
2567 * The choice of 25% is due to
2568 * o a 16M DMA zone that is balanced will not balance a zone on any
2569 * reasonable sized machine
2570 * o On all other machines, the top zone must be at least a reasonable
2571 * percentage of the middle zones. For example, on 32-bit x86, highmem
2572 * would need to be at least 256M for it to be balance a whole node.
2573 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2574 * to balance a node on its own. These seemed like reasonable ratios.
2575 */
2576 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2577 {
2578 unsigned long managed_pages = 0;
2579 unsigned long balanced_pages = 0;
2580 int i;
2581
2582 /* Check the watermark levels */
2583 for (i = 0; i <= classzone_idx; i++) {
2584 struct zone *zone = pgdat->node_zones + i;
2585
2586 if (!populated_zone(zone))
2587 continue;
2588
2589 managed_pages += zone->managed_pages;
2590
2591 /*
2592 * A special case here:
2593 *
2594 * balance_pgdat() skips over all_unreclaimable after
2595 * DEF_PRIORITY. Effectively, it considers them balanced so
2596 * they must be considered balanced here as well!
2597 */
2598 if (zone->all_unreclaimable) {
2599 balanced_pages += zone->managed_pages;
2600 continue;
2601 }
2602
2603 if (zone_balanced(zone, order, 0, i))
2604 balanced_pages += zone->managed_pages;
2605 else if (!order)
2606 return false;
2607 }
2608
2609 if (order)
2610 return balanced_pages >= (managed_pages >> 2);
2611 else
2612 return true;
2613 }
2614
2615 /*
2616 * Prepare kswapd for sleeping. This verifies that there are no processes
2617 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2618 *
2619 * Returns true if kswapd is ready to sleep
2620 */
2621 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2622 int classzone_idx)
2623 {
2624 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2625 if (remaining)
2626 return false;
2627
2628 /*
2629 * The throttled processes are normally woken up in balance_pgdat() as
2630 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2631 * race between when kswapd checks the watermarks and a process gets
2632 * throttled. There is also a potential race if processes get
2633 * throttled, kswapd wakes, a large process exits thereby balancing the
2634 * zones, which causes kswapd to exit balance_pgdat() before reaching
2635 * the wake up checks. If kswapd is going to sleep, no process should
2636 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2637 * the wake up is premature, processes will wake kswapd and get
2638 * throttled again. The difference from wake ups in balance_pgdat() is
2639 * that here we are under prepare_to_wait().
2640 */
2641 if (waitqueue_active(&pgdat->pfmemalloc_wait))
2642 wake_up_all(&pgdat->pfmemalloc_wait);
2643
2644 return pgdat_balanced(pgdat, order, classzone_idx);
2645 }
2646
2647 /*
2648 * For kswapd, balance_pgdat() will work across all this node's zones until
2649 * they are all at high_wmark_pages(zone).
2650 *
2651 * Returns the final order kswapd was reclaiming at
2652 *
2653 * There is special handling here for zones which are full of pinned pages.
2654 * This can happen if the pages are all mlocked, or if they are all used by
2655 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2656 * What we do is to detect the case where all pages in the zone have been
2657 * scanned twice and there has been zero successful reclaim. Mark the zone as
2658 * dead and from now on, only perform a short scan. Basically we're polling
2659 * the zone for when the problem goes away.
2660 *
2661 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2662 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2663 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2664 * lower zones regardless of the number of free pages in the lower zones. This
2665 * interoperates with the page allocator fallback scheme to ensure that aging
2666 * of pages is balanced across the zones.
2667 */
2668 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2669 int *classzone_idx)
2670 {
2671 bool pgdat_is_balanced = false;
2672 int i;
2673 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2674 struct reclaim_state *reclaim_state = current->reclaim_state;
2675 unsigned long nr_soft_reclaimed;
2676 unsigned long nr_soft_scanned;
2677 struct scan_control sc = {
2678 .gfp_mask = GFP_KERNEL,
2679 .may_unmap = 1,
2680 .may_swap = 1,
2681 /*
2682 * kswapd doesn't want to be bailed out while reclaim. because
2683 * we want to put equal scanning pressure on each zone.
2684 */
2685 .nr_to_reclaim = ULONG_MAX,
2686 .order = order,
2687 .target_mem_cgroup = NULL,
2688 };
2689 struct shrink_control shrink = {
2690 .gfp_mask = sc.gfp_mask,
2691 };
2692 loop_again:
2693 sc.priority = DEF_PRIORITY;
2694 sc.nr_reclaimed = 0;
2695 sc.may_writepage = !laptop_mode;
2696 count_vm_event(PAGEOUTRUN);
2697
2698 do {
2699 unsigned long lru_pages = 0;
2700
2701 /*
2702 * Scan in the highmem->dma direction for the highest
2703 * zone which needs scanning
2704 */
2705 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2706 struct zone *zone = pgdat->node_zones + i;
2707
2708 if (!populated_zone(zone))
2709 continue;
2710
2711 if (zone->all_unreclaimable &&
2712 sc.priority != DEF_PRIORITY)
2713 continue;
2714
2715 /*
2716 * Do some background aging of the anon list, to give
2717 * pages a chance to be referenced before reclaiming.
2718 */
2719 age_active_anon(zone, &sc);
2720
2721 /*
2722 * If the number of buffer_heads in the machine
2723 * exceeds the maximum allowed level and this node
2724 * has a highmem zone, force kswapd to reclaim from
2725 * it to relieve lowmem pressure.
2726 */
2727 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2728 end_zone = i;
2729 break;
2730 }
2731
2732 if (!zone_balanced(zone, order, 0, 0)) {
2733 end_zone = i;
2734 break;
2735 } else {
2736 /* If balanced, clear the congested flag */
2737 zone_clear_flag(zone, ZONE_CONGESTED);
2738 }
2739 }
2740
2741 if (i < 0) {
2742 pgdat_is_balanced = true;
2743 goto out;
2744 }
2745
2746 for (i = 0; i <= end_zone; i++) {
2747 struct zone *zone = pgdat->node_zones + i;
2748
2749 lru_pages += zone_reclaimable_pages(zone);
2750 }
2751
2752 /*
2753 * Now scan the zone in the dma->highmem direction, stopping
2754 * at the last zone which needs scanning.
2755 *
2756 * We do this because the page allocator works in the opposite
2757 * direction. This prevents the page allocator from allocating
2758 * pages behind kswapd's direction of progress, which would
2759 * cause too much scanning of the lower zones.
2760 */
2761 for (i = 0; i <= end_zone; i++) {
2762 struct zone *zone = pgdat->node_zones + i;
2763 int nr_slab, testorder;
2764 unsigned long balance_gap;
2765
2766 if (!populated_zone(zone))
2767 continue;
2768
2769 if (zone->all_unreclaimable &&
2770 sc.priority != DEF_PRIORITY)
2771 continue;
2772
2773 sc.nr_scanned = 0;
2774
2775 nr_soft_scanned = 0;
2776 /*
2777 * Call soft limit reclaim before calling shrink_zone.
2778 */
2779 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2780 order, sc.gfp_mask,
2781 &nr_soft_scanned);
2782 sc.nr_reclaimed += nr_soft_reclaimed;
2783
2784 /*
2785 * We put equal pressure on every zone, unless
2786 * one zone has way too many pages free
2787 * already. The "too many pages" is defined
2788 * as the high wmark plus a "gap" where the
2789 * gap is either the low watermark or 1%
2790 * of the zone, whichever is smaller.
2791 */
2792 balance_gap = min(low_wmark_pages(zone),
2793 (zone->managed_pages +
2794 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2795 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2796 /*
2797 * Kswapd reclaims only single pages with compaction
2798 * enabled. Trying too hard to reclaim until contiguous
2799 * free pages have become available can hurt performance
2800 * by evicting too much useful data from memory.
2801 * Do not reclaim more than needed for compaction.
2802 */
2803 testorder = order;
2804 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2805 compaction_suitable(zone, order) !=
2806 COMPACT_SKIPPED)
2807 testorder = 0;
2808
2809 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2810 !zone_balanced(zone, testorder,
2811 balance_gap, end_zone)) {
2812 shrink_zone(zone, &sc);
2813
2814 reclaim_state->reclaimed_slab = 0;
2815 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2816 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2817
2818 if (nr_slab == 0 && !zone_reclaimable(zone))
2819 zone->all_unreclaimable = 1;
2820 }
2821
2822 /*
2823 * If we're getting trouble reclaiming, start doing
2824 * writepage even in laptop mode.
2825 */
2826 if (sc.priority < DEF_PRIORITY - 2)
2827 sc.may_writepage = 1;
2828
2829 if (zone->all_unreclaimable) {
2830 if (end_zone && end_zone == i)
2831 end_zone--;
2832 continue;
2833 }
2834
2835 if (zone_balanced(zone, testorder, 0, end_zone))
2836 /*
2837 * If a zone reaches its high watermark,
2838 * consider it to be no longer congested. It's
2839 * possible there are dirty pages backed by
2840 * congested BDIs but as pressure is relieved,
2841 * speculatively avoid congestion waits
2842 */
2843 zone_clear_flag(zone, ZONE_CONGESTED);
2844 }
2845
2846 /*
2847 * If the low watermark is met there is no need for processes
2848 * to be throttled on pfmemalloc_wait as they should not be
2849 * able to safely make forward progress. Wake them
2850 */
2851 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2852 pfmemalloc_watermark_ok(pgdat))
2853 wake_up(&pgdat->pfmemalloc_wait);
2854
2855 if (pgdat_balanced(pgdat, order, *classzone_idx)) {
2856 pgdat_is_balanced = true;
2857 break; /* kswapd: all done */
2858 }
2859
2860 /*
2861 * We do this so kswapd doesn't build up large priorities for
2862 * example when it is freeing in parallel with allocators. It
2863 * matches the direct reclaim path behaviour in terms of impact
2864 * on zone->*_priority.
2865 */
2866 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2867 break;
2868 } while (--sc.priority >= 0);
2869
2870 out:
2871 if (!pgdat_is_balanced) {
2872 cond_resched();
2873
2874 try_to_freeze();
2875
2876 /*
2877 * Fragmentation may mean that the system cannot be
2878 * rebalanced for high-order allocations in all zones.
2879 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2880 * it means the zones have been fully scanned and are still
2881 * not balanced. For high-order allocations, there is
2882 * little point trying all over again as kswapd may
2883 * infinite loop.
2884 *
2885 * Instead, recheck all watermarks at order-0 as they
2886 * are the most important. If watermarks are ok, kswapd will go
2887 * back to sleep. High-order users can still perform direct
2888 * reclaim if they wish.
2889 */
2890 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2891 order = sc.order = 0;
2892
2893 goto loop_again;
2894 }
2895
2896 /*
2897 * If kswapd was reclaiming at a higher order, it has the option of
2898 * sleeping without all zones being balanced. Before it does, it must
2899 * ensure that the watermarks for order-0 on *all* zones are met and
2900 * that the congestion flags are cleared. The congestion flag must
2901 * be cleared as kswapd is the only mechanism that clears the flag
2902 * and it is potentially going to sleep here.
2903 */
2904 if (order) {
2905 int zones_need_compaction = 1;
2906
2907 for (i = 0; i <= end_zone; i++) {
2908 struct zone *zone = pgdat->node_zones + i;
2909
2910 if (!populated_zone(zone))
2911 continue;
2912
2913 /* Check if the memory needs to be defragmented. */
2914 if (zone_watermark_ok(zone, order,
2915 low_wmark_pages(zone), *classzone_idx, 0))
2916 zones_need_compaction = 0;
2917 }
2918
2919 if (zones_need_compaction)
2920 compact_pgdat(pgdat, order);
2921 }
2922
2923 /*
2924 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2925 * makes a decision on the order we were last reclaiming at. However,
2926 * if another caller entered the allocator slow path while kswapd
2927 * was awake, order will remain at the higher level
2928 */
2929 *classzone_idx = end_zone;
2930 return order;
2931 }
2932
2933 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2934 {
2935 long remaining = 0;
2936 DEFINE_WAIT(wait);
2937
2938 if (freezing(current) || kthread_should_stop())
2939 return;
2940
2941 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2942
2943 /* Try to sleep for a short interval */
2944 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2945 remaining = schedule_timeout(HZ/10);
2946 finish_wait(&pgdat->kswapd_wait, &wait);
2947 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2948 }
2949
2950 /*
2951 * After a short sleep, check if it was a premature sleep. If not, then
2952 * go fully to sleep until explicitly woken up.
2953 */
2954 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2955 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2956
2957 /*
2958 * vmstat counters are not perfectly accurate and the estimated
2959 * value for counters such as NR_FREE_PAGES can deviate from the
2960 * true value by nr_online_cpus * threshold. To avoid the zone
2961 * watermarks being breached while under pressure, we reduce the
2962 * per-cpu vmstat threshold while kswapd is awake and restore
2963 * them before going back to sleep.
2964 */
2965 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2966
2967 /*
2968 * Compaction records what page blocks it recently failed to
2969 * isolate pages from and skips them in the future scanning.
2970 * When kswapd is going to sleep, it is reasonable to assume
2971 * that pages and compaction may succeed so reset the cache.
2972 */
2973 reset_isolation_suitable(pgdat);
2974
2975 if (!kthread_should_stop())
2976 schedule();
2977
2978 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2979 } else {
2980 if (remaining)
2981 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2982 else
2983 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2984 }
2985 finish_wait(&pgdat->kswapd_wait, &wait);
2986 }
2987
2988 /*
2989 * The background pageout daemon, started as a kernel thread
2990 * from the init process.
2991 *
2992 * This basically trickles out pages so that we have _some_
2993 * free memory available even if there is no other activity
2994 * that frees anything up. This is needed for things like routing
2995 * etc, where we otherwise might have all activity going on in
2996 * asynchronous contexts that cannot page things out.
2997 *
2998 * If there are applications that are active memory-allocators
2999 * (most normal use), this basically shouldn't matter.
3000 */
3001 static int kswapd(void *p)
3002 {
3003 unsigned long order, new_order;
3004 unsigned balanced_order;
3005 int classzone_idx, new_classzone_idx;
3006 int balanced_classzone_idx;
3007 pg_data_t *pgdat = (pg_data_t*)p;
3008 struct task_struct *tsk = current;
3009
3010 struct reclaim_state reclaim_state = {
3011 .reclaimed_slab = 0,
3012 };
3013 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3014
3015 lockdep_set_current_reclaim_state(GFP_KERNEL);
3016
3017 if (!cpumask_empty(cpumask))
3018 set_cpus_allowed_ptr(tsk, cpumask);
3019 current->reclaim_state = &reclaim_state;
3020
3021 /*
3022 * Tell the memory management that we're a "memory allocator",
3023 * and that if we need more memory we should get access to it
3024 * regardless (see "__alloc_pages()"). "kswapd" should
3025 * never get caught in the normal page freeing logic.
3026 *
3027 * (Kswapd normally doesn't need memory anyway, but sometimes
3028 * you need a small amount of memory in order to be able to
3029 * page out something else, and this flag essentially protects
3030 * us from recursively trying to free more memory as we're
3031 * trying to free the first piece of memory in the first place).
3032 */
3033 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3034 set_freezable();
3035
3036 order = new_order = 0;
3037 balanced_order = 0;
3038 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3039 balanced_classzone_idx = classzone_idx;
3040 for ( ; ; ) {
3041 bool ret;
3042
3043 /*
3044 * If the last balance_pgdat was unsuccessful it's unlikely a
3045 * new request of a similar or harder type will succeed soon
3046 * so consider going to sleep on the basis we reclaimed at
3047 */
3048 if (balanced_classzone_idx >= new_classzone_idx &&
3049 balanced_order == new_order) {
3050 new_order = pgdat->kswapd_max_order;
3051 new_classzone_idx = pgdat->classzone_idx;
3052 pgdat->kswapd_max_order = 0;
3053 pgdat->classzone_idx = pgdat->nr_zones - 1;
3054 }
3055
3056 if (order < new_order || classzone_idx > new_classzone_idx) {
3057 /*
3058 * Don't sleep if someone wants a larger 'order'
3059 * allocation or has tigher zone constraints
3060 */
3061 order = new_order;
3062 classzone_idx = new_classzone_idx;
3063 } else {
3064 kswapd_try_to_sleep(pgdat, balanced_order,
3065 balanced_classzone_idx);
3066 order = pgdat->kswapd_max_order;
3067 classzone_idx = pgdat->classzone_idx;
3068 new_order = order;
3069 new_classzone_idx = classzone_idx;
3070 pgdat->kswapd_max_order = 0;
3071 pgdat->classzone_idx = pgdat->nr_zones - 1;
3072 }
3073
3074 ret = try_to_freeze();
3075 if (kthread_should_stop())
3076 break;
3077
3078 /*
3079 * We can speed up thawing tasks if we don't call balance_pgdat
3080 * after returning from the refrigerator
3081 */
3082 if (!ret) {
3083 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3084 balanced_classzone_idx = classzone_idx;
3085 balanced_order = balance_pgdat(pgdat, order,
3086 &balanced_classzone_idx);
3087 }
3088 }
3089
3090 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3091 current->reclaim_state = NULL;
3092 lockdep_clear_current_reclaim_state();
3093
3094 return 0;
3095 }
3096
3097 /*
3098 * A zone is low on free memory, so wake its kswapd task to service it.
3099 */
3100 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3101 {
3102 pg_data_t *pgdat;
3103
3104 if (!populated_zone(zone))
3105 return;
3106
3107 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3108 return;
3109 pgdat = zone->zone_pgdat;
3110 if (pgdat->kswapd_max_order < order) {
3111 pgdat->kswapd_max_order = order;
3112 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3113 }
3114 if (!waitqueue_active(&pgdat->kswapd_wait))
3115 return;
3116 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3117 return;
3118
3119 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3120 wake_up_interruptible(&pgdat->kswapd_wait);
3121 }
3122
3123 #ifdef CONFIG_HIBERNATION
3124 /*
3125 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3126 * freed pages.
3127 *
3128 * Rather than trying to age LRUs the aim is to preserve the overall
3129 * LRU order by reclaiming preferentially
3130 * inactive > active > active referenced > active mapped
3131 */
3132 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3133 {
3134 struct reclaim_state reclaim_state;
3135 struct scan_control sc = {
3136 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3137 .may_swap = 1,
3138 .may_unmap = 1,
3139 .may_writepage = 1,
3140 .nr_to_reclaim = nr_to_reclaim,
3141 .hibernation_mode = 1,
3142 .order = 0,
3143 .priority = DEF_PRIORITY,
3144 };
3145 struct shrink_control shrink = {
3146 .gfp_mask = sc.gfp_mask,
3147 };
3148 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3149 struct task_struct *p = current;
3150 unsigned long nr_reclaimed;
3151
3152 p->flags |= PF_MEMALLOC;
3153 lockdep_set_current_reclaim_state(sc.gfp_mask);
3154 reclaim_state.reclaimed_slab = 0;
3155 p->reclaim_state = &reclaim_state;
3156
3157 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3158
3159 p->reclaim_state = NULL;
3160 lockdep_clear_current_reclaim_state();
3161 p->flags &= ~PF_MEMALLOC;
3162
3163 return nr_reclaimed;
3164 }
3165 #endif /* CONFIG_HIBERNATION */
3166
3167 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3168 not required for correctness. So if the last cpu in a node goes
3169 away, we get changed to run anywhere: as the first one comes back,
3170 restore their cpu bindings. */
3171 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3172 void *hcpu)
3173 {
3174 int nid;
3175
3176 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3177 for_each_node_state(nid, N_MEMORY) {
3178 pg_data_t *pgdat = NODE_DATA(nid);
3179 const struct cpumask *mask;
3180
3181 mask = cpumask_of_node(pgdat->node_id);
3182
3183 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3184 /* One of our CPUs online: restore mask */
3185 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3186 }
3187 }
3188 return NOTIFY_OK;
3189 }
3190
3191 /*
3192 * This kswapd start function will be called by init and node-hot-add.
3193 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3194 */
3195 int kswapd_run(int nid)
3196 {
3197 pg_data_t *pgdat = NODE_DATA(nid);
3198 int ret = 0;
3199
3200 if (pgdat->kswapd)
3201 return 0;
3202
3203 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3204 if (IS_ERR(pgdat->kswapd)) {
3205 /* failure at boot is fatal */
3206 BUG_ON(system_state == SYSTEM_BOOTING);
3207 pr_err("Failed to start kswapd on node %d\n", nid);
3208 ret = PTR_ERR(pgdat->kswapd);
3209 pgdat->kswapd = NULL;
3210 }
3211 return ret;
3212 }
3213
3214 /*
3215 * Called by memory hotplug when all memory in a node is offlined. Caller must
3216 * hold lock_memory_hotplug().
3217 */
3218 void kswapd_stop(int nid)
3219 {
3220 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3221
3222 if (kswapd) {
3223 kthread_stop(kswapd);
3224 NODE_DATA(nid)->kswapd = NULL;
3225 }
3226 }
3227
3228 static int __init kswapd_init(void)
3229 {
3230 int nid;
3231
3232 swap_setup();
3233 for_each_node_state(nid, N_MEMORY)
3234 kswapd_run(nid);
3235 hotcpu_notifier(cpu_callback, 0);
3236 return 0;
3237 }
3238
3239 module_init(kswapd_init)
3240
3241 #ifdef CONFIG_NUMA
3242 /*
3243 * Zone reclaim mode
3244 *
3245 * If non-zero call zone_reclaim when the number of free pages falls below
3246 * the watermarks.
3247 */
3248 int zone_reclaim_mode __read_mostly;
3249
3250 #define RECLAIM_OFF 0
3251 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3252 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3253 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3254
3255 /*
3256 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3257 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3258 * a zone.
3259 */
3260 #define ZONE_RECLAIM_PRIORITY 4
3261
3262 /*
3263 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3264 * occur.
3265 */
3266 int sysctl_min_unmapped_ratio = 1;
3267
3268 /*
3269 * If the number of slab pages in a zone grows beyond this percentage then
3270 * slab reclaim needs to occur.
3271 */
3272 int sysctl_min_slab_ratio = 5;
3273
3274 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3275 {
3276 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3277 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3278 zone_page_state(zone, NR_ACTIVE_FILE);
3279
3280 /*
3281 * It's possible for there to be more file mapped pages than
3282 * accounted for by the pages on the file LRU lists because
3283 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3284 */
3285 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3286 }
3287
3288 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3289 static long zone_pagecache_reclaimable(struct zone *zone)
3290 {
3291 long nr_pagecache_reclaimable;
3292 long delta = 0;
3293
3294 /*
3295 * If RECLAIM_SWAP is set, then all file pages are considered
3296 * potentially reclaimable. Otherwise, we have to worry about
3297 * pages like swapcache and zone_unmapped_file_pages() provides
3298 * a better estimate
3299 */
3300 if (zone_reclaim_mode & RECLAIM_SWAP)
3301 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3302 else
3303 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3304
3305 /* If we can't clean pages, remove dirty pages from consideration */
3306 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3307 delta += zone_page_state(zone, NR_FILE_DIRTY);
3308
3309 /* Watch for any possible underflows due to delta */
3310 if (unlikely(delta > nr_pagecache_reclaimable))
3311 delta = nr_pagecache_reclaimable;
3312
3313 return nr_pagecache_reclaimable - delta;
3314 }
3315
3316 /*
3317 * Try to free up some pages from this zone through reclaim.
3318 */
3319 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3320 {
3321 /* Minimum pages needed in order to stay on node */
3322 const unsigned long nr_pages = 1 << order;
3323 struct task_struct *p = current;
3324 struct reclaim_state reclaim_state;
3325 struct scan_control sc = {
3326 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3327 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3328 .may_swap = 1,
3329 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3330 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3331 .order = order,
3332 .priority = ZONE_RECLAIM_PRIORITY,
3333 };
3334 struct shrink_control shrink = {
3335 .gfp_mask = sc.gfp_mask,
3336 };
3337 unsigned long nr_slab_pages0, nr_slab_pages1;
3338
3339 cond_resched();
3340 /*
3341 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3342 * and we also need to be able to write out pages for RECLAIM_WRITE
3343 * and RECLAIM_SWAP.
3344 */
3345 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3346 lockdep_set_current_reclaim_state(gfp_mask);
3347 reclaim_state.reclaimed_slab = 0;
3348 p->reclaim_state = &reclaim_state;
3349
3350 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3351 /*
3352 * Free memory by calling shrink zone with increasing
3353 * priorities until we have enough memory freed.
3354 */
3355 do {
3356 shrink_zone(zone, &sc);
3357 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3358 }
3359
3360 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3361 if (nr_slab_pages0 > zone->min_slab_pages) {
3362 /*
3363 * shrink_slab() does not currently allow us to determine how
3364 * many pages were freed in this zone. So we take the current
3365 * number of slab pages and shake the slab until it is reduced
3366 * by the same nr_pages that we used for reclaiming unmapped
3367 * pages.
3368 *
3369 * Note that shrink_slab will free memory on all zones and may
3370 * take a long time.
3371 */
3372 for (;;) {
3373 unsigned long lru_pages = zone_reclaimable_pages(zone);
3374
3375 /* No reclaimable slab or very low memory pressure */
3376 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3377 break;
3378
3379 /* Freed enough memory */
3380 nr_slab_pages1 = zone_page_state(zone,
3381 NR_SLAB_RECLAIMABLE);
3382 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3383 break;
3384 }
3385
3386 /*
3387 * Update nr_reclaimed by the number of slab pages we
3388 * reclaimed from this zone.
3389 */
3390 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3391 if (nr_slab_pages1 < nr_slab_pages0)
3392 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3393 }
3394
3395 p->reclaim_state = NULL;
3396 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3397 lockdep_clear_current_reclaim_state();
3398 return sc.nr_reclaimed >= nr_pages;
3399 }
3400
3401 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3402 {
3403 int node_id;
3404 int ret;
3405
3406 /*
3407 * Zone reclaim reclaims unmapped file backed pages and
3408 * slab pages if we are over the defined limits.
3409 *
3410 * A small portion of unmapped file backed pages is needed for
3411 * file I/O otherwise pages read by file I/O will be immediately
3412 * thrown out if the zone is overallocated. So we do not reclaim
3413 * if less than a specified percentage of the zone is used by
3414 * unmapped file backed pages.
3415 */
3416 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3417 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3418 return ZONE_RECLAIM_FULL;
3419
3420 if (zone->all_unreclaimable)
3421 return ZONE_RECLAIM_FULL;
3422
3423 /*
3424 * Do not scan if the allocation should not be delayed.
3425 */
3426 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3427 return ZONE_RECLAIM_NOSCAN;
3428
3429 /*
3430 * Only run zone reclaim on the local zone or on zones that do not
3431 * have associated processors. This will favor the local processor
3432 * over remote processors and spread off node memory allocations
3433 * as wide as possible.
3434 */
3435 node_id = zone_to_nid(zone);
3436 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3437 return ZONE_RECLAIM_NOSCAN;
3438
3439 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3440 return ZONE_RECLAIM_NOSCAN;
3441
3442 ret = __zone_reclaim(zone, gfp_mask, order);
3443 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3444
3445 if (!ret)
3446 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3447
3448 return ret;
3449 }
3450 #endif
3451
3452 /*
3453 * page_evictable - test whether a page is evictable
3454 * @page: the page to test
3455 *
3456 * Test whether page is evictable--i.e., should be placed on active/inactive
3457 * lists vs unevictable list.
3458 *
3459 * Reasons page might not be evictable:
3460 * (1) page's mapping marked unevictable
3461 * (2) page is part of an mlocked VMA
3462 *
3463 */
3464 int page_evictable(struct page *page)
3465 {
3466 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3467 }
3468
3469 #ifdef CONFIG_SHMEM
3470 /**
3471 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3472 * @pages: array of pages to check
3473 * @nr_pages: number of pages to check
3474 *
3475 * Checks pages for evictability and moves them to the appropriate lru list.
3476 *
3477 * This function is only used for SysV IPC SHM_UNLOCK.
3478 */
3479 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3480 {
3481 struct lruvec *lruvec;
3482 struct zone *zone = NULL;
3483 int pgscanned = 0;
3484 int pgrescued = 0;
3485 int i;
3486
3487 for (i = 0; i < nr_pages; i++) {
3488 struct page *page = pages[i];
3489 struct zone *pagezone;
3490
3491 pgscanned++;
3492 pagezone = page_zone(page);
3493 if (pagezone != zone) {
3494 if (zone)
3495 spin_unlock_irq(&zone->lru_lock);
3496 zone = pagezone;
3497 spin_lock_irq(&zone->lru_lock);
3498 }
3499 lruvec = mem_cgroup_page_lruvec(page, zone);
3500
3501 if (!PageLRU(page) || !PageUnevictable(page))
3502 continue;
3503
3504 if (page_evictable(page)) {
3505 enum lru_list lru = page_lru_base_type(page);
3506
3507 VM_BUG_ON(PageActive(page));
3508 ClearPageUnevictable(page);
3509 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3510 add_page_to_lru_list(page, lruvec, lru);
3511 pgrescued++;
3512 }
3513 }
3514
3515 if (zone) {
3516 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3517 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3518 spin_unlock_irq(&zone->lru_lock);
3519 }
3520 }
3521 #endif /* CONFIG_SHMEM */
3522
3523 static void warn_scan_unevictable_pages(void)
3524 {
3525 printk_once(KERN_WARNING
3526 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3527 "disabled for lack of a legitimate use case. If you have "
3528 "one, please send an email to linux-mm@kvack.org.\n",
3529 current->comm);
3530 }
3531
3532 /*
3533 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3534 * all nodes' unevictable lists for evictable pages
3535 */
3536 unsigned long scan_unevictable_pages;
3537
3538 int scan_unevictable_handler(struct ctl_table *table, int write,
3539 void __user *buffer,
3540 size_t *length, loff_t *ppos)
3541 {
3542 warn_scan_unevictable_pages();
3543 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3544 scan_unevictable_pages = 0;
3545 return 0;
3546 }
3547
3548 #ifdef CONFIG_NUMA
3549 /*
3550 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3551 * a specified node's per zone unevictable lists for evictable pages.
3552 */
3553
3554 static ssize_t read_scan_unevictable_node(struct device *dev,
3555 struct device_attribute *attr,
3556 char *buf)
3557 {
3558 warn_scan_unevictable_pages();
3559 return sprintf(buf, "0\n"); /* always zero; should fit... */
3560 }
3561
3562 static ssize_t write_scan_unevictable_node(struct device *dev,
3563 struct device_attribute *attr,
3564 const char *buf, size_t count)
3565 {
3566 warn_scan_unevictable_pages();
3567 return 1;
3568 }
3569
3570
3571 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3572 read_scan_unevictable_node,
3573 write_scan_unevictable_node);
3574
3575 int scan_unevictable_register_node(struct node *node)
3576 {
3577 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3578 }
3579
3580 void scan_unevictable_unregister_node(struct node *node)
3581 {
3582 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3583 }
3584 #endif