vmscan: set up pagevec as late as possible in shrink_page_list()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46
47 #include <linux/swapops.h>
48
49 #include "internal.h"
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/vmscan.h>
53
54 struct scan_control {
55 /* Incremented by the number of inactive pages that were scanned */
56 unsigned long nr_scanned;
57
58 /* Number of pages freed so far during a call to shrink_zones() */
59 unsigned long nr_reclaimed;
60
61 /* How many pages shrink_list() should reclaim */
62 unsigned long nr_to_reclaim;
63
64 unsigned long hibernation_mode;
65
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
68
69 int may_writepage;
70
71 /* Can mapped pages be reclaimed? */
72 int may_unmap;
73
74 /* Can pages be swapped as part of reclaim? */
75 int may_swap;
76
77 int swappiness;
78
79 int order;
80
81 /*
82 * Intend to reclaim enough contenious memory rather than to reclaim
83 * enough amount memory. I.e, it's the mode for high order allocation.
84 */
85 bool lumpy_reclaim_mode;
86
87 /* Which cgroup do we reclaim from */
88 struct mem_cgroup *mem_cgroup;
89
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
95 };
96
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126
127 /*
128 * From 0 .. 100. Higher means more swappy.
129 */
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
132
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
138 #else
139 #define scanning_global_lru(sc) (1)
140 #endif
141
142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
144 {
145 if (!scanning_global_lru(sc))
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
148 return &zone->reclaim_stat;
149 }
150
151 static unsigned long zone_nr_lru_pages(struct zone *zone,
152 struct scan_control *sc, enum lru_list lru)
153 {
154 if (!scanning_global_lru(sc))
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
157 return zone_page_state(zone, NR_LRU_BASE + lru);
158 }
159
160
161 /*
162 * Add a shrinker callback to be called from the vm
163 */
164 void register_shrinker(struct shrinker *shrinker)
165 {
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
170 }
171 EXPORT_SYMBOL(register_shrinker);
172
173 /*
174 * Remove one
175 */
176 void unregister_shrinker(struct shrinker *shrinker)
177 {
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
181 }
182 EXPORT_SYMBOL(unregister_shrinker);
183
184 #define SHRINK_BATCH 128
185 /*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
192 *
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
201 *
202 * Returns the number of slab objects which we shrunk.
203 */
204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
206 {
207 struct shrinker *shrinker;
208 unsigned long ret = 0;
209
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
212
213 if (!down_read_trylock(&shrinker_rwsem))
214 return 1; /* Assume we'll be able to shrink next time */
215
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
219 unsigned long max_pass;
220
221 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
222 delta = (4 * scanned) / shrinker->seeks;
223 delta *= max_pass;
224 do_div(delta, lru_pages + 1);
225 shrinker->nr += delta;
226 if (shrinker->nr < 0) {
227 printk(KERN_ERR "shrink_slab: %pF negative objects to "
228 "delete nr=%ld\n",
229 shrinker->shrink, shrinker->nr);
230 shrinker->nr = max_pass;
231 }
232
233 /*
234 * Avoid risking looping forever due to too large nr value:
235 * never try to free more than twice the estimate number of
236 * freeable entries.
237 */
238 if (shrinker->nr > max_pass * 2)
239 shrinker->nr = max_pass * 2;
240
241 total_scan = shrinker->nr;
242 shrinker->nr = 0;
243
244 while (total_scan >= SHRINK_BATCH) {
245 long this_scan = SHRINK_BATCH;
246 int shrink_ret;
247 int nr_before;
248
249 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
250 shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
251 gfp_mask);
252 if (shrink_ret == -1)
253 break;
254 if (shrink_ret < nr_before)
255 ret += nr_before - shrink_ret;
256 count_vm_events(SLABS_SCANNED, this_scan);
257 total_scan -= this_scan;
258
259 cond_resched();
260 }
261
262 shrinker->nr += total_scan;
263 }
264 up_read(&shrinker_rwsem);
265 return ret;
266 }
267
268 static inline int is_page_cache_freeable(struct page *page)
269 {
270 /*
271 * A freeable page cache page is referenced only by the caller
272 * that isolated the page, the page cache radix tree and
273 * optional buffer heads at page->private.
274 */
275 return page_count(page) - page_has_private(page) == 2;
276 }
277
278 static int may_write_to_queue(struct backing_dev_info *bdi)
279 {
280 if (current->flags & PF_SWAPWRITE)
281 return 1;
282 if (!bdi_write_congested(bdi))
283 return 1;
284 if (bdi == current->backing_dev_info)
285 return 1;
286 return 0;
287 }
288
289 /*
290 * We detected a synchronous write error writing a page out. Probably
291 * -ENOSPC. We need to propagate that into the address_space for a subsequent
292 * fsync(), msync() or close().
293 *
294 * The tricky part is that after writepage we cannot touch the mapping: nothing
295 * prevents it from being freed up. But we have a ref on the page and once
296 * that page is locked, the mapping is pinned.
297 *
298 * We're allowed to run sleeping lock_page() here because we know the caller has
299 * __GFP_FS.
300 */
301 static void handle_write_error(struct address_space *mapping,
302 struct page *page, int error)
303 {
304 lock_page_nosync(page);
305 if (page_mapping(page) == mapping)
306 mapping_set_error(mapping, error);
307 unlock_page(page);
308 }
309
310 /* Request for sync pageout. */
311 enum pageout_io {
312 PAGEOUT_IO_ASYNC,
313 PAGEOUT_IO_SYNC,
314 };
315
316 /* possible outcome of pageout() */
317 typedef enum {
318 /* failed to write page out, page is locked */
319 PAGE_KEEP,
320 /* move page to the active list, page is locked */
321 PAGE_ACTIVATE,
322 /* page has been sent to the disk successfully, page is unlocked */
323 PAGE_SUCCESS,
324 /* page is clean and locked */
325 PAGE_CLEAN,
326 } pageout_t;
327
328 /*
329 * pageout is called by shrink_page_list() for each dirty page.
330 * Calls ->writepage().
331 */
332 static pageout_t pageout(struct page *page, struct address_space *mapping,
333 enum pageout_io sync_writeback)
334 {
335 /*
336 * If the page is dirty, only perform writeback if that write
337 * will be non-blocking. To prevent this allocation from being
338 * stalled by pagecache activity. But note that there may be
339 * stalls if we need to run get_block(). We could test
340 * PagePrivate for that.
341 *
342 * If this process is currently in __generic_file_aio_write() against
343 * this page's queue, we can perform writeback even if that
344 * will block.
345 *
346 * If the page is swapcache, write it back even if that would
347 * block, for some throttling. This happens by accident, because
348 * swap_backing_dev_info is bust: it doesn't reflect the
349 * congestion state of the swapdevs. Easy to fix, if needed.
350 */
351 if (!is_page_cache_freeable(page))
352 return PAGE_KEEP;
353 if (!mapping) {
354 /*
355 * Some data journaling orphaned pages can have
356 * page->mapping == NULL while being dirty with clean buffers.
357 */
358 if (page_has_private(page)) {
359 if (try_to_free_buffers(page)) {
360 ClearPageDirty(page);
361 printk("%s: orphaned page\n", __func__);
362 return PAGE_CLEAN;
363 }
364 }
365 return PAGE_KEEP;
366 }
367 if (mapping->a_ops->writepage == NULL)
368 return PAGE_ACTIVATE;
369 if (!may_write_to_queue(mapping->backing_dev_info))
370 return PAGE_KEEP;
371
372 if (clear_page_dirty_for_io(page)) {
373 int res;
374 struct writeback_control wbc = {
375 .sync_mode = WB_SYNC_NONE,
376 .nr_to_write = SWAP_CLUSTER_MAX,
377 .range_start = 0,
378 .range_end = LLONG_MAX,
379 .nonblocking = 1,
380 .for_reclaim = 1,
381 };
382
383 SetPageReclaim(page);
384 res = mapping->a_ops->writepage(page, &wbc);
385 if (res < 0)
386 handle_write_error(mapping, page, res);
387 if (res == AOP_WRITEPAGE_ACTIVATE) {
388 ClearPageReclaim(page);
389 return PAGE_ACTIVATE;
390 }
391
392 /*
393 * Wait on writeback if requested to. This happens when
394 * direct reclaiming a large contiguous area and the
395 * first attempt to free a range of pages fails.
396 */
397 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
398 wait_on_page_writeback(page);
399
400 if (!PageWriteback(page)) {
401 /* synchronous write or broken a_ops? */
402 ClearPageReclaim(page);
403 }
404 trace_mm_vmscan_writepage(page,
405 trace_reclaim_flags(page, sync_writeback));
406 inc_zone_page_state(page, NR_VMSCAN_WRITE);
407 return PAGE_SUCCESS;
408 }
409
410 return PAGE_CLEAN;
411 }
412
413 /*
414 * Same as remove_mapping, but if the page is removed from the mapping, it
415 * gets returned with a refcount of 0.
416 */
417 static int __remove_mapping(struct address_space *mapping, struct page *page)
418 {
419 BUG_ON(!PageLocked(page));
420 BUG_ON(mapping != page_mapping(page));
421
422 spin_lock_irq(&mapping->tree_lock);
423 /*
424 * The non racy check for a busy page.
425 *
426 * Must be careful with the order of the tests. When someone has
427 * a ref to the page, it may be possible that they dirty it then
428 * drop the reference. So if PageDirty is tested before page_count
429 * here, then the following race may occur:
430 *
431 * get_user_pages(&page);
432 * [user mapping goes away]
433 * write_to(page);
434 * !PageDirty(page) [good]
435 * SetPageDirty(page);
436 * put_page(page);
437 * !page_count(page) [good, discard it]
438 *
439 * [oops, our write_to data is lost]
440 *
441 * Reversing the order of the tests ensures such a situation cannot
442 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
443 * load is not satisfied before that of page->_count.
444 *
445 * Note that if SetPageDirty is always performed via set_page_dirty,
446 * and thus under tree_lock, then this ordering is not required.
447 */
448 if (!page_freeze_refs(page, 2))
449 goto cannot_free;
450 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
451 if (unlikely(PageDirty(page))) {
452 page_unfreeze_refs(page, 2);
453 goto cannot_free;
454 }
455
456 if (PageSwapCache(page)) {
457 swp_entry_t swap = { .val = page_private(page) };
458 __delete_from_swap_cache(page);
459 spin_unlock_irq(&mapping->tree_lock);
460 swapcache_free(swap, page);
461 } else {
462 __remove_from_page_cache(page);
463 spin_unlock_irq(&mapping->tree_lock);
464 mem_cgroup_uncharge_cache_page(page);
465 }
466
467 return 1;
468
469 cannot_free:
470 spin_unlock_irq(&mapping->tree_lock);
471 return 0;
472 }
473
474 /*
475 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
476 * someone else has a ref on the page, abort and return 0. If it was
477 * successfully detached, return 1. Assumes the caller has a single ref on
478 * this page.
479 */
480 int remove_mapping(struct address_space *mapping, struct page *page)
481 {
482 if (__remove_mapping(mapping, page)) {
483 /*
484 * Unfreezing the refcount with 1 rather than 2 effectively
485 * drops the pagecache ref for us without requiring another
486 * atomic operation.
487 */
488 page_unfreeze_refs(page, 1);
489 return 1;
490 }
491 return 0;
492 }
493
494 /**
495 * putback_lru_page - put previously isolated page onto appropriate LRU list
496 * @page: page to be put back to appropriate lru list
497 *
498 * Add previously isolated @page to appropriate LRU list.
499 * Page may still be unevictable for other reasons.
500 *
501 * lru_lock must not be held, interrupts must be enabled.
502 */
503 void putback_lru_page(struct page *page)
504 {
505 int lru;
506 int active = !!TestClearPageActive(page);
507 int was_unevictable = PageUnevictable(page);
508
509 VM_BUG_ON(PageLRU(page));
510
511 redo:
512 ClearPageUnevictable(page);
513
514 if (page_evictable(page, NULL)) {
515 /*
516 * For evictable pages, we can use the cache.
517 * In event of a race, worst case is we end up with an
518 * unevictable page on [in]active list.
519 * We know how to handle that.
520 */
521 lru = active + page_lru_base_type(page);
522 lru_cache_add_lru(page, lru);
523 } else {
524 /*
525 * Put unevictable pages directly on zone's unevictable
526 * list.
527 */
528 lru = LRU_UNEVICTABLE;
529 add_page_to_unevictable_list(page);
530 /*
531 * When racing with an mlock clearing (page is
532 * unlocked), make sure that if the other thread does
533 * not observe our setting of PG_lru and fails
534 * isolation, we see PG_mlocked cleared below and move
535 * the page back to the evictable list.
536 *
537 * The other side is TestClearPageMlocked().
538 */
539 smp_mb();
540 }
541
542 /*
543 * page's status can change while we move it among lru. If an evictable
544 * page is on unevictable list, it never be freed. To avoid that,
545 * check after we added it to the list, again.
546 */
547 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
548 if (!isolate_lru_page(page)) {
549 put_page(page);
550 goto redo;
551 }
552 /* This means someone else dropped this page from LRU
553 * So, it will be freed or putback to LRU again. There is
554 * nothing to do here.
555 */
556 }
557
558 if (was_unevictable && lru != LRU_UNEVICTABLE)
559 count_vm_event(UNEVICTABLE_PGRESCUED);
560 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
561 count_vm_event(UNEVICTABLE_PGCULLED);
562
563 put_page(page); /* drop ref from isolate */
564 }
565
566 enum page_references {
567 PAGEREF_RECLAIM,
568 PAGEREF_RECLAIM_CLEAN,
569 PAGEREF_KEEP,
570 PAGEREF_ACTIVATE,
571 };
572
573 static enum page_references page_check_references(struct page *page,
574 struct scan_control *sc)
575 {
576 int referenced_ptes, referenced_page;
577 unsigned long vm_flags;
578
579 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
580 referenced_page = TestClearPageReferenced(page);
581
582 /* Lumpy reclaim - ignore references */
583 if (sc->lumpy_reclaim_mode)
584 return PAGEREF_RECLAIM;
585
586 /*
587 * Mlock lost the isolation race with us. Let try_to_unmap()
588 * move the page to the unevictable list.
589 */
590 if (vm_flags & VM_LOCKED)
591 return PAGEREF_RECLAIM;
592
593 if (referenced_ptes) {
594 if (PageAnon(page))
595 return PAGEREF_ACTIVATE;
596 /*
597 * All mapped pages start out with page table
598 * references from the instantiating fault, so we need
599 * to look twice if a mapped file page is used more
600 * than once.
601 *
602 * Mark it and spare it for another trip around the
603 * inactive list. Another page table reference will
604 * lead to its activation.
605 *
606 * Note: the mark is set for activated pages as well
607 * so that recently deactivated but used pages are
608 * quickly recovered.
609 */
610 SetPageReferenced(page);
611
612 if (referenced_page)
613 return PAGEREF_ACTIVATE;
614
615 return PAGEREF_KEEP;
616 }
617
618 /* Reclaim if clean, defer dirty pages to writeback */
619 if (referenced_page)
620 return PAGEREF_RECLAIM_CLEAN;
621
622 return PAGEREF_RECLAIM;
623 }
624
625 static noinline_for_stack void free_page_list(struct list_head *free_pages)
626 {
627 struct pagevec freed_pvec;
628 struct page *page, *tmp;
629
630 pagevec_init(&freed_pvec, 1);
631
632 list_for_each_entry_safe(page, tmp, free_pages, lru) {
633 list_del(&page->lru);
634 if (!pagevec_add(&freed_pvec, page)) {
635 __pagevec_free(&freed_pvec);
636 pagevec_reinit(&freed_pvec);
637 }
638 }
639
640 pagevec_free(&freed_pvec);
641 }
642
643 /*
644 * shrink_page_list() returns the number of reclaimed pages
645 */
646 static unsigned long shrink_page_list(struct list_head *page_list,
647 struct scan_control *sc,
648 enum pageout_io sync_writeback)
649 {
650 LIST_HEAD(ret_pages);
651 LIST_HEAD(free_pages);
652 int pgactivate = 0;
653 unsigned long nr_reclaimed = 0;
654
655 cond_resched();
656
657 while (!list_empty(page_list)) {
658 enum page_references references;
659 struct address_space *mapping;
660 struct page *page;
661 int may_enter_fs;
662
663 cond_resched();
664
665 page = lru_to_page(page_list);
666 list_del(&page->lru);
667
668 if (!trylock_page(page))
669 goto keep;
670
671 VM_BUG_ON(PageActive(page));
672
673 sc->nr_scanned++;
674
675 if (unlikely(!page_evictable(page, NULL)))
676 goto cull_mlocked;
677
678 if (!sc->may_unmap && page_mapped(page))
679 goto keep_locked;
680
681 /* Double the slab pressure for mapped and swapcache pages */
682 if (page_mapped(page) || PageSwapCache(page))
683 sc->nr_scanned++;
684
685 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
686 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
687
688 if (PageWriteback(page)) {
689 /*
690 * Synchronous reclaim is performed in two passes,
691 * first an asynchronous pass over the list to
692 * start parallel writeback, and a second synchronous
693 * pass to wait for the IO to complete. Wait here
694 * for any page for which writeback has already
695 * started.
696 */
697 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
698 wait_on_page_writeback(page);
699 else
700 goto keep_locked;
701 }
702
703 references = page_check_references(page, sc);
704 switch (references) {
705 case PAGEREF_ACTIVATE:
706 goto activate_locked;
707 case PAGEREF_KEEP:
708 goto keep_locked;
709 case PAGEREF_RECLAIM:
710 case PAGEREF_RECLAIM_CLEAN:
711 ; /* try to reclaim the page below */
712 }
713
714 /*
715 * Anonymous process memory has backing store?
716 * Try to allocate it some swap space here.
717 */
718 if (PageAnon(page) && !PageSwapCache(page)) {
719 if (!(sc->gfp_mask & __GFP_IO))
720 goto keep_locked;
721 if (!add_to_swap(page))
722 goto activate_locked;
723 may_enter_fs = 1;
724 }
725
726 mapping = page_mapping(page);
727
728 /*
729 * The page is mapped into the page tables of one or more
730 * processes. Try to unmap it here.
731 */
732 if (page_mapped(page) && mapping) {
733 switch (try_to_unmap(page, TTU_UNMAP)) {
734 case SWAP_FAIL:
735 goto activate_locked;
736 case SWAP_AGAIN:
737 goto keep_locked;
738 case SWAP_MLOCK:
739 goto cull_mlocked;
740 case SWAP_SUCCESS:
741 ; /* try to free the page below */
742 }
743 }
744
745 if (PageDirty(page)) {
746 if (references == PAGEREF_RECLAIM_CLEAN)
747 goto keep_locked;
748 if (!may_enter_fs)
749 goto keep_locked;
750 if (!sc->may_writepage)
751 goto keep_locked;
752
753 /* Page is dirty, try to write it out here */
754 switch (pageout(page, mapping, sync_writeback)) {
755 case PAGE_KEEP:
756 goto keep_locked;
757 case PAGE_ACTIVATE:
758 goto activate_locked;
759 case PAGE_SUCCESS:
760 if (PageWriteback(page) || PageDirty(page))
761 goto keep;
762 /*
763 * A synchronous write - probably a ramdisk. Go
764 * ahead and try to reclaim the page.
765 */
766 if (!trylock_page(page))
767 goto keep;
768 if (PageDirty(page) || PageWriteback(page))
769 goto keep_locked;
770 mapping = page_mapping(page);
771 case PAGE_CLEAN:
772 ; /* try to free the page below */
773 }
774 }
775
776 /*
777 * If the page has buffers, try to free the buffer mappings
778 * associated with this page. If we succeed we try to free
779 * the page as well.
780 *
781 * We do this even if the page is PageDirty().
782 * try_to_release_page() does not perform I/O, but it is
783 * possible for a page to have PageDirty set, but it is actually
784 * clean (all its buffers are clean). This happens if the
785 * buffers were written out directly, with submit_bh(). ext3
786 * will do this, as well as the blockdev mapping.
787 * try_to_release_page() will discover that cleanness and will
788 * drop the buffers and mark the page clean - it can be freed.
789 *
790 * Rarely, pages can have buffers and no ->mapping. These are
791 * the pages which were not successfully invalidated in
792 * truncate_complete_page(). We try to drop those buffers here
793 * and if that worked, and the page is no longer mapped into
794 * process address space (page_count == 1) it can be freed.
795 * Otherwise, leave the page on the LRU so it is swappable.
796 */
797 if (page_has_private(page)) {
798 if (!try_to_release_page(page, sc->gfp_mask))
799 goto activate_locked;
800 if (!mapping && page_count(page) == 1) {
801 unlock_page(page);
802 if (put_page_testzero(page))
803 goto free_it;
804 else {
805 /*
806 * rare race with speculative reference.
807 * the speculative reference will free
808 * this page shortly, so we may
809 * increment nr_reclaimed here (and
810 * leave it off the LRU).
811 */
812 nr_reclaimed++;
813 continue;
814 }
815 }
816 }
817
818 if (!mapping || !__remove_mapping(mapping, page))
819 goto keep_locked;
820
821 /*
822 * At this point, we have no other references and there is
823 * no way to pick any more up (removed from LRU, removed
824 * from pagecache). Can use non-atomic bitops now (and
825 * we obviously don't have to worry about waking up a process
826 * waiting on the page lock, because there are no references.
827 */
828 __clear_page_locked(page);
829 free_it:
830 nr_reclaimed++;
831
832 /*
833 * Is there need to periodically free_page_list? It would
834 * appear not as the counts should be low
835 */
836 list_add(&page->lru, &free_pages);
837 continue;
838
839 cull_mlocked:
840 if (PageSwapCache(page))
841 try_to_free_swap(page);
842 unlock_page(page);
843 putback_lru_page(page);
844 continue;
845
846 activate_locked:
847 /* Not a candidate for swapping, so reclaim swap space. */
848 if (PageSwapCache(page) && vm_swap_full())
849 try_to_free_swap(page);
850 VM_BUG_ON(PageActive(page));
851 SetPageActive(page);
852 pgactivate++;
853 keep_locked:
854 unlock_page(page);
855 keep:
856 list_add(&page->lru, &ret_pages);
857 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
858 }
859
860 free_page_list(&free_pages);
861
862 list_splice(&ret_pages, page_list);
863 count_vm_events(PGACTIVATE, pgactivate);
864 return nr_reclaimed;
865 }
866
867 /*
868 * Attempt to remove the specified page from its LRU. Only take this page
869 * if it is of the appropriate PageActive status. Pages which are being
870 * freed elsewhere are also ignored.
871 *
872 * page: page to consider
873 * mode: one of the LRU isolation modes defined above
874 *
875 * returns 0 on success, -ve errno on failure.
876 */
877 int __isolate_lru_page(struct page *page, int mode, int file)
878 {
879 int ret = -EINVAL;
880
881 /* Only take pages on the LRU. */
882 if (!PageLRU(page))
883 return ret;
884
885 /*
886 * When checking the active state, we need to be sure we are
887 * dealing with comparible boolean values. Take the logical not
888 * of each.
889 */
890 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
891 return ret;
892
893 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
894 return ret;
895
896 /*
897 * When this function is being called for lumpy reclaim, we
898 * initially look into all LRU pages, active, inactive and
899 * unevictable; only give shrink_page_list evictable pages.
900 */
901 if (PageUnevictable(page))
902 return ret;
903
904 ret = -EBUSY;
905
906 if (likely(get_page_unless_zero(page))) {
907 /*
908 * Be careful not to clear PageLRU until after we're
909 * sure the page is not being freed elsewhere -- the
910 * page release code relies on it.
911 */
912 ClearPageLRU(page);
913 ret = 0;
914 }
915
916 return ret;
917 }
918
919 /*
920 * zone->lru_lock is heavily contended. Some of the functions that
921 * shrink the lists perform better by taking out a batch of pages
922 * and working on them outside the LRU lock.
923 *
924 * For pagecache intensive workloads, this function is the hottest
925 * spot in the kernel (apart from copy_*_user functions).
926 *
927 * Appropriate locks must be held before calling this function.
928 *
929 * @nr_to_scan: The number of pages to look through on the list.
930 * @src: The LRU list to pull pages off.
931 * @dst: The temp list to put pages on to.
932 * @scanned: The number of pages that were scanned.
933 * @order: The caller's attempted allocation order
934 * @mode: One of the LRU isolation modes
935 * @file: True [1] if isolating file [!anon] pages
936 *
937 * returns how many pages were moved onto *@dst.
938 */
939 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
940 struct list_head *src, struct list_head *dst,
941 unsigned long *scanned, int order, int mode, int file)
942 {
943 unsigned long nr_taken = 0;
944 unsigned long nr_lumpy_taken = 0;
945 unsigned long nr_lumpy_dirty = 0;
946 unsigned long nr_lumpy_failed = 0;
947 unsigned long scan;
948
949 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
950 struct page *page;
951 unsigned long pfn;
952 unsigned long end_pfn;
953 unsigned long page_pfn;
954 int zone_id;
955
956 page = lru_to_page(src);
957 prefetchw_prev_lru_page(page, src, flags);
958
959 VM_BUG_ON(!PageLRU(page));
960
961 switch (__isolate_lru_page(page, mode, file)) {
962 case 0:
963 list_move(&page->lru, dst);
964 mem_cgroup_del_lru(page);
965 nr_taken++;
966 break;
967
968 case -EBUSY:
969 /* else it is being freed elsewhere */
970 list_move(&page->lru, src);
971 mem_cgroup_rotate_lru_list(page, page_lru(page));
972 continue;
973
974 default:
975 BUG();
976 }
977
978 if (!order)
979 continue;
980
981 /*
982 * Attempt to take all pages in the order aligned region
983 * surrounding the tag page. Only take those pages of
984 * the same active state as that tag page. We may safely
985 * round the target page pfn down to the requested order
986 * as the mem_map is guarenteed valid out to MAX_ORDER,
987 * where that page is in a different zone we will detect
988 * it from its zone id and abort this block scan.
989 */
990 zone_id = page_zone_id(page);
991 page_pfn = page_to_pfn(page);
992 pfn = page_pfn & ~((1 << order) - 1);
993 end_pfn = pfn + (1 << order);
994 for (; pfn < end_pfn; pfn++) {
995 struct page *cursor_page;
996
997 /* The target page is in the block, ignore it. */
998 if (unlikely(pfn == page_pfn))
999 continue;
1000
1001 /* Avoid holes within the zone. */
1002 if (unlikely(!pfn_valid_within(pfn)))
1003 break;
1004
1005 cursor_page = pfn_to_page(pfn);
1006
1007 /* Check that we have not crossed a zone boundary. */
1008 if (unlikely(page_zone_id(cursor_page) != zone_id))
1009 continue;
1010
1011 /*
1012 * If we don't have enough swap space, reclaiming of
1013 * anon page which don't already have a swap slot is
1014 * pointless.
1015 */
1016 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1017 !PageSwapCache(cursor_page))
1018 continue;
1019
1020 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1021 list_move(&cursor_page->lru, dst);
1022 mem_cgroup_del_lru(cursor_page);
1023 nr_taken++;
1024 nr_lumpy_taken++;
1025 if (PageDirty(cursor_page))
1026 nr_lumpy_dirty++;
1027 scan++;
1028 } else {
1029 if (mode == ISOLATE_BOTH &&
1030 page_count(cursor_page))
1031 nr_lumpy_failed++;
1032 }
1033 }
1034 }
1035
1036 *scanned = scan;
1037
1038 trace_mm_vmscan_lru_isolate(order,
1039 nr_to_scan, scan,
1040 nr_taken,
1041 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1042 mode);
1043 return nr_taken;
1044 }
1045
1046 static unsigned long isolate_pages_global(unsigned long nr,
1047 struct list_head *dst,
1048 unsigned long *scanned, int order,
1049 int mode, struct zone *z,
1050 int active, int file)
1051 {
1052 int lru = LRU_BASE;
1053 if (active)
1054 lru += LRU_ACTIVE;
1055 if (file)
1056 lru += LRU_FILE;
1057 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1058 mode, file);
1059 }
1060
1061 /*
1062 * clear_active_flags() is a helper for shrink_active_list(), clearing
1063 * any active bits from the pages in the list.
1064 */
1065 static unsigned long clear_active_flags(struct list_head *page_list,
1066 unsigned int *count)
1067 {
1068 int nr_active = 0;
1069 int lru;
1070 struct page *page;
1071
1072 list_for_each_entry(page, page_list, lru) {
1073 lru = page_lru_base_type(page);
1074 if (PageActive(page)) {
1075 lru += LRU_ACTIVE;
1076 ClearPageActive(page);
1077 nr_active++;
1078 }
1079 count[lru]++;
1080 }
1081
1082 return nr_active;
1083 }
1084
1085 /**
1086 * isolate_lru_page - tries to isolate a page from its LRU list
1087 * @page: page to isolate from its LRU list
1088 *
1089 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1090 * vmstat statistic corresponding to whatever LRU list the page was on.
1091 *
1092 * Returns 0 if the page was removed from an LRU list.
1093 * Returns -EBUSY if the page was not on an LRU list.
1094 *
1095 * The returned page will have PageLRU() cleared. If it was found on
1096 * the active list, it will have PageActive set. If it was found on
1097 * the unevictable list, it will have the PageUnevictable bit set. That flag
1098 * may need to be cleared by the caller before letting the page go.
1099 *
1100 * The vmstat statistic corresponding to the list on which the page was
1101 * found will be decremented.
1102 *
1103 * Restrictions:
1104 * (1) Must be called with an elevated refcount on the page. This is a
1105 * fundamentnal difference from isolate_lru_pages (which is called
1106 * without a stable reference).
1107 * (2) the lru_lock must not be held.
1108 * (3) interrupts must be enabled.
1109 */
1110 int isolate_lru_page(struct page *page)
1111 {
1112 int ret = -EBUSY;
1113
1114 if (PageLRU(page)) {
1115 struct zone *zone = page_zone(page);
1116
1117 spin_lock_irq(&zone->lru_lock);
1118 if (PageLRU(page) && get_page_unless_zero(page)) {
1119 int lru = page_lru(page);
1120 ret = 0;
1121 ClearPageLRU(page);
1122
1123 del_page_from_lru_list(zone, page, lru);
1124 }
1125 spin_unlock_irq(&zone->lru_lock);
1126 }
1127 return ret;
1128 }
1129
1130 /*
1131 * Are there way too many processes in the direct reclaim path already?
1132 */
1133 static int too_many_isolated(struct zone *zone, int file,
1134 struct scan_control *sc)
1135 {
1136 unsigned long inactive, isolated;
1137
1138 if (current_is_kswapd())
1139 return 0;
1140
1141 if (!scanning_global_lru(sc))
1142 return 0;
1143
1144 if (file) {
1145 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1146 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1147 } else {
1148 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1149 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1150 }
1151
1152 return isolated > inactive;
1153 }
1154
1155 /*
1156 * TODO: Try merging with migrations version of putback_lru_pages
1157 */
1158 static noinline_for_stack void
1159 putback_lru_pages(struct zone *zone, struct zone_reclaim_stat *reclaim_stat,
1160 unsigned long nr_anon, unsigned long nr_file,
1161 struct list_head *page_list)
1162 {
1163 struct page *page;
1164 struct pagevec pvec;
1165
1166 pagevec_init(&pvec, 1);
1167
1168 /*
1169 * Put back any unfreeable pages.
1170 */
1171 spin_lock(&zone->lru_lock);
1172 while (!list_empty(page_list)) {
1173 int lru;
1174 page = lru_to_page(page_list);
1175 VM_BUG_ON(PageLRU(page));
1176 list_del(&page->lru);
1177 if (unlikely(!page_evictable(page, NULL))) {
1178 spin_unlock_irq(&zone->lru_lock);
1179 putback_lru_page(page);
1180 spin_lock_irq(&zone->lru_lock);
1181 continue;
1182 }
1183 SetPageLRU(page);
1184 lru = page_lru(page);
1185 add_page_to_lru_list(zone, page, lru);
1186 if (is_active_lru(lru)) {
1187 int file = is_file_lru(lru);
1188 reclaim_stat->recent_rotated[file]++;
1189 }
1190 if (!pagevec_add(&pvec, page)) {
1191 spin_unlock_irq(&zone->lru_lock);
1192 __pagevec_release(&pvec);
1193 spin_lock_irq(&zone->lru_lock);
1194 }
1195 }
1196 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1197 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1198
1199 spin_unlock_irq(&zone->lru_lock);
1200 pagevec_release(&pvec);
1201 }
1202
1203 /*
1204 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1205 * of reclaimed pages
1206 */
1207 static noinline_for_stack unsigned long
1208 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1209 struct scan_control *sc, int priority, int file)
1210 {
1211 LIST_HEAD(page_list);
1212 unsigned long nr_scanned;
1213 unsigned long nr_reclaimed = 0;
1214 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1215 unsigned long nr_taken;
1216 unsigned long nr_active;
1217 unsigned int count[NR_LRU_LISTS] = { 0, };
1218 unsigned long nr_anon;
1219 unsigned long nr_file;
1220
1221 while (unlikely(too_many_isolated(zone, file, sc))) {
1222 congestion_wait(BLK_RW_ASYNC, HZ/10);
1223
1224 /* We are about to die and free our memory. Return now. */
1225 if (fatal_signal_pending(current))
1226 return SWAP_CLUSTER_MAX;
1227 }
1228
1229
1230 lru_add_drain();
1231 spin_lock_irq(&zone->lru_lock);
1232
1233 if (scanning_global_lru(sc)) {
1234 nr_taken = isolate_pages_global(nr_to_scan,
1235 &page_list, &nr_scanned, sc->order,
1236 sc->lumpy_reclaim_mode ?
1237 ISOLATE_BOTH : ISOLATE_INACTIVE,
1238 zone, 0, file);
1239 zone->pages_scanned += nr_scanned;
1240 if (current_is_kswapd())
1241 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1242 nr_scanned);
1243 else
1244 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1245 nr_scanned);
1246 } else {
1247 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1248 &page_list, &nr_scanned, sc->order,
1249 sc->lumpy_reclaim_mode ?
1250 ISOLATE_BOTH : ISOLATE_INACTIVE,
1251 zone, sc->mem_cgroup,
1252 0, file);
1253 /*
1254 * mem_cgroup_isolate_pages() keeps track of
1255 * scanned pages on its own.
1256 */
1257 }
1258
1259 if (nr_taken == 0) {
1260 spin_unlock_irq(&zone->lru_lock);
1261 return 0;
1262 }
1263
1264 nr_active = clear_active_flags(&page_list, count);
1265 __count_vm_events(PGDEACTIVATE, nr_active);
1266
1267 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1268 -count[LRU_ACTIVE_FILE]);
1269 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1270 -count[LRU_INACTIVE_FILE]);
1271 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1272 -count[LRU_ACTIVE_ANON]);
1273 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1274 -count[LRU_INACTIVE_ANON]);
1275
1276 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1277 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1278 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1279 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1280
1281 reclaim_stat->recent_scanned[0] += nr_anon;
1282 reclaim_stat->recent_scanned[1] += nr_file;
1283
1284 spin_unlock_irq(&zone->lru_lock);
1285
1286 nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1287
1288 /*
1289 * If we are direct reclaiming for contiguous pages and we do
1290 * not reclaim everything in the list, try again and wait
1291 * for IO to complete. This will stall high-order allocations
1292 * but that should be acceptable to the caller
1293 */
1294 if (nr_reclaimed < nr_taken && !current_is_kswapd() &&
1295 sc->lumpy_reclaim_mode) {
1296 congestion_wait(BLK_RW_ASYNC, HZ/10);
1297
1298 /*
1299 * The attempt at page out may have made some
1300 * of the pages active, mark them inactive again.
1301 */
1302 nr_active = clear_active_flags(&page_list, count);
1303 count_vm_events(PGDEACTIVATE, nr_active);
1304
1305 nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC);
1306 }
1307
1308 local_irq_disable();
1309 if (current_is_kswapd())
1310 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1311 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1312
1313 putback_lru_pages(zone, reclaim_stat, nr_anon, nr_file, &page_list);
1314 return nr_reclaimed;
1315 }
1316
1317 /*
1318 * This moves pages from the active list to the inactive list.
1319 *
1320 * We move them the other way if the page is referenced by one or more
1321 * processes, from rmap.
1322 *
1323 * If the pages are mostly unmapped, the processing is fast and it is
1324 * appropriate to hold zone->lru_lock across the whole operation. But if
1325 * the pages are mapped, the processing is slow (page_referenced()) so we
1326 * should drop zone->lru_lock around each page. It's impossible to balance
1327 * this, so instead we remove the pages from the LRU while processing them.
1328 * It is safe to rely on PG_active against the non-LRU pages in here because
1329 * nobody will play with that bit on a non-LRU page.
1330 *
1331 * The downside is that we have to touch page->_count against each page.
1332 * But we had to alter page->flags anyway.
1333 */
1334
1335 static void move_active_pages_to_lru(struct zone *zone,
1336 struct list_head *list,
1337 enum lru_list lru)
1338 {
1339 unsigned long pgmoved = 0;
1340 struct pagevec pvec;
1341 struct page *page;
1342
1343 pagevec_init(&pvec, 1);
1344
1345 while (!list_empty(list)) {
1346 page = lru_to_page(list);
1347
1348 VM_BUG_ON(PageLRU(page));
1349 SetPageLRU(page);
1350
1351 list_move(&page->lru, &zone->lru[lru].list);
1352 mem_cgroup_add_lru_list(page, lru);
1353 pgmoved++;
1354
1355 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1356 spin_unlock_irq(&zone->lru_lock);
1357 if (buffer_heads_over_limit)
1358 pagevec_strip(&pvec);
1359 __pagevec_release(&pvec);
1360 spin_lock_irq(&zone->lru_lock);
1361 }
1362 }
1363 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1364 if (!is_active_lru(lru))
1365 __count_vm_events(PGDEACTIVATE, pgmoved);
1366 }
1367
1368 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1369 struct scan_control *sc, int priority, int file)
1370 {
1371 unsigned long nr_taken;
1372 unsigned long pgscanned;
1373 unsigned long vm_flags;
1374 LIST_HEAD(l_hold); /* The pages which were snipped off */
1375 LIST_HEAD(l_active);
1376 LIST_HEAD(l_inactive);
1377 struct page *page;
1378 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1379 unsigned long nr_rotated = 0;
1380
1381 lru_add_drain();
1382 spin_lock_irq(&zone->lru_lock);
1383 if (scanning_global_lru(sc)) {
1384 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1385 &pgscanned, sc->order,
1386 ISOLATE_ACTIVE, zone,
1387 1, file);
1388 zone->pages_scanned += pgscanned;
1389 } else {
1390 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1391 &pgscanned, sc->order,
1392 ISOLATE_ACTIVE, zone,
1393 sc->mem_cgroup, 1, file);
1394 /*
1395 * mem_cgroup_isolate_pages() keeps track of
1396 * scanned pages on its own.
1397 */
1398 }
1399
1400 reclaim_stat->recent_scanned[file] += nr_taken;
1401
1402 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1403 if (file)
1404 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1405 else
1406 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1407 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1408 spin_unlock_irq(&zone->lru_lock);
1409
1410 while (!list_empty(&l_hold)) {
1411 cond_resched();
1412 page = lru_to_page(&l_hold);
1413 list_del(&page->lru);
1414
1415 if (unlikely(!page_evictable(page, NULL))) {
1416 putback_lru_page(page);
1417 continue;
1418 }
1419
1420 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1421 nr_rotated++;
1422 /*
1423 * Identify referenced, file-backed active pages and
1424 * give them one more trip around the active list. So
1425 * that executable code get better chances to stay in
1426 * memory under moderate memory pressure. Anon pages
1427 * are not likely to be evicted by use-once streaming
1428 * IO, plus JVM can create lots of anon VM_EXEC pages,
1429 * so we ignore them here.
1430 */
1431 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1432 list_add(&page->lru, &l_active);
1433 continue;
1434 }
1435 }
1436
1437 ClearPageActive(page); /* we are de-activating */
1438 list_add(&page->lru, &l_inactive);
1439 }
1440
1441 /*
1442 * Move pages back to the lru list.
1443 */
1444 spin_lock_irq(&zone->lru_lock);
1445 /*
1446 * Count referenced pages from currently used mappings as rotated,
1447 * even though only some of them are actually re-activated. This
1448 * helps balance scan pressure between file and anonymous pages in
1449 * get_scan_ratio.
1450 */
1451 reclaim_stat->recent_rotated[file] += nr_rotated;
1452
1453 move_active_pages_to_lru(zone, &l_active,
1454 LRU_ACTIVE + file * LRU_FILE);
1455 move_active_pages_to_lru(zone, &l_inactive,
1456 LRU_BASE + file * LRU_FILE);
1457 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1458 spin_unlock_irq(&zone->lru_lock);
1459 }
1460
1461 static int inactive_anon_is_low_global(struct zone *zone)
1462 {
1463 unsigned long active, inactive;
1464
1465 active = zone_page_state(zone, NR_ACTIVE_ANON);
1466 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1467
1468 if (inactive * zone->inactive_ratio < active)
1469 return 1;
1470
1471 return 0;
1472 }
1473
1474 /**
1475 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1476 * @zone: zone to check
1477 * @sc: scan control of this context
1478 *
1479 * Returns true if the zone does not have enough inactive anon pages,
1480 * meaning some active anon pages need to be deactivated.
1481 */
1482 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1483 {
1484 int low;
1485
1486 if (scanning_global_lru(sc))
1487 low = inactive_anon_is_low_global(zone);
1488 else
1489 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1490 return low;
1491 }
1492
1493 static int inactive_file_is_low_global(struct zone *zone)
1494 {
1495 unsigned long active, inactive;
1496
1497 active = zone_page_state(zone, NR_ACTIVE_FILE);
1498 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1499
1500 return (active > inactive);
1501 }
1502
1503 /**
1504 * inactive_file_is_low - check if file pages need to be deactivated
1505 * @zone: zone to check
1506 * @sc: scan control of this context
1507 *
1508 * When the system is doing streaming IO, memory pressure here
1509 * ensures that active file pages get deactivated, until more
1510 * than half of the file pages are on the inactive list.
1511 *
1512 * Once we get to that situation, protect the system's working
1513 * set from being evicted by disabling active file page aging.
1514 *
1515 * This uses a different ratio than the anonymous pages, because
1516 * the page cache uses a use-once replacement algorithm.
1517 */
1518 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1519 {
1520 int low;
1521
1522 if (scanning_global_lru(sc))
1523 low = inactive_file_is_low_global(zone);
1524 else
1525 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1526 return low;
1527 }
1528
1529 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1530 int file)
1531 {
1532 if (file)
1533 return inactive_file_is_low(zone, sc);
1534 else
1535 return inactive_anon_is_low(zone, sc);
1536 }
1537
1538 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1539 struct zone *zone, struct scan_control *sc, int priority)
1540 {
1541 int file = is_file_lru(lru);
1542
1543 if (is_active_lru(lru)) {
1544 if (inactive_list_is_low(zone, sc, file))
1545 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1546 return 0;
1547 }
1548
1549 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1550 }
1551
1552 /*
1553 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1554 * until we collected @swap_cluster_max pages to scan.
1555 */
1556 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1557 unsigned long *nr_saved_scan)
1558 {
1559 unsigned long nr;
1560
1561 *nr_saved_scan += nr_to_scan;
1562 nr = *nr_saved_scan;
1563
1564 if (nr >= SWAP_CLUSTER_MAX)
1565 *nr_saved_scan = 0;
1566 else
1567 nr = 0;
1568
1569 return nr;
1570 }
1571
1572 /*
1573 * Determine how aggressively the anon and file LRU lists should be
1574 * scanned. The relative value of each set of LRU lists is determined
1575 * by looking at the fraction of the pages scanned we did rotate back
1576 * onto the active list instead of evict.
1577 *
1578 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1579 */
1580 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1581 unsigned long *nr, int priority)
1582 {
1583 unsigned long anon, file, free;
1584 unsigned long anon_prio, file_prio;
1585 unsigned long ap, fp;
1586 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1587 u64 fraction[2], denominator;
1588 enum lru_list l;
1589 int noswap = 0;
1590
1591 /* If we have no swap space, do not bother scanning anon pages. */
1592 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1593 noswap = 1;
1594 fraction[0] = 0;
1595 fraction[1] = 1;
1596 denominator = 1;
1597 goto out;
1598 }
1599
1600 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1601 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1602 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1603 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1604
1605 if (scanning_global_lru(sc)) {
1606 free = zone_page_state(zone, NR_FREE_PAGES);
1607 /* If we have very few page cache pages,
1608 force-scan anon pages. */
1609 if (unlikely(file + free <= high_wmark_pages(zone))) {
1610 fraction[0] = 1;
1611 fraction[1] = 0;
1612 denominator = 1;
1613 goto out;
1614 }
1615 }
1616
1617 /*
1618 * OK, so we have swap space and a fair amount of page cache
1619 * pages. We use the recently rotated / recently scanned
1620 * ratios to determine how valuable each cache is.
1621 *
1622 * Because workloads change over time (and to avoid overflow)
1623 * we keep these statistics as a floating average, which ends
1624 * up weighing recent references more than old ones.
1625 *
1626 * anon in [0], file in [1]
1627 */
1628 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1629 spin_lock_irq(&zone->lru_lock);
1630 reclaim_stat->recent_scanned[0] /= 2;
1631 reclaim_stat->recent_rotated[0] /= 2;
1632 spin_unlock_irq(&zone->lru_lock);
1633 }
1634
1635 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1636 spin_lock_irq(&zone->lru_lock);
1637 reclaim_stat->recent_scanned[1] /= 2;
1638 reclaim_stat->recent_rotated[1] /= 2;
1639 spin_unlock_irq(&zone->lru_lock);
1640 }
1641
1642 /*
1643 * With swappiness at 100, anonymous and file have the same priority.
1644 * This scanning priority is essentially the inverse of IO cost.
1645 */
1646 anon_prio = sc->swappiness;
1647 file_prio = 200 - sc->swappiness;
1648
1649 /*
1650 * The amount of pressure on anon vs file pages is inversely
1651 * proportional to the fraction of recently scanned pages on
1652 * each list that were recently referenced and in active use.
1653 */
1654 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1655 ap /= reclaim_stat->recent_rotated[0] + 1;
1656
1657 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1658 fp /= reclaim_stat->recent_rotated[1] + 1;
1659
1660 fraction[0] = ap;
1661 fraction[1] = fp;
1662 denominator = ap + fp + 1;
1663 out:
1664 for_each_evictable_lru(l) {
1665 int file = is_file_lru(l);
1666 unsigned long scan;
1667
1668 scan = zone_nr_lru_pages(zone, sc, l);
1669 if (priority || noswap) {
1670 scan >>= priority;
1671 scan = div64_u64(scan * fraction[file], denominator);
1672 }
1673 nr[l] = nr_scan_try_batch(scan,
1674 &reclaim_stat->nr_saved_scan[l]);
1675 }
1676 }
1677
1678 static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
1679 {
1680 /*
1681 * If we need a large contiguous chunk of memory, or have
1682 * trouble getting a small set of contiguous pages, we
1683 * will reclaim both active and inactive pages.
1684 */
1685 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1686 sc->lumpy_reclaim_mode = 1;
1687 else if (sc->order && priority < DEF_PRIORITY - 2)
1688 sc->lumpy_reclaim_mode = 1;
1689 else
1690 sc->lumpy_reclaim_mode = 0;
1691 }
1692
1693 /*
1694 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1695 */
1696 static void shrink_zone(int priority, struct zone *zone,
1697 struct scan_control *sc)
1698 {
1699 unsigned long nr[NR_LRU_LISTS];
1700 unsigned long nr_to_scan;
1701 enum lru_list l;
1702 unsigned long nr_reclaimed = sc->nr_reclaimed;
1703 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1704
1705 get_scan_count(zone, sc, nr, priority);
1706
1707 set_lumpy_reclaim_mode(priority, sc);
1708
1709 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1710 nr[LRU_INACTIVE_FILE]) {
1711 for_each_evictable_lru(l) {
1712 if (nr[l]) {
1713 nr_to_scan = min_t(unsigned long,
1714 nr[l], SWAP_CLUSTER_MAX);
1715 nr[l] -= nr_to_scan;
1716
1717 nr_reclaimed += shrink_list(l, nr_to_scan,
1718 zone, sc, priority);
1719 }
1720 }
1721 /*
1722 * On large memory systems, scan >> priority can become
1723 * really large. This is fine for the starting priority;
1724 * we want to put equal scanning pressure on each zone.
1725 * However, if the VM has a harder time of freeing pages,
1726 * with multiple processes reclaiming pages, the total
1727 * freeing target can get unreasonably large.
1728 */
1729 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1730 break;
1731 }
1732
1733 sc->nr_reclaimed = nr_reclaimed;
1734
1735 /*
1736 * Even if we did not try to evict anon pages at all, we want to
1737 * rebalance the anon lru active/inactive ratio.
1738 */
1739 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1740 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1741
1742 throttle_vm_writeout(sc->gfp_mask);
1743 }
1744
1745 /*
1746 * This is the direct reclaim path, for page-allocating processes. We only
1747 * try to reclaim pages from zones which will satisfy the caller's allocation
1748 * request.
1749 *
1750 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1751 * Because:
1752 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1753 * allocation or
1754 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1755 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1756 * zone defense algorithm.
1757 *
1758 * If a zone is deemed to be full of pinned pages then just give it a light
1759 * scan then give up on it.
1760 */
1761 static bool shrink_zones(int priority, struct zonelist *zonelist,
1762 struct scan_control *sc)
1763 {
1764 struct zoneref *z;
1765 struct zone *zone;
1766 bool all_unreclaimable = true;
1767
1768 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1769 gfp_zone(sc->gfp_mask), sc->nodemask) {
1770 if (!populated_zone(zone))
1771 continue;
1772 /*
1773 * Take care memory controller reclaiming has small influence
1774 * to global LRU.
1775 */
1776 if (scanning_global_lru(sc)) {
1777 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1778 continue;
1779 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1780 continue; /* Let kswapd poll it */
1781 }
1782
1783 shrink_zone(priority, zone, sc);
1784 all_unreclaimable = false;
1785 }
1786 return all_unreclaimable;
1787 }
1788
1789 /*
1790 * This is the main entry point to direct page reclaim.
1791 *
1792 * If a full scan of the inactive list fails to free enough memory then we
1793 * are "out of memory" and something needs to be killed.
1794 *
1795 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1796 * high - the zone may be full of dirty or under-writeback pages, which this
1797 * caller can't do much about. We kick the writeback threads and take explicit
1798 * naps in the hope that some of these pages can be written. But if the
1799 * allocating task holds filesystem locks which prevent writeout this might not
1800 * work, and the allocation attempt will fail.
1801 *
1802 * returns: 0, if no pages reclaimed
1803 * else, the number of pages reclaimed
1804 */
1805 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1806 struct scan_control *sc)
1807 {
1808 int priority;
1809 bool all_unreclaimable;
1810 unsigned long total_scanned = 0;
1811 struct reclaim_state *reclaim_state = current->reclaim_state;
1812 struct zoneref *z;
1813 struct zone *zone;
1814 unsigned long writeback_threshold;
1815
1816 get_mems_allowed();
1817 delayacct_freepages_start();
1818
1819 if (scanning_global_lru(sc))
1820 count_vm_event(ALLOCSTALL);
1821
1822 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1823 sc->nr_scanned = 0;
1824 if (!priority)
1825 disable_swap_token();
1826 all_unreclaimable = shrink_zones(priority, zonelist, sc);
1827 /*
1828 * Don't shrink slabs when reclaiming memory from
1829 * over limit cgroups
1830 */
1831 if (scanning_global_lru(sc)) {
1832 unsigned long lru_pages = 0;
1833 for_each_zone_zonelist(zone, z, zonelist,
1834 gfp_zone(sc->gfp_mask)) {
1835 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1836 continue;
1837
1838 lru_pages += zone_reclaimable_pages(zone);
1839 }
1840
1841 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1842 if (reclaim_state) {
1843 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1844 reclaim_state->reclaimed_slab = 0;
1845 }
1846 }
1847 total_scanned += sc->nr_scanned;
1848 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1849 goto out;
1850
1851 /*
1852 * Try to write back as many pages as we just scanned. This
1853 * tends to cause slow streaming writers to write data to the
1854 * disk smoothly, at the dirtying rate, which is nice. But
1855 * that's undesirable in laptop mode, where we *want* lumpy
1856 * writeout. So in laptop mode, write out the whole world.
1857 */
1858 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1859 if (total_scanned > writeback_threshold) {
1860 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1861 sc->may_writepage = 1;
1862 }
1863
1864 /* Take a nap, wait for some writeback to complete */
1865 if (!sc->hibernation_mode && sc->nr_scanned &&
1866 priority < DEF_PRIORITY - 2)
1867 congestion_wait(BLK_RW_ASYNC, HZ/10);
1868 }
1869
1870 out:
1871 /*
1872 * Now that we've scanned all the zones at this priority level, note
1873 * that level within the zone so that the next thread which performs
1874 * scanning of this zone will immediately start out at this priority
1875 * level. This affects only the decision whether or not to bring
1876 * mapped pages onto the inactive list.
1877 */
1878 if (priority < 0)
1879 priority = 0;
1880
1881 delayacct_freepages_end();
1882 put_mems_allowed();
1883
1884 if (sc->nr_reclaimed)
1885 return sc->nr_reclaimed;
1886
1887 /* top priority shrink_zones still had more to do? don't OOM, then */
1888 if (scanning_global_lru(sc) && !all_unreclaimable)
1889 return 1;
1890
1891 return 0;
1892 }
1893
1894 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1895 gfp_t gfp_mask, nodemask_t *nodemask)
1896 {
1897 unsigned long nr_reclaimed;
1898 struct scan_control sc = {
1899 .gfp_mask = gfp_mask,
1900 .may_writepage = !laptop_mode,
1901 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1902 .may_unmap = 1,
1903 .may_swap = 1,
1904 .swappiness = vm_swappiness,
1905 .order = order,
1906 .mem_cgroup = NULL,
1907 .nodemask = nodemask,
1908 };
1909
1910 trace_mm_vmscan_direct_reclaim_begin(order,
1911 sc.may_writepage,
1912 gfp_mask);
1913
1914 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
1915
1916 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1917
1918 return nr_reclaimed;
1919 }
1920
1921 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1922
1923 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1924 gfp_t gfp_mask, bool noswap,
1925 unsigned int swappiness,
1926 struct zone *zone, int nid)
1927 {
1928 struct scan_control sc = {
1929 .may_writepage = !laptop_mode,
1930 .may_unmap = 1,
1931 .may_swap = !noswap,
1932 .swappiness = swappiness,
1933 .order = 0,
1934 .mem_cgroup = mem,
1935 };
1936 nodemask_t nm = nodemask_of_node(nid);
1937
1938 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1939 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1940 sc.nodemask = &nm;
1941 sc.nr_reclaimed = 0;
1942 sc.nr_scanned = 0;
1943 /*
1944 * NOTE: Although we can get the priority field, using it
1945 * here is not a good idea, since it limits the pages we can scan.
1946 * if we don't reclaim here, the shrink_zone from balance_pgdat
1947 * will pick up pages from other mem cgroup's as well. We hack
1948 * the priority and make it zero.
1949 */
1950 shrink_zone(0, zone, &sc);
1951 return sc.nr_reclaimed;
1952 }
1953
1954 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1955 gfp_t gfp_mask,
1956 bool noswap,
1957 unsigned int swappiness)
1958 {
1959 struct zonelist *zonelist;
1960 struct scan_control sc = {
1961 .may_writepage = !laptop_mode,
1962 .may_unmap = 1,
1963 .may_swap = !noswap,
1964 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1965 .swappiness = swappiness,
1966 .order = 0,
1967 .mem_cgroup = mem_cont,
1968 .nodemask = NULL, /* we don't care the placement */
1969 };
1970
1971 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1972 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1973 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1974 return do_try_to_free_pages(zonelist, &sc);
1975 }
1976 #endif
1977
1978 /* is kswapd sleeping prematurely? */
1979 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1980 {
1981 int i;
1982
1983 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1984 if (remaining)
1985 return 1;
1986
1987 /* If after HZ/10, a zone is below the high mark, it's premature */
1988 for (i = 0; i < pgdat->nr_zones; i++) {
1989 struct zone *zone = pgdat->node_zones + i;
1990
1991 if (!populated_zone(zone))
1992 continue;
1993
1994 if (zone->all_unreclaimable)
1995 continue;
1996
1997 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
1998 0, 0))
1999 return 1;
2000 }
2001
2002 return 0;
2003 }
2004
2005 /*
2006 * For kswapd, balance_pgdat() will work across all this node's zones until
2007 * they are all at high_wmark_pages(zone).
2008 *
2009 * Returns the number of pages which were actually freed.
2010 *
2011 * There is special handling here for zones which are full of pinned pages.
2012 * This can happen if the pages are all mlocked, or if they are all used by
2013 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2014 * What we do is to detect the case where all pages in the zone have been
2015 * scanned twice and there has been zero successful reclaim. Mark the zone as
2016 * dead and from now on, only perform a short scan. Basically we're polling
2017 * the zone for when the problem goes away.
2018 *
2019 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2020 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2021 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2022 * lower zones regardless of the number of free pages in the lower zones. This
2023 * interoperates with the page allocator fallback scheme to ensure that aging
2024 * of pages is balanced across the zones.
2025 */
2026 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
2027 {
2028 int all_zones_ok;
2029 int priority;
2030 int i;
2031 unsigned long total_scanned;
2032 struct reclaim_state *reclaim_state = current->reclaim_state;
2033 struct scan_control sc = {
2034 .gfp_mask = GFP_KERNEL,
2035 .may_unmap = 1,
2036 .may_swap = 1,
2037 /*
2038 * kswapd doesn't want to be bailed out while reclaim. because
2039 * we want to put equal scanning pressure on each zone.
2040 */
2041 .nr_to_reclaim = ULONG_MAX,
2042 .swappiness = vm_swappiness,
2043 .order = order,
2044 .mem_cgroup = NULL,
2045 };
2046 loop_again:
2047 total_scanned = 0;
2048 sc.nr_reclaimed = 0;
2049 sc.may_writepage = !laptop_mode;
2050 count_vm_event(PAGEOUTRUN);
2051
2052 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2053 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2054 unsigned long lru_pages = 0;
2055 int has_under_min_watermark_zone = 0;
2056
2057 /* The swap token gets in the way of swapout... */
2058 if (!priority)
2059 disable_swap_token();
2060
2061 all_zones_ok = 1;
2062
2063 /*
2064 * Scan in the highmem->dma direction for the highest
2065 * zone which needs scanning
2066 */
2067 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2068 struct zone *zone = pgdat->node_zones + i;
2069
2070 if (!populated_zone(zone))
2071 continue;
2072
2073 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2074 continue;
2075
2076 /*
2077 * Do some background aging of the anon list, to give
2078 * pages a chance to be referenced before reclaiming.
2079 */
2080 if (inactive_anon_is_low(zone, &sc))
2081 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2082 &sc, priority, 0);
2083
2084 if (!zone_watermark_ok(zone, order,
2085 high_wmark_pages(zone), 0, 0)) {
2086 end_zone = i;
2087 break;
2088 }
2089 }
2090 if (i < 0)
2091 goto out;
2092
2093 for (i = 0; i <= end_zone; i++) {
2094 struct zone *zone = pgdat->node_zones + i;
2095
2096 lru_pages += zone_reclaimable_pages(zone);
2097 }
2098
2099 /*
2100 * Now scan the zone in the dma->highmem direction, stopping
2101 * at the last zone which needs scanning.
2102 *
2103 * We do this because the page allocator works in the opposite
2104 * direction. This prevents the page allocator from allocating
2105 * pages behind kswapd's direction of progress, which would
2106 * cause too much scanning of the lower zones.
2107 */
2108 for (i = 0; i <= end_zone; i++) {
2109 struct zone *zone = pgdat->node_zones + i;
2110 int nr_slab;
2111 int nid, zid;
2112
2113 if (!populated_zone(zone))
2114 continue;
2115
2116 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2117 continue;
2118
2119 sc.nr_scanned = 0;
2120
2121 nid = pgdat->node_id;
2122 zid = zone_idx(zone);
2123 /*
2124 * Call soft limit reclaim before calling shrink_zone.
2125 * For now we ignore the return value
2126 */
2127 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2128 nid, zid);
2129 /*
2130 * We put equal pressure on every zone, unless one
2131 * zone has way too many pages free already.
2132 */
2133 if (!zone_watermark_ok(zone, order,
2134 8*high_wmark_pages(zone), end_zone, 0))
2135 shrink_zone(priority, zone, &sc);
2136 reclaim_state->reclaimed_slab = 0;
2137 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2138 lru_pages);
2139 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2140 total_scanned += sc.nr_scanned;
2141 if (zone->all_unreclaimable)
2142 continue;
2143 if (nr_slab == 0 &&
2144 zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
2145 zone->all_unreclaimable = 1;
2146 /*
2147 * If we've done a decent amount of scanning and
2148 * the reclaim ratio is low, start doing writepage
2149 * even in laptop mode
2150 */
2151 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2152 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2153 sc.may_writepage = 1;
2154
2155 if (!zone_watermark_ok(zone, order,
2156 high_wmark_pages(zone), end_zone, 0)) {
2157 all_zones_ok = 0;
2158 /*
2159 * We are still under min water mark. This
2160 * means that we have a GFP_ATOMIC allocation
2161 * failure risk. Hurry up!
2162 */
2163 if (!zone_watermark_ok(zone, order,
2164 min_wmark_pages(zone), end_zone, 0))
2165 has_under_min_watermark_zone = 1;
2166 }
2167
2168 }
2169 if (all_zones_ok)
2170 break; /* kswapd: all done */
2171 /*
2172 * OK, kswapd is getting into trouble. Take a nap, then take
2173 * another pass across the zones.
2174 */
2175 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2176 if (has_under_min_watermark_zone)
2177 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2178 else
2179 congestion_wait(BLK_RW_ASYNC, HZ/10);
2180 }
2181
2182 /*
2183 * We do this so kswapd doesn't build up large priorities for
2184 * example when it is freeing in parallel with allocators. It
2185 * matches the direct reclaim path behaviour in terms of impact
2186 * on zone->*_priority.
2187 */
2188 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2189 break;
2190 }
2191 out:
2192 if (!all_zones_ok) {
2193 cond_resched();
2194
2195 try_to_freeze();
2196
2197 /*
2198 * Fragmentation may mean that the system cannot be
2199 * rebalanced for high-order allocations in all zones.
2200 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2201 * it means the zones have been fully scanned and are still
2202 * not balanced. For high-order allocations, there is
2203 * little point trying all over again as kswapd may
2204 * infinite loop.
2205 *
2206 * Instead, recheck all watermarks at order-0 as they
2207 * are the most important. If watermarks are ok, kswapd will go
2208 * back to sleep. High-order users can still perform direct
2209 * reclaim if they wish.
2210 */
2211 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2212 order = sc.order = 0;
2213
2214 goto loop_again;
2215 }
2216
2217 return sc.nr_reclaimed;
2218 }
2219
2220 /*
2221 * The background pageout daemon, started as a kernel thread
2222 * from the init process.
2223 *
2224 * This basically trickles out pages so that we have _some_
2225 * free memory available even if there is no other activity
2226 * that frees anything up. This is needed for things like routing
2227 * etc, where we otherwise might have all activity going on in
2228 * asynchronous contexts that cannot page things out.
2229 *
2230 * If there are applications that are active memory-allocators
2231 * (most normal use), this basically shouldn't matter.
2232 */
2233 static int kswapd(void *p)
2234 {
2235 unsigned long order;
2236 pg_data_t *pgdat = (pg_data_t*)p;
2237 struct task_struct *tsk = current;
2238 DEFINE_WAIT(wait);
2239 struct reclaim_state reclaim_state = {
2240 .reclaimed_slab = 0,
2241 };
2242 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2243
2244 lockdep_set_current_reclaim_state(GFP_KERNEL);
2245
2246 if (!cpumask_empty(cpumask))
2247 set_cpus_allowed_ptr(tsk, cpumask);
2248 current->reclaim_state = &reclaim_state;
2249
2250 /*
2251 * Tell the memory management that we're a "memory allocator",
2252 * and that if we need more memory we should get access to it
2253 * regardless (see "__alloc_pages()"). "kswapd" should
2254 * never get caught in the normal page freeing logic.
2255 *
2256 * (Kswapd normally doesn't need memory anyway, but sometimes
2257 * you need a small amount of memory in order to be able to
2258 * page out something else, and this flag essentially protects
2259 * us from recursively trying to free more memory as we're
2260 * trying to free the first piece of memory in the first place).
2261 */
2262 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2263 set_freezable();
2264
2265 order = 0;
2266 for ( ; ; ) {
2267 unsigned long new_order;
2268 int ret;
2269
2270 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2271 new_order = pgdat->kswapd_max_order;
2272 pgdat->kswapd_max_order = 0;
2273 if (order < new_order) {
2274 /*
2275 * Don't sleep if someone wants a larger 'order'
2276 * allocation
2277 */
2278 order = new_order;
2279 } else {
2280 if (!freezing(current) && !kthread_should_stop()) {
2281 long remaining = 0;
2282
2283 /* Try to sleep for a short interval */
2284 if (!sleeping_prematurely(pgdat, order, remaining)) {
2285 remaining = schedule_timeout(HZ/10);
2286 finish_wait(&pgdat->kswapd_wait, &wait);
2287 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2288 }
2289
2290 /*
2291 * After a short sleep, check if it was a
2292 * premature sleep. If not, then go fully
2293 * to sleep until explicitly woken up
2294 */
2295 if (!sleeping_prematurely(pgdat, order, remaining)) {
2296 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2297 schedule();
2298 } else {
2299 if (remaining)
2300 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2301 else
2302 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2303 }
2304 }
2305
2306 order = pgdat->kswapd_max_order;
2307 }
2308 finish_wait(&pgdat->kswapd_wait, &wait);
2309
2310 ret = try_to_freeze();
2311 if (kthread_should_stop())
2312 break;
2313
2314 /*
2315 * We can speed up thawing tasks if we don't call balance_pgdat
2316 * after returning from the refrigerator
2317 */
2318 if (!ret) {
2319 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2320 balance_pgdat(pgdat, order);
2321 }
2322 }
2323 return 0;
2324 }
2325
2326 /*
2327 * A zone is low on free memory, so wake its kswapd task to service it.
2328 */
2329 void wakeup_kswapd(struct zone *zone, int order)
2330 {
2331 pg_data_t *pgdat;
2332
2333 if (!populated_zone(zone))
2334 return;
2335
2336 pgdat = zone->zone_pgdat;
2337 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2338 return;
2339 if (pgdat->kswapd_max_order < order)
2340 pgdat->kswapd_max_order = order;
2341 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2342 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2343 return;
2344 if (!waitqueue_active(&pgdat->kswapd_wait))
2345 return;
2346 wake_up_interruptible(&pgdat->kswapd_wait);
2347 }
2348
2349 /*
2350 * The reclaimable count would be mostly accurate.
2351 * The less reclaimable pages may be
2352 * - mlocked pages, which will be moved to unevictable list when encountered
2353 * - mapped pages, which may require several travels to be reclaimed
2354 * - dirty pages, which is not "instantly" reclaimable
2355 */
2356 unsigned long global_reclaimable_pages(void)
2357 {
2358 int nr;
2359
2360 nr = global_page_state(NR_ACTIVE_FILE) +
2361 global_page_state(NR_INACTIVE_FILE);
2362
2363 if (nr_swap_pages > 0)
2364 nr += global_page_state(NR_ACTIVE_ANON) +
2365 global_page_state(NR_INACTIVE_ANON);
2366
2367 return nr;
2368 }
2369
2370 unsigned long zone_reclaimable_pages(struct zone *zone)
2371 {
2372 int nr;
2373
2374 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2375 zone_page_state(zone, NR_INACTIVE_FILE);
2376
2377 if (nr_swap_pages > 0)
2378 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2379 zone_page_state(zone, NR_INACTIVE_ANON);
2380
2381 return nr;
2382 }
2383
2384 #ifdef CONFIG_HIBERNATION
2385 /*
2386 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2387 * freed pages.
2388 *
2389 * Rather than trying to age LRUs the aim is to preserve the overall
2390 * LRU order by reclaiming preferentially
2391 * inactive > active > active referenced > active mapped
2392 */
2393 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2394 {
2395 struct reclaim_state reclaim_state;
2396 struct scan_control sc = {
2397 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2398 .may_swap = 1,
2399 .may_unmap = 1,
2400 .may_writepage = 1,
2401 .nr_to_reclaim = nr_to_reclaim,
2402 .hibernation_mode = 1,
2403 .swappiness = vm_swappiness,
2404 .order = 0,
2405 };
2406 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2407 struct task_struct *p = current;
2408 unsigned long nr_reclaimed;
2409
2410 p->flags |= PF_MEMALLOC;
2411 lockdep_set_current_reclaim_state(sc.gfp_mask);
2412 reclaim_state.reclaimed_slab = 0;
2413 p->reclaim_state = &reclaim_state;
2414
2415 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2416
2417 p->reclaim_state = NULL;
2418 lockdep_clear_current_reclaim_state();
2419 p->flags &= ~PF_MEMALLOC;
2420
2421 return nr_reclaimed;
2422 }
2423 #endif /* CONFIG_HIBERNATION */
2424
2425 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2426 not required for correctness. So if the last cpu in a node goes
2427 away, we get changed to run anywhere: as the first one comes back,
2428 restore their cpu bindings. */
2429 static int __devinit cpu_callback(struct notifier_block *nfb,
2430 unsigned long action, void *hcpu)
2431 {
2432 int nid;
2433
2434 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2435 for_each_node_state(nid, N_HIGH_MEMORY) {
2436 pg_data_t *pgdat = NODE_DATA(nid);
2437 const struct cpumask *mask;
2438
2439 mask = cpumask_of_node(pgdat->node_id);
2440
2441 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2442 /* One of our CPUs online: restore mask */
2443 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2444 }
2445 }
2446 return NOTIFY_OK;
2447 }
2448
2449 /*
2450 * This kswapd start function will be called by init and node-hot-add.
2451 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2452 */
2453 int kswapd_run(int nid)
2454 {
2455 pg_data_t *pgdat = NODE_DATA(nid);
2456 int ret = 0;
2457
2458 if (pgdat->kswapd)
2459 return 0;
2460
2461 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2462 if (IS_ERR(pgdat->kswapd)) {
2463 /* failure at boot is fatal */
2464 BUG_ON(system_state == SYSTEM_BOOTING);
2465 printk("Failed to start kswapd on node %d\n",nid);
2466 ret = -1;
2467 }
2468 return ret;
2469 }
2470
2471 /*
2472 * Called by memory hotplug when all memory in a node is offlined.
2473 */
2474 void kswapd_stop(int nid)
2475 {
2476 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2477
2478 if (kswapd)
2479 kthread_stop(kswapd);
2480 }
2481
2482 static int __init kswapd_init(void)
2483 {
2484 int nid;
2485
2486 swap_setup();
2487 for_each_node_state(nid, N_HIGH_MEMORY)
2488 kswapd_run(nid);
2489 hotcpu_notifier(cpu_callback, 0);
2490 return 0;
2491 }
2492
2493 module_init(kswapd_init)
2494
2495 #ifdef CONFIG_NUMA
2496 /*
2497 * Zone reclaim mode
2498 *
2499 * If non-zero call zone_reclaim when the number of free pages falls below
2500 * the watermarks.
2501 */
2502 int zone_reclaim_mode __read_mostly;
2503
2504 #define RECLAIM_OFF 0
2505 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2506 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2507 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2508
2509 /*
2510 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2511 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2512 * a zone.
2513 */
2514 #define ZONE_RECLAIM_PRIORITY 4
2515
2516 /*
2517 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2518 * occur.
2519 */
2520 int sysctl_min_unmapped_ratio = 1;
2521
2522 /*
2523 * If the number of slab pages in a zone grows beyond this percentage then
2524 * slab reclaim needs to occur.
2525 */
2526 int sysctl_min_slab_ratio = 5;
2527
2528 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2529 {
2530 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2531 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2532 zone_page_state(zone, NR_ACTIVE_FILE);
2533
2534 /*
2535 * It's possible for there to be more file mapped pages than
2536 * accounted for by the pages on the file LRU lists because
2537 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2538 */
2539 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2540 }
2541
2542 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2543 static long zone_pagecache_reclaimable(struct zone *zone)
2544 {
2545 long nr_pagecache_reclaimable;
2546 long delta = 0;
2547
2548 /*
2549 * If RECLAIM_SWAP is set, then all file pages are considered
2550 * potentially reclaimable. Otherwise, we have to worry about
2551 * pages like swapcache and zone_unmapped_file_pages() provides
2552 * a better estimate
2553 */
2554 if (zone_reclaim_mode & RECLAIM_SWAP)
2555 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2556 else
2557 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2558
2559 /* If we can't clean pages, remove dirty pages from consideration */
2560 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2561 delta += zone_page_state(zone, NR_FILE_DIRTY);
2562
2563 /* Watch for any possible underflows due to delta */
2564 if (unlikely(delta > nr_pagecache_reclaimable))
2565 delta = nr_pagecache_reclaimable;
2566
2567 return nr_pagecache_reclaimable - delta;
2568 }
2569
2570 /*
2571 * Try to free up some pages from this zone through reclaim.
2572 */
2573 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2574 {
2575 /* Minimum pages needed in order to stay on node */
2576 const unsigned long nr_pages = 1 << order;
2577 struct task_struct *p = current;
2578 struct reclaim_state reclaim_state;
2579 int priority;
2580 struct scan_control sc = {
2581 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2582 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2583 .may_swap = 1,
2584 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2585 SWAP_CLUSTER_MAX),
2586 .gfp_mask = gfp_mask,
2587 .swappiness = vm_swappiness,
2588 .order = order,
2589 };
2590 unsigned long slab_reclaimable;
2591
2592 cond_resched();
2593 /*
2594 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2595 * and we also need to be able to write out pages for RECLAIM_WRITE
2596 * and RECLAIM_SWAP.
2597 */
2598 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2599 lockdep_set_current_reclaim_state(gfp_mask);
2600 reclaim_state.reclaimed_slab = 0;
2601 p->reclaim_state = &reclaim_state;
2602
2603 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2604 /*
2605 * Free memory by calling shrink zone with increasing
2606 * priorities until we have enough memory freed.
2607 */
2608 priority = ZONE_RECLAIM_PRIORITY;
2609 do {
2610 shrink_zone(priority, zone, &sc);
2611 priority--;
2612 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2613 }
2614
2615 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2616 if (slab_reclaimable > zone->min_slab_pages) {
2617 /*
2618 * shrink_slab() does not currently allow us to determine how
2619 * many pages were freed in this zone. So we take the current
2620 * number of slab pages and shake the slab until it is reduced
2621 * by the same nr_pages that we used for reclaiming unmapped
2622 * pages.
2623 *
2624 * Note that shrink_slab will free memory on all zones and may
2625 * take a long time.
2626 */
2627 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2628 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2629 slab_reclaimable - nr_pages)
2630 ;
2631
2632 /*
2633 * Update nr_reclaimed by the number of slab pages we
2634 * reclaimed from this zone.
2635 */
2636 sc.nr_reclaimed += slab_reclaimable -
2637 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2638 }
2639
2640 p->reclaim_state = NULL;
2641 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2642 lockdep_clear_current_reclaim_state();
2643 return sc.nr_reclaimed >= nr_pages;
2644 }
2645
2646 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2647 {
2648 int node_id;
2649 int ret;
2650
2651 /*
2652 * Zone reclaim reclaims unmapped file backed pages and
2653 * slab pages if we are over the defined limits.
2654 *
2655 * A small portion of unmapped file backed pages is needed for
2656 * file I/O otherwise pages read by file I/O will be immediately
2657 * thrown out if the zone is overallocated. So we do not reclaim
2658 * if less than a specified percentage of the zone is used by
2659 * unmapped file backed pages.
2660 */
2661 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2662 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2663 return ZONE_RECLAIM_FULL;
2664
2665 if (zone->all_unreclaimable)
2666 return ZONE_RECLAIM_FULL;
2667
2668 /*
2669 * Do not scan if the allocation should not be delayed.
2670 */
2671 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2672 return ZONE_RECLAIM_NOSCAN;
2673
2674 /*
2675 * Only run zone reclaim on the local zone or on zones that do not
2676 * have associated processors. This will favor the local processor
2677 * over remote processors and spread off node memory allocations
2678 * as wide as possible.
2679 */
2680 node_id = zone_to_nid(zone);
2681 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2682 return ZONE_RECLAIM_NOSCAN;
2683
2684 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2685 return ZONE_RECLAIM_NOSCAN;
2686
2687 ret = __zone_reclaim(zone, gfp_mask, order);
2688 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2689
2690 if (!ret)
2691 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2692
2693 return ret;
2694 }
2695 #endif
2696
2697 /*
2698 * page_evictable - test whether a page is evictable
2699 * @page: the page to test
2700 * @vma: the VMA in which the page is or will be mapped, may be NULL
2701 *
2702 * Test whether page is evictable--i.e., should be placed on active/inactive
2703 * lists vs unevictable list. The vma argument is !NULL when called from the
2704 * fault path to determine how to instantate a new page.
2705 *
2706 * Reasons page might not be evictable:
2707 * (1) page's mapping marked unevictable
2708 * (2) page is part of an mlocked VMA
2709 *
2710 */
2711 int page_evictable(struct page *page, struct vm_area_struct *vma)
2712 {
2713
2714 if (mapping_unevictable(page_mapping(page)))
2715 return 0;
2716
2717 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2718 return 0;
2719
2720 return 1;
2721 }
2722
2723 /**
2724 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2725 * @page: page to check evictability and move to appropriate lru list
2726 * @zone: zone page is in
2727 *
2728 * Checks a page for evictability and moves the page to the appropriate
2729 * zone lru list.
2730 *
2731 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2732 * have PageUnevictable set.
2733 */
2734 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2735 {
2736 VM_BUG_ON(PageActive(page));
2737
2738 retry:
2739 ClearPageUnevictable(page);
2740 if (page_evictable(page, NULL)) {
2741 enum lru_list l = page_lru_base_type(page);
2742
2743 __dec_zone_state(zone, NR_UNEVICTABLE);
2744 list_move(&page->lru, &zone->lru[l].list);
2745 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2746 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2747 __count_vm_event(UNEVICTABLE_PGRESCUED);
2748 } else {
2749 /*
2750 * rotate unevictable list
2751 */
2752 SetPageUnevictable(page);
2753 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2754 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2755 if (page_evictable(page, NULL))
2756 goto retry;
2757 }
2758 }
2759
2760 /**
2761 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2762 * @mapping: struct address_space to scan for evictable pages
2763 *
2764 * Scan all pages in mapping. Check unevictable pages for
2765 * evictability and move them to the appropriate zone lru list.
2766 */
2767 void scan_mapping_unevictable_pages(struct address_space *mapping)
2768 {
2769 pgoff_t next = 0;
2770 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2771 PAGE_CACHE_SHIFT;
2772 struct zone *zone;
2773 struct pagevec pvec;
2774
2775 if (mapping->nrpages == 0)
2776 return;
2777
2778 pagevec_init(&pvec, 0);
2779 while (next < end &&
2780 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2781 int i;
2782 int pg_scanned = 0;
2783
2784 zone = NULL;
2785
2786 for (i = 0; i < pagevec_count(&pvec); i++) {
2787 struct page *page = pvec.pages[i];
2788 pgoff_t page_index = page->index;
2789 struct zone *pagezone = page_zone(page);
2790
2791 pg_scanned++;
2792 if (page_index > next)
2793 next = page_index;
2794 next++;
2795
2796 if (pagezone != zone) {
2797 if (zone)
2798 spin_unlock_irq(&zone->lru_lock);
2799 zone = pagezone;
2800 spin_lock_irq(&zone->lru_lock);
2801 }
2802
2803 if (PageLRU(page) && PageUnevictable(page))
2804 check_move_unevictable_page(page, zone);
2805 }
2806 if (zone)
2807 spin_unlock_irq(&zone->lru_lock);
2808 pagevec_release(&pvec);
2809
2810 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2811 }
2812
2813 }
2814
2815 /**
2816 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2817 * @zone - zone of which to scan the unevictable list
2818 *
2819 * Scan @zone's unevictable LRU lists to check for pages that have become
2820 * evictable. Move those that have to @zone's inactive list where they
2821 * become candidates for reclaim, unless shrink_inactive_zone() decides
2822 * to reactivate them. Pages that are still unevictable are rotated
2823 * back onto @zone's unevictable list.
2824 */
2825 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2826 static void scan_zone_unevictable_pages(struct zone *zone)
2827 {
2828 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2829 unsigned long scan;
2830 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2831
2832 while (nr_to_scan > 0) {
2833 unsigned long batch_size = min(nr_to_scan,
2834 SCAN_UNEVICTABLE_BATCH_SIZE);
2835
2836 spin_lock_irq(&zone->lru_lock);
2837 for (scan = 0; scan < batch_size; scan++) {
2838 struct page *page = lru_to_page(l_unevictable);
2839
2840 if (!trylock_page(page))
2841 continue;
2842
2843 prefetchw_prev_lru_page(page, l_unevictable, flags);
2844
2845 if (likely(PageLRU(page) && PageUnevictable(page)))
2846 check_move_unevictable_page(page, zone);
2847
2848 unlock_page(page);
2849 }
2850 spin_unlock_irq(&zone->lru_lock);
2851
2852 nr_to_scan -= batch_size;
2853 }
2854 }
2855
2856
2857 /**
2858 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2859 *
2860 * A really big hammer: scan all zones' unevictable LRU lists to check for
2861 * pages that have become evictable. Move those back to the zones'
2862 * inactive list where they become candidates for reclaim.
2863 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2864 * and we add swap to the system. As such, it runs in the context of a task
2865 * that has possibly/probably made some previously unevictable pages
2866 * evictable.
2867 */
2868 static void scan_all_zones_unevictable_pages(void)
2869 {
2870 struct zone *zone;
2871
2872 for_each_zone(zone) {
2873 scan_zone_unevictable_pages(zone);
2874 }
2875 }
2876
2877 /*
2878 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2879 * all nodes' unevictable lists for evictable pages
2880 */
2881 unsigned long scan_unevictable_pages;
2882
2883 int scan_unevictable_handler(struct ctl_table *table, int write,
2884 void __user *buffer,
2885 size_t *length, loff_t *ppos)
2886 {
2887 proc_doulongvec_minmax(table, write, buffer, length, ppos);
2888
2889 if (write && *(unsigned long *)table->data)
2890 scan_all_zones_unevictable_pages();
2891
2892 scan_unevictable_pages = 0;
2893 return 0;
2894 }
2895
2896 /*
2897 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2898 * a specified node's per zone unevictable lists for evictable pages.
2899 */
2900
2901 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2902 struct sysdev_attribute *attr,
2903 char *buf)
2904 {
2905 return sprintf(buf, "0\n"); /* always zero; should fit... */
2906 }
2907
2908 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2909 struct sysdev_attribute *attr,
2910 const char *buf, size_t count)
2911 {
2912 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2913 struct zone *zone;
2914 unsigned long res;
2915 unsigned long req = strict_strtoul(buf, 10, &res);
2916
2917 if (!req)
2918 return 1; /* zero is no-op */
2919
2920 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2921 if (!populated_zone(zone))
2922 continue;
2923 scan_zone_unevictable_pages(zone);
2924 }
2925 return 1;
2926 }
2927
2928
2929 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2930 read_scan_unevictable_node,
2931 write_scan_unevictable_node);
2932
2933 int scan_unevictable_register_node(struct node *node)
2934 {
2935 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2936 }
2937
2938 void scan_unevictable_unregister_node(struct node *node)
2939 {
2940 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2941 }
2942