tmpfs: don't undo fallocate past its last page
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / vmalloc.c
1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/llist.h>
31 #include <asm/uaccess.h>
32 #include <asm/tlbflush.h>
33 #include <asm/shmparam.h>
34
35 struct vfree_deferred {
36 struct llist_head list;
37 struct work_struct wq;
38 };
39 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
40
41 static void __vunmap(const void *, int);
42
43 static void free_work(struct work_struct *w)
44 {
45 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
46 struct llist_node *llnode = llist_del_all(&p->list);
47 while (llnode) {
48 void *p = llnode;
49 llnode = llist_next(llnode);
50 __vunmap(p, 1);
51 }
52 }
53
54 /*** Page table manipulation functions ***/
55
56 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
57 {
58 pte_t *pte;
59
60 pte = pte_offset_kernel(pmd, addr);
61 do {
62 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
63 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
64 } while (pte++, addr += PAGE_SIZE, addr != end);
65 }
66
67 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
68 {
69 pmd_t *pmd;
70 unsigned long next;
71
72 pmd = pmd_offset(pud, addr);
73 do {
74 next = pmd_addr_end(addr, end);
75 if (pmd_none_or_clear_bad(pmd))
76 continue;
77 vunmap_pte_range(pmd, addr, next);
78 } while (pmd++, addr = next, addr != end);
79 }
80
81 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
82 {
83 pud_t *pud;
84 unsigned long next;
85
86 pud = pud_offset(pgd, addr);
87 do {
88 next = pud_addr_end(addr, end);
89 if (pud_none_or_clear_bad(pud))
90 continue;
91 vunmap_pmd_range(pud, addr, next);
92 } while (pud++, addr = next, addr != end);
93 }
94
95 static void vunmap_page_range(unsigned long addr, unsigned long end)
96 {
97 pgd_t *pgd;
98 unsigned long next;
99
100 BUG_ON(addr >= end);
101 pgd = pgd_offset_k(addr);
102 do {
103 next = pgd_addr_end(addr, end);
104 if (pgd_none_or_clear_bad(pgd))
105 continue;
106 vunmap_pud_range(pgd, addr, next);
107 } while (pgd++, addr = next, addr != end);
108 }
109
110 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
111 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
112 {
113 pte_t *pte;
114
115 /*
116 * nr is a running index into the array which helps higher level
117 * callers keep track of where we're up to.
118 */
119
120 pte = pte_alloc_kernel(pmd, addr);
121 if (!pte)
122 return -ENOMEM;
123 do {
124 struct page *page = pages[*nr];
125
126 if (WARN_ON(!pte_none(*pte)))
127 return -EBUSY;
128 if (WARN_ON(!page))
129 return -ENOMEM;
130 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
131 (*nr)++;
132 } while (pte++, addr += PAGE_SIZE, addr != end);
133 return 0;
134 }
135
136 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
137 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
138 {
139 pmd_t *pmd;
140 unsigned long next;
141
142 pmd = pmd_alloc(&init_mm, pud, addr);
143 if (!pmd)
144 return -ENOMEM;
145 do {
146 next = pmd_addr_end(addr, end);
147 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
148 return -ENOMEM;
149 } while (pmd++, addr = next, addr != end);
150 return 0;
151 }
152
153 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
154 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
155 {
156 pud_t *pud;
157 unsigned long next;
158
159 pud = pud_alloc(&init_mm, pgd, addr);
160 if (!pud)
161 return -ENOMEM;
162 do {
163 next = pud_addr_end(addr, end);
164 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
165 return -ENOMEM;
166 } while (pud++, addr = next, addr != end);
167 return 0;
168 }
169
170 /*
171 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
172 * will have pfns corresponding to the "pages" array.
173 *
174 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
175 */
176 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
177 pgprot_t prot, struct page **pages)
178 {
179 pgd_t *pgd;
180 unsigned long next;
181 unsigned long addr = start;
182 int err = 0;
183 int nr = 0;
184
185 BUG_ON(addr >= end);
186 pgd = pgd_offset_k(addr);
187 do {
188 next = pgd_addr_end(addr, end);
189 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
190 if (err)
191 return err;
192 } while (pgd++, addr = next, addr != end);
193
194 return nr;
195 }
196
197 static int vmap_page_range(unsigned long start, unsigned long end,
198 pgprot_t prot, struct page **pages)
199 {
200 int ret;
201
202 ret = vmap_page_range_noflush(start, end, prot, pages);
203 flush_cache_vmap(start, end);
204 return ret;
205 }
206
207 int is_vmalloc_or_module_addr(const void *x)
208 {
209 /*
210 * ARM, x86-64 and sparc64 put modules in a special place,
211 * and fall back on vmalloc() if that fails. Others
212 * just put it in the vmalloc space.
213 */
214 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
215 unsigned long addr = (unsigned long)x;
216 if (addr >= MODULES_VADDR && addr < MODULES_END)
217 return 1;
218 #endif
219 return is_vmalloc_addr(x);
220 }
221
222 /*
223 * Walk a vmap address to the struct page it maps.
224 */
225 struct page *vmalloc_to_page(const void *vmalloc_addr)
226 {
227 unsigned long addr = (unsigned long) vmalloc_addr;
228 struct page *page = NULL;
229 pgd_t *pgd = pgd_offset_k(addr);
230
231 /*
232 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
233 * architectures that do not vmalloc module space
234 */
235 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
236
237 if (!pgd_none(*pgd)) {
238 pud_t *pud = pud_offset(pgd, addr);
239 if (!pud_none(*pud)) {
240 pmd_t *pmd = pmd_offset(pud, addr);
241 if (!pmd_none(*pmd)) {
242 pte_t *ptep, pte;
243
244 ptep = pte_offset_map(pmd, addr);
245 pte = *ptep;
246 if (pte_present(pte))
247 page = pte_page(pte);
248 pte_unmap(ptep);
249 }
250 }
251 }
252 return page;
253 }
254 EXPORT_SYMBOL(vmalloc_to_page);
255
256 /*
257 * Map a vmalloc()-space virtual address to the physical page frame number.
258 */
259 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
260 {
261 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
262 }
263 EXPORT_SYMBOL(vmalloc_to_pfn);
264
265
266 /*** Global kva allocator ***/
267
268 #define VM_LAZY_FREE 0x01
269 #define VM_LAZY_FREEING 0x02
270 #define VM_VM_AREA 0x04
271
272 static DEFINE_SPINLOCK(vmap_area_lock);
273 /* Export for kexec only */
274 LIST_HEAD(vmap_area_list);
275 static struct rb_root vmap_area_root = RB_ROOT;
276
277 /* The vmap cache globals are protected by vmap_area_lock */
278 static struct rb_node *free_vmap_cache;
279 static unsigned long cached_hole_size;
280 static unsigned long cached_vstart;
281 static unsigned long cached_align;
282
283 static unsigned long vmap_area_pcpu_hole;
284
285 static struct vmap_area *__find_vmap_area(unsigned long addr)
286 {
287 struct rb_node *n = vmap_area_root.rb_node;
288
289 while (n) {
290 struct vmap_area *va;
291
292 va = rb_entry(n, struct vmap_area, rb_node);
293 if (addr < va->va_start)
294 n = n->rb_left;
295 else if (addr > va->va_start)
296 n = n->rb_right;
297 else
298 return va;
299 }
300
301 return NULL;
302 }
303
304 static void __insert_vmap_area(struct vmap_area *va)
305 {
306 struct rb_node **p = &vmap_area_root.rb_node;
307 struct rb_node *parent = NULL;
308 struct rb_node *tmp;
309
310 while (*p) {
311 struct vmap_area *tmp_va;
312
313 parent = *p;
314 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
315 if (va->va_start < tmp_va->va_end)
316 p = &(*p)->rb_left;
317 else if (va->va_end > tmp_va->va_start)
318 p = &(*p)->rb_right;
319 else
320 BUG();
321 }
322
323 rb_link_node(&va->rb_node, parent, p);
324 rb_insert_color(&va->rb_node, &vmap_area_root);
325
326 /* address-sort this list */
327 tmp = rb_prev(&va->rb_node);
328 if (tmp) {
329 struct vmap_area *prev;
330 prev = rb_entry(tmp, struct vmap_area, rb_node);
331 list_add_rcu(&va->list, &prev->list);
332 } else
333 list_add_rcu(&va->list, &vmap_area_list);
334 }
335
336 static void purge_vmap_area_lazy(void);
337
338 /*
339 * Allocate a region of KVA of the specified size and alignment, within the
340 * vstart and vend.
341 */
342 static struct vmap_area *alloc_vmap_area(unsigned long size,
343 unsigned long align,
344 unsigned long vstart, unsigned long vend,
345 int node, gfp_t gfp_mask)
346 {
347 struct vmap_area *va;
348 struct rb_node *n;
349 unsigned long addr;
350 int purged = 0;
351 struct vmap_area *first;
352
353 BUG_ON(!size);
354 BUG_ON(size & ~PAGE_MASK);
355 BUG_ON(!is_power_of_2(align));
356
357 va = kmalloc_node(sizeof(struct vmap_area),
358 gfp_mask & GFP_RECLAIM_MASK, node);
359 if (unlikely(!va))
360 return ERR_PTR(-ENOMEM);
361
362 retry:
363 spin_lock(&vmap_area_lock);
364 /*
365 * Invalidate cache if we have more permissive parameters.
366 * cached_hole_size notes the largest hole noticed _below_
367 * the vmap_area cached in free_vmap_cache: if size fits
368 * into that hole, we want to scan from vstart to reuse
369 * the hole instead of allocating above free_vmap_cache.
370 * Note that __free_vmap_area may update free_vmap_cache
371 * without updating cached_hole_size or cached_align.
372 */
373 if (!free_vmap_cache ||
374 size < cached_hole_size ||
375 vstart < cached_vstart ||
376 align < cached_align) {
377 nocache:
378 cached_hole_size = 0;
379 free_vmap_cache = NULL;
380 }
381 /* record if we encounter less permissive parameters */
382 cached_vstart = vstart;
383 cached_align = align;
384
385 /* find starting point for our search */
386 if (free_vmap_cache) {
387 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
388 addr = ALIGN(first->va_end, align);
389 if (addr < vstart)
390 goto nocache;
391 if (addr + size < addr)
392 goto overflow;
393
394 } else {
395 addr = ALIGN(vstart, align);
396 if (addr + size < addr)
397 goto overflow;
398
399 n = vmap_area_root.rb_node;
400 first = NULL;
401
402 while (n) {
403 struct vmap_area *tmp;
404 tmp = rb_entry(n, struct vmap_area, rb_node);
405 if (tmp->va_end >= addr) {
406 first = tmp;
407 if (tmp->va_start <= addr)
408 break;
409 n = n->rb_left;
410 } else
411 n = n->rb_right;
412 }
413
414 if (!first)
415 goto found;
416 }
417
418 /* from the starting point, walk areas until a suitable hole is found */
419 while (addr + size > first->va_start && addr + size <= vend) {
420 if (addr + cached_hole_size < first->va_start)
421 cached_hole_size = first->va_start - addr;
422 addr = ALIGN(first->va_end, align);
423 if (addr + size < addr)
424 goto overflow;
425
426 if (list_is_last(&first->list, &vmap_area_list))
427 goto found;
428
429 first = list_entry(first->list.next,
430 struct vmap_area, list);
431 }
432
433 found:
434 if (addr + size > vend)
435 goto overflow;
436
437 va->va_start = addr;
438 va->va_end = addr + size;
439 va->flags = 0;
440 __insert_vmap_area(va);
441 free_vmap_cache = &va->rb_node;
442 spin_unlock(&vmap_area_lock);
443
444 BUG_ON(va->va_start & (align-1));
445 BUG_ON(va->va_start < vstart);
446 BUG_ON(va->va_end > vend);
447
448 return va;
449
450 overflow:
451 spin_unlock(&vmap_area_lock);
452 if (!purged) {
453 purge_vmap_area_lazy();
454 purged = 1;
455 goto retry;
456 }
457 if (printk_ratelimit())
458 printk(KERN_WARNING
459 "vmap allocation for size %lu failed: "
460 "use vmalloc=<size> to increase size.\n", size);
461 kfree(va);
462 return ERR_PTR(-EBUSY);
463 }
464
465 static void __free_vmap_area(struct vmap_area *va)
466 {
467 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
468
469 if (free_vmap_cache) {
470 if (va->va_end < cached_vstart) {
471 free_vmap_cache = NULL;
472 } else {
473 struct vmap_area *cache;
474 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
475 if (va->va_start <= cache->va_start) {
476 free_vmap_cache = rb_prev(&va->rb_node);
477 /*
478 * We don't try to update cached_hole_size or
479 * cached_align, but it won't go very wrong.
480 */
481 }
482 }
483 }
484 rb_erase(&va->rb_node, &vmap_area_root);
485 RB_CLEAR_NODE(&va->rb_node);
486 list_del_rcu(&va->list);
487
488 /*
489 * Track the highest possible candidate for pcpu area
490 * allocation. Areas outside of vmalloc area can be returned
491 * here too, consider only end addresses which fall inside
492 * vmalloc area proper.
493 */
494 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
495 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
496
497 kfree_rcu(va, rcu_head);
498 }
499
500 /*
501 * Free a region of KVA allocated by alloc_vmap_area
502 */
503 static void free_vmap_area(struct vmap_area *va)
504 {
505 spin_lock(&vmap_area_lock);
506 __free_vmap_area(va);
507 spin_unlock(&vmap_area_lock);
508 }
509
510 /*
511 * Clear the pagetable entries of a given vmap_area
512 */
513 static void unmap_vmap_area(struct vmap_area *va)
514 {
515 vunmap_page_range(va->va_start, va->va_end);
516 }
517
518 static void vmap_debug_free_range(unsigned long start, unsigned long end)
519 {
520 /*
521 * Unmap page tables and force a TLB flush immediately if
522 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
523 * bugs similarly to those in linear kernel virtual address
524 * space after a page has been freed.
525 *
526 * All the lazy freeing logic is still retained, in order to
527 * minimise intrusiveness of this debugging feature.
528 *
529 * This is going to be *slow* (linear kernel virtual address
530 * debugging doesn't do a broadcast TLB flush so it is a lot
531 * faster).
532 */
533 #ifdef CONFIG_DEBUG_PAGEALLOC
534 vunmap_page_range(start, end);
535 flush_tlb_kernel_range(start, end);
536 #endif
537 }
538
539 /*
540 * lazy_max_pages is the maximum amount of virtual address space we gather up
541 * before attempting to purge with a TLB flush.
542 *
543 * There is a tradeoff here: a larger number will cover more kernel page tables
544 * and take slightly longer to purge, but it will linearly reduce the number of
545 * global TLB flushes that must be performed. It would seem natural to scale
546 * this number up linearly with the number of CPUs (because vmapping activity
547 * could also scale linearly with the number of CPUs), however it is likely
548 * that in practice, workloads might be constrained in other ways that mean
549 * vmap activity will not scale linearly with CPUs. Also, I want to be
550 * conservative and not introduce a big latency on huge systems, so go with
551 * a less aggressive log scale. It will still be an improvement over the old
552 * code, and it will be simple to change the scale factor if we find that it
553 * becomes a problem on bigger systems.
554 */
555 static unsigned long lazy_max_pages(void)
556 {
557 unsigned int log;
558
559 log = fls(num_online_cpus());
560
561 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
562 }
563
564 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
565
566 /* for per-CPU blocks */
567 static void purge_fragmented_blocks_allcpus(void);
568
569 /*
570 * called before a call to iounmap() if the caller wants vm_area_struct's
571 * immediately freed.
572 */
573 void set_iounmap_nonlazy(void)
574 {
575 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
576 }
577
578 /*
579 * Purges all lazily-freed vmap areas.
580 *
581 * If sync is 0 then don't purge if there is already a purge in progress.
582 * If force_flush is 1, then flush kernel TLBs between *start and *end even
583 * if we found no lazy vmap areas to unmap (callers can use this to optimise
584 * their own TLB flushing).
585 * Returns with *start = min(*start, lowest purged address)
586 * *end = max(*end, highest purged address)
587 */
588 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
589 int sync, int force_flush)
590 {
591 static DEFINE_SPINLOCK(purge_lock);
592 LIST_HEAD(valist);
593 struct vmap_area *va;
594 struct vmap_area *n_va;
595 int nr = 0;
596
597 /*
598 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
599 * should not expect such behaviour. This just simplifies locking for
600 * the case that isn't actually used at the moment anyway.
601 */
602 if (!sync && !force_flush) {
603 if (!spin_trylock(&purge_lock))
604 return;
605 } else
606 spin_lock(&purge_lock);
607
608 if (sync)
609 purge_fragmented_blocks_allcpus();
610
611 rcu_read_lock();
612 list_for_each_entry_rcu(va, &vmap_area_list, list) {
613 if (va->flags & VM_LAZY_FREE) {
614 if (va->va_start < *start)
615 *start = va->va_start;
616 if (va->va_end > *end)
617 *end = va->va_end;
618 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
619 list_add_tail(&va->purge_list, &valist);
620 va->flags |= VM_LAZY_FREEING;
621 va->flags &= ~VM_LAZY_FREE;
622 }
623 }
624 rcu_read_unlock();
625
626 if (nr)
627 atomic_sub(nr, &vmap_lazy_nr);
628
629 if (nr || force_flush)
630 flush_tlb_kernel_range(*start, *end);
631
632 if (nr) {
633 spin_lock(&vmap_area_lock);
634 list_for_each_entry_safe(va, n_va, &valist, purge_list)
635 __free_vmap_area(va);
636 spin_unlock(&vmap_area_lock);
637 }
638 spin_unlock(&purge_lock);
639 }
640
641 /*
642 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
643 * is already purging.
644 */
645 static void try_purge_vmap_area_lazy(void)
646 {
647 unsigned long start = ULONG_MAX, end = 0;
648
649 __purge_vmap_area_lazy(&start, &end, 0, 0);
650 }
651
652 /*
653 * Kick off a purge of the outstanding lazy areas.
654 */
655 static void purge_vmap_area_lazy(void)
656 {
657 unsigned long start = ULONG_MAX, end = 0;
658
659 __purge_vmap_area_lazy(&start, &end, 1, 0);
660 }
661
662 /*
663 * Free a vmap area, caller ensuring that the area has been unmapped
664 * and flush_cache_vunmap had been called for the correct range
665 * previously.
666 */
667 static void free_vmap_area_noflush(struct vmap_area *va)
668 {
669 va->flags |= VM_LAZY_FREE;
670 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
671 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
672 try_purge_vmap_area_lazy();
673 }
674
675 /*
676 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
677 * called for the correct range previously.
678 */
679 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
680 {
681 unmap_vmap_area(va);
682 free_vmap_area_noflush(va);
683 }
684
685 /*
686 * Free and unmap a vmap area
687 */
688 static void free_unmap_vmap_area(struct vmap_area *va)
689 {
690 flush_cache_vunmap(va->va_start, va->va_end);
691 free_unmap_vmap_area_noflush(va);
692 }
693
694 static struct vmap_area *find_vmap_area(unsigned long addr)
695 {
696 struct vmap_area *va;
697
698 spin_lock(&vmap_area_lock);
699 va = __find_vmap_area(addr);
700 spin_unlock(&vmap_area_lock);
701
702 return va;
703 }
704
705 static void free_unmap_vmap_area_addr(unsigned long addr)
706 {
707 struct vmap_area *va;
708
709 va = find_vmap_area(addr);
710 BUG_ON(!va);
711 free_unmap_vmap_area(va);
712 }
713
714
715 /*** Per cpu kva allocator ***/
716
717 /*
718 * vmap space is limited especially on 32 bit architectures. Ensure there is
719 * room for at least 16 percpu vmap blocks per CPU.
720 */
721 /*
722 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
723 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
724 * instead (we just need a rough idea)
725 */
726 #if BITS_PER_LONG == 32
727 #define VMALLOC_SPACE (128UL*1024*1024)
728 #else
729 #define VMALLOC_SPACE (128UL*1024*1024*1024)
730 #endif
731
732 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
733 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
734 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
735 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
736 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
737 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
738 #define VMAP_BBMAP_BITS \
739 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
740 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
741 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
742
743 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
744
745 static bool vmap_initialized __read_mostly = false;
746
747 struct vmap_block_queue {
748 spinlock_t lock;
749 struct list_head free;
750 };
751
752 struct vmap_block {
753 spinlock_t lock;
754 struct vmap_area *va;
755 struct vmap_block_queue *vbq;
756 unsigned long free, dirty;
757 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
758 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
759 struct list_head free_list;
760 struct rcu_head rcu_head;
761 struct list_head purge;
762 };
763
764 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
765 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
766
767 /*
768 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
769 * in the free path. Could get rid of this if we change the API to return a
770 * "cookie" from alloc, to be passed to free. But no big deal yet.
771 */
772 static DEFINE_SPINLOCK(vmap_block_tree_lock);
773 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
774
775 /*
776 * We should probably have a fallback mechanism to allocate virtual memory
777 * out of partially filled vmap blocks. However vmap block sizing should be
778 * fairly reasonable according to the vmalloc size, so it shouldn't be a
779 * big problem.
780 */
781
782 static unsigned long addr_to_vb_idx(unsigned long addr)
783 {
784 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
785 addr /= VMAP_BLOCK_SIZE;
786 return addr;
787 }
788
789 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
790 {
791 struct vmap_block_queue *vbq;
792 struct vmap_block *vb;
793 struct vmap_area *va;
794 unsigned long vb_idx;
795 int node, err;
796
797 node = numa_node_id();
798
799 vb = kmalloc_node(sizeof(struct vmap_block),
800 gfp_mask & GFP_RECLAIM_MASK, node);
801 if (unlikely(!vb))
802 return ERR_PTR(-ENOMEM);
803
804 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
805 VMALLOC_START, VMALLOC_END,
806 node, gfp_mask);
807 if (IS_ERR(va)) {
808 kfree(vb);
809 return ERR_CAST(va);
810 }
811
812 err = radix_tree_preload(gfp_mask);
813 if (unlikely(err)) {
814 kfree(vb);
815 free_vmap_area(va);
816 return ERR_PTR(err);
817 }
818
819 spin_lock_init(&vb->lock);
820 vb->va = va;
821 vb->free = VMAP_BBMAP_BITS;
822 vb->dirty = 0;
823 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
824 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
825 INIT_LIST_HEAD(&vb->free_list);
826
827 vb_idx = addr_to_vb_idx(va->va_start);
828 spin_lock(&vmap_block_tree_lock);
829 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
830 spin_unlock(&vmap_block_tree_lock);
831 BUG_ON(err);
832 radix_tree_preload_end();
833
834 vbq = &get_cpu_var(vmap_block_queue);
835 vb->vbq = vbq;
836 spin_lock(&vbq->lock);
837 list_add_rcu(&vb->free_list, &vbq->free);
838 spin_unlock(&vbq->lock);
839 put_cpu_var(vmap_block_queue);
840
841 return vb;
842 }
843
844 static void free_vmap_block(struct vmap_block *vb)
845 {
846 struct vmap_block *tmp;
847 unsigned long vb_idx;
848
849 vb_idx = addr_to_vb_idx(vb->va->va_start);
850 spin_lock(&vmap_block_tree_lock);
851 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
852 spin_unlock(&vmap_block_tree_lock);
853 BUG_ON(tmp != vb);
854
855 free_vmap_area_noflush(vb->va);
856 kfree_rcu(vb, rcu_head);
857 }
858
859 static void purge_fragmented_blocks(int cpu)
860 {
861 LIST_HEAD(purge);
862 struct vmap_block *vb;
863 struct vmap_block *n_vb;
864 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
865
866 rcu_read_lock();
867 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
868
869 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
870 continue;
871
872 spin_lock(&vb->lock);
873 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
874 vb->free = 0; /* prevent further allocs after releasing lock */
875 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
876 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
877 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
878 spin_lock(&vbq->lock);
879 list_del_rcu(&vb->free_list);
880 spin_unlock(&vbq->lock);
881 spin_unlock(&vb->lock);
882 list_add_tail(&vb->purge, &purge);
883 } else
884 spin_unlock(&vb->lock);
885 }
886 rcu_read_unlock();
887
888 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
889 list_del(&vb->purge);
890 free_vmap_block(vb);
891 }
892 }
893
894 static void purge_fragmented_blocks_thiscpu(void)
895 {
896 purge_fragmented_blocks(smp_processor_id());
897 }
898
899 static void purge_fragmented_blocks_allcpus(void)
900 {
901 int cpu;
902
903 for_each_possible_cpu(cpu)
904 purge_fragmented_blocks(cpu);
905 }
906
907 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
908 {
909 struct vmap_block_queue *vbq;
910 struct vmap_block *vb;
911 unsigned long addr = 0;
912 unsigned int order;
913 int purge = 0;
914
915 BUG_ON(size & ~PAGE_MASK);
916 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
917 if (WARN_ON(size == 0)) {
918 /*
919 * Allocating 0 bytes isn't what caller wants since
920 * get_order(0) returns funny result. Just warn and terminate
921 * early.
922 */
923 return NULL;
924 }
925 order = get_order(size);
926
927 again:
928 rcu_read_lock();
929 vbq = &get_cpu_var(vmap_block_queue);
930 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
931 int i;
932
933 spin_lock(&vb->lock);
934 if (vb->free < 1UL << order)
935 goto next;
936
937 i = bitmap_find_free_region(vb->alloc_map,
938 VMAP_BBMAP_BITS, order);
939
940 if (i < 0) {
941 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
942 /* fragmented and no outstanding allocations */
943 BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
944 purge = 1;
945 }
946 goto next;
947 }
948 addr = vb->va->va_start + (i << PAGE_SHIFT);
949 BUG_ON(addr_to_vb_idx(addr) !=
950 addr_to_vb_idx(vb->va->va_start));
951 vb->free -= 1UL << order;
952 if (vb->free == 0) {
953 spin_lock(&vbq->lock);
954 list_del_rcu(&vb->free_list);
955 spin_unlock(&vbq->lock);
956 }
957 spin_unlock(&vb->lock);
958 break;
959 next:
960 spin_unlock(&vb->lock);
961 }
962
963 if (purge)
964 purge_fragmented_blocks_thiscpu();
965
966 put_cpu_var(vmap_block_queue);
967 rcu_read_unlock();
968
969 if (!addr) {
970 vb = new_vmap_block(gfp_mask);
971 if (IS_ERR(vb))
972 return vb;
973 goto again;
974 }
975
976 return (void *)addr;
977 }
978
979 static void vb_free(const void *addr, unsigned long size)
980 {
981 unsigned long offset;
982 unsigned long vb_idx;
983 unsigned int order;
984 struct vmap_block *vb;
985
986 BUG_ON(size & ~PAGE_MASK);
987 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
988
989 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
990
991 order = get_order(size);
992
993 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
994
995 vb_idx = addr_to_vb_idx((unsigned long)addr);
996 rcu_read_lock();
997 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
998 rcu_read_unlock();
999 BUG_ON(!vb);
1000
1001 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1002
1003 spin_lock(&vb->lock);
1004 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
1005
1006 vb->dirty += 1UL << order;
1007 if (vb->dirty == VMAP_BBMAP_BITS) {
1008 BUG_ON(vb->free);
1009 spin_unlock(&vb->lock);
1010 free_vmap_block(vb);
1011 } else
1012 spin_unlock(&vb->lock);
1013 }
1014
1015 /**
1016 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1017 *
1018 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1019 * to amortize TLB flushing overheads. What this means is that any page you
1020 * have now, may, in a former life, have been mapped into kernel virtual
1021 * address by the vmap layer and so there might be some CPUs with TLB entries
1022 * still referencing that page (additional to the regular 1:1 kernel mapping).
1023 *
1024 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1025 * be sure that none of the pages we have control over will have any aliases
1026 * from the vmap layer.
1027 */
1028 void vm_unmap_aliases(void)
1029 {
1030 unsigned long start = ULONG_MAX, end = 0;
1031 int cpu;
1032 int flush = 0;
1033
1034 if (unlikely(!vmap_initialized))
1035 return;
1036
1037 for_each_possible_cpu(cpu) {
1038 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1039 struct vmap_block *vb;
1040
1041 rcu_read_lock();
1042 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1043 int i;
1044
1045 spin_lock(&vb->lock);
1046 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1047 while (i < VMAP_BBMAP_BITS) {
1048 unsigned long s, e;
1049 int j;
1050 j = find_next_zero_bit(vb->dirty_map,
1051 VMAP_BBMAP_BITS, i);
1052
1053 s = vb->va->va_start + (i << PAGE_SHIFT);
1054 e = vb->va->va_start + (j << PAGE_SHIFT);
1055 flush = 1;
1056
1057 if (s < start)
1058 start = s;
1059 if (e > end)
1060 end = e;
1061
1062 i = j;
1063 i = find_next_bit(vb->dirty_map,
1064 VMAP_BBMAP_BITS, i);
1065 }
1066 spin_unlock(&vb->lock);
1067 }
1068 rcu_read_unlock();
1069 }
1070
1071 __purge_vmap_area_lazy(&start, &end, 1, flush);
1072 }
1073 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1074
1075 /**
1076 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1077 * @mem: the pointer returned by vm_map_ram
1078 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1079 */
1080 void vm_unmap_ram(const void *mem, unsigned int count)
1081 {
1082 unsigned long size = count << PAGE_SHIFT;
1083 unsigned long addr = (unsigned long)mem;
1084
1085 BUG_ON(!addr);
1086 BUG_ON(addr < VMALLOC_START);
1087 BUG_ON(addr > VMALLOC_END);
1088 BUG_ON(addr & (PAGE_SIZE-1));
1089
1090 debug_check_no_locks_freed(mem, size);
1091 vmap_debug_free_range(addr, addr+size);
1092
1093 if (likely(count <= VMAP_MAX_ALLOC))
1094 vb_free(mem, size);
1095 else
1096 free_unmap_vmap_area_addr(addr);
1097 }
1098 EXPORT_SYMBOL(vm_unmap_ram);
1099
1100 /**
1101 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1102 * @pages: an array of pointers to the pages to be mapped
1103 * @count: number of pages
1104 * @node: prefer to allocate data structures on this node
1105 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1106 *
1107 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1108 */
1109 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1110 {
1111 unsigned long size = count << PAGE_SHIFT;
1112 unsigned long addr;
1113 void *mem;
1114
1115 if (likely(count <= VMAP_MAX_ALLOC)) {
1116 mem = vb_alloc(size, GFP_KERNEL);
1117 if (IS_ERR(mem))
1118 return NULL;
1119 addr = (unsigned long)mem;
1120 } else {
1121 struct vmap_area *va;
1122 va = alloc_vmap_area(size, PAGE_SIZE,
1123 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1124 if (IS_ERR(va))
1125 return NULL;
1126
1127 addr = va->va_start;
1128 mem = (void *)addr;
1129 }
1130 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1131 vm_unmap_ram(mem, count);
1132 return NULL;
1133 }
1134 return mem;
1135 }
1136 EXPORT_SYMBOL(vm_map_ram);
1137
1138 static struct vm_struct *vmlist __initdata;
1139 /**
1140 * vm_area_add_early - add vmap area early during boot
1141 * @vm: vm_struct to add
1142 *
1143 * This function is used to add fixed kernel vm area to vmlist before
1144 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1145 * should contain proper values and the other fields should be zero.
1146 *
1147 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1148 */
1149 void __init vm_area_add_early(struct vm_struct *vm)
1150 {
1151 struct vm_struct *tmp, **p;
1152
1153 BUG_ON(vmap_initialized);
1154 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1155 if (tmp->addr >= vm->addr) {
1156 BUG_ON(tmp->addr < vm->addr + vm->size);
1157 break;
1158 } else
1159 BUG_ON(tmp->addr + tmp->size > vm->addr);
1160 }
1161 vm->next = *p;
1162 *p = vm;
1163 }
1164
1165 /**
1166 * vm_area_register_early - register vmap area early during boot
1167 * @vm: vm_struct to register
1168 * @align: requested alignment
1169 *
1170 * This function is used to register kernel vm area before
1171 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1172 * proper values on entry and other fields should be zero. On return,
1173 * vm->addr contains the allocated address.
1174 *
1175 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1176 */
1177 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1178 {
1179 static size_t vm_init_off __initdata;
1180 unsigned long addr;
1181
1182 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1183 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1184
1185 vm->addr = (void *)addr;
1186
1187 vm_area_add_early(vm);
1188 }
1189
1190 void __init vmalloc_init(void)
1191 {
1192 struct vmap_area *va;
1193 struct vm_struct *tmp;
1194 int i;
1195
1196 for_each_possible_cpu(i) {
1197 struct vmap_block_queue *vbq;
1198 struct vfree_deferred *p;
1199
1200 vbq = &per_cpu(vmap_block_queue, i);
1201 spin_lock_init(&vbq->lock);
1202 INIT_LIST_HEAD(&vbq->free);
1203 p = &per_cpu(vfree_deferred, i);
1204 init_llist_head(&p->list);
1205 INIT_WORK(&p->wq, free_work);
1206 }
1207
1208 /* Import existing vmlist entries. */
1209 for (tmp = vmlist; tmp; tmp = tmp->next) {
1210 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1211 va->flags = VM_VM_AREA;
1212 va->va_start = (unsigned long)tmp->addr;
1213 va->va_end = va->va_start + tmp->size;
1214 va->vm = tmp;
1215 __insert_vmap_area(va);
1216 }
1217
1218 vmap_area_pcpu_hole = VMALLOC_END;
1219
1220 vmap_initialized = true;
1221 }
1222
1223 /**
1224 * map_kernel_range_noflush - map kernel VM area with the specified pages
1225 * @addr: start of the VM area to map
1226 * @size: size of the VM area to map
1227 * @prot: page protection flags to use
1228 * @pages: pages to map
1229 *
1230 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1231 * specify should have been allocated using get_vm_area() and its
1232 * friends.
1233 *
1234 * NOTE:
1235 * This function does NOT do any cache flushing. The caller is
1236 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1237 * before calling this function.
1238 *
1239 * RETURNS:
1240 * The number of pages mapped on success, -errno on failure.
1241 */
1242 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1243 pgprot_t prot, struct page **pages)
1244 {
1245 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1246 }
1247
1248 /**
1249 * unmap_kernel_range_noflush - unmap kernel VM area
1250 * @addr: start of the VM area to unmap
1251 * @size: size of the VM area to unmap
1252 *
1253 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1254 * specify should have been allocated using get_vm_area() and its
1255 * friends.
1256 *
1257 * NOTE:
1258 * This function does NOT do any cache flushing. The caller is
1259 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1260 * before calling this function and flush_tlb_kernel_range() after.
1261 */
1262 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1263 {
1264 vunmap_page_range(addr, addr + size);
1265 }
1266 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1267
1268 /**
1269 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1270 * @addr: start of the VM area to unmap
1271 * @size: size of the VM area to unmap
1272 *
1273 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1274 * the unmapping and tlb after.
1275 */
1276 void unmap_kernel_range(unsigned long addr, unsigned long size)
1277 {
1278 unsigned long end = addr + size;
1279
1280 flush_cache_vunmap(addr, end);
1281 vunmap_page_range(addr, end);
1282 flush_tlb_kernel_range(addr, end);
1283 }
1284
1285 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1286 {
1287 unsigned long addr = (unsigned long)area->addr;
1288 unsigned long end = addr + area->size - PAGE_SIZE;
1289 int err;
1290
1291 err = vmap_page_range(addr, end, prot, *pages);
1292 if (err > 0) {
1293 *pages += err;
1294 err = 0;
1295 }
1296
1297 return err;
1298 }
1299 EXPORT_SYMBOL_GPL(map_vm_area);
1300
1301 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1302 unsigned long flags, const void *caller)
1303 {
1304 spin_lock(&vmap_area_lock);
1305 vm->flags = flags;
1306 vm->addr = (void *)va->va_start;
1307 vm->size = va->va_end - va->va_start;
1308 vm->caller = caller;
1309 va->vm = vm;
1310 va->flags |= VM_VM_AREA;
1311 spin_unlock(&vmap_area_lock);
1312 }
1313
1314 static void clear_vm_unlist(struct vm_struct *vm)
1315 {
1316 /*
1317 * Before removing VM_UNLIST,
1318 * we should make sure that vm has proper values.
1319 * Pair with smp_rmb() in show_numa_info().
1320 */
1321 smp_wmb();
1322 vm->flags &= ~VM_UNLIST;
1323 }
1324
1325 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1326 unsigned long flags, const void *caller)
1327 {
1328 setup_vmalloc_vm(vm, va, flags, caller);
1329 clear_vm_unlist(vm);
1330 }
1331
1332 static struct vm_struct *__get_vm_area_node(unsigned long size,
1333 unsigned long align, unsigned long flags, unsigned long start,
1334 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1335 {
1336 struct vmap_area *va;
1337 struct vm_struct *area;
1338
1339 BUG_ON(in_interrupt());
1340 if (flags & VM_IOREMAP) {
1341 int bit = fls(size);
1342
1343 if (bit > IOREMAP_MAX_ORDER)
1344 bit = IOREMAP_MAX_ORDER;
1345 else if (bit < PAGE_SHIFT)
1346 bit = PAGE_SHIFT;
1347
1348 align = 1ul << bit;
1349 }
1350
1351 size = PAGE_ALIGN(size);
1352 if (unlikely(!size))
1353 return NULL;
1354
1355 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1356 if (unlikely(!area))
1357 return NULL;
1358
1359 /*
1360 * We always allocate a guard page.
1361 */
1362 size += PAGE_SIZE;
1363
1364 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1365 if (IS_ERR(va)) {
1366 kfree(area);
1367 return NULL;
1368 }
1369
1370 /*
1371 * When this function is called from __vmalloc_node_range,
1372 * we add VM_UNLIST flag to avoid accessing uninitialized
1373 * members of vm_struct such as pages and nr_pages fields.
1374 * They will be set later.
1375 */
1376 if (flags & VM_UNLIST)
1377 setup_vmalloc_vm(area, va, flags, caller);
1378 else
1379 insert_vmalloc_vm(area, va, flags, caller);
1380
1381 return area;
1382 }
1383
1384 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1385 unsigned long start, unsigned long end)
1386 {
1387 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1388 GFP_KERNEL, __builtin_return_address(0));
1389 }
1390 EXPORT_SYMBOL_GPL(__get_vm_area);
1391
1392 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1393 unsigned long start, unsigned long end,
1394 const void *caller)
1395 {
1396 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1397 GFP_KERNEL, caller);
1398 }
1399
1400 /**
1401 * get_vm_area - reserve a contiguous kernel virtual area
1402 * @size: size of the area
1403 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1404 *
1405 * Search an area of @size in the kernel virtual mapping area,
1406 * and reserved it for out purposes. Returns the area descriptor
1407 * on success or %NULL on failure.
1408 */
1409 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1410 {
1411 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1412 NUMA_NO_NODE, GFP_KERNEL,
1413 __builtin_return_address(0));
1414 }
1415
1416 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1417 const void *caller)
1418 {
1419 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1420 NUMA_NO_NODE, GFP_KERNEL, caller);
1421 }
1422
1423 /**
1424 * find_vm_area - find a continuous kernel virtual area
1425 * @addr: base address
1426 *
1427 * Search for the kernel VM area starting at @addr, and return it.
1428 * It is up to the caller to do all required locking to keep the returned
1429 * pointer valid.
1430 */
1431 struct vm_struct *find_vm_area(const void *addr)
1432 {
1433 struct vmap_area *va;
1434
1435 va = find_vmap_area((unsigned long)addr);
1436 if (va && va->flags & VM_VM_AREA)
1437 return va->vm;
1438
1439 return NULL;
1440 }
1441
1442 /**
1443 * remove_vm_area - find and remove a continuous kernel virtual area
1444 * @addr: base address
1445 *
1446 * Search for the kernel VM area starting at @addr, and remove it.
1447 * This function returns the found VM area, but using it is NOT safe
1448 * on SMP machines, except for its size or flags.
1449 */
1450 struct vm_struct *remove_vm_area(const void *addr)
1451 {
1452 struct vmap_area *va;
1453
1454 va = find_vmap_area((unsigned long)addr);
1455 if (va && va->flags & VM_VM_AREA) {
1456 struct vm_struct *vm = va->vm;
1457
1458 spin_lock(&vmap_area_lock);
1459 va->vm = NULL;
1460 va->flags &= ~VM_VM_AREA;
1461 spin_unlock(&vmap_area_lock);
1462
1463 vmap_debug_free_range(va->va_start, va->va_end);
1464 free_unmap_vmap_area(va);
1465 vm->size -= PAGE_SIZE;
1466
1467 return vm;
1468 }
1469 return NULL;
1470 }
1471
1472 static void __vunmap(const void *addr, int deallocate_pages)
1473 {
1474 struct vm_struct *area;
1475
1476 if (!addr)
1477 return;
1478
1479 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1480 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1481 return;
1482 }
1483
1484 area = remove_vm_area(addr);
1485 if (unlikely(!area)) {
1486 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1487 addr);
1488 return;
1489 }
1490
1491 debug_check_no_locks_freed(addr, area->size);
1492 debug_check_no_obj_freed(addr, area->size);
1493
1494 if (deallocate_pages) {
1495 int i;
1496
1497 for (i = 0; i < area->nr_pages; i++) {
1498 struct page *page = area->pages[i];
1499
1500 BUG_ON(!page);
1501 __free_page(page);
1502 }
1503
1504 if (area->flags & VM_VPAGES)
1505 vfree(area->pages);
1506 else
1507 kfree(area->pages);
1508 }
1509
1510 kfree(area);
1511 return;
1512 }
1513
1514 /**
1515 * vfree - release memory allocated by vmalloc()
1516 * @addr: memory base address
1517 *
1518 * Free the virtually continuous memory area starting at @addr, as
1519 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1520 * NULL, no operation is performed.
1521 *
1522 * Must not be called in NMI context (strictly speaking, only if we don't
1523 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1524 * conventions for vfree() arch-depenedent would be a really bad idea)
1525 *
1526 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1527 *
1528 */
1529 void vfree(const void *addr)
1530 {
1531 BUG_ON(in_nmi());
1532
1533 kmemleak_free(addr);
1534
1535 if (!addr)
1536 return;
1537 if (unlikely(in_interrupt())) {
1538 struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
1539 llist_add((struct llist_node *)addr, &p->list);
1540 schedule_work(&p->wq);
1541 } else
1542 __vunmap(addr, 1);
1543 }
1544 EXPORT_SYMBOL(vfree);
1545
1546 /**
1547 * vunmap - release virtual mapping obtained by vmap()
1548 * @addr: memory base address
1549 *
1550 * Free the virtually contiguous memory area starting at @addr,
1551 * which was created from the page array passed to vmap().
1552 *
1553 * Must not be called in interrupt context.
1554 */
1555 void vunmap(const void *addr)
1556 {
1557 BUG_ON(in_interrupt());
1558 might_sleep();
1559 if (addr)
1560 __vunmap(addr, 0);
1561 }
1562 EXPORT_SYMBOL(vunmap);
1563
1564 /**
1565 * vmap - map an array of pages into virtually contiguous space
1566 * @pages: array of page pointers
1567 * @count: number of pages to map
1568 * @flags: vm_area->flags
1569 * @prot: page protection for the mapping
1570 *
1571 * Maps @count pages from @pages into contiguous kernel virtual
1572 * space.
1573 */
1574 void *vmap(struct page **pages, unsigned int count,
1575 unsigned long flags, pgprot_t prot)
1576 {
1577 struct vm_struct *area;
1578
1579 might_sleep();
1580
1581 if (count > totalram_pages)
1582 return NULL;
1583
1584 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1585 __builtin_return_address(0));
1586 if (!area)
1587 return NULL;
1588
1589 if (map_vm_area(area, prot, &pages)) {
1590 vunmap(area->addr);
1591 return NULL;
1592 }
1593
1594 return area->addr;
1595 }
1596 EXPORT_SYMBOL(vmap);
1597
1598 static void *__vmalloc_node(unsigned long size, unsigned long align,
1599 gfp_t gfp_mask, pgprot_t prot,
1600 int node, const void *caller);
1601 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1602 pgprot_t prot, int node, const void *caller)
1603 {
1604 const int order = 0;
1605 struct page **pages;
1606 unsigned int nr_pages, array_size, i;
1607 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1608
1609 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1610 array_size = (nr_pages * sizeof(struct page *));
1611
1612 area->nr_pages = nr_pages;
1613 /* Please note that the recursion is strictly bounded. */
1614 if (array_size > PAGE_SIZE) {
1615 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1616 PAGE_KERNEL, node, caller);
1617 area->flags |= VM_VPAGES;
1618 } else {
1619 pages = kmalloc_node(array_size, nested_gfp, node);
1620 }
1621 area->pages = pages;
1622 area->caller = caller;
1623 if (!area->pages) {
1624 remove_vm_area(area->addr);
1625 kfree(area);
1626 return NULL;
1627 }
1628
1629 for (i = 0; i < area->nr_pages; i++) {
1630 struct page *page;
1631 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1632
1633 if (node < 0)
1634 page = alloc_page(tmp_mask);
1635 else
1636 page = alloc_pages_node(node, tmp_mask, order);
1637
1638 if (unlikely(!page)) {
1639 /* Successfully allocated i pages, free them in __vunmap() */
1640 area->nr_pages = i;
1641 goto fail;
1642 }
1643 area->pages[i] = page;
1644 }
1645
1646 if (map_vm_area(area, prot, &pages))
1647 goto fail;
1648 return area->addr;
1649
1650 fail:
1651 warn_alloc_failed(gfp_mask, order,
1652 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1653 (area->nr_pages*PAGE_SIZE), area->size);
1654 vfree(area->addr);
1655 return NULL;
1656 }
1657
1658 /**
1659 * __vmalloc_node_range - allocate virtually contiguous memory
1660 * @size: allocation size
1661 * @align: desired alignment
1662 * @start: vm area range start
1663 * @end: vm area range end
1664 * @gfp_mask: flags for the page level allocator
1665 * @prot: protection mask for the allocated pages
1666 * @node: node to use for allocation or NUMA_NO_NODE
1667 * @caller: caller's return address
1668 *
1669 * Allocate enough pages to cover @size from the page level
1670 * allocator with @gfp_mask flags. Map them into contiguous
1671 * kernel virtual space, using a pagetable protection of @prot.
1672 */
1673 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1674 unsigned long start, unsigned long end, gfp_t gfp_mask,
1675 pgprot_t prot, int node, const void *caller)
1676 {
1677 struct vm_struct *area;
1678 void *addr;
1679 unsigned long real_size = size;
1680
1681 size = PAGE_ALIGN(size);
1682 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1683 goto fail;
1684
1685 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
1686 start, end, node, gfp_mask, caller);
1687 if (!area)
1688 goto fail;
1689
1690 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1691 if (!addr)
1692 return NULL;
1693
1694 /*
1695 * In this function, newly allocated vm_struct has VM_UNLIST flag.
1696 * It means that vm_struct is not fully initialized.
1697 * Now, it is fully initialized, so remove this flag here.
1698 */
1699 clear_vm_unlist(area);
1700
1701 /*
1702 * A ref_count = 3 is needed because the vm_struct and vmap_area
1703 * structures allocated in the __get_vm_area_node() function contain
1704 * references to the virtual address of the vmalloc'ed block.
1705 */
1706 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1707
1708 return addr;
1709
1710 fail:
1711 warn_alloc_failed(gfp_mask, 0,
1712 "vmalloc: allocation failure: %lu bytes\n",
1713 real_size);
1714 return NULL;
1715 }
1716
1717 /**
1718 * __vmalloc_node - allocate virtually contiguous memory
1719 * @size: allocation size
1720 * @align: desired alignment
1721 * @gfp_mask: flags for the page level allocator
1722 * @prot: protection mask for the allocated pages
1723 * @node: node to use for allocation or NUMA_NO_NODE
1724 * @caller: caller's return address
1725 *
1726 * Allocate enough pages to cover @size from the page level
1727 * allocator with @gfp_mask flags. Map them into contiguous
1728 * kernel virtual space, using a pagetable protection of @prot.
1729 */
1730 static void *__vmalloc_node(unsigned long size, unsigned long align,
1731 gfp_t gfp_mask, pgprot_t prot,
1732 int node, const void *caller)
1733 {
1734 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1735 gfp_mask, prot, node, caller);
1736 }
1737
1738 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1739 {
1740 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1741 __builtin_return_address(0));
1742 }
1743 EXPORT_SYMBOL(__vmalloc);
1744
1745 static inline void *__vmalloc_node_flags(unsigned long size,
1746 int node, gfp_t flags)
1747 {
1748 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1749 node, __builtin_return_address(0));
1750 }
1751
1752 /**
1753 * vmalloc - allocate virtually contiguous memory
1754 * @size: allocation size
1755 * Allocate enough pages to cover @size from the page level
1756 * allocator and map them into contiguous kernel virtual space.
1757 *
1758 * For tight control over page level allocator and protection flags
1759 * use __vmalloc() instead.
1760 */
1761 void *vmalloc(unsigned long size)
1762 {
1763 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1764 GFP_KERNEL | __GFP_HIGHMEM);
1765 }
1766 EXPORT_SYMBOL(vmalloc);
1767
1768 /**
1769 * vzalloc - allocate virtually contiguous memory with zero fill
1770 * @size: allocation size
1771 * Allocate enough pages to cover @size from the page level
1772 * allocator and map them into contiguous kernel virtual space.
1773 * The memory allocated is set to zero.
1774 *
1775 * For tight control over page level allocator and protection flags
1776 * use __vmalloc() instead.
1777 */
1778 void *vzalloc(unsigned long size)
1779 {
1780 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1781 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1782 }
1783 EXPORT_SYMBOL(vzalloc);
1784
1785 /**
1786 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1787 * @size: allocation size
1788 *
1789 * The resulting memory area is zeroed so it can be mapped to userspace
1790 * without leaking data.
1791 */
1792 void *vmalloc_user(unsigned long size)
1793 {
1794 struct vm_struct *area;
1795 void *ret;
1796
1797 ret = __vmalloc_node(size, SHMLBA,
1798 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1799 PAGE_KERNEL, NUMA_NO_NODE,
1800 __builtin_return_address(0));
1801 if (ret) {
1802 area = find_vm_area(ret);
1803 area->flags |= VM_USERMAP;
1804 }
1805 return ret;
1806 }
1807 EXPORT_SYMBOL(vmalloc_user);
1808
1809 /**
1810 * vmalloc_node - allocate memory on a specific node
1811 * @size: allocation size
1812 * @node: numa node
1813 *
1814 * Allocate enough pages to cover @size from the page level
1815 * allocator and map them into contiguous kernel virtual space.
1816 *
1817 * For tight control over page level allocator and protection flags
1818 * use __vmalloc() instead.
1819 */
1820 void *vmalloc_node(unsigned long size, int node)
1821 {
1822 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1823 node, __builtin_return_address(0));
1824 }
1825 EXPORT_SYMBOL(vmalloc_node);
1826
1827 /**
1828 * vzalloc_node - allocate memory on a specific node with zero fill
1829 * @size: allocation size
1830 * @node: numa node
1831 *
1832 * Allocate enough pages to cover @size from the page level
1833 * allocator and map them into contiguous kernel virtual space.
1834 * The memory allocated is set to zero.
1835 *
1836 * For tight control over page level allocator and protection flags
1837 * use __vmalloc_node() instead.
1838 */
1839 void *vzalloc_node(unsigned long size, int node)
1840 {
1841 return __vmalloc_node_flags(size, node,
1842 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1843 }
1844 EXPORT_SYMBOL(vzalloc_node);
1845
1846 #ifndef PAGE_KERNEL_EXEC
1847 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1848 #endif
1849
1850 /**
1851 * vmalloc_exec - allocate virtually contiguous, executable memory
1852 * @size: allocation size
1853 *
1854 * Kernel-internal function to allocate enough pages to cover @size
1855 * the page level allocator and map them into contiguous and
1856 * executable kernel virtual space.
1857 *
1858 * For tight control over page level allocator and protection flags
1859 * use __vmalloc() instead.
1860 */
1861
1862 void *vmalloc_exec(unsigned long size)
1863 {
1864 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1865 NUMA_NO_NODE, __builtin_return_address(0));
1866 }
1867
1868 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1869 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1870 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1871 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1872 #else
1873 #define GFP_VMALLOC32 GFP_KERNEL
1874 #endif
1875
1876 /**
1877 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1878 * @size: allocation size
1879 *
1880 * Allocate enough 32bit PA addressable pages to cover @size from the
1881 * page level allocator and map them into contiguous kernel virtual space.
1882 */
1883 void *vmalloc_32(unsigned long size)
1884 {
1885 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1886 NUMA_NO_NODE, __builtin_return_address(0));
1887 }
1888 EXPORT_SYMBOL(vmalloc_32);
1889
1890 /**
1891 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1892 * @size: allocation size
1893 *
1894 * The resulting memory area is 32bit addressable and zeroed so it can be
1895 * mapped to userspace without leaking data.
1896 */
1897 void *vmalloc_32_user(unsigned long size)
1898 {
1899 struct vm_struct *area;
1900 void *ret;
1901
1902 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1903 NUMA_NO_NODE, __builtin_return_address(0));
1904 if (ret) {
1905 area = find_vm_area(ret);
1906 area->flags |= VM_USERMAP;
1907 }
1908 return ret;
1909 }
1910 EXPORT_SYMBOL(vmalloc_32_user);
1911
1912 /*
1913 * small helper routine , copy contents to buf from addr.
1914 * If the page is not present, fill zero.
1915 */
1916
1917 static int aligned_vread(char *buf, char *addr, unsigned long count)
1918 {
1919 struct page *p;
1920 int copied = 0;
1921
1922 while (count) {
1923 unsigned long offset, length;
1924
1925 offset = (unsigned long)addr & ~PAGE_MASK;
1926 length = PAGE_SIZE - offset;
1927 if (length > count)
1928 length = count;
1929 p = vmalloc_to_page(addr);
1930 /*
1931 * To do safe access to this _mapped_ area, we need
1932 * lock. But adding lock here means that we need to add
1933 * overhead of vmalloc()/vfree() calles for this _debug_
1934 * interface, rarely used. Instead of that, we'll use
1935 * kmap() and get small overhead in this access function.
1936 */
1937 if (p) {
1938 /*
1939 * we can expect USER0 is not used (see vread/vwrite's
1940 * function description)
1941 */
1942 void *map = kmap_atomic(p);
1943 memcpy(buf, map + offset, length);
1944 kunmap_atomic(map);
1945 } else
1946 memset(buf, 0, length);
1947
1948 addr += length;
1949 buf += length;
1950 copied += length;
1951 count -= length;
1952 }
1953 return copied;
1954 }
1955
1956 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1957 {
1958 struct page *p;
1959 int copied = 0;
1960
1961 while (count) {
1962 unsigned long offset, length;
1963
1964 offset = (unsigned long)addr & ~PAGE_MASK;
1965 length = PAGE_SIZE - offset;
1966 if (length > count)
1967 length = count;
1968 p = vmalloc_to_page(addr);
1969 /*
1970 * To do safe access to this _mapped_ area, we need
1971 * lock. But adding lock here means that we need to add
1972 * overhead of vmalloc()/vfree() calles for this _debug_
1973 * interface, rarely used. Instead of that, we'll use
1974 * kmap() and get small overhead in this access function.
1975 */
1976 if (p) {
1977 /*
1978 * we can expect USER0 is not used (see vread/vwrite's
1979 * function description)
1980 */
1981 void *map = kmap_atomic(p);
1982 memcpy(map + offset, buf, length);
1983 kunmap_atomic(map);
1984 }
1985 addr += length;
1986 buf += length;
1987 copied += length;
1988 count -= length;
1989 }
1990 return copied;
1991 }
1992
1993 /**
1994 * vread() - read vmalloc area in a safe way.
1995 * @buf: buffer for reading data
1996 * @addr: vm address.
1997 * @count: number of bytes to be read.
1998 *
1999 * Returns # of bytes which addr and buf should be increased.
2000 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2001 * includes any intersect with alive vmalloc area.
2002 *
2003 * This function checks that addr is a valid vmalloc'ed area, and
2004 * copy data from that area to a given buffer. If the given memory range
2005 * of [addr...addr+count) includes some valid address, data is copied to
2006 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2007 * IOREMAP area is treated as memory hole and no copy is done.
2008 *
2009 * If [addr...addr+count) doesn't includes any intersects with alive
2010 * vm_struct area, returns 0. @buf should be kernel's buffer.
2011 *
2012 * Note: In usual ops, vread() is never necessary because the caller
2013 * should know vmalloc() area is valid and can use memcpy().
2014 * This is for routines which have to access vmalloc area without
2015 * any informaion, as /dev/kmem.
2016 *
2017 */
2018
2019 long vread(char *buf, char *addr, unsigned long count)
2020 {
2021 struct vmap_area *va;
2022 struct vm_struct *vm;
2023 char *vaddr, *buf_start = buf;
2024 unsigned long buflen = count;
2025 unsigned long n;
2026
2027 /* Don't allow overflow */
2028 if ((unsigned long) addr + count < count)
2029 count = -(unsigned long) addr;
2030
2031 spin_lock(&vmap_area_lock);
2032 list_for_each_entry(va, &vmap_area_list, list) {
2033 if (!count)
2034 break;
2035
2036 if (!(va->flags & VM_VM_AREA))
2037 continue;
2038
2039 vm = va->vm;
2040 vaddr = (char *) vm->addr;
2041 if (addr >= vaddr + vm->size - PAGE_SIZE)
2042 continue;
2043 while (addr < vaddr) {
2044 if (count == 0)
2045 goto finished;
2046 *buf = '\0';
2047 buf++;
2048 addr++;
2049 count--;
2050 }
2051 n = vaddr + vm->size - PAGE_SIZE - addr;
2052 if (n > count)
2053 n = count;
2054 if (!(vm->flags & VM_IOREMAP))
2055 aligned_vread(buf, addr, n);
2056 else /* IOREMAP area is treated as memory hole */
2057 memset(buf, 0, n);
2058 buf += n;
2059 addr += n;
2060 count -= n;
2061 }
2062 finished:
2063 spin_unlock(&vmap_area_lock);
2064
2065 if (buf == buf_start)
2066 return 0;
2067 /* zero-fill memory holes */
2068 if (buf != buf_start + buflen)
2069 memset(buf, 0, buflen - (buf - buf_start));
2070
2071 return buflen;
2072 }
2073
2074 /**
2075 * vwrite() - write vmalloc area in a safe way.
2076 * @buf: buffer for source data
2077 * @addr: vm address.
2078 * @count: number of bytes to be read.
2079 *
2080 * Returns # of bytes which addr and buf should be incresed.
2081 * (same number to @count).
2082 * If [addr...addr+count) doesn't includes any intersect with valid
2083 * vmalloc area, returns 0.
2084 *
2085 * This function checks that addr is a valid vmalloc'ed area, and
2086 * copy data from a buffer to the given addr. If specified range of
2087 * [addr...addr+count) includes some valid address, data is copied from
2088 * proper area of @buf. If there are memory holes, no copy to hole.
2089 * IOREMAP area is treated as memory hole and no copy is done.
2090 *
2091 * If [addr...addr+count) doesn't includes any intersects with alive
2092 * vm_struct area, returns 0. @buf should be kernel's buffer.
2093 *
2094 * Note: In usual ops, vwrite() is never necessary because the caller
2095 * should know vmalloc() area is valid and can use memcpy().
2096 * This is for routines which have to access vmalloc area without
2097 * any informaion, as /dev/kmem.
2098 */
2099
2100 long vwrite(char *buf, char *addr, unsigned long count)
2101 {
2102 struct vmap_area *va;
2103 struct vm_struct *vm;
2104 char *vaddr;
2105 unsigned long n, buflen;
2106 int copied = 0;
2107
2108 /* Don't allow overflow */
2109 if ((unsigned long) addr + count < count)
2110 count = -(unsigned long) addr;
2111 buflen = count;
2112
2113 spin_lock(&vmap_area_lock);
2114 list_for_each_entry(va, &vmap_area_list, list) {
2115 if (!count)
2116 break;
2117
2118 if (!(va->flags & VM_VM_AREA))
2119 continue;
2120
2121 vm = va->vm;
2122 vaddr = (char *) vm->addr;
2123 if (addr >= vaddr + vm->size - PAGE_SIZE)
2124 continue;
2125 while (addr < vaddr) {
2126 if (count == 0)
2127 goto finished;
2128 buf++;
2129 addr++;
2130 count--;
2131 }
2132 n = vaddr + vm->size - PAGE_SIZE - addr;
2133 if (n > count)
2134 n = count;
2135 if (!(vm->flags & VM_IOREMAP)) {
2136 aligned_vwrite(buf, addr, n);
2137 copied++;
2138 }
2139 buf += n;
2140 addr += n;
2141 count -= n;
2142 }
2143 finished:
2144 spin_unlock(&vmap_area_lock);
2145 if (!copied)
2146 return 0;
2147 return buflen;
2148 }
2149
2150 /**
2151 * remap_vmalloc_range - map vmalloc pages to userspace
2152 * @vma: vma to cover (map full range of vma)
2153 * @addr: vmalloc memory
2154 * @pgoff: number of pages into addr before first page to map
2155 *
2156 * Returns: 0 for success, -Exxx on failure
2157 *
2158 * This function checks that addr is a valid vmalloc'ed area, and
2159 * that it is big enough to cover the vma. Will return failure if
2160 * that criteria isn't met.
2161 *
2162 * Similar to remap_pfn_range() (see mm/memory.c)
2163 */
2164 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2165 unsigned long pgoff)
2166 {
2167 struct vm_struct *area;
2168 unsigned long uaddr = vma->vm_start;
2169 unsigned long usize = vma->vm_end - vma->vm_start;
2170
2171 if ((PAGE_SIZE-1) & (unsigned long)addr)
2172 return -EINVAL;
2173
2174 area = find_vm_area(addr);
2175 if (!area)
2176 return -EINVAL;
2177
2178 if (!(area->flags & VM_USERMAP))
2179 return -EINVAL;
2180
2181 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
2182 return -EINVAL;
2183
2184 addr += pgoff << PAGE_SHIFT;
2185 do {
2186 struct page *page = vmalloc_to_page(addr);
2187 int ret;
2188
2189 ret = vm_insert_page(vma, uaddr, page);
2190 if (ret)
2191 return ret;
2192
2193 uaddr += PAGE_SIZE;
2194 addr += PAGE_SIZE;
2195 usize -= PAGE_SIZE;
2196 } while (usize > 0);
2197
2198 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2199
2200 return 0;
2201 }
2202 EXPORT_SYMBOL(remap_vmalloc_range);
2203
2204 /*
2205 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2206 * have one.
2207 */
2208 void __attribute__((weak)) vmalloc_sync_all(void)
2209 {
2210 }
2211
2212
2213 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2214 {
2215 pte_t ***p = data;
2216
2217 if (p) {
2218 *(*p) = pte;
2219 (*p)++;
2220 }
2221 return 0;
2222 }
2223
2224 /**
2225 * alloc_vm_area - allocate a range of kernel address space
2226 * @size: size of the area
2227 * @ptes: returns the PTEs for the address space
2228 *
2229 * Returns: NULL on failure, vm_struct on success
2230 *
2231 * This function reserves a range of kernel address space, and
2232 * allocates pagetables to map that range. No actual mappings
2233 * are created.
2234 *
2235 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2236 * allocated for the VM area are returned.
2237 */
2238 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2239 {
2240 struct vm_struct *area;
2241
2242 area = get_vm_area_caller(size, VM_IOREMAP,
2243 __builtin_return_address(0));
2244 if (area == NULL)
2245 return NULL;
2246
2247 /*
2248 * This ensures that page tables are constructed for this region
2249 * of kernel virtual address space and mapped into init_mm.
2250 */
2251 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2252 size, f, ptes ? &ptes : NULL)) {
2253 free_vm_area(area);
2254 return NULL;
2255 }
2256
2257 return area;
2258 }
2259 EXPORT_SYMBOL_GPL(alloc_vm_area);
2260
2261 void free_vm_area(struct vm_struct *area)
2262 {
2263 struct vm_struct *ret;
2264 ret = remove_vm_area(area->addr);
2265 BUG_ON(ret != area);
2266 kfree(area);
2267 }
2268 EXPORT_SYMBOL_GPL(free_vm_area);
2269
2270 #ifdef CONFIG_SMP
2271 static struct vmap_area *node_to_va(struct rb_node *n)
2272 {
2273 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2274 }
2275
2276 /**
2277 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2278 * @end: target address
2279 * @pnext: out arg for the next vmap_area
2280 * @pprev: out arg for the previous vmap_area
2281 *
2282 * Returns: %true if either or both of next and prev are found,
2283 * %false if no vmap_area exists
2284 *
2285 * Find vmap_areas end addresses of which enclose @end. ie. if not
2286 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2287 */
2288 static bool pvm_find_next_prev(unsigned long end,
2289 struct vmap_area **pnext,
2290 struct vmap_area **pprev)
2291 {
2292 struct rb_node *n = vmap_area_root.rb_node;
2293 struct vmap_area *va = NULL;
2294
2295 while (n) {
2296 va = rb_entry(n, struct vmap_area, rb_node);
2297 if (end < va->va_end)
2298 n = n->rb_left;
2299 else if (end > va->va_end)
2300 n = n->rb_right;
2301 else
2302 break;
2303 }
2304
2305 if (!va)
2306 return false;
2307
2308 if (va->va_end > end) {
2309 *pnext = va;
2310 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2311 } else {
2312 *pprev = va;
2313 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2314 }
2315 return true;
2316 }
2317
2318 /**
2319 * pvm_determine_end - find the highest aligned address between two vmap_areas
2320 * @pnext: in/out arg for the next vmap_area
2321 * @pprev: in/out arg for the previous vmap_area
2322 * @align: alignment
2323 *
2324 * Returns: determined end address
2325 *
2326 * Find the highest aligned address between *@pnext and *@pprev below
2327 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2328 * down address is between the end addresses of the two vmap_areas.
2329 *
2330 * Please note that the address returned by this function may fall
2331 * inside *@pnext vmap_area. The caller is responsible for checking
2332 * that.
2333 */
2334 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2335 struct vmap_area **pprev,
2336 unsigned long align)
2337 {
2338 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2339 unsigned long addr;
2340
2341 if (*pnext)
2342 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2343 else
2344 addr = vmalloc_end;
2345
2346 while (*pprev && (*pprev)->va_end > addr) {
2347 *pnext = *pprev;
2348 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2349 }
2350
2351 return addr;
2352 }
2353
2354 /**
2355 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2356 * @offsets: array containing offset of each area
2357 * @sizes: array containing size of each area
2358 * @nr_vms: the number of areas to allocate
2359 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2360 *
2361 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2362 * vm_structs on success, %NULL on failure
2363 *
2364 * Percpu allocator wants to use congruent vm areas so that it can
2365 * maintain the offsets among percpu areas. This function allocates
2366 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2367 * be scattered pretty far, distance between two areas easily going up
2368 * to gigabytes. To avoid interacting with regular vmallocs, these
2369 * areas are allocated from top.
2370 *
2371 * Despite its complicated look, this allocator is rather simple. It
2372 * does everything top-down and scans areas from the end looking for
2373 * matching slot. While scanning, if any of the areas overlaps with
2374 * existing vmap_area, the base address is pulled down to fit the
2375 * area. Scanning is repeated till all the areas fit and then all
2376 * necessary data structres are inserted and the result is returned.
2377 */
2378 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2379 const size_t *sizes, int nr_vms,
2380 size_t align)
2381 {
2382 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2383 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2384 struct vmap_area **vas, *prev, *next;
2385 struct vm_struct **vms;
2386 int area, area2, last_area, term_area;
2387 unsigned long base, start, end, last_end;
2388 bool purged = false;
2389
2390 /* verify parameters and allocate data structures */
2391 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2392 for (last_area = 0, area = 0; area < nr_vms; area++) {
2393 start = offsets[area];
2394 end = start + sizes[area];
2395
2396 /* is everything aligned properly? */
2397 BUG_ON(!IS_ALIGNED(offsets[area], align));
2398 BUG_ON(!IS_ALIGNED(sizes[area], align));
2399
2400 /* detect the area with the highest address */
2401 if (start > offsets[last_area])
2402 last_area = area;
2403
2404 for (area2 = 0; area2 < nr_vms; area2++) {
2405 unsigned long start2 = offsets[area2];
2406 unsigned long end2 = start2 + sizes[area2];
2407
2408 if (area2 == area)
2409 continue;
2410
2411 BUG_ON(start2 >= start && start2 < end);
2412 BUG_ON(end2 <= end && end2 > start);
2413 }
2414 }
2415 last_end = offsets[last_area] + sizes[last_area];
2416
2417 if (vmalloc_end - vmalloc_start < last_end) {
2418 WARN_ON(true);
2419 return NULL;
2420 }
2421
2422 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2423 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2424 if (!vas || !vms)
2425 goto err_free2;
2426
2427 for (area = 0; area < nr_vms; area++) {
2428 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2429 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2430 if (!vas[area] || !vms[area])
2431 goto err_free;
2432 }
2433 retry:
2434 spin_lock(&vmap_area_lock);
2435
2436 /* start scanning - we scan from the top, begin with the last area */
2437 area = term_area = last_area;
2438 start = offsets[area];
2439 end = start + sizes[area];
2440
2441 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2442 base = vmalloc_end - last_end;
2443 goto found;
2444 }
2445 base = pvm_determine_end(&next, &prev, align) - end;
2446
2447 while (true) {
2448 BUG_ON(next && next->va_end <= base + end);
2449 BUG_ON(prev && prev->va_end > base + end);
2450
2451 /*
2452 * base might have underflowed, add last_end before
2453 * comparing.
2454 */
2455 if (base + last_end < vmalloc_start + last_end) {
2456 spin_unlock(&vmap_area_lock);
2457 if (!purged) {
2458 purge_vmap_area_lazy();
2459 purged = true;
2460 goto retry;
2461 }
2462 goto err_free;
2463 }
2464
2465 /*
2466 * If next overlaps, move base downwards so that it's
2467 * right below next and then recheck.
2468 */
2469 if (next && next->va_start < base + end) {
2470 base = pvm_determine_end(&next, &prev, align) - end;
2471 term_area = area;
2472 continue;
2473 }
2474
2475 /*
2476 * If prev overlaps, shift down next and prev and move
2477 * base so that it's right below new next and then
2478 * recheck.
2479 */
2480 if (prev && prev->va_end > base + start) {
2481 next = prev;
2482 prev = node_to_va(rb_prev(&next->rb_node));
2483 base = pvm_determine_end(&next, &prev, align) - end;
2484 term_area = area;
2485 continue;
2486 }
2487
2488 /*
2489 * This area fits, move on to the previous one. If
2490 * the previous one is the terminal one, we're done.
2491 */
2492 area = (area + nr_vms - 1) % nr_vms;
2493 if (area == term_area)
2494 break;
2495 start = offsets[area];
2496 end = start + sizes[area];
2497 pvm_find_next_prev(base + end, &next, &prev);
2498 }
2499 found:
2500 /* we've found a fitting base, insert all va's */
2501 for (area = 0; area < nr_vms; area++) {
2502 struct vmap_area *va = vas[area];
2503
2504 va->va_start = base + offsets[area];
2505 va->va_end = va->va_start + sizes[area];
2506 __insert_vmap_area(va);
2507 }
2508
2509 vmap_area_pcpu_hole = base + offsets[last_area];
2510
2511 spin_unlock(&vmap_area_lock);
2512
2513 /* insert all vm's */
2514 for (area = 0; area < nr_vms; area++)
2515 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2516 pcpu_get_vm_areas);
2517
2518 kfree(vas);
2519 return vms;
2520
2521 err_free:
2522 for (area = 0; area < nr_vms; area++) {
2523 kfree(vas[area]);
2524 kfree(vms[area]);
2525 }
2526 err_free2:
2527 kfree(vas);
2528 kfree(vms);
2529 return NULL;
2530 }
2531
2532 /**
2533 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2534 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2535 * @nr_vms: the number of allocated areas
2536 *
2537 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2538 */
2539 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2540 {
2541 int i;
2542
2543 for (i = 0; i < nr_vms; i++)
2544 free_vm_area(vms[i]);
2545 kfree(vms);
2546 }
2547 #endif /* CONFIG_SMP */
2548
2549 #ifdef CONFIG_PROC_FS
2550 static void *s_start(struct seq_file *m, loff_t *pos)
2551 __acquires(&vmap_area_lock)
2552 {
2553 loff_t n = *pos;
2554 struct vmap_area *va;
2555
2556 spin_lock(&vmap_area_lock);
2557 va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2558 while (n > 0 && &va->list != &vmap_area_list) {
2559 n--;
2560 va = list_entry(va->list.next, typeof(*va), list);
2561 }
2562 if (!n && &va->list != &vmap_area_list)
2563 return va;
2564
2565 return NULL;
2566
2567 }
2568
2569 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2570 {
2571 struct vmap_area *va = p, *next;
2572
2573 ++*pos;
2574 next = list_entry(va->list.next, typeof(*va), list);
2575 if (&next->list != &vmap_area_list)
2576 return next;
2577
2578 return NULL;
2579 }
2580
2581 static void s_stop(struct seq_file *m, void *p)
2582 __releases(&vmap_area_lock)
2583 {
2584 spin_unlock(&vmap_area_lock);
2585 }
2586
2587 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2588 {
2589 if (IS_ENABLED(CONFIG_NUMA)) {
2590 unsigned int nr, *counters = m->private;
2591
2592 if (!counters)
2593 return;
2594
2595 /* Pair with smp_wmb() in clear_vm_unlist() */
2596 smp_rmb();
2597 if (v->flags & VM_UNLIST)
2598 return;
2599
2600 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2601
2602 for (nr = 0; nr < v->nr_pages; nr++)
2603 counters[page_to_nid(v->pages[nr])]++;
2604
2605 for_each_node_state(nr, N_HIGH_MEMORY)
2606 if (counters[nr])
2607 seq_printf(m, " N%u=%u", nr, counters[nr]);
2608 }
2609 }
2610
2611 static int s_show(struct seq_file *m, void *p)
2612 {
2613 struct vmap_area *va = p;
2614 struct vm_struct *v;
2615
2616 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2617 return 0;
2618
2619 if (!(va->flags & VM_VM_AREA)) {
2620 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
2621 (void *)va->va_start, (void *)va->va_end,
2622 va->va_end - va->va_start);
2623 return 0;
2624 }
2625
2626 v = va->vm;
2627
2628 seq_printf(m, "0x%pK-0x%pK %7ld",
2629 v->addr, v->addr + v->size, v->size);
2630
2631 if (v->caller)
2632 seq_printf(m, " %pS", v->caller);
2633
2634 if (v->nr_pages)
2635 seq_printf(m, " pages=%d", v->nr_pages);
2636
2637 if (v->phys_addr)
2638 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2639
2640 if (v->flags & VM_IOREMAP)
2641 seq_printf(m, " ioremap");
2642
2643 if (v->flags & VM_ALLOC)
2644 seq_printf(m, " vmalloc");
2645
2646 if (v->flags & VM_MAP)
2647 seq_printf(m, " vmap");
2648
2649 if (v->flags & VM_USERMAP)
2650 seq_printf(m, " user");
2651
2652 if (v->flags & VM_VPAGES)
2653 seq_printf(m, " vpages");
2654
2655 show_numa_info(m, v);
2656 seq_putc(m, '\n');
2657 return 0;
2658 }
2659
2660 static const struct seq_operations vmalloc_op = {
2661 .start = s_start,
2662 .next = s_next,
2663 .stop = s_stop,
2664 .show = s_show,
2665 };
2666
2667 static int vmalloc_open(struct inode *inode, struct file *file)
2668 {
2669 unsigned int *ptr = NULL;
2670 int ret;
2671
2672 if (IS_ENABLED(CONFIG_NUMA)) {
2673 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2674 if (ptr == NULL)
2675 return -ENOMEM;
2676 }
2677 ret = seq_open(file, &vmalloc_op);
2678 if (!ret) {
2679 struct seq_file *m = file->private_data;
2680 m->private = ptr;
2681 } else
2682 kfree(ptr);
2683 return ret;
2684 }
2685
2686 static const struct file_operations proc_vmalloc_operations = {
2687 .open = vmalloc_open,
2688 .read = seq_read,
2689 .llseek = seq_lseek,
2690 .release = seq_release_private,
2691 };
2692
2693 static int __init proc_vmalloc_init(void)
2694 {
2695 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2696 return 0;
2697 }
2698 module_init(proc_vmalloc_init);
2699
2700 void get_vmalloc_info(struct vmalloc_info *vmi)
2701 {
2702 struct vmap_area *va;
2703 unsigned long free_area_size;
2704 unsigned long prev_end;
2705
2706 vmi->used = 0;
2707 vmi->largest_chunk = 0;
2708
2709 prev_end = VMALLOC_START;
2710
2711 spin_lock(&vmap_area_lock);
2712
2713 if (list_empty(&vmap_area_list)) {
2714 vmi->largest_chunk = VMALLOC_TOTAL;
2715 goto out;
2716 }
2717
2718 list_for_each_entry(va, &vmap_area_list, list) {
2719 unsigned long addr = va->va_start;
2720
2721 /*
2722 * Some archs keep another range for modules in vmalloc space
2723 */
2724 if (addr < VMALLOC_START)
2725 continue;
2726 if (addr >= VMALLOC_END)
2727 break;
2728
2729 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2730 continue;
2731
2732 vmi->used += (va->va_end - va->va_start);
2733
2734 free_area_size = addr - prev_end;
2735 if (vmi->largest_chunk < free_area_size)
2736 vmi->largest_chunk = free_area_size;
2737
2738 prev_end = va->va_end;
2739 }
2740
2741 if (VMALLOC_END - prev_end > vmi->largest_chunk)
2742 vmi->largest_chunk = VMALLOC_END - prev_end;
2743
2744 out:
2745 spin_unlock(&vmap_area_lock);
2746 }
2747 #endif
2748