Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / truncate.c
1 /*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002 Andrew Morton
7 * Initial version.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/swap.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h> /* grr. try_to_release_page,
21 do_invalidatepage */
22 #include <linux/cleancache.h>
23 #include "internal.h"
24
25
26 /**
27 * do_invalidatepage - invalidate part or all of a page
28 * @page: the page which is affected
29 * @offset: the index of the truncation point
30 *
31 * do_invalidatepage() is called when all or part of the page has become
32 * invalidated by a truncate operation.
33 *
34 * do_invalidatepage() does not have to release all buffers, but it must
35 * ensure that no dirty buffer is left outside @offset and that no I/O
36 * is underway against any of the blocks which are outside the truncation
37 * point. Because the caller is about to free (and possibly reuse) those
38 * blocks on-disk.
39 */
40 void do_invalidatepage(struct page *page, unsigned long offset)
41 {
42 void (*invalidatepage)(struct page *, unsigned long);
43 invalidatepage = page->mapping->a_ops->invalidatepage;
44 #ifdef CONFIG_BLOCK
45 if (!invalidatepage)
46 invalidatepage = block_invalidatepage;
47 #endif
48 if (invalidatepage)
49 (*invalidatepage)(page, offset);
50 }
51
52 static inline void truncate_partial_page(struct page *page, unsigned partial)
53 {
54 zero_user_segment(page, partial, PAGE_CACHE_SIZE);
55 cleancache_invalidate_page(page->mapping, page);
56 if (page_has_private(page))
57 do_invalidatepage(page, partial);
58 }
59
60 /*
61 * This cancels just the dirty bit on the kernel page itself, it
62 * does NOT actually remove dirty bits on any mmap's that may be
63 * around. It also leaves the page tagged dirty, so any sync
64 * activity will still find it on the dirty lists, and in particular,
65 * clear_page_dirty_for_io() will still look at the dirty bits in
66 * the VM.
67 *
68 * Doing this should *normally* only ever be done when a page
69 * is truncated, and is not actually mapped anywhere at all. However,
70 * fs/buffer.c does this when it notices that somebody has cleaned
71 * out all the buffers on a page without actually doing it through
72 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
73 */
74 void cancel_dirty_page(struct page *page, unsigned int account_size)
75 {
76 if (TestClearPageDirty(page)) {
77 struct address_space *mapping = page->mapping;
78 if (mapping && mapping_cap_account_dirty(mapping)) {
79 dec_zone_page_state(page, NR_FILE_DIRTY);
80 dec_bdi_stat(mapping->backing_dev_info,
81 BDI_RECLAIMABLE);
82 if (account_size)
83 task_io_account_cancelled_write(account_size);
84 }
85 }
86 }
87 EXPORT_SYMBOL(cancel_dirty_page);
88
89 /*
90 * If truncate cannot remove the fs-private metadata from the page, the page
91 * becomes orphaned. It will be left on the LRU and may even be mapped into
92 * user pagetables if we're racing with filemap_fault().
93 *
94 * We need to bale out if page->mapping is no longer equal to the original
95 * mapping. This happens a) when the VM reclaimed the page while we waited on
96 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
97 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
98 */
99 static int
100 truncate_complete_page(struct address_space *mapping, struct page *page)
101 {
102 if (page->mapping != mapping)
103 return -EIO;
104
105 if (page_has_private(page))
106 do_invalidatepage(page, 0);
107
108 cancel_dirty_page(page, PAGE_CACHE_SIZE);
109
110 ClearPageMappedToDisk(page);
111 delete_from_page_cache(page);
112 return 0;
113 }
114
115 /*
116 * This is for invalidate_mapping_pages(). That function can be called at
117 * any time, and is not supposed to throw away dirty pages. But pages can
118 * be marked dirty at any time too, so use remove_mapping which safely
119 * discards clean, unused pages.
120 *
121 * Returns non-zero if the page was successfully invalidated.
122 */
123 static int
124 invalidate_complete_page(struct address_space *mapping, struct page *page)
125 {
126 int ret;
127
128 if (page->mapping != mapping)
129 return 0;
130
131 if (page_has_private(page) && !try_to_release_page(page, 0))
132 return 0;
133
134 ret = remove_mapping(mapping, page);
135
136 return ret;
137 }
138
139 int truncate_inode_page(struct address_space *mapping, struct page *page)
140 {
141 if (page_mapped(page)) {
142 unmap_mapping_range(mapping,
143 (loff_t)page->index << PAGE_CACHE_SHIFT,
144 PAGE_CACHE_SIZE, 0);
145 }
146 return truncate_complete_page(mapping, page);
147 }
148
149 /*
150 * Used to get rid of pages on hardware memory corruption.
151 */
152 int generic_error_remove_page(struct address_space *mapping, struct page *page)
153 {
154 if (!mapping)
155 return -EINVAL;
156 /*
157 * Only punch for normal data pages for now.
158 * Handling other types like directories would need more auditing.
159 */
160 if (!S_ISREG(mapping->host->i_mode))
161 return -EIO;
162 return truncate_inode_page(mapping, page);
163 }
164 EXPORT_SYMBOL(generic_error_remove_page);
165
166 /*
167 * Safely invalidate one page from its pagecache mapping.
168 * It only drops clean, unused pages. The page must be locked.
169 *
170 * Returns 1 if the page is successfully invalidated, otherwise 0.
171 */
172 int invalidate_inode_page(struct page *page)
173 {
174 struct address_space *mapping = page_mapping(page);
175 if (!mapping)
176 return 0;
177 if (PageDirty(page) || PageWriteback(page))
178 return 0;
179 if (page_mapped(page))
180 return 0;
181 return invalidate_complete_page(mapping, page);
182 }
183
184 /**
185 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
186 * @mapping: mapping to truncate
187 * @lstart: offset from which to truncate
188 * @lend: offset to which to truncate
189 *
190 * Truncate the page cache, removing the pages that are between
191 * specified offsets (and zeroing out partial page
192 * (if lstart is not page aligned)).
193 *
194 * Truncate takes two passes - the first pass is nonblocking. It will not
195 * block on page locks and it will not block on writeback. The second pass
196 * will wait. This is to prevent as much IO as possible in the affected region.
197 * The first pass will remove most pages, so the search cost of the second pass
198 * is low.
199 *
200 * We pass down the cache-hot hint to the page freeing code. Even if the
201 * mapping is large, it is probably the case that the final pages are the most
202 * recently touched, and freeing happens in ascending file offset order.
203 */
204 void truncate_inode_pages_range(struct address_space *mapping,
205 loff_t lstart, loff_t lend)
206 {
207 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
208 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
209 struct pagevec pvec;
210 pgoff_t index;
211 pgoff_t end;
212 int i;
213
214 cleancache_invalidate_inode(mapping);
215 if (mapping->nrpages == 0)
216 return;
217
218 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
219 end = (lend >> PAGE_CACHE_SHIFT);
220
221 pagevec_init(&pvec, 0);
222 index = start;
223 while (index <= end && pagevec_lookup(&pvec, mapping, index,
224 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
225 mem_cgroup_uncharge_start();
226 for (i = 0; i < pagevec_count(&pvec); i++) {
227 struct page *page = pvec.pages[i];
228
229 /* We rely upon deletion not changing page->index */
230 index = page->index;
231 if (index > end)
232 break;
233
234 if (!trylock_page(page))
235 continue;
236 WARN_ON(page->index != index);
237 if (PageWriteback(page)) {
238 unlock_page(page);
239 continue;
240 }
241 truncate_inode_page(mapping, page);
242 unlock_page(page);
243 }
244 pagevec_release(&pvec);
245 mem_cgroup_uncharge_end();
246 cond_resched();
247 index++;
248 }
249
250 if (partial) {
251 struct page *page = find_lock_page(mapping, start - 1);
252 if (page) {
253 wait_on_page_writeback(page);
254 truncate_partial_page(page, partial);
255 unlock_page(page);
256 page_cache_release(page);
257 }
258 }
259
260 index = start;
261 for ( ; ; ) {
262 cond_resched();
263 if (!pagevec_lookup(&pvec, mapping, index,
264 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
265 if (index == start)
266 break;
267 index = start;
268 continue;
269 }
270 if (index == start && pvec.pages[0]->index > end) {
271 pagevec_release(&pvec);
272 break;
273 }
274 mem_cgroup_uncharge_start();
275 for (i = 0; i < pagevec_count(&pvec); i++) {
276 struct page *page = pvec.pages[i];
277
278 /* We rely upon deletion not changing page->index */
279 index = page->index;
280 if (index > end)
281 break;
282
283 lock_page(page);
284 WARN_ON(page->index != index);
285 wait_on_page_writeback(page);
286 truncate_inode_page(mapping, page);
287 unlock_page(page);
288 }
289 pagevec_release(&pvec);
290 mem_cgroup_uncharge_end();
291 index++;
292 }
293 cleancache_invalidate_inode(mapping);
294 }
295 EXPORT_SYMBOL(truncate_inode_pages_range);
296
297 /**
298 * truncate_inode_pages - truncate *all* the pages from an offset
299 * @mapping: mapping to truncate
300 * @lstart: offset from which to truncate
301 *
302 * Called under (and serialised by) inode->i_mutex.
303 *
304 * Note: When this function returns, there can be a page in the process of
305 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
306 * mapping->nrpages can be non-zero when this function returns even after
307 * truncation of the whole mapping.
308 */
309 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
310 {
311 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
312 }
313 EXPORT_SYMBOL(truncate_inode_pages);
314
315 /**
316 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
317 * @mapping: the address_space which holds the pages to invalidate
318 * @start: the offset 'from' which to invalidate
319 * @end: the offset 'to' which to invalidate (inclusive)
320 *
321 * This function only removes the unlocked pages, if you want to
322 * remove all the pages of one inode, you must call truncate_inode_pages.
323 *
324 * invalidate_mapping_pages() will not block on IO activity. It will not
325 * invalidate pages which are dirty, locked, under writeback or mapped into
326 * pagetables.
327 */
328 unsigned long invalidate_mapping_pages(struct address_space *mapping,
329 pgoff_t start, pgoff_t end)
330 {
331 struct pagevec pvec;
332 pgoff_t index = start;
333 unsigned long ret;
334 unsigned long count = 0;
335 int i;
336
337 /*
338 * Note: this function may get called on a shmem/tmpfs mapping:
339 * pagevec_lookup() might then return 0 prematurely (because it
340 * got a gangful of swap entries); but it's hardly worth worrying
341 * about - it can rarely have anything to free from such a mapping
342 * (most pages are dirty), and already skips over any difficulties.
343 */
344
345 pagevec_init(&pvec, 0);
346 while (index <= end && pagevec_lookup(&pvec, mapping, index,
347 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
348 mem_cgroup_uncharge_start();
349 for (i = 0; i < pagevec_count(&pvec); i++) {
350 struct page *page = pvec.pages[i];
351
352 /* We rely upon deletion not changing page->index */
353 index = page->index;
354 if (index > end)
355 break;
356
357 if (!trylock_page(page))
358 continue;
359 WARN_ON(page->index != index);
360 ret = invalidate_inode_page(page);
361 unlock_page(page);
362 /*
363 * Invalidation is a hint that the page is no longer
364 * of interest and try to speed up its reclaim.
365 */
366 if (!ret)
367 deactivate_page(page);
368 count += ret;
369 }
370 pagevec_release(&pvec);
371 mem_cgroup_uncharge_end();
372 cond_resched();
373 index++;
374 }
375 return count;
376 }
377 EXPORT_SYMBOL(invalidate_mapping_pages);
378
379 /*
380 * This is like invalidate_complete_page(), except it ignores the page's
381 * refcount. We do this because invalidate_inode_pages2() needs stronger
382 * invalidation guarantees, and cannot afford to leave pages behind because
383 * shrink_page_list() has a temp ref on them, or because they're transiently
384 * sitting in the lru_cache_add() pagevecs.
385 */
386 static int
387 invalidate_complete_page2(struct address_space *mapping, struct page *page)
388 {
389 if (page->mapping != mapping)
390 return 0;
391
392 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
393 return 0;
394
395 spin_lock_irq(&mapping->tree_lock);
396 if (PageDirty(page))
397 goto failed;
398
399 BUG_ON(page_has_private(page));
400 __delete_from_page_cache(page);
401 spin_unlock_irq(&mapping->tree_lock);
402 mem_cgroup_uncharge_cache_page(page);
403
404 if (mapping->a_ops->freepage)
405 mapping->a_ops->freepage(page);
406
407 page_cache_release(page); /* pagecache ref */
408 return 1;
409 failed:
410 spin_unlock_irq(&mapping->tree_lock);
411 return 0;
412 }
413
414 static int do_launder_page(struct address_space *mapping, struct page *page)
415 {
416 if (!PageDirty(page))
417 return 0;
418 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
419 return 0;
420 return mapping->a_ops->launder_page(page);
421 }
422
423 /**
424 * invalidate_inode_pages2_range - remove range of pages from an address_space
425 * @mapping: the address_space
426 * @start: the page offset 'from' which to invalidate
427 * @end: the page offset 'to' which to invalidate (inclusive)
428 *
429 * Any pages which are found to be mapped into pagetables are unmapped prior to
430 * invalidation.
431 *
432 * Returns -EBUSY if any pages could not be invalidated.
433 */
434 int invalidate_inode_pages2_range(struct address_space *mapping,
435 pgoff_t start, pgoff_t end)
436 {
437 struct pagevec pvec;
438 pgoff_t index;
439 int i;
440 int ret = 0;
441 int ret2 = 0;
442 int did_range_unmap = 0;
443
444 cleancache_invalidate_inode(mapping);
445 pagevec_init(&pvec, 0);
446 index = start;
447 while (index <= end && pagevec_lookup(&pvec, mapping, index,
448 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
449 mem_cgroup_uncharge_start();
450 for (i = 0; i < pagevec_count(&pvec); i++) {
451 struct page *page = pvec.pages[i];
452
453 /* We rely upon deletion not changing page->index */
454 index = page->index;
455 if (index > end)
456 break;
457
458 lock_page(page);
459 WARN_ON(page->index != index);
460 if (page->mapping != mapping) {
461 unlock_page(page);
462 continue;
463 }
464 wait_on_page_writeback(page);
465 if (page_mapped(page)) {
466 if (!did_range_unmap) {
467 /*
468 * Zap the rest of the file in one hit.
469 */
470 unmap_mapping_range(mapping,
471 (loff_t)index << PAGE_CACHE_SHIFT,
472 (loff_t)(1 + end - index)
473 << PAGE_CACHE_SHIFT,
474 0);
475 did_range_unmap = 1;
476 } else {
477 /*
478 * Just zap this page
479 */
480 unmap_mapping_range(mapping,
481 (loff_t)index << PAGE_CACHE_SHIFT,
482 PAGE_CACHE_SIZE, 0);
483 }
484 }
485 BUG_ON(page_mapped(page));
486 ret2 = do_launder_page(mapping, page);
487 if (ret2 == 0) {
488 if (!invalidate_complete_page2(mapping, page))
489 ret2 = -EBUSY;
490 }
491 if (ret2 < 0)
492 ret = ret2;
493 unlock_page(page);
494 }
495 pagevec_release(&pvec);
496 mem_cgroup_uncharge_end();
497 cond_resched();
498 index++;
499 }
500 cleancache_invalidate_inode(mapping);
501 return ret;
502 }
503 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
504
505 /**
506 * invalidate_inode_pages2 - remove all pages from an address_space
507 * @mapping: the address_space
508 *
509 * Any pages which are found to be mapped into pagetables are unmapped prior to
510 * invalidation.
511 *
512 * Returns -EBUSY if any pages could not be invalidated.
513 */
514 int invalidate_inode_pages2(struct address_space *mapping)
515 {
516 return invalidate_inode_pages2_range(mapping, 0, -1);
517 }
518 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
519
520 /**
521 * truncate_pagecache - unmap and remove pagecache that has been truncated
522 * @inode: inode
523 * @oldsize: old file size
524 * @newsize: new file size
525 *
526 * inode's new i_size must already be written before truncate_pagecache
527 * is called.
528 *
529 * This function should typically be called before the filesystem
530 * releases resources associated with the freed range (eg. deallocates
531 * blocks). This way, pagecache will always stay logically coherent
532 * with on-disk format, and the filesystem would not have to deal with
533 * situations such as writepage being called for a page that has already
534 * had its underlying blocks deallocated.
535 */
536 void truncate_pagecache(struct inode *inode, loff_t oldsize, loff_t newsize)
537 {
538 struct address_space *mapping = inode->i_mapping;
539 loff_t holebegin = round_up(newsize, PAGE_SIZE);
540
541 /*
542 * unmap_mapping_range is called twice, first simply for
543 * efficiency so that truncate_inode_pages does fewer
544 * single-page unmaps. However after this first call, and
545 * before truncate_inode_pages finishes, it is possible for
546 * private pages to be COWed, which remain after
547 * truncate_inode_pages finishes, hence the second
548 * unmap_mapping_range call must be made for correctness.
549 */
550 unmap_mapping_range(mapping, holebegin, 0, 1);
551 truncate_inode_pages(mapping, newsize);
552 unmap_mapping_range(mapping, holebegin, 0, 1);
553 }
554 EXPORT_SYMBOL(truncate_pagecache);
555
556 /**
557 * truncate_setsize - update inode and pagecache for a new file size
558 * @inode: inode
559 * @newsize: new file size
560 *
561 * truncate_setsize updates i_size and performs pagecache truncation (if
562 * necessary) to @newsize. It will be typically be called from the filesystem's
563 * setattr function when ATTR_SIZE is passed in.
564 *
565 * Must be called with inode_mutex held and before all filesystem specific
566 * block truncation has been performed.
567 */
568 void truncate_setsize(struct inode *inode, loff_t newsize)
569 {
570 loff_t oldsize;
571
572 oldsize = inode->i_size;
573 i_size_write(inode, newsize);
574
575 truncate_pagecache(inode, oldsize, newsize);
576 }
577 EXPORT_SYMBOL(truncate_setsize);
578
579 /**
580 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
581 * @inode: inode
582 * @lstart: offset of beginning of hole
583 * @lend: offset of last byte of hole
584 *
585 * This function should typically be called before the filesystem
586 * releases resources associated with the freed range (eg. deallocates
587 * blocks). This way, pagecache will always stay logically coherent
588 * with on-disk format, and the filesystem would not have to deal with
589 * situations such as writepage being called for a page that has already
590 * had its underlying blocks deallocated.
591 */
592 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
593 {
594 struct address_space *mapping = inode->i_mapping;
595 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
596 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
597 /*
598 * This rounding is currently just for example: unmap_mapping_range
599 * expands its hole outwards, whereas we want it to contract the hole
600 * inwards. However, existing callers of truncate_pagecache_range are
601 * doing their own page rounding first; and truncate_inode_pages_range
602 * currently BUGs if lend is not pagealigned-1 (it handles partial
603 * page at start of hole, but not partial page at end of hole). Note
604 * unmap_mapping_range allows holelen 0 for all, and we allow lend -1.
605 */
606
607 /*
608 * Unlike in truncate_pagecache, unmap_mapping_range is called only
609 * once (before truncating pagecache), and without "even_cows" flag:
610 * hole-punching should not remove private COWed pages from the hole.
611 */
612 if ((u64)unmap_end > (u64)unmap_start)
613 unmap_mapping_range(mapping, unmap_start,
614 1 + unmap_end - unmap_start, 0);
615 truncate_inode_pages_range(mapping, lstart, lend);
616 }
617 EXPORT_SYMBOL(truncate_pagecache_range);