Merge git://git.samba.org/sfrench/cifs-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/tlbflush.h>
39 #include <linux/swapops.h>
40 #include <linux/page_cgroup.h>
41
42 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
43 unsigned char);
44 static void free_swap_count_continuations(struct swap_info_struct *);
45 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
46
47 DEFINE_SPINLOCK(swap_lock);
48 static unsigned int nr_swapfiles;
49 long nr_swap_pages;
50 long total_swap_pages;
51 static int least_priority;
52
53 static const char Bad_file[] = "Bad swap file entry ";
54 static const char Unused_file[] = "Unused swap file entry ";
55 static const char Bad_offset[] = "Bad swap offset entry ";
56 static const char Unused_offset[] = "Unused swap offset entry ";
57
58 struct swap_list_t swap_list = {-1, -1};
59
60 struct swap_info_struct *swap_info[MAX_SWAPFILES];
61
62 static DEFINE_MUTEX(swapon_mutex);
63
64 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
65 /* Activity counter to indicate that a swapon or swapoff has occurred */
66 static atomic_t proc_poll_event = ATOMIC_INIT(0);
67
68 static inline unsigned char swap_count(unsigned char ent)
69 {
70 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
71 }
72
73 /* returns 1 if swap entry is freed */
74 static int
75 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
76 {
77 swp_entry_t entry = swp_entry(si->type, offset);
78 struct page *page;
79 int ret = 0;
80
81 page = find_get_page(&swapper_space, entry.val);
82 if (!page)
83 return 0;
84 /*
85 * This function is called from scan_swap_map() and it's called
86 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
87 * We have to use trylock for avoiding deadlock. This is a special
88 * case and you should use try_to_free_swap() with explicit lock_page()
89 * in usual operations.
90 */
91 if (trylock_page(page)) {
92 ret = try_to_free_swap(page);
93 unlock_page(page);
94 }
95 page_cache_release(page);
96 return ret;
97 }
98
99 /*
100 * swapon tell device that all the old swap contents can be discarded,
101 * to allow the swap device to optimize its wear-levelling.
102 */
103 static int discard_swap(struct swap_info_struct *si)
104 {
105 struct swap_extent *se;
106 sector_t start_block;
107 sector_t nr_blocks;
108 int err = 0;
109
110 /* Do not discard the swap header page! */
111 se = &si->first_swap_extent;
112 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
113 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
114 if (nr_blocks) {
115 err = blkdev_issue_discard(si->bdev, start_block,
116 nr_blocks, GFP_KERNEL, 0);
117 if (err)
118 return err;
119 cond_resched();
120 }
121
122 list_for_each_entry(se, &si->first_swap_extent.list, list) {
123 start_block = se->start_block << (PAGE_SHIFT - 9);
124 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
125
126 err = blkdev_issue_discard(si->bdev, start_block,
127 nr_blocks, GFP_KERNEL, 0);
128 if (err)
129 break;
130
131 cond_resched();
132 }
133 return err; /* That will often be -EOPNOTSUPP */
134 }
135
136 /*
137 * swap allocation tell device that a cluster of swap can now be discarded,
138 * to allow the swap device to optimize its wear-levelling.
139 */
140 static void discard_swap_cluster(struct swap_info_struct *si,
141 pgoff_t start_page, pgoff_t nr_pages)
142 {
143 struct swap_extent *se = si->curr_swap_extent;
144 int found_extent = 0;
145
146 while (nr_pages) {
147 struct list_head *lh;
148
149 if (se->start_page <= start_page &&
150 start_page < se->start_page + se->nr_pages) {
151 pgoff_t offset = start_page - se->start_page;
152 sector_t start_block = se->start_block + offset;
153 sector_t nr_blocks = se->nr_pages - offset;
154
155 if (nr_blocks > nr_pages)
156 nr_blocks = nr_pages;
157 start_page += nr_blocks;
158 nr_pages -= nr_blocks;
159
160 if (!found_extent++)
161 si->curr_swap_extent = se;
162
163 start_block <<= PAGE_SHIFT - 9;
164 nr_blocks <<= PAGE_SHIFT - 9;
165 if (blkdev_issue_discard(si->bdev, start_block,
166 nr_blocks, GFP_NOIO, 0))
167 break;
168 }
169
170 lh = se->list.next;
171 se = list_entry(lh, struct swap_extent, list);
172 }
173 }
174
175 static int wait_for_discard(void *word)
176 {
177 schedule();
178 return 0;
179 }
180
181 #define SWAPFILE_CLUSTER 256
182 #define LATENCY_LIMIT 256
183
184 static unsigned long scan_swap_map(struct swap_info_struct *si,
185 unsigned char usage)
186 {
187 unsigned long offset;
188 unsigned long scan_base;
189 unsigned long last_in_cluster = 0;
190 int latency_ration = LATENCY_LIMIT;
191 int found_free_cluster = 0;
192
193 /*
194 * We try to cluster swap pages by allocating them sequentially
195 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
196 * way, however, we resort to first-free allocation, starting
197 * a new cluster. This prevents us from scattering swap pages
198 * all over the entire swap partition, so that we reduce
199 * overall disk seek times between swap pages. -- sct
200 * But we do now try to find an empty cluster. -Andrea
201 * And we let swap pages go all over an SSD partition. Hugh
202 */
203
204 si->flags += SWP_SCANNING;
205 scan_base = offset = si->cluster_next;
206
207 if (unlikely(!si->cluster_nr--)) {
208 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
209 si->cluster_nr = SWAPFILE_CLUSTER - 1;
210 goto checks;
211 }
212 if (si->flags & SWP_DISCARDABLE) {
213 /*
214 * Start range check on racing allocations, in case
215 * they overlap the cluster we eventually decide on
216 * (we scan without swap_lock to allow preemption).
217 * It's hardly conceivable that cluster_nr could be
218 * wrapped during our scan, but don't depend on it.
219 */
220 if (si->lowest_alloc)
221 goto checks;
222 si->lowest_alloc = si->max;
223 si->highest_alloc = 0;
224 }
225 spin_unlock(&swap_lock);
226
227 /*
228 * If seek is expensive, start searching for new cluster from
229 * start of partition, to minimize the span of allocated swap.
230 * But if seek is cheap, search from our current position, so
231 * that swap is allocated from all over the partition: if the
232 * Flash Translation Layer only remaps within limited zones,
233 * we don't want to wear out the first zone too quickly.
234 */
235 if (!(si->flags & SWP_SOLIDSTATE))
236 scan_base = offset = si->lowest_bit;
237 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
238
239 /* Locate the first empty (unaligned) cluster */
240 for (; last_in_cluster <= si->highest_bit; offset++) {
241 if (si->swap_map[offset])
242 last_in_cluster = offset + SWAPFILE_CLUSTER;
243 else if (offset == last_in_cluster) {
244 spin_lock(&swap_lock);
245 offset -= SWAPFILE_CLUSTER - 1;
246 si->cluster_next = offset;
247 si->cluster_nr = SWAPFILE_CLUSTER - 1;
248 found_free_cluster = 1;
249 goto checks;
250 }
251 if (unlikely(--latency_ration < 0)) {
252 cond_resched();
253 latency_ration = LATENCY_LIMIT;
254 }
255 }
256
257 offset = si->lowest_bit;
258 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
259
260 /* Locate the first empty (unaligned) cluster */
261 for (; last_in_cluster < scan_base; offset++) {
262 if (si->swap_map[offset])
263 last_in_cluster = offset + SWAPFILE_CLUSTER;
264 else if (offset == last_in_cluster) {
265 spin_lock(&swap_lock);
266 offset -= SWAPFILE_CLUSTER - 1;
267 si->cluster_next = offset;
268 si->cluster_nr = SWAPFILE_CLUSTER - 1;
269 found_free_cluster = 1;
270 goto checks;
271 }
272 if (unlikely(--latency_ration < 0)) {
273 cond_resched();
274 latency_ration = LATENCY_LIMIT;
275 }
276 }
277
278 offset = scan_base;
279 spin_lock(&swap_lock);
280 si->cluster_nr = SWAPFILE_CLUSTER - 1;
281 si->lowest_alloc = 0;
282 }
283
284 checks:
285 if (!(si->flags & SWP_WRITEOK))
286 goto no_page;
287 if (!si->highest_bit)
288 goto no_page;
289 if (offset > si->highest_bit)
290 scan_base = offset = si->lowest_bit;
291
292 /* reuse swap entry of cache-only swap if not busy. */
293 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
294 int swap_was_freed;
295 spin_unlock(&swap_lock);
296 swap_was_freed = __try_to_reclaim_swap(si, offset);
297 spin_lock(&swap_lock);
298 /* entry was freed successfully, try to use this again */
299 if (swap_was_freed)
300 goto checks;
301 goto scan; /* check next one */
302 }
303
304 if (si->swap_map[offset])
305 goto scan;
306
307 if (offset == si->lowest_bit)
308 si->lowest_bit++;
309 if (offset == si->highest_bit)
310 si->highest_bit--;
311 si->inuse_pages++;
312 if (si->inuse_pages == si->pages) {
313 si->lowest_bit = si->max;
314 si->highest_bit = 0;
315 }
316 si->swap_map[offset] = usage;
317 si->cluster_next = offset + 1;
318 si->flags -= SWP_SCANNING;
319
320 if (si->lowest_alloc) {
321 /*
322 * Only set when SWP_DISCARDABLE, and there's a scan
323 * for a free cluster in progress or just completed.
324 */
325 if (found_free_cluster) {
326 /*
327 * To optimize wear-levelling, discard the
328 * old data of the cluster, taking care not to
329 * discard any of its pages that have already
330 * been allocated by racing tasks (offset has
331 * already stepped over any at the beginning).
332 */
333 if (offset < si->highest_alloc &&
334 si->lowest_alloc <= last_in_cluster)
335 last_in_cluster = si->lowest_alloc - 1;
336 si->flags |= SWP_DISCARDING;
337 spin_unlock(&swap_lock);
338
339 if (offset < last_in_cluster)
340 discard_swap_cluster(si, offset,
341 last_in_cluster - offset + 1);
342
343 spin_lock(&swap_lock);
344 si->lowest_alloc = 0;
345 si->flags &= ~SWP_DISCARDING;
346
347 smp_mb(); /* wake_up_bit advises this */
348 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
349
350 } else if (si->flags & SWP_DISCARDING) {
351 /*
352 * Delay using pages allocated by racing tasks
353 * until the whole discard has been issued. We
354 * could defer that delay until swap_writepage,
355 * but it's easier to keep this self-contained.
356 */
357 spin_unlock(&swap_lock);
358 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
359 wait_for_discard, TASK_UNINTERRUPTIBLE);
360 spin_lock(&swap_lock);
361 } else {
362 /*
363 * Note pages allocated by racing tasks while
364 * scan for a free cluster is in progress, so
365 * that its final discard can exclude them.
366 */
367 if (offset < si->lowest_alloc)
368 si->lowest_alloc = offset;
369 if (offset > si->highest_alloc)
370 si->highest_alloc = offset;
371 }
372 }
373 return offset;
374
375 scan:
376 spin_unlock(&swap_lock);
377 while (++offset <= si->highest_bit) {
378 if (!si->swap_map[offset]) {
379 spin_lock(&swap_lock);
380 goto checks;
381 }
382 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
383 spin_lock(&swap_lock);
384 goto checks;
385 }
386 if (unlikely(--latency_ration < 0)) {
387 cond_resched();
388 latency_ration = LATENCY_LIMIT;
389 }
390 }
391 offset = si->lowest_bit;
392 while (++offset < scan_base) {
393 if (!si->swap_map[offset]) {
394 spin_lock(&swap_lock);
395 goto checks;
396 }
397 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
398 spin_lock(&swap_lock);
399 goto checks;
400 }
401 if (unlikely(--latency_ration < 0)) {
402 cond_resched();
403 latency_ration = LATENCY_LIMIT;
404 }
405 }
406 spin_lock(&swap_lock);
407
408 no_page:
409 si->flags -= SWP_SCANNING;
410 return 0;
411 }
412
413 swp_entry_t get_swap_page(void)
414 {
415 struct swap_info_struct *si;
416 pgoff_t offset;
417 int type, next;
418 int wrapped = 0;
419
420 spin_lock(&swap_lock);
421 if (nr_swap_pages <= 0)
422 goto noswap;
423 nr_swap_pages--;
424
425 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
426 si = swap_info[type];
427 next = si->next;
428 if (next < 0 ||
429 (!wrapped && si->prio != swap_info[next]->prio)) {
430 next = swap_list.head;
431 wrapped++;
432 }
433
434 if (!si->highest_bit)
435 continue;
436 if (!(si->flags & SWP_WRITEOK))
437 continue;
438
439 swap_list.next = next;
440 /* This is called for allocating swap entry for cache */
441 offset = scan_swap_map(si, SWAP_HAS_CACHE);
442 if (offset) {
443 spin_unlock(&swap_lock);
444 return swp_entry(type, offset);
445 }
446 next = swap_list.next;
447 }
448
449 nr_swap_pages++;
450 noswap:
451 spin_unlock(&swap_lock);
452 return (swp_entry_t) {0};
453 }
454
455 /* The only caller of this function is now susupend routine */
456 swp_entry_t get_swap_page_of_type(int type)
457 {
458 struct swap_info_struct *si;
459 pgoff_t offset;
460
461 spin_lock(&swap_lock);
462 si = swap_info[type];
463 if (si && (si->flags & SWP_WRITEOK)) {
464 nr_swap_pages--;
465 /* This is called for allocating swap entry, not cache */
466 offset = scan_swap_map(si, 1);
467 if (offset) {
468 spin_unlock(&swap_lock);
469 return swp_entry(type, offset);
470 }
471 nr_swap_pages++;
472 }
473 spin_unlock(&swap_lock);
474 return (swp_entry_t) {0};
475 }
476
477 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
478 {
479 struct swap_info_struct *p;
480 unsigned long offset, type;
481
482 if (!entry.val)
483 goto out;
484 type = swp_type(entry);
485 if (type >= nr_swapfiles)
486 goto bad_nofile;
487 p = swap_info[type];
488 if (!(p->flags & SWP_USED))
489 goto bad_device;
490 offset = swp_offset(entry);
491 if (offset >= p->max)
492 goto bad_offset;
493 if (!p->swap_map[offset])
494 goto bad_free;
495 spin_lock(&swap_lock);
496 return p;
497
498 bad_free:
499 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
500 goto out;
501 bad_offset:
502 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
503 goto out;
504 bad_device:
505 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
506 goto out;
507 bad_nofile:
508 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
509 out:
510 return NULL;
511 }
512
513 static unsigned char swap_entry_free(struct swap_info_struct *p,
514 swp_entry_t entry, unsigned char usage)
515 {
516 unsigned long offset = swp_offset(entry);
517 unsigned char count;
518 unsigned char has_cache;
519
520 count = p->swap_map[offset];
521 has_cache = count & SWAP_HAS_CACHE;
522 count &= ~SWAP_HAS_CACHE;
523
524 if (usage == SWAP_HAS_CACHE) {
525 VM_BUG_ON(!has_cache);
526 has_cache = 0;
527 } else if (count == SWAP_MAP_SHMEM) {
528 /*
529 * Or we could insist on shmem.c using a special
530 * swap_shmem_free() and free_shmem_swap_and_cache()...
531 */
532 count = 0;
533 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
534 if (count == COUNT_CONTINUED) {
535 if (swap_count_continued(p, offset, count))
536 count = SWAP_MAP_MAX | COUNT_CONTINUED;
537 else
538 count = SWAP_MAP_MAX;
539 } else
540 count--;
541 }
542
543 if (!count)
544 mem_cgroup_uncharge_swap(entry);
545
546 usage = count | has_cache;
547 p->swap_map[offset] = usage;
548
549 /* free if no reference */
550 if (!usage) {
551 struct gendisk *disk = p->bdev->bd_disk;
552 if (offset < p->lowest_bit)
553 p->lowest_bit = offset;
554 if (offset > p->highest_bit)
555 p->highest_bit = offset;
556 if (swap_list.next >= 0 &&
557 p->prio > swap_info[swap_list.next]->prio)
558 swap_list.next = p->type;
559 nr_swap_pages++;
560 p->inuse_pages--;
561 frontswap_invalidate_page(p->type, offset);
562 if ((p->flags & SWP_BLKDEV) &&
563 disk->fops->swap_slot_free_notify)
564 disk->fops->swap_slot_free_notify(p->bdev, offset);
565 }
566
567 return usage;
568 }
569
570 /*
571 * Caller has made sure that the swapdevice corresponding to entry
572 * is still around or has not been recycled.
573 */
574 void swap_free(swp_entry_t entry)
575 {
576 struct swap_info_struct *p;
577
578 p = swap_info_get(entry);
579 if (p) {
580 swap_entry_free(p, entry, 1);
581 spin_unlock(&swap_lock);
582 }
583 }
584
585 /*
586 * Called after dropping swapcache to decrease refcnt to swap entries.
587 */
588 void swapcache_free(swp_entry_t entry, struct page *page)
589 {
590 struct swap_info_struct *p;
591 unsigned char count;
592
593 p = swap_info_get(entry);
594 if (p) {
595 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
596 if (page)
597 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
598 spin_unlock(&swap_lock);
599 }
600 }
601
602 /*
603 * How many references to page are currently swapped out?
604 * This does not give an exact answer when swap count is continued,
605 * but does include the high COUNT_CONTINUED flag to allow for that.
606 */
607 int page_swapcount(struct page *page)
608 {
609 int count = 0;
610 struct swap_info_struct *p;
611 swp_entry_t entry;
612
613 entry.val = page_private(page);
614 p = swap_info_get(entry);
615 if (p) {
616 count = swap_count(p->swap_map[swp_offset(entry)]);
617 spin_unlock(&swap_lock);
618 }
619 return count;
620 }
621
622 /*
623 * We can write to an anon page without COW if there are no other references
624 * to it. And as a side-effect, free up its swap: because the old content
625 * on disk will never be read, and seeking back there to write new content
626 * later would only waste time away from clustering.
627 */
628 int reuse_swap_page(struct page *page)
629 {
630 int count;
631
632 VM_BUG_ON(!PageLocked(page));
633 if (unlikely(PageKsm(page)))
634 return 0;
635 count = page_mapcount(page);
636 if (count <= 1 && PageSwapCache(page)) {
637 count += page_swapcount(page);
638 if (count == 1 && !PageWriteback(page)) {
639 delete_from_swap_cache(page);
640 SetPageDirty(page);
641 }
642 }
643 return count <= 1;
644 }
645
646 /*
647 * If swap is getting full, or if there are no more mappings of this page,
648 * then try_to_free_swap is called to free its swap space.
649 */
650 int try_to_free_swap(struct page *page)
651 {
652 VM_BUG_ON(!PageLocked(page));
653
654 if (!PageSwapCache(page))
655 return 0;
656 if (PageWriteback(page))
657 return 0;
658 if (page_swapcount(page))
659 return 0;
660
661 /*
662 * Once hibernation has begun to create its image of memory,
663 * there's a danger that one of the calls to try_to_free_swap()
664 * - most probably a call from __try_to_reclaim_swap() while
665 * hibernation is allocating its own swap pages for the image,
666 * but conceivably even a call from memory reclaim - will free
667 * the swap from a page which has already been recorded in the
668 * image as a clean swapcache page, and then reuse its swap for
669 * another page of the image. On waking from hibernation, the
670 * original page might be freed under memory pressure, then
671 * later read back in from swap, now with the wrong data.
672 *
673 * Hibration suspends storage while it is writing the image
674 * to disk so check that here.
675 */
676 if (pm_suspended_storage())
677 return 0;
678
679 delete_from_swap_cache(page);
680 SetPageDirty(page);
681 return 1;
682 }
683
684 /*
685 * Free the swap entry like above, but also try to
686 * free the page cache entry if it is the last user.
687 */
688 int free_swap_and_cache(swp_entry_t entry)
689 {
690 struct swap_info_struct *p;
691 struct page *page = NULL;
692
693 if (non_swap_entry(entry))
694 return 1;
695
696 p = swap_info_get(entry);
697 if (p) {
698 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
699 page = find_get_page(&swapper_space, entry.val);
700 if (page && !trylock_page(page)) {
701 page_cache_release(page);
702 page = NULL;
703 }
704 }
705 spin_unlock(&swap_lock);
706 }
707 if (page) {
708 /*
709 * Not mapped elsewhere, or swap space full? Free it!
710 * Also recheck PageSwapCache now page is locked (above).
711 */
712 if (PageSwapCache(page) && !PageWriteback(page) &&
713 (!page_mapped(page) || vm_swap_full())) {
714 delete_from_swap_cache(page);
715 SetPageDirty(page);
716 }
717 unlock_page(page);
718 page_cache_release(page);
719 }
720 return p != NULL;
721 }
722
723 #ifdef CONFIG_HIBERNATION
724 /*
725 * Find the swap type that corresponds to given device (if any).
726 *
727 * @offset - number of the PAGE_SIZE-sized block of the device, starting
728 * from 0, in which the swap header is expected to be located.
729 *
730 * This is needed for the suspend to disk (aka swsusp).
731 */
732 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
733 {
734 struct block_device *bdev = NULL;
735 int type;
736
737 if (device)
738 bdev = bdget(device);
739
740 spin_lock(&swap_lock);
741 for (type = 0; type < nr_swapfiles; type++) {
742 struct swap_info_struct *sis = swap_info[type];
743
744 if (!(sis->flags & SWP_WRITEOK))
745 continue;
746
747 if (!bdev) {
748 if (bdev_p)
749 *bdev_p = bdgrab(sis->bdev);
750
751 spin_unlock(&swap_lock);
752 return type;
753 }
754 if (bdev == sis->bdev) {
755 struct swap_extent *se = &sis->first_swap_extent;
756
757 if (se->start_block == offset) {
758 if (bdev_p)
759 *bdev_p = bdgrab(sis->bdev);
760
761 spin_unlock(&swap_lock);
762 bdput(bdev);
763 return type;
764 }
765 }
766 }
767 spin_unlock(&swap_lock);
768 if (bdev)
769 bdput(bdev);
770
771 return -ENODEV;
772 }
773
774 /*
775 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
776 * corresponding to given index in swap_info (swap type).
777 */
778 sector_t swapdev_block(int type, pgoff_t offset)
779 {
780 struct block_device *bdev;
781
782 if ((unsigned int)type >= nr_swapfiles)
783 return 0;
784 if (!(swap_info[type]->flags & SWP_WRITEOK))
785 return 0;
786 return map_swap_entry(swp_entry(type, offset), &bdev);
787 }
788
789 /*
790 * Return either the total number of swap pages of given type, or the number
791 * of free pages of that type (depending on @free)
792 *
793 * This is needed for software suspend
794 */
795 unsigned int count_swap_pages(int type, int free)
796 {
797 unsigned int n = 0;
798
799 spin_lock(&swap_lock);
800 if ((unsigned int)type < nr_swapfiles) {
801 struct swap_info_struct *sis = swap_info[type];
802
803 if (sis->flags & SWP_WRITEOK) {
804 n = sis->pages;
805 if (free)
806 n -= sis->inuse_pages;
807 }
808 }
809 spin_unlock(&swap_lock);
810 return n;
811 }
812 #endif /* CONFIG_HIBERNATION */
813
814 /*
815 * No need to decide whether this PTE shares the swap entry with others,
816 * just let do_wp_page work it out if a write is requested later - to
817 * force COW, vm_page_prot omits write permission from any private vma.
818 */
819 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
820 unsigned long addr, swp_entry_t entry, struct page *page)
821 {
822 struct mem_cgroup *memcg;
823 spinlock_t *ptl;
824 pte_t *pte;
825 int ret = 1;
826
827 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
828 GFP_KERNEL, &memcg)) {
829 ret = -ENOMEM;
830 goto out_nolock;
831 }
832
833 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
834 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
835 if (ret > 0)
836 mem_cgroup_cancel_charge_swapin(memcg);
837 ret = 0;
838 goto out;
839 }
840
841 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
842 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
843 get_page(page);
844 set_pte_at(vma->vm_mm, addr, pte,
845 pte_mkold(mk_pte(page, vma->vm_page_prot)));
846 page_add_anon_rmap(page, vma, addr);
847 mem_cgroup_commit_charge_swapin(page, memcg);
848 swap_free(entry);
849 /*
850 * Move the page to the active list so it is not
851 * immediately swapped out again after swapon.
852 */
853 activate_page(page);
854 out:
855 pte_unmap_unlock(pte, ptl);
856 out_nolock:
857 return ret;
858 }
859
860 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
861 unsigned long addr, unsigned long end,
862 swp_entry_t entry, struct page *page)
863 {
864 pte_t swp_pte = swp_entry_to_pte(entry);
865 pte_t *pte;
866 int ret = 0;
867
868 /*
869 * We don't actually need pte lock while scanning for swp_pte: since
870 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
871 * page table while we're scanning; though it could get zapped, and on
872 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
873 * of unmatched parts which look like swp_pte, so unuse_pte must
874 * recheck under pte lock. Scanning without pte lock lets it be
875 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
876 */
877 pte = pte_offset_map(pmd, addr);
878 do {
879 /*
880 * swapoff spends a _lot_ of time in this loop!
881 * Test inline before going to call unuse_pte.
882 */
883 if (unlikely(pte_same(*pte, swp_pte))) {
884 pte_unmap(pte);
885 ret = unuse_pte(vma, pmd, addr, entry, page);
886 if (ret)
887 goto out;
888 pte = pte_offset_map(pmd, addr);
889 }
890 } while (pte++, addr += PAGE_SIZE, addr != end);
891 pte_unmap(pte - 1);
892 out:
893 return ret;
894 }
895
896 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
897 unsigned long addr, unsigned long end,
898 swp_entry_t entry, struct page *page)
899 {
900 pmd_t *pmd;
901 unsigned long next;
902 int ret;
903
904 pmd = pmd_offset(pud, addr);
905 do {
906 next = pmd_addr_end(addr, end);
907 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
908 continue;
909 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
910 if (ret)
911 return ret;
912 } while (pmd++, addr = next, addr != end);
913 return 0;
914 }
915
916 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
917 unsigned long addr, unsigned long end,
918 swp_entry_t entry, struct page *page)
919 {
920 pud_t *pud;
921 unsigned long next;
922 int ret;
923
924 pud = pud_offset(pgd, addr);
925 do {
926 next = pud_addr_end(addr, end);
927 if (pud_none_or_clear_bad(pud))
928 continue;
929 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
930 if (ret)
931 return ret;
932 } while (pud++, addr = next, addr != end);
933 return 0;
934 }
935
936 static int unuse_vma(struct vm_area_struct *vma,
937 swp_entry_t entry, struct page *page)
938 {
939 pgd_t *pgd;
940 unsigned long addr, end, next;
941 int ret;
942
943 if (page_anon_vma(page)) {
944 addr = page_address_in_vma(page, vma);
945 if (addr == -EFAULT)
946 return 0;
947 else
948 end = addr + PAGE_SIZE;
949 } else {
950 addr = vma->vm_start;
951 end = vma->vm_end;
952 }
953
954 pgd = pgd_offset(vma->vm_mm, addr);
955 do {
956 next = pgd_addr_end(addr, end);
957 if (pgd_none_or_clear_bad(pgd))
958 continue;
959 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
960 if (ret)
961 return ret;
962 } while (pgd++, addr = next, addr != end);
963 return 0;
964 }
965
966 static int unuse_mm(struct mm_struct *mm,
967 swp_entry_t entry, struct page *page)
968 {
969 struct vm_area_struct *vma;
970 int ret = 0;
971
972 if (!down_read_trylock(&mm->mmap_sem)) {
973 /*
974 * Activate page so shrink_inactive_list is unlikely to unmap
975 * its ptes while lock is dropped, so swapoff can make progress.
976 */
977 activate_page(page);
978 unlock_page(page);
979 down_read(&mm->mmap_sem);
980 lock_page(page);
981 }
982 for (vma = mm->mmap; vma; vma = vma->vm_next) {
983 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
984 break;
985 }
986 up_read(&mm->mmap_sem);
987 return (ret < 0)? ret: 0;
988 }
989
990 /*
991 * Scan swap_map (or frontswap_map if frontswap parameter is true)
992 * from current position to next entry still in use.
993 * Recycle to start on reaching the end, returning 0 when empty.
994 */
995 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
996 unsigned int prev, bool frontswap)
997 {
998 unsigned int max = si->max;
999 unsigned int i = prev;
1000 unsigned char count;
1001
1002 /*
1003 * No need for swap_lock here: we're just looking
1004 * for whether an entry is in use, not modifying it; false
1005 * hits are okay, and sys_swapoff() has already prevented new
1006 * allocations from this area (while holding swap_lock).
1007 */
1008 for (;;) {
1009 if (++i >= max) {
1010 if (!prev) {
1011 i = 0;
1012 break;
1013 }
1014 /*
1015 * No entries in use at top of swap_map,
1016 * loop back to start and recheck there.
1017 */
1018 max = prev + 1;
1019 prev = 0;
1020 i = 1;
1021 }
1022 if (frontswap) {
1023 if (frontswap_test(si, i))
1024 break;
1025 else
1026 continue;
1027 }
1028 count = si->swap_map[i];
1029 if (count && swap_count(count) != SWAP_MAP_BAD)
1030 break;
1031 }
1032 return i;
1033 }
1034
1035 /*
1036 * We completely avoid races by reading each swap page in advance,
1037 * and then search for the process using it. All the necessary
1038 * page table adjustments can then be made atomically.
1039 *
1040 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1041 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1042 */
1043 int try_to_unuse(unsigned int type, bool frontswap,
1044 unsigned long pages_to_unuse)
1045 {
1046 struct swap_info_struct *si = swap_info[type];
1047 struct mm_struct *start_mm;
1048 unsigned char *swap_map;
1049 unsigned char swcount;
1050 struct page *page;
1051 swp_entry_t entry;
1052 unsigned int i = 0;
1053 int retval = 0;
1054
1055 /*
1056 * When searching mms for an entry, a good strategy is to
1057 * start at the first mm we freed the previous entry from
1058 * (though actually we don't notice whether we or coincidence
1059 * freed the entry). Initialize this start_mm with a hold.
1060 *
1061 * A simpler strategy would be to start at the last mm we
1062 * freed the previous entry from; but that would take less
1063 * advantage of mmlist ordering, which clusters forked mms
1064 * together, child after parent. If we race with dup_mmap(), we
1065 * prefer to resolve parent before child, lest we miss entries
1066 * duplicated after we scanned child: using last mm would invert
1067 * that.
1068 */
1069 start_mm = &init_mm;
1070 atomic_inc(&init_mm.mm_users);
1071
1072 /*
1073 * Keep on scanning until all entries have gone. Usually,
1074 * one pass through swap_map is enough, but not necessarily:
1075 * there are races when an instance of an entry might be missed.
1076 */
1077 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1078 if (signal_pending(current)) {
1079 retval = -EINTR;
1080 break;
1081 }
1082
1083 /*
1084 * Get a page for the entry, using the existing swap
1085 * cache page if there is one. Otherwise, get a clean
1086 * page and read the swap into it.
1087 */
1088 swap_map = &si->swap_map[i];
1089 entry = swp_entry(type, i);
1090 page = read_swap_cache_async(entry,
1091 GFP_HIGHUSER_MOVABLE, NULL, 0);
1092 if (!page) {
1093 /*
1094 * Either swap_duplicate() failed because entry
1095 * has been freed independently, and will not be
1096 * reused since sys_swapoff() already disabled
1097 * allocation from here, or alloc_page() failed.
1098 */
1099 if (!*swap_map)
1100 continue;
1101 retval = -ENOMEM;
1102 break;
1103 }
1104
1105 /*
1106 * Don't hold on to start_mm if it looks like exiting.
1107 */
1108 if (atomic_read(&start_mm->mm_users) == 1) {
1109 mmput(start_mm);
1110 start_mm = &init_mm;
1111 atomic_inc(&init_mm.mm_users);
1112 }
1113
1114 /*
1115 * Wait for and lock page. When do_swap_page races with
1116 * try_to_unuse, do_swap_page can handle the fault much
1117 * faster than try_to_unuse can locate the entry. This
1118 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1119 * defer to do_swap_page in such a case - in some tests,
1120 * do_swap_page and try_to_unuse repeatedly compete.
1121 */
1122 wait_on_page_locked(page);
1123 wait_on_page_writeback(page);
1124 lock_page(page);
1125 wait_on_page_writeback(page);
1126
1127 /*
1128 * Remove all references to entry.
1129 */
1130 swcount = *swap_map;
1131 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1132 retval = shmem_unuse(entry, page);
1133 /* page has already been unlocked and released */
1134 if (retval < 0)
1135 break;
1136 continue;
1137 }
1138 if (swap_count(swcount) && start_mm != &init_mm)
1139 retval = unuse_mm(start_mm, entry, page);
1140
1141 if (swap_count(*swap_map)) {
1142 int set_start_mm = (*swap_map >= swcount);
1143 struct list_head *p = &start_mm->mmlist;
1144 struct mm_struct *new_start_mm = start_mm;
1145 struct mm_struct *prev_mm = start_mm;
1146 struct mm_struct *mm;
1147
1148 atomic_inc(&new_start_mm->mm_users);
1149 atomic_inc(&prev_mm->mm_users);
1150 spin_lock(&mmlist_lock);
1151 while (swap_count(*swap_map) && !retval &&
1152 (p = p->next) != &start_mm->mmlist) {
1153 mm = list_entry(p, struct mm_struct, mmlist);
1154 if (!atomic_inc_not_zero(&mm->mm_users))
1155 continue;
1156 spin_unlock(&mmlist_lock);
1157 mmput(prev_mm);
1158 prev_mm = mm;
1159
1160 cond_resched();
1161
1162 swcount = *swap_map;
1163 if (!swap_count(swcount)) /* any usage ? */
1164 ;
1165 else if (mm == &init_mm)
1166 set_start_mm = 1;
1167 else
1168 retval = unuse_mm(mm, entry, page);
1169
1170 if (set_start_mm && *swap_map < swcount) {
1171 mmput(new_start_mm);
1172 atomic_inc(&mm->mm_users);
1173 new_start_mm = mm;
1174 set_start_mm = 0;
1175 }
1176 spin_lock(&mmlist_lock);
1177 }
1178 spin_unlock(&mmlist_lock);
1179 mmput(prev_mm);
1180 mmput(start_mm);
1181 start_mm = new_start_mm;
1182 }
1183 if (retval) {
1184 unlock_page(page);
1185 page_cache_release(page);
1186 break;
1187 }
1188
1189 /*
1190 * If a reference remains (rare), we would like to leave
1191 * the page in the swap cache; but try_to_unmap could
1192 * then re-duplicate the entry once we drop page lock,
1193 * so we might loop indefinitely; also, that page could
1194 * not be swapped out to other storage meanwhile. So:
1195 * delete from cache even if there's another reference,
1196 * after ensuring that the data has been saved to disk -
1197 * since if the reference remains (rarer), it will be
1198 * read from disk into another page. Splitting into two
1199 * pages would be incorrect if swap supported "shared
1200 * private" pages, but they are handled by tmpfs files.
1201 *
1202 * Given how unuse_vma() targets one particular offset
1203 * in an anon_vma, once the anon_vma has been determined,
1204 * this splitting happens to be just what is needed to
1205 * handle where KSM pages have been swapped out: re-reading
1206 * is unnecessarily slow, but we can fix that later on.
1207 */
1208 if (swap_count(*swap_map) &&
1209 PageDirty(page) && PageSwapCache(page)) {
1210 struct writeback_control wbc = {
1211 .sync_mode = WB_SYNC_NONE,
1212 };
1213
1214 swap_writepage(page, &wbc);
1215 lock_page(page);
1216 wait_on_page_writeback(page);
1217 }
1218
1219 /*
1220 * It is conceivable that a racing task removed this page from
1221 * swap cache just before we acquired the page lock at the top,
1222 * or while we dropped it in unuse_mm(). The page might even
1223 * be back in swap cache on another swap area: that we must not
1224 * delete, since it may not have been written out to swap yet.
1225 */
1226 if (PageSwapCache(page) &&
1227 likely(page_private(page) == entry.val))
1228 delete_from_swap_cache(page);
1229
1230 /*
1231 * So we could skip searching mms once swap count went
1232 * to 1, we did not mark any present ptes as dirty: must
1233 * mark page dirty so shrink_page_list will preserve it.
1234 */
1235 SetPageDirty(page);
1236 unlock_page(page);
1237 page_cache_release(page);
1238
1239 /*
1240 * Make sure that we aren't completely killing
1241 * interactive performance.
1242 */
1243 cond_resched();
1244 if (frontswap && pages_to_unuse > 0) {
1245 if (!--pages_to_unuse)
1246 break;
1247 }
1248 }
1249
1250 mmput(start_mm);
1251 return retval;
1252 }
1253
1254 /*
1255 * After a successful try_to_unuse, if no swap is now in use, we know
1256 * we can empty the mmlist. swap_lock must be held on entry and exit.
1257 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1258 * added to the mmlist just after page_duplicate - before would be racy.
1259 */
1260 static void drain_mmlist(void)
1261 {
1262 struct list_head *p, *next;
1263 unsigned int type;
1264
1265 for (type = 0; type < nr_swapfiles; type++)
1266 if (swap_info[type]->inuse_pages)
1267 return;
1268 spin_lock(&mmlist_lock);
1269 list_for_each_safe(p, next, &init_mm.mmlist)
1270 list_del_init(p);
1271 spin_unlock(&mmlist_lock);
1272 }
1273
1274 /*
1275 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1276 * corresponds to page offset for the specified swap entry.
1277 * Note that the type of this function is sector_t, but it returns page offset
1278 * into the bdev, not sector offset.
1279 */
1280 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1281 {
1282 struct swap_info_struct *sis;
1283 struct swap_extent *start_se;
1284 struct swap_extent *se;
1285 pgoff_t offset;
1286
1287 sis = swap_info[swp_type(entry)];
1288 *bdev = sis->bdev;
1289
1290 offset = swp_offset(entry);
1291 start_se = sis->curr_swap_extent;
1292 se = start_se;
1293
1294 for ( ; ; ) {
1295 struct list_head *lh;
1296
1297 if (se->start_page <= offset &&
1298 offset < (se->start_page + se->nr_pages)) {
1299 return se->start_block + (offset - se->start_page);
1300 }
1301 lh = se->list.next;
1302 se = list_entry(lh, struct swap_extent, list);
1303 sis->curr_swap_extent = se;
1304 BUG_ON(se == start_se); /* It *must* be present */
1305 }
1306 }
1307
1308 /*
1309 * Returns the page offset into bdev for the specified page's swap entry.
1310 */
1311 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1312 {
1313 swp_entry_t entry;
1314 entry.val = page_private(page);
1315 return map_swap_entry(entry, bdev);
1316 }
1317
1318 /*
1319 * Free all of a swapdev's extent information
1320 */
1321 static void destroy_swap_extents(struct swap_info_struct *sis)
1322 {
1323 while (!list_empty(&sis->first_swap_extent.list)) {
1324 struct swap_extent *se;
1325
1326 se = list_entry(sis->first_swap_extent.list.next,
1327 struct swap_extent, list);
1328 list_del(&se->list);
1329 kfree(se);
1330 }
1331 }
1332
1333 /*
1334 * Add a block range (and the corresponding page range) into this swapdev's
1335 * extent list. The extent list is kept sorted in page order.
1336 *
1337 * This function rather assumes that it is called in ascending page order.
1338 */
1339 static int
1340 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1341 unsigned long nr_pages, sector_t start_block)
1342 {
1343 struct swap_extent *se;
1344 struct swap_extent *new_se;
1345 struct list_head *lh;
1346
1347 if (start_page == 0) {
1348 se = &sis->first_swap_extent;
1349 sis->curr_swap_extent = se;
1350 se->start_page = 0;
1351 se->nr_pages = nr_pages;
1352 se->start_block = start_block;
1353 return 1;
1354 } else {
1355 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1356 se = list_entry(lh, struct swap_extent, list);
1357 BUG_ON(se->start_page + se->nr_pages != start_page);
1358 if (se->start_block + se->nr_pages == start_block) {
1359 /* Merge it */
1360 se->nr_pages += nr_pages;
1361 return 0;
1362 }
1363 }
1364
1365 /*
1366 * No merge. Insert a new extent, preserving ordering.
1367 */
1368 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1369 if (new_se == NULL)
1370 return -ENOMEM;
1371 new_se->start_page = start_page;
1372 new_se->nr_pages = nr_pages;
1373 new_se->start_block = start_block;
1374
1375 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1376 return 1;
1377 }
1378
1379 /*
1380 * A `swap extent' is a simple thing which maps a contiguous range of pages
1381 * onto a contiguous range of disk blocks. An ordered list of swap extents
1382 * is built at swapon time and is then used at swap_writepage/swap_readpage
1383 * time for locating where on disk a page belongs.
1384 *
1385 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1386 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1387 * swap files identically.
1388 *
1389 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1390 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1391 * swapfiles are handled *identically* after swapon time.
1392 *
1393 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1394 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1395 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1396 * requirements, they are simply tossed out - we will never use those blocks
1397 * for swapping.
1398 *
1399 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1400 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1401 * which will scribble on the fs.
1402 *
1403 * The amount of disk space which a single swap extent represents varies.
1404 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1405 * extents in the list. To avoid much list walking, we cache the previous
1406 * search location in `curr_swap_extent', and start new searches from there.
1407 * This is extremely effective. The average number of iterations in
1408 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1409 */
1410 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1411 {
1412 struct inode *inode;
1413 unsigned blocks_per_page;
1414 unsigned long page_no;
1415 unsigned blkbits;
1416 sector_t probe_block;
1417 sector_t last_block;
1418 sector_t lowest_block = -1;
1419 sector_t highest_block = 0;
1420 int nr_extents = 0;
1421 int ret;
1422
1423 inode = sis->swap_file->f_mapping->host;
1424 if (S_ISBLK(inode->i_mode)) {
1425 ret = add_swap_extent(sis, 0, sis->max, 0);
1426 *span = sis->pages;
1427 goto out;
1428 }
1429
1430 blkbits = inode->i_blkbits;
1431 blocks_per_page = PAGE_SIZE >> blkbits;
1432
1433 /*
1434 * Map all the blocks into the extent list. This code doesn't try
1435 * to be very smart.
1436 */
1437 probe_block = 0;
1438 page_no = 0;
1439 last_block = i_size_read(inode) >> blkbits;
1440 while ((probe_block + blocks_per_page) <= last_block &&
1441 page_no < sis->max) {
1442 unsigned block_in_page;
1443 sector_t first_block;
1444
1445 first_block = bmap(inode, probe_block);
1446 if (first_block == 0)
1447 goto bad_bmap;
1448
1449 /*
1450 * It must be PAGE_SIZE aligned on-disk
1451 */
1452 if (first_block & (blocks_per_page - 1)) {
1453 probe_block++;
1454 goto reprobe;
1455 }
1456
1457 for (block_in_page = 1; block_in_page < blocks_per_page;
1458 block_in_page++) {
1459 sector_t block;
1460
1461 block = bmap(inode, probe_block + block_in_page);
1462 if (block == 0)
1463 goto bad_bmap;
1464 if (block != first_block + block_in_page) {
1465 /* Discontiguity */
1466 probe_block++;
1467 goto reprobe;
1468 }
1469 }
1470
1471 first_block >>= (PAGE_SHIFT - blkbits);
1472 if (page_no) { /* exclude the header page */
1473 if (first_block < lowest_block)
1474 lowest_block = first_block;
1475 if (first_block > highest_block)
1476 highest_block = first_block;
1477 }
1478
1479 /*
1480 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1481 */
1482 ret = add_swap_extent(sis, page_no, 1, first_block);
1483 if (ret < 0)
1484 goto out;
1485 nr_extents += ret;
1486 page_no++;
1487 probe_block += blocks_per_page;
1488 reprobe:
1489 continue;
1490 }
1491 ret = nr_extents;
1492 *span = 1 + highest_block - lowest_block;
1493 if (page_no == 0)
1494 page_no = 1; /* force Empty message */
1495 sis->max = page_no;
1496 sis->pages = page_no - 1;
1497 sis->highest_bit = page_no - 1;
1498 out:
1499 return ret;
1500 bad_bmap:
1501 printk(KERN_ERR "swapon: swapfile has holes\n");
1502 ret = -EINVAL;
1503 goto out;
1504 }
1505
1506 static void enable_swap_info(struct swap_info_struct *p, int prio,
1507 unsigned char *swap_map,
1508 unsigned long *frontswap_map)
1509 {
1510 int i, prev;
1511
1512 spin_lock(&swap_lock);
1513 if (prio >= 0)
1514 p->prio = prio;
1515 else
1516 p->prio = --least_priority;
1517 p->swap_map = swap_map;
1518 frontswap_map_set(p, frontswap_map);
1519 p->flags |= SWP_WRITEOK;
1520 nr_swap_pages += p->pages;
1521 total_swap_pages += p->pages;
1522
1523 /* insert swap space into swap_list: */
1524 prev = -1;
1525 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1526 if (p->prio >= swap_info[i]->prio)
1527 break;
1528 prev = i;
1529 }
1530 p->next = i;
1531 if (prev < 0)
1532 swap_list.head = swap_list.next = p->type;
1533 else
1534 swap_info[prev]->next = p->type;
1535 frontswap_init(p->type);
1536 spin_unlock(&swap_lock);
1537 }
1538
1539 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1540 {
1541 struct swap_info_struct *p = NULL;
1542 unsigned char *swap_map;
1543 struct file *swap_file, *victim;
1544 struct address_space *mapping;
1545 struct inode *inode;
1546 char *pathname;
1547 int oom_score_adj;
1548 int i, type, prev;
1549 int err;
1550
1551 if (!capable(CAP_SYS_ADMIN))
1552 return -EPERM;
1553
1554 BUG_ON(!current->mm);
1555
1556 pathname = getname(specialfile);
1557 err = PTR_ERR(pathname);
1558 if (IS_ERR(pathname))
1559 goto out;
1560
1561 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1562 putname(pathname);
1563 err = PTR_ERR(victim);
1564 if (IS_ERR(victim))
1565 goto out;
1566
1567 mapping = victim->f_mapping;
1568 prev = -1;
1569 spin_lock(&swap_lock);
1570 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1571 p = swap_info[type];
1572 if (p->flags & SWP_WRITEOK) {
1573 if (p->swap_file->f_mapping == mapping)
1574 break;
1575 }
1576 prev = type;
1577 }
1578 if (type < 0) {
1579 err = -EINVAL;
1580 spin_unlock(&swap_lock);
1581 goto out_dput;
1582 }
1583 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1584 vm_unacct_memory(p->pages);
1585 else {
1586 err = -ENOMEM;
1587 spin_unlock(&swap_lock);
1588 goto out_dput;
1589 }
1590 if (prev < 0)
1591 swap_list.head = p->next;
1592 else
1593 swap_info[prev]->next = p->next;
1594 if (type == swap_list.next) {
1595 /* just pick something that's safe... */
1596 swap_list.next = swap_list.head;
1597 }
1598 if (p->prio < 0) {
1599 for (i = p->next; i >= 0; i = swap_info[i]->next)
1600 swap_info[i]->prio = p->prio--;
1601 least_priority++;
1602 }
1603 nr_swap_pages -= p->pages;
1604 total_swap_pages -= p->pages;
1605 p->flags &= ~SWP_WRITEOK;
1606 spin_unlock(&swap_lock);
1607
1608 oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1609 err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1610 compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj);
1611
1612 if (err) {
1613 /*
1614 * reading p->prio and p->swap_map outside the lock is
1615 * safe here because only sys_swapon and sys_swapoff
1616 * change them, and there can be no other sys_swapon or
1617 * sys_swapoff for this swap_info_struct at this point.
1618 */
1619 /* re-insert swap space back into swap_list */
1620 enable_swap_info(p, p->prio, p->swap_map, frontswap_map_get(p));
1621 goto out_dput;
1622 }
1623
1624 destroy_swap_extents(p);
1625 if (p->flags & SWP_CONTINUED)
1626 free_swap_count_continuations(p);
1627
1628 mutex_lock(&swapon_mutex);
1629 spin_lock(&swap_lock);
1630 drain_mmlist();
1631
1632 /* wait for anyone still in scan_swap_map */
1633 p->highest_bit = 0; /* cuts scans short */
1634 while (p->flags >= SWP_SCANNING) {
1635 spin_unlock(&swap_lock);
1636 schedule_timeout_uninterruptible(1);
1637 spin_lock(&swap_lock);
1638 }
1639
1640 swap_file = p->swap_file;
1641 p->swap_file = NULL;
1642 p->max = 0;
1643 swap_map = p->swap_map;
1644 p->swap_map = NULL;
1645 p->flags = 0;
1646 frontswap_invalidate_area(type);
1647 spin_unlock(&swap_lock);
1648 mutex_unlock(&swapon_mutex);
1649 vfree(swap_map);
1650 vfree(frontswap_map_get(p));
1651 /* Destroy swap account informatin */
1652 swap_cgroup_swapoff(type);
1653
1654 inode = mapping->host;
1655 if (S_ISBLK(inode->i_mode)) {
1656 struct block_device *bdev = I_BDEV(inode);
1657 set_blocksize(bdev, p->old_block_size);
1658 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1659 } else {
1660 mutex_lock(&inode->i_mutex);
1661 inode->i_flags &= ~S_SWAPFILE;
1662 mutex_unlock(&inode->i_mutex);
1663 }
1664 filp_close(swap_file, NULL);
1665 err = 0;
1666 atomic_inc(&proc_poll_event);
1667 wake_up_interruptible(&proc_poll_wait);
1668
1669 out_dput:
1670 filp_close(victim, NULL);
1671 out:
1672 return err;
1673 }
1674
1675 #ifdef CONFIG_PROC_FS
1676 static unsigned swaps_poll(struct file *file, poll_table *wait)
1677 {
1678 struct seq_file *seq = file->private_data;
1679
1680 poll_wait(file, &proc_poll_wait, wait);
1681
1682 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1683 seq->poll_event = atomic_read(&proc_poll_event);
1684 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1685 }
1686
1687 return POLLIN | POLLRDNORM;
1688 }
1689
1690 /* iterator */
1691 static void *swap_start(struct seq_file *swap, loff_t *pos)
1692 {
1693 struct swap_info_struct *si;
1694 int type;
1695 loff_t l = *pos;
1696
1697 mutex_lock(&swapon_mutex);
1698
1699 if (!l)
1700 return SEQ_START_TOKEN;
1701
1702 for (type = 0; type < nr_swapfiles; type++) {
1703 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1704 si = swap_info[type];
1705 if (!(si->flags & SWP_USED) || !si->swap_map)
1706 continue;
1707 if (!--l)
1708 return si;
1709 }
1710
1711 return NULL;
1712 }
1713
1714 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1715 {
1716 struct swap_info_struct *si = v;
1717 int type;
1718
1719 if (v == SEQ_START_TOKEN)
1720 type = 0;
1721 else
1722 type = si->type + 1;
1723
1724 for (; type < nr_swapfiles; type++) {
1725 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1726 si = swap_info[type];
1727 if (!(si->flags & SWP_USED) || !si->swap_map)
1728 continue;
1729 ++*pos;
1730 return si;
1731 }
1732
1733 return NULL;
1734 }
1735
1736 static void swap_stop(struct seq_file *swap, void *v)
1737 {
1738 mutex_unlock(&swapon_mutex);
1739 }
1740
1741 static int swap_show(struct seq_file *swap, void *v)
1742 {
1743 struct swap_info_struct *si = v;
1744 struct file *file;
1745 int len;
1746
1747 if (si == SEQ_START_TOKEN) {
1748 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1749 return 0;
1750 }
1751
1752 file = si->swap_file;
1753 len = seq_path(swap, &file->f_path, " \t\n\\");
1754 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1755 len < 40 ? 40 - len : 1, " ",
1756 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1757 "partition" : "file\t",
1758 si->pages << (PAGE_SHIFT - 10),
1759 si->inuse_pages << (PAGE_SHIFT - 10),
1760 si->prio);
1761 return 0;
1762 }
1763
1764 static const struct seq_operations swaps_op = {
1765 .start = swap_start,
1766 .next = swap_next,
1767 .stop = swap_stop,
1768 .show = swap_show
1769 };
1770
1771 static int swaps_open(struct inode *inode, struct file *file)
1772 {
1773 struct seq_file *seq;
1774 int ret;
1775
1776 ret = seq_open(file, &swaps_op);
1777 if (ret)
1778 return ret;
1779
1780 seq = file->private_data;
1781 seq->poll_event = atomic_read(&proc_poll_event);
1782 return 0;
1783 }
1784
1785 static const struct file_operations proc_swaps_operations = {
1786 .open = swaps_open,
1787 .read = seq_read,
1788 .llseek = seq_lseek,
1789 .release = seq_release,
1790 .poll = swaps_poll,
1791 };
1792
1793 static int __init procswaps_init(void)
1794 {
1795 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1796 return 0;
1797 }
1798 __initcall(procswaps_init);
1799 #endif /* CONFIG_PROC_FS */
1800
1801 #ifdef MAX_SWAPFILES_CHECK
1802 static int __init max_swapfiles_check(void)
1803 {
1804 MAX_SWAPFILES_CHECK();
1805 return 0;
1806 }
1807 late_initcall(max_swapfiles_check);
1808 #endif
1809
1810 static struct swap_info_struct *alloc_swap_info(void)
1811 {
1812 struct swap_info_struct *p;
1813 unsigned int type;
1814
1815 p = kzalloc(sizeof(*p), GFP_KERNEL);
1816 if (!p)
1817 return ERR_PTR(-ENOMEM);
1818
1819 spin_lock(&swap_lock);
1820 for (type = 0; type < nr_swapfiles; type++) {
1821 if (!(swap_info[type]->flags & SWP_USED))
1822 break;
1823 }
1824 if (type >= MAX_SWAPFILES) {
1825 spin_unlock(&swap_lock);
1826 kfree(p);
1827 return ERR_PTR(-EPERM);
1828 }
1829 if (type >= nr_swapfiles) {
1830 p->type = type;
1831 swap_info[type] = p;
1832 /*
1833 * Write swap_info[type] before nr_swapfiles, in case a
1834 * racing procfs swap_start() or swap_next() is reading them.
1835 * (We never shrink nr_swapfiles, we never free this entry.)
1836 */
1837 smp_wmb();
1838 nr_swapfiles++;
1839 } else {
1840 kfree(p);
1841 p = swap_info[type];
1842 /*
1843 * Do not memset this entry: a racing procfs swap_next()
1844 * would be relying on p->type to remain valid.
1845 */
1846 }
1847 INIT_LIST_HEAD(&p->first_swap_extent.list);
1848 p->flags = SWP_USED;
1849 p->next = -1;
1850 spin_unlock(&swap_lock);
1851
1852 return p;
1853 }
1854
1855 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1856 {
1857 int error;
1858
1859 if (S_ISBLK(inode->i_mode)) {
1860 p->bdev = bdgrab(I_BDEV(inode));
1861 error = blkdev_get(p->bdev,
1862 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1863 sys_swapon);
1864 if (error < 0) {
1865 p->bdev = NULL;
1866 return -EINVAL;
1867 }
1868 p->old_block_size = block_size(p->bdev);
1869 error = set_blocksize(p->bdev, PAGE_SIZE);
1870 if (error < 0)
1871 return error;
1872 p->flags |= SWP_BLKDEV;
1873 } else if (S_ISREG(inode->i_mode)) {
1874 p->bdev = inode->i_sb->s_bdev;
1875 mutex_lock(&inode->i_mutex);
1876 if (IS_SWAPFILE(inode))
1877 return -EBUSY;
1878 } else
1879 return -EINVAL;
1880
1881 return 0;
1882 }
1883
1884 static unsigned long read_swap_header(struct swap_info_struct *p,
1885 union swap_header *swap_header,
1886 struct inode *inode)
1887 {
1888 int i;
1889 unsigned long maxpages;
1890 unsigned long swapfilepages;
1891
1892 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1893 printk(KERN_ERR "Unable to find swap-space signature\n");
1894 return 0;
1895 }
1896
1897 /* swap partition endianess hack... */
1898 if (swab32(swap_header->info.version) == 1) {
1899 swab32s(&swap_header->info.version);
1900 swab32s(&swap_header->info.last_page);
1901 swab32s(&swap_header->info.nr_badpages);
1902 for (i = 0; i < swap_header->info.nr_badpages; i++)
1903 swab32s(&swap_header->info.badpages[i]);
1904 }
1905 /* Check the swap header's sub-version */
1906 if (swap_header->info.version != 1) {
1907 printk(KERN_WARNING
1908 "Unable to handle swap header version %d\n",
1909 swap_header->info.version);
1910 return 0;
1911 }
1912
1913 p->lowest_bit = 1;
1914 p->cluster_next = 1;
1915 p->cluster_nr = 0;
1916
1917 /*
1918 * Find out how many pages are allowed for a single swap
1919 * device. There are two limiting factors: 1) the number
1920 * of bits for the swap offset in the swp_entry_t type, and
1921 * 2) the number of bits in the swap pte as defined by the
1922 * different architectures. In order to find the
1923 * largest possible bit mask, a swap entry with swap type 0
1924 * and swap offset ~0UL is created, encoded to a swap pte,
1925 * decoded to a swp_entry_t again, and finally the swap
1926 * offset is extracted. This will mask all the bits from
1927 * the initial ~0UL mask that can't be encoded in either
1928 * the swp_entry_t or the architecture definition of a
1929 * swap pte.
1930 */
1931 maxpages = swp_offset(pte_to_swp_entry(
1932 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1933 if (maxpages > swap_header->info.last_page) {
1934 maxpages = swap_header->info.last_page + 1;
1935 /* p->max is an unsigned int: don't overflow it */
1936 if ((unsigned int)maxpages == 0)
1937 maxpages = UINT_MAX;
1938 }
1939 p->highest_bit = maxpages - 1;
1940
1941 if (!maxpages)
1942 return 0;
1943 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1944 if (swapfilepages && maxpages > swapfilepages) {
1945 printk(KERN_WARNING
1946 "Swap area shorter than signature indicates\n");
1947 return 0;
1948 }
1949 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1950 return 0;
1951 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1952 return 0;
1953
1954 return maxpages;
1955 }
1956
1957 static int setup_swap_map_and_extents(struct swap_info_struct *p,
1958 union swap_header *swap_header,
1959 unsigned char *swap_map,
1960 unsigned long maxpages,
1961 sector_t *span)
1962 {
1963 int i;
1964 unsigned int nr_good_pages;
1965 int nr_extents;
1966
1967 nr_good_pages = maxpages - 1; /* omit header page */
1968
1969 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1970 unsigned int page_nr = swap_header->info.badpages[i];
1971 if (page_nr == 0 || page_nr > swap_header->info.last_page)
1972 return -EINVAL;
1973 if (page_nr < maxpages) {
1974 swap_map[page_nr] = SWAP_MAP_BAD;
1975 nr_good_pages--;
1976 }
1977 }
1978
1979 if (nr_good_pages) {
1980 swap_map[0] = SWAP_MAP_BAD;
1981 p->max = maxpages;
1982 p->pages = nr_good_pages;
1983 nr_extents = setup_swap_extents(p, span);
1984 if (nr_extents < 0)
1985 return nr_extents;
1986 nr_good_pages = p->pages;
1987 }
1988 if (!nr_good_pages) {
1989 printk(KERN_WARNING "Empty swap-file\n");
1990 return -EINVAL;
1991 }
1992
1993 return nr_extents;
1994 }
1995
1996 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1997 {
1998 struct swap_info_struct *p;
1999 char *name;
2000 struct file *swap_file = NULL;
2001 struct address_space *mapping;
2002 int i;
2003 int prio;
2004 int error;
2005 union swap_header *swap_header;
2006 int nr_extents;
2007 sector_t span;
2008 unsigned long maxpages;
2009 unsigned char *swap_map = NULL;
2010 unsigned long *frontswap_map = NULL;
2011 struct page *page = NULL;
2012 struct inode *inode = NULL;
2013
2014 if (swap_flags & ~SWAP_FLAGS_VALID)
2015 return -EINVAL;
2016
2017 if (!capable(CAP_SYS_ADMIN))
2018 return -EPERM;
2019
2020 p = alloc_swap_info();
2021 if (IS_ERR(p))
2022 return PTR_ERR(p);
2023
2024 name = getname(specialfile);
2025 if (IS_ERR(name)) {
2026 error = PTR_ERR(name);
2027 name = NULL;
2028 goto bad_swap;
2029 }
2030 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2031 if (IS_ERR(swap_file)) {
2032 error = PTR_ERR(swap_file);
2033 swap_file = NULL;
2034 goto bad_swap;
2035 }
2036
2037 p->swap_file = swap_file;
2038 mapping = swap_file->f_mapping;
2039
2040 for (i = 0; i < nr_swapfiles; i++) {
2041 struct swap_info_struct *q = swap_info[i];
2042
2043 if (q == p || !q->swap_file)
2044 continue;
2045 if (mapping == q->swap_file->f_mapping) {
2046 error = -EBUSY;
2047 goto bad_swap;
2048 }
2049 }
2050
2051 inode = mapping->host;
2052 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2053 error = claim_swapfile(p, inode);
2054 if (unlikely(error))
2055 goto bad_swap;
2056
2057 /*
2058 * Read the swap header.
2059 */
2060 if (!mapping->a_ops->readpage) {
2061 error = -EINVAL;
2062 goto bad_swap;
2063 }
2064 page = read_mapping_page(mapping, 0, swap_file);
2065 if (IS_ERR(page)) {
2066 error = PTR_ERR(page);
2067 goto bad_swap;
2068 }
2069 swap_header = kmap(page);
2070
2071 maxpages = read_swap_header(p, swap_header, inode);
2072 if (unlikely(!maxpages)) {
2073 error = -EINVAL;
2074 goto bad_swap;
2075 }
2076
2077 /* OK, set up the swap map and apply the bad block list */
2078 swap_map = vzalloc(maxpages);
2079 if (!swap_map) {
2080 error = -ENOMEM;
2081 goto bad_swap;
2082 }
2083
2084 error = swap_cgroup_swapon(p->type, maxpages);
2085 if (error)
2086 goto bad_swap;
2087
2088 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2089 maxpages, &span);
2090 if (unlikely(nr_extents < 0)) {
2091 error = nr_extents;
2092 goto bad_swap;
2093 }
2094 /* frontswap enabled? set up bit-per-page map for frontswap */
2095 if (frontswap_enabled)
2096 frontswap_map = vzalloc(maxpages / sizeof(long));
2097
2098 if (p->bdev) {
2099 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2100 p->flags |= SWP_SOLIDSTATE;
2101 p->cluster_next = 1 + (random32() % p->highest_bit);
2102 }
2103 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
2104 p->flags |= SWP_DISCARDABLE;
2105 }
2106
2107 mutex_lock(&swapon_mutex);
2108 prio = -1;
2109 if (swap_flags & SWAP_FLAG_PREFER)
2110 prio =
2111 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2112 enable_swap_info(p, prio, swap_map, frontswap_map);
2113
2114 printk(KERN_INFO "Adding %uk swap on %s. "
2115 "Priority:%d extents:%d across:%lluk %s%s%s\n",
2116 p->pages<<(PAGE_SHIFT-10), name, p->prio,
2117 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2118 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2119 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2120 (frontswap_map) ? "FS" : "");
2121
2122 mutex_unlock(&swapon_mutex);
2123 atomic_inc(&proc_poll_event);
2124 wake_up_interruptible(&proc_poll_wait);
2125
2126 if (S_ISREG(inode->i_mode))
2127 inode->i_flags |= S_SWAPFILE;
2128 error = 0;
2129 goto out;
2130 bad_swap:
2131 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2132 set_blocksize(p->bdev, p->old_block_size);
2133 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2134 }
2135 destroy_swap_extents(p);
2136 swap_cgroup_swapoff(p->type);
2137 spin_lock(&swap_lock);
2138 p->swap_file = NULL;
2139 p->flags = 0;
2140 spin_unlock(&swap_lock);
2141 vfree(swap_map);
2142 if (swap_file) {
2143 if (inode && S_ISREG(inode->i_mode)) {
2144 mutex_unlock(&inode->i_mutex);
2145 inode = NULL;
2146 }
2147 filp_close(swap_file, NULL);
2148 }
2149 out:
2150 if (page && !IS_ERR(page)) {
2151 kunmap(page);
2152 page_cache_release(page);
2153 }
2154 if (name)
2155 putname(name);
2156 if (inode && S_ISREG(inode->i_mode))
2157 mutex_unlock(&inode->i_mutex);
2158 return error;
2159 }
2160
2161 void si_swapinfo(struct sysinfo *val)
2162 {
2163 unsigned int type;
2164 unsigned long nr_to_be_unused = 0;
2165
2166 spin_lock(&swap_lock);
2167 for (type = 0; type < nr_swapfiles; type++) {
2168 struct swap_info_struct *si = swap_info[type];
2169
2170 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2171 nr_to_be_unused += si->inuse_pages;
2172 }
2173 val->freeswap = nr_swap_pages + nr_to_be_unused;
2174 val->totalswap = total_swap_pages + nr_to_be_unused;
2175 spin_unlock(&swap_lock);
2176 }
2177
2178 /*
2179 * Verify that a swap entry is valid and increment its swap map count.
2180 *
2181 * Returns error code in following case.
2182 * - success -> 0
2183 * - swp_entry is invalid -> EINVAL
2184 * - swp_entry is migration entry -> EINVAL
2185 * - swap-cache reference is requested but there is already one. -> EEXIST
2186 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2187 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2188 */
2189 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2190 {
2191 struct swap_info_struct *p;
2192 unsigned long offset, type;
2193 unsigned char count;
2194 unsigned char has_cache;
2195 int err = -EINVAL;
2196
2197 if (non_swap_entry(entry))
2198 goto out;
2199
2200 type = swp_type(entry);
2201 if (type >= nr_swapfiles)
2202 goto bad_file;
2203 p = swap_info[type];
2204 offset = swp_offset(entry);
2205
2206 spin_lock(&swap_lock);
2207 if (unlikely(offset >= p->max))
2208 goto unlock_out;
2209
2210 count = p->swap_map[offset];
2211 has_cache = count & SWAP_HAS_CACHE;
2212 count &= ~SWAP_HAS_CACHE;
2213 err = 0;
2214
2215 if (usage == SWAP_HAS_CACHE) {
2216
2217 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2218 if (!has_cache && count)
2219 has_cache = SWAP_HAS_CACHE;
2220 else if (has_cache) /* someone else added cache */
2221 err = -EEXIST;
2222 else /* no users remaining */
2223 err = -ENOENT;
2224
2225 } else if (count || has_cache) {
2226
2227 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2228 count += usage;
2229 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2230 err = -EINVAL;
2231 else if (swap_count_continued(p, offset, count))
2232 count = COUNT_CONTINUED;
2233 else
2234 err = -ENOMEM;
2235 } else
2236 err = -ENOENT; /* unused swap entry */
2237
2238 p->swap_map[offset] = count | has_cache;
2239
2240 unlock_out:
2241 spin_unlock(&swap_lock);
2242 out:
2243 return err;
2244
2245 bad_file:
2246 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2247 goto out;
2248 }
2249
2250 /*
2251 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2252 * (in which case its reference count is never incremented).
2253 */
2254 void swap_shmem_alloc(swp_entry_t entry)
2255 {
2256 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2257 }
2258
2259 /*
2260 * Increase reference count of swap entry by 1.
2261 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2262 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2263 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2264 * might occur if a page table entry has got corrupted.
2265 */
2266 int swap_duplicate(swp_entry_t entry)
2267 {
2268 int err = 0;
2269
2270 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2271 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2272 return err;
2273 }
2274
2275 /*
2276 * @entry: swap entry for which we allocate swap cache.
2277 *
2278 * Called when allocating swap cache for existing swap entry,
2279 * This can return error codes. Returns 0 at success.
2280 * -EBUSY means there is a swap cache.
2281 * Note: return code is different from swap_duplicate().
2282 */
2283 int swapcache_prepare(swp_entry_t entry)
2284 {
2285 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2286 }
2287
2288 /*
2289 * add_swap_count_continuation - called when a swap count is duplicated
2290 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2291 * page of the original vmalloc'ed swap_map, to hold the continuation count
2292 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2293 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2294 *
2295 * These continuation pages are seldom referenced: the common paths all work
2296 * on the original swap_map, only referring to a continuation page when the
2297 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2298 *
2299 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2300 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2301 * can be called after dropping locks.
2302 */
2303 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2304 {
2305 struct swap_info_struct *si;
2306 struct page *head;
2307 struct page *page;
2308 struct page *list_page;
2309 pgoff_t offset;
2310 unsigned char count;
2311
2312 /*
2313 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2314 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2315 */
2316 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2317
2318 si = swap_info_get(entry);
2319 if (!si) {
2320 /*
2321 * An acceptable race has occurred since the failing
2322 * __swap_duplicate(): the swap entry has been freed,
2323 * perhaps even the whole swap_map cleared for swapoff.
2324 */
2325 goto outer;
2326 }
2327
2328 offset = swp_offset(entry);
2329 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2330
2331 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2332 /*
2333 * The higher the swap count, the more likely it is that tasks
2334 * will race to add swap count continuation: we need to avoid
2335 * over-provisioning.
2336 */
2337 goto out;
2338 }
2339
2340 if (!page) {
2341 spin_unlock(&swap_lock);
2342 return -ENOMEM;
2343 }
2344
2345 /*
2346 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2347 * no architecture is using highmem pages for kernel pagetables: so it
2348 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2349 */
2350 head = vmalloc_to_page(si->swap_map + offset);
2351 offset &= ~PAGE_MASK;
2352
2353 /*
2354 * Page allocation does not initialize the page's lru field,
2355 * but it does always reset its private field.
2356 */
2357 if (!page_private(head)) {
2358 BUG_ON(count & COUNT_CONTINUED);
2359 INIT_LIST_HEAD(&head->lru);
2360 set_page_private(head, SWP_CONTINUED);
2361 si->flags |= SWP_CONTINUED;
2362 }
2363
2364 list_for_each_entry(list_page, &head->lru, lru) {
2365 unsigned char *map;
2366
2367 /*
2368 * If the previous map said no continuation, but we've found
2369 * a continuation page, free our allocation and use this one.
2370 */
2371 if (!(count & COUNT_CONTINUED))
2372 goto out;
2373
2374 map = kmap_atomic(list_page) + offset;
2375 count = *map;
2376 kunmap_atomic(map);
2377
2378 /*
2379 * If this continuation count now has some space in it,
2380 * free our allocation and use this one.
2381 */
2382 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2383 goto out;
2384 }
2385
2386 list_add_tail(&page->lru, &head->lru);
2387 page = NULL; /* now it's attached, don't free it */
2388 out:
2389 spin_unlock(&swap_lock);
2390 outer:
2391 if (page)
2392 __free_page(page);
2393 return 0;
2394 }
2395
2396 /*
2397 * swap_count_continued - when the original swap_map count is incremented
2398 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2399 * into, carry if so, or else fail until a new continuation page is allocated;
2400 * when the original swap_map count is decremented from 0 with continuation,
2401 * borrow from the continuation and report whether it still holds more.
2402 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2403 */
2404 static bool swap_count_continued(struct swap_info_struct *si,
2405 pgoff_t offset, unsigned char count)
2406 {
2407 struct page *head;
2408 struct page *page;
2409 unsigned char *map;
2410
2411 head = vmalloc_to_page(si->swap_map + offset);
2412 if (page_private(head) != SWP_CONTINUED) {
2413 BUG_ON(count & COUNT_CONTINUED);
2414 return false; /* need to add count continuation */
2415 }
2416
2417 offset &= ~PAGE_MASK;
2418 page = list_entry(head->lru.next, struct page, lru);
2419 map = kmap_atomic(page) + offset;
2420
2421 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2422 goto init_map; /* jump over SWAP_CONT_MAX checks */
2423
2424 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2425 /*
2426 * Think of how you add 1 to 999
2427 */
2428 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2429 kunmap_atomic(map);
2430 page = list_entry(page->lru.next, struct page, lru);
2431 BUG_ON(page == head);
2432 map = kmap_atomic(page) + offset;
2433 }
2434 if (*map == SWAP_CONT_MAX) {
2435 kunmap_atomic(map);
2436 page = list_entry(page->lru.next, struct page, lru);
2437 if (page == head)
2438 return false; /* add count continuation */
2439 map = kmap_atomic(page) + offset;
2440 init_map: *map = 0; /* we didn't zero the page */
2441 }
2442 *map += 1;
2443 kunmap_atomic(map);
2444 page = list_entry(page->lru.prev, struct page, lru);
2445 while (page != head) {
2446 map = kmap_atomic(page) + offset;
2447 *map = COUNT_CONTINUED;
2448 kunmap_atomic(map);
2449 page = list_entry(page->lru.prev, struct page, lru);
2450 }
2451 return true; /* incremented */
2452
2453 } else { /* decrementing */
2454 /*
2455 * Think of how you subtract 1 from 1000
2456 */
2457 BUG_ON(count != COUNT_CONTINUED);
2458 while (*map == COUNT_CONTINUED) {
2459 kunmap_atomic(map);
2460 page = list_entry(page->lru.next, struct page, lru);
2461 BUG_ON(page == head);
2462 map = kmap_atomic(page) + offset;
2463 }
2464 BUG_ON(*map == 0);
2465 *map -= 1;
2466 if (*map == 0)
2467 count = 0;
2468 kunmap_atomic(map);
2469 page = list_entry(page->lru.prev, struct page, lru);
2470 while (page != head) {
2471 map = kmap_atomic(page) + offset;
2472 *map = SWAP_CONT_MAX | count;
2473 count = COUNT_CONTINUED;
2474 kunmap_atomic(map);
2475 page = list_entry(page->lru.prev, struct page, lru);
2476 }
2477 return count == COUNT_CONTINUED;
2478 }
2479 }
2480
2481 /*
2482 * free_swap_count_continuations - swapoff free all the continuation pages
2483 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2484 */
2485 static void free_swap_count_continuations(struct swap_info_struct *si)
2486 {
2487 pgoff_t offset;
2488
2489 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2490 struct page *head;
2491 head = vmalloc_to_page(si->swap_map + offset);
2492 if (page_private(head)) {
2493 struct list_head *this, *next;
2494 list_for_each_safe(this, next, &head->lru) {
2495 struct page *page;
2496 page = list_entry(this, struct page, lru);
2497 list_del(this);
2498 __free_page(page);
2499 }
2500 }
2501 }
2502 }