Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shmem_fs.h>
19 #include <linux/blkdev.h>
20 #include <linux/random.h>
21 #include <linux/writeback.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/init.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 #include <linux/poll.h>
34 #include <linux/oom.h>
35 #include <linux/frontswap.h>
36 #include <linux/swapfile.h>
37 #include <linux/export.h>
38
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <linux/swapops.h>
42 #include <linux/page_cgroup.h>
43
44 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
45 unsigned char);
46 static void free_swap_count_continuations(struct swap_info_struct *);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54 static atomic_t highest_priority_index = ATOMIC_INIT(-1);
55
56 static const char Bad_file[] = "Bad swap file entry ";
57 static const char Unused_file[] = "Unused swap file entry ";
58 static const char Bad_offset[] = "Bad swap offset entry ";
59 static const char Unused_offset[] = "Unused swap offset entry ";
60
61 struct swap_list_t swap_list = {-1, -1};
62
63 struct swap_info_struct *swap_info[MAX_SWAPFILES];
64
65 static DEFINE_MUTEX(swapon_mutex);
66
67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68 /* Activity counter to indicate that a swapon or swapoff has occurred */
69 static atomic_t proc_poll_event = ATOMIC_INIT(0);
70
71 static inline unsigned char swap_count(unsigned char ent)
72 {
73 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
74 }
75
76 /* returns 1 if swap entry is freed */
77 static int
78 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
79 {
80 swp_entry_t entry = swp_entry(si->type, offset);
81 struct page *page;
82 int ret = 0;
83
84 page = find_get_page(swap_address_space(entry), entry.val);
85 if (!page)
86 return 0;
87 /*
88 * This function is called from scan_swap_map() and it's called
89 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90 * We have to use trylock for avoiding deadlock. This is a special
91 * case and you should use try_to_free_swap() with explicit lock_page()
92 * in usual operations.
93 */
94 if (trylock_page(page)) {
95 ret = try_to_free_swap(page);
96 unlock_page(page);
97 }
98 page_cache_release(page);
99 return ret;
100 }
101
102 /*
103 * swapon tell device that all the old swap contents can be discarded,
104 * to allow the swap device to optimize its wear-levelling.
105 */
106 static int discard_swap(struct swap_info_struct *si)
107 {
108 struct swap_extent *se;
109 sector_t start_block;
110 sector_t nr_blocks;
111 int err = 0;
112
113 /* Do not discard the swap header page! */
114 se = &si->first_swap_extent;
115 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
117 if (nr_blocks) {
118 err = blkdev_issue_discard(si->bdev, start_block,
119 nr_blocks, GFP_KERNEL, 0);
120 if (err)
121 return err;
122 cond_resched();
123 }
124
125 list_for_each_entry(se, &si->first_swap_extent.list, list) {
126 start_block = se->start_block << (PAGE_SHIFT - 9);
127 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
128
129 err = blkdev_issue_discard(si->bdev, start_block,
130 nr_blocks, GFP_KERNEL, 0);
131 if (err)
132 break;
133
134 cond_resched();
135 }
136 return err; /* That will often be -EOPNOTSUPP */
137 }
138
139 /*
140 * swap allocation tell device that a cluster of swap can now be discarded,
141 * to allow the swap device to optimize its wear-levelling.
142 */
143 static void discard_swap_cluster(struct swap_info_struct *si,
144 pgoff_t start_page, pgoff_t nr_pages)
145 {
146 struct swap_extent *se = si->curr_swap_extent;
147 int found_extent = 0;
148
149 while (nr_pages) {
150 struct list_head *lh;
151
152 if (se->start_page <= start_page &&
153 start_page < se->start_page + se->nr_pages) {
154 pgoff_t offset = start_page - se->start_page;
155 sector_t start_block = se->start_block + offset;
156 sector_t nr_blocks = se->nr_pages - offset;
157
158 if (nr_blocks > nr_pages)
159 nr_blocks = nr_pages;
160 start_page += nr_blocks;
161 nr_pages -= nr_blocks;
162
163 if (!found_extent++)
164 si->curr_swap_extent = se;
165
166 start_block <<= PAGE_SHIFT - 9;
167 nr_blocks <<= PAGE_SHIFT - 9;
168 if (blkdev_issue_discard(si->bdev, start_block,
169 nr_blocks, GFP_NOIO, 0))
170 break;
171 }
172
173 lh = se->list.next;
174 se = list_entry(lh, struct swap_extent, list);
175 }
176 }
177
178 static int wait_for_discard(void *word)
179 {
180 schedule();
181 return 0;
182 }
183
184 #define SWAPFILE_CLUSTER 256
185 #define LATENCY_LIMIT 256
186
187 static unsigned long scan_swap_map(struct swap_info_struct *si,
188 unsigned char usage)
189 {
190 unsigned long offset;
191 unsigned long scan_base;
192 unsigned long last_in_cluster = 0;
193 int latency_ration = LATENCY_LIMIT;
194 int found_free_cluster = 0;
195
196 /*
197 * We try to cluster swap pages by allocating them sequentially
198 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
199 * way, however, we resort to first-free allocation, starting
200 * a new cluster. This prevents us from scattering swap pages
201 * all over the entire swap partition, so that we reduce
202 * overall disk seek times between swap pages. -- sct
203 * But we do now try to find an empty cluster. -Andrea
204 * And we let swap pages go all over an SSD partition. Hugh
205 */
206
207 si->flags += SWP_SCANNING;
208 scan_base = offset = si->cluster_next;
209
210 if (unlikely(!si->cluster_nr--)) {
211 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
212 si->cluster_nr = SWAPFILE_CLUSTER - 1;
213 goto checks;
214 }
215 if (si->flags & SWP_DISCARDABLE) {
216 /*
217 * Start range check on racing allocations, in case
218 * they overlap the cluster we eventually decide on
219 * (we scan without swap_lock to allow preemption).
220 * It's hardly conceivable that cluster_nr could be
221 * wrapped during our scan, but don't depend on it.
222 */
223 if (si->lowest_alloc)
224 goto checks;
225 si->lowest_alloc = si->max;
226 si->highest_alloc = 0;
227 }
228 spin_unlock(&si->lock);
229
230 /*
231 * If seek is expensive, start searching for new cluster from
232 * start of partition, to minimize the span of allocated swap.
233 * But if seek is cheap, search from our current position, so
234 * that swap is allocated from all over the partition: if the
235 * Flash Translation Layer only remaps within limited zones,
236 * we don't want to wear out the first zone too quickly.
237 */
238 if (!(si->flags & SWP_SOLIDSTATE))
239 scan_base = offset = si->lowest_bit;
240 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
241
242 /* Locate the first empty (unaligned) cluster */
243 for (; last_in_cluster <= si->highest_bit; offset++) {
244 if (si->swap_map[offset])
245 last_in_cluster = offset + SWAPFILE_CLUSTER;
246 else if (offset == last_in_cluster) {
247 spin_lock(&si->lock);
248 offset -= SWAPFILE_CLUSTER - 1;
249 si->cluster_next = offset;
250 si->cluster_nr = SWAPFILE_CLUSTER - 1;
251 found_free_cluster = 1;
252 goto checks;
253 }
254 if (unlikely(--latency_ration < 0)) {
255 cond_resched();
256 latency_ration = LATENCY_LIMIT;
257 }
258 }
259
260 offset = si->lowest_bit;
261 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
262
263 /* Locate the first empty (unaligned) cluster */
264 for (; last_in_cluster < scan_base; offset++) {
265 if (si->swap_map[offset])
266 last_in_cluster = offset + SWAPFILE_CLUSTER;
267 else if (offset == last_in_cluster) {
268 spin_lock(&si->lock);
269 offset -= SWAPFILE_CLUSTER - 1;
270 si->cluster_next = offset;
271 si->cluster_nr = SWAPFILE_CLUSTER - 1;
272 found_free_cluster = 1;
273 goto checks;
274 }
275 if (unlikely(--latency_ration < 0)) {
276 cond_resched();
277 latency_ration = LATENCY_LIMIT;
278 }
279 }
280
281 offset = scan_base;
282 spin_lock(&si->lock);
283 si->cluster_nr = SWAPFILE_CLUSTER - 1;
284 si->lowest_alloc = 0;
285 }
286
287 checks:
288 if (!(si->flags & SWP_WRITEOK))
289 goto no_page;
290 if (!si->highest_bit)
291 goto no_page;
292 if (offset > si->highest_bit)
293 scan_base = offset = si->lowest_bit;
294
295 /* reuse swap entry of cache-only swap if not busy. */
296 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
297 int swap_was_freed;
298 spin_unlock(&si->lock);
299 swap_was_freed = __try_to_reclaim_swap(si, offset);
300 spin_lock(&si->lock);
301 /* entry was freed successfully, try to use this again */
302 if (swap_was_freed)
303 goto checks;
304 goto scan; /* check next one */
305 }
306
307 if (si->swap_map[offset])
308 goto scan;
309
310 if (offset == si->lowest_bit)
311 si->lowest_bit++;
312 if (offset == si->highest_bit)
313 si->highest_bit--;
314 si->inuse_pages++;
315 if (si->inuse_pages == si->pages) {
316 si->lowest_bit = si->max;
317 si->highest_bit = 0;
318 }
319 si->swap_map[offset] = usage;
320 si->cluster_next = offset + 1;
321 si->flags -= SWP_SCANNING;
322
323 if (si->lowest_alloc) {
324 /*
325 * Only set when SWP_DISCARDABLE, and there's a scan
326 * for a free cluster in progress or just completed.
327 */
328 if (found_free_cluster) {
329 /*
330 * To optimize wear-levelling, discard the
331 * old data of the cluster, taking care not to
332 * discard any of its pages that have already
333 * been allocated by racing tasks (offset has
334 * already stepped over any at the beginning).
335 */
336 if (offset < si->highest_alloc &&
337 si->lowest_alloc <= last_in_cluster)
338 last_in_cluster = si->lowest_alloc - 1;
339 si->flags |= SWP_DISCARDING;
340 spin_unlock(&si->lock);
341
342 if (offset < last_in_cluster)
343 discard_swap_cluster(si, offset,
344 last_in_cluster - offset + 1);
345
346 spin_lock(&si->lock);
347 si->lowest_alloc = 0;
348 si->flags &= ~SWP_DISCARDING;
349
350 smp_mb(); /* wake_up_bit advises this */
351 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
352
353 } else if (si->flags & SWP_DISCARDING) {
354 /*
355 * Delay using pages allocated by racing tasks
356 * until the whole discard has been issued. We
357 * could defer that delay until swap_writepage,
358 * but it's easier to keep this self-contained.
359 */
360 spin_unlock(&si->lock);
361 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
362 wait_for_discard, TASK_UNINTERRUPTIBLE);
363 spin_lock(&si->lock);
364 } else {
365 /*
366 * Note pages allocated by racing tasks while
367 * scan for a free cluster is in progress, so
368 * that its final discard can exclude them.
369 */
370 if (offset < si->lowest_alloc)
371 si->lowest_alloc = offset;
372 if (offset > si->highest_alloc)
373 si->highest_alloc = offset;
374 }
375 }
376 return offset;
377
378 scan:
379 spin_unlock(&si->lock);
380 while (++offset <= si->highest_bit) {
381 if (!si->swap_map[offset]) {
382 spin_lock(&si->lock);
383 goto checks;
384 }
385 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
386 spin_lock(&si->lock);
387 goto checks;
388 }
389 if (unlikely(--latency_ration < 0)) {
390 cond_resched();
391 latency_ration = LATENCY_LIMIT;
392 }
393 }
394 offset = si->lowest_bit;
395 while (++offset < scan_base) {
396 if (!si->swap_map[offset]) {
397 spin_lock(&si->lock);
398 goto checks;
399 }
400 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
401 spin_lock(&si->lock);
402 goto checks;
403 }
404 if (unlikely(--latency_ration < 0)) {
405 cond_resched();
406 latency_ration = LATENCY_LIMIT;
407 }
408 }
409 spin_lock(&si->lock);
410
411 no_page:
412 si->flags -= SWP_SCANNING;
413 return 0;
414 }
415
416 swp_entry_t get_swap_page(void)
417 {
418 struct swap_info_struct *si;
419 pgoff_t offset;
420 int type, next;
421 int wrapped = 0;
422 int hp_index;
423
424 spin_lock(&swap_lock);
425 if (atomic_long_read(&nr_swap_pages) <= 0)
426 goto noswap;
427 atomic_long_dec(&nr_swap_pages);
428
429 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
430 hp_index = atomic_xchg(&highest_priority_index, -1);
431 /*
432 * highest_priority_index records current highest priority swap
433 * type which just frees swap entries. If its priority is
434 * higher than that of swap_list.next swap type, we use it. It
435 * isn't protected by swap_lock, so it can be an invalid value
436 * if the corresponding swap type is swapoff. We double check
437 * the flags here. It's even possible the swap type is swapoff
438 * and swapon again and its priority is changed. In such rare
439 * case, low prority swap type might be used, but eventually
440 * high priority swap will be used after several rounds of
441 * swap.
442 */
443 if (hp_index != -1 && hp_index != type &&
444 swap_info[type]->prio < swap_info[hp_index]->prio &&
445 (swap_info[hp_index]->flags & SWP_WRITEOK)) {
446 type = hp_index;
447 swap_list.next = type;
448 }
449
450 si = swap_info[type];
451 next = si->next;
452 if (next < 0 ||
453 (!wrapped && si->prio != swap_info[next]->prio)) {
454 next = swap_list.head;
455 wrapped++;
456 }
457
458 spin_lock(&si->lock);
459 if (!si->highest_bit) {
460 spin_unlock(&si->lock);
461 continue;
462 }
463 if (!(si->flags & SWP_WRITEOK)) {
464 spin_unlock(&si->lock);
465 continue;
466 }
467
468 swap_list.next = next;
469
470 spin_unlock(&swap_lock);
471 /* This is called for allocating swap entry for cache */
472 offset = scan_swap_map(si, SWAP_HAS_CACHE);
473 spin_unlock(&si->lock);
474 if (offset)
475 return swp_entry(type, offset);
476 spin_lock(&swap_lock);
477 next = swap_list.next;
478 }
479
480 atomic_long_inc(&nr_swap_pages);
481 noswap:
482 spin_unlock(&swap_lock);
483 return (swp_entry_t) {0};
484 }
485
486 /* The only caller of this function is now susupend routine */
487 swp_entry_t get_swap_page_of_type(int type)
488 {
489 struct swap_info_struct *si;
490 pgoff_t offset;
491
492 si = swap_info[type];
493 spin_lock(&si->lock);
494 if (si && (si->flags & SWP_WRITEOK)) {
495 atomic_long_dec(&nr_swap_pages);
496 /* This is called for allocating swap entry, not cache */
497 offset = scan_swap_map(si, 1);
498 if (offset) {
499 spin_unlock(&si->lock);
500 return swp_entry(type, offset);
501 }
502 atomic_long_inc(&nr_swap_pages);
503 }
504 spin_unlock(&si->lock);
505 return (swp_entry_t) {0};
506 }
507 EXPORT_SYMBOL_GPL(get_swap_page_of_type);
508
509 #ifdef CONFIG_MEMCG
510 swp_entry_t get_swap_page_by_memcg(struct page *page)
511 {
512 struct swap_info_struct *si;
513 int type, next, wrapped;
514 pgoff_t offset;
515
516 /* Go to original get_swap_page if we have only 1 or no swap area. */
517 if (nr_swapfiles <= 1)
518 return get_swap_page();
519
520 spin_lock(&swap_lock);
521 if (atomic_long_read(&nr_swap_pages) <= 0)
522 goto noswap;
523 atomic_long_dec(&nr_swap_pages);
524
525 /* In which memcg */
526 if (memcg_is_root(page)) {
527 /* High to low priority */
528 wrapped = 1;
529 type = swap_list.head;
530 } else {
531 /* Low to high priority */
532 wrapped = 0;
533 si = swap_info[swap_list.head];
534 type = si->next;
535 }
536
537 /* Scan for an empty swap entry */
538 for (; (type >= 0) || (wrapped == 0); type = next) {
539 if (type < 0) {
540 wrapped++;
541 next = swap_list.head;
542 continue;
543 }
544
545 si = swap_info[type];
546 next = si->next;
547 spin_lock(&si->lock);
548 if (!si->highest_bit) {
549 spin_unlock(&si->lock);
550 continue;
551 }
552 if (!(si->flags & SWP_WRITEOK)) {
553 spin_unlock(&si->lock);
554 continue;
555 }
556 spin_unlock(&swap_lock);
557 /* This is called for allocating swap entry for cache */
558 offset = scan_swap_map(si, SWAP_HAS_CACHE);
559 spin_unlock(&si->lock);
560 if (offset)
561 return swp_entry(type, offset);
562 spin_lock(&swap_lock);
563 }
564
565 atomic_long_inc(&nr_swap_pages);
566 noswap:
567 spin_unlock(&swap_lock);
568 return (swp_entry_t) {0};
569 }
570 #endif
571
572 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
573 unsigned int prev, bool frontswap);
574
575 void get_swap_range_of_type(int type, swp_entry_t *start, swp_entry_t *end,
576 unsigned int limit)
577 {
578 struct swap_info_struct *si;
579 pgoff_t start_at;
580 unsigned int i;
581
582 *start = swp_entry(0, 0);
583 *end = swp_entry(0, 0);
584 si = swap_info[type];
585 spin_lock(&si->lock);
586 if (si && (si->flags & SWP_WRITEOK)) {
587 /* This is called for allocating swap entry, not cache */
588 start_at = scan_swap_map(si, 1);
589 if (start_at) {
590 unsigned long stop_at = find_next_to_unuse(si, start_at, 0);
591 if (stop_at > start_at)
592 stop_at--;
593 else
594 stop_at = si->max - 1;
595 if (stop_at - start_at + 1 > limit)
596 stop_at = min_t(unsigned int,
597 start_at + limit - 1,
598 si->max - 1);
599 /* Mark them used */
600 for (i = start_at; i <= stop_at; i++)
601 si->swap_map[i] = 1;
602 /* first page already done above */
603 si->inuse_pages += stop_at - start_at;
604
605 atomic_long_sub(stop_at - start_at + 1, &nr_swap_pages);
606 if (start_at + 1 == si->lowest_bit)
607 si->lowest_bit = stop_at + 1;
608 if (si->inuse_pages == si->pages) {
609 si->lowest_bit = si->max;
610 si->highest_bit = 0;
611 }
612 si->cluster_next = stop_at + 1;
613 *start = swp_entry(type, start_at);
614 *end = swp_entry(type, stop_at);
615 }
616 }
617 spin_unlock(&si->lock);
618 }
619 EXPORT_SYMBOL_GPL(get_swap_range_of_type);
620
621 struct swap_info_struct *swap_info_get(swp_entry_t entry)
622 {
623 struct swap_info_struct *p;
624 unsigned long offset, type;
625
626 if (!entry.val)
627 goto out;
628 type = swp_type(entry);
629 if (type >= nr_swapfiles)
630 goto bad_nofile;
631 p = swap_info[type];
632 if (!(p->flags & SWP_USED))
633 goto bad_device;
634 offset = swp_offset(entry);
635 if (offset >= p->max)
636 goto bad_offset;
637 if (!p->swap_map[offset])
638 goto bad_free;
639 spin_lock(&p->lock);
640 return p;
641
642 bad_free:
643 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
644 goto out;
645 bad_offset:
646 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
647 goto out;
648 bad_device:
649 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
650 goto out;
651 bad_nofile:
652 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
653 out:
654 return NULL;
655 }
656
657 void swap_info_unlock(struct swap_info_struct *si)
658 {
659 spin_unlock(&si->lock);
660 }
661
662 /*
663 * This swap type frees swap entry, check if it is the highest priority swap
664 * type which just frees swap entry. get_swap_page() uses
665 * highest_priority_index to search highest priority swap type. The
666 * swap_info_struct.lock can't protect us if there are multiple swap types
667 * active, so we use atomic_cmpxchg.
668 */
669 static void set_highest_priority_index(int type)
670 {
671 int old_hp_index, new_hp_index;
672
673 do {
674 old_hp_index = atomic_read(&highest_priority_index);
675 if (old_hp_index != -1 &&
676 swap_info[old_hp_index]->prio >= swap_info[type]->prio)
677 break;
678 new_hp_index = type;
679 } while (atomic_cmpxchg(&highest_priority_index,
680 old_hp_index, new_hp_index) != old_hp_index);
681 }
682
683 static unsigned char swap_entry_free(struct swap_info_struct *p,
684 swp_entry_t entry, unsigned char usage)
685 {
686 unsigned long offset = swp_offset(entry);
687 unsigned char count;
688 unsigned char has_cache;
689
690 count = p->swap_map[offset];
691 has_cache = count & SWAP_HAS_CACHE;
692 count &= ~SWAP_HAS_CACHE;
693
694 if (usage == SWAP_HAS_CACHE) {
695 VM_BUG_ON(!has_cache);
696 has_cache = 0;
697 } else if (count == SWAP_MAP_SHMEM) {
698 /*
699 * Or we could insist on shmem.c using a special
700 * swap_shmem_free() and free_shmem_swap_and_cache()...
701 */
702 count = 0;
703 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
704 if (count == COUNT_CONTINUED) {
705 if (swap_count_continued(p, offset, count))
706 count = SWAP_MAP_MAX | COUNT_CONTINUED;
707 else
708 count = SWAP_MAP_MAX;
709 } else
710 count--;
711 }
712
713 if (!count)
714 mem_cgroup_uncharge_swap(entry);
715
716 usage = count | has_cache;
717 p->swap_map[offset] = usage;
718
719 /* free if no reference */
720 if (!usage) {
721 if (offset < p->lowest_bit)
722 p->lowest_bit = offset;
723 if (offset > p->highest_bit)
724 p->highest_bit = offset;
725 set_highest_priority_index(p->type);
726 atomic_long_inc(&nr_swap_pages);
727 p->inuse_pages--;
728 frontswap_invalidate_page(p->type, offset);
729 if (p->flags & SWP_BLKDEV) {
730 struct gendisk *disk = p->bdev->bd_disk;
731 if (disk->fops->swap_slot_free_notify)
732 disk->fops->swap_slot_free_notify(p->bdev,
733 offset);
734 }
735 }
736
737 return usage;
738 }
739
740 /*
741 * Caller has made sure that the swapdevice corresponding to entry
742 * is still around or has not been recycled.
743 */
744 void swap_free(swp_entry_t entry)
745 {
746 struct swap_info_struct *p;
747
748 p = swap_info_get(entry);
749 if (p) {
750 swap_entry_free(p, entry, 1);
751 spin_unlock(&p->lock);
752 }
753 }
754
755 /*
756 * Called after dropping swapcache to decrease refcnt to swap entries.
757 */
758 void swapcache_free(swp_entry_t entry, struct page *page)
759 {
760 struct swap_info_struct *p;
761 unsigned char count;
762
763 p = swap_info_get(entry);
764 if (p) {
765 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
766 if (page)
767 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
768 spin_unlock(&p->lock);
769 }
770 }
771 EXPORT_SYMBOL_GPL(swap_free);
772
773 /*
774 * How many references to page are currently swapped out?
775 * This does not give an exact answer when swap count is continued,
776 * but does include the high COUNT_CONTINUED flag to allow for that.
777 */
778 int page_swapcount(struct page *page)
779 {
780 int count = 0;
781 struct swap_info_struct *p;
782 swp_entry_t entry;
783
784 entry.val = page_private(page);
785 p = swap_info_get(entry);
786 if (p) {
787 count = swap_count(p->swap_map[swp_offset(entry)]);
788 spin_unlock(&p->lock);
789 }
790 return count;
791 }
792
793 /*
794 * We can write to an anon page without COW if there are no other references
795 * to it. And as a side-effect, free up its swap: because the old content
796 * on disk will never be read, and seeking back there to write new content
797 * later would only waste time away from clustering.
798 */
799 int reuse_swap_page(struct page *page)
800 {
801 int count;
802
803 VM_BUG_ON(!PageLocked(page));
804 if (unlikely(PageKsm(page)))
805 return 0;
806 count = page_mapcount(page);
807 if (count <= 1 && PageSwapCache(page)) {
808 count += page_swapcount(page);
809 if (count == 1 && !PageWriteback(page)) {
810 delete_from_swap_cache(page);
811 SetPageDirty(page);
812 }
813 }
814 return count <= 1;
815 }
816
817 /*
818 * If swap is getting full, or if there are no more mappings of this page,
819 * then try_to_free_swap is called to free its swap space.
820 */
821 int try_to_free_swap(struct page *page)
822 {
823 VM_BUG_ON(!PageLocked(page));
824
825 if (!PageSwapCache(page))
826 return 0;
827 if (PageWriteback(page))
828 return 0;
829 if (page_swapcount(page))
830 return 0;
831
832 /*
833 * Once hibernation has begun to create its image of memory,
834 * there's a danger that one of the calls to try_to_free_swap()
835 * - most probably a call from __try_to_reclaim_swap() while
836 * hibernation is allocating its own swap pages for the image,
837 * but conceivably even a call from memory reclaim - will free
838 * the swap from a page which has already been recorded in the
839 * image as a clean swapcache page, and then reuse its swap for
840 * another page of the image. On waking from hibernation, the
841 * original page might be freed under memory pressure, then
842 * later read back in from swap, now with the wrong data.
843 *
844 * Hibration suspends storage while it is writing the image
845 * to disk so check that here.
846 */
847 if (pm_suspended_storage())
848 return 0;
849
850 delete_from_swap_cache(page);
851 SetPageDirty(page);
852 return 1;
853 }
854
855 /*
856 * Free the swap entry like above, but also try to
857 * free the page cache entry if it is the last user.
858 */
859 int free_swap_and_cache(swp_entry_t entry)
860 {
861 struct swap_info_struct *p;
862 struct page *page = NULL;
863
864 if (non_swap_entry(entry))
865 return 1;
866
867 p = swap_info_get(entry);
868 if (p) {
869 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
870 page = find_get_page(swap_address_space(entry),
871 entry.val);
872 if (page && !trylock_page(page)) {
873 page_cache_release(page);
874 page = NULL;
875 }
876 }
877 spin_unlock(&p->lock);
878 }
879 if (page) {
880 /*
881 * Not mapped elsewhere, or swap space full? Free it!
882 * Also recheck PageSwapCache now page is locked (above).
883 */
884 if (PageSwapCache(page) && !PageWriteback(page) &&
885 (!page_mapped(page) || vm_swap_full())) {
886 delete_from_swap_cache(page);
887 SetPageDirty(page);
888 }
889 unlock_page(page);
890 page_cache_release(page);
891 }
892 return p != NULL;
893 }
894
895 #ifdef CONFIG_HIBERNATION
896 /*
897 * Find the swap type that corresponds to given device (if any).
898 *
899 * @offset - number of the PAGE_SIZE-sized block of the device, starting
900 * from 0, in which the swap header is expected to be located.
901 *
902 * This is needed for the suspend to disk (aka swsusp).
903 */
904 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
905 {
906 struct block_device *bdev = NULL;
907 int type;
908
909 if (device)
910 bdev = bdget(device);
911
912 spin_lock(&swap_lock);
913 for (type = 0; type < nr_swapfiles; type++) {
914 struct swap_info_struct *sis = swap_info[type];
915
916 if (!(sis->flags & SWP_WRITEOK))
917 continue;
918
919 if (!bdev) {
920 if (bdev_p)
921 *bdev_p = bdgrab(sis->bdev);
922
923 spin_unlock(&swap_lock);
924 return type;
925 }
926 if (bdev == sis->bdev) {
927 struct swap_extent *se = &sis->first_swap_extent;
928
929 if (se->start_block == offset) {
930 if (bdev_p)
931 *bdev_p = bdgrab(sis->bdev);
932
933 spin_unlock(&swap_lock);
934 bdput(bdev);
935 return type;
936 }
937 }
938 }
939 spin_unlock(&swap_lock);
940 if (bdev)
941 bdput(bdev);
942
943 return -ENODEV;
944 }
945
946 /*
947 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
948 * corresponding to given index in swap_info (swap type).
949 */
950 sector_t swapdev_block(int type, pgoff_t offset)
951 {
952 struct block_device *bdev;
953
954 if ((unsigned int)type >= nr_swapfiles)
955 return 0;
956 if (!(swap_info[type]->flags & SWP_WRITEOK))
957 return 0;
958 return map_swap_entry(swp_entry(type, offset), &bdev);
959 }
960
961 /*
962 * Return either the total number of swap pages of given type, or the number
963 * of free pages of that type (depending on @free)
964 *
965 * This is needed for software suspend
966 */
967 unsigned int count_swap_pages(int type, int free)
968 {
969 unsigned int n = 0;
970
971 spin_lock(&swap_lock);
972 if ((unsigned int)type < nr_swapfiles) {
973 struct swap_info_struct *sis = swap_info[type];
974
975 spin_lock(&sis->lock);
976 if (sis->flags & SWP_WRITEOK) {
977 n = sis->pages;
978 if (free)
979 n -= sis->inuse_pages;
980 }
981 spin_unlock(&sis->lock);
982 }
983 spin_unlock(&swap_lock);
984 return n;
985 }
986 #endif /* CONFIG_HIBERNATION */
987
988 /*
989 * No need to decide whether this PTE shares the swap entry with others,
990 * just let do_wp_page work it out if a write is requested later - to
991 * force COW, vm_page_prot omits write permission from any private vma.
992 */
993 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
994 unsigned long addr, swp_entry_t entry, struct page *page)
995 {
996 struct page *swapcache;
997 struct mem_cgroup *memcg;
998 spinlock_t *ptl;
999 pte_t *pte;
1000 int ret = 1;
1001
1002 swapcache = page;
1003 page = ksm_might_need_to_copy(page, vma, addr);
1004 if (unlikely(!page))
1005 return -ENOMEM;
1006
1007 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1008 GFP_KERNEL, &memcg)) {
1009 ret = -ENOMEM;
1010 goto out_nolock;
1011 }
1012
1013 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1014 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
1015 mem_cgroup_cancel_charge_swapin(memcg);
1016 ret = 0;
1017 goto out;
1018 }
1019
1020 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1021 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1022 get_page(page);
1023 set_pte_at(vma->vm_mm, addr, pte,
1024 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1025 if (page == swapcache)
1026 page_add_anon_rmap(page, vma, addr);
1027 else /* ksm created a completely new copy */
1028 page_add_new_anon_rmap(page, vma, addr);
1029 mem_cgroup_commit_charge_swapin(page, memcg);
1030 swap_free(entry);
1031 /*
1032 * Move the page to the active list so it is not
1033 * immediately swapped out again after swapon.
1034 */
1035 activate_page(page);
1036 out:
1037 pte_unmap_unlock(pte, ptl);
1038 out_nolock:
1039 if (page != swapcache) {
1040 unlock_page(page);
1041 put_page(page);
1042 }
1043 return ret;
1044 }
1045
1046 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1047 unsigned long addr, unsigned long end,
1048 swp_entry_t entry, struct page *page)
1049 {
1050 pte_t swp_pte = swp_entry_to_pte(entry);
1051 pte_t *pte;
1052 int ret = 0;
1053
1054 /*
1055 * We don't actually need pte lock while scanning for swp_pte: since
1056 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1057 * page table while we're scanning; though it could get zapped, and on
1058 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1059 * of unmatched parts which look like swp_pte, so unuse_pte must
1060 * recheck under pte lock. Scanning without pte lock lets it be
1061 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1062 */
1063 pte = pte_offset_map(pmd, addr);
1064 do {
1065 /*
1066 * swapoff spends a _lot_ of time in this loop!
1067 * Test inline before going to call unuse_pte.
1068 */
1069 if (unlikely(pte_same(*pte, swp_pte))) {
1070 pte_unmap(pte);
1071 ret = unuse_pte(vma, pmd, addr, entry, page);
1072 if (ret)
1073 goto out;
1074 pte = pte_offset_map(pmd, addr);
1075 }
1076 } while (pte++, addr += PAGE_SIZE, addr != end);
1077 pte_unmap(pte - 1);
1078 out:
1079 return ret;
1080 }
1081
1082 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1083 unsigned long addr, unsigned long end,
1084 swp_entry_t entry, struct page *page)
1085 {
1086 pmd_t *pmd;
1087 unsigned long next;
1088 int ret;
1089
1090 pmd = pmd_offset(pud, addr);
1091 do {
1092 next = pmd_addr_end(addr, end);
1093 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1094 continue;
1095 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1096 if (ret)
1097 return ret;
1098 } while (pmd++, addr = next, addr != end);
1099 return 0;
1100 }
1101
1102 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1103 unsigned long addr, unsigned long end,
1104 swp_entry_t entry, struct page *page)
1105 {
1106 pud_t *pud;
1107 unsigned long next;
1108 int ret;
1109
1110 pud = pud_offset(pgd, addr);
1111 do {
1112 next = pud_addr_end(addr, end);
1113 if (pud_none_or_clear_bad(pud))
1114 continue;
1115 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1116 if (ret)
1117 return ret;
1118 } while (pud++, addr = next, addr != end);
1119 return 0;
1120 }
1121
1122 static int unuse_vma(struct vm_area_struct *vma,
1123 swp_entry_t entry, struct page *page)
1124 {
1125 pgd_t *pgd;
1126 unsigned long addr, end, next;
1127 int ret;
1128
1129 if (page_anon_vma(page)) {
1130 addr = page_address_in_vma(page, vma);
1131 if (addr == -EFAULT)
1132 return 0;
1133 else
1134 end = addr + PAGE_SIZE;
1135 } else {
1136 addr = vma->vm_start;
1137 end = vma->vm_end;
1138 }
1139
1140 pgd = pgd_offset(vma->vm_mm, addr);
1141 do {
1142 next = pgd_addr_end(addr, end);
1143 if (pgd_none_or_clear_bad(pgd))
1144 continue;
1145 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1146 if (ret)
1147 return ret;
1148 } while (pgd++, addr = next, addr != end);
1149 return 0;
1150 }
1151
1152 static int unuse_mm(struct mm_struct *mm,
1153 swp_entry_t entry, struct page *page)
1154 {
1155 struct vm_area_struct *vma;
1156 int ret = 0;
1157
1158 if (!down_read_trylock(&mm->mmap_sem)) {
1159 /*
1160 * Activate page so shrink_inactive_list is unlikely to unmap
1161 * its ptes while lock is dropped, so swapoff can make progress.
1162 */
1163 activate_page(page);
1164 unlock_page(page);
1165 down_read(&mm->mmap_sem);
1166 lock_page(page);
1167 }
1168 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1169 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1170 break;
1171 }
1172 up_read(&mm->mmap_sem);
1173 return (ret < 0)? ret: 0;
1174 }
1175
1176 /*
1177 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1178 * from current position to next entry still in use.
1179 * Recycle to start on reaching the end, returning 0 when empty.
1180 */
1181 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1182 unsigned int prev, bool frontswap)
1183 {
1184 unsigned int max = si->max;
1185 unsigned int i = prev;
1186 unsigned char count;
1187
1188 /*
1189 * No need for swap_lock here: we're just looking
1190 * for whether an entry is in use, not modifying it; false
1191 * hits are okay, and sys_swapoff() has already prevented new
1192 * allocations from this area (while holding swap_lock).
1193 */
1194 for (;;) {
1195 if (++i >= max) {
1196 if (!prev) {
1197 i = 0;
1198 break;
1199 }
1200 /*
1201 * No entries in use at top of swap_map,
1202 * loop back to start and recheck there.
1203 */
1204 max = prev + 1;
1205 prev = 0;
1206 i = 1;
1207 }
1208 if (frontswap) {
1209 if (frontswap_test(si, i))
1210 break;
1211 else
1212 continue;
1213 }
1214 count = si->swap_map[i];
1215 if (count && swap_count(count) != SWAP_MAP_BAD)
1216 break;
1217 }
1218 return i;
1219 }
1220
1221 /*
1222 * We completely avoid races by reading each swap page in advance,
1223 * and then search for the process using it. All the necessary
1224 * page table adjustments can then be made atomically.
1225 *
1226 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1227 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1228 */
1229 int try_to_unuse(unsigned int type, bool frontswap,
1230 unsigned long pages_to_unuse)
1231 {
1232 struct swap_info_struct *si = swap_info[type];
1233 struct mm_struct *start_mm;
1234 unsigned char *swap_map;
1235 unsigned char swcount;
1236 struct page *page;
1237 swp_entry_t entry;
1238 unsigned int i = 0;
1239 int retval = 0;
1240
1241 /*
1242 * When searching mms for an entry, a good strategy is to
1243 * start at the first mm we freed the previous entry from
1244 * (though actually we don't notice whether we or coincidence
1245 * freed the entry). Initialize this start_mm with a hold.
1246 *
1247 * A simpler strategy would be to start at the last mm we
1248 * freed the previous entry from; but that would take less
1249 * advantage of mmlist ordering, which clusters forked mms
1250 * together, child after parent. If we race with dup_mmap(), we
1251 * prefer to resolve parent before child, lest we miss entries
1252 * duplicated after we scanned child: using last mm would invert
1253 * that.
1254 */
1255 start_mm = &init_mm;
1256 atomic_inc(&init_mm.mm_users);
1257
1258 /*
1259 * Keep on scanning until all entries have gone. Usually,
1260 * one pass through swap_map is enough, but not necessarily:
1261 * there are races when an instance of an entry might be missed.
1262 */
1263 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1264 if (signal_pending(current)) {
1265 retval = -EINTR;
1266 break;
1267 }
1268
1269 /*
1270 * Get a page for the entry, using the existing swap
1271 * cache page if there is one. Otherwise, get a clean
1272 * page and read the swap into it.
1273 */
1274 swap_map = &si->swap_map[i];
1275 entry = swp_entry(type, i);
1276 page = read_swap_cache_async(entry,
1277 GFP_HIGHUSER_MOVABLE, NULL, 0);
1278 if (!page) {
1279 /*
1280 * Either swap_duplicate() failed because entry
1281 * has been freed independently, and will not be
1282 * reused since sys_swapoff() already disabled
1283 * allocation from here, or alloc_page() failed.
1284 */
1285 if (!*swap_map)
1286 continue;
1287 retval = -ENOMEM;
1288 break;
1289 }
1290
1291 /*
1292 * Don't hold on to start_mm if it looks like exiting.
1293 */
1294 if (atomic_read(&start_mm->mm_users) == 1) {
1295 mmput(start_mm);
1296 start_mm = &init_mm;
1297 atomic_inc(&init_mm.mm_users);
1298 }
1299
1300 /*
1301 * Wait for and lock page. When do_swap_page races with
1302 * try_to_unuse, do_swap_page can handle the fault much
1303 * faster than try_to_unuse can locate the entry. This
1304 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1305 * defer to do_swap_page in such a case - in some tests,
1306 * do_swap_page and try_to_unuse repeatedly compete.
1307 */
1308 wait_on_page_locked(page);
1309 wait_on_page_writeback(page);
1310 lock_page(page);
1311 wait_on_page_writeback(page);
1312
1313 /*
1314 * Remove all references to entry.
1315 */
1316 swcount = *swap_map;
1317 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1318 retval = shmem_unuse(entry, page);
1319 /* page has already been unlocked and released */
1320 if (retval < 0)
1321 break;
1322 continue;
1323 }
1324 if (swap_count(swcount) && start_mm != &init_mm)
1325 retval = unuse_mm(start_mm, entry, page);
1326
1327 if (swap_count(*swap_map)) {
1328 int set_start_mm = (*swap_map >= swcount);
1329 struct list_head *p = &start_mm->mmlist;
1330 struct mm_struct *new_start_mm = start_mm;
1331 struct mm_struct *prev_mm = start_mm;
1332 struct mm_struct *mm;
1333
1334 atomic_inc(&new_start_mm->mm_users);
1335 atomic_inc(&prev_mm->mm_users);
1336 spin_lock(&mmlist_lock);
1337 while (swap_count(*swap_map) && !retval &&
1338 (p = p->next) != &start_mm->mmlist) {
1339 mm = list_entry(p, struct mm_struct, mmlist);
1340 if (!atomic_inc_not_zero(&mm->mm_users))
1341 continue;
1342 spin_unlock(&mmlist_lock);
1343 mmput(prev_mm);
1344 prev_mm = mm;
1345
1346 cond_resched();
1347
1348 swcount = *swap_map;
1349 if (!swap_count(swcount)) /* any usage ? */
1350 ;
1351 else if (mm == &init_mm)
1352 set_start_mm = 1;
1353 else
1354 retval = unuse_mm(mm, entry, page);
1355
1356 if (set_start_mm && *swap_map < swcount) {
1357 mmput(new_start_mm);
1358 atomic_inc(&mm->mm_users);
1359 new_start_mm = mm;
1360 set_start_mm = 0;
1361 }
1362 spin_lock(&mmlist_lock);
1363 }
1364 spin_unlock(&mmlist_lock);
1365 mmput(prev_mm);
1366 mmput(start_mm);
1367 start_mm = new_start_mm;
1368 }
1369 if (retval) {
1370 unlock_page(page);
1371 page_cache_release(page);
1372 break;
1373 }
1374
1375 /*
1376 * If a reference remains (rare), we would like to leave
1377 * the page in the swap cache; but try_to_unmap could
1378 * then re-duplicate the entry once we drop page lock,
1379 * so we might loop indefinitely; also, that page could
1380 * not be swapped out to other storage meanwhile. So:
1381 * delete from cache even if there's another reference,
1382 * after ensuring that the data has been saved to disk -
1383 * since if the reference remains (rarer), it will be
1384 * read from disk into another page. Splitting into two
1385 * pages would be incorrect if swap supported "shared
1386 * private" pages, but they are handled by tmpfs files.
1387 *
1388 * Given how unuse_vma() targets one particular offset
1389 * in an anon_vma, once the anon_vma has been determined,
1390 * this splitting happens to be just what is needed to
1391 * handle where KSM pages have been swapped out: re-reading
1392 * is unnecessarily slow, but we can fix that later on.
1393 */
1394 if (swap_count(*swap_map) &&
1395 PageDirty(page) && PageSwapCache(page)) {
1396 struct writeback_control wbc = {
1397 .sync_mode = WB_SYNC_NONE,
1398 };
1399
1400 swap_writepage(page, &wbc);
1401 lock_page(page);
1402 wait_on_page_writeback(page);
1403 }
1404
1405 /*
1406 * It is conceivable that a racing task removed this page from
1407 * swap cache just before we acquired the page lock at the top,
1408 * or while we dropped it in unuse_mm(). The page might even
1409 * be back in swap cache on another swap area: that we must not
1410 * delete, since it may not have been written out to swap yet.
1411 */
1412 if (PageSwapCache(page) &&
1413 likely(page_private(page) == entry.val))
1414 delete_from_swap_cache(page);
1415
1416 /*
1417 * So we could skip searching mms once swap count went
1418 * to 1, we did not mark any present ptes as dirty: must
1419 * mark page dirty so shrink_page_list will preserve it.
1420 */
1421 SetPageDirty(page);
1422 unlock_page(page);
1423 page_cache_release(page);
1424
1425 /*
1426 * Make sure that we aren't completely killing
1427 * interactive performance.
1428 */
1429 cond_resched();
1430 if (frontswap && pages_to_unuse > 0) {
1431 if (!--pages_to_unuse)
1432 break;
1433 }
1434 }
1435
1436 mmput(start_mm);
1437 return retval;
1438 }
1439
1440 /*
1441 * After a successful try_to_unuse, if no swap is now in use, we know
1442 * we can empty the mmlist. swap_lock must be held on entry and exit.
1443 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1444 * added to the mmlist just after page_duplicate - before would be racy.
1445 */
1446 static void drain_mmlist(void)
1447 {
1448 struct list_head *p, *next;
1449 unsigned int type;
1450
1451 for (type = 0; type < nr_swapfiles; type++)
1452 if (swap_info[type]->inuse_pages)
1453 return;
1454 spin_lock(&mmlist_lock);
1455 list_for_each_safe(p, next, &init_mm.mmlist)
1456 list_del_init(p);
1457 spin_unlock(&mmlist_lock);
1458 }
1459
1460 /*
1461 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1462 * corresponds to page offset for the specified swap entry.
1463 * Note that the type of this function is sector_t, but it returns page offset
1464 * into the bdev, not sector offset.
1465 */
1466 sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1467 {
1468 struct swap_info_struct *sis;
1469 struct swap_extent *start_se;
1470 struct swap_extent *se;
1471 pgoff_t offset;
1472
1473 sis = swap_info[swp_type(entry)];
1474 *bdev = sis->bdev;
1475
1476 offset = swp_offset(entry);
1477 start_se = sis->curr_swap_extent;
1478 se = start_se;
1479
1480 for ( ; ; ) {
1481 struct list_head *lh;
1482
1483 if (se->start_page <= offset &&
1484 offset < (se->start_page + se->nr_pages)) {
1485 return se->start_block + (offset - se->start_page);
1486 }
1487 lh = se->list.next;
1488 se = list_entry(lh, struct swap_extent, list);
1489 sis->curr_swap_extent = se;
1490 BUG_ON(se == start_se); /* It *must* be present */
1491 }
1492 }
1493 EXPORT_SYMBOL_GPL(map_swap_entry);
1494
1495 /*
1496 * Returns the page offset into bdev for the specified page's swap entry.
1497 */
1498 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1499 {
1500 swp_entry_t entry;
1501 entry.val = page_private(page);
1502 return map_swap_entry(entry, bdev);
1503 }
1504
1505 /*
1506 * Free all of a swapdev's extent information
1507 */
1508 static void destroy_swap_extents(struct swap_info_struct *sis)
1509 {
1510 while (!list_empty(&sis->first_swap_extent.list)) {
1511 struct swap_extent *se;
1512
1513 se = list_entry(sis->first_swap_extent.list.next,
1514 struct swap_extent, list);
1515 list_del(&se->list);
1516 kfree(se);
1517 }
1518
1519 if (sis->flags & SWP_FILE) {
1520 struct file *swap_file = sis->swap_file;
1521 struct address_space *mapping = swap_file->f_mapping;
1522
1523 sis->flags &= ~SWP_FILE;
1524 mapping->a_ops->swap_deactivate(swap_file);
1525 }
1526 }
1527
1528 /*
1529 * Add a block range (and the corresponding page range) into this swapdev's
1530 * extent list. The extent list is kept sorted in page order.
1531 *
1532 * This function rather assumes that it is called in ascending page order.
1533 */
1534 int
1535 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1536 unsigned long nr_pages, sector_t start_block)
1537 {
1538 struct swap_extent *se;
1539 struct swap_extent *new_se;
1540 struct list_head *lh;
1541
1542 if (start_page == 0) {
1543 se = &sis->first_swap_extent;
1544 sis->curr_swap_extent = se;
1545 se->start_page = 0;
1546 se->nr_pages = nr_pages;
1547 se->start_block = start_block;
1548 return 1;
1549 } else {
1550 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1551 se = list_entry(lh, struct swap_extent, list);
1552 BUG_ON(se->start_page + se->nr_pages != start_page);
1553 if (se->start_block + se->nr_pages == start_block) {
1554 /* Merge it */
1555 se->nr_pages += nr_pages;
1556 return 0;
1557 }
1558 }
1559
1560 /*
1561 * No merge. Insert a new extent, preserving ordering.
1562 */
1563 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1564 if (new_se == NULL)
1565 return -ENOMEM;
1566 new_se->start_page = start_page;
1567 new_se->nr_pages = nr_pages;
1568 new_se->start_block = start_block;
1569
1570 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1571 return 1;
1572 }
1573
1574 /*
1575 * A `swap extent' is a simple thing which maps a contiguous range of pages
1576 * onto a contiguous range of disk blocks. An ordered list of swap extents
1577 * is built at swapon time and is then used at swap_writepage/swap_readpage
1578 * time for locating where on disk a page belongs.
1579 *
1580 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1581 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1582 * swap files identically.
1583 *
1584 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1585 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1586 * swapfiles are handled *identically* after swapon time.
1587 *
1588 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1589 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1590 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1591 * requirements, they are simply tossed out - we will never use those blocks
1592 * for swapping.
1593 *
1594 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1595 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1596 * which will scribble on the fs.
1597 *
1598 * The amount of disk space which a single swap extent represents varies.
1599 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1600 * extents in the list. To avoid much list walking, we cache the previous
1601 * search location in `curr_swap_extent', and start new searches from there.
1602 * This is extremely effective. The average number of iterations in
1603 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1604 */
1605 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1606 {
1607 struct file *swap_file = sis->swap_file;
1608 struct address_space *mapping = swap_file->f_mapping;
1609 struct inode *inode = mapping->host;
1610 int ret;
1611
1612 if (S_ISBLK(inode->i_mode)) {
1613 ret = add_swap_extent(sis, 0, sis->max, 0);
1614 *span = sis->pages;
1615 return ret;
1616 }
1617
1618 if (mapping->a_ops->swap_activate) {
1619 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1620 if (!ret) {
1621 sis->flags |= SWP_FILE;
1622 ret = add_swap_extent(sis, 0, sis->max, 0);
1623 *span = sis->pages;
1624 }
1625 return ret;
1626 }
1627
1628 return generic_swapfile_activate(sis, swap_file, span);
1629 }
1630
1631 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1632 unsigned char *swap_map)
1633 {
1634 int i, prev;
1635
1636 if (prio >= 0)
1637 p->prio = prio;
1638 else
1639 p->prio = --least_priority;
1640 p->swap_map = swap_map;
1641 p->flags |= SWP_WRITEOK;
1642 atomic_long_add(p->pages, &nr_swap_pages);
1643 total_swap_pages += p->pages;
1644
1645 /* insert swap space into swap_list: */
1646 prev = -1;
1647 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1648 if (p->prio >= swap_info[i]->prio)
1649 break;
1650 prev = i;
1651 }
1652 p->next = i;
1653 if (prev < 0)
1654 swap_list.head = swap_list.next = p->type;
1655 else
1656 swap_info[prev]->next = p->type;
1657 }
1658
1659 static void enable_swap_info(struct swap_info_struct *p, int prio,
1660 unsigned char *swap_map,
1661 unsigned long *frontswap_map)
1662 {
1663 frontswap_init(p->type, frontswap_map);
1664 spin_lock(&swap_lock);
1665 spin_lock(&p->lock);
1666 _enable_swap_info(p, prio, swap_map);
1667 spin_unlock(&p->lock);
1668 spin_unlock(&swap_lock);
1669 }
1670
1671 static void reinsert_swap_info(struct swap_info_struct *p)
1672 {
1673 spin_lock(&swap_lock);
1674 spin_lock(&p->lock);
1675 _enable_swap_info(p, p->prio, p->swap_map);
1676 spin_unlock(&p->lock);
1677 spin_unlock(&swap_lock);
1678 }
1679
1680 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1681 {
1682 struct swap_info_struct *p = NULL;
1683 unsigned char *swap_map;
1684 unsigned long *frontswap_map;
1685 struct file *swap_file, *victim;
1686 struct address_space *mapping;
1687 struct inode *inode;
1688 struct filename *pathname;
1689 int i, type, prev;
1690 int err;
1691
1692 if (!capable(CAP_SYS_ADMIN))
1693 return -EPERM;
1694
1695 #ifdef CONFIG_TOI
1696 // FIXME: Turn it off due to current->mm may be NULL in kernel space
1697 // by calling sys_swapoff(swapfilename) in disable_swapfile() @ tuxonice_swap.c
1698 pr_warn("[HIB/SWAP] [%s] file(%s) current(%p/%d/%s) current->mm(%p)\n", __func__, specialfile, current, current->pid, current->comm, current->mm);
1699 WARN_ON(!current->mm);
1700 #else
1701 BUG_ON(!current->mm);
1702 #endif
1703
1704 pathname = getname(specialfile);
1705 if (IS_ERR(pathname))
1706 return PTR_ERR(pathname);
1707
1708 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1709 err = PTR_ERR(victim);
1710 if (IS_ERR(victim))
1711 goto out;
1712
1713 mapping = victim->f_mapping;
1714 prev = -1;
1715 spin_lock(&swap_lock);
1716 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1717 p = swap_info[type];
1718 if (p->flags & SWP_WRITEOK) {
1719 if (p->swap_file->f_mapping == mapping)
1720 break;
1721 }
1722 prev = type;
1723 }
1724 if (type < 0) {
1725 err = -EINVAL;
1726 spin_unlock(&swap_lock);
1727 goto out_dput;
1728 }
1729 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1730 vm_unacct_memory(p->pages);
1731 else {
1732 err = -ENOMEM;
1733 spin_unlock(&swap_lock);
1734 goto out_dput;
1735 }
1736 if (prev < 0)
1737 swap_list.head = p->next;
1738 else
1739 swap_info[prev]->next = p->next;
1740 if (type == swap_list.next) {
1741 /* just pick something that's safe... */
1742 swap_list.next = swap_list.head;
1743 }
1744 spin_lock(&p->lock);
1745 if (p->prio < 0) {
1746 for (i = p->next; i >= 0; i = swap_info[i]->next)
1747 swap_info[i]->prio = p->prio--;
1748 least_priority++;
1749 }
1750 atomic_long_sub(p->pages, &nr_swap_pages);
1751 total_swap_pages -= p->pages;
1752 p->flags &= ~SWP_WRITEOK;
1753 spin_unlock(&p->lock);
1754 spin_unlock(&swap_lock);
1755
1756 set_current_oom_origin();
1757 err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1758 clear_current_oom_origin();
1759
1760 if (err) {
1761 /* re-insert swap space back into swap_list */
1762 reinsert_swap_info(p);
1763 goto out_dput;
1764 }
1765
1766 destroy_swap_extents(p);
1767 if (p->flags & SWP_CONTINUED)
1768 free_swap_count_continuations(p);
1769
1770 mutex_lock(&swapon_mutex);
1771 spin_lock(&swap_lock);
1772 spin_lock(&p->lock);
1773 drain_mmlist();
1774
1775 /* wait for anyone still in scan_swap_map */
1776 p->highest_bit = 0; /* cuts scans short */
1777 while (p->flags >= SWP_SCANNING) {
1778 spin_unlock(&p->lock);
1779 spin_unlock(&swap_lock);
1780 schedule_timeout_uninterruptible(1);
1781 spin_lock(&swap_lock);
1782 spin_lock(&p->lock);
1783 }
1784
1785 swap_file = p->swap_file;
1786 p->swap_file = NULL;
1787 p->max = 0;
1788 swap_map = p->swap_map;
1789 p->swap_map = NULL;
1790 p->flags = 0;
1791 frontswap_map = frontswap_map_get(p);
1792 frontswap_map_set(p, NULL);
1793 spin_unlock(&p->lock);
1794 spin_unlock(&swap_lock);
1795 frontswap_invalidate_area(type);
1796 mutex_unlock(&swapon_mutex);
1797 vfree(swap_map);
1798 vfree(frontswap_map);
1799 /* Destroy swap account informatin */
1800 swap_cgroup_swapoff(type);
1801
1802 inode = mapping->host;
1803 if (S_ISBLK(inode->i_mode)) {
1804 struct block_device *bdev = I_BDEV(inode);
1805 set_blocksize(bdev, p->old_block_size);
1806 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1807 } else {
1808 mutex_lock(&inode->i_mutex);
1809 inode->i_flags &= ~S_SWAPFILE;
1810 mutex_unlock(&inode->i_mutex);
1811 }
1812 filp_close(swap_file, NULL);
1813 err = 0;
1814 atomic_inc(&proc_poll_event);
1815 wake_up_interruptible(&proc_poll_wait);
1816
1817 out_dput:
1818 filp_close(victim, NULL);
1819 out:
1820 putname(pathname);
1821 return err;
1822 }
1823 EXPORT_SYMBOL_GPL(sys_swapoff);
1824
1825 #ifdef CONFIG_PROC_FS
1826 static unsigned swaps_poll(struct file *file, poll_table *wait)
1827 {
1828 struct seq_file *seq = file->private_data;
1829
1830 poll_wait(file, &proc_poll_wait, wait);
1831
1832 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1833 seq->poll_event = atomic_read(&proc_poll_event);
1834 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1835 }
1836
1837 return POLLIN | POLLRDNORM;
1838 }
1839
1840 /* iterator */
1841 static void *swap_start(struct seq_file *swap, loff_t *pos)
1842 {
1843 struct swap_info_struct *si;
1844 int type;
1845 loff_t l = *pos;
1846
1847 mutex_lock(&swapon_mutex);
1848
1849 if (!l)
1850 return SEQ_START_TOKEN;
1851
1852 for (type = 0; type < nr_swapfiles; type++) {
1853 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1854 si = swap_info[type];
1855 if (!(si->flags & SWP_USED) || !si->swap_map)
1856 continue;
1857 if (!--l)
1858 return si;
1859 }
1860
1861 return NULL;
1862 }
1863
1864 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1865 {
1866 struct swap_info_struct *si = v;
1867 int type;
1868
1869 if (v == SEQ_START_TOKEN)
1870 type = 0;
1871 else
1872 type = si->type + 1;
1873
1874 for (; type < nr_swapfiles; type++) {
1875 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1876 si = swap_info[type];
1877 if (!(si->flags & SWP_USED) || !si->swap_map)
1878 continue;
1879 ++*pos;
1880 return si;
1881 }
1882
1883 return NULL;
1884 }
1885
1886 static void swap_stop(struct seq_file *swap, void *v)
1887 {
1888 mutex_unlock(&swapon_mutex);
1889 }
1890
1891 static int swap_show(struct seq_file *swap, void *v)
1892 {
1893 struct swap_info_struct *si = v;
1894 struct file *file;
1895 int len;
1896
1897 if (si == SEQ_START_TOKEN) {
1898 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1899 return 0;
1900 }
1901
1902 file = si->swap_file;
1903 len = seq_path(swap, &file->f_path, " \t\n\\");
1904 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1905 len < 40 ? 40 - len : 1, " ",
1906 S_ISBLK(file_inode(file)->i_mode) ?
1907 "partition" : "file\t",
1908 si->pages << (PAGE_SHIFT - 10),
1909 si->inuse_pages << (PAGE_SHIFT - 10),
1910 si->prio);
1911 return 0;
1912 }
1913
1914 static const struct seq_operations swaps_op = {
1915 .start = swap_start,
1916 .next = swap_next,
1917 .stop = swap_stop,
1918 .show = swap_show
1919 };
1920
1921 static int swaps_open(struct inode *inode, struct file *file)
1922 {
1923 struct seq_file *seq;
1924 int ret;
1925
1926 ret = seq_open(file, &swaps_op);
1927 if (ret)
1928 return ret;
1929
1930 seq = file->private_data;
1931 seq->poll_event = atomic_read(&proc_poll_event);
1932 return 0;
1933 }
1934
1935 static const struct file_operations proc_swaps_operations = {
1936 .open = swaps_open,
1937 .read = seq_read,
1938 .llseek = seq_lseek,
1939 .release = seq_release,
1940 .poll = swaps_poll,
1941 };
1942
1943 static int __init procswaps_init(void)
1944 {
1945 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1946 return 0;
1947 }
1948 __initcall(procswaps_init);
1949 #endif /* CONFIG_PROC_FS */
1950
1951 #ifdef MAX_SWAPFILES_CHECK
1952 static int __init max_swapfiles_check(void)
1953 {
1954 MAX_SWAPFILES_CHECK();
1955 return 0;
1956 }
1957 late_initcall(max_swapfiles_check);
1958 #endif
1959
1960 static struct swap_info_struct *alloc_swap_info(void)
1961 {
1962 struct swap_info_struct *p;
1963 unsigned int type;
1964
1965 p = kzalloc(sizeof(*p), GFP_KERNEL);
1966 if (!p)
1967 return ERR_PTR(-ENOMEM);
1968
1969 spin_lock(&swap_lock);
1970 for (type = 0; type < nr_swapfiles; type++) {
1971 if (!(swap_info[type]->flags & SWP_USED))
1972 break;
1973 }
1974 if (type >= MAX_SWAPFILES) {
1975 spin_unlock(&swap_lock);
1976 kfree(p);
1977 return ERR_PTR(-EPERM);
1978 }
1979 if (type >= nr_swapfiles) {
1980 p->type = type;
1981 swap_info[type] = p;
1982 /*
1983 * Write swap_info[type] before nr_swapfiles, in case a
1984 * racing procfs swap_start() or swap_next() is reading them.
1985 * (We never shrink nr_swapfiles, we never free this entry.)
1986 */
1987 smp_wmb();
1988 nr_swapfiles++;
1989 } else {
1990 kfree(p);
1991 p = swap_info[type];
1992 /*
1993 * Do not memset this entry: a racing procfs swap_next()
1994 * would be relying on p->type to remain valid.
1995 */
1996 }
1997 INIT_LIST_HEAD(&p->first_swap_extent.list);
1998 p->flags = SWP_USED;
1999 p->next = -1;
2000 spin_unlock(&swap_lock);
2001 spin_lock_init(&p->lock);
2002
2003 return p;
2004 }
2005
2006 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2007 {
2008 int error;
2009
2010 if (S_ISBLK(inode->i_mode)) {
2011 p->bdev = bdgrab(I_BDEV(inode));
2012 error = blkdev_get(p->bdev,
2013 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2014 sys_swapon);
2015 if (error < 0) {
2016 p->bdev = NULL;
2017 return -EINVAL;
2018 }
2019 p->old_block_size = block_size(p->bdev);
2020 error = set_blocksize(p->bdev, PAGE_SIZE);
2021 if (error < 0)
2022 return error;
2023 p->flags |= SWP_BLKDEV;
2024 } else if (S_ISREG(inode->i_mode)) {
2025 p->bdev = inode->i_sb->s_bdev;
2026 mutex_lock(&inode->i_mutex);
2027 if (IS_SWAPFILE(inode))
2028 return -EBUSY;
2029 } else
2030 return -EINVAL;
2031
2032 return 0;
2033 }
2034
2035 static unsigned long read_swap_header(struct swap_info_struct *p,
2036 union swap_header *swap_header,
2037 struct inode *inode)
2038 {
2039 int i;
2040 unsigned long maxpages;
2041 unsigned long swapfilepages;
2042
2043 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2044 printk(KERN_ERR "Unable to find swap-space signature\n");
2045 return 0;
2046 }
2047
2048 /* swap partition endianess hack... */
2049 if (swab32(swap_header->info.version) == 1) {
2050 swab32s(&swap_header->info.version);
2051 swab32s(&swap_header->info.last_page);
2052 swab32s(&swap_header->info.nr_badpages);
2053 for (i = 0; i < swap_header->info.nr_badpages; i++)
2054 swab32s(&swap_header->info.badpages[i]);
2055 }
2056 /* Check the swap header's sub-version */
2057 if (swap_header->info.version != 1) {
2058 printk(KERN_WARNING
2059 "Unable to handle swap header version %d\n",
2060 swap_header->info.version);
2061 return 0;
2062 }
2063
2064 p->lowest_bit = 1;
2065 p->cluster_next = 1;
2066 p->cluster_nr = 0;
2067
2068 /*
2069 * Find out how many pages are allowed for a single swap
2070 * device. There are two limiting factors: 1) the number
2071 * of bits for the swap offset in the swp_entry_t type, and
2072 * 2) the number of bits in the swap pte as defined by the
2073 * different architectures. In order to find the
2074 * largest possible bit mask, a swap entry with swap type 0
2075 * and swap offset ~0UL is created, encoded to a swap pte,
2076 * decoded to a swp_entry_t again, and finally the swap
2077 * offset is extracted. This will mask all the bits from
2078 * the initial ~0UL mask that can't be encoded in either
2079 * the swp_entry_t or the architecture definition of a
2080 * swap pte.
2081 */
2082 maxpages = swp_offset(pte_to_swp_entry(
2083 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2084 if (maxpages > swap_header->info.last_page) {
2085 maxpages = swap_header->info.last_page + 1;
2086 /* p->max is an unsigned int: don't overflow it */
2087 if ((unsigned int)maxpages == 0)
2088 maxpages = UINT_MAX;
2089 }
2090 p->highest_bit = maxpages - 1;
2091
2092 if (!maxpages)
2093 return 0;
2094 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2095 if (swapfilepages && maxpages > swapfilepages) {
2096 printk(KERN_WARNING
2097 "Swap area shorter than signature indicates\n");
2098 return 0;
2099 }
2100 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2101 return 0;
2102 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2103 return 0;
2104
2105 return maxpages;
2106 }
2107
2108 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2109 union swap_header *swap_header,
2110 unsigned char *swap_map,
2111 unsigned long maxpages,
2112 sector_t *span)
2113 {
2114 int i;
2115 unsigned int nr_good_pages;
2116 int nr_extents;
2117
2118 nr_good_pages = maxpages - 1; /* omit header page */
2119
2120 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2121 unsigned int page_nr = swap_header->info.badpages[i];
2122 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2123 return -EINVAL;
2124 if (page_nr < maxpages) {
2125 swap_map[page_nr] = SWAP_MAP_BAD;
2126 nr_good_pages--;
2127 }
2128 }
2129
2130 if (nr_good_pages) {
2131 swap_map[0] = SWAP_MAP_BAD;
2132 p->max = maxpages;
2133 p->pages = nr_good_pages;
2134 nr_extents = setup_swap_extents(p, span);
2135 if (nr_extents < 0)
2136 return nr_extents;
2137 nr_good_pages = p->pages;
2138 }
2139 if (!nr_good_pages) {
2140 printk(KERN_WARNING "Empty swap-file\n");
2141 return -EINVAL;
2142 }
2143
2144 return nr_extents;
2145 }
2146
2147 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2148 {
2149 struct swap_info_struct *p;
2150 struct filename *name;
2151 struct file *swap_file = NULL;
2152 struct address_space *mapping;
2153 int i;
2154 int prio;
2155 int error;
2156 union swap_header *swap_header;
2157 int nr_extents;
2158 sector_t span;
2159 unsigned long maxpages;
2160 unsigned char *swap_map = NULL;
2161 unsigned long *frontswap_map = NULL;
2162 struct page *page = NULL;
2163 struct inode *inode = NULL;
2164
2165 if (swap_flags & ~SWAP_FLAGS_VALID)
2166 return -EINVAL;
2167
2168 if (!capable(CAP_SYS_ADMIN))
2169 return -EPERM;
2170
2171 p = alloc_swap_info();
2172 if (IS_ERR(p))
2173 return PTR_ERR(p);
2174
2175 name = getname(specialfile);
2176 if (IS_ERR(name)) {
2177 error = PTR_ERR(name);
2178 name = NULL;
2179 goto bad_swap;
2180 }
2181 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2182 if (IS_ERR(swap_file)) {
2183 error = PTR_ERR(swap_file);
2184 swap_file = NULL;
2185 goto bad_swap;
2186 }
2187
2188 p->swap_file = swap_file;
2189 mapping = swap_file->f_mapping;
2190
2191 for (i = 0; i < nr_swapfiles; i++) {
2192 struct swap_info_struct *q = swap_info[i];
2193
2194 if (q == p || !q->swap_file)
2195 continue;
2196 if (mapping == q->swap_file->f_mapping) {
2197 error = -EBUSY;
2198 goto bad_swap;
2199 }
2200 }
2201
2202 inode = mapping->host;
2203 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2204 error = claim_swapfile(p, inode);
2205 if (unlikely(error))
2206 goto bad_swap;
2207
2208 /*
2209 * Read the swap header.
2210 */
2211 if (!mapping->a_ops->readpage) {
2212 error = -EINVAL;
2213 goto bad_swap;
2214 }
2215 page = read_mapping_page(mapping, 0, swap_file);
2216 if (IS_ERR(page)) {
2217 error = PTR_ERR(page);
2218 goto bad_swap;
2219 }
2220 swap_header = kmap(page);
2221
2222 maxpages = read_swap_header(p, swap_header, inode);
2223 if (unlikely(!maxpages)) {
2224 error = -EINVAL;
2225 goto bad_swap;
2226 }
2227
2228 /* OK, set up the swap map and apply the bad block list */
2229 swap_map = vzalloc(maxpages);
2230 if (!swap_map) {
2231 error = -ENOMEM;
2232 goto bad_swap;
2233 }
2234
2235 error = swap_cgroup_swapon(p->type, maxpages);
2236 if (error)
2237 goto bad_swap;
2238
2239 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2240 maxpages, &span);
2241 if (unlikely(nr_extents < 0)) {
2242 error = nr_extents;
2243 goto bad_swap;
2244 }
2245 /* frontswap enabled? set up bit-per-page map for frontswap */
2246 if (frontswap_enabled)
2247 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2248
2249 if (p->bdev) {
2250 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2251 p->flags |= SWP_SOLIDSTATE;
2252 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2253 }
2254 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
2255 p->flags |= SWP_DISCARDABLE;
2256 }
2257
2258 mutex_lock(&swapon_mutex);
2259 prio = -1;
2260 if (swap_flags & SWAP_FLAG_PREFER)
2261 prio =
2262 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2263 enable_swap_info(p, prio, swap_map, frontswap_map);
2264
2265 printk(KERN_INFO "Adding %uk swap on %s. "
2266 "Priority:%d extents:%d across:%lluk %s%s%s\n",
2267 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2268 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2269 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2270 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2271 (frontswap_map) ? "FS" : "");
2272
2273 mutex_unlock(&swapon_mutex);
2274 atomic_inc(&proc_poll_event);
2275 wake_up_interruptible(&proc_poll_wait);
2276
2277 if (S_ISREG(inode->i_mode))
2278 inode->i_flags |= S_SWAPFILE;
2279 error = 0;
2280 goto out;
2281 bad_swap:
2282 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2283 set_blocksize(p->bdev, p->old_block_size);
2284 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2285 }
2286 destroy_swap_extents(p);
2287 swap_cgroup_swapoff(p->type);
2288 spin_lock(&swap_lock);
2289 p->swap_file = NULL;
2290 p->flags = 0;
2291 spin_unlock(&swap_lock);
2292 vfree(swap_map);
2293 if (swap_file) {
2294 if (inode && S_ISREG(inode->i_mode)) {
2295 mutex_unlock(&inode->i_mutex);
2296 inode = NULL;
2297 }
2298 filp_close(swap_file, NULL);
2299 }
2300 out:
2301 if (page && !IS_ERR(page)) {
2302 kunmap(page);
2303 page_cache_release(page);
2304 }
2305 if (name)
2306 putname(name);
2307 if (inode && S_ISREG(inode->i_mode))
2308 mutex_unlock(&inode->i_mutex);
2309 return error;
2310 }
2311 EXPORT_SYMBOL_GPL(sys_swapon);
2312
2313 void si_swapinfo(struct sysinfo *val)
2314 {
2315 unsigned int type;
2316 unsigned long nr_to_be_unused = 0;
2317
2318 spin_lock(&swap_lock);
2319 for (type = 0; type < nr_swapfiles; type++) {
2320 struct swap_info_struct *si = swap_info[type];
2321
2322 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2323 nr_to_be_unused += si->inuse_pages;
2324 }
2325 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2326 val->totalswap = total_swap_pages + nr_to_be_unused;
2327 spin_unlock(&swap_lock);
2328 }
2329 EXPORT_SYMBOL_GPL(si_swapinfo);
2330
2331 /*
2332 * Verify that a swap entry is valid and increment its swap map count.
2333 *
2334 * Returns error code in following case.
2335 * - success -> 0
2336 * - swp_entry is invalid -> EINVAL
2337 * - swp_entry is migration entry -> EINVAL
2338 * - swap-cache reference is requested but there is already one. -> EEXIST
2339 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2340 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2341 */
2342 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2343 {
2344 struct swap_info_struct *p;
2345 unsigned long offset, type;
2346 unsigned char count;
2347 unsigned char has_cache;
2348 int err = -EINVAL;
2349
2350 if (non_swap_entry(entry))
2351 goto out;
2352
2353 type = swp_type(entry);
2354 if (type >= nr_swapfiles)
2355 goto bad_file;
2356 p = swap_info[type];
2357 offset = swp_offset(entry);
2358
2359 spin_lock(&p->lock);
2360 if (unlikely(offset >= p->max))
2361 goto unlock_out;
2362
2363 count = p->swap_map[offset];
2364 has_cache = count & SWAP_HAS_CACHE;
2365 count &= ~SWAP_HAS_CACHE;
2366 err = 0;
2367
2368 if (usage == SWAP_HAS_CACHE) {
2369
2370 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2371 if (!has_cache && count)
2372 has_cache = SWAP_HAS_CACHE;
2373 else if (has_cache) /* someone else added cache */
2374 err = -EEXIST;
2375 else /* no users remaining */
2376 err = -ENOENT;
2377
2378 } else if (count || has_cache) {
2379
2380 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2381 count += usage;
2382 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2383 err = -EINVAL;
2384 else if (swap_count_continued(p, offset, count))
2385 count = COUNT_CONTINUED;
2386 else
2387 err = -ENOMEM;
2388 } else
2389 err = -ENOENT; /* unused swap entry */
2390
2391 p->swap_map[offset] = count | has_cache;
2392
2393 unlock_out:
2394 spin_unlock(&p->lock);
2395 out:
2396 return err;
2397
2398 bad_file:
2399 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2400 goto out;
2401 }
2402
2403 /*
2404 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2405 * (in which case its reference count is never incremented).
2406 */
2407 void swap_shmem_alloc(swp_entry_t entry)
2408 {
2409 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2410 }
2411
2412 /*
2413 * Increase reference count of swap entry by 1.
2414 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2415 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2416 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2417 * might occur if a page table entry has got corrupted.
2418 */
2419 int swap_duplicate(swp_entry_t entry)
2420 {
2421 int err = 0;
2422
2423 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2424 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2425 return err;
2426 }
2427
2428 /*
2429 * @entry: swap entry for which we allocate swap cache.
2430 *
2431 * Called when allocating swap cache for existing swap entry,
2432 * This can return error codes. Returns 0 at success.
2433 * -EBUSY means there is a swap cache.
2434 * Note: return code is different from swap_duplicate().
2435 */
2436 int swapcache_prepare(swp_entry_t entry)
2437 {
2438 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2439 }
2440
2441 struct swap_info_struct *page_swap_info(struct page *page)
2442 {
2443 swp_entry_t swap = { .val = page_private(page) };
2444 BUG_ON(!PageSwapCache(page));
2445 return swap_info[swp_type(swap)];
2446 }
2447
2448 /*
2449 * out-of-line __page_file_ methods to avoid include hell.
2450 */
2451 struct address_space *__page_file_mapping(struct page *page)
2452 {
2453 VM_BUG_ON(!PageSwapCache(page));
2454 return page_swap_info(page)->swap_file->f_mapping;
2455 }
2456 EXPORT_SYMBOL_GPL(__page_file_mapping);
2457
2458 pgoff_t __page_file_index(struct page *page)
2459 {
2460 swp_entry_t swap = { .val = page_private(page) };
2461 VM_BUG_ON(!PageSwapCache(page));
2462 return swp_offset(swap);
2463 }
2464
2465 EXPORT_SYMBOL_GPL(__page_file_index);
2466
2467 struct swap_info_struct *get_swap_info_struct(unsigned type)
2468 {
2469 return swap_info[type];
2470 }
2471 EXPORT_SYMBOL_GPL(get_swap_info_struct);
2472
2473 /*
2474 * add_swap_count_continuation - called when a swap count is duplicated
2475 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2476 * page of the original vmalloc'ed swap_map, to hold the continuation count
2477 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2478 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2479 *
2480 * These continuation pages are seldom referenced: the common paths all work
2481 * on the original swap_map, only referring to a continuation page when the
2482 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2483 *
2484 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2485 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2486 * can be called after dropping locks.
2487 */
2488 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2489 {
2490 struct swap_info_struct *si;
2491 struct page *head;
2492 struct page *page;
2493 struct page *list_page;
2494 pgoff_t offset;
2495 unsigned char count;
2496
2497 /*
2498 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2499 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2500 */
2501 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2502
2503 si = swap_info_get(entry);
2504 if (!si) {
2505 /*
2506 * An acceptable race has occurred since the failing
2507 * __swap_duplicate(): the swap entry has been freed,
2508 * perhaps even the whole swap_map cleared for swapoff.
2509 */
2510 goto outer;
2511 }
2512
2513 offset = swp_offset(entry);
2514 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2515
2516 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2517 /*
2518 * The higher the swap count, the more likely it is that tasks
2519 * will race to add swap count continuation: we need to avoid
2520 * over-provisioning.
2521 */
2522 goto out;
2523 }
2524
2525 if (!page) {
2526 spin_unlock(&si->lock);
2527 return -ENOMEM;
2528 }
2529
2530 /*
2531 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2532 * no architecture is using highmem pages for kernel pagetables: so it
2533 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2534 */
2535 head = vmalloc_to_page(si->swap_map + offset);
2536 offset &= ~PAGE_MASK;
2537
2538 /*
2539 * Page allocation does not initialize the page's lru field,
2540 * but it does always reset its private field.
2541 */
2542 if (!page_private(head)) {
2543 BUG_ON(count & COUNT_CONTINUED);
2544 INIT_LIST_HEAD(&head->lru);
2545 set_page_private(head, SWP_CONTINUED);
2546 si->flags |= SWP_CONTINUED;
2547 }
2548
2549 list_for_each_entry(list_page, &head->lru, lru) {
2550 unsigned char *map;
2551
2552 /*
2553 * If the previous map said no continuation, but we've found
2554 * a continuation page, free our allocation and use this one.
2555 */
2556 if (!(count & COUNT_CONTINUED))
2557 goto out;
2558
2559 map = kmap_atomic(list_page) + offset;
2560 count = *map;
2561 kunmap_atomic(map);
2562
2563 /*
2564 * If this continuation count now has some space in it,
2565 * free our allocation and use this one.
2566 */
2567 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2568 goto out;
2569 }
2570
2571 list_add_tail(&page->lru, &head->lru);
2572 page = NULL; /* now it's attached, don't free it */
2573 out:
2574 spin_unlock(&si->lock);
2575 outer:
2576 if (page)
2577 __free_page(page);
2578 return 0;
2579 }
2580
2581 /*
2582 * swap_count_continued - when the original swap_map count is incremented
2583 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2584 * into, carry if so, or else fail until a new continuation page is allocated;
2585 * when the original swap_map count is decremented from 0 with continuation,
2586 * borrow from the continuation and report whether it still holds more.
2587 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2588 */
2589 static bool swap_count_continued(struct swap_info_struct *si,
2590 pgoff_t offset, unsigned char count)
2591 {
2592 struct page *head;
2593 struct page *page;
2594 unsigned char *map;
2595
2596 head = vmalloc_to_page(si->swap_map + offset);
2597 if (page_private(head) != SWP_CONTINUED) {
2598 BUG_ON(count & COUNT_CONTINUED);
2599 return false; /* need to add count continuation */
2600 }
2601
2602 offset &= ~PAGE_MASK;
2603 page = list_entry(head->lru.next, struct page, lru);
2604 map = kmap_atomic(page) + offset;
2605
2606 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2607 goto init_map; /* jump over SWAP_CONT_MAX checks */
2608
2609 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2610 /*
2611 * Think of how you add 1 to 999
2612 */
2613 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2614 kunmap_atomic(map);
2615 page = list_entry(page->lru.next, struct page, lru);
2616 BUG_ON(page == head);
2617 map = kmap_atomic(page) + offset;
2618 }
2619 if (*map == SWAP_CONT_MAX) {
2620 kunmap_atomic(map);
2621 page = list_entry(page->lru.next, struct page, lru);
2622 if (page == head)
2623 return false; /* add count continuation */
2624 map = kmap_atomic(page) + offset;
2625 init_map: *map = 0; /* we didn't zero the page */
2626 }
2627 *map += 1;
2628 kunmap_atomic(map);
2629 page = list_entry(page->lru.prev, struct page, lru);
2630 while (page != head) {
2631 map = kmap_atomic(page) + offset;
2632 *map = COUNT_CONTINUED;
2633 kunmap_atomic(map);
2634 page = list_entry(page->lru.prev, struct page, lru);
2635 }
2636 return true; /* incremented */
2637
2638 } else { /* decrementing */
2639 /*
2640 * Think of how you subtract 1 from 1000
2641 */
2642 BUG_ON(count != COUNT_CONTINUED);
2643 while (*map == COUNT_CONTINUED) {
2644 kunmap_atomic(map);
2645 page = list_entry(page->lru.next, struct page, lru);
2646 BUG_ON(page == head);
2647 map = kmap_atomic(page) + offset;
2648 }
2649 BUG_ON(*map == 0);
2650 *map -= 1;
2651 if (*map == 0)
2652 count = 0;
2653 kunmap_atomic(map);
2654 page = list_entry(page->lru.prev, struct page, lru);
2655 while (page != head) {
2656 map = kmap_atomic(page) + offset;
2657 *map = SWAP_CONT_MAX | count;
2658 count = COUNT_CONTINUED;
2659 kunmap_atomic(map);
2660 page = list_entry(page->lru.prev, struct page, lru);
2661 }
2662 return count == COUNT_CONTINUED;
2663 }
2664 }
2665
2666 /*
2667 * free_swap_count_continuations - swapoff free all the continuation pages
2668 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2669 */
2670 static void free_swap_count_continuations(struct swap_info_struct *si)
2671 {
2672 pgoff_t offset;
2673
2674 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2675 struct page *head;
2676 head = vmalloc_to_page(si->swap_map + offset);
2677 if (page_private(head)) {
2678 struct list_head *this, *next;
2679 list_for_each_safe(this, next, &head->lru) {
2680 struct page *page;
2681 page = list_entry(this, struct page, lru);
2682 list_del(this);
2683 __free_page(page);
2684 }
2685 }
2686 }
2687 }