Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / swap_state.c
1 /*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/page_cgroup.h>
21
22 #include <asm/pgtable.h>
23
24 /*
25 * swapper_space is a fiction, retained to simplify the path through
26 * vmscan's shrink_page_list.
27 */
28 static const struct address_space_operations swap_aops = {
29 .writepage = swap_writepage,
30 .set_page_dirty = swap_set_page_dirty,
31 .migratepage = migrate_page,
32 };
33
34 static struct backing_dev_info swap_backing_dev_info = {
35 .name = "swap",
36 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
37 };
38
39 struct address_space swapper_spaces[MAX_SWAPFILES] = {
40 [0 ... MAX_SWAPFILES - 1] = {
41 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
42 .a_ops = &swap_aops,
43 .backing_dev_info = &swap_backing_dev_info,
44 }
45 };
46
47 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
48
49 static struct {
50 unsigned long add_total;
51 unsigned long del_total;
52 unsigned long find_success;
53 unsigned long find_total;
54 } swap_cache_info;
55
56 unsigned long total_swapcache_pages(void)
57 {
58 int i;
59 unsigned long ret = 0;
60
61 for (i = 0; i < MAX_SWAPFILES; i++)
62 ret += swapper_spaces[i].nrpages;
63 return ret;
64 }
65
66 void show_swap_cache_info(void)
67 {
68 printk("%lu pages in swap cache\n", total_swapcache_pages());
69 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
70 swap_cache_info.add_total, swap_cache_info.del_total,
71 swap_cache_info.find_success, swap_cache_info.find_total);
72 printk("Free swap = %ldkB\n",
73 get_nr_swap_pages() << (PAGE_SHIFT - 10));
74 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
75 }
76
77 /*
78 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
79 * but sets SwapCache flag and private instead of mapping and index.
80 */
81 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
82 {
83 int error;
84 struct address_space *address_space;
85
86 VM_BUG_ON(!PageLocked(page));
87 VM_BUG_ON(PageSwapCache(page));
88 VM_BUG_ON(!PageSwapBacked(page));
89
90 page_cache_get(page);
91 SetPageSwapCache(page);
92 set_page_private(page, entry.val);
93
94 address_space = swap_address_space(entry);
95 spin_lock_irq(&address_space->tree_lock);
96 error = radix_tree_insert(&address_space->page_tree,
97 entry.val, page);
98 if (likely(!error)) {
99 address_space->nrpages++;
100 __inc_zone_page_state(page, NR_FILE_PAGES);
101 INC_CACHE_INFO(add_total);
102 }
103 spin_unlock_irq(&address_space->tree_lock);
104
105 if (unlikely(error)) {
106 /*
107 * Only the context which have set SWAP_HAS_CACHE flag
108 * would call add_to_swap_cache().
109 * So add_to_swap_cache() doesn't returns -EEXIST.
110 */
111 VM_BUG_ON(error == -EEXIST);
112 set_page_private(page, 0UL);
113 ClearPageSwapCache(page);
114 page_cache_release(page);
115 }
116
117 return error;
118 }
119
120
121 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
122 {
123 int error;
124
125 error = radix_tree_preload(gfp_mask);
126 if (!error) {
127 error = __add_to_swap_cache(page, entry);
128 radix_tree_preload_end();
129 }
130 return error;
131 }
132
133 /*
134 * This must be called only on pages that have
135 * been verified to be in the swap cache.
136 */
137 void __delete_from_swap_cache(struct page *page)
138 {
139 swp_entry_t entry;
140 struct address_space *address_space;
141
142 VM_BUG_ON(!PageLocked(page));
143 VM_BUG_ON(!PageSwapCache(page));
144 VM_BUG_ON(PageWriteback(page));
145
146 entry.val = page_private(page);
147 address_space = swap_address_space(entry);
148 radix_tree_delete(&address_space->page_tree, page_private(page));
149 set_page_private(page, 0);
150 ClearPageSwapCache(page);
151 address_space->nrpages--;
152 __dec_zone_page_state(page, NR_FILE_PAGES);
153 INC_CACHE_INFO(del_total);
154 }
155
156 /**
157 * add_to_swap - allocate swap space for a page
158 * @page: page we want to move to swap
159 *
160 * Allocate swap space for the page and add the page to the
161 * swap cache. Caller needs to hold the page lock.
162 */
163 int add_to_swap(struct page *page, struct list_head *list)
164 {
165 swp_entry_t entry;
166 int err;
167
168 VM_BUG_ON(!PageLocked(page));
169 VM_BUG_ON(!PageUptodate(page));
170
171 #ifndef CONFIG_MEMCG
172 entry = get_swap_page();
173 #else
174 entry = get_swap_page_by_memcg(page);
175 #endif
176 if (!entry.val)
177 return 0;
178
179 if (unlikely(PageTransHuge(page)))
180 if (unlikely(split_huge_page_to_list(page, list))) {
181 swapcache_free(entry, NULL);
182 return 0;
183 }
184
185 /*
186 * Radix-tree node allocations from PF_MEMALLOC contexts could
187 * completely exhaust the page allocator. __GFP_NOMEMALLOC
188 * stops emergency reserves from being allocated.
189 *
190 * TODO: this could cause a theoretical memory reclaim
191 * deadlock in the swap out path.
192 */
193 /*
194 * Add it to the swap cache and mark it dirty
195 */
196 err = add_to_swap_cache(page, entry,
197 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
198
199 if (!err) { /* Success */
200 SetPageDirty(page);
201 return 1;
202 } else { /* -ENOMEM radix-tree allocation failure */
203 /*
204 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
205 * clear SWAP_HAS_CACHE flag.
206 */
207 swapcache_free(entry, NULL);
208 return 0;
209 }
210 }
211
212 /*
213 * This must be called only on pages that have
214 * been verified to be in the swap cache and locked.
215 * It will never put the page into the free list,
216 * the caller has a reference on the page.
217 */
218 void delete_from_swap_cache(struct page *page)
219 {
220 swp_entry_t entry;
221 struct address_space *address_space;
222
223 entry.val = page_private(page);
224
225 address_space = swap_address_space(entry);
226 spin_lock_irq(&address_space->tree_lock);
227 __delete_from_swap_cache(page);
228 spin_unlock_irq(&address_space->tree_lock);
229
230 swapcache_free(entry, page);
231 page_cache_release(page);
232 }
233
234 /*
235 * If we are the only user, then try to free up the swap cache.
236 *
237 * Its ok to check for PageSwapCache without the page lock
238 * here because we are going to recheck again inside
239 * try_to_free_swap() _with_ the lock.
240 * - Marcelo
241 */
242 static inline void free_swap_cache(struct page *page)
243 {
244 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
245 try_to_free_swap(page);
246 unlock_page(page);
247 }
248 }
249
250 /*
251 * Perform a free_page(), also freeing any swap cache associated with
252 * this page if it is the last user of the page.
253 */
254 void free_page_and_swap_cache(struct page *page)
255 {
256 free_swap_cache(page);
257 page_cache_release(page);
258 }
259
260 /*
261 * Passed an array of pages, drop them all from swapcache and then release
262 * them. They are removed from the LRU and freed if this is their last use.
263 */
264 void free_pages_and_swap_cache(struct page **pages, int nr)
265 {
266 struct page **pagep = pages;
267
268 lru_add_drain();
269 while (nr) {
270 int todo = min(nr, PAGEVEC_SIZE);
271 int i;
272
273 for (i = 0; i < todo; i++)
274 free_swap_cache(pagep[i]);
275 release_pages(pagep, todo, 0);
276 pagep += todo;
277 nr -= todo;
278 }
279 }
280
281 /*
282 * Lookup a swap entry in the swap cache. A found page will be returned
283 * unlocked and with its refcount incremented - we rely on the kernel
284 * lock getting page table operations atomic even if we drop the page
285 * lock before returning.
286 */
287 struct page * lookup_swap_cache(swp_entry_t entry)
288 {
289 struct page *page;
290
291 page = find_get_page(swap_address_space(entry), entry.val);
292
293 if (page)
294 INC_CACHE_INFO(find_success);
295
296 INC_CACHE_INFO(find_total);
297 return page;
298 }
299
300 /*
301 * Locate a page of swap in physical memory, reserving swap cache space
302 * and reading the disk if it is not already cached.
303 * A failure return means that either the page allocation failed or that
304 * the swap entry is no longer in use.
305 */
306 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
307 struct vm_area_struct *vma, unsigned long addr)
308 {
309 struct page *found_page, *new_page = NULL;
310 int err;
311
312 do {
313 /*
314 * First check the swap cache. Since this is normally
315 * called after lookup_swap_cache() failed, re-calling
316 * that would confuse statistics.
317 */
318 found_page = find_get_page(swap_address_space(entry),
319 entry.val);
320 if (found_page)
321 break;
322
323 /*
324 * Get a new page to read into from swap.
325 */
326 if (!new_page) {
327 new_page = alloc_page_vma(gfp_mask, vma, addr);
328 if (!new_page)
329 break; /* Out of memory */
330 }
331
332 /*
333 * call radix_tree_preload() while we can wait.
334 */
335 err = radix_tree_preload(gfp_mask & GFP_KERNEL);
336 if (err)
337 break;
338
339 /*
340 * Swap entry may have been freed since our caller observed it.
341 */
342 err = swapcache_prepare(entry);
343 if (err == -EEXIST) {
344 radix_tree_preload_end();
345 /*
346 * We might race against get_swap_page() and stumble
347 * across a SWAP_HAS_CACHE swap_map entry whose page
348 * has not been brought into the swapcache yet, while
349 * the other end is scheduled away waiting on discard
350 * I/O completion at scan_swap_map().
351 *
352 * In order to avoid turning this transitory state
353 * into a permanent loop around this -EEXIST case
354 * if !CONFIG_PREEMPT and the I/O completion happens
355 * to be waiting on the CPU waitqueue where we are now
356 * busy looping, we just conditionally invoke the
357 * scheduler here, if there are some more important
358 * tasks to run.
359 */
360 cond_resched();
361 continue;
362 }
363 if (err) { /* swp entry is obsolete ? */
364 radix_tree_preload_end();
365 break;
366 }
367
368 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
369 __set_page_locked(new_page);
370 SetPageSwapBacked(new_page);
371 err = __add_to_swap_cache(new_page, entry);
372 if (likely(!err)) {
373 radix_tree_preload_end();
374 /*
375 * Initiate read into locked page and return.
376 */
377 lru_cache_add_anon(new_page);
378 swap_readpage(new_page);
379 return new_page;
380 }
381 radix_tree_preload_end();
382 ClearPageSwapBacked(new_page);
383 __clear_page_locked(new_page);
384 /*
385 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
386 * clear SWAP_HAS_CACHE flag.
387 */
388 swapcache_free(entry, NULL);
389 } while (err != -ENOMEM);
390
391 if (new_page)
392 page_cache_release(new_page);
393 return found_page;
394 }
395
396 /**
397 * swapin_readahead - swap in pages in hope we need them soon
398 * @entry: swap entry of this memory
399 * @gfp_mask: memory allocation flags
400 * @vma: user vma this address belongs to
401 * @addr: target address for mempolicy
402 *
403 * Returns the struct page for entry and addr, after queueing swapin.
404 *
405 * Primitive swap readahead code. We simply read an aligned block of
406 * (1 << page_cluster) entries in the swap area. This method is chosen
407 * because it doesn't cost us any seek time. We also make sure to queue
408 * the 'original' request together with the readahead ones...
409 *
410 * This has been extended to use the NUMA policies from the mm triggering
411 * the readahead.
412 *
413 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
414 */
415 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
416 struct vm_area_struct *vma, unsigned long addr)
417 {
418 struct page *page;
419 unsigned long offset = swp_offset(entry);
420 unsigned long start_offset, end_offset;
421 unsigned long mask = (1UL << page_cluster) - 1;
422 struct blk_plug plug;
423
424 /* Read a page_cluster sized and aligned cluster around offset. */
425 start_offset = offset & ~mask;
426 end_offset = offset | mask;
427 if (!start_offset) /* First page is swap header. */
428 start_offset++;
429
430 blk_start_plug(&plug);
431 for (offset = start_offset; offset <= end_offset ; offset++) {
432 /* Ok, do the async read-ahead now */
433 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
434 gfp_mask, vma, addr);
435 if (!page)
436 continue;
437 page_cache_release(page);
438 }
439 blk_finish_plug(&plug);
440
441 lru_add_drain(); /* Push any new pages onto the LRU now */
442 return read_swap_cache_async(entry, gfp_mask, vma, addr);
443 }